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U Background: The Logic of Computers Group of the Communication Sciences De-
partment of The University of Michigan is investigating the application of
logic and mathematics to the design of computing automata. The application
of the techniques and concepts of abstract algebra to automata forms a part
of this investigation.

-- .Condensed Report Contents: Several recent results in automata theory give

[ evidence of the iportance of homomorphisms in the study of transition sys-

tents and automata. ft is natural therefore to inquire how much information

can be retrieved from the algebra of homomorphism compositions with respect

to transition systems. The natural rnathenatical framework for the discus-

Ision of this problem is categorical algelra.
I We define a category At,, of the transition systems with input W, where

W is any arbitrary fixed nonoid, and with arbitrary sets of states. A pre-

liminary study of A (Give'on 1964) shows that one can reconstruct the in-

ternal structure of any transition system from the way homomorphisms (i.e.,

the -orphisms of A N) behave around it.

In this paper we show thatA I has a generator, M W (which is W operating

on itself as a transition system) and that there exists a functor

mor : -- A naturally equivalent to the identity functor of A , which fac-

tors through Iior ( Ili,,,-) .

A general exposition of the nature of properties which are retrievable

from the "morphism-behavior" in an arbitrary category is presented so that

it provides a rigorous general basis for studying "retrievable" properties

and categories in which every structural property of objccts and morrhisms

is "retrievable."I



Finally, we prove that for a very broad class of input monoids, which

includes all the types of input-monoids encountered in automata theory, the

categories A W are transparent. That is, anything which can be said about

the structure of transition systems with input W, can be said by referring

to their homomorphisms only. In particular, all the automorphisms of A1.,

for this type of W, are naturally equivalent to the identity functor of A,.

[

For further information: The complete report is available in the major Navy

technical libraries and can be obtained from the Defense Documentation Center.

A few copies are available for distribution by the author.
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1. INTRODUCTION

Several recent results in automata theory (in particular,

Hartmanis & Stearns 1964, Zeiger 1964) give evidence of the importance

of homomorphisms in the study of transition systems and automata. It

is natural therefore to inquire how much information can be retrieved

from the algebra of homomorphism compositions with respect to transition

systems. The natural mathematical framework for the discussion of

this problem is categorical algebra.I
We define a category AW of the transition systems with input W,

I
where W is any arbitrary fixed monoid, and with arbitrary sets of states.

I A preliminary study of AW (Give'on 1964) shows that one can reconstruct

the internal structure of any transition system from the way homomorphisms

(i.e., the morphisms ofAW) behave around it.

In this paper we show thatAW has a generator, MW (which is W

operating on itself as a transition system) and that there exists a

functor Mor : AW--4, naturally equivalent to the identity functor of

which factors through HoV(MW,-).

-1-



A general exposition of the nature of properties which

are retrievable from the "morphism-behavior" in an arbitrary category is

presented so that it provides a rigorous general basis for studying

"retrievable" properties and categories in which every structural property

of objects and morphisms is "retrievable."

Finally, we prove that for a very broad class of input monoids,

which includes all the types of input-monoids encountered in automata U
theory, the cate 6ories AW are transparent. That is, anything which can [

be said about the structure of transition systems with input W, can be

said by referring to their homomorphisms only. In particular, all the v
automorphisms of JW, for this type of W, are naturally equivalent to the

identity functor of X,.

Some elementary acquaintance with categorical algebra is

needed. In particular, we shall make use of the following notions:

(i) Category it objects and its morphisms.

(ii) Epic, monic, and invertible morphisms versus surjective.

injectiv, and bijective functions.

-2- t
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(iii) Initial and terminal objects.

(iv) Functors, natural transformations and natural equivalences

1of functors.

I (v) Embedding functors, automorphism functors, and adjoint

functors.

The reader who is not familiar with these notions is referred

to the literature (Kan 1958, Freyd 1964, and MacLane 1965). Additional

issues of categorical algebra with reference to automata theory are discussed

in (Give'on 1965).

-3



2. CATEGORIES OF TRANSITION SYSTEMS

2.1 Let W be a fixed monoid, We denote by A., the category specified as E
follows.

The objects of A. are transition-systems with input W. That is,

systems of the form

A - (S(A) x W -1SA)) 

where:

(i) S(A) is any set, the set of states of A;

(ii) A S(A) x ',W---*S(A) is a function, the transitionA"

function of A, with the following properties (we write s**m for X

(iii) s'lW a s for all sES(A), where lw is the identity

element of ,V;

(iv) s.(CW 1w2) = (Swl).*w2 for all sc S(A) and all wl 2 C E. I
Tnc morphisms of A1. are of the form I

A .--- f 4B ,

I,
-4-
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where f : S(A)--4 S(B) is a function satisfying f(s-w) - f(s) w for

[I all scS(A) and all WEW. (Note that s.w on the left hand of this

equation refers to the transition function of A, while f(s).w refers

Ii to the transtion function of B.)

The composition of the morphisms of A W is determined in an

obvious manner by the composition of the functions which underly the

morphisms. That is, (C--g- D)(A f-B) is defined only when B = C andI
then it is equal to A "-- - .I

I
2.2 As in many other "natural" categories of mather-iatical systems, we

have a forgetful functor S : A 11--S fro, A,, to S the category of sets

where S(A) is tne set of states of A and S(A- fb) - (f : S(A)- S(B)).

Note that A. contains, anong its objects, ,,n Enpty object

to be denoted by *A* lcre we adopt the useful convention that for any

set T there exists a unique function which is injective (i.e., one-one into)

from 0, the empty set, into T. Thus, the transition function of is

this "empty" function : x I,-. (€ x , ) and for an), object A of A.

there exists a unique ,ix~rphism € - A w;hich is 6eten-iincd by the "empty"

-5
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, S )--*S(A).

The forgetful functor S : Jk,--'S has an adjoint (cf. Kan 1958. B

NlacLane 1965)0 the functor Fr : S- . which assigns to each set T.

an object Fr(T) of A W which is free on T c S(Fr(T)).

The functor Fr :S---4 can be specified as follows. For

any set T, Fr(T) is the transition system defined by:

S(Fr(T)) T x W 0

(t wl)., a (r W1 •2)

For any function f : TI----*T 2 there exists a unique morphism

Fr(T1) Fr f) Fr(T2) such that for any tT : [Fr(f)](tul) U (f(tl 1),

Hence Fr(T) is "free on T x {Iw ". We identify the elements of T x {lIW}

with the elements of T : t :(t,w). 

If T1 and T2 are sets which have the sanie carainality, then

Fr(T1) and Fr(T 2) are isolmorphic (i.e., there exists an invertible

nmorphism Fr(T 1)-OFr(T2) of Aw* In particular, if T is a single-element

set then we denote Fr(T) by Mw.  L
-

-6- Ii



I
serves a very important role in A W as we shall see later.

L Note that may be defined as W operating on itself. That is,

W 'w2 *ww

1 2.3 AW. shares with the obelian "natural" categories, e.g., of groups

[or of modules, (cf. Frbyd 1964) the property that the monic (respectively,

the epic, and the invertible) morphisms are precisely those morphisms

of~l whose underlying functions are injective (respectively, surjective

and bijective). The arguments that establish these facts are similar

to the arguments employed in the category of groups for the same end.

The existence of the forgetful functor S : A ----- S implies

that a morphism A- B is invertible inA. iff f is bijective. Since S

1 is an embedding functor, every morphism of whose underlying function

1 is injective (respectively, surjective) must be monic (respectively, epic).

[ In order to prove the converse (for monic and epic nrphisms

Ii of A;) we need some additional observations about A1 . These observations

I

1.J



will be incorporated in the proofs of the following lemiata.

2.3.1 LEMMb If A--*B is an epic morphism ofAN. then e S S(A)-*S(B)

is surjective. L
Proof: The image of e : S(A)-*S(B) is a subset e(S(A)) of

S(B) such that for any wcW and any s e e(S(A)), s'() c e(S(A)). Hence [
e(S(A)) is a transition system eCA) which is a sub-system of B.

We define a new object B/e(A) of A~ by:

S(B/e(A)) *(S(B) - e(S(A))) u (s.) where soe S(B);

the transition function of B/e(A) is the same as of B except

for the cases where s'wce(S(A)); in these cases we set s-w s* and

for all wW we set s*.W amS

Obviously, B/e(A) is formed from B by contracting e(S(A)) to a

single state s*. This contraction takes the form of a canonical Mor-L

pn.-Z B.. 2 - B/e(A), where q e: S(B) - 'S(B/e(A)) is identical onf

S(B) -e(S(A)) and it maps all of e(S(A)) onto s..



L
In addition to B- 9 4 B/e(A), we have another morphism

B-14 B/e(A) which maps all of e(S(A)) onto s,. Clearly e is surjectiveI
iff qe z.L

Obviously ze - qee, since both map all of S(A) onto s.. But e
F

is epic and therefore ze - qee implies qe a z.

2.3.2 LENIA: If A--B is a monic morphism of.AW then j : S(A)---+S(b)

is injective.

Proof: Assume that for slS 2 c S(A) we have j(sl) = J(s 2).

Sfl f2

We define two morphisms A and A by fl(IW) • . and

f2 (1 ) - s2 . Obviously, jf l a jf 2  , and since j is monic, it follows

that f I f2 ; i.e., s I M s 2.

24 For any object A of AW any any subset T c S(A), we define A(T),

-9-I



iI
the subsysten of A generated Ty, as follows:

S(A(T)) - T.W a (to w: tCT and wCw ),

(tW 1)."2 - t" (wl'2).

A subset T of S(A) is saiC' to generate A iff A(T) - A;

i.e., iff T.W - S(A). In particular A is said to be monogenic iff A

is genorated by a single-element subset of S(A).

fbr example, MW is monogenic since (1w) generates MW (Obviously

for any weW : 1Ww - w). More generally, M. is generated by {u) iff [1

there exists v EW such that uv - Iwo

Note that an object A of A , is monogenic iff for any T c S(A) .i

which generates A there exists tcT sucai that (t} generates A.

2.4.1 LEMMA: An object A of A W is monogenic iff for any family

(Al} of subsystems of A indexed by a set J, U(S(A.) jcJ) - S(A)

implies S(A.) - S(A) for some jE J.

-10-
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Proof: Assume that A is monogenic and generated by { S}, .

If US(A.) * S(A) then s cS(A.) for some jcJ, and S(A S(A).
fS

Assume that for any family {A,) indexed by a set Jv

US(A.) - S(A) implies S(A.) = S(A) for some jEJ. Define the family
J 3

(As)for all seS(A), where A is the subsystem of A generated by (s}

[ Obviously US(As) = S(A) and therefore there exists soF S(A) for

which S(% ) S 5(A). Hence A is generated by {so 0.
0

1 2.4.2 COROLLARY: For any monogenic object A of AW and any automorphism

F : AW---+AW of N , F(A) is also a monogenic object ofA,.

Proof: We recall that an automorphism F of A is a functor

F : Aw---+AW for which there exists a functor G : k---N, such that

both FoG and GoF are equal to the identity functor of AW.

The families of subsystems of A are represented faithfully

by the families of vronic morphisms of AW with range A. Given a set

J of monic morphisms A -14 A we define a category 7 (which is a

subcategory of A ) whose objects are all the monic morphisms

-11-
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B -± A such that for any jcJ there exists a monic A J B with

bb = j. The morphisms of I are of the form H.

( 1 -*o A) -74 (B 2 - A)V

where B 0 B2 is a morphisa of AW with U2f bI

For any set J of monic morphismas of Aw with range A, the

categrory r has an initial object U(J), which is unique up to an

isomorphism of I (which is an equivalence of monic morphisms in

(cf. Freyd 1964, ?acLane 1965)). U(J) is a monic morphism of Aw

with range A and whose image is precisely the union of the images U

of the morphisms in J.

We can rephrase now Lemma 2.4 I : An object A of[

is monogenic iff for any set J of monic morphisms of AW with range

A, if U(J) is an invertible inorphism ofk FW (i.e., an isomorphism)

then there is a jvJ which is invertible.

Since this characterization of the monogenic objects

inA A is preserved under the automorphisms of J. the proof follows.

-12- Ii
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I
1. 2.5 In the proof of Cor. 2.4.2 we have shown tha' the property

L' of being a monogenic object ofA.W, which was defined originally

by "looking inside A," is in fact definable by means of general

properties of morphisms in categories. Knowing the way morphisms

behave around an object A is sufficient in order to determine

whether A contains a state from which all the rest of the states

of A are accessible. In other words, the property of being a

monogenic object in1 W is categorical. In Chapter 4 we shall present

a rigorous explication of this notion. The properties of V that

we shall derive in the next chapter, will yield the result that all

properties of objects of AW (which are invariant under isomorphisms

in A W) are categorical (provided that W belong to a very broad

class of monoids). That is, if W satisfies some weak conditions,

then all the properties of the transition systems with input W can

be derived from the categorical-algebra study of Aw.

I



3. A STUDY OFMW

Ij

3,1 LE14 An object A ofA W is monogenic iff there exists an

epic morphism MW- A.

Proof Assume that A is monogenic and generated by so

fs

Define a morphism MW -4 A by f 3o(1, W so (recall that MW is free

on IW ). Obviously, fs : W--+S(A) is surjective and therefore
0

f

Mw- A is epic.

On the other hand, if M,- A is epic then A is generated O

by e(lw) since e(w) = e(lw)lw .

3.2 We define a functor : AW---S by:

(A) lioAW(MWA)

HM. (A ,- B If :.Hoq(wy)-*Ho%c(M,)) F

where (M--L+A) - (M A4 B)

-14-
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We define a transformation of functors p: S--I ' as

follows:

For any object A ofA. P(A) : S(A)---H(A) is given by

(gA)]Cs) : W -- + S(A) : W --- .
f

In other words, [t(A)](s) is the morphism MW -' A which

is determined by fsC1W) W s.

The function t(A) : S(A)----% (A) is bijective. It

is injective since f S f s implies f s (I) W f . It is sur-

jective since for any morphism M-- A we have fg(l go

Furthermore, for any morphism A -4 B ofk. and for any s o S(A)

we have
gf u
fs g(s)

where fg(s) - [()](gs)).

For we clearly have

()fs)Ci) - sw) - g ~s)w" fg(s)(w).

-15
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From this follows directly,, that for any morphism A-I+B 3 .,

of Athe following diagram is commtative. I

S (A) J...4S (B)

P(A) 49B
%i(A) H% H(B)[

HW(g)

Thus we have proved:

3.2.1 PROPOSITION: The transformation P: S-+%*H is a natural [
equivalence of functors.

3.2.2 The pair ~ )is a representation of the forgetful

functor S AW 1,~-S (cf. McLane 1965).

3.2.3. Since S :Jk is an embedding functor (Ieone-one on

the morphisms) it follows that ki1, is also an embedding and therefore

M. is a generator of )LW (cf. Freyd ISM).

3.2.4 COROLLARY: M#is a projective object of AW. (An object P of

-16-
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a category C is projective iff A ,r any morphism P-.L*B and any

L epic morphism A--!B of C there exists a morphism P f A of C for

which the following diagram -is conutative:

P

A- I g
eA

Proof: It is sufficient (and necessaLy) to show that if

A-*B is an epic morphism of A W then ti. Ce) ( A)-II1 (B) is

surjective. From the commutative diagran for 9: S---*I we derive

11IM,(e) = p(B)e(p(A)) "1  . Hence 1k, (e) is surjective.

3.3.3 PROPOSITION: The bijection ?(NI) : --- 11 (M.) determines

t an isororphism of monoids

(.hc'e Lnd is the monoid of the morphisms ,H.-.-4M ofKA. with

-17-
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respect to the composition of morphisms inA. 0
Proof: Since f,( w') -ww's it follows that f. f f 

- l~2 1 2

3.4 From Prop. 3.3 it follows that for any object A ofj , the set

II (A) enjoys a structure of a transition system with input W by U

combining I%.(A) with V -v, EnAW (,).

Formally, we define a functor or : J.v-- where for I

any object A ofA W we define Mor(A) by: .I ,

U"SCMorCA)) - 1k., (A), v;
f. f S f = f for any M.W ----4A and wcW.fS S W S*W w I

For any morphism A-* B we define Mor(A) Mr kfor(B) G
by MorCg) = 1i (g).

An immediate verfication shows that ,or(A) is an object of

A,, and that I1 (g) determines in fact a rvorphism of AW. Furthermore,

it follows directly from the fact that H is a functor that ior : ,-

.-18- .



is also a functor. Likewise, the transformation p: S--+%w
determines directly a transformation p I--+Mor from the identity

functor of A to Woe, and we have:

L 3.4.1 THEOREM: The transformation I : I--Mor is a natural

equivalence of functors.

1 3.4.2 Intuitively speaking, the functor 41oT constructs the "internal

structure" of any object A ofA W from a part of the category,, which

lies around N and between % and A. Hence it is intuitively clear,

that if can be recognized in A. (up to an isomorphism) by means of

some categorical predicate, then the "internal structure" of any object

can be reconstructed "categorically," and therefore any property of

the transition systems with input W can be deternined "categorically"

as well.

1 ~-19-i
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3.5 W334R: If W is a unit -comiutat ive monoid (i.e,9 if uv 1 in

N then vu U W or a finite monoid then every epic morphism A 1
of ffi. where A is monogenic, is an isomorphism.

Proof: If WV is a finite monoid then the cardinality of

the set of states of any monogenic transition system with input W

cannot exceed the cardinality of WV. Hence e :S(A)- IV must be

bijective.

If WV is a unit-commutative monoid and A is generated by (s do

then (a (s 0)) must generate f , that ise(s0)v a IW for some vc W, and [1
therefore ye(s) Iw

Assume that e(sow) I e(s*W 2) for some wl w~c W then we

have w,- ve(s )w1 - ve(so * ve~s *w2) n le(s 0)w2 a w2 # U
and therefore sew1 - s.w2, which shows that e is also injective. I

3.5.1 CORO)LLARY: If W is a unit-comuvtative monoid or a finite

monoid, then for any automorphisi F of AW. F(,Mw) is isomorphic to U

-20-
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Ij Proof: From lemma 3.S it follows that an object M of

ALW is isomorphic to %iff

(i) M is monogenic, and

I (ii) for any monogenic object A ofAW there exists an

epic morphism M --!4PA of S

L Since these properties of inorphisms and objects of A., are

Lpreserved under the automorphisms; ofAW the corollary follows.

L 3.S.2 Note that the class of unit-coimmutative monoids is broad

[ enough to cover all the classes of monoids which are employed in

automata theory. For example, the left-cancellative and the right-

cancellative monoids are all unit-commutative. Hence the free

monoids and the groups are unit-comutative. Note also that the

cartesian products of unit-commutative monoids are unit-commtutative,

and therefore we can apply our results to multi-4nput transition

L systems as well.

-21-



4. CATEGORICAL PREDICATES AND TRANSPARENT CATEGORIES

4.1 A subcategory I9 of C is said to be very f iff for any N
morphism h of 1) and for any morphisms f and g of C such that fg ho

fh g or hf g holds in C it follows that f and g belong toDV.

A functor T : D---*C is said to be a full embedding [1
iff T is an embedding and the image of T is a very full subcategory

of C.

Let V be a category and D a class of morphisms of V, we

denote, by QD,D,C) the class of all the images of the morphisms in D

under any very full embedding T: D-4C. That is, f e QDDC) iff L
there are a mc-phism dcD and a very full embedding T : D--*C such

that f a T(d),

A class K of morphisms of C is said to be categorical (in C)

iff there is a category 1 such that K a (DDC) for some class D of

morphisms of t.

4.2 PROPOSITION: A class K is categorical in C iff it is closedp

under all the automorphisms of C.

-22- 12
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li
[ Proof: Since for any very full embedding functor T : D--4C

and for any autow",hism F of C, FOT :] V-4C is also a very full

embedding, it follows that every categorical class in C is closed

under all the automorphisms of C.

On the other hand, let K be a class of morphisms of C

which is closed under all automorphisms, of C. Denote by D(K) the

Lminimal very full subcategory of C which includes K, then K uDK,,)

IIn order to see this, let T :D(K)-A+C be any very full em-

L bedding and define FT: C--C by

fT(f) if fdD(K),

f otherwise.

Since 1D(K) is a very full subcategory of C, F T maps]D(K) into itself,

and because T is a very full embedding, F 1. maps M~(K) onto itself in

an injective manner. Furthermore, Fr must be a functor and it has

an inverse, hence it is an automorphism of C.

I- Now, since K is closed under automorphisms. it follows

that CD(K),K,C) c K, and since clearly K c OD(K).K,C) we have the



the desired equality.

4.2.1 COROLLARY: A class K is categorical in C iff K * 05DC)

for some very full subcategoryID of C.

4.2.2 COROLLARY: Let D) be any category and D a class of some

morphisms of D. then the class of all values of the morphisms, in

D under all embedding functors 1D- C is categorical in C.

4.2.3 COROLLAR: Trhe class of all values of the morphisms in D

under all functorsD--*C is categorical in C.

4.2.4 Note that we cannot dispense with the rcquiremeitt of em-

ploying very full embeddings in the definition of the categorical

classes in any arbitrary category. For example in the category~ Pl

of natural numbers where the morphisms represent the natural partial11

order of natural numbers, every set of morphisms is categorical.

4,



However, the categorical classes achieved by means of 4.2.2 or 4.2.3

are always infinite or empty.

4.3.1 A class of mvrphisms of C is said to be natural iff it is

closed under all those automorphisms of C which are naturally equivalent

to IC, the identity functor of C.

Obviously, by Prop. 4.2 we have that every categorical class

is natural. Note that a class of identity morphisms of C whichU
is closed under the isowrphisms within C is always natural.I

I 4.3.2 A category C is said to be transparent if all the natural

1classes in C are categorical.

[ 4.4 Obviously, if all the automorphisms of C are naturally equivalent

[ (i.e., to 1.) then C is transparent.

Let us call a category C autotrivial iff all the automorhisns

of C are naturally equivalent.

-25-



It is not known whether all transparent categories are

autotrivial. All "natural" categories of mathematical systems that

are known to be transparent are in fact autotrivial as well.

The equivalence between the notion of transparent categories

and that of autotrivial categories, in a special case, takes the

form of the following problem in group theory:

Do all groups whose automorphisms are all (conjugate) class

preserving have only inner automorphisms?

Any example of a group all of whose automorphisms are class B
preserving and which has an outer automorphism, yields a transparent

category (with a single object and all its morphisms are invertible

and in one-one correspondence with the elements of the group) which I
is not autotrivial. B

-
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[1 5~. THE DISTILJISIIABILITY OF Mw AND THE TRANSPARWCE OF w'Um

Im

5.1 The features exhibited by NN in N are quite cown in "natural"

categories. As we shall see presently, they provide a reduction

of the autotriviality of categories to the categoricity of certain

classes of identity morphisms.

An object M of a category C is said to be a generator of C

iff H : C--'S ( where HM(A) Homc(MA) ) is an embedding. In

this case, the values of M form a subcategory Ht.(C) of S. In

L particular, Mi is said to be a faithful generator of C iff there

I exists a functor RM : H(C)--* such that RMo : -C is

naturally equivalent to Ice

1 5.1.1 EXAMPLES: The additive group Z of integers is a faithful generator

of both the category of obelian groups and the category of all groups

(Froyd 1964). The single-element set U is a faithful generator of S

the category of sets; in fact RU is already naturally equivalent to the

-27-[.i
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identity functor of S.0

From our results in Chapter 3 we know that Mwis a faithful

generalor of AW.

5.2 LDRIAP: For any object A of C and any automorphism F of C with

inverse G, HAOF is naturally equivalent to 11G(A)

Proof: We shall prove a stronger result; namely, for

any two ob-;ects A and B of C and any automorphism F of C with inverse

G, there exists a bijectionUK

f(A,B) : Jomfc(GA),B)4LIoDmC(AIP(R)) l
which is natural in both A and B. i

Put differently, F and its inverse are adjoint. By Kan's I
characterization of adjoint functors, (Kan 19S8, MIacLane 1965) the follow-

ing is a proof that F and G are adjoint (to eachi other!):p

Let us denote by a, the identity morphi~a of an arbitrary[

object C of C.

f1
(i) Every vorphism A -4F(B) can be factored as f aF(h).e A

-28-:



'iu

for somke G(A) h .)B ( i.e., h - G(f) )

(ii) If F(hl), eA -F(h2)-eA then obviously h, h2

L)2
5.3 Let M be a faithful generator of C. from Lei..n 5.2 we krow

Lthat VI F is naturally equivalent to H G~)for any automorphism F of
[ C with inverse G. Hence F, which is naturally equivalent to R,,Ik,,F,

is naturally equivalent to R MOil GM fGM sioopi oM

[then H11 is naturally equivalent to 11~9  and therefore F, which is

naturally equivalent to R M 0i G(M) is naturally equivalent toIc

1 5.3.1 An object A of C is said to be distinguishable (in C) iff for 1
any automorphism F of C, F'.(A)j is isomorphic to A. Put differently,j

A is distinguishable in C iff the natural class of all identity[

morphisms of the objects of C, which are isomorphic to A in C, is

I categorical.

I Thus we have proved:

-29-
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S.3.2 THEOREM: A category C with a faithful generator M is

autotrivial iff MI is distinguishable in C.

5.3.3 COROLLARY: A category C with a faithful generator is autotrivial

iff it is transparent.

5,4 Since M is a faithful generator ofw, ,JW is transparent iff

it is autotrivial. Furthermore A W is autotrivial iff M is dis-

tinguishable in AW . By 3.5.1 we know that if W is fi nite or unit-

commutative there M is distinguishable in A. Thus we have:

5.4.1 THEOREM: If W is a finite monoid or a unit couumutative[

monoid then A is autotrivial (and therefore transparent). I

I i

-30-
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1 6. DISCUSSION AND OPEN PROBLEIS

6.' Our result as expressed by Theorem 5.4.1 implies that, for a

very broad class of monoids, the categorical study of a domain of all

transition systems with input monoid of this class, is equivalent in

principle to the "complete" study (or the "inside" study) of these

systems. However, only experience may show us that in fact there is

a psychological advantage to the categorical approach in the study

of these systems

6.2 If G is a group then AG is the category of all representations of

G as operating on sets. Since every group is in particular a

unit-commutative monoid, we have that the categorical study of the

representations of a fixed arbitrary group G is sufficient in principle

for producing all the algebraic properties of the representations of

I G,

1 -31 -



Ir
6.3 Our results so far, give rise to some general problem that de-

serve attention. For example, is it true that for any monoid W9 M 1 %a
is distinguishable in AW?

More generally, what additional properties on faithful

generators of categories, if any at all, are necessary in order to

insure that they are distinguishable? In particular, is it true that

every projective faithful generator is distinguishable?

E

6.4 Important and much more interesting categories of transition [
systems are those of finite-state transition systems (i.e., transition

systems whose sets of states are finite). If the input monoid W is

also finite then our results remain valid since W is also finite. If

however W is infinite, as it is the case in the ordinary theory of

finite automata (where the input monoids are finitely generated free

monoids) then % is no longer applicable.

b.5 Another interesting restriction of A.W is to abelian transition I

-32-



L systems. A transition system A is said to be abelis hff

SOW 1'2 0 s.'12 holds for all sES(A) and w,, 2 W.

For any arbitrary monoid W 'there exists a homomorphism

of monoids W -1b ,ab where Wab is an abelian monoid with the follow-

ing universality property : any hommorphism of W into an abelian

monoid factors uniquely through ab. The direct construction of Wb

t
must be evident.

Denote by the following object of Aw

ab(w 1).W2 = ab(w1 2)

Nbab

Obviously, W is abelian. If we denote byAW the full

subcategory of Aw of abelian objects, one can easily follow the

example of l' in Aw and show that tb is . fait..fu' generator of

. Furthermore, for any arbitrary monoid , b is distinguishable

by the same properties which distinguish in A in the case of

unit-commutative input monold W (cf. 3.5.1), hence for any arbitrary

ab.
monoid W, AW is transparent and autotrivial.{W
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An equivialent proof of these properties of A;ft 11"sI

directly from the fact that Ab is a cateory isonmrpic to Awabo

I

L
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