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ABSTRACT

v

The dynamlc stabllity of a parachute-load system
has been analytically investigated for a point-mass load
and a statically stable parachute. A typical system con-
8isting of a relatively large suspended load mass and small
ribless gulde surface parachute has been numerically cal-
culated. Utlllizing the apparent mass and apparent moment
of lnertia, as well as the aerodynamic coefficlents of the
parachute canopy, the equations of motlon for the system
have been solved. The influence of several design paramete:s
upon the dynamic stabllity characteristics of the system
has been discussed.

This technical documentary report has been reviewed
and 1is approved.
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SYMBOLS

constants of integration

coefficient of normal force
coefficlient of tangent force

slope of the normal force coefficient
versus @ for static conditions

acceleration of gravity = 32.17 ft/sec2
dimensionless moment oi inertis = I/Ty3r5
apparent mcment of inertla of the parachute

canopy and inertla effects of the enclosed ailr o
about the center of mass of the system (slug-f£t<)
dimensionless length = L/r

distance between the center of mass of the system
and the canopy center of pressure

distance between the center of mass of the system
and the center of volume of the canopy

distance between the center of mass of the system
and the point load

distance between the center of mass of the system
and the center of mass of the canopy material

dimensionless mass = m/TU3r3

mass of the suspended point mass load (slug)
mass of the parachute material (slug)
apparent mass, including the inertia effect
of the enclosed air of the parachute in the
x-direction (slug)

apparent mass, including the 1lnertia effect
of the enclosed air of the parachute in the
y~-direction (slug)

normal force acting on the canopy

characteristic radius of the canopy

vl




SYMBOLS (cont.)

T tangent force acting on the canopy
v dimensionless velocity = V/v
v velocity vector of the center of mass of the

system (ft/sec) = v I + vy,j
‘A equilibrium velocity of the system (ft/sec)
wl weight of the suspended load
a angle of veloclty vector c¢f the center of mass

with respect to axls of the canopy

/
a angle of veloclity vector of the center of volume of‘wL2
P the canopy with respect to axls of the canopy =+ 7
o}

A angle between the direction of the veloclty

of the center of mass and the vertical
R air density (slugs/f‘t3)

tv

T dimensionless time = ro
w angular velocity of the parachute axis

e
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I. INTRODUCTIOM

When consldering the complete pattern of motion
of a parachute-load system, the dynamic stability of the
system 1s a prime consideration.

T'or such a conslderation, one thinks of a freely
moving system as having slx degrees of freedom, conslsting
of linear and angular velocltles about three mutually per-
rendlcular axes. The angular velocitles result in an
osclllating motlion, with the mode of oscillation generally
referred to as the stabllity characteristic of the system.

It has been noted (Ref 1) that such characteristic
motions depend on the acrodynamic coefficients, thelr deriva-
tives, and on the mass and moments of lnertisa of the mechan-

ical system as well as on the apparent mass and apparent
moment of inertia.

Combining an acrodynamically neutral load with a
static aerodynamlcally stable parachute, a closed form
solution is possible provided that the initlal oscillatlons
are small and that the parachute has a constant stabllity

Cx
(0 ¢

o
derivative (a ) in the range of osclllations. This
s

process 13 valuable for a certaln group of applicatlons

and has the advantage of belng acceptable for engineering
calculations.

For a more general type of problem, where the
osclllations may be large and the satabillty derivative
is not constant, solutions can be obtained merely for specifilc
cases and in a numerical way by means of analog or digital
computers. Several of these more general as well as specific
cases have been investigated and solved in a series of pub-
lications by R. Ludwig and W. Heins (Refs 2, 3 and 4).
These studies discuss also the influence of several deslign
parameters such as suspension line length, effective poroslity
of the canopy, apparent mass and weight of the load for the
particular application.

Manuscript released by authors February 1964 Sor publication
as a FDL Technical Documentary Report.



II. EQUATIONS OF MOTION

For the analysis of the dyunamics of a rarachute=-
load system, one assumes the case of two falling bodies
connected by rigid lines. Figure 1 presents the load-
parachute system, the body fixed coordinate axes, x-y-z,
as well as the system of external forces. The x-axis coin-
cldes with the parachute axis of symmetry, the y-axis is
perpendicular to the x-axis and in the plane of motion of
the system with the z-axls defined by a right hand coordinate

system. The orilgin, (0,0,0), is at the center of mass of
the entlire system.

In deriving the equatlons of motlion of the system,
the following assumptions willl be used:

1. The entire system constlitutes a rigld body.

2. The load 1s consldered 23 a point mass and
does not possess aerodynamlc characteristics
or a moment of inertla.

3. The mass and the aerodynamlc forces of the
suspension lines can be neglected.

4, The effect of the apparent mass acts at the
center of volume of the canopy.

5. Th2 motion 1s restricted to the x-y plane.

The veloclty of the center of mass of the entlre
system can be presented as:

-

Vo= vxl o+ vyl (1)

where: vy = veloclty of the center of mass in the
direction of the parachute axis
Vy = veloclty of the center of mass in the
directlion perpendlcular to the parachute axis.

The corresponding momentum, ﬁ, of the parachute-load system,
excluding the effects of the apparent and enclosed mass, is:

M o= (mp+m) (vel + vy) (2)

where: mp = mass of parachute material
my = mass of the suspended load,
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The equations of motion of the system, lateral

ggd rotational, can be written in accordance with Newton's
W as:

l)= —
a) Zﬁ=i§=—)—"‘- b) Zﬁx'ﬁ=§-%%—l-{— (3)

v

in which the following notation is used:

'F = external force
R = radius vector
H = angular momentum.
1l
The derivatilve 9;__1_1 represents differentlation

dt

with respect to a space fixed (inertial) reference frame
(x', y', z') (Flg 2). A derivative with respect to a par-
ticular reference frame can be expressed wlith respect to
another frame which rotates relative to ths flrst one by
means of the relationship (Ref 5, pp. 53-55):

(1) ¢ (2) % - -
S = Lt v x A ()
where: X = rate of change of A with respect to
reference frame 1
_-d.t——d(z)K te of ch £ A with tt
. = 7rate of change o w respec o
reference frame 2
CT = angular veloclty of reference frame 2
with resvect to reference frame 1.
In this case,.K = 'ﬁ; reference frame 1 1s the

space (x', y', 2z') frame, and reference frame 2 1s the body
fixed reference frame (x, y, 2z).

Therefore, one may write:

(1) (2) & -~ —
S = S v @ xW (5)
where @ = w ﬁ = W R' = angular veloclty of the para-

chute axls wlth respect to the z-axis.

Performing the operations indicated in this equa-
‘tion, one obtains:
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M ) "~ .
Sg o= Oy m) (- vpei o+ Gy 4 vew)d] . (6)
The aerodynamic forces are, in accordance to
Fig 1:
F, = -Ti -Nj (7)

and the gravity forces are gilven by:
Py = (Wy + wp) cose 1 - (wp + Wp) sin e 3. (8)

Note: the gravity force on the enclosed mass is
balanced by the bouyancy force on/the‘canopy.

The effects of the apparent and the enclosed
mass are. glven by:

—F.“am = —maxax .V"i: - mayaycvsj\ - “ v. . ‘_; .v (9)
where: max = apparent mass¥* in the x—direétion
may = apparent mass* 1n the y-direction
ay = acceleratlion of the center of volume of

cv. the canopy in the x-direction

ay = acceleration of the center of volume of
CV.  the canopy in the y-direction.

The acceleration of the center of volume of the
canopy 1s given by:

a3 ) -
g =8, =ay 1+ay § (10)
cv. axcy_ Yew. _
where.: ;Ev = veloclty of the center of volume of the

canopy with respect to the space fixed frame
= vxi + vy3 + W x(-Lol)
n ~ _ (11)
= Vil + (vy -wls)]. L

Therefore, utilizing relation 4 one obtains the total
acceleration:

*¥See definitions of symbols.

5
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ov. = [‘.’x -w(vy-wL2)]3+[\}y-C)L2+wvx]3, (12)

Consequently, the acceleration in the x- and y-directions is:

axcy = vV -w (vy - w L)
. . (13)
aycm = Vy - u)LE +W vy .

Utllizing these relatlions iIn Eqn 9, one finds the apparent
mass force as:

—

Fam = M, [Vx -@vy + o o)1 - may[\'fy. - Ly +wvy] § (14)

If one now substitutes all of these forces. and
relation 6 into Newton's Law (Egqn 3a), two scalar equations
representing the motion in the x- and y- directlions are
obtained.

. 2 . : .
(mp + max+ my)(vx-vyaJ)+ maxLQ(u + T - (WL +Wp)qose =0 (15)
(mp + may+m‘)(\'7y'+vxw) - manga’m N + (W, +W,)sin e = 0. (16)

Newton's second law, which governs the rotational
motion (Eqn 3b), can be expressed as follows:

(1) = o . .
with:
- A ,
H= (I, + Iz)wk . (18)
where: i; = angular momentum of the system with respect

to a nonrotating reference frame with 1ts
origin at the center of mass of the system

R = position vector from the center of mass of
the system to the point of application of an
external force F

T = external force

I, = apparent moment of inertia of the parachute

canopy and inertia effects of the enclosed air
about the center of mass of the system



Icm = moment of lnertia of the load and parachute

material about the center of mass of the
system

The external moments ( ) R x ¥ ) are given by:
LR x F = (-Ly1)x(-N3) + (L3'j\.)x(-w,zsin 93)+(-Lu’1\)x(-wpsin o 9)

or

LR x ¥

A
k [+ LlN - WQL3Sin9-+ WpLuSine]

and since the laét two terms [- W2L3sin e + WpLusirle] cancel
each other because of the definition of the center of mass,
one obtailns:
-t — A
LR xTF = KL, N (19)

The moments due to the apparent mass effect which,
in thls discusslion, encompasses the effect of the enclosed
alr mass have not been ldentifled separately since their
contribution to the moment equation is included in the
experimentally determined value of Ia‘

Introducing relations 18 and 19 into Eqn 17 yields:
(1) ~ A
d?'t" [(Icm + Ia)wk = + LNk (20)

and after rearranging:
1, +I,] & -1N=0. (21)

Three differential equations for the motion of the
parachute-load system have now been obtained. They are re-
rroduced here for future reference:
momentum equation for the x-direction

2

(mp+max+mf)(vx‘vy“0+'mang‘” + T - (W, +wp)cos e =0 (22)

momentum equation 1n the y-direction

(mp+may+me)(0y+vx¢u) - mayL2d)+ N + (W, +wp)sin.e‘= 0 (23)

angular momentum equation

(1 +Ia)¢,b-L1N=O. (24)

cm



IIT. LINEARIZED EQUATIONS

Equations 22 through 24 constitute the general
equations of motion of a parachute-load system and apply
equally well to large or small osclllations. It should
be noted, however, that they are nonlinear, i.e., con-

talning terms of the form vy W, Thus, 1t becomes ex-

ceedingly difficult, 1f not impossible, to find a closed

form solution of these equations without reasonable restric-
tive assumptions. : J

The simplest, but perhaps also the most 1mpbrtant
cace of the dynamic stabllity problem, is gilven by a

parachute-load system in whilch a parachute, which 1is stati-
cally stable about zero angle of attack, oscillates over
a relatively small angle range whereby its stabillity de-

aoC ;

rivative ao{\]) assumes a constant value. Furthermore,
g .
on’ ' masnme that the system descends approximately

vertically w..h 1ts equilibrium velocity where the aerodynamic

drag equals the welght. These assumptions may be expressed
as:

silh 6 =18 , cos © = 1
sin ax = « - cos a = 1
' ' (25)
sin 3 =/3 ~cos B8 =1
vV o= VgtV [v < Vo]
where Vo = equllibrium velocity
¥ = deviation of v from the equilibrium velocity.
From the geometry of Fig 1:
vy = Vcosa = (vy + V)cos a
* vy = -vsinax = --(vo + ¥)sin
— , - (26)
Ve = -(vg + v)sin xax + v cos «

vy = -(vg + V)ecos ax -7 sin Q

Usling the srﬁall angle assumptions, and neglecting second
order terms, l.e., terms of the form O &, one obtains:
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~
v = v, +v v = Vv

C e o . _ (262)
Vy = =V o Vy = -VO. (04

Substituting Eqn 26a into relations 22 through 24
ylelds, after neglecting second order terms and recognizing
that e = o + 3 ,:

(mp + mg_ + my) ¥+ T - (W, + Wp) = O (22a)
(mp + may'—!- mL)vo/j - mayLE('d"'/'j YN+ (Wo +Wp) (x+B) = 0 (23a)
(Iem + Ig) (&+/3) - IyN = © (2b4a)

The normal and tangent forces (N and T) are
conventionally represented as:

2
N = CN%pr S
T = Cpkpvys

where: v, =J6x2 + (vy -w L2)2 , the absolute velocity of

the center of volume of the canopy.
Following the assumption of small oscilllations,
one obtalns:
2 2

~S
Vs = Vo + 2 vy Vv

and therefore:

2 ~
N = Cytp (vo©+ 2 vy v)TTr2 (27)
- 1 2 4 ~ 2
T = Cp2p (Vo©+ 2 v, V)TTr (28)
where: r = characteristic radlus of the canopy.

For future convenlence, the related area of the coefficients
has been introduced as’ﬂ‘rz.

Experiments (Ref 6) have shown that, for the
parachutes under consideration, CT 1s approximately constant

over a relatively large range of & ., Substituting relation
28 into Eqn 22a ylelds:

(my + my_ + mg)¥ + Crdp (Vo2 + 2voV)Tr2-(Wg + Wpy) = 0 (22b)

9



Reference 6 also shows that the normal coefflcilent,

In the range of interest, is proportional to the angle of
attack. This may be expressed as:

Q
|

N
(z=) o (29)

Slope of CN versus afor statlic conditions

where: (

Q
QZ
g
il

Gp = Instantaneous angle of atback of the canopy.

It should be noted that # Q. The angle of
attack ap of the canopy 1s measurefi relative to the

local velocity vector at the zenter of volume of the canopy.
Thus, when the canopy osclllates about the center of gravity
of the sgystem, the angle of attack of the canopy consists

of the angle « (Fig 3) and a contribution aQ, induced by
the rotatlon of the canopy. From geometric considerations,
1t 1s apparent that:

wll ~ wlk
AQ = 2 = 2 (30)
v Vo
One filnds a_ to be:
b w I
. = O 40 = & 4 e (31)
" p Vo
and with Egn 29:
L
d Cy s . :
— (04 —
oy = (o) e+ 2 (axp)] (32)

Introducing Egns 32 and 27 into Egqns 23a and
2ha, one obtains:

(mp+ma‘y+m',‘)v,o//:,.’-may Ly (64—/3)

+ (Zc;N . [oc+ %( & +/3 )] %Jovoz"rrr2+(w,!+wp)(or+/5 ¥=0 (33)
e e aCN L2 . . 1 2 2.
(Tom + T (44 )-1y (W)S[a+ 5 (& +p3 )] v, “TTr = 0 (34)

Equations 22b, 33, and 34 now represent a set of
linear differential equatlons governing the motion of the
parachute-load system,

10
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IV, DIMENSIONLESS EQUATIONS OF MOTION

It 1s convenlent to express the linearized equa -
tlons of motion in a dimensionless form by introducing

a dlmenslonless time, distance, mass, moment of inertia
and velocity.

vt p.:
: . _n ;. E
m—'ﬂ'prg M Vo (35)
T = =
Trprd

These deflnitions, substituted in Eqns 22b, 33,
and 34, yield:

F, T 4T T 4L (1 o7 w———;;{-——g‘ + 'p (22¢)
e ot 4m,) v+ + 2v) - - = 0 c
F ’ pVO r

(g + Mo, + W) A" - Ty Lo( "+ 45 ")

il
O

ac _ Wy . W_
+ 3 %N—s [oz+ Lo( o +ﬁ')] + -%—P'Q' (c+/3)

- (33a)
pve TIT

(Tom + Ta) (" +5" =3 T1 (32 [a+ T2 (@ )= 0 (3ha)

where the prime (') indicates differentiation with respect to
the dimensionless time T . :

A further simplification 1is introduced by consldering
the definition of equilibrium velocity

2 2

1 —
Cp % p v T =Wy + W,
or . ‘
W, +W c | |
2
B A S (36)

pVo TIT

12
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Introducing this relation into Egns 22c¢c and 33a, one obtains:
(i + T, + W) V' + Cp ¥ = O (224)
(Fp + T + Wp) 2 - oy To (" +,8")
(33b)
ACyN = ‘ Crp
&)q) [CI+ L, ( a +/3')] + 'g'(o‘+ﬁ) = 0,

S

+ %

Rearranging Eqns 33b and 34a, one finally obtalins
the new set of equatlons:

(i + Maghiy) V' + Cp ¥ = 0 (37)
—_ . ACN\ — OCy CT]
mang o' —%(aa)ngou-[z(aa) = |«
(38)
" 1 aCN CT
+ may Lo " - 5( acx) Ly + my + my +my | A1 - TT/G =0
— o —_— — ocC
Iep + L) @' -3 (a ) InIpa' -3 1 (‘éa'l\l)
o (39)
I "o LTI, (—— =0
+ (Iem + a)ﬁ 1L a)

13



V. FREQUENCY EQUATION

Solution of the Linearized, Dimensionless
Differentlal Equatlons of Motilon

Upon examlnation, 1t becomes evident that Egn 37
can be integrated directly to give:

) CTTZ ,
M. + My + m
- - P a A
v=uy,e X ' (40)
where: Vi ~ v at T =0

One observes, however, that the remaining two
equations cannot be solved as easlly as they are coupled
together. In order to obtain solutions for & and B as
a function of T , one may assume solutions of the form:

o= ne" B= Be (41)

where A, B and A are constants. Substitution of these
relations into Egqns 38 and 39 yields:

apy A+ agp B = 0O (43)
where:
— = 42 179N\ = n N by
ocC C
— - 2 N — — —_ T
ocC
— - fonad 2 1 N - N
801 < [Icm + Ia] AT - 2( > I‘lL27\ T2 Ll( aCI)

14



Equations 42 and 43 are homogeneous with respect
to the constants A and B. Therefore, the system will have

a nontrivial solutlon only if the determinant of the coef-
flclents 1s zero. That 1s, if:

D = = o. (44

Solving for D and setting it equai to zero, the
frequency equation of the system is obtained as:

(Tom + fa)(fn'p + ﬁay + ) A 3

ac
T — L= yI. T N 2
—%[Icm+Ia+(mp+mz)Lng] —a—a—)A

(45)
aoc ac
AT (v + R I (—N)YA -2 T c Ny - o.
Equation 45 may be written symbolically as:
a A+ A2+ cA +4d = 0 (46)

where a, b, ¢ and d are the coefficients of the frequency
equation (ﬁS).

Before determining the dynamic stability charac-
teristics of the system by means of its frequency equation,
the approach to the complete solution shall be discussed.
In any practical case, certain 1nitial conditions will be
known. For example, at T = 0, one has a = Qg, SO =
and (a'+ 3') = (o' + 3'),. In general, the cubic
frequency equation has three roots, KJ) 7\2 and 7\3, two of

which will usually be complex numbers, 1.e., A =n + im.

o’

With three values of A , one would have a general
solutlon given by:

a = Aqe + Age + Age (47)

?\it 7\21 A4T
Bye + Bpe + Bge 3 (48)

/3
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Applying the previous initial conditions, one obtains:

A+ Ay + Ay = a (49)

By + Bp + By = g (50)
(A3 +By) Ay + (Ay +By)Ap + (Ag+ B3) Ay = (ar + '), (51)

So far, one has three equations and six unknowns,
Ay, Ao, A3, Bq» B2 and B3. One must therefore find three

additlonal equations to completely determine the constants.
These relationshlps can be obtalned by utilizing

Eqn 43. Thus, one obtains three additional equatlons for
the constants of the form:

= 2 N
5, = - . acN Yo (52)
Tem * Ta) A7 - 2Tl G ) A - gD (Fo

where 1 takes on the values of 1, 2, and 3.

One now has six equations for the six unknowns
Ay and Bi‘ The system 1s therefore closed and solvable,

! an example of which 1s shown in Section VI.

B. Stabllity Criteria

i Often, one 1s not confronted with the problem of
i solving the frequency equation but one only wishes to
determine whether or not the system is dynamically stable,
which can be accomplished by utililizing Routh's criteria
(Refs 1 and 7). This criteria requires that for an os-
cillating system, whose oscillations should eventually
aﬁproach zero, the coefficlent of the frequency equation

) or (46) must satisfy the following five conditions:

a>0 b > 0O c >0 d >0 be > 4 (53)

Examination of the coefficient of A3 (Eqn 45)
shows that, for all systems, "a'" 1s a positive term. One

next observes that 1if

) 1s negative (i.e., statically

, stable parachute) the coefficient of A2 ig positive.
Similarly, the coefficient (c¢) of A 1s positive if the
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ocC
parachute 1s statically stable and @ > O if (E;éi) <

It only remains to examlne the term bec - d. By
means of substltutlon, one may write:

ac L _ ac '
= N f= ,— ,— = = = = N
be-d4 = %Ll (?{)s<mp+may+ml)[10m+la+ (mp+m£)L1L2]( 5e )S+CT> . )
(54

The stablllity derlvative on the right side of thils equation
shows agaln that a statlcally stable parachute ls necessary
for a dynamlcally stable system. Furthermore, the com-
posltion of the bracketed term indicates that the mass and
1inertia terms, the length dimensions and the aerodynamic
oc
terms N

) and CT must be properly balanced in order to

satisfy this condition required for uynamic stabllity.
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VI, NUMERICAL DETERMINATION OF THE AMPLITUDE-

TIME RELATIONSHIP OF A PARACHUTE STABILIZED
LOAD HAVING NEUTRAL AERODYNAMIC STABILITY
ObJects which possess almost neutral aerodynamic

stabllity are frequently decelerated and stabllized. by
means of an aerodynamically stable parachute. In such
cases, one deslres to know whether or not the system will
behave wlth dynamic stabllity and how fast the initlal.
osclllations decay. Questlons of thls nature can be answered
through the solution of the frequency equation (46).

For the purposes of such a numerical solution,
one may choose a ribless gulde surface parachute because
of 1its suitable aerodynamic stability. For the determination
cf the apparent mass (ma) one must know the enclosed mass.
Simllarly, the canopy surface area is requlred to determine
the parachute canopy mass mp. The ldealized canopy conslists
of a spherical cap and a truncated cone base. From Ref 8,
the volume and surface area of the cap amount to:

frr

_ 2 5
Veap = 3 b1 (3R -Ty) (552)
Seap = 2 TTRhy (55b)
Similarly, the volume and surface area of the truncated
cone 1s:
_ar 2 2 \
1
: 2 o] 2
Seone = 71 (r + rl) [h2 + (r - rq) ] (56b)
From the geometry of Fig 4 follows:
_3-05 _
h1 = 5 r ro= 0.7 ~r
- G
Utilizing these values one obtalns:
27 -11J5 .. .3 =3 (3 - 2
cap = 5 Tr Seap = 5 (3 /5 )Tir
) (57)
: = 3 =
V, pe = 0.219 Tr Seope = 051 V2 T
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Fig 4. Geometry of the Ribless
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The total volume and total surface area of the canopy
amount to, respectively:

V = 0.419 TIp3

S = 1.867 TIr°
The enclosed mass (Ref 9) and parachute mass then become:
m, = pV = 0.419 pTrr> |
m, = oS = 1.867 oTTr2
where: p = air density
0 = mass of cloth per square foot.

Choosing a nylon cloth with a welght of 7 oz/'yd2 for the 5
canopy material, one obtains (o = 1.51107 x 107381u88/ft ):

m, = 2.821 x 10™3 17 p°

From the definition of the dimensionless mass m, one finally
finds:

_ 2,821 x 1073
m, = o7 | (58)

For r = 2.5 ft, p = 2.378 x 1072 slugs/ft3:
m, = O0.475 . (59)

Similarly, the dimenslonless apparent mass ﬁé can be derived
from: .

;n_a = Kl.ie (60)
where K = 0.3 from Ref § for a nominal cloth porosity of
70 £t3/£t%-min., and ~

— Me

m = = 0.419 (61)

e qur§ ‘

The frequency equation (Eqn 46) requires the
terms of the apparent mass in the x and y directions.
As a first approximation, Ref 10 proposes to set:
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which amounts to, in view of Eqns 60 and 61:

My = Eéy = 0.,1257

In the following, one must know the center of
mass of the system, a part of which depends upon the center
of mass of the canopy material. The calculation 1s cumber-
some but stralghtforward and provides:

me = 0.9067 ft (for r = 2.5 ft)

Note: Xy 1s the locatlon of the center of mass
p
of the parachute material measured from the
plane of the mouth of the canopy.

Choosing a 350 1b load, the center of mass of
the system 1s located at a distance of 0.0385 ft above
the center of mass of the suspended weight. The aerodynamic
center of pressure of the parachute canopy can be determined
from conventional three component measurements. However,
in general and as a first approximatlion, one may assume that
the center of pressure lles at the center of volume of the
canopy. Therefore:

e

In Ly, = T7.34 £t

or:

Iy = Ie

Il

2.94

With these dimensions and masses, the moment of inertia of
the system 1s:

I = 14,36

cm

The apparent moment of inertia follows from
Ref 11, which glves I, for varlous canopy shapes as deter-
mined by experiment. In thils reference the apparent moment
of 1nertla was measured about a point 2.66r upstream of

the plane of the canopy inlet area. A dimenslonless parameter
A 1s defined as:

I

a
= A
Tr
where: I = apparent moment of inertla about the reference
a . y
point
Ir = moment of inertia about the same point of a
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point mass located at the center of volume
of the canopy. The value of this mass is
taken to be the mass of air enclosed in a
sphere with the radlus of the inflated
parachute,

Thus, IR can be expressed as:

m
I = 3 TTr3pL2

where: L = dlstance from reference point to center of
volume of the canopy.

Therefore, the apparent moment of lnertla is:

_ oA d L3 12

I, = A §-TTr p L |

The distance L for the present problem 1ls measured from the
center of mass of the system as:

L = Ly, = 2.936r.
Thus :
I, = A %-TTp (2.936)° r° .
From.the definitlon of Té, one has:
I
= a 4 2
I = = (2.936)“ A.
a TTprS 3

From Ref 11 the value of A for a ribless gulde surface
canopy is 0.187 and one finds:

I = 2.13

a
Also, since Wy = 350 lbs:
my, = 93.204

OCy.
The aerodynamic coefficlents Cqp and <?§6§> are
s

given in Ref 6 as functions of effective porosity. For
the aerodynamic coefficients chosen in this case, the ef-
fective porosity amounts to C = 0,025. Thus from Ref 6,
one obtalns:

CT = 1.08
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Ay

S

0.0144 per degree

= 0.825 per radian.

In this reference, C, was defined as:

Cm = LN -

where L = distance from confluence point to the apex of

the canopy
q = dynamic pressure.
With the definition Cy = 21% one finds:
_ 3 L
o = & % Cy
From the geometry of Flg 4 follovs:
CN = 0.82 Ch
or
acC ocC
(—Y) = o0.82 (=—2)
oQ’g o 7g
and finally:
E)CN
————) = -0,676 per radian,
o ‘g

The negative sign has been introduced because of the opposite
sign convention utilized in Ref 12 and the present report.

Utilizing the previous value of Cmp, one finds:
v, = 117.8 ft/sec

Summarizing all of the results, one finds for a
5 £t dlameter ribless gulde surface parachute, constructed
of 7 oz nylon material and having a porosity of 70 ft3/ft2—min.,
at sea level conditions with a 350 1b load:

I, = 4.36

— (62)
I 2.13 (cont.)

il

a
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i
o
g
q
ul

=

i
O
=
-
\O

J
my = 93.204 (conecl.)
Ei = ié = 2,94 | (62)
aCN.
G7§E:) = -0.676 per radian
s
CT = 1.08.

Substitution of these values into the frequency equation
(45) ylelds, after combining terms:

610 A3 + 276 A° + 93.5 A + 0.537 = O (63)

Certain terms are negliglble in thils particular
case as can be seen by observing the contribution of each
term. With this observation the original frequency equation
can be simplified to the form:

152

(aa>x

aCN (64)
( M T I T(—a—q—s =0

my

o e

my (T, + I,)A° -

mhél

which provides the following numerlcal result:

605 A3 + 272 A° + 92.6 A + 0.537 = O (65)

It 1s seen that the frequency equations (63) and
(65) are almost identical. The simplification was Justified
for a small parachute with a relatively heavy load. Thus,
if one were interested in solving such a problem, the
simplified frequency equation (6%) could be used with very
good accuracy.

Returning now to the problem at hand, Eqn 63
becomes, on dividing by 610:

A3 + 0.4525 A% + 0.,1533N + 0.000881 = 0 .  (63a)
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One notices that all coefficients are positive
0.0684 > 0 and thus, this is a dynamically

and that be - d =
stable systen,

To completely specify the motion of the sysﬁem,
che frequency equation must be solved. Reference 8, page 295,

glves a method of solving any cublc equatilon.

this method, one. finds:

Al = -0,00553

Ao

[

Utilizing

-0.,22348 + 0,31741 1

(66)

Az = -0.22348 - 0.31741 1
Thus, from Eqns 47 and 48, the general solutions for & and
3 are:
o = Ale-0.005531 + A2e(-0.2235 + 0.3174 1)T
- (67)
+ A3e(-o.¢235 - 0.3174 1)
-0.00 T (-0.2235 + 0.3174 iyf
ﬁ = Ble 553 + Bee\ (68)

N B3e(-o.2235 - 0.3174 1)

From Egqn 52 one obtains:

Ay 6.49 %12 + 2,92 Ai
By 6.u9 Ay° + 2.92 A, + 0.994

Using the value of }‘i from Eqn 66 yields:

Ay
5= = 0.016307

1
Ao .
EE = 65,7543 - 34,7973 1
A

5= 65.7543 + 34.7973 1
3

(69)



Using these relations in Eqn 67 one finds:

Al'lf >\2't
G= 0.016307Bje = + (65.7543 - 34.79731)B,e
7\3'.t (673)
+ (65.7543 + 34.79731)B3e

As an inltial condition, outlined in Eqns 49
through 51, one may choose:

at T =0, o= 10° = 0,1745 radians
p= 0
ot + ﬁ' = 0

Thus, one obtains from Eqns 67a and 68:
0.016307B; + (65.7543 - 34.79731)B,
+ (65.7543 + 34.79731)33 = 0.1745
By + By +By = 0
and
0.00562B; + (3.8749 - 28.96481)B,
+ (3.8749 + 28.96481)Bg = O.

Solving these simultaneous equations for B,, B2, and B3 gives:

B, = -0.002856

By = 0.001428 - 0.000191 i

B3 = 0,001428 + 0,000191 i
and, from relations 69:

Al = -0.0000466

A2 = 0.087251 - 0.062250 i

A3 = 0,087251 + 0.062250 1

Using these relations, one obtains after a cumbersome

26



calculation:

X = -0,0000U466e

3

-0,002856e

-0.00553T
+ 0.2143k4e

-0,005537
+ 0.002882¢

-0.223487T

-0.223487%

cos (0.31741T - 0,62)
¥ (70)

cos (0.31741 T - 0.133).

The values of & +_A2 are presented in Table 1.

| The amplitude-time relationshilp is shown in Fig 5.

Table 1 X +f8 as a Function of T
and t for the Ribless
Guide Surface Parachute

T t X+ 0
(sec.) (deg.)

0 0 10,000
2 0.0U42 7.780
L 0.085 2.914
6 0.127 0.736
8 0.170 -0.884
10 0.212 -1,384
12 0.254 -1,002
14 0.297 -0.569
16 0.339 -0.237
18 0.382 -0.066
20 0.42L -0.036
22 0.466 -0.056
oL 0.509 -0,102
26 0.551 -0.136
28 0.594 -0,152
30 0.636 0,148
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