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SUMMARY

A computer programme is described by means of which one may estimate
the potential accuracy of the elements of a given satellite orbit, if
determined from observational data of specified type and assumed accuracy,
An application of the programme is made to an orbit of six hours period

determined from radar observations at a single stétion.
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1 INTROIUC TION

There is a recurrent need, in assessment work for possible future
projects, for a computer programme which estimates the accuracy with which
the parameters of a hypothetical satellite orbit could be determined by use of
ground station observations of one or more specified types. Such a programme
has now been written for the Pegasus computer and is described in this Report.

The function of the new programme is most easily indicated by comparing
the programme with the standard R,A.E. programme for orbit detérminatioﬂ-

The two main diffeerences of the new programme are the following:-

(i) it is not confined +to angular observations, but can>deal eQually
)

well with observations of range, range rate, direction cosines, etoc.,

(i1) as an assessment progremme, it does not proocess actual observations

of an actual satellite.

The significance of feature (ii) is that the programme is much simpler to use
than & full orbit determination programme would be, and it requires less

computer time.

The type of problem to which the new programme refers may be summarised
as follows, Nominal values of K unknown parameters of a hypothetical satellite
orbit are known, as are also the locations of possible tracking stations, The
particular quantities which each station can measure are specified, together
with the nominal accuracy associated with each quantity. It is required to
estimate the accuracy with which the K orbital parameters could be computed

from hypothetical observations over a given number of days.

The difference between the sbove requirement and that satisfied by a
full orbit determination programme may be stated, statistically, rather simply.
A1l observations being subject to random errors, assumed independent and
normally distributed, we may consider the K-dimensional variate of errors in
orbital parameters computed from a given set of observations. An orbit
determination prograemme estimates, by maximum likelihood, the first and second

moments of this variate. An essessment programme, on the other hand, estimates
second moments only.
The;uxgramme is described in detail in Section 2 of this Report. An

application to an assessment problem of recent interest, involving six-hour

orbits, is described in Section 3,

One important point must be made., Although the programme does not

refer to actual observations, the computer must be told the times at which it




is supposed that observations could be made, Problems, such as (a) finding
the periods during which the satellite would be above the horizon at each
station and (b) deciding how many independent observations to assume” in such

periods, are not catered for.

2 THE COMPUTER PROGRAMME

2.7 A brief description

The programme in question is entitled "00,13,29 Error Covariance Estima-
tion for Hypothetical Orbit Determination", The quantities for which
covariance estimates are made are certain of the parameters in the Merson
model used at R.A.E. as the basis for satellite orbit determination1. As in
Refs1 the model parameters are, using standerd notation, 2, €, io, Qo’ W s &y
and such additional parameters ea, iJ, ﬁj’ wJ and nJ as are required; the j
suffixed parameters allow polynomial contributions to orbital elements at time %,
©o8s L © (t -t )J to eccentricity e and § n.(t - ¢ )J to mean motion n
(no is glven from &y by Kepler's third law). J Some of the peremeters are
regarded as known gquantities and are such that in a genuine orbit determination
they would be held fixed at pre-assigned values., The remainder are the
tunknown' parameters which, starting from nominal values, it would be the
business of an orbit determination programme to improve by use of observations.
Programme 00.713.,29 assesses the accuracy with which the unknown parameters,

K in number, could be computed in such determination, The distinction between
the two types of parameter in the orbital model is one that has been made in
the working version of the R.A.E, programme for orbital determination using
angular observations only, but it was not present in the original version of

that programme described in Ref,1,

Input for the programme consists of the assumed values of all parameters
of the hypothetical orbit (including the fixed ones) and of information
relating to a number, b, of possible bursts of observational data. A "burst!
is a sequence of observations from the same station, uniformly separated in
time; it consists of (a) station position data, {b) type number, indicating
the nature of the guantities which could be measured at the station, (c)
information as to the number of observations in the burst and the set of uni-
formly separated times, and (d) the standard deviations of errors in the
quantities measured. As remarked in Section 1 (and as explained in comnection

with another programme on p.1L of Ref.2) no values of hypothetlcal observed

quantities themselves have to be given.



Output consists basically of the standard deviations associated with
hypothetical determination of a1l the unknown parameters. Frinting is in
the same standard format2 as is used for input of assumed values, zeros being
allocated to the fixed parameters, Additional, but optional, output consists
of the scaled covariance matrix for the unknown parameters. This is a K x K
matrix and is such that the square roots of the diagonal elements, when
de~scaled, are precisely the non-zero standard deviations already referred to,
The Scaling is irrelevant since the only likely application of the covariance
matrix is for re-input into-the Pegasus programme2 for estimating -
errors in the ephemeris of a satellite (see, in particular, Section 2,5 of

Ref,2): the scaling is then automatically allowed for,

2.2 General theory

Let the 'unknown' parameters of the satellite orbit be Ek’ for
k=1,2,u..,K. The notation Ek will also be used for nominal values or

initial estimates of these parameters,

Each of the b bursts of hypothetical observations is associated with a
particular station, Let S:.L designate the station associated with the ith
burst, it being understood that a station receives more than one Si if it is
respon;ible for more than one burst, Let Ni denote the number of observations
in the ith burst and take the times of these observations to be ti’ ti + Tio

b+ 20,000, b 4 (Ni -~ 1) T, where t, and 1, are known.

If there were a set of actual observations at the given times, they
could be used to improve the orbital parameters, say from Ek to Ei. To give
the theory of the assessment problem it is convenient to refer to the hypo-
thetical observations as if they were a real set, This set will include
observational errors which lead directly to errors in the improved pafameters
Ei.
deviations and covariance matrix, is independent of the actual observations

However, the accuracy assessed for the EL and given by standard

(and errors) and depends only on the a priori accuracy estimates associated
with them. It is assumed here that the Ek and the Ei are fairly close, so
that the orbital improvement is complete after one iteration; this is

equivalent to a linearity assumption as will be seen in due course,

e suppose then that we have a set of observed quantities. Throughout
the ith burst let the 8; guantities measured be denoted by eq, where
g =1,2,004, 8.3 for the jth observation of the burst we suppose that eq takes
the value 6 ; ;3 this ocours at time b 50 where t, . = t, + (3 -1) T,. With

8, = 2, for example,d, might be right ascension and 62 declination; with




8, = 6, 6, might be range, 6, and 63 direction cosines and 0, 65 end 6, the
time rates of change of these three quantities. The possible interpretations
of the 6q ere listed in Section 2,3, which gives formulae connected with

observations of every type covered by the programme,

Although the three suffices g, i and j have been introduced for
precision, it will be convenient in most of the following analysis to omit
them, Ve concentrate on a single typical observation 6 (= quj) made by a
station S, We suppose that € contains an error which derives from a normal
distribution having zero mean and the particular a priori standard deviation
associated with S.

The actual observation © may be compared with a theoretical or *computed!
value, ec, which is a function of orbital parameters, station position and

time, say

0, = ec(Ek, S, t).
If limitations of the orbital dynamic model are neglected, 60 is a known
function of K + L4 parameters, since Ek’ S and t account for K, 3 and 1
respectively, However, we make two further assumptions: +that the co-ordinates
of the given station are known without error; and that, in contrast with the
basio R.A.E, orbit determination programme as originally described1, time also

is error-free. Then only the K orbital parameters are in question and we

now write

The comparison of © with 60 provides the residual R, where

R = 6~ eo(Ek).

We are pcstulating the existence of a complete set of observations from

which an orbit improvement, of E, to Eﬁ, is to be carried out. VWriting

t
k k

- _
R! =R->,-—-AEk. \ (1)



Second order terms may be nelgected since the AEk are small; this is the

linearity assumption referred to earlier,

Equation (1) can be set up for each eqij with its associated ot (o is
independent of suffix j). The AEk are then found, by the method of least

squares, from:-

- 5
ZiJ (Raij/béi) = minimum.

Q1,d

This equétion is solved by differentiating with respect to sach AEk, using
equation (1). The resulting'equations of condition! are best expressed in

matrix form, following the notation of Ref.1 as far as possible.

Let Y, Z and M be the two column vectors and matrix defined by

36 , .
- - o (ot _aid
Y = (quj/bhi)’ Z = (AEk) and M = (oéi 3%, )

where we regard qij as a single (row) suffix, The matrix equation of

condition is then (T denoting transposition)

MT(Y -u2Z) =0
and the solution for Z 1s given by

72 = (MT M)’1 e Y.

To obtain the required covariance matrix of the computed orbital
parameters - and this is just cov Z -~ we introduce the notation Y for the
column vector which would be derived from error-free observations and Z for

the corresponding AEk, the Ei in this case being the true value of the para-

meterss Then Y and Z are the means of populations of all possible Y and Z
based on the distribution of errors in observations. So, if M denotes

expectation,
=\, T =T
covZ = M{(Z2-2)(2 -27)}
= (MT M)"ﬂ 1 ni(y - ?)(YT - YT)} M(MT M)"ﬂ \

(since MM is o symme tric matrix)

= (MT M)“1 i cov Y M(MT M)“1.




But the elements of Y are so weighted that the standard deviation of each is 1,
and we assume that these elements are uncorrelated, Thus cov Y is the unit

matrix. Hence

cov Z = (MT I»’i)-1. (2)

Formula (2) is the basis of the Pegasus computer programme. As desired,
it is independent of any actual observations (it does not contain Y). The
only quantities required are partial derivatives and a priori standard
deviations of error. The difference between this assessment formula and the
formula for cov Z which would be used for the analysis of actual satellite
observations is that the latter contains an additional factor (the 32 of Refa1).
This (scalar) factor would be derived from final residuals and would enable a

priori error estimates for the observations to be converted into a posteriori

estimates,

2¢3 Formulee for observation types

The various interpretations for the observed quantities 6 must now be

listed. Formulze involved in programming the derivatives-%%- will be given,
k

Depending on the type of observing equipment used, observed quantities
£all into six basic categories: range, angles, direction cosines, range rate,
angle rates and direction cosine rates, Although angles can be obtained at
once from direction cosines, these two categories must be treated separately
because of the weighting question., Thus if a station observes direction
cosines a fixed standard deviestion is assumed for all such observations; the
standard deviations of the two angles, to which a given pair of direction
cosines could be converted, would depend on the particular observed direction

and, in addition, the angular errors would in general be correlated.

Range mocasurement gives a single guantity, denoted here by p. Angle
measurement ylelds two quantities for specifying a line of sight. These may
be right ascension and declination, o and 8, or azimuth and.elevation,
However, no distinction is necessary as will now be demonstrated. Suppose
@ and & are the fundamental (independent) guantities; then & is measurable to
the given fixed accuracy, Ogs associated with the station, but o only to the
variable accuracy, oa, given by

o = 0, sec §.
a o}

This is equivalent to a circular normal distribution for errors in any plane

perpendicular to the line of sight and so eguivalent, again, to the following




o™

for azimuth and elevation: of(el) fixed, ofaz) = o{el) x sec(el), Thus

azimuth and elevation are effectively fundamental quantities also,

With directiom cosines there is a similar situation, but only so long
as we assume that these cosines are always measured with respect to axes in
the horizon plane, This is normally the case in practice, for example with
Minitrack interferometer observations., Hence we may conveniently suppose the
fundamental quantities to be £ and m, the direction cosines of a line of sight
with respect to ground plane north and east axes respectively. The case of
axes in some plane other than the horizon (ground) plane is not covered by the

programme,

The remaining quantities which may be observed fall into the three rate

categories, They are denoted here by §, & and 8, ard £ and .

The 'type' of éﬁ observation is determined by the‘categories of the
guantities whidh are included in the observation, If it is assumed that
angles and direction cosines are never included in the seame observation, there
remain 27 possible types. Of these, 15 have been specifically catered for
by the programme., The type no, of each of these is listed in the table below,
together with the quantities covered - i.e, interpretations of 6 - for each
type. It may occasionally be necessary to use the programme with observations
of a type not covered by the table, Suppose, for example, that § £ and m
are measured (by a combination of Doppler and interferometer), Then the
observation may be regarded as of type 15 with p ) and m measured to very low
acocuracy (say o, = 10° metres and oy =0y = 1000 (sec)‘1). A1l the 12 types

not specifically covered in the programme may be dealt with in this way.

Observation types

Type no. - Quantities observed Type no, Quantities observed
1 p 8 : P,e,ym
2 «,b . 9 £,8,0
3 Z,m ‘ 10 0,8,
L ¢ ' 11 . PP
5 &,8 12 @58 585
6 e, 13 £ym,&,m
7 P1as8 10, P20y 8,P,ayd
15 P58,in,p, 2,0

Turning our attention to the formulae for partial derivatives, we let
T, ;, § denote geocentric spherical polar co-ordinates, corresponding to the
topocentric p, a, 6. Then if X, ¥, Z be station co-ordinates in the




10
normal geocentric system of axes,

p oos bcosa = rcos dcosa-~X,
pcos dsina = rcosd sina ~Y
end p sin & = r sind -7,

The partial derivatives of r, o and § depend on the Merson model for
satellite motion and are given in full elsewhere1. Assuming these derivatives
to be known, we require formulae for the derivatives of observations 6 in the
six basic categories. We start with the first two categories, formulae for
the derivatives of p, a and & being obtainable from the equations Jjust given.
For generality we take differentials of both sides, employing matrix notation.
It is interesting to note that time derivatives can most simply be dealt with
by use of moving axes, fixed in the earth, which instantaneously coincide with
the normal inertial axes (x axis towards the vernal equinox and z axis towards
the north pole). ~ In this case AX = AY = AZ = O and if wy is the angular
velocity of the earth we gst

-~cosa O ~sing // -cosd O sind\ / Ap

-sing O cos a/( sin® O cos d ( p cos &(ha -y At)\ =
o 1 o /\ o 1 o / \ o AS

-cosa O = sinag / -cos8 O sin 8\ / Ar

- sina O cos a k sin® 0 cos & } { r cos S(Aa-wE At) | o (3)
o 1 o /\ o 1 o /\ rAd

When the standard R.A.E. orbital determination programmes were written1
time derivatives were needed for correction of observation times and equation
(3) was developed with the At terms kept in., For the present programme,
despite the fact that observations of time differentiated quantities are
allowed for, formulae for time derivatives have not been used. Dropping the

At terms and inserting the matrices on the left-hand side of equation (3) we

/‘ Ap = R, R, Ry /‘ Ar
k p cos & Aa [ r cos § aa

get

\  pasd / \  rad
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where R1 = //- cos & sin 0 . R2 = // cos A O

, 0 0 1

\\ sin & cos 8 0 \\sin A O cos A-
R3 = /= cos & 0 sin § end A = a-a.
sin § ) ¢} cos &
0 4 0

For the matrix of partial derivatives with respect to the Ek we now have, at

once,
». . ® N\ -
fele? da,
cos 5 N esse COS 6
BE,I aEK
98 35
3E4  *tetee 3Eg
or « o
1 0 0] R, R, R X sveess .
172 73 BE,I aEK
-1 = da da,
0O p 0 rcos&s}-ﬂ— ese I COS S-B‘E— o (%)
1 K
-1 38 38
\ 0 0 P TS eecvens r ==
6E1 6EK

It is convenient to leave the factor cos § with the o derivatives since, as
already mentioned, the standard deviation of each measured o includes a

1 cos & 2% are required in the matrix M of

sec 8 factor, so that elements o
) 3E,

Section 2.2.

The partial derivatives of £ and m, observations in the third basic
category, can be obtained from those of a and 6. Let g be the astronimical
latitude of the observing station, lo its longitude (east) and S the sidereal

time. Define A by
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Then
£ = ~ sinpBcosh =~ sinP sinh cos P cos & cos a\
m - sin A cos A 0 cos § sin a
n cos B cos A cos f sinA sin B \ sin

where the third direction cosine, n, is introduced here only to give a
complete expression, The 3 x 3 matrix corresponds to a change to left-handed
axes but this is of no significance and in any case we are only concerned with

the first two rows of the matrix,

On taking differentials,

A% =
Am
An
~sinpBcosAr - sinB sin\ cos B\ /- sina - 8in 6 cos a cos & la
- sin A cos A 0 cosa =~ sind sina A5
cos B cos A cos B sinn  sin B8 0 cos & /

+ sin g sin A - sin B cos A O\ /cos & cos a) At.

w
E
~ 00S A - sin M O |l cos & 8in a

\—cos g sin A cos Beosh O sin &

Dropping the terms involving n or At and introducing the partial derivative .

notation, we have

2 2%\ .
aE1 aEK
am ooom
3By 7T o
. . I e PRSI I’ aCf; ; fole

-sing cosh =~sinfsini cosf) ;-sina -sind cosa\ /cos & —=— .. 0080 -

/ / oE, aEK

~ sin A cos A 0 { cosa -sindsina
30 ad
: 0 cos & T eseese T
\ \ 6E1 aEK

oo (5)
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Finally we consider derivatives of quantities from the last three
categories, those which involve rates of change with time. It is clear that

formulae for second derivatives are involved since, f'or example,

8 3%p  _ 3%
5E1 - 6E16t - ataE1 *

It is not difficult to extend the formulas of Merson1 to cover the required
second derivatives of geocentric co-ordinates. After doing so, however, it
is still necessary to differentiate the right-hand sides of equations (4) and
(5) to get the second derivatives of ohserved quantities, It was therefore
decided that second derivatives should be computed numerically, using the

available sub-routines for first derivatives,

Thus for an observation 6 we use the approximaticn

i <66(E§;: + At) i aec(;k,t) > /At , | ©

k

lm
L ]

&

ok

where At is some suitable fixed time increment. Unless told otherwise the
programme takes At = 1 sec; for an orbit of long periodic time, a larger value

of At would be more appropriate,

No difficulty arises with weighting factors for observed quantities in
the fourth and sixth categories., For the fifth category, however, there is
some uncertainty as to the appropriate factor to associate with de The

natural factor is again sec & on the basis that

Ce = C° sec
a o)

where 03 is a given fixed standard deviations But this relation would be
derived from cos & o(d) = o(8) and it could very well be argued that one
should preferably start from o(cos 6. &) = o(§). The difficulty is associated
with the fact that radars do not normally make measurements of angle rates
independently of measurements of the angles themselves. (We contrast the
situation with direction cosines when & and fh may be regarded as essentially _
uncorrelated with £ and m,) Thus fifth category observations must be treated

warily., TFor completeness, the programme permits their use and does so-by

computing; instezd of (6),
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. . d3a(E, ,t + At) da(E, ,t)
da k? k?
00s. & Sﬁ; = (cos 5(t + At) 3T, - cos &(t) ——EE;T— )//At . (7)

2¢t  Operating instructions

In the rest of Section 2 it is assumed that the reader is familiar with
the use of the Pegasus digital computer. We first give the simple operating

instructions.

(i) Depress hand-switch O and the hoot key; depress switches 1, 2

and/or 3 as required (see below); clear the others.
Place the binary programme tape, 00.13,29, in the main tape reader.
START and RUN - the tape is read and a 77 (Z) stop reached.

(ii) Place the parameter tape (see Section 2.5) in the main reader,

RUN (or Start and Run) - the tape is read in, computing proceeds

and, in due course, results are punched (see Section 2.G).

Computer action at the completion of a run (i.e. after punching results
for & given parameter tape) depends on whether hand-switch 3 is set. If it is,
further parameters are immediately read in without need for intervention; the
machine can be left unattented vwhile many sets of parameters, all on one tape,
are dealt with. If switch 3 is c¢lear the computer cbmes to a 77 stop in 0.4,
permitting a change of parameter tape if further runs are to be made, The

next parameters may be dealt with by repeating instructions (ii).

The interpretation of hand~switch 2 is explained in Section 2,5, and
of hand~-switch 41 in Section 2.6, It will be found that switch 2 is normally

kept clear,
The computer time required to run the programme may be forecast roughly

as follows; for each observation allow 20 seconds if its type does not include

any rate measurement; if rate measurement is included allow 4O seconds.

Two emendments to the programme may be made, if desired, and fed into
the computer after (i) sbove. They are referred to in Sections 2.6 and 3.6

respectively.

The value of At (see Section 2,3) may be changed from 1 second to any
integral multiple, p, of 10 usec. Two actions are necessary:- (a) the

programme must be amended by feeding in the tape

T 266.2

+ D
Z
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(b) the standard deviations of all rate measurements must be multiplied by

P/100000 before they are punched on the parameter tape (see Section 2.5).

2,5 Parameter tape

The print out of an illustrative parameter tape is given below,
The numbers on the right refer to blocks of punching, separated bylblack tape,

and are introduced here for reference in the commentary which follows.

T233+7 (1)

+2 (no. of bursts)
J300+0 ’ (1)
16730 (semi-major axis)
0-0003 (eccentricity)
80 (inclination)
255 (RA of node)
0 (argument of perigee)
1964 Jan1 000 fiﬁme at node)
0

500

£

T227+0 (iiig
+15 (type
~450,159256 : (X;
+427230370 EY
-133904980 z)

-0+ 211324797 (sin B
+0+977415893 cos B
+0+685182992 gsin xog
-0+ 728370968 cos Xo
L

1964 Jan 1 14 13 0 {iv)
145

11

+50 . : . (v)
+Q+000175-

+1

+0+ 0000077

E]

L (vi)
1964 Jan 1 22450 (vii)
115

1

+50 (viii)
+0+000175 '

+1

+0+ 0000077

%
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(1) The number, b, of bursts of data must first be set in storage

location 233.,7; here b = 2,
(i1) The programme is entered at address 300.0 and a block of orbital

parameters is at once read in, Quantities on consecutive lines are 2, eo,-
i, 0 o and t , the O and 500 being (arbitrary) dummy numbers., Polynomial
coefficients may be incorporated in the parameter format, e.g. e, after €9 ,
n, and n, after the dummy 500, For complete details of this standard parameter

format and punching rules, Section 2.4 of Ref,2 should be consulted.

Ref,2 makes a distinction between parameters which are "strict E type"
and those which are not. This distinction is the same as the one made, in
Section 2.1 of the present paper, between parameters which are 'unknown' and
'fixed' respectively. In the normal use of programme 00,13.29 there will be
no fixed parameters. The programme can still be used when there are one or

more, however, as follows:-

(a) the parameter type must contain an additional section; between
Sections (ii) and (iii) (after the block of orbital parameters) must

appear

+0.,uvwxyz
L

(b)  hend-switch 2 must be set (enebling the new section of tape to be
re ad) . .
The interpretation of U,s.s.,2 is as in Ref,2, but it is noted that the
additional punching occurs at different parts of the parameter tape in the
two programmes,
(iii) Station data is always stored in block 227 of the computer,
The first quantity is type number, 15 - designating p, ¢, m, §, & and & =
in the case of the illustrative example, The next three quantities are
station co-ordinates+ X, Y end Z in cm. The remaining four are sin §, cos B,

sin xo and cos xo, where B and xo are latitude and longitude (east).

(iv) The N1 times of the observations in the first burst of data are

specified by punching t,, (see Section 2.2), ™ (in minutes) and N, itself.

(v) Standard deviations for errors in the quantities observed are
specified, viz. o, o, (= cﬁ), os and oy (e Uﬁ) for the example given. Units
for the six categories of observed quantities are: for p, metres; a and 9J,

.
seconds of arcj ¢ and m, =; {,metres/sec; d and &, seconds of arc/sec; and
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2 and f, -/sec; the standard deviations must be punched in the order of the
categories whichrére included and they must be followed by an asterisk. .(They

are read in by the Pegasus Matrix Interpretive Scheme.)

(vi) The computer looks for station data for the second burst, similar
to data under (iii), If there is no change, either in observation type or
co-ordinates, it is only necessary to punch the L., This is a return link

from initial orders, used as a sub-routine, to the programme.

(vii) Information for the second burst, - typs T, and N, - is punched

as under (iv),

(viii) The standard deviations for the second burst, even if identical
with those far the first, must be punched in full. |

NB  Positive signs have been omitted in the punching of Sections (ii), (iv)
and (vii), where they are optional. In Sections (i), (iii), (v) and (viii)

they are compulsory.

2.6  Output

The regular output consists of a block of parameter standard deviations,
each denoting the accuracy with which the corresponding orbital parameter could
be computed from the given observational data. Thus for the illustrative

parameters and data used in the previous section, the output was as follows:

+0-0478 (o2 in km)
+0-000003 (o) - .
+0-0008 édi in degreesg
+0+ 0007 o in degrees
+0+ 8461 . (o, in degrees)
0 00 00- 33l écfo inhm s)
+0+ 0000 associated with the
+0-00 dummy O and 500 of input).

If any parameter is of the fixed variety the appropriate standard deviation
is printed as zero. If required, each quantity can be printed to three

further decimal places by feeding in an amendment to the basic programme.

If* the computer is operated with hand~switch 41 clear there is no other
printing than that above. If this switch is set, however, the standard
deviations are preceded by the punching of the complete covariance matrix,
cov Z, from which they are derived, There is little point in giving the
complete matrix for the example being considered, since the units of distance
(a), angle and time are not the obvious ones. The first two columns are

given for interest, however, in the standard floating point (argument exponent)
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form, The element 1,073523 x '10."H is, of course, the non-dimensional
veriance Gi. The values of the covariance Moo from the first and second
calums differ slightly due to rounding error. From oi, Hoe and Gi may be
obtained the correlations between errors in semi-major axis and eccentricity;

its magnitude is +0,23,

1st col, +3+030766 ~16 2nd col, +1:304585 =14
+1-30,58). ~14 +1:073523 ~11
-5+627968 14 +1:771246 ~13
+1+0505,9 -~14 +1+227553 ~11
~9«670146 12 : -5+823236 -10 :
-2:111723 -15 -9+643007 -1k .

The standard deviations are valuable in that they provide an immediate
insight into accuracy attainable with a given set of observational data.
The complete covariance matrix, particularly in its scaled floating point form,
adds 1little to this quick picture. Thus even when the matrix is included in
the computer output, it will not normally be sensible to print the tape., The
necessity for the complete matrix arises if the accuracy (expressed as a
stendard deviation) with which some function of the computed orbital parameters
is known is to be assessed, The obvious application is for estimating errors
in an ephemeris based on the computed parameters; the computer programme
already written for this purpose2 requires the cov Z output tape as part of

its input.,

3 AN AFPPLICATION OF THE PROGRAMME

3.1 Background

The European Launcher Development Organisation (ELDO) have recently been
interested in the accuracy with which parameters for certain orbits could be
computed from tracking data generated by a single radar set. The orbits
have been of the circular near-polar type, and such that the period, as seen
from the earth, is a simple fraction of a day, Two particular cases are the
'6 hour' and '8 hour! orbits, when the fraction is % and § respectively, A4
'day', here, must be taken to be that period, almost equal to a sidereal day
but with allowance for satellite orbit precession, after which the track of the

satellite on the earth repeats itself,

It was thought to be sensible that the first application of the new
computer programme should be to one of these orbits of interest to ELDO. The

6 hour orbit was chosen. The radar was taken to be sited in the north~-east

of Australia.
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For the particular orbit parameters considered (see Section 3.,2) the
satellite could be tracked twice a day, first when going south and second when
going north an orbit and a helf later, It was decided to look at the accuracy
question for two cases; first, from the point of view of quick answers, how
accurate an orbit could be. obtained from data over the first (southfgoing)
pass or, indeed, over less than this full pass; second, from the point of view
of knowledge of the orbit after two or three days, what would be the accuracy

when data from several passes were combined.

3.2 Orbitsl parameters, radar site and observation type

The orbital parameters are those listed in Section 2,5 for an illustra-
tive parameter tape. For a 6 hour orbit at 80° inclination the effect of
precession is to shorten the sidereal day by 0.24 min., The actual orbital
period is thus 5h58m57s, to which corresponds the assumed semi-major axis of
16730 km. Though the orbit is nominally circular, eccentricity was taken to
be 0,0003 to avoid any possible difficulty with 6“1 factors. The argument
of perigee is of course arbitrary and was taken zero; the standard deviation
obtained for w was inevitably going to be large, due to the small e, but this
was of no importance, The parameter to’ time at the node, was also arbitrary
and taken at January 1.0 of 1964, The value of Q was, of course, far from
arbitrary; 255° was derived by making assumptions about the geography of
launch and injection and by adding in the sidereal time at to.

For a high orbit there is no need to admit an unknown parame ter t,
represent the effect of air drag; -so no parameter, other than the basic six,
was introduced, For a similar exercise with a low orbit it would be
necessary to introduce a parameter n4,possibly also n,; the value of n, would
not have to be known and could in fact be set to zero, the importent.thing

being the presence of the additional parameter in the model,

The position of the radar, in Australia, was taken to be at about
latitude 12° S and longitude 137°E, The station parameters used for the
programme are those given by the illustrative parameter tape of Section 2,5.

The radar was assumed to make observations of type 5, i.es to measure
the following six quantities; slant range, p; direction cosines relative to
ground plane axes, ¢ and m; é; £ and f, Accuracies were taken to be given
by the following expressions for standard deviations; Gb = 50m,

-y
Cp =0 = 1.75 x 10 3 GB = 1 m/sec, 0j = Os = Te7 x 10—6/'sec.
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3.3 Observation bursts

For the given orbit, as looked at from the given radar site, the
satellite would appear above the horizon four times a day, twice going south
and twice going north., One of the north passes and one of the south may be
ruled out at once, however, on the ground that the satellite would never climb
to an elevation greater than 10°. Of the other two passes the satellite would
reach sbout 50° on the south~going and about 60° on the north-going., Teking
10° as (an arbitrary) radar horizon, the approximate times of visibility ere

as follows:

south going 1213 o 168",

north going 22hla.5m to 24h40m,

an intervael of 4115 minutes in each case. These are the times for the first
day (1964 Jeruary 1); they become ,P12° earlier, each successive day.

It was decided, as stated in Section 3.1, to carry out the computer runs
under two heads. The first covered the use of data from just the first
possible pass, starting with an observation at 1hp13m; successive observations
were at intervals of 5 minutes (chosen arbitrarily), totals up to & maximum
possible of 2 observations being considered. The second head covered runs
using more than one burst of data; each burst corresponded to one pass and wes
divided into 10 intervals of 141.5 minutes, giving 11 observations over the
burst. Under the second head runs were carried out for one burst only, two,

three, four and six; the final case corresponded to use of data from all

passes over a three day period,

3. Results for data using first pass only

Let N be the number of observations used, a suffix being redundant in
the case of a single pass. The observations are assumed to be made at
5 minute intervals so that the last corresponds to a time 5(N-1) minutes from
the (effective) beginning of the pass. The maximum value of N is 24, For
values of N less than the maximum the programme shows how the accuracy of orbit
determination, using data up to a given point reached in the pass, varies as

that point advances in time.

Results were obtained for a number of values of N from 5 to 24. The

corresponding standerd deviation estimates Tgr Tgr Ty c}?eoz)and Ot are
plotted against N in Figs.1-6. The reason for plotting ec, , with e = 0,0003,
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has been implied in Section 3,2, It can be seen clearly if it is observed
that standard deviations in the non-singular orbital elements cEe€ cos w) and

sFesin w) are given, when w = O, by

It is of interest to know how far the decrease in each o for increasing
N, indicated in Figs.ﬂ-é, is caused Ey the fact that an increasingly long arc
of the orbit becomes available and how far by the mere fact that there are more
observations. Since the standard deviation of any measured quantity is in
general inversely proportional to the square root of the number of observations
made, we can compute an 'accuracy per unit observation' by multiplying each o
by the appropriate VN4 For semi-major axis, Fig.7 has been obtained in this
way from Fig.1. It confirms a result that might be expected intuitively,
namely, that increasing coverage is important until about half the pass has

been seen, while data from the second half gives small retuim.

Results from just one pass ~ less than two hours worth of data ~ are
thus surprisingly good, From merely 24 observations semi mejor axis is known
to about 250 metres. Hence orbital period is known to about 0.5 sec.  This
in turn means that the suspected drift of the satellite after a full (modified
sidereal) day is known to about 2' arc or, after a year, to about 12°, It is
interesting to know to which of the four sorts of quantities being measured -
Py £ and m, f, 2 and & - the good accuracy is due. To throw light on this
point the following repeats of the 24 point run were carried out, with
different assumptions as to the observation type:~ (a) type 1 (p omly),

(b) type 3 (¢ and m), (c) type & (§ only), (a) type 6 (£ end @), (e) type 11
(pand p), (£) type 13 (¢, m, & and #)., The results are listed in Table 1.
An immediate conclusion is that measurement of £ and @ is of little value and
adds nothing to measurement of £ and ms In fact to "pull theif ﬁeight" the
accuracy of angular rate observations would have to be improved by a factor of

sbout 20, Further features of Table 1 are discﬁssed in Section 3.6

3.5 Results for data using several passes

Results were obtained in a similar way to that of the previous section,
Complete data over each of several passes being assumed, the number of passes
used was increased from one to six. To restrict the use of computer time the
number of observations per burst was cut to 11 leaving, even then, 66 observa-
tions to be dealt with in‘the case of six passes analysed. For the amlysis

of the first pass only, of course, nothing was added to previous knowledge.
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It is meaningless to give the results in graphical form. Instead, they
are set out in Table 2; the results for the case of two passes have been given
also as the illustrative output in Section 2.6, The‘table égrees well with
intuitive notions. Thus as soon as data from a second paés are included, this
pass being some eight hours later than the first and covering a very different
part of the orbit, the accuracy of all parameters is improved, a factor of about
5 or 6 being involved in each case. Addition of a third pass, however, affects
the accuracies of the elements in gquite different ways. Eccentricity and the
angular elements - i, 00 and w -~ are scarcely improved since the third pass merely
repeats the first, But semi-major axis is improved by a factor of nearly 20,
because for the first time a really accurate measure of orbital period becomes
available, The effect on the sixth element, to, is nearly as good. The
improvement in semi-major axis as up to six passes are included fits in with
the view that the standerd deviation of the error with which orbital period
may be measured is inversely proportional to the total time over which -
observations are used., A standard deviation for semi-major axis of less
than 1 metre (aftér 3 days) is, of course, remarkably good. It corresponds

to a drift in setellite position of no more than 0°.05 at the end of a year.

3.6 Further discussion

It is wished to draw attention to three points which arose in connection

with the present application of the computer programme but which have general
signifiecance,

The first point concerns the importance of the non~diagonal terms of the
covariance matrix, cov Z, It is well brought out by reference to Table 1,
introduced in Section 5;4. It may be wondered why it is that use of obsepva~-
tions from all of the four relevant categories (p, £ end m, p, & and 1) yield
so much better accuracy (I km) for semi-major axis, in particular, than
observations from any single cétegory (15 Xm at best),

ir C1, 02, 03, Cu denote the covariance matrix for observations restricted
to each of the four relevant categories in turn, then the overall covariance

matrix is given by

-1 .
(cov Z) = C, +C, + Cy +Cp o

Hence if non diagonal terms of the matrices were neglected we should expect,

from Table 1,
-2 -2 -2

ol = 38+ 15 #3272 4 49678 - _(13)'2,

80 that the actual o, is about 50 times better than expectation,.
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The -explanation lies in the relevant magnitude of the non~diagonal terms,
i.e. in the correlations between semi-major axis and the other five elements,
These correlations are large for all the presently considered matrices C1, 02,
€5, C, and cov Z,  For cov Z (for vhich o, = £ km) the oorrelation between
e and e is -0,75 and between a and to -0,964.,

The Second point also relates to the presence of large correlation
elements in the covariance matrices, As seen from equation (2), the final
operation in the determination of cov Z is the inversion of the matrix (MT M).
If this matrix is ill-conditioned there may be considerable loss of accuracy

in the performance of the operation,

The matrices leading to the results listed in Table 1 were all rather
badly conditioned, The outstanding case, surprisingly, was for the first
line of the table, corresponding to orbital determination from range data only.
The standard deviations given for this case had to be found by inverting (M 1)
with the aid of the Double length Matrix Interpretive Scheme for Pegasus.

Use of the normal scheme (incorporated in the programme) had previously led to
results which underestimated all the.standard‘deviations by the same factor,

0442 o, for example, had been estimated at 16 km,

One reason for ill-conditioning, in the case under consideration, may be
seen at once. The sixth element in the orbital model,fto, is a timé which is
14 hours before the beginning of the 2 hour burst of data used to determine
the elements. The situation is analogous to the difficulty encountered if one
tries to fit a straight line y = mx + ¢ to a set of points (x,y) which are all

bunched well to one side of the y-axis.

If ill-conditioning is suspected when the programme is to be used, the
remedy is to feed in an amendment to the programme such that the matrix (MT M)
is output instead of (or in addition to) standard deviations and cov Z.
This matrix may then be inverted by means of a short, specially written programme
which uses doublé-length arithmetic with a working length of 22 significant
figures instead of only 9,

The final point concerns the choice of dynamic model. Let us suppose
that, for a particular orbit, no parameter other than semi-major axis, say,
is of interest., It is tempting then to argue: "since we have nominal
(e.g+ launch) values of e, i, 1, w and to’ and since we are not interested in
improving these, let us keep them fixed and see how accurately we can determine

the one parameter we want to know",
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In the case of the example being considered this would involve use of a
parameter tape containing +0,100000 (see Section 2.5); values for o, far

better than those quoted in this paper would be obtained,

The snag, of course; is that if e etc. are held fixed they are assumed
known exactly, whereas they actually will contain errors which react on a,
This reaction will be important unless e etc. are known to greater accuracy
than that to which they could be computed if treated as unknowns. Such
knowledge will not normally exist, though it has been assumed as a justifica-
tion for omitting the parameter n, (see Section 3,1) in the present exercise,
Summarising for the general case, of which the present example is typical:
an assessment study must assume the necessity to estimate all parameters, even

though the answers for only one or two may be actually looked at.
4 CONCLUSIONS

A prograemme has been written which fills an importent gap in the Pegasus
computer library of satellite orbit programmes. It should be useful in
assessment work on the accuracy with which hypothetical orbits can be deter-

mined from hypothetical observations.

A first application of the programme has demonstrated that accurate
determination of circular near-polar six-hour orbits can be made using radar
data from a single station in Australia, This example has, at the same time,
focussed attention on the danger which is inherent in the operation of

inverting ill-conditioned matrices.,



Table.

1

ACCURACY OF ORBIT DETERMINATION FROM SINGLE-PASS DATA =

FROM OBSERVATIONS OF VARIOUS TYFPES

Obsi;';z:tion o, (¥m) o, oy (deg) o (deg) eo (deg) T, (sec)
1 (p only) 38 0.0034 | 0,798 0.656 0.121 249

3 (¢ and m){ 15 0.0007 | 0,005 0.004 0.014 73

L (f only) 32 0.0022 | 1.398 0391 0.075 162

6 (£ and )| 496 0.0234 | 0,442 0,616 0.586 2502
11 (p and §)| 21 0.0018 | 0.14,39 0,352 0,064, 137
13 (£,m,£,m)| 15 0.0007 | 0,005 0,004 | 0,014 73
15 (al1) 1 10| 0,004 0,002 | 0.001 1

Table 2

ACCURACY OF ORBIT DETERMINATION FROM MULTI-PASS DATA

gz;sgg O'a(metres) 107 1050‘i (deg) 107 % (deg) 10° Yy | %% (sec )
used (deg) °

1 376 164 514 33 162 17

2 48 33 79 72 25 0.3

3 2,5 30 57 70 9 0.024

4 1.8 25 43 58 1 0.021

6 0.9 20 35 46 6 0.016

25
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