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ABSTRACT

The several equations of motion governing the
dynamic stability of a parachute-load system, in which the
parachute as well as the load possesses aerodynamic drag
and stability characteristics, are established. The general
equations are linearized, which process provides satisfactory
results for relatively small deflections. A further sim-
plification is accomplished under the assumption of a
vertical descent. A numerical example is used to illustrate
the application of the analytical methods.
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SYMBOLS

jac,'I
a. = slope of the canopy normal force

coefficient under static conditicns

IaCNII
a1  -I = slope of the load normal force coefficientae /i under static conditions

AlA2,A3 1 constants of integration
BI,B2 ,B3

CNc normal force coefficient of the canopy

CNg normal force coefficient of the loadCTc tangent force coefficient of the canopy

CT, tangent force coefficient of the load

Ia apparent moment of inertia of the entire system,
including the effect of the encloed air mass,
about its center of mass (slug-ft )

Ic.g. moment of inertia of the canopy and load about
the center of mass of the system (slug-ft2 )

ITOT  total moment of inertia of system (slug-ft2)

I dimensionless moment of inertia,

L1  distance between the center of pressure of the
canopy and center of mass of the system (ft)

L2 distance between the center of volume of the
canopy and center of mass of the Lystem (ft)

L3  distance between the center of mass of the load
and center of mass of the system (ft)

L4  distance between the center of mass of the
canopy material and center of mass of the system (ft)

L5  distance between the center of pressure of theload and center of mass of the system (ft)

Ldimensionless length,. S¢C

apparent mass of the canopy including the effect
of the enclosed air mass in the x direction (slug)
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maxf apparent mass of the load in the x direction (slug)

mayc apparent mass of the canopy including the effect
of the enclosed air mass in the y direction (slug)

may apparent mass of the load in the y direction

me mass of the canopy material (slug)

M/ mass of the suspended load (slug)

Tff dimensionless mass, -
)S 2

Nc normal force acting on the canopy (lb)

NI normal force acting on the load (lb)

r projected radius of the canopy (ft)

So characteristic area of canopy (ft
2 )

S, characteristic area of load (ft
2 )

Tc  tangent force acting on the canopy (Ib)

T/ tangent force acting on the load (lb)

V velocity of the center of mass of the system
(ft/sec)

Vc velocity of the center of volume of the canopy
(ft/sec)

Ve equilibrium velocity of the system (ft/sec)

V, velocity of the center of mass of the load
(ft/sec)

Vx  velocity component in the direction of the system
axis (ft/sec)

Vy velocity component perpendicular to the system
axis (ft/sec)

V
V dimensionless velocity,

we weight of the parachute material (lb)

W/ weight of the load (lb)

oC angle between the velocity vector of the center
of mass of the system and the canopy axis (radians)

OCC angle of attack of the center of volume of the
parachute (radians)
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OC/ angle of attack of the center of mass of the load
(radians)

angle between the velocity vector of the center

of mass of the system and the vertical (radians)

area ratio = S//Sc

e angle between the canopy axis and the vertical
(radians)

N%12\7\3 roots of the frequency equation

JO air density (slug/ft
3 )

Vet
T dimensionless time =

Sc2

40 angular velocity of the system (radians/sec)

Subscripts

)o initial value of a quantity (att = 0)

Superscrits

C ) differentiation with respect to real time, t

)' differentiation with respect to non-dimensional
time, t

( -) dimensionless term



I. INTRODUCTION

The present report is concerned with an extension
of the dynami2 stability study of a parachute-point mass
system considered in Ref 1. Reference 1 considered A simpli-
fied system composed of a point mass, possessing neutral
stability characteristics, and a statically stable canopy.
One must realize, however, that for most practical applica-
tions, the load will possess a degree of stability (or
instability) of its own. Thus, it appears advantageous to
attempt an analysis of such a parachute-load system.

Therefore, this report presents an analysis in
which the load exhibits aerodynamic characteristics of its
own. In addition to these characteristics, the motion of
the system depends upon the aerodynamic coefficients, their
derivatives, and upon the physical, as well as apparent mass
and moment of inertia of the parachute.

The general governing equations are ultimately
simplified for vertical or near vertical descent.

II. EQUATIONS OF MOTION

The motion of a parachute-load system involves,
in general, six degrees of freedom. In order to obtain an
analytical solution with a reasonable amount of effort, one

must consider a simplified physical model. In view of these
circumstances, the following assumptions shall be utilized.

1. rhe entire system constitutes a rigid body.

2. The mass and aerodynamic forces of the suspen-
sion lines are neglected.

3. The effects of the apparent mass of the para-
chute canopy and that of the load act at the
canopy center of volume and load center of
mass, respectively.

4. The motion is restricted to the x-y plane.

This physical model, with the acting forces, is

shown in Fig 1.

,,a m . m wl a .,m...,.,. m,,D~u . ,m on, n ,m,.n m,.,. " ,,,.1-
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~L,

L4

WL2

(D CENTER OF PRESSURE L5
OF PARACHUTE CANOPY

( CENTER OF MASS OF
CANOPY MATERIAL
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PARACHUTE CANOPY

CENTER OF MASS OF SYS

@ CENTER OF PRESSURE OF D

6 CENTER OF MASS OF LOAD w, \

Fig 1. The Parachute - Load System
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One may write the velocity of the center of mass

of the system in the canopy fixed reference frame as:

V +vy (1)

where: Vx = velocity of the center of mass in the direction
of the canopy axis

V = velocity of the center of mass perpendicular
y to the canopy axis.

To determine the equations of motion of the parachute-load
system, one may use Newton's second law, which may be expressed
symbolically as:

YZFOm (2)dt

where: F = sum of all external forces acting on the
system

m = physical mass of the system

d V = acceleration of the center of mass of the

system in an inertial reference frame.

The absolut. (total) acceleration may be expressed as (Ref 1):

/d (1)V d( ,,
+/ xV (3)

where: (2) acceleration with respect to reference
= frame 2

= angular velocity of reference frame 2 with
hrespect 

to reference frame 1.

In± the present analysis, the canopy fixed reference frame
i~s chosen to be reference frame 2 and Z may be expressed as

= Ek. Using Eqns 3 and 1, one finds:

- =( -evy)i. (vy.ev )i. (4)

Using this relation in Eqn 2, one obtains:

(mP+m,) [Vx6Vy)t + (VY 6Vx)j] EP!, (5)

3



where: mc = mass of the canopy material

m/ = mass of the suspended load

The various external forces acting on the system
will now be considered. The aerodynamic forces, as shown
in Fig 1, may be expressed as:

Fa =-(+TC) - (N,+.N)j (6)

where: Tj = tangent force acting on the load

Tc = tangent force acting on the canopy

NI  = normal force acting on the load

Nc = normal force acting on the canopy.

One may express the gravity forces as:

F9 =(W,, Vcose& - (W/ W)sinej (7)

The apparent mass forces can be expressed as:

Fain (Mxa ax - (May ay + mv.ay4j )

where: ma 1  = apparent mass of the load in the x direction

may = apparent mass of the load in the y direction

max c = apparent mass of the canopy including the
effect of the enclosed air mass in the
x direction (Ref 2)

mayc  apparent mass of the canopy including the
effect of the enclosed air mass in the
y direction (Ref 2)

ax, : acceleration of the center of mass of the
load in the x direction

a Y, acceleration of the center of mass of the
load in the y direction

c acceleration of the center of volume of
the canopy in the x direction

ay c acceleration of the center of volume of
~c the canopy in the y direction.

4



The velocity of the center of mass of the load and center of
volume of the canopy consists of the velocity of the center
of mass of the system : plus a rotational velocity about the
center of mass of the parachute-load system. Thus, one may
write:

V W1 = ix L3
- Vxi +(Vy+L 3 )j(

V =+Wcx(-L 2 ) = Vxi + (\-L 26)(

The acceleration of the center of mass of the load and center
of volume of the canopy may be written as:

0 d (1) 'Cac = at

and, using relations 3 and 9, the above equations become:

a, = [V -ev- L2]+ [- Levx +Le]

c= [ - 6y+ L4 + (y+ 6V,- L26

Or, in scalar form, one may write the corresponding acceleration
components as:

ax, = x -6vy -L3e 2

a, 4y +ev, +L3 e

ay, =Vy -eVx L26

and the apparent mass forces, in accordance with Eqn 8, become:

Fam (m-~rax, CV -6Vy -L3 62) 4.Max(Vx -ev b +L26?) (11

- eVx +L36) + ma(YV +6VX L2 )]J

5



Utilizing relations 6, 7 and 11 in Eqn 5 yields two scalar
equations of motion in the x and y directions, respectively:

(mc, + Max + m ax. ) (x -6Vy) (
(12)

- (T/ T) + (W +W) cose, (max, L 3 -maxeL 2 )6 2

(eRn +m,+may+may,)(VNy +evx) (13)

- N-(WN +W,)sine +(mayL 2 -mayL 3)e

A third equation may be written which governs the rotational
motion of the entire system. This equation, the angular mno-
mentum equation, states that the sum of the external moments
acting about the center of mass of the system equals the time
rate of change of the angular momentum of the system about;
its center of mass. This statement may be expressed as:

(Ic.g,+ 4a)e = NcL, -N4L 5  (14t)

where: Ic.g. = moment of inertia of the canopy and load
about the center of mass of the system

Ia = apparent moment of inertia of the entire

system including the e .fect of the enclosed
air macs about its center of mass

L 1 ,L 5 = lengths (see Fig 1).

The various aerodynamic forces are conventionally expressed as:

N= 1.P'Sc To--C;iApSc

1  
2  1 '15)N, = .- S T, CT,- \/JSj

In addition to these definitions, it is convenient to make
the equations of motion dimensionless in the following
manner:

6
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m
(16)

-C L V v Vet

, 2g =--e S11

Ve = equilibrium velocity.

Introducing these relations, along with Eqn 15, into Eqns 12
through 14, one obtains after some algebraic manipulations:

(c +a, +rn6 ,×)(Vx -Ey)=- C

+ (W +Wk) cos e

2 C (12a)

+ -fax1 3- faxC2)d

(W~~) in E
I pV 2 ScS

+ (rn,,t 12 M s 3) O* (13a)

(C9+Ta--)e" -CN,\09 s5 +CNELI (14a)

where the prime (') indicates differentiation with respect
to the dimensionless time t .

The equilibrium velocity is defined by:

WW = +Wco(Cs CTcS) ,Vo.

which may be written as:

7
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w- C, +Si (17)
SCi

To abbreviate the form of Eqns 12a through l4a, let us
write:

mnx =Mc +m +Max.,+ Max,

my =M + +M. ay, +May

ITOT 'cg +Ia

Sc

Ax =Max( '1 -MaJ

Ay L2.- 3

Substituting the definitions 17 and 18 into Eqns 12a through
14a yields:

Mx R( -dVy) M- 'CV2- -CTo 't) (C+ C ose9+Ax~d V2 ~

; - eN I-CT 4C

rn¥(7; eV× )=-SCN/ q CNO)-(CT neCT)sieAYE (13b)

- -:-VCN q L5 +CN0 Vc L, . (14b)

In order to obtain the final equations of motion in a con-
venient form, the following relationships may be deduced

8



from Eqn 9:

:Vx + (V +Le')

The angle of attack of the center of mass of the
load O(p and center of volume of the canopy O~c will eventually
be required to evaluate the normal force (CN) coefficients.
One may determine these angles by means of Eqn 9 as:oc v ) +L26

tan, Oc -- "Vx

tan XC-

- = - V x

But, from Fig 1 one notes that the angle of attack of the
centerline of the system amoounts to:

VY
tan X =-

and, therefore, using the dimensionless notation:

L26
tan CC =tan C. --

tan (20)o9  : tan CV-

Noting from the geometry of Fig 1 that:

V. = VCos C

Vy =-Vsin OC

Eqns 19 and 20 become now:

V2  V2 _2E Ve'sinoc + -L2 e' 2

%2 V2 +21CVes inOC +-[2262 (22)

9
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tan oc,: tanc. - L30

\coso
(23)

tanca : tnoc + co'
VcosoC

Utilizing relations 21 and 22, the equations of motion 12b
through 14b assume the following form:

f49'coscr -Vg'sincc+'?G'sincc

4[- 'sinoc - o'cosoc I 3@cos ] :

CN[ 2L E/7 sin oc ]j

c [V 2 -V- sin X + 02G~

2( 6)

+ (C 4 CT )os G+ AMy[-LV ~ 2)''sincc Vics +9co c

+C~[2L~'incx L~2J(26)

10



g- ' " t- . e,, . $ >v~.i M +ltl < • -., 
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III. A FIRST ORDER METHOD OF OBTAINING
NUMERICAL SOLUTIONS

A simplified numerical method of solution will
now be outlined. In the most general situation, certain
initial conditions must be given. A typical set of initial
conditons is given by:

at -:o, e= Go,XCO,, G ''o, V:o

Let us first consider Eqn 23. One observes that these initial
conditons are sufficient to determine the initial angle of
attack of the load and canopy, C and (Xco . It may be
assumed that the aerodynamic coefficients CNc, CTc, CN and
Cq are known functions of C(c and C9 respectively. on-
sequently, C(, and OC determine the initial values of
the coefficients. Subs ituting the initial coefficient
values and the initial conditions from above into Eqns 24
through 26 yields three equations of the form:

AIV"+ BjcCr: C, (24a)

A,,B ;. C2+ (25a)

Ao= C3 . (26a)

The constants Al, A2, . . . are determined from Eqns 24
through 26. For example, by comparison, one finds that
AI = Yf cos (o, A2 = - fx V sin 0o, etc. Thus Eqns 24a
trough 26a represent three linear equations from which one
can determine Vo ' , 0Co ', and Go".

One next selects a small dimensionless time interval
and calculates: ,or V = V,z f

d' = eJ'r I

/!
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Thus, after the time interval 't, the new values of the
variables become:

v1 = Vo+ V

91l = 0o+ f'E'

cE = ocz+ o' 0c

e,= eo +e

One now has a new set of conditions 71, el',cc 1 el, and
the_preceding steps can be repeated to determine new values
of V, e ', e, and r . This procedure may be repeated
indefinitely until the entire trajectory is determined as:

E f (V)

OC= f(t)

The above procedure is equivalent to expanding V, e , and oc
in a Taylor series and retaining only the first two terms.
In this manner, the nonlinear differential equations, 24
through 26, including a nonlinear CNi CT, -CC relationship,
can be solved.

IV. LINEARIZED THEORY

If one wishes to consider only the class of motions
where the oscillations are small (cc small), the following
equations are applicable:

SIN cC = C COS C1

In addition, if the trajectory i8 almost vertical (,e small),
one may write:

SIN COS 1

Utilizing these assumptions in Eqns 24 through 26 and
neglecting second order terms such as ococ' , one obtains:

MxV'= -(' cTA+CT2) (-1) (27)

12



MiyV (e' CC') I- CNC)V 2-(cT'frcTj)e +AYe" (28)

TTe': CN L--CN L)V (29)

Equation 27 may be integrated directly to give
the variation of V with .

I +V0 ex(CTe CTC) t I

-- r = C-)% -ii (30)

where Vo is the value of V at T = 0.

Equations 28 and 29 can be presented in a .more
explicit form by realizing that for small oscillations, CTt
and CTc are constant while CN and CNc are linear functions
of cc and cc c respectively. hu4 one may write:

CNI = at ol (31)

CN = a Cc

where: at = slope of CN _ versus c , under static
conditions "

ac = slope of CN, versus OC c under static
conditions.

Introducing these relations into Eqns 28 and 29
and assuming that the system is descending at approximately
its equilibrium speed (i.e., V 1- 1), one finds:

fn (0'- a'- Accl- (C t 4cn)e * Ay() -acoc (28a)

ITOTO* (a~ctC,- 'a o1oCC5 ) (29a)

/ 13
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Again utilizing the assumption of small oscillations, Eqn 23

assumes the form:

(= O( - E3
c = C Lie(23a)
a I., = oc + LP:.e

Introducing these relations into Eqns 28a and 29a yields,
after rearranging:

Ave+ jjE~a,- [2a, - myi] e' - [c, + cT e(8b
+ M cc" - [s a,+ a,] OC = 0

Im010" [ a['sa9 +iac] e- (iFla c - 5.) )(X 0 (29b)

Equations 28b and 29b are coupled but linear, and
one may assume a solution of the form:

e : BeK'  
(32)

Substituting these functions into Eqn 28b and 29b yields,
after rearranging:

a,1 A + a12 B = 0

a 21 A + a2 2B = 0

where: a-, r mYA-[ a, + aj

a12  IyA 2 fac + 6 3a,~ mY]A[CC + CTJ

(33a)a21 = 12 - a,

a2 2 = ATOT -[6 3La, + E. [ 2 a

14



A nontrivial solution of Eqn 33 for A and B exists
if and only if the determinant of the coefficients is
identically zero. That is, if:

a l l  al2 =0

a21  a221

Expanding the determinant, one finds after rearranging:

a,3 +b 2 + c, +d 0 (34)

The coefficients, a, b, c, and d, obtained by a direct
expansion of the determinant, can be written with the aid
of relation 18 and 33a as:

a = MJTOT

b: -= Vrc+ r,)4 c+ r[.Laj)

-( 2+ 3)(rM, tL a,+ rnE 5a,) - 1 ac+da,)
(35)

C = ( 1+ E5)(L2+L3)aac - F-y(Ela1 - 5ag)
d = - (CTc-Y Tj)(C1 a c - 1[5aj)

Equation 34 is referred to as the frequency equation
of the system. In general, it yields three distinct values
of N

Routh's criteria (Ref 3) requires that for a
dynamically stable system, the following inequalities be
satisfied:

a>O d>
b>O bc>d (36)
c>O

In essence, the angle of attack Cx and the related
angle 0 (Eqn 32) decay with time if the real part of the
roots of the frequency equation (34) are negative. This is
the case if Routh's criteria is satisfied.

/ 15



Now, details of the solution of the governing
equations shall be discussed. Since three roots of the
frequency equation (Al, ;\2, 7 \3) can be found, the general
solution of the problem may be written as:

:A 1=A,5 + Ae+A 3 eE'

e = B 1e~q + B e 4 + B 3e (37)

where Al, A2, A3 , B1 , B2 , and B3 are the constants of in-
tegration. Three relations for these constants can be found
through the use of the initial conditions expressed as

c(X=(Xo, e=eo, and e. = Eo , at Ft= 0. Applications of
these conditions yield:

A1 + A 2+ A3 = cO
B,+ B2 + B3 = eo (38)

1B1
+ ? 2 B2 +A3B 3 = e o

Additional equations can be obtained from either of Eqns
33. Utilizing the second of these equations, one finds,
with the use of 33a, the three relations:

2

L~i _j7orr('LLa+ C,! 1?. (39) '
Bi -, Ea,+ F15ag :

where i assumes the values of 1, 2, and 3. Thus, using
Eqns 38 and 39, all of the constants are specified and the
solution established.

A particular numerical example of a system com-
prised of a stable parachute and unstable load is treated
in Section 7.

16
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V. AN APPROXIMATE SOLUTION FOR
VERTICAL DESCENT (R= 0)

Linearized equations governing the linear and
rotational motion of a parachute-load system were presented
in the preceding section. For the case where the descent
is vertical, Fig 1 indicates that 4 is zero and therefore
the angles Cx and e must be identical. Because of this
fact, one may replace C( by E in the last term of Eqn 29b
and obtain:

iroTe " -(E 2a + 6eL3[5a,)G' - (Ela.- [T5a,)e- 0

which may be rewritten as:

G" + mO' + ,e o (40)
4

where:

-LL2ac - 2r- 3[5 a,
rn -

ITOT (41)

n2, _-E[a+ [5a1
4 ITOT

The solution of this linear equation can be written as:

e: Ae' (42)

Substitution of this relation into Eqn 40 yields:

2 n 2 =0(43)

4
which yields for ? :

2 V'm'

Denoting these two roots by Al and ?2, one has:

17



2

The general solution of Eqn 40 may now be written
in one of several ways, depending on the relative values
and signs of m and n . The case of a statically unstable
parachute, where ac > 0, is certainly not capable of sta-
bilizing an unstable load. Therefore, this case may be
disregarded.

Thus, for all physically realistic systems, one
sees from bheir definitions that i1, L2, L3, t , and 'TOT
are always positive and ac is negative. Aiso, for most
practical cases, the slope of the normal force coefficient
versus the angle of attack for the load is negative. However,
L5 can be either positive or negative, depending on the
relative sizes of the parachute and load as well as on the
stability of the load by itself.

The above considerations thus show that both m
and n2 can be either positive or negative quantities.
However, for most practical systems, both m and n2 will
be positive and as a result, only this case will be con-
sidered in detail in this report.

In view of Eqn 44, it is advantageous to consider
the following three casez of the term (n/m)2:

0 < 2<

For this case, examination of Eqn 44 shows that
both A 1 and A2 are negative and the general solution
can be written as:

e A, e 't+ A2eA-1"

Since 7\1 and \2 are negative, the angle (E) decays with
time and the system is dynamically stable.

In this case one finds that AI = \2 m thus
giving the solution:

18



m't
e e-A, + A 2jt)

Once again this solution indicates a dynamically stable
system.

n 2
M) >1

In this case, the two roots Al and ;N2 are complex
numbers and one can write:

m m - (45)

and t1e general solution can be written as:

E) e [Asin+ A2OS M W(46)
2

which represents a stable system. This case represents the
most common situation for a stable system and one can deduce
certain characteristics of the motion of the system from
this relation.

The damping factor, e , indicates the rate at
which the oscillations are damped. Large values of m correspond
to a rapid damping. One observes from Eqn 41 that large
values of m (rapid damping) correspond to a combination of
a very stable parachute (large negative ac), long suspension
lines, and a small moment of inertia, I.

In order to solve Eqn 46, one must determine the
constants of integration, preferably from the initial con-
ditions e= Eo o, ' = Eo' at t = 0. One f-Inds the con-
stants to be:

A 2 Eo

/4 19



and the solution of Eqn 46 amounts to:

oze~ [M z SIN -2M H 1
2 C -T-- 

(47)

+ G.cos~1  (1 2

VI. CONCLUSIONS

With the assumption of small oscillations and
near vertical descent, one may completely specify the motion
of a parachute-load system in which the load possesses
distinct aerodynamic stability properties. This rigorous
solution requires lengthy calculations. To alleviate this
problem, one may choose to solve the simplified equation
presented in Section 5. This approach is Justified for
vertical descent (6= 0).

A substantial portion of the calculations can be
eliminated if one merely wishes to determine whether or not
the system is dynamically stable. The answer to this question
is furnished by Routh's criteria (Section 4). One must,
in this case, only determine the value of the coefficients
of the frequency equation (Eqns 34 and 35) and check to see
if they satisfy relations 36. Because of the number of
parameterG involved and the way in which they enter the
frequency equation, it is difficuIlt to draw general con-
clusions pertaining to the stability of a general system.
Thevefore, for any practical case, Routh's criteria must be
satisfied in its various aspects.

It also can be seen that a system consisting of
a stable or unstable load combined with a stable parachuce
car be analyzed in the same manner as a system with a point
load and a stable parachute(Ref 2). For the case cf the
point load, the governing equations of this study may be
reduced to the same form as given in Ref 2 when the aero-
dynamie coefficients of the, load approach zero.

20
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VII. NUMERICAL EXAMPLE

A numerical example, concerning a parachute-load
system (Fig 2) which consists of a five-foot ribless guide
surface parachute canopy, having a nominal porosityof
70 ft3/ft2 -min, and a one-foot diameter ogive cylinder
weighing 350 lbs shall be used to illustrate the presentedtheory.

The mass of the parachute, mc, shall be the same
as in Ref 2, namely:

mc = 2.82 rt r2X 10-3 slugs

which, in dimensionless terms is:

Mc = 0.537

From the same source, the mass of the enclosed air amounts
to:

mi : 0.419

and in dimensionless form:

F-i = 0.468

From Ref 4 one finds:

0.3

and therefore:

maxc = 0.1404

The dimensionless mass of the load is:

Fn, : 105.17

From the geometry and various physical masses of the com-
ponents of the system, one finds:

L :2.2166

L 2 2.1665

/
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C. G. OF CANOPY

h2 0.32

r/

C, .382 LOA

h2= 0.3

Fig 2. Geometry of the Ribless Guide
Surface Canopy and Load
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[3 =0.0064

E4 
= 2.2105

A....,ling that the distribution of mass in the ogive is

uniform, the moment of inertia amounts to:

IC.G. = 10.8536

Again, from Ref 2 one finds the apparent moment of inertia
of the canopy about the center of mass of the system to be:

Ia;0.187ATtr3 L2

and for this particular configuration:

Ta =1,3204

thus giving a total inertia of:

TOT= TceTa =12.1740

The center of pressure of the ogive cylinder has
been experimentally determined through wind tunnel tests
and it is found to be located a distance of 0.3) behind
the tip of the ogive (Note: I represents the length of
the ogive cylinder?). With the preceding geometry, one can
determine the distance L5, in dimensionless form, as:

-5 = 0.2095

Also, the above-mentioned experiments have shown that:

CTJ : 0.23

at =-2.55 per radian

and from Ref 2 for the parachute:

CTc : 1.08

a c =-0.676 per radian
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All of the preceding results may be summarized
as:

Mc z0.537
mOxc- mayo= 0.1404
Fn- :105.17

11 = 2.2166
[L2= 2.1665

E3= 0.0064

L4
= 2.2105

L5 = 0. 2095

,TOT = 12.174 0

CT = O. 23

CTC = 1.08

a = - 2 .55 per radian

a c = -0.676 per radian

6= 0.04

In addition to these values, it will here be
assumed that-the apparent mass of the load is negligible
and Fax, = mayg = 0.

Utilizing the above values in the frequency equa-
tion (Eqn 34), one finds:

128 3 A2
1285A3+ 352.47 A2+ 156.7314 + 1.6088 0

of, dividing by the coefficient of 3:

3 2
A + 0.274 2 A + 0.1219 ? + .001251 0 (48)

Solving this relation by the method presented in Ref 5,

one finds:

/
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71 =-0.010535

\2- 0.1286 + 0.315554i

A3=-0.1286 - 0.315554 i
(49,)

As initial conditions, we choose at 0 O:

o =10 0.1745

EGO= 0

c(O =10 0.1745

Using Relations 38 and 39, one finds the values of the
constants A1 A2, A3, B1 , B2, B- to be:

A1 = -0.00008294

A 2 = 0.09460 40.3561,

A3 = 0.09460 e0 39561i

B, = -0.0037315 (50)

B2= 0.09621 ,o.3863oi

B3 = 0.09621 e 0 3 8 6 30 i

After several algebraic manipulations, the linearized general

theory provides the angles 6 and oc as:

E = -0.003731 e&QOO54t

+0,19242 6o.1286T cos(0.3156 7 -0.3 8630) (51)

a -0.00008294 E °.' 1° 54 r

+0.1892 &° ' 266 cos(0.3156 T - 0.39561) (52)

I,!



Using the simplified analysis for the vertical descent
(j6 = 0), Eqn 47 gives:

e z0.1885 cos(O.3187t - O.38834) (53)

The relations 51 and 53 are graphically presented
in Fig 3 and tabulated in Table 1. It can be seen that both
approaches provide nearly identical results and it appears
that, for many practical cases, the simplified method would
be entirely satisfactory. However, for a case involving a
trajectory with a strongly .hanging inclination angle or a
system with nonlinear aerodynamic coefficients, a numerical
solution of the nonlinearized equations may be required.

10
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Table 1. Values of the Angle e

for the Exact and Approximate
Solutions

T t (sec) e'de IV a(del)
2 .0755 8.06 8.06

4 .1511 4.02 4.05

6 .2266 0.12 0.23

8 .3022 -2.31 -2.11

10 .3777 -3.04 -2.77

12 A532 -2A7 -2.16

14 .5288 -1.34 -1.04

16 .6043 -0.25 0

18 .6799 0.42 0.62

20 .7554 0.62 0.76

22 .8309 0.46 0.58

24' .9065 0.14 0.27

26 .9820 -0.15 -0.02

28 1.0567 -0.33 -0.18

30 1.1331 -0.38 -0.21

32 1.2086 - 0.33 -0.16

34 1.2842 -0.23 -0.07

36 1.3597 -0.14 0.01

38 1.4353 -0.09 0.05

40 1.5108 -0.08 0.06
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