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INTRO DUCTION

There is a recurrent need, in assessment work for possible future

projects, for a computer programme which estimates the accuracy with which

the parameters of a hypothetical satellite orbit could be determined by use of

ground station observations of one or more specified types. Such a programme

has now been written for the Pegasus computer and is described in this Report.

The function of the new programme is most easily indicated by comparing

the programme with the standard R.A.E. programme for orbit determination .

The two main differences of the new programme are the following:-

(i) it is not confined to angular observations, but can deal equally

well with observations of range, range rate, direction cosines, etc.,

(ii) as an assessment programme, it does not process actual observations

of an actual satellite.

The significance of feature (ii) is that the programme is much simpler to use

than a full orbit determination programme would be, and it requires less

computer time.

The type of problem to which the new programme refers may be summarised

as follows. Nominal values of K unknown parameters of a hypothetical satellite

orbit are known, as are also the locations of possible tracking stations. The

particular quantities vjhich each station can measure are specified, together

with the nominal accuracy associated with each quantity. It is required to

estimate the accuracy with which the K orbital parameters could be computed

from hypothetical observations over a given number of days.

The difference between the above requirement and that satisfied by a

full orbit determination programme may be stated, statistically, rather simply.

All observations being subject to random errors, assumed independent and

normally distributed, we may consider the K-dimensional variate of errors in

orbital parameters computed from a given set of observations. An orbit

determination programme estimates, by maximum likelihood, the first and second

moments of this variate. An assessment programme, on the other hand, estimates

second moments only.

The programme is described in detail in Section 2 of this Report. An

application to an assessment problem of recent interest, involving six-hour

orbits, is described in Section 3,

One important point must be made. Although the programme does not

refer to actual observations, the computer must be told the times at Which it



is supposed that observations could be made. Problems, such as (a) finding

the periods during which the satellite would be above the horizon at each

station and (b) deciding how many independent observations to assume'. in such

periods, are not catered for.

2 THE COMPUTER PROGRA.1,

2.1 A brief description

The programme in question is entitled "00.13.29 Error Covariance Estima-

tion for Hypothetical Orbit Determination". The quantities for which

covariance estimates are made are certain of the parameters in the Merson
1model used at R.A.E. as the basis for satellite orbit determination As in

Ref.1 the model parameters are, using standard notation, a0, e, o"i 0o2 co0 t0

and such additional parameters aj, ii) nj, c. and nj as are required; the j

suffixed parameters allow polynomial contributions to orbital elements at time t,

e.g. Z e (t - t 0 )j to eccentricity e and Z nj(t - to) to mean motion n

(no is given from a by Kepler t s third law). Some of the parameters are

regarded as known quantities and are such that in a genuine orbit determination

they would be held fixed at pre-assigned values. The remainder are the

'unknown' parameters which, starting from nominal values, it would be the

business of an orbit determination programme to improve by use of observations.

Programme 00.13.29 assesses the accuracy with which the unknown parameters,

K in number, could be computed in such determination. The distinction between

the two types of parameter in the orbital model is one that has been made in

the working version of the R.A.E. programme for orbital determination using

angular observations only, but it was not present in the original version of

that programme described in Ref.1.

Input for the programme consists of the assumed values of all parameters

of the hypothetical orbit (including the fixed ones) and of information

relating to a number, b, of possible bursts of observational data. A 'burst'

is a sequence of observations from the same station, uniformly separated in

time; it consists of (a) station position data, (b) type number, indicating

the nature of the quantities which could be measured at the station, (c)

information as to the number of observations in the burst and the set of uni-

formly separated times, and (d) the standard deviations of errors in the

quantities measured. As remarked in Section I (and as explained in connection

with another programme on p.14 of Ref.2) no values of hypothetical observed

quantities themselves have to be given.
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Output consists basically of the standard deviations associated with

hypothetical determination of all the unknown parameters. Frinting is in

the same standard format2 as is used for input of assumed values, zeros being

allocated to the fixed parameters. Additional, but optional, output consists

of the scaled covariance matrix for the unknown parameters. This is a K x K

matrix and is such that the square roots of the diagonal elements, when

de-scaled, are precisely the non-zero standard deviations already referred to.

The scaling is irrelevant since the only likely application of the covariance
2

matrix is for re-input intothe Pegasus programme for estimating

errors in the ephemeris of a satellite (see, in particular, Section 2.5 of

Ref.2)., the scaling is then automatically allowed for.

2.2 General theory

Let the tunknown' parameters of the satellite orbit be Ek, for

k = 1,2,...,K. The notation Ek will also be used for nominal values or

initial estimates of these parameters.

Each of the b bursts of hypothetical observations is associated with a

particular station. Let Si designate the station associated with the ith
burst, it being understood that a station receives more than one S. if it is

responsible for more than one burst. Let N. denote the number of observations

in the ith burst and take the times of these observations to be ti, ti + T'
S(N. iwee'

t. + 2vri.,." t. + - T,, where t. and T. are known.

If there were a set of actual observations at the given times, they

could be used to improve the orbital parameters, say from E to E.' To give
k k'

the theory of the assessment problem it is convenient to refer to the hypo-

thetical observations as if they were a real set. This set will include

observational errors which lead directly to errors in the improved parameters

Et. However, the accuracy assessed for the Et and given by standard
k k

deviations and covariance matrix, is independent of the actual observations

(and errors) and depends only on the a priori accuracy estimates associated

with them. It is assumed here that the E and the E? are fairly close, so
k k

that the orbital improvement is complete after one iteration; this is

equivalent to a linearity assumption as will be seen in due course.

Vie suppose then that we have a set of observed quantities. Throughout
the ith burst let the sI quantities measured be denoted by q, where

aq

q = 1,2,.oo, si; for the jth observation of the burst we suppose that e takesq

the value 6.qij; this occurs at time tij, where t i = ti + (j - 1) T'' With

s. = 2, for example,61 might be right ascension and e declination; with
1 2
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s.6 0 1 might be range, 02 and 03 direction cosines and 4' e05 and E6 the

time rates of change of these three quantities. The possible interpretations

of the 0 are listed in Section 2.3, which gives formulae conmected withq
observations of every type covered by the programme.

Although the three suffices q, i and j have been introduced for

precision, it will be convenient in most of the following analysis to omit

them. Vie concentrate on a single typical observation 0 (= 0 qij) made by a

station S. Wie suppose that e contains an error which derives from a normal

distribution having zero mean and the particular a priori standard deviation

associated with S.

The actual observation 0 may be compared with a theoretical or 'computed'

value, 00, which is a function of orbital parameters, station position and

time, say

6C = oc(Ek, S, t).

If limitations of the orbital dynamic model are neglected, 0 is a known0

function of K + 4 parameters, since Ek, S and t account for K, 3 and I

respectively. However, we make two further assumptions: that the co-ordinates

of the given station are known without error; and that, in contrast with the

basic R.A.E. orbit determination programme as originally described I, time also

is error-free. Then only the K orbital parameters are in question and we

now write

0 0e(E k).

The comparison of 0 with e provides the residual R, where

R = 6 -0 (E k).

We are postulating the existence of a complete set of observations from

which an orbit improvement, of Ek to Et, is to be carried out. Writing

AEk = E' - Ek

it follows from Taylor t s theorem that, to first order,

/, Ek k(

k
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Second order terms may be nelgected since the AEk are small; this is the

linearity assumption referred to earlier.

Equation (1) can be set up for each 0qqiJ with its associated oqi (a is

independent of suffix j). The AEk are then found, by the method of least

squares, from:-

(Ri )2 = minimum.
qij qi

q,i,j

This equation is solved by differentiating with respect to each ALEk, using

equation (1). The resulting'equations of conditiont are best expressed in

matrix form, following the notation of Ref.1 as far as possible.

Let Y, Z and M be the two column vectors and matrix defined by

Y = (Rqij/-qi) Z = (AEk) and M = ( io N I

where we regard q ij as a single (row) suffix. The matrix equation of

condition is then (T denoting transposition)

MT(Y - IA•Z) = 0

and the solution for Z is given by

z m T m) 1 M T Y.

To obtain the required covariance matrix of the computed orbital

parameters - and this is just coy Z - we introduce the notation Y for the

column vector which would be derived from error-free observations and Z for

the corresponding AE the El in this case being the true value of the para-
* k

meters. Then Y and 2 are the means of populations of all possible Y and Z

based on the distribution of errors in observations. So, if A denotes

expectation,

coy Z = A R(Z - XZ)T- ETT

= (m M)-11 .T AY - Y)(yT - TT)} I(MT M)Y1

TT(since M M is a symmetric matrix)
- T (M I•-1 cc oo z MMT M)-I,1



8

But the elements of Y are so weighted that the standard deviation of each is I,

and we assume that these elements are uncorrelated. Thus cov Y is the unit

matrix. Hence

T I
cov Z = (MT I)-. (2)

Formula (2) is the basis of the Pegasus computer programme. As desired,

it is independent of any actual observations (it does not contain Y). The

only quantities required are partial derivatives and a priori standard

deviations of error. The difference between this assessment formula and the

formula for coy Z which would be used for the analysis of actual satellite2
observations is that the latter contains an additional factor (the s of Ref.1).

This (scalar) factor would be derived from final residuals and would enable a

priori error estimates for the observations to be converted into a posteriori

estimates.

2.3 Formulae for observation types

The various interpretations for the observed quantities 6 must now be

listed. Formulae involved in programming the derivatives a will be given.
aE k

Depending on the type of observing equipment used, observed quantities

fall into six basic categories: range, angles, direction cosines, range rate,

angle rates and direction cosine rates. Although angles can be obtained at

once from direction cosines, these two categories must be treated separately

because of the weighting question. Thus if a station observes direction

cosines a fixed standard deviation is assumed for all such observations; the

standard deviations of the two angles, to which a given pair of direction

cosines could be converted, would depend on the particular observed direction

and, in addition, the angular errors would in general be correlated.

Range measurement gives a single quantity, denoted here by p. Angle

measurement yields two quantities for specifying a line of sight. These may

be right ascension and declination, a and 8, or azimuth and elevation.

However, no distinction is necessary as will now be demonstrated. Suppose

a and 8 are the fundamental (independent) quantities; then 8 is measurable to

the given fixed accuracy, '5, associated with the station, but a only to the

variable accuracy, a, given by

a - o- see8.

This is equivalent to a circular normal distribution for errors in any plane

perpendicular to the line of sight and so equivalent, again, to the following
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for azimuth and elevation: o(el) fixed, o(az) = cr(el) x see(el). Thus

azimuth and elevation are effectively fundamental quantities also.

With directiom cosines there is a similar situation, but only so long

as we assume that these cosines are always measured with respect to axes in

the horizon plane. This is normally the case in practice, for example with

Minitrack interferometer observations. Hence we may conveniently suppose the

fundamental quantities to be Z and m, the direction cosines of a line of sight

with respect to ground plane north and east axes respectively. The case of

axes in some plane other than the horizon (ground) plane is not covered by the

programme.

The remaining quantities which may be observed fall into the three rate

categories. They are denoted here by s, (I and ,an and .

The 'type' of an observation is determined by the categories of the

quantities which are included in the observation. If it is assumed that

angles and direction cosines are never included in the same observation, there

remain 27 possible types. Of these, 15 have been specifically catered for

by the programme. The type no. of each of these is listed in the table below,

together with the quantities covered - i.e. interpretations of 0 - for each

type. It may occasionally be necessary to use the programme with observations

of a type not covered by the table. Suppose, for example, that ý Z and m

are measured (by a combination of Doppler and interferometer). Then the

observation may be regarded as of type 15 with p ý and ii measured to very low

accuracy (say T = 109 metres and a = o = 1000 (sec)-. All the 12 types

not specifically covered in the programme may be dealt with in this way.

Observation types

Type no. Quantities observed Type no. Quantities observed

1 p 8

2 CL,& 9
3 ,m 10

4 11 0
5 a,8 12
6 ,i13 13

71 p,Pa,,po,1
15 Ai4 s

Turning our attention to the formulae for partial derivatives, we let

r, a, 8 denote geocentric spherical polar co-ordinates, corresponding to the

topocentrie p, a, 8. Then if X, Y, Z be station co-ordinates in the
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normal geocentric system of axes,

p cos 8 cos a, = r cos 8 cos a - X,

p0cos sin a = r cos 8sin -a - Y

and p sin 6 = r sin8 - Z.

The partial derivatives of r, m and 8 depend on the Merson model for

satellite motion and are given in full elsewhere . Assuming these derivatives

to be known, we require formulae for the derivatives of observations E in the

six basic categories. We start with the first two categories, formulae for

the derivatives of p, a and 8 being obtainable from the equations just given.

For generality we take differentials of both sides, employing matrix notation.

It is interesting to note that time derivatives can most simply be dealt with

by use of moving axes, fixed in the earth, which instantaneously coincide with

the normal inertial axes (x axis towards the vernal equinox and z axis towards

the north pole). In this case AX AY = AZ =0 and if wE is the angular

velocity of the earth we got

-Cos aC 0 - sina.\/ - cos8 0 sin8\ AP

sin a 0 cos a sin 8 0 cos ) p cos 8(Aa-wE At) -

0 10 \ 0 0 0 \ pA8 /

(-cos L 0 - sin -cos 0 sin / Ar
-sin m 0 Cos sin 5 0 cos 8 r cos a
si L0 0 03 a. At) -

0 1 0 0 1 0 rA8

When the standard R.A.E. orbital determination programmes were written1

time derivatives were needed for correction of observation times and equation

(3) was developed with the At terms kept in. For the present programme,

despite the fact that observations of time differentiated quantities are

allowed for, formulae for time derivatives have not been used. Dropping the

At terms and inserting the matrices on the left-hand side of equation (3) we

get

AP R IoR 2 R Ar
1 3 1/

p Cos8A) r cos&Ao

A A8 K rA9



whereR cos sino8 02 cos O in0A - 0

0 sinA 0 cos0

sin8 os 8 0 )inA 0 os A-

R 3 -Cos 0 sin and A =aa

S(- osino o o Cos
0 0

For the matrix of partial derivatives with respect to the E we now have, at

once,

aE1  •a

Cos au8
"0 8E K

a588 38

-I K

1 0 0 R. RR ar .ar

Q P-1 0 r cos, . r cos a-c- (4

0 1 r 7E r'aKpr E- *..... " r

It is convenient to leave the factor cos 8 with the a derivatives since, as

already mentioned, the standard deviation of each measured a includes a

sec 8 factor, so that elements oI cos 8 - are required in the matrix M of

Section 2.2. 8Ek

The partial derivatives of Z and m, observations in the third basic

category, can be obtained from those of m and 8. Let P be the astronimioal

latitude of the observing station, Xo its longitude (east) and S the sidereal

time. Define k by

X= X +S.
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C

Then

/ - sin p cos X - sin P sin XoO•s 00C ( os 0 °°s 00a si)

K: K s~~in:5 Cs cos; ln sinP a

where the third direction cosine, n, is introduced here only to give a

complete expression. The 3 x 3 matrix corresponds to a change to left-handed

axes but this is of no significance and in any case we are only concerned with

the first two rows of the matrix.

On taking differentials,

AM

An

( sin N cos X 0 cos a - sin 5 sin a 6)

cos Cos 7 cos P sin W sinP 2  0 cos /

+ WE sin p sin X - sin P cos X 0 co 8 0 cos At.

Cos X - sin k 0 cos 8 sin a

\-os p sinX cos cos X \ sin 8

Dropping the terms involving n or At and introducing the partial derivative

notation, we have

aE.1  a._(amn am
aE-1 * aEr /

-sinpoosx -sin(3sinX cos /"sa -sin 8 cos ;c o oa

( sinP WosX 0 cos:a, -sin sin a aE)

Cos 8 .**
aE .. a(

90(5)



13

Finally we consider derivatives of quantities from the last three

categories, those which involve rates of change with time. It is clear that

formulae for second derivatives are involved since, for example,

2 2

aE1  - I -at •taE1

It is not difficult to extend the formulae of Merson to cover the required

second derivatives of geocentric co-ordinates. After doing so, however, it

is still necessary to differentiate the right-hand sides of equations (4) and

(5) to get the second derivatives of observed quantities. It was therefore

decided that second derivatives should be computed numerically, using the

available sub-routines for first derivatives.

Thus for an observation 0 we use the approximation

ak = ( a (Ek't + At) ae(Ekt) ) At , (6)

where At is some suitable fixed time increment. Unless told otherwise the

programme takes At = I sec; for an orbit of long periodic time, a larger value

of At would be more appropriate.

No difficulty arises with weighting factors for observed quantities in

the fourth and sixth categories. For The fifth category, however, there is

soma uncertainty as to the appropriate factor to associate with &. The

natural factor is again sec 6 on the basis that

a. = o sece

where a, is a given fixed standard deviation. But this relation would be

derived from cos 8 a-(() = a-(6) and it could very well be argued that one

should preferably start from o-(cos 8. 1) = 0(1). The difficulty is associated

with the fact that radars do not normally make measurements of angle rates

independently of measurements of the angles themselves. (We contrast the

situation with direction cosines when Z and it may be regarded as essentially

uncorrelated with t, and m.) Thus fifth category observations must be treated

warily. For completeness, the programme permits their use and does so by

computing" instead of (6),
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co3 / Cos 8(t + At) aa(Ek't + At) acL(Ek,t)\ At . (7)aEk aEkaEkk ~~~COS a~Ek co6() k

2.4 Operating instructions

In the rest of Section 2 it is assumed that the reader is familiar with

the use of the Pegasus digital computer. We first give the simple operating

instructions.

Mi) Depress hand-switch 0 and the hoot key; depress switches 1, 2

and/or 3 as required (see below); clear the others.

Place the binary programme tape, 00.13.29, in the main tape reader.

START and RUN - the tape is read and a 77 (Z) stop reached.

(ii) Place the parameter tape (see Section 2.5) in the main reader.

RUN (or Start and Run) - the tape is read in, computing proceeds

and, in due course, results are punched (see Section 2.6).

Computer action at the completion of a run (i.e. after punching results

for a given parameter tape) depends on whether hand-switch 3 is set. If it is,

further parameters are immediately read in without need for intervention; the

machine can be left unattented while many sets of parameters, all on one tape,

are dealt with. If switch 3 is clear the computer comes to a 77 stop in 0.4,

permitting a change of parameter tape if further runs are to be made. The

next parameters may be dealt with by repeating instructions (ii).

The interpretation of hand-switch 2 is explained in Section 2.5, and

of hand-switch I in Section 2.6. It will be found that switch 2 is normally

kept clear.

The computer time required to run the programme may be forecast roughly

as follows; for each observation allow 20 seconds if its type does not include

any rate measurement; if rate measurement is included allow 40 seconds.

Two amendments to the programme may be made, if desired, and fed into

the computer after Wi) above. They are referred to in Sections 2.6 and 3.6

respectively.

The value of At (see Section 2.3) may be changed from I second to any

integral multiple, p, of 10 ýisec. Two actions are necessary:- (a) the

programme must be amended by feeding in the tape

T 266.2
+P
Z
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(b) the standard deviations of all rate measurements must be multiplied by

P/100000 before they are punched on the parameter tape (see Section 2.5).

2.5 Parameter tape

The print out of an illustrative parameter tape is given below.

The numbers on the right refer to blocks of punching, separated by black tape,

and are introduced here for reference in the commentary which follows.

T233.7 (i)
+2 (no. of bursts)

J300.0 (i)
16730 (semi-major axis)
0-0003 (eccentricity)
80 (inclination)
255 (RA of node)
0 (argument of perigee)
1964 Jan 1 0 0 0 (time at node)
0
500

T227.0 (iii)
+15 (type)
-454159256
+427230370
-133904980 W
-0.211324797 (sin Pý
+0"977415893 cos c )
+0-685182992 sin Xo0
-0"728370968 00os Xo3
L

1964 Jan 1 14 13 0 (iv)11.5
115

+50 (v)
+0" 000175
+1
+0.0000077

L (vi)

1964 Jan 1 22 45 0 (vii)
11.5
11

+50 (viii)
+0.000175
+1
+0-0000077
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(i) The number, b, of bursts of data must first be set in storage

location 233.7; here b = 2.

(ii) The programme is entered at address 300.0 and a block of orbital

parameters is at once read in. Quantities on consecutive lines are a, e,

i %o' 0o and to, the 0 and 500 being (arbitrary) dummy numbers. Polynomial

coefficients may be incorporated in the parameter format, e.g. eI after eOP

nI and n2 after the dummy 500. For complete details of this standard parameter

format and punching rules, Section 2.4 of Ref.2 should be consulted.

Ref.2 makes a distinction between parameters which are "strict E type"

and those which are not. This distinction is the same as the one made, in

Section 2.1 of the present paper, between parameters which are 'unknown' and
'fixed' respectively. In the normal use of programme 00.13.29 there will be

no fixed parameters. The programme can still be used when there are one or

more, however, as follows:-

(a) the parameter type must contain an additional section; between

Sections (ii) and (iii) (after the block of orbital parameters) must

appear

+0 .uvwxyz
L

(b) hand-switch 2 must be set (enabling the new section of tape to be

read).

The interpretation of u,...,z is as in Ref.2, but it is noted that the

additional punching occurs at different parts of the parameter tape in the

two programmes.

(iii) Station data is always stored in block 227 of the computer.

The first quantity is type number, 15 - designating p, Z, m, P, Z and 6 -

in the case of the illustrative example. The next three quantities are

station co-ordinates' X, Y and Z in cm. The remaining four are sin P, cos f,
sin Xo and cos X0 , where P and X° are latitude and longitude (east).

(iv) The N, times of the observations in the first burst of data are

specified by punching t 11 (see Section 2.2), -I (in minutes) and N, itself.

(v) Standard deviations for errors in the quantities observed are

specified, viz. a-,, a- (= am), q and o-Z (- o-.) for the example given. Units

for the six categories of observed quantities are: for p, metres; CL and 8,

seconds of arc; Z and m, -; ý,metres/sec; a and ý, seconds of arc/see; and
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Sand 1., -/sec; the standard deviations must be punched in the order of the

categories which are included and they must be followed by an asterisk. (They

are read in by the Pegasus Matrix Interpretive Scheme.)

(vi) The computer looks for station data for the second burst, similar

to data under (iii). If there is no change, either in observation type or

co-ordinates, it is only necessary to punch the L. This is a return link

from initial orders, used as a sub-routine, to the programme.
(vii) Information for the second burst, - t21, '2 and N2 - is punched

as under (iv).

(viii) The standard deviations for the second burst, even if identical

with those for the first, must be punched in full.

N1B Positive signs have been omitted in the punching of Sections (ii), (iv)

and (vii), where they are optional. In Sections (i), (iii), (v) and (viii)

they are compulsory.

2.6 Output

The regular output consists of a block of parameter standard deviations,

each denoting the accuracy with which the corresponding orbital parameter could

be computed from the given observational data. Thus for the illustrative

parameters and data used in the previous section, the output was as follows:

+0"0478 (0a in Iam)
+0.000003 (ae)
+0- 0008 (cri in degrees)
+0.0007 (xQ- in degrees)
+0.8461 (a in degrees)

0 00 00.334 -to in h m s)
+0-0000 1associated with the
+0-00 dummy 0 and 500 of input).

If any parameter is of the fixed variety the appropriate standard deviation

is printed as zero. If required, each quantity can be printed to three

further decimal places by feeding in an amendment to the basic programme.

If the computer is operated with hand-switch I clear there is no other

printing than that above. If this switch is set, however, the standard

deviations are preceded by the punching of the complete covariance matrix,

coy Z, from which they are derived. There is little point in giving the

complete matrix for the example being considered, since the units of distance

(a), angle and time are not the obvious ones. The first two columns are

given for interest, however, in the standard floating point (argument exponent)
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form. The element 1.073523 x O-11 is, of course, the non-dimensional
2variance a- e The values of the covariance gae from the first and second

columns differ slightly due to rounding error. From 0, 2 ,e and '2 may be
obtained the correlations between errors in semi-major axis and eccentricity;

its magnitude is +0.23.

Ist col. +3-030766 -16 2nd col. +1"304585 -14
+1.304584 -14 +1.073523 -11
-5"627968 -14 +1.771246 -13
+1.050549 -14 +1-227553 -11
-9"6701416 -12 -5"823236 -10
-2.111723 -15 -9"643007 -14

The standard deviations are valuable in that they provide an immediate
insight into accuracy attainable with a given set of observational data.

The complete covariance matrix, particularly in its scaled floating point form,

adds little to this quick picture. Thus even when the matrix is included in

the computer output, it will not normally be sensible to print the tape. The

necessity for the complete matrix arises if the accuracy (expressed as a

standard deviation) with which some function of the computed orbital parameters

is known is to be assessed. The obvious application is for estimating errors
in an ephemeris based on the computed parameters; the computer programme

2already written for this purpose requires the coy Z output tape as part of

its input.

3 AN APPLICATION OF THE PROGRA12E

3.1 Background

The European Launcher Development Organisation (ELDO) have recently been

interested in the accuracy with which parameters for certain orbits could be
computed from tracking data generated by a single radar set. The orbits

have been of the circular near-polar type, and such that the period, as seen

from the earth, is a simple fraction of a day. Two particular cases are the

'6 hour' and '8 hour' orbits, when the fraction is 4 and ½ respectively. A
'day', here, must be taken to be that period, almost equal to a sidereal day

but with allowance for satellite orbit precession, after which the track of the

satellite on the earth repeats itself.

It was thought to be sensible that the first application of the new

computer programme should be to one of these orbits of interest to ELDO. The
6 hour orbit was chosen. The radar was taken to be sited in the north-east

of Australia.
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For the particular orbit parameters considered (see Section 3.2) the

satellite could be tracked twice a day, first when going south and second when

going north an orbit and a half later. It was decided to look at the accuracy

question for two cases; first, from the point of view of quick answers, how

accurate an orbit could be obtained from data over the first (south-going)

pass or, indeed, over less than this full pass; second, from the point of view

of knowledge of the orbit after two or three days, what would be the accuracy

when data from several passes were combined.

3.2 Orbital parameters, radar site and observation type

The orbital parameters are those listed in Section 2.5 for an illustra-

tive parameter tape. For a 6 hour orbit at 800 inclination the effect of

precession is to shorten the sidereal day by 0.24 min. The actual orbital

period is thus 5 h58m57s, to which corresponds the assumed semi-major axis of

16730 km. Though the orbit is nominally circular, eccentricity was taken to

be 0.0003 to avoid any possible difficulty with e-1 factors. The argument

of perigee is of course arbitrary and was taken zero; the standard deviation

obtained for w was inevitably going to be large, due to the small e, but this

was of no importance. The parameter to, time at the node, was also arbitrary

and taken at January 1.0 of 1964. The value of 0 was, of course, far from

arbitrary; 2550 was derived by making assumptions about the geography of

launch and injection and by adding in the sidereal time at t 0
0

For a high orbit there is no need to admit an unknown parameter to

represent the effect of air drag; -so no parameter, other than the basic six,

was introduced. For a similar exercise with a low orbit it would-be

necessary to introduce a parameter nl,possibly also n2 ; the value of n1 would

not have to be known and could in fact be set to zero, the importantthing

being the presence of the additional parameter in the model.

The position of the radar, in Australia, was taken to be at about

latitude 120 S and longitude 1370 E. The station parameters used for the

programme are those given by the illustrative parameter tape of Section 2.5.

The radar was assumed to make observations of type 5, i.e. to measure

the following six quantities; slant range, p; direction cosines relative to

ground plane axes, Z and m; p; ý and 1. Accuracies were taken to be given

by the following expressions for standard deviations; a-p = 50m,

o-Z = o- 1.75 x 10 0" = 1 m/sec, oa = oa, = 7.7 x 10- 6/sec.m 'pm
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3.3 Observation bursts

For the given orbit, as looked at from the given radar site, the

satellite would appear above the horizon four times a day, twice going south

and twice going north. One of the north passes and one of the south may be

ruled out at once, however, on the ground that the satellite would never climb

to an elevation greater than 100. Of the other two passes the satellite would

reach about 50' on the south-going and about 600 on the north-going. Taking

100 as (an arbitrary) radar horizon, the approximate times of visibility are

as follows:

south going 14 h 13m to 16 h8 m

north going 22 h45m to 24h 40 ,

a~n interval of 115 minutes in each case. These are the times for the first

day (1964 January 1); they become 4 m12a earlier, each successive day.

It was decided, as stated in Section 3.1, to carry out the computer runs

under two heads. The first covered the use of data from just the first

possible pass, starting with an observation at 14 h13 m; successive observations

were at intervals of 5 minutes (chosen arbitrarily), totals up to a maximum

possible of 24 observations being considered. The second head covered runs

using more than one burst of data; each burst corresponded to one pass and was

divided into 10 intervals of 11.5 minutes, giving 11 observations over the

burst. Under the second head runs were carried out for one burst only, two,

three, four and six; the final case corresponded to use of data from all

passes over a three day period.

3.4 Results for data using first pass only

Let N be the number of observations used, a suffix being redundant in

the case of a single pass. The observations are assumed to be made at

5 minute intervals so that the last corresponds to a time 5(N-1) minutes from

the (effective) beginning of the pass. The maximum value of N is 24. For

values of N less than the maximum the programme shows how the accuracy of orbit

determination, using data up to a given point reached in the pass, varies as

that point advances in time.

Results were obtained for a number of values of N from 5 to 24. The

corresponding standard deviation estimates a, a-, ae a-, ea- and oto are

plotted against N in Figs.1-6. The reason for plotting eoaW, with e = 0.0003,
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has been implied in Section 3.2. It can be seen clearly if it is observed

that standard deviations in the non-singular orbital elements c(=e cos w) and

s(=esin w) are given, when w = 0, by

0,= a and a- =e o.0 e s w

It is of interest to know how far the decrease in each a- for increasing

N, indicated in Figs.1-6, is caused by the fact that an increasingly long arc

of the orbit becomes available and how far by the mere fact that there are more

observations. Since the standard deviation of any measured quantity is in

general inversely proportional to the square root of the number of observations

made, we can compute an taccuracy per unit observation' by multiplying each a-

by the appropriate VN. For semi-major axis, Fig.7 has been obtained in this

way from Fig.1. It confirms a result that might be expected intuitively,

namely, that increasing coverage is important until about half the pass has

been seen, while data from the second half gives small return.

Results from just one pass - less than two hours worth of data - are

thus surprisingly good. From merely 24 observations semi major axis is known

to about 250 metres. Hence orbital period is known to about 0.5 sec. This

in turn means that the suspected drift of the satellite after a full (modified

sidereal) day is known to about 2' arc or, after a year, to about 120. It is

interesting to know to which of the four sorts of quantities being measured -

p, Z and m, 0, Z and A - the good accuracy is due. To throw light on this

point the following repeats of the 24 point run were carried out, with

different assumptions as to the observation type:- (a) type I (p omly),

(b) type 3 (4 and m), (c) type 4 (P only), (d) type 6 (ý and A), (e) type 11

(p and ý), (f) type 13 (Z, m, ý and i), The results are listed in Table 1.

An immediate conclusion is that measurement of Z and I is of little value and

adds nothing to measurement of Z and m. In fact to "pull their weight" the

accuracy of angular rate observations would have to be improved by a factor of

about 20. Further features of Table I are discussed in Section 3.6.

3.5 Results for data using several passes

Results were obtained in a similar way to that of the previous section.

Complete data over each of several passes being assumed, the number of passes

used was increased from one to six. To restrict the use of computer time the

number of observations per burst was cut to 11 leaving, even then, 66 observa-

tions to be dealt with in the case of six passes analysed. For the analysis

of the first pass only, of course, nothing was added to previous knowledge.
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It is meaningless to give the results in graphical form. Instead, they

are set out in Table 2; the results for the case of two passes have been given

also as the illustrative output in Section 2.6. The table agrees well with

intuitive notions. Thus as soon as data from a second pass are included, this

pass being some eight hours later than the first and covering a very different

part of the orbit, the accuracy of all parameters is improved, a factor of about

5 or 6 being involved in each case. Addition of a third pass, however, affects

the accuracies of the elements in quite different ways. Eccentricity and the

angular elements - i, ? and w - are scarcely improved since the third pass merely

repeats the first. But semi-major axis is improved by a factor of nearly 20,

because for the first time a really accurate measure of orbital period becomes

available. The effect on the sixth element, to, is nearly as good. The

improvement in semi-major axis as up to six passes are included fits in with

the view that the standard deviation of the error with which orbital period

may be measured is inversely proportional to the total time over which

observations are used. A standard deviation for semi-major axis of less

than I metre (after 3 days) is, of course, remarkably good. It corresponds

to a drift in satellite position of no more than 00.05 at the end of a year.

3.6 Further discussion

It is wished to draw attention to three points which arose in connection

with the present application of the computer programme but which have general

significance.

The first point concerns the importance of the non-diagonal terms of the

oovariance matrix, cov Z. It is well brought out by reference to Table 1,

introduced in Section 3.4. It may be wondered why it is that use of observa-

tions from all of the four relevant categories (p, Z and m, p, ' and A) yield

so much better accuracy (I km) for semi-major axis, in particular, than

observations from any single category (15 km at best).

If CV, C2, C3, C4 denote the covariance matrix for observations restricted

to each of the four relevant categories in turn, then the overall covariance

matrix is given by

(CovZ) 1 +02 + 03+ +04

Hence if non diagonal terms of the matrices were neglected we should expect,

from Table 1,

-2 -2 -2 -2 -2 -2
- = 38- + 15- + 32- + 496 (13)-,
a

so that the actual oa is about 50 times better than expectation.

a
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The explanation lies in the relevant magnitude of the non-diagonal terms,

i.e. in the correlations between semi-major axis and the other fiv-e elements.

These correlations are large for all the presently considered matrices CY, C2,

C C and coy Z. For cov Z (for mhich oa = ¼ km) the correlation between3' 44
a and e is -0.75 and between a and t -0.964.

0

The second point also relates to the presence of large correlation

elements in the covariance matrices. As seen from equation (2), the final
Toperation in the determination of cov Z is the inversion of the matrix (MT M).

If this matrix is ill-conditioned there may be considerable loss of accuracy

in the performance of the operation.

The matrices leading to the results listed in Table I were all rather

badly conditioned. The outstanding case, surprisingly, was for the first

line of the t able, corresponding to orbital determination from range data only.
TThe standard deviations given for this case had to be found by inverting (MT m)

with the aid of the Double length Matrix Interpretive Scheme for Pegasus.

Use of the normal scheme (incorporated in the programme) had previously led to

results which underestimated all the standard deviations by the same factor,

0.42; -a' for example, had been estimated at 16 km.

One reason for ill-conditioning, in the case under consideration, may be

seen at once. The sixth element in the orbital model, to, is a time which is

14 hours before the beginning of the 2 hour burst of data used to determine

the elements. The situation is analogous to the difficulty encountered if one

tries to fit a straight line y = mx + c to a set of points (x,y) which are all

bunched well to one side of the y-axis.

If ill-conditioning is suspected when the programme is to be used, the

remedy is to feed in an amendment to the programme such that the matrix (11 T M)

is output instead of (or in addition to) standard deviations and cov Z.

This matrix may then be inverted by means of a short, specially written programme

which uses double-length arithmetic with a working length of 22 significant

figures instead of only 9.

The final point concerns the choice of dynamic model. Let us suppose

that, for a particular orbit, no parameter other than semi-major axis, say,

is of interest. It is tempting then to argue: "since we have nominal

(e.g. launch) values of e, i, n, w and to, and since we are not interested in

improving these, let us keep them fixed and see how accurately we can determine

the one parameter we want to know".
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In the case of the example being considered this would involve use of a

parameter tape containing +0.100000 (see Section 2.5); values for aa far
better than those quoted in this paper would be obtained.

The snag, of course, is that if e etc. are held fixed they are assumed

known exactly, whereas they actually will contain errors which react on a.

This reaction will be important unless e etc. are known to greater accuracy

than that to which they could be computed if treated as unknowns. Such

knowledge will not normally exist, though it has been assumed as a justifica-

tion for omitting the parameter n1 (see Section 3.1) in the present exercise.

Summarising for the general case, of which the present example is typical:

an assessment study must assume the necessity to estimate all parameters, even

though the answers for only one or two may be actually looked at.

4 CONCLUSIONS

A programme has been written which fills an important gap in the Pegasus

computer library of satellite orbit programmes. It should be useful in

assessment work on the accuracy with which hypothetical orbits can be deter-

mined from hypothetical observations.

A first application of the programme has demonstrated that accurate
determination of circular near-polar six-hour orbits can be made using radar

data from a single station in Australia. This example has, at the same time,

focussed attention on the danger which is inherent in the operation of

inverting ill-conditioned matrices.
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Table 1

ACCURACY OF ORBIT DETERMINATION FROJ SINGLE-PASS DATA

FRO•I OBSERVATIONS OF VARIOUS TYPES

Observation r (km) a q. (deg) a (deg) eC (deg) ato (see)
type a e I .

I (p only) 38 0.0034 0.798 0.656 0.121 24)9

3 (-C and m) 15 0.0007 0.005 0.004 0.014 73

4 (U only) 32 0.0022 1.398 0.391 0.075 162

6 (Z and i) 496 0.0234 0.442 0.616 0.586 2502

11 (p and •) 21 0.0018 0.439 0.352 0.064 137

13 m 15 0.0007 04005 0.004 0.014 73

15 (all) 14'0- 0.004 0.0o2 0.001 I
_....._ _ _,,,_ _ I _ _ _

Table 2

ACCURACY OF ORBIT DETERMINATION FROM AUJLTI-PASS DATA

passes a 1e I (deg) 105 a-(deg) 105 e- 0t (sec)

used (deg) 0

1 376 164 514 334 162 1.7

2 48 33 79 72 25 0.3

3 2.5 30 57 70 9 0.024

4 1.8 25 43 58 7 0.021

6 0.9 20 35 46 I 6 0.016

7PfAP TL
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