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of the Navy; and Alr Force Systems Command, United States
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of the Recovery and Crew Statlion Branch, Air Force Fllght
Dynamics Laboratory, Research and Technology Divislon, with
Mr. James H, DeWeese actling as Project Englneer,

The work efforts accompllished in support of the
particular investlgatlon reported herein were initlated
on 15 April 1963 and completed in May 1964,

The authors wish to express thelr appreciation
to thelr assoclates and to the students of Aerospace
Englneering who assisted in the preparatlon of thls report.

Manuscript released by the authors May 1964 for publication
as an RTD Technicel Report.
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ABSTRACT

The several equations of motion governing the
dynamic stabillty of a parachute-load system, In which the
parachute as well as the load possesses aerodynamic drag
and stability characterlstics, are established. The general
equatlions are linearized, which process provides satisfactory
results for relatively small deflections. A further sim-
plification is accomplished under the assumptlon of a
vertical descent. A numerlcal example 1s used to 1llustrate
the application of the analytical methods,
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SYMBOLS

siope of the canopy normal force

O js coefficient under static conditicns

—_ slope of the load normal force coefficilent
QX Js under static conditions

constants oi' integration

normal force coefficlent of the canopy

normal force coefflclent of the load

tangent force coeffilcient of the canopy

tangent force coefflclent of the load

apparent moment of 1lnertia of the entlre system,

including the effect

of the enclog§d alr mass,

about its center of mass (slug-f%

moment of inertia of

the canopy and load about

the center of mass of the system (3lug-ft2)

total moment of inertia of system (slug-£+°)

dimensionless moment

distance between the
canopy and center of

distance between the
canopy and center of

distance between the

of inertia, "TJL"EQ

(o
center of presgure of the
mass of the system (ft)

center of volume of the
mass of the cystem (f+)

center of mass of the load

and center of mass of the system (ft)

distance between the

canopy material and center of mass of the system (ft)

distance between the

center of mass of the

center of pressure of the

load and center of mass of the system (ft)

dimensionless length,

apparent mass of the

L
S 2
canopy including the effect

of the enclosed air mass in the x direction (slug)
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max, apparent mass of the load in the x direction (slug)

May apparent mass of the canopy including the effect
of the enclcsed air mass in the y direction (slug)

n%&} apparent mass of the load in the y dlrectlion

mg mass of the canopy material (slug)

my mass of the suspended load (slug)

m dimenslonless mass, ;%ggb

Ne normal force acting 30 the canopy (1b)

Ny normal force acting on the load (1b)

r projected radius of the canopy (ft)

Se characteristic area of canopy (ft2)

Sy characteristic area of load (ft2)

Te tangent force acting on the canopy (1b)

Ty tangent force acting on the load (1b)

v velocity of the center of mass of the system
(rt/sec

Ve veloclty of the center of volume of the canopy
(£t/sec

Ve equilibrium velocity of the system (ft/sec)

vy velocity of the center of mass of the load
(£t/sec

Vy velocity component in the direction of the system
axis (ft/sexc?s)

V& veloclity component perpendicular tc the system
axis (ft/sec

v dimensionless velocity, %%

W, weight of the parachute material (1b)

Wy welght of the load (1b)

oC angle between the velocity vector of the center

of mass of the system and the canopy axis (radians)

O angle of attack of the center of volume of the
parachute (radians)
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oCy angle of attack of the center of mass of the load
(radians)

ﬁg angle between the velocity vector of the center
of mass of the system and the vertical (radians)

Q\

area ratio = Sy /S,

o angle between the canopy axls and the vertical
(radians)

MMAs roots of the frequency equation

P air density (slug/?t3)
V.t
T dimensionless time = ggg
c
w angular velocity of the system (radians/bec)
Subscripts

( o initial value of a quantity (at T = 0)

Superscripts

(") differentiation with respect to real time, t

( ) differentiation with respect to non-dimensional
time, T

(™) dimensionless term
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I. INTRODUCTION

The present report is concerned with an extension
of the dynaml: stubility study of a parachute-point mass
system considered in Ref 1. Reference 1 considered & simpli-
fied system composed of a point mass, possessing neutral
stability characteristics, and a statically stable canopy.
One must realize, however, that for most practical applica-
tions, the load will possess a degree of stability (or
instability) of its own. Thus, 1t appears advantageous to
attempt an analysls of such a parachute-load system.

Therefore, this report presents an analysis in
which the load exhibits aerodynamic characteristics of 1its
own. In additlion to these characteristics, the motion of
the system depends upon the aerodynam.c coefficients, their
derivatives, and upon the physical, as well as apparent mass
and moment of inertla of the parachute,

The general governing equations are ultimately
simplified for vertlcal or near vertical descent,

II, EQUATIONS OF MOTION

The motion of a parachute-load system involves,
in general, six degrees of freedom., In order to obtaln an
analytical solution with a reasonable amount of effort, one
must consider a simplified physical model. In view of these
circumstances, the following assumptions shall be utilized.

1, The entire system constitutes a rigid body.

2., The mass and aerodynamlc forces of the suspen-
gion lines are neglected.

3. The effects of the apparent mass of the para-
chute canopy and that of the load act at the
canopy center of volume and load center of
mass, respectively.

4, The motion 1s restricted to the x-y plane.

This physical model, with the acting forces, is
shown in Fig 1.
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One may wrlte the veloclty of the center of mass
of the system in the canopy fixed reference frame as:

V = Vil ey | (1)

where: Vy = veloclty of the center of mass in the direction
of the canopy axls

veloclty of the center of mass perpendlcular
to the canopy axis,

Vy

To determine the equatlons of motion of the parachute-load
system, one may use Newton's second law, which may be expressed
symbolically as:

)
LF - md(‘v (2)
where: Zﬁ = sum of all external forces acting on the
system
m = physlcal mass of the system
a(l )\7

= acceleratlon of the center of mass of the
system in an inertial reference frame.

The absolute total) acceleration may be expressed as (Ref 1):
d"’v _d®%

& xV ' ;
=gt rexv (3) i
: —7552 = acceleration with respect to reference
frame 2
& = angular veloclty of reference frame 2 with

respect to reference frame 1. 1

is chosen to be reference frame 2 and & may be expressed as

%
I the present analysls, the canopy fixed reference frame §
& = ©k. Using Eqns 3 and 1, one finds: 3

Y

T = U6Vl s (% +6V). (&) :

Using thls relation in Eqn 2, one obtains: ;

(mp+m,) [(\'/x-év, )i+ (v, +éVx)j} = IF, (5)
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where: me
m,

The varlous external forces acting on the system
willl now be considered. The aerodynamic forces, as shown
in Flg 1, may be expressed as:

mass of the canopy material
mass of the suspended load

Fa ==+ Tl - (Np+No) (6)
where: Ty = ‘tangent force acting on the load

T, = tangent force acting on the canopy

Ny = normal force acting on the load

N, = normal force acting on the canopy.

One may express the gravity forces as:
?g =(Wy+W) cosO1 - (WysWe)sin 6] (7)

The apparent mass forces can be expressed as:

Fam =- [max,ax,+ maxcaxJ? - [may, 3y, + May, 3Yc]j ) (8)
where: Max, = apparent mass of the load in the x direction

May, = apparent mass of the load in the y direction

Max, = apparent mass of the canopy including the

effect of the enclosed alr masg in the
X direction (Ref 2)

May, = apparent mass of the canopy including the
effect of the enclosed air mass in the
y direction (Ref 2)

ay = acceleration of the center of mass of the
! load in the x direction
ay; = acceleration of the center of mass of the
load in the y direction
ax = acceleration of the center of volume of
¢ the canopy 1n the x direction
ayc = gacceleration of the center of volume of

the canopy in the y direction.

& A

B e

Pt 2




SN TR L GUTISRF G or ¢ e R e ST PRGN, A R T e

The velocity of the center of mass of the load and center of
volume of the canopy consists of the veloclty of the center
of mass of the system v plus a rotational velocity about the

center of mass of the parachute-load system. Thus, one may
write:

Vp=Velx Ll = Vil + (Vy +L30)]

T = Bs@X-Lol) = Vil + (Lo 8)] 7

The acceleration of the center of mass of the load and center
of volume of the canopy may be written as:

Y,
3, =
/7 dt
. dm\é
4 = Gt

and, using relatlons 3 and 9, the above squations become:

-

= [ - OV - L8] T+ [V + 6V + L38)]

I

o ' o ) (10)
o=V - BV + L& T+ [V« OV - L8]]

Or, in scalar form, one may wrlte the corresponding acceleration
components as:

ax’ = VX - éVy it L3é2
ay! = Vy + éVx + L3é
axc = \./x - éVy + Laéz

"o

ayc =Vy *éVx ‘Lze
and the apparent mass forces, 1n accordance with Ean 8, become:
Eam:- [maxl(vx —éVy -L3é2) + maxc(vX "éVy "’Lgéz)]i‘
- [may,(Vy +éVx *L3é) + mayc(\./y +éVx -Lze)] j

5
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Utilizing relations 6, 7 and 11 in Egn 5 yilelds two:scalar
equations of motion in the x and y directlons, respectively:

(mc +m[ +maxl*maxc)(\./x - évy) = ( )
. 12
- (Tp+Te) + (W +W) cos© + (Max, L3 ~Max, L 2) €2

(me +my +m%+mayc)(\'/y +OW) = (13)
. 13
- N/l - Nc - (va +Wc)$ine + (may‘Lz‘may‘L3)e

A third equation may be written which governs the rctatilonal
motion of the entire system. Thils equation, the angular mo-
mentum equation, states that the sum of the external moments
acting about the center of mass of the system equals the time
rate of change of the angular momentum of the system about
its center of mass. Thils statement may be expressed as:

(Ieg+ Ja)8 = NL, -NiLg , (14)
where: I, , = moment of inertla of the canopy and load
about the center of mass of the system
I, = apparent moment of inertia of the entire

system including the effect of the enclosed
alr mass about its ceuter of mass

lengths (see Fig 1).

i

Ll’L5

The various aerodynamic forces are conventionally expressed as:

T - GppVs:

1 2
T =G 2PV S,

N = Q{%‘P chsc

1 a2 {15)
Nfcr{Z'-PY‘ >t

In addition to these definitlons, 1t 1s convenient to make

the equaticns of motion dimensionless in the following
manner:

PR e
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= - R

TP EETE
(16)
- L ..V Vet
L= 32/2 V=-§/: T’—g—g/é-
Ve = equilibrium velocity.

Introducing these relations, alcng with Eqn 15, into Eqns 12
through 14, one obtalns after some algebraic manipulations:

(122)

=\ (T O S
(rrpm,muw;m%) (\+8Y) = -chvf.s.: _Cchca
~QQL:¥¥LZS"18
7 PVe Sc

. Sy — o
legTa) 6" = -Cx, PE s + CaVELH (14a)

where the prime (') indicates differentiation with respect

to the dimensionless time T

¢

The equilibrium veloclity 1s defined by:

1
W, W = (G, Sy +Cr.S) 5PV

which may be written as:

Sty A
e
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gl 2o, (17)
(o

1 .\2
> O\ES ¢

To abbreviate the form of Eqns 12a through 1lla, let us

write:

My = M +my *max,“r—ﬁaxc
my =mc +fﬁ/ "’may, +mayc
LOI:Icg+Ia
v -

Sc
Ax =Max, Lz -Maxl2

Ay - mayo tz_ - mayjt:;

Substituting the definitions 17 and 18 into Egns 12a through
14a yields:

mix (Vi

My (V; » BV )=-f Cn, V/z - CNe ‘7c2~(CTc XCT,)siné+Ay e’

.I-me” ='{CN, V,z Eﬁ* CNCVCZ E1 .

-6Vy)=-¥Cr, % - C7, B (Cy +¥Cy, )05 © +A, 82 (12v)

In order to obtain fhe final equations of motion in a con-
venlent form, the following relatlionshlps may be deduced

e e i x e

(13p)

(14v)
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from Eqn 9:

V;' = Vx?' +(Vy +l—_36')2

V2 =V2 +(V, <T.6)2

(19)

The angle of attack of the center of mass of the
load OCy and center of volume of the canopy'OCc will eventually
be required to evaluate the normal force (Cy) coefficients.
One may determine these angles by means of Eqn 9 as:

L26
tan(r(;:"\/y \9-2

Wl VW

{V VL
tan OC, “\Vi)/ - ny

But, from Fig 1 one notes that the angle of attack of the

centerline of the system amounts to:

Wy
tan OC =~V

and, therefore, using the dimensionless notation:

[,0
Vi

t Lo®

tan CC, =tanQC +

Noting from the geometry of I'lg 1 that:
Vx =Vcos OC
Vy =-Vsin OC
Egqns 19 and 20 become now:
V2 V2 -203Ve'sinOC « 156
V2 = V221,V sin(C + 1562

(21)

ek o
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tan o, = tanac - %-Le——-
cos

(23)

- /

tanax, = tanoc +
Vceso

Utilizing relations 21 and 22, the equations of motion 12b
through 14b assume the following form:

r?wx[\7'cosoc ~-Vad'sine: + V&'sineoe ]:
e vy -5
-xc"[v-zr;}vesmoc R x;;ef“] (24)
-CTC[\/% 2LyEsincc + Laéz ]
- 2
+ (CT:ICT') COosO + Axg
m[- Vsinoc -Voccosac + Vo'cos o 7 =
-2 e 2
~ch[v ~2LYG since + L_gé)

-CNC[\?Z», 2L,V sincc+ l'_zzez]

- i ¢ (25)
(CTCJC" }SinG + Aye

lo = -ic,, L[V 2lye sinae + 3]

*CNCC‘[\-/zv 212\79'sin0c + .Lz;gz_] (26)
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IIT. A FIRST ORDER METHOD OF OBTAINING
NUMERICAL SOLUTIONS

A simplified numerical methcd of solution will
now be outlined, In the most general situation, certain
initial conditions must be given. A typlcal set of initial
conditons 1s given by:

at T:0 ©:6, (=0, e =0, V=V

Let us first consider Eqn 23. One observes that these initial
conditons are sufficient to determine the initial angle of
attack of the load and canopy, and ((, co.» It may be
assumed that the aerodynamlc coeiflclents Cn,, CTe, CNp and
Cmy are known functions of (X, and (y respectively. &o
sequently, ((; and (X determine the initial values of

the coefficlents, Subs%ituting the Initlal coefficlent

values and the initial conditions from above into Eqns 24
through 26 ylelds three equations of the form:

AVS + BOC = G (24a)

AFs + B Xo=Cp* Do (252) ;

Aae; =C3 . (26a) |
i

The constants Ay, Ap, . . . are determined from Eyns 24
through 26, For example, by comparlison, one finds that

My cos (Lo, Ap = - Wy V, sin (Lo, ete. Thus Eqns 2ka
tﬁrough 26a re resent three iinear equations from which one
can determine Vo', (o', and O,".

One next selects a small dimenslonless time interval
and calculates:

JV = VO'({T
i€ = 4T 3
d = dT
IO =60, 47T

1l
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Thus, after the time interval 4T , the new values of the
varlables become:

Vy = V°+ §V

6, = €+660

&,

ot
61 = 9°+ Je

One now has a new set of conditions Vi, ©31',0c 1, ©1, and
the_preceding steps can be repeated to determine new values
of V, ©6', 6, andoc . This procedure may be repeated
indefinitely untll the entlre trajectory ls determined as:

VAERAt!
8 = {(¢)
a = {{t)

The above procedure 1s equlvalent to expanding V, 6 , and o
in a Taylor series and retalning only the first two terms,
Tn this manner, the nonlinear differential equations, 24
through 26, including a nonlinear Cy, Cp, -oc relationship,
can be solved,

IV, LINEARIZED THEORY

If one wishes to consider only the class of motlons
where the oscillations are small (o small), the following
equations are applicable:

SINx = COs @ =1

In addition, if the trajectory 1s almost vertlcal ( Q small),
one may write:

SINg = 4 COS g =1

Utilizing these assumptions in Eqns 24 through 26 and
neglecting second order terms such as o' , one obtains:

MV = - (¥CrsCy) (V31) (27)
12
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myV(e,— o:') = "( YCN[CNC)VZ—(CTe YCTX)G + Aye' (28)
T = C L, 'YCN1E5) V2 (29)

Equation 27 may be integrated directly to gilve
the varlation of V withy .

—\7 = 1-\6 mx
SRR (30)
1% T !

where V, 1s the value of Vat T = O,

Equations 28 and 29 can be presented in a .more
explicit form by reallzing that for small oscillatlons, CTl
and Cp, are constant while Cyy and CN, are linear functions
of oc, and oc o respectively. %hua one may write:

Chy = agog (31)

CNc = a O

vhere: ay = slope of Cy, versus o, under statilc
conditions °

ac = slope of Cy, versus o , under static
condltions.

Introducing these relations into Egqns 28 and 29
and assuming that the system 1s descending at approximately
1ts equilibrium speed (i.e., V = 1), one finds:

Fﬁy(e.- a'k- (a,OC,- (Ge+¥Cyy)O+ Ay© "~8.0C (28a)

T8 = (e L - Ya,,Ty) (29a)
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Agaln utlilizing the assumption of small oscillations, Eqn 23
assumes the form:

= OC-Lf
o (23a)
(IC = (I. + L.ze
Introducing these relations into Egqns 28a and 29a yilelds,
after rearranging: .
/ - . — ’
AS + [¥052,- Doac- M, |6 - [Cr+ ¥Cy @ (580)
+ M, - [ra;+a, ] = O
B - [¥3Tsa,+ [,Lpag] 6 - (Liac- 53, )X =0 (29b)

Equations 28b and 29b are coupled but linear, and
one may assume a solution of the form:

o = At (32)
0 = Bex~c 3

Substituting these functlons into Eqn 28b and 29b yields,
after rearranging:

ayA+a,B=0

a21A "‘3228 :O (33)

where: ﬁbA-[Ua,+aJ

v}
fud
[

il

alp Ay7\2 +|-Coac+ 8053 - m{l A- [Crc + UCTJ

Utsaf l:lac (332)

a1
= 2[rr. -~
agy = ITOTA'[GLBL582+L‘L2ac A

14
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A nountrivlial solution of Eqn 33 for A and B exists
if and only if the determinant of the coefflcilents 1s
identically zero. That 1s, if:

211 a1z

Il
o

apl ag2
Expanding the determinant, one finds after rearranging:
3 2
aN+bA +cA +d =0 (34)

The coefficlents, a, b, ¢, and d, obtalned by a direct
expansion of the determinant, can be wriltten wlth the aid
of relation 18 and 33a as:

a =Mror
b= -(Mc+ M Llac+ ¥l g2) )
-( l.-.2+ 1:3 )(mwgt1 St mc'fﬁa,) - lw(acwa,)

(35)
C= ((Eﬁ’ Es)([.2+t3 )a,ac - f‘hy(E1ac L 58})

d-= -(CTC#CT,)(D A Xl:sal)

Equaticn 34 1s referred to as the frequency equation

of g?e system. In general, lt ylelds three dlstinct values
cf .

Routh's criterla (Ref 3) requilres that for a
dynamically stable system, the following inequallties be
satisfied:

>
z>g d>0
bc>d (36)
c>0

In essence, the angle of attack & and the related
angle © (Eqn 32) decay with time 1if the real part of the
roots of the frequency equation (34) are negative., This 1is
the case 1f Routh's criterla 1is satisfied,
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Now, details of the solution of the governing
equations shall be discussed., Since three roots of the
frequency equation (A3, Ao, A3) can be found, the general
solution of the problem may be written as:

= A1g\m+A2€?‘;t+ A3e7‘;t

6 - B 1 B,d%, g, ¥ (37)

where Ay, Ap, A3, By, By, and B3 are the constants of in-
tegration. Thrée relations for these constants can be found
through the use of the 1nltial conditions expressed as

X=ps ©=6,, and O' = 6, at Y= 0. Applications of
these conditlons yield:

A+ Axt Ag= 0o
B+ Byt Byz 6, (38)
7\181"' ?\282"‘?\383: eé

Additional equations can be obtalned from elther of Egns
33. Utilizing the seczond of these equations, one finds,
with the use of 33a, the three relations:

= a2, -
A . _LorA-(Slaleagt Lylaac) A
B; -Liac+¥lsay
where 1 assumes the values of 1, 2, and 3, Thus, using

Eqns 38 and 39, all of the constants are specified and the
solution established,

(39)

A particular numerlcal example of a system com-
prised of a stable paracnute and unstable load 1s treated
in Sectlon 7.
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V. AN APPROXIMATE SOLUTION FOR
VERTICAL DESCENT (&= 0)

Linearized equatlons governing the linear and
rotational motion of a parachute-load system were presented
in the preceding section. For the case where the descent
is vertical, Fig 1 indicates that @ 1is zero and therefore
the angles @ and © must be identical, Because of this
fact, one may replace X by © in the last term of Egn 2%
and obtain:

T,010" - (Lilac+ L5030 - (Cia.- #0500 =0

which may be rewrditten as:

2
8"+ mo' +§-e=o (40)
where:
el L, Eaa_c - ¥L5054
Lror (41)
. -Gac+ ¥Csa
4 Lror

The solutlion of this linear equation can be written as:
6= Aewt (42)

Substitution of this relation into Eqn 40 ylelds:

2
Xemae De0 (43)

which yields for A:

A== /io@m?)

Denoting these two roots by A3 and Ap, one has:
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Ay B/
Ly
7\2=-—r2p-(1-\/1-(r?-,)2) )

The general solution of Eqn 40 may now be written
in one of several ways, depending on the relatlve values
and signs of m and n<., The case of a statlcally unstable
parachute, where ac > 0, 1s certalnly not capable of sta-
bilizing an unstable load. Therefore, this case may be
dlsregarded.

Thus, for all physlcally reallstlc systems, one
sees from thelr definltions that Ij, Lo, L3, ¥ , and Iqgp
are always posltive and ac 1s negatlve. A?so, for most
practical cases, the slope of the normal force coeffilclent
versus the angle of attack for the load is negative. However,
Lg can be elther positive or negative, depending on the
relative sizes of the parachute and load as well as on the
stabllity of the load by itself,.

The above considerations thus show that both m
and n2 can be either positive or negatlive qguantitiles.
However, for most practical systems, both m and n2 will
be positive and as a result, only this case will be con-
sidered in detall in this report.

In view of Eqn 44, 1t 1s advantageous to consider
the following three cases of the term (n/h%Q:

0 < (@< 1

For this case, examinatlon of Egn 44 shows that
both A 1 and Ao are negative and the general solution
can be wriltten as:

0= AeMs A et

Since Ay and Ao are negetive, the angle (©) decays with
time and the system 1s dynamlicallv stable.

(s 1

In this case one finds thet Aj = Ap = - g-, thus
giving the sclution:
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Once again this solufion Indicates a dynamically stable
system,

2
(F) > 1

In this case, the two roots Aj and Ao are complex
numbers and one can wrilte:

7\1 = "“%1 - I‘%l\/(%)z'1

..m .;m Ny
?\2""’5‘ +!’§ m)""

(45)

and the general solution can be written as:

-mt . n »
9= eT[A,sanrQU1/(%)2—1 £+ Agcos-%”— 1/(‘rﬁ)i'1 L] (46)

which represents a stable system. Thls case represents the
most common situatlion for a stable system and one can deduce
certaln characteristics of the motlon of the system from

this relation. ny

The damping factor, e 2 s Indicates the rate at
which the oscillations are damped. Large values of m correspond
to a rapld damping. One observes from Eqn 41 that large
values of m (rapid damping) correspond to a combination of

a very stable parachute (large negative ap), long suspension
lines, and a small moment of inertia, I.

In order to solve Eqn 46, one must determine the
constants of integration, preferably from the initial con~

ditions ©=6,, 6' = 64' at t =0, One finds the con-
stants to be:

A _E%*EQE%
1-i2kﬁﬁft15
A2=9c
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and the solution of Eqn 46 amounts to:

BT ) | o+ 2D, 2
©:5% {?@)2_1 }SIN DA/ T

+6, COs T A /&%)2 -1 7

(47)

VI. CONCLUSIONS

With the assumption of small osclllatlions and
near vertlcal descent, one may completely specify the motion
of a parachute-load system in whilch the load possesses
distinct aerodynamlc stabllity properties, Thils rigorous
golution requires lengthy calculations. To alleviate thils
problem, one may chocse to solve the simplifled equation
presented in Sectlon 5. This approach 1ls Justlfled for
vertical descent (B = 0).

e, m
S

A substantlal portion of the calculations can be
eliminated 1f one merely wishes to determine whether or not
the system 1s dynamlically stable. The answer to thils question
is furnished by Routh's criterla (Section 4), One must,
in thls case, only determlne the value of the coefficlents
of the frequency equation (Eqns 34 and 35) and check to see
if they satisfy relations 36, Because of the rnumber of
parameters involved and the way In whlch they enter the
frequency equation, 1t 1s difficalt to draw general con-
cluslons pertaining to the stabllity of a general system,
Thevefore, for any practical case, Routh's criteria must be
satisfled in 1lts varlous aspects,

R R N A a7 T ST

P

It also can be seen that a system consisting of
a stable or unstable load combined with a stable parachuce
can be analyzed in the same manner as a system with a point
load and a stable parachute(Ref 2), For the case of the
polnt load, the governing equations of this study may be !
reduced to the same form as given in Ref 2 when the aero-
dynamic coefflclents of the load approach zero, 3

-

20
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VII. NUMERICAL EXAMPLE

A numerical example, concerning a parachute-load
system (Fig 2) which consists of a five-foot ribless guide
surface parachute canopy, having a nominal porosity. of
70 £t3/ft2-min, and a one-foot dlameter ogive cylinder
welghing 350 1bs shall be used to lllustrate the presented
theory.

The mass of the parachute, me, shall be the same
as In Ref 2, namely:

m = 2.82 Tt r2x 107 slugs
which, in dimenslonless terms 1s:
M. = 0.537

From the same source, the mass of the enclosed alr amounts
to:

m; = 0.419
and in dimensionless form:
ﬁi=0468

From Ref U4 one finds:

Maxe 0,3
m;
and therefore:
Maxe = 0.1404

The dimensionless mass of the load is:

M, =105.17

From the geometry and varlous physical masses of the com-
ponents of the system, one finds:

E) = 2.2166
L,=2.1665

21
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h,= 0.382r
hy= 0.31r
r=07r
n, = 0.3627r
5=05r
G=r

Fig 2. Geometry of the Ribless Guide
Surface Canopy and Load
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E3 = 00064

T, =2.2105

A...cwing that the distribution of mass in the oglve is
uniform, the moment of lnertia amounts to:

Te6 210.8536

Again, from Ref 2 one finds the apparent moment of inertia
of the canopy about the center of mass of the system to be:

I5:0187 4nr3pl3

and for this particular configuration:

T, =1.3204

thus glving a total inertla of:

TTOT: TC@Ta = 1 21740

The center of pressure of the oglve cylinder has
been experimentally determined through wind tunnel tests
and 1t 1s found to be located a distance of 0,34 behind
the tip of the oglve (Note: / represents the length of
the ogive cylinder). With the preceding geometry, one can
determine the distance Lg, in dimensionless form, as:

L= 0.2095

Also, the above-mentioned experiments have shown that:
Cp, =0.23

ay ==2.55 per radian

and from Ref 2 for the parachute:
Cr. =108
a. =-0676 per radian
23
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All of the preceding results may be summarlzed
as:

M. = 0.537
Piaxc= Maye= 0.1404
m, =105.17
(4= 2.2166
[[,=2.1665
[3=0.0064
[4=2.2105
L5=0.2095
T;or=12.1740
Cr,=0.23
Cr.=1.08
a, = - 2.55 per radian
a. = -0.676 per radian
¥ =0.04

In additlon to these values, 1t will here be
assumed that the apparent mass of the load is negligilble

Utilizing the above values in the frequency equa-
tion (Egqn 34), one finds:

1285 A%+ 352.47 A%+156.7314 A+1.6088 = 0

of, dividing by the coefficient of A3:

S emn €Y e S L ¥

A%+ 0.2742 A4 01219 A + .001251 = O (48) 0
Solving this relation by the method presented in Ref 5, i
one finds: }




A =-0.010535
A2=-01236 +0.315554i

A5=-01286 - 0.315554
(49)

-

As initial conditions, we choose at 7 = O:
& =10"= 01745
=0
%, =10° = 01745

Using Relations 38 and 39, one finds the values of the
constants A3y, Ap, A3, Bj, Bp, B3 to be:

A, =-C.00008294
Ay = 009460 ¢O3958!
As= 0.09460 39581
B, = -0.0037315

B, = 009621 &0-38630i
By = 009621 038630

(50)

After several algebralc manipulations, the linearized general
theory provldes the angles & and O as:

O =-0.003731 000547

+0119242 012887 c05(0.3156 T - 0.38630) (51)

& =-000008294 0010547
+ 01892 6992867 .05 (03156 T - 0.39561) (52)
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Using the simplified analysls for the vertical descent
(B = 0), Eqn 47 gives:

© = 01885 %% 55(0.3187¢ - 0.38834) (53)

The relations 51 and 53 are graphlcally presented
in Fig 3 and tabulated 1n Table 1. It can be seen that both
approaches provide nearly ldentlcal results and 1t appears
that, for many practical cases, the simplified method would
be entlrely satisfactory. However, for a case involving a
trajectory with a strongly changing inclination angle or a
system with nonlinear aerodynamlc coefflclents, a numerical
solution of the nonlinearized equations may be required,
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Table 1. Values of the Angle ©

for the Exact and Approximate

Solutions '
T [ teeo | G509 | G5
2 0755 8.06 8.06
4 a1 402 4.05
6 2266 0.12 0.23
8 3022 -2.31 -2.11
10 3777 -304 ~277
12 4532 -247 -2.16
14 5288 | -1.34 -1.04
16 6043 | —025 0
18 6799 0.42 0.62
20 7554 0.62 0.76
22 8309 0.46 0.58
24 9065 0.14 0.27
26 9820 | -0.15 | -0.02
28 10567 | -0.33 -0.18
30 11331 | -0.38 -0.21
32 12086 | - 033 ~0.16
34 12842 | -023 - 007
36 13597 | -0.14 0.01
38 14353 -0.09 0.05
40 15108 | -008 0.06
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