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Title: "Transparent Categories and Categories of Transition Systems"
Y. Give'on, University of Michigan Technical Report 03105-38-T, May 1965;
Nonr 1224(21).

Background: The Logic of Computers Group of the Communication Sciences De-
partment of The University of Michigan is investigating the application of
logic and mathematics to the design of computing automata, The application
of the techniques and concepts of abstract algebra to automata forms a part
of this investigation,

Condensed Report Contents: Scveral recent results in automata theory give

evidence of the importance of homomorphisms in the study of transition sys-
tems and automata, Tt is natural therefore to inquire how much information
can be retrieved from the algebra of homomorphism compositions with respect
to transition systems, The natural mathematical framework for the discus-
sion of this problem is catcgorical algelra,

We define a category'AM of the transition systems with input W, where
W is any arbitrary fixed ronoid, and with arbitrary sets of states, A pre-
liminary study of\A“,(Give'on 1964) shows that onc can reconstruct the ine
ternal structure of.any transition system from the way homomorphisms (i.e.,
the morphisms of.Ah) behave around it.

In this paper we show that.A“ has a generator, Mw (which is W operating
on itself as a transition system) and that there exists a functor
Mor :Ah-.-—-bﬂ\“. naturally equivalent to the identity functor ofL\w which fac-

M ow
tors through noth(ww“ ).

A gencral exposition of the nature of properties which are retricvablc
from the "morphism-behavior" in an arbitrary category is prescnted so that
it provides a rigorous general basis for studying "retrievable' properties
and categories in which every structural property of cbjccts and morphisms

is "retrievable."
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Finally, we prove that for a very broad class of input monoids, which
includes all the types of input-monoids encountered in automata theory, the
categories I\w are transparent. That is, anything which can be said about
the structure of transition systems with input W, can be said by referring
to their homomorphisms only, In particular, all the automorphisms of A,

for this type of W, are naturally equivalent to the identity functor of Aw.

For further information: The complete report is available in the major Navy

technical libraries and can be obtained from the Defense Documentation Center,

A few copies are available for distribution by the author,
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1., INTRODUCTION

Several recent results in automata theory (in particular,
Hartmanis § Stearns 1964, Zeiger 1964) give evidence of the importance
of homomorphisms in the study of transition systems and automata. It
is natural therefore to inquire how much information can be retrieved
from the algebra of homomorphism compositions with respect to transition
systems. The natural mathematical framework for the discussion of
this problem is categorical algebra.

We define a categoryAW of the transition systems with input W,
where W is any arbitrary fixed moncid, and with arbitrary sets of states.
A preliminary study ofN (Give'on 1964) shows that one can reconstruct
the internal structure of any transition system from the way homomorphisms
(i.e., the morphisms of N) behave around it,

In this paper we show thathw has a generator, My (which is W
operating on itself as a transition system) and that there exists a

functor Mor : Aﬂ_’,‘h‘ naturally equivalent to the identity functor of
Aw which factors through Honhw(m,-).
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A general exposition of the nature of properties which
are retrievable from the "morphism-behavior' in an arbitrary category is
presented so that it provides a rigorous general basis for studying
"retrievable" properties and categories in which every structural property
of objects and morphisms is '"retrievable."

Finally, we prove that for a very broad class of input monoids,
which includes all the types of input-monoids encountered in automata
theory, the cate'l;.aries.ﬂ'..w are transparent. That is, anything which can
be said about the structure of transition systems with input W, can be
said by referring to their homomorphisms only., In particular, all the
automorphisms of\lw, for this type of W, are naturally equivalent to the
identity functor of Aw.

Some elementary acquaintance with categorical algebra is

needed. In particular, we shall make use of the following notions:

(1) Category, it objects and its morphisms,

(ii) Epic, menic, and invertible morphisms versus surjective,

injective, and bijective functions.
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(iii) Initial and terminal objects,

(iv) Functors, natural transformations and natural equivalences

of functors,

(v) Embedding functors, automorphism functors, and adjoint

functors.

The reader who is not familiar with these notions is referred
to the literature (Kan 1958, Freyd 1964, and MacLane 1965). Additional
issues of categorical algebra with reference to automata theory are discussed

in (Give'on 1965).




2. CATEGORIES OF TRANSITION SYSTEMS

2.1 Let ¥ be a fixed monoid, We denote by‘mw the category specified as
follows,

The objects owa are transition-systems with input W, That is,

systems of the form

A
A= (S(A) x W—235(A))

where;

(1) S(A) is any set, the set of states of A;

(ii) )‘A : S(A) x ¥W—>S(A) is a function, the transition
function of A, with the following properties (we write s.e& for AA(s,w)):
(iii) S‘lw = s for all seS(A), where lh’ is the identity

element of W;

(iv) s-(ulmz) = (Swl)‘uz for all se¢ S{A) and a““’l'“’zc [

The morphisms of Aw are of the form

|/ m
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where f ¢ S(A)= $(B) is a function satisfying f(s*w) = f(s)+w for
all seS(A) and all weW, (Note that s<w on the left hand of this
equation refers to the transition function of A, while f(s)+«w refers
to the transtion function of B.)

The composition of the morphisms of Aw is determined in an
obvious manner by thec composition of the functions which underly the

morphisms. That is, (C—g—) D) (A —-‘:—98) is defined only when B = C and

then it is equal to ALD.

2,2 As in many other "natural' categories of mathenatical systems, we

have a forgetful functor § : I\\‘.“““"S from AN to § the category of sets

where S(A) is tne set ot states of A and S(:\-——f—) B = (f :+ S(\)—>»5(B)).
Note that A‘ contains, among its ohjects, un empty object

to be denoted by ¢A. licre we adopt the useful convention that. for any

set T there exists a unique function which is injective (i.e,, cne-onc into)

from ¢, the empty set, intoe T. Thus, the transition function of P is

this "enpty" function : ¢ x bh—a¢ (& x % = $} and for any object A of A
P J o

]
there exists u uniquec werphisn ¢, ——> A which is deternined by the "empty"
1
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¢ = S(6,)—>5(A).
The forgetful functor § :Aw—%s has an adjoint (cf. Kan 1958,
MacLane 1965), the functor Fr : S—MW. which assigns to each set T,
an object Fr(T) owa which is free on T ¢ S(Fr(T)).
The functor Fr : S«-—)Aw can be specified as follows. For
any set T, Fr(T) is the transition system defined by:
S(Fr(T)) = T x W,
(t,wl)ou: = (t,.wlwz) .

For any function f : T1—~) T2 there exists a unique morphism

Fr(f)

Fr(Tl) —— Fr(Tz) such that for any te 'I‘1 : [Fr(f)](t,lw) = (f(t),lw).

Hence Fr(T) is “free on T x {lw}". We identify the elements of T x {lw}

with the elements of T : tE(t,lw).
If T1 and 'I‘2 are sets which have the same carainality, then
Fr(’l‘l) and Fr(Tz) are isomorphic (i.e., there exists an invertible

norphism Fr(Tl)——)Fr(Tz) of Aw. In particular, if T is a single-element

set then we denote Fr(T) by Mw.

-6-
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Mw serves a very important role inAw as we shall see later,
Note that M, may be defined as W operating on itself, That is,
SM,) = W,

2.3 Aw shares with the obelian "natural' categories, e.g., of groups

or of modules, (cf, Fréoyd 1964) the property that the monic (respectively,
the epic, and the invertible) morphisms are precisely those morphisms

of IA.W whose underlying functions are injective (respectively, surjective
and bijective), The arguments that establisi these facts are similar

to the arguments employed in the category of groups for the same end.

The existence of the forgetful functor S :‘AW———és implies
that a morphism A-—£L>B is invertible inj\¥ iff £ is bijective, Since S

is an embedding functor, every morphism of}\lwhose underlying function

is injective (respectively, surjective) must be monic (respectively, epic).

In order to prove the converse (for monic and epic morphisms

of}\ﬂ we need some additional observations about}\r These observations

LA
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will be incornorated in the proofs of the following lemmata,

2.3.1 LEMMA: 1f A—25B is an epic morphism of A then e : S(A)—>S(B)

is surjective.

Proof: The image of e : S(A)—>S(B) is a subset e(S(A)) of
S(B) such that for any weW and any s € e(S(A)), sw € e(S(A)). l'ience
e(S(A)) is a transition system e(A) which is a sub-system of B,

We define a new object B/e(A) ofAh. by:

S(B/e(A)) = (S(B) - e(S(A))) u {s,} where s, ¢ S(B);

the transition function of B/e(A) is the same as of B except
for the cases where s.wee(S(A)); in these cases we set sew = s,, and
for all WEKW we set s, 0 = 5, ,

Obviously, B/e(A) is formed from B by contracting e(S(A)) to a
single state s,, This contraction takes the form of a canonical mor-
phisi: B-gs¢ B/e(A), where qq ¢ S(B)— ‘S(B/e(A)) is identical on

S(B) - e(S5(A)) and it maps all of ¢(S(A)) onto s,.

8-
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In addition to B —2) B/e(A). we have another morphism
B9 B/e(A) which maps all of e(S(A)) onto s,. Clearly e is surjective

iff qq = Ze

Obviously ze = q e, since both map all of S(A) onto s,. But e
e ”*

is epic and therefore ze = Q. implies qe = 2Zs

2.3.2 LEMA: If A—L3B is a monic morphism of A, then j : S(A)——S(k)
is injective,
Proof: Assume that for S195,€ S(A) we have j(sl) = j(sz).

f £
We define two morphisms Mh‘-—-l—) A and MH——g-) A by fl(lw) =5 and

fz(lw) = S, Obviously, ji:‘1 - jf2 , and since j is monic, it follows

that f1 = f2 i lee., s, = s,

£.4 For any object A owa any any subset T ¢ S(A), we define A(T),

g




the subsysten g_f_ A generated by T, as follows:

S(A(T)) = T+W = {te w: tcT and yeW ),

(t°u1)°uz = t'(wluz).

A subset T of S(A) is saic to generate A iff A(T) = A;
i.e., iff TW = S(A). In particular A is said to be monogenic iff A
is gencrated by a single-element subset of S(A).

for example, Mw is monogenic since {lw} generates Mw (Obviously
for any weW : lw"" = y). More generally, Mw is generated by {u} iff ..
there exists v ¢W such that uv = Ly

Note that an object A of Aw is monogenic iff for any T ¢ S(A)

which generates A there exists teT sucn that {t} generates A,
2.4.1 LEMMA: An object A owa is monogenic iff for any family

{Aj} of subsystems of A indexed by a set J, U{S(Aj) : jeJ) = S(A)

implies S(Aj) = S(A) for some je J.

-10-
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Proof: Assume that A is monogenic and generated by {so};

If US(AJ.) = S(A) then S, eS(Aj) for some jeJ, and S(Aj) = S(A),

Assume that for any family {Aj} indexed by a set J,
US(AJ.) = S(A) implies S(Aj) = S(A) for some jeJ. Define the family
{As) for all seS(A), where As is the subsystem of A generated by {s} .
Obviously US(AS) = S(A) and therefore there exists s of S(A) for
which S(As ) = S(A). Hence A is generated by {s0 }o

o
2.4.2 COROLLARY: For any monogenic object A of Aw and any automorphism
F Aw-—)}\w owa , F(A) is also a monogenic object owa.

Proof: We recall that an automorphism F of}Aw is a functor
F Aw-——mw for which there exists a functor G Aw-—-)Ah such that
both FeG and G°F are equal to the identity functor of Aw

The families of subsystems of A are represented faithfully
by the families of monic morphisms owa with range A. Given a set
J of monic morphisms Aj —)-4 A we define a category ¥ (which is a

subcategory of Aw) whose objects are all the monic morphisms

-11-
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b
B —9-)1\ such that for any jeJ there exists a monic Aj —) B with

bbj = j. The morphisms of J are of the form

b,

b
1 f > A)

(B, —> A) — (B

1 2

whcre B --f-)B

1 2 is a morphism of Aw with Bzf = b

1 L]
For any set J of monic morphisms of A" with range A, the
categrory ¥ has an initial object U(J), which is unique up to an

isomorphism of § (which is an equivalence of monic morphisms inAw

(cf, Freyd 1964, MacLane 1965)). U(J) is & monic morphism of Aw

with range A and whose image is precisely the union of the images
of the morphisms in J,

We can rephrase now Lemma 2,4 1 : An object A of}\w

is monogenic iff for any set J of monic morphisms owa with range
A, if U(J) is an invertible morphism oflAw (i.e., an isomorphism)
then there is a jeJ which is invertible,

Since this characterization of the monogenic objects

in Aw is preserved under the automorphisms ofj\h. the proof follows.

-12-
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2,5 In the proof of Cor. 2.4.2 we have shown that the property

of being a monogenic object of Aw, which was defined originally

by "looking inside A," is in fact definable by means of general
properties of morphisms in categories. Knowing the way morphisms
behave around an object A is_ sufficient in order to determine
whether A contains a state from which all the rest of the states
of A are accessible. In other words, the property of being a
monogenic object in Aw is categorical, In Chapter 4 we shall present
a rigorous explication of this notion, The properties of Mw, that
we shall derive in the next chapter, will yield the result that all
properties of objects of}\“ (which are invariant under isomorphisms
in IAW) are categorical (provided that W belong to a very broad
class of monoids). That is, if W satisfies some weak conditions,
then all the properties of the transition systems with input W can

be derived from the categorical-algebra study ofﬂ\w.

<} 3
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3. A STuUDY OF Mw

3.1 LEMMA: An object A ¢>fAw is monogenic iff there exists an
epic morphism Mw-—e—iA.
Proof: Assume that A is monogenic and generated by { .}

f
s
Define a morphism My —> A by fs (lw) =S, (recall that My is free
o

on 1W ). Obviously, fs : W—>S(A) is surjective and therefore
0

f
s
My —3 Ais epic,
On the other hand, if Mw—e—)A is epic then A is generatad

by e(l since o(w) = e(lw)'u .

W

3.2 We define a functor HMN : )LN——-)S by:

Hyy (A)  liomy (4y,A)
HM"(A—L» B) = (fg + Homy (4A)—> Hom,_(y,5))
where L, —Bon) - (Mw—fﬂ-»B) .

-14-
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We define a transformation of functors ¢: S—-)l-l“u as

follows:

For any object A of AW‘ g(A) : S(A)-—-—)HM"(A) is given by

[g(A))(S) : W—3S(A) : w——p sy .

f
In other words, [p(A)](s) is the morphism M" —3» A which

is determined by fs(lw) = s,

The function ¢(A) : S{(A)—> (A) is bijective, It
"

is injective since f___’1 = fsz implies fsl(lw) - fsz(lw). It is sur-

jective since for any morphism MNJ-)A we have f = g,
- g1y

Furthermore, for any morphism A -£53 owa, and for any s 8 S(A)

we have

gfg " forsy -

where fg(s) = [p(B))(g(s)).
For we clearly have

(3£ ) (w) = g(s+w) = g(8) w = £ 5y (u)e

-15-
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From this follows directly, that for any worphism A-£.3

of A", the following diagram is commutative.
s(A) —£55(8)
P(A) l l £(B)

h, (A) —> (B)
lM" “Mw(“) HM"

Thus we have proved:

3.2.1 PROPOSITION: The transfcrmation o S—-)l-!M is a natural
L

equivalence of functors,

3.2.2 The pair (Mw,p-l) is 8 representation of the forgetful

functor S :hﬂ—-)s (cf. MacLane 1965).

3.2.3. Since S :Aw-—-bs is an embedding functor (i.e., one-one on

the morphisms) it follows that H, is also an embedding and therefore
N

H‘vl is a generator of Aw (cf. Freyd 1664},

3.2.4 COROLLARY: Mw is a projective object owa. (An object P of

-16-




a category € is projective iff .or any morphism p—£3B and any
epic morphism A -2+B of C there exists a morphism P-—£-A of € for

which the following diagram is commutative:

f'/ig

A—=> B g
(]

Proof: It is sufficient (and necessai,) to show that if

A<—3B is an epic morphism of A, then Hl" (e) : ”r (A)—>H, (B) is
W W " My
surjective, From the commutative diagran for ¢: S-—-—)H,l we derive
W
“M (e) = p(B)e(p(i\))-l . Hence lL,(e) is surjective.
¥ W

3.3.3 PROPOSITION: The bijection p(Mw) : ‘.';-—)l!.‘ (Mh') determines
T

an isomorphism of monoids
N —knd (1)
"Qhw s
where EindA (M“.) is the moncid of the morphisms M, of}\“. with

L]

-17-
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respect to the composition of morphisms inA.

Proof: Since f,( w') =mww', it follows that f, fw * fow o
1 2 12

3.4 From Prop. 3.3 it follows that for any object A owa, the set

H,

My

(A) enjoys a structure of a transition system with input W by

combining H“h(A) with W -B-pﬁndA [Mw).
V W

Formally, we define a functor Mor :}\w ——’Aw, where for

any object A of Aw we define Mor(A) by:

S(Mor(A)) = ””r'm s

f
- Y S ) 7
fs.w = fsfw = fs-m for any Hw——-—-) A and eV,

For any morphism A-£5 B we define Mor(A) M Mor(B)

by Mor(g) = HMw(g).

An immediate verfication shows that Mor(A) is an object of

Aw, and that I{Mw(g) determines in fact a morphism owa. Furthermore,

it follows directly from the fact that Hy, is a functor that Mor :A\?—'A\;’

W

-18-




et B cosumios BN -0

| A

L R

is also a functor., Likewise, the transformation p: S--—N—hﬂ

determines directly a transformation ¢ I—>Mor from the identity

o,

functor of A, to Mor, and we have:

3.4.1 THEOREM: The transformation ko : I—)Mor is a natural

equivalence of functors.

3.4.2 Intuitively speaking, the functor Mor constructs the "internal

structure' of any object A of Aw from a part of the categoryAw which
lies around Mw and between Hw and A, Hence it is intuitively clear,
that if Mw can be recognized inAw (up to an isomorphism) by means of
some categorical predicate, then the "internal structure" of any object
can be reconstructed 'categorically," and thereforc any property of

the transition systems with input W can be determined '"categorically"

as well,




3.5 LEMMA: If W is a unit-commutative monoid (i.e,, if uv = lw in

W then vu = lw) or a finite monoid then every epic morphism A -9-§Mw

of A", where A is moncgenic, is an isomorphism,

Proof: If W is a finite monoid then the cardinality of
the se¢t of states of any monogenic transition system with input W
cannot exceed the cardinality of W. tlence e : S(A)—>W must be
bijective,

If W is a unit-commutative monoid and A is generated by {so},
then {e(so)} must generate MW' that is,e(so)v = 1w for some v¢ W, and
therefore ve(so) = lw.

Assume that e(so‘wl) a °(so'“’2) for some wys woe W, then we
have w, = ve(s )u, = ve(s ‘uw;) = ve(so-uz) = ve(s Juy = wy

and therefore S'wy * Stwy, which shows that e is also injective,

3.5.1 COROLLARY: If W is a unit-commutative monoid or a finite

monoid, then for any automorphism F owa. F(Mw) is isomorphic to .\lh,.

-20-
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Proof: From lemma 3.5 it follows that an object M of
Ay is isomorphic to My iff
(i) M is monogenic, and
(ii) for any monogenic object A owa there exists an
epic morphism M—3A of Aw.
Since these properties of morphisms and objects of A, are

preserved under the automorphisms of Aw, the corollary follows,

3.5.2 Note that the class of unit-commutative monoids is broad
enough to cover all the classes of monoids which are employed in
automata theory. For example, the left-cancellative and the right-
cancellative wonoids are all unit-comeutative, Hence the free
monoids and the groups are unit-commutative., Note also that the
cartesian products of unit-commutative monoids are unit-commutative,
and therefore we can apply our results to multi-.nput transition

systoms as well,

-21-




4., CATEGORICAL PREDICATES AND TRANSPARENT CATEGORIES

4.1 A subcategory P of C is said to be very full iff for any
morphism h of D and for any morphisms f and g of € such that fg = h,
fh = gor hf » g holds in € it follows that f and g belong to D,

A functor T : D—>C is said to be a very full embedding
iff T is an embedding and the image of T is a very full subcategory
of C.

Let D be a category and D a class of morphisms of D, we
denote by (@,D,€) the class of all the images of the morphisms in D
under any very full embedding T: D—> €, That is, fe (@,D,) 1iff
there are a m -phism deD and a very full embedding T : D—»€ such
that £ = T(d),

A class K of morphisms of € is said to be categorical (in €)

iff there is a category D such that K = (©,D,C) for some class D of

morphisms of D,

4,2 PROPOSITION: A class K is categorical in € iff it is closed
under all the automorphisms of C.

22«
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Proof: Since for any very full embedding functor T : D¢
and for any automo-vhism F of €, F°T : P—>C is also a very full
embedding, it follows that every categorical class in € is closed
under all the automorphisms of €,

On the other hand, let K be a class of morphisms of €
which is closed under all automorphisms of €. Denote by D(K) the
minimal very full subcategory of € which includes K, then K = (©(X),K,C).

In order to see this, let T : D(K)—>C be any very full em-

bedding and define F

T* ¢ —>C by

T(f) if £dD(K),
FT(f) =
f otherwise,

Since D(K) is a very full subcategory of C, Fp maps D(K) into itself,

and because T is a very full embedding, F_ maps D(K) onto itself in

T

an injective manner, Furthermore, F‘I‘ must be a functor and it has
an inverse, hence it is an automorphism of C.

vow, since K is closed under autemorphisms it follows

that O(K),K,€) ¢ K, and since clearly K ¢ (©(K),K,C) we have the




o e 5 A A ey 9

the desired equality.

4.2.1 COROLLARY: A class X is categorical in € iff K = (©,D,C)

for some very full subcategory D of C.

4.2.2 COROLLARY: Let D be any category and D a class of some
morphisms of D, then the class of all values of the morphisms in

D under all embedding functors D—» € is categorical in £,

4.2.3 COROLLARY: The class of all values of the morphisms in D

under all functors D—3C is categorical in €,

4.2.4 Note that we cannot dispense with the requirement of em-
ploying very full embeddings in the definition of the categorical
classes in any arbitrary category. For example in the category N
of natural numbers where the morphisms represent the natural partial

order of natural numbers, every set of morphisms is categorical.

-24-
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However, the categorical classes achieved by means of 4,2.2 or 4,2.3

are always infinite or empty.

4,3,1 A class of morphisms of € is said to be natural iff it is
closed under all those automorphisms of € which are naturally equivalent
to IC' the identity functor of €.

Obviously, by Prop. 4.2 we have that every categorical class
is natural. Note that a class of identity morphisms of € which

is closed under the isomorphisms within € is always natural,

4,3,2 A category € is said to be transparent if all the natural

classes in € are categorical.

4.4 Obviously, if all the automorphisms of € are naturally equivalent
(i.e., to IE) then € is transparent.
Let us call a category € autotrivial iff all the automorphisms

of € are naturally equivalent,
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It is not known whether all transparent categories are

autotrivial, All "natural" categories of mathematical systems that

are known to be transparent are in fact autotrivial as well,

The equivalence between the notion of transparent categories

and that of autotrivial categories, in a special case, takes the

form of the following problem in group theory:

Do all groups whose automorphisms are all (conjugate) class

preserving have only inner automorphisms?

Any example of a group all of whose automorphisms are class

preserving and which has an outer automorphism, yields a transperent

category (with a single object and all its morphisms are invertible

and in one-one correspondence with the elements of the group) which

is not autotrivial.
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S. THE DISTINCUISHABILITY OF M" AND THE TRANSPAREZCE OF L".

5.1 The featurss exhibited by My inhw are quite common in "natursl"
categories, As we shall see presently, they provide a reduction
of the autotriviality of categories to the categoricity of certain
classes of identity morphisms.

An object M of a category € is said to be a generator of €
iff HM t €—>8 ( vhere HM(A) » Homc(M,A) ) is an embedding., Im
this case, the values of HM form & subcategory HM(C) of $. In
particular, M is said to be a faithful generator of € iff there
exists a functor RM : HM(C)-—ﬁbc such that RM'HM s C—C is
naturally equivalent to I

c.

S.1,1 EXAMPLES: The additive group Z of integers is a faithful generator

. of both the category of obelian groups and the category of all groups

(Freyd 1964)., The single-element set U is a faithful generator of §

the category of sets; in fact HU is already naturally equivalent to the

-27-
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identity functor of §.
From our results in Chapter 3 we know that My is a faithful

genera.or of A".

5.2 LEMMA: For any object A of € and any automorphism F of € with
inverse G, H,°F is naturally equivalent to "G(A)
Proof: We shall prove a stronger result; namely, for
any two objects A and B of € and any automorphism F of € with inverse
G, there exists a bijection
$(A,B) Homc (G(A),R)~—— Homc (A,F(R))

which is natural in both A and B,

Put differently, F and its inverse are adjoint, By Kan's

characterization of adjoint functors (kan 1958, MacLane 1965) the follow-

ing is a proof that F and G are adjoint (to cach other!):
Let us denote by s. the identity morphism of an arbitrary
object C of €,

(i) Every vorphism A ~13 F(B) can be factored as f = F(h)e,
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for some G(A)__}l.;B (i.e., h = G(f) ).

= h..

(i) If F(hl)- e - F(hz)-eA then obviously h1 2

5.3 Let M be a faithful generator of €. From Leiwna 5.2 we krow

that llM°F is naturally equivalent to H for any automorphism F of

G(M)
€ with inverse G. Hence F, which is naturally equivalent to RH°H\,0F,

is naturally equivalent to RM°H If G(M) is isomorphic to M,

Gy °
then l-{M is naturally equivalent to h'(. 0N’ and therefore F, which is

naturally equivalent to RB °H , 1s naturally equivalent to I

1 G (M) c

5.3.1 An object A of € is said to be distinguishable (in €) iff for

any automorphism F of €, F(A} is isomorphic to A, Put differently,

A 1is distinguishable in € iff the natural class of all! identity

morphisms of the objects of €, which are isomorphic to A in C, is

categorical,

Thus we have proved:

«20.




5.35.2 THEOREM: A category € with a faithful generator M is

autotrivial iff M is distinguishable in €,

5.3.3 COROLLARY: A category € with a faithful generator is autotrivial

iff it is transparent.

5.4 Since Mh‘ is a faithful generator of l\w, Aw is transparent iff
it is autotrivial, Furthernore Aw is autotrivial iff Mw is dis-
tinguishable in Aw By 3.5.1 we know that if W is fi.ite or unit-

commutative there Mw is distinguishable in Aw. Thus we have:

5.4.1 THEOREM: If W is a finite monoid or a unit commutative

monoid then Aw is autotrivial (and therefore transparent).
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6. DISCUSSION AND OPEN PROBLEMS

6. Our result as expressed by Theorem 5.,4,1 implies that, for a
very broad class of monoids, the categorical study of a domain of all
transition systems with input monoid of this class, is equivalent in
principle to the "complete" study (or the "inside" study) of these
systems. However, only experience may show us that in fact there is
a psychological advantage to the categorical approach in the study

of these svstens

6.2 If G is a group then.AG is the category of all representations of

G as operating on sets, Since every group is in particular a
L as op \g group p

unit-commutative monoid, we have that the categorical study of the
representations of a fixed arbitrary group G is sufficient in principle
for producing all the algebraic properties of the represcntations of

G.

AP




6.3 Our results so far, give rise to some general problems that de-

serve attention. For example, is it true that for any wmonoid W, M'

is distinguishable in Aw?

More generally, what additional properties on faithful
generators of categories, if any at 211, are necessary in order to
insure that they are distinguishable? In particular, is it true that

every projective faithful generator is distinguishable?

6.4 Important and much more interesting categories of transition
systems are those of finite-state transition systems (i.e., transition
systems whose sets of states are finite), If the input monoid W is
also finite then our results remain valid since Mw is also finite, If
however ¥ is infinite, as it is the case in the ordinary theory of
finite automata (where the input monoids are finitely generated free

menoids) then HW is no longer applicable,

©.5 Another interesting restriction owa is to abelian transition

et ]




systems, A transition system A is said to be abelisn iff

304 0, = 3000 holds for all seS(A) and o ,u,¢ W,

12 2
For any arbitrary monoid W 'there exists a homomorphism
of monoids W _a_b_’ WP uhere W20 is an abelian monoid with the follow-
ing universality property : any homomcrphism of W into an abelian
monoid factors uniquely through ab, The direct construction of W‘b
must be evident.
Denote by rﬁb the following object ofA" :

s (M:,b} . W3b,

ab(wl)-m2 = ab(wlwz) .

Obviously, Mﬁb is abelian., If we denote by A:b the full
subcategory of Aw of abelian objects, one can easily follow the
example of My in Aw and show that M:b is a fait..fu' generator of
A:b « Furthermore, for any arbitrary monoid W, M:b is distinguishable
by the same properties which distinguish Mw in Aw in the case of

unit-commutative input monoid W (cf. 3,5.1), hence for any arbitrary

monoid W, A:b is transparent and autotrivial.
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An equivalent proof of these properties of A:b follm

directly from the fact that A}’ is & category isomorphic to A b,

L
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