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ABSTRACT

This report treats the theory of the stability of an elastic rotor. It covers

such effects as instability caused by friction damping in the rotor, instability

caused by shaft asymmetry, instability caused by asymmetry of the rotor mass,

instability induced by fluid film journal bearings, the effect of static damping

on the stability of the rotor, the influence of gyroscopic effects, the effect

of flexible bearing, supports, and the effect of gravitational and unbalance

forces.

The report gives the basic governing equations and the methods of their solution.

The conditions are established under which instability is encountered and it is

shown how the results relate to a practical rotor system.i
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displacements, both linear and angular, from the axis of rotatLo. Many

of the results are well-known and are sumaritzed here Just for the sake

of compltteness, Sme results are believed to be new, or at least were

new when first obtained by the author.

The restriction to sall displacements rendera the dyneical

equations of motion linear. This linearity allows one to use super-

position, thus computing separately the rotor aotion ,tndr *ffotcts of

gravity, rotor unbaLawce, and thbe free notion of the zotor, that is,

its motioi, near equilibrium, in aboence of any xternal forces and

torques. Most of the following is confined to a study of the ftAu

w i. ' The effects of external forces, however, are cotsidered briefly

In Section 21.

As regards the rotational speed of the rotor, it is assumed throueeout

most of the following that this speed Is maintained j &J. i•s may

require a special Jrive, such as an electric motor, turbine, or belt

drive, In order to simplify mattors, the umchanism foi. insurin the

. constancy of speed is neglected, as is also the frictional torque.

Soewver, the effect of variable rotor speed is bfiefly comsidered ln

r Section 11, rgsply in running through the critical.

With gravity, unbalance or other external forces absent, the differ-

ential equations for the "free motion" of the rotor bcm both linsa a"d
"r homogenous. When the coefficients of these differential equatioas are

constant, their solutions consist of linear ccmbLittLoiu of axponentLals

i N t .2 tS• , •, ... (I)

where the .'s are roots of a proper algebraic equation, known an the

"characteristic equation":

( 0 • + a -1 +. ..... + an ao (2)

if all roots %1, 2 n of (2) have a real negative part, then

7-
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every solution of t. dynsaical systesm representing displacaents from

equilibrium approaLhes zero as tism increaes. On the other hand, if

M 2Uf. of the roots of (2) has a pooitive real part, then the aneral

solution increases indefinitely vith time, and the equilibrium positLon

is unstable.

From point of viev of stability it is not really necessary to solve

the characteristic algebraic equation (2) for all of its roots; it is

sufficient to determine whether each root has a negative real part:

Re (% t) < 0; 1 - 1, 2, ... , n (3)

In the following, such equations vill be referred to, quite inaccurately,

as "stable equations". Likevise, we refer to (2) as a "real equation",

when its coeificentJs a0 , a 1 , ... , a are all real mebarm, or cen be

made real by dividing (2) by a constant. An equation which is not "real"

in the above sense, will be referred to a a "ccplex equation".

A well-koawn tesot for the stability of a real oquation is d& to

Adolf Hurvitz (Lsf.1). It is

Let
a 0 0. (4)

Fro the coefficient of (2) form the n)(n matrix

a1  a 0 0 ....

a3  a2  a a ...

a5  a, 4 3 ...... (5)

...... .... .....

a'2n1 -- an

where the subscripts of the alements in the first column increase in steps of

..2



2 from one row to the next one, while the subscripts of the elments in any

one row decrease regularly; when the subscript is larger than that of any

coefficient occurring in equation (2), or negative, that elemnt is re-

plzaaeý by zecrc:

ak a 0 for k<O or kpn. (6)

A necessary and sufficient condition for the stability of the real

equation (2) in that the following inequalities holl:

D 1  0, D2 >0, ... Dn>0, (7)

all hold, where Dl, .. D. are the "principal" detameiantrs of the matrix

(5), Siven by

D & a 

I

D2 j 61
a 3  2

D aa 0
a a a 2 a I

a25 a .4 a3

Dn & I a 0 0 . . . .

An alternative stability criterion for a real equation, due to

Routh, (Ref. 2), will also be recalled.

Break up f( ) into two parts as follow:

f (,) -u (.) +v (%.) (9)

whev.e
S~~U() % aon+ 2 n-2 +... \.(0

U )a 0  2+ > (10)

n-i r-3
V( + +........

"-3-
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where 0 contains all the term of (2) with even subscripts (that is, the

term vitho ao, a2 , ... ), while V contains the term with odd subecripts.

ZlY140 V .nug U, •Woiug ;0e qUoCL*ent oy q ano t" ?emainor by IU

V( %' = ) Q(k) R(•) GO

Then, in order that the real equation (2) be stable it is necessary and

sufficient that

a° a 0 , (12)

and (if n>l), the equation of degree (n -1):

f1 () " V(Q) + U. (13)

be stabte. For n1l (12) is both nafhmanry and sufficient.

Further applications of the above Ion.h critariom enable ane to zeduea

tho condition for stability to a number of inequalities of the fo= (12) and to

the stability of an ever lower dq*rm equation.

TurninS to comple equations (2), two tests for stability will na

be Sivan.

A nec•asar- and sufficient cCnUAL f= the stability of a complae

equation (2) is that the real equation of degree 2nu

f(,\) LAO) n* [ +.. + j & + nI0 (14)

be stable. Here bars dnote conjuates:

c + id - c- id (15)

and f (x) is obtaimed from f(k) by replacing all the coefficients of the

latter by their cotjugates.

A test for camples equations, which Li asmilar to tM Iouth teat &Lvea

above for real equation*, is as followe.

Let a in (2) be real, and denote the followLng cuWLax c-efficients tbm

-4-



ak bk + i , ckO' (14)

Break up f(k) as in (9). where no
U0. * ~+1 -i n-2 n-3

UN- 1 ,n + b2-. + i 1e+ 2 %.+ ...... 1 71(17)

V(X) - bn Xnl + i C2 %n-2 + b3 n03 +

DividV into U, as in (11), denote the quotient by Q and the

remainder by 1. Then, in order that the complex equation (2) be

stable, it is necessary and sufficient that

bo b1 <0, (18)

and that the complex equation (13), of degree n-1, be stable.

The last theorem was proved by the author in an internal General
e, I,

Electric report, Stability, Hunting, Follow-Up, issued in 1930, where

various other teste for stability were also presented. After & lapse

of a somewhat long interval (26 years), it iS planned to publish so=

the rather interesting, purely geometric proof of it.

In certain cases the linearised rotor dynauical equations poestsi

variable, periodic coefficients, generally of a period equal to half the

period of rotation, It is known that special solutions of these equations

exist, of the form
xite Pi(t) 

(19)

where Pi are periodic, of the same period as the coefficients and %i are

constant. The stability of the solutions now reduces to the requirement (3)

for the dxponentlial multipliers.

Unfortunately no simple test similar to the above riteria for stability

of the solutions (19),of a differential equation with periodic coefficients

exists. These equations will be briefly discussed in Section X

"-5-

.I~.



Consider a rotor consisting of a disk of a"& m, symmetricallty ,

supported on a relatively light shaft of st:iffsesls k, and rotetias J

with constant angular velocity about a fined axis 00 (sea FLS.A).- •

Assume no un.balance, neglect fr~ctionaT tovqm~e, or
S- -T-

rather assue~ that any frictional torqua is overconms by.& proper'

dri-iniS torque, so that a constant speed of rotation is saintainwed.

Dbnote by x, y the displacement of the rotor (and shaft) center,

relative to fixed (i.e.Nevtonian) (z,yjs) - axes,, with origin on the

z-axis, at th center oKf the undeflected shaft. Then tbA erLuat~ion
of the rotor aotior ore

z6ý.-.•k , zz-- -ky. )

In the above va have neglected forces other zhuan the oner due to the
shaft otaffness k.

The solution of (1) leads to simply harmonic a otion of e ,y, of

(radian) frequency

•"• , (2)

,This will be called the "critical speed" of the rotor. Nor& explicitly

x - A cos(W0: + 6) , y - 3 con( t + 6 d) (3)

If the phate angles r, c' are equal, thi n the path is a straight

line through the origin. For a eneral e , oth the path say be ehown

to be on ellipsed If

c' + v _/2, A- +±B (4)
the path is a circle.

-6y -
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We next add to the shaft force a "frictional" force, opposing

the velocity:

x- y (5)

where f is a positive constant. This force we term, somewhat in-

appropriately, "static" friction, in the sense that it opposes the

velocity relative to static, i.e. fixed, axes. The equations of

translational motion of the rotor center now become

. - kx - fx, (6)

M-- ky - fy.

The solution of each one consists superposition of exponentials

a•t (7)

where X satisfies the equation

m2+ A + k O. (8)

The two roots of (8) are liven by

2m (

and each one has a negative real part. Thus the displacements from

the undeflected. position x - 0, y u 0 approach sero with time; the

effect of friction is to dampen out any initial disturbance from the

equilibritum position, which position is thus seen to be a truly stable

position.

In the above it will be noted that the rotation of the rotor has no

effect on the bending of the shaft and the motion of the rotor center.

xn isect, Xqs. (1), (6) and (9) Oo notinvolve co, and they remain the

same whether the rotor is rotating or not. The rotation of the rotor

is merely superposed' on the top of the displacement of the rotor center,

the shaft rotating about its bent center line, the rotor and shaft center

undergoing the displacement x, y corresponding to a force equal to the

right-hand member of (6) applied at its center.

-7-



1n 8el&11• f is -uui- cempared with the tern k, and te roots

X in (9) may be put in the form
•. - + N-±i , (1o)

-Nj

where 1 ,-%- is the real part of X, and + X the imaginary part,

leading to expressions for both x and y as linear combinations of products

of -•t +_l>X t
r -e , e (1.)

The pure imaginary exponentials represented by the second factor in

(11) when properly combined, yield real sinusoidal terms of frequency X

given by

- " ( 2 ,, [ (4) " L)2 +.. (12)

while the real exponential in (11) as stated above, leads to an ex-

ponential !ecay of amplitude. For f - Oi.e. in absence of friction,

X. reduces to the critical speed wo given by (2), while for small f,
I0

X~ (13)

The introduction of friction thus leads to a slight, second order

decrease in the frequency Xi. Nevertheless, we shall continue to refer

to a (rather than X) as the critical speed of the rotor.
0

For f - 0 the motion has been described above. For f> 0, the general

motion may be viewed as describing an ellipse whose axes remain fixed

in direction, but whose semi-axes are decreasing exponentially. For

special motions the ellipses become circles and then the path is a logatithmic

spiral; these are represented by the equations

' e-2teiX,
x + iy A e e (14)

x + iy = B e_2te'iXt .(15)

-8-



The general motion may also be viewed t a -superpoeitton of the

two logerthmic spiral notions, given by ENq. (14) and (15); alo1

as obtainable from either (14) or (23) by effocting a hcosglaaius

strain, or skewintof the (x,y) plane, of ths type in vbwch parallel

straight lines go into parallel straight lins, but distances and

angles are not preserved.

Sumarizing, it has been shown above that the effect of static

friction on a balanced rotor consistz ia reducing any initial dis-

placement of the rotor center to zero, both the x and the y coor-

dinates varying with time as exponentially damped sinusoids. The

motion of the rotor center takes place in an ellipse whose dimensimao

decrease exponentially with time+,"the frequency being given by X

the damping being determined by Xr, given by equation (10). Generally,

X is close to the critical frequency wo0 and Xr is independent of

the rotational speed of the rotor.

.9

I

____ ___ _ __ __ ____ _ _ ____ ___ ___ i



•DI-'•AL jSTiC AN2 NOM)L MOalS

The elastic shaft force, for'a round shaft', is directed along

a radius, from x, y toward the center of the undeflected shaft; it

may thus be described as a "radial" elastic (return) force. To

this elastic force F in 2 (1) we now add a force Fn, a to the

displacement (x,y) and given by

F : (-klY, klx) "- I

where k is a constant (see Fig.2).

y

y
-, x

Fixure 2

The equations of motion 2 (1) are replacad by

mX W -kx - kly, (2)

"my - "ky + k x.

in the system (2) the variables x, y do not separate as in 2 (1).

This system can be solved by putting

xt xtx - Xe , y = Y a (3)

leading to an algebraic equation in X, of degree 4. A slight simplifi-

cation results by proceeding as follows:

Multiply the second Eq. (2) by i - 1 and add to the first one. In-

troducing the variable

Z x + i y (4)

-10-



one is led to the second order differential equation

Z- (-k + i kt)Z (5)

This is solved by putting

hbtZ = A a (6)

resulting

2m% + (k -i k) -0,
1(7

+ mm m

Since X2 complex, one of its two roots, say 1,' will have a real

positive part, the other, -%it a real negative part (see Fig.3).

ik

m

-/m

Finure 3

The general solution of (5) is

Z =A eXtt+ A2 e'Xlt (8)

where A1 ,A2 are arbitrary complex constants. The A -term (i.e. the term

involving A1 ) becomes infinite with time; the A2 -term approaches zero.

From (8) x and y are obtained by taking real and imaginary parts respectively.

Thus the effect of the force F normal to the displacement and pro-
4 -ft

portional to it, is to make the rotor motion unstable. This conclusion

holds whether k is positive, as in Figs. 2, 3, or negative, that is,
1

whether the normal force is in the direction of rotation or in the
opposite direction.

-ll-



The path described by the A1 -term on the right of (8) re-

presents motion in a logarithmic spiral, with JZI increasing ex-

ponentially with time; the second term represents motion in a log-

arithmic spiral, nf the same angular frequency but rotating in the

opposite direction and I ZJ decreasing exponentially with time. The

general solution (8) is the vector resultant of the two motions, and

as time gets large, approaches the receding logarithmic spiral.

The notion of a normal force is not purely an academic one. For

a steam turbine or a gas turbine, bending of the rotor shaft de-

creases the radial clearance between the rotor and stator blades on

the side of the displacement. This causes a decrease in the gas leak-

age over the edges of the rotor and stator blades, with a consequent

increase in the local gas reaction on the rotor blades. On the opposite

side an opposite effect takes place. However, the increase in force

on the displacement side generally overbalances the decrease on the
opposite side. Thus, there results a net (resultant) force F normal

to the displacement of the center.

It will be shown in Section IX, that the lubricant in a Journal

bearing, generally also produces a force F on the Journal, normal to,,n
the displacement (in the bearing) of the journal center.

Returning to Eq(8) it is will be noted that the unstable term Ale

eventually leads to increasing energy of rotor motion. This energy

can only grow from the work W done by the force Fr + F n, during the rotor

motion, where
t2

W f t2 (-kx - kly) x + (-ky: + k, x)yj dt
21 Y 

(9)
k(x + Y + kj-X; + y; dt

2 9J U
If k /k is small, then

11o

-12-



I

and the exponential growth of a per cycle is smalland so is the

decay of e Then, for the At term in (8), the integral in

(9) per cycle becomes

k r' f d (tmn-' Y)- 2nr kr 2 - it kl AIf2()

For the e•lt it becomes

-2k2srj A (12)

while for the cross terms the integrals vanish.

It is clear from the above that if A in (8) in much larger

than 1All , then the rotor motion will be largely clockwise and the
force F will take energy out of the rotor. Eventually the Afterm

n
will become equal to and exceed the A2-term and then F will feed

energy into the motion.

If, on the other hantd, the direction of F were reversed in Fig.4
n

by replacing kI by -kl then F would cause decay of the ealt -term

and growth of the e I -term.

This explains why the motion is unstable irrespective of the

sign of kI. Each sign promotes its own exponential motion.

iV

-13-
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ROTARY FRCTION FORCE,

We now return to the case considered in Sectionli, but replace P
the "static friction" force 2 (5) by a "rotary friction" force. By
this is meant a force proportional to, but opposite in direction of,
the velocity of the rotor center relative to a rouating system of
axes, rotating about the (fixed) z-axis with the same (constant)
angular velocity cu as the rotor. This relative velocity may be ob-
tained by subtracting from the actual velocity (x,y) the entrainment
velocity due to the rotation of the system, given by (-cxy, =) (see
Fig. 4). Denoting the coefficient of rotary friction by fl, we now
obtain for the equations of motion replacing 2(6).

S- -kx - fl( + W),

hay - -ky - f(y - )

where o) is the velocity of the rotor.

y

relative
velocity

entrained
velocity

\ true velocity

y
x

Fig. 4

Intrcducing Z as in 3(4), one obtains

m+ f + (k - ifw)Z - 0. (2)

Once tuore ths- can be solved as in 3(6) where X is now the root

of the complex equation

m,\ + f X + (k - if)- 0. (3)

To insure stability each root X must have a real negative part.

* I



For a 3econd degree complex algebraic equation

2boX 4- (bI + ic1 )% + (b 2 + ic 2 ) -0 (4)

where bo, bI . .......... c2 are real, the test described in the

text accompanying Eqs. 1(16), 1(17) leads to the following in-

equalities,

b b1 > 0, 2 (5)b° c2 >O

(b1 b2 + cC 2 ) b >0,

as a necessary and sufficient condition for the stability of (4).

Applying (5) to (3) one is led to

mfI > 0, (6)

if (k - 2 )>0.

The first inquality in (6) is automatically satisfied (since f1

is positive). The' second one leads to

a < k/mr- c. (7)
0

Thus, for rotor speeds below the critical, the rotor motion is stable.

For rotor speeds greater than the critical -

W >o W(8)

the second inequality in (6) will fail, at least one of the roots of

(3), say Xi, will have a real positive part, and the rotor motion will

be unstable. Since the sum of the two roots is
fl

+ + 2 (9)
1 2 m

-15-



it follows that for

Re( Q) > O0 Re QA < O. (10)

The transition to instability occurs for

when X is pure imaginary. Eq. (3) now yields

X + k m 0,

(12)
f - i£f1°,

and hence

ST o(13)

Thus the transition to instability occurs when the rotor is running
at the critical speed, and it is characterized by a circular synchronous

whirl in the direction of rotation, with the shaft "frozen" in its

whirling, deflected shape.

It follows from (9) that the roct X 2 leads to an oppositely rotating

whirl, which dampens out with time.

in the unst-'ble range (8), the root XI yields an exponentially in-

creasing whirl. While the unstable range is independent of fl, it can

be shown that the rate of growth of unstability increases with f 1 "

The notion of "rotary" friction is, itself, by no means academic.

Rotery friction is produced by any device, such as rubber pacbor rubbing

surfaces mounted on the rotor. Shrink fits, especially of wide disks

or plates shrunk on the shaft, are another cause of rotary friction, since

if the shaft bends the shrunk element does not follow the axial extension

and compression due to bending of the shaft. Thus, slippage takes place

along the shrunk surfaces when the shaft bending changesand the shaft

-,ter displaces relative to a system of axes rotating about the z-axis

with the rotor speed.



Likewise "solid friction" of the shaft material contributes to the

rotary friction; by "solid friction" is implied the small hystersis

loop obtained by plotting the strain vs stress for a periodic stress-

strain: even in the. elastic range, the curve is not a straight line

but forms a thin loop whose area is a measure of the energy loss per

unit volume, per cycle. For stresses within the elastic limit, the

energy loss per cycle is of the form

f V (14)

where V is the maxim-- elastic strain energy and f is a "solid £riction"

coefficient, characteristic of the shaft material. For larger stresses

f is not constant, but increases with amplitude.

It is not evident that the above rotary friction effects are truly

represented by the f 1 -terms in (1), namely as a "viscous" force, pro-

portional to, but opposing the relative velocity. The following consid-

erations show in fact that they are not.

For sinusoidal strains and displacements, solid friction effects

are more correctly treated by replacing the Young's modulus E by the com-

plex number

(1- is) E, i-r 7  (15)

Thus, for the complex solution 3(4), if time is assumed to enter as a
factor iept (16)

Eq. 3(2) can be treated by replacing the shaft stiffness constant by

k(l - i a) (17)

and this is analogous to Eq. 2 (6) if the friction terms - fx, -f6 are

replaced-by -kipx, - kipy corresponding to a value of s in (15) pro-

portional to the frequency:

s = kp. (18)

It is of interest to note from Eqs.. (), (2) that the "rotary friction"

force terms involving fI can be represented as the sum of

- flZ + if 1 Z (19).

of a static damping force and a force perpendicular to the displacement,

and analogous to Fn in 3(l) but with a constant k, proportional to the rotor

speed: k = fl. (20)

-17-



V

we now consider a rotor possessing both static and z"=Y .ftidon iin a

manner similar to that of Sections U & IV. Thý equations of mutiou ere

S+ f + f1 (• + my) + kx - 0,1(

my + ff + q -a) + ky- 0.

lntrodfucing Z as in 3(4), one obtains

,,+( + .) + (k -''if 0. (2)

One is led to solutions 3(6) where ) are roots of
X • + (f .+ f) X, + (k - ife.) a0 3

Applying the criteria 4(5) for stability of this complex equation, one

obtains the inequalities:

• (f + fi) > 05

( + f. a ,C2>0

The first inequality is again automatically satisfied, while the second one

fl f.)2 > 3 2•.. co i _ 2 (5)

0 0

leading to '

f> -1. (6)

Two cases arise. If the rotational speed is less than the critical speed C 0

ten the right-hand member of (6) is negative, and (6) is automatically

satisfied irrespective of what the values Of f, f1 are. On the other hand,

if co is greater than a) the riSht-hand member of (6) is positive, and (6) will

be satisfied provided that the static friction coefficient f is sufficiently

large compared with the rotary coefficient fl.

The relation between a/w and f/f is shown in Fig. 5 where the solid line

AB marks the boundary between the region of stability and instability. We thus

arrive at the criterion that if the rotor is running above its critical speed,

there will be stability provided that the static friction be sufficiently large

-18-
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compared to the rotary friction or, what mounts to the same thing, that the

rotary friction be sufficiently s cowere to the static friction.

As an example, for cD/cn - 2 corresponding to a rotor speed which. is 4-mble

the critical speed, f/fl must exceed unity, that in, the coefficient of static

friction f must at least be equal to the coefficient of rotary friction fl, to

insure stability. For •/•o - 2, if f1 > f, there will be instability;

if f 1 4 f, stability will obtain.

In the unstable range the rate of increase of whirl increases with f /f.

Finally, if to the forces in (1) one also adds the normal force 3(1), one

is led to

mx - -kx - kly - fi - fl( -+my),

my- -ky + k1x - f6 - f1 (y -6i).

Introducing Z as in III (4), one is led to

m+ (f+ f) + (k- ik - i f1 )Z -o (8)

and to exponential solutions for Z as in 3(6) where

2(9m% + (f + f) + k -i(k + af ) 0. (9)

-1.9-



By applying' similar echniques, one now obtain& for stability of (9) the

following inequality-

(,0
>WJ +-7 (10)

ff

The boundary of the region of stability i shown-as the dotted-slanting line A' S'

on Fig. 5, for positive k,; for negative ki, AW'' is-to the rio't of AD.

Remarks similar to.•those made at the-ends-of'Secs III, IV apply equally

well here. In some cases-it is possible to fit the above theory so as to

include effects of solid friction and other aspects of frictional losses, by

assuming thet the "constants" k1, f, fl, vary with a (or even with the

amplitude of oscillation). When this is done, it is evident that the

rectilinear boundaries of the stability region of Fig. 5 may be greatly

distorted.
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F

DIFFERINT SATsumpNsS COMSTNTS

We now consider a -roLo6r'mUited on a shaft of uniform but non-circular

cross-section. A normal section of such a shaft possesses two mutually per-

pendicular directions corresponding to the maximum and minimum moments of

inertia and it possesses different bending stiffness constants I, k2 , k2 > kit

in these two mutually perpendicular directions. One may define two vibrations

frequenciesE

•I =0' 2 M 2 > Ml" I

As a result of the two stiffnesses .it can be shown that a force in a

* direction different from the principal directions of inertia produces shaft

*i deflections lying in a plane different from the plane through the z-axis con-

taining the force. To find the displacement one resolves the force along the

principal directions of the shaft section, determines the deflection along

each one and superposes them.

If the shaft is rotating and the force is fixed, then the deflection comr-

ponents turn out to involve in the coefficients sin2wt, cos2mt, where a is

the velocity of rotation of the shaft.

As a result of the above the differential equation of motion also involves

the above trigonometric functions.

To avoid this complication we refer the motion to a system of axes, (x,y)

which rotates about the fixed z-axis with the rotor (and shaft) speed a. The

deflection of the rotor center is given by

xi + yi (2)

where i, j are unit vectors alontg the (rotating) x,y-axes.

These ij are not constant, but

di dj
-. t- j ' - in• •i. E (3)
dt dt

-21-



Differentiating (2) we have for the (true) velocity

di d

and aubstituting from (3)

v -( y) i + (y +az)J (5)

Further differentiation yields for the acceleration

22a ~-2m m a x) i + Cf + 20;& 2 y) j. (6)

Hence the dynamical equations of the rotor are

m('- -• w2x) - " x1 (7)

2y)m(9 + 20, x- - coy k2 yo

This system has constant coefficients. The variables x, y in (7)

do not separate. Nor can these equations be simplified by intro-

ducing complex variables as in 3(4).

Assuming a solution of the form 3(3) one is now led to the fourth

degree equation

(%2 W2  ~ 2 2 2  a)22 ) + 4- W2%2 . (8)

2 2
This is quadratic in X. Hence, urless both roots X are negative,

the solution. Eq..; (7'), jtil1' be unstable,.

Put (8) in the form

X4 + 2M + c- 0, (9)

'where

2 2) 2

c - (a)2 ((Z2 2 _ 2)

The roots of (9) are
k2 b + ;+Vbz 0 i(i

The radicand above is
W 2 _22 2 (12)b c + 2w+ (WI + 03>2 o

1 2
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ans is always positive. Hence the roots (11) are always real. If

c is positive, then both roots (11) are negative. On the other hand,

if c is negative, then. the root -b +Fbr-c will-be positive, and some

solutions of (7) will be unstable. Examination of (10) shows that

this happens for

2 < M2 < 2(13)

Thus, for a rotor with a shaft possessing two different stiffness

constants in two mutually perpendicular directions, the speed range

(13) between the two vibration frequencies (1) is unstable.

If static friction also exists, then the range of instability

narrows, and for a sufficiently large value of the coefficient fa

may disappear altogether. On the other handt normal forces and

rotary friction may enlarge it.

Thus far we have considered only translational displacements of

the rotor. Angular displacements of the rotor axis, it will be shown

in Section VIII, introduce gyroscopic. effects, and may produce a further

unstable range at high enough speeds.

-23-



VII

GYROQSCOPIC EPFECTS

Even when the rotor is mounted as in Fig. 1, it may execute both

translationrl motion, normal to the z-axis, as well as rotational motions about

transverse axes. The latter motions ars even more likely to occur Ithen the

rotor is mounted asyimnetrically, for instance if it is overhung, as indicated

schematically in Fig. 6. The following analysis applies to_= mode of

support of the rotor.

x

X

FF

xx

y
y y

Let the z-axis contain the undeflected shaft center line 'position,

and denote by xy the normal translational displacements of the rotor center,

and by Xi, p its angular (or rotational) displacements about the x, y-axes;

all four quantities x, y,%,Ig are assumed to be small.

In this Section we assume that the shaft is axially symmetric elastically,

and that the rotor is axially symmetric; in Section VIII we consider the case when

the shaft stiffness constants in two mutually perpendicular directions are

different, &nd the rotor has different moents of inertia.l, J, I 0 J,

about the principal axes of inertia, normal to the spin axis; the third prin-

cipal moment of inertia, about the spin axis, will be denoted by K.

For the axially symmetric shaft (and rotor), a force Fx, applied to the

shaft at the rotor center, and a moment T (about the y-axis), produce a linear
y

displacement x and a rotation g about the y-axis, given by

xna F +bT,
x X y (1)

-b F +cTT
x y

where a,b are the linear and angular displacements produced ,by a unit force F
-
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acting alone; bc the similar displacements produced by a unit torque T

about the y-axis, acting alone. The matrix of coefficients abc in (I) is the

"•flexibility matrix". Solution of (1) yields

F Ax + Bi., (2)

x(2T - Bx + CAL,
Y

where the matrix ABC is the "stiffness matrix", and is the inverse of the

matrix in (1).

Similarly, an applied force Fy and moment Tx (about the x-axis) produce
displacements in the (y, z )-plane, given by

y- a? y - bT, (3)

X= -b Fy+ c T ,

and by the inverse equations

F - Ay -"B (
y (4)

T --By + C X
x

If the z-axis is a stable position of equilibrium, then the quadratic form

Q (Ax 2 + 2•Bx p + C g2) /2 (5)

representing the elastic energy corresponding to the deflection (x, p), is

positive definite. The conditions for this are

2
A>0- 0, AC- B >of (C>O) (6)

(where C> 0 follows from the preceding conditions). Similar remarks apply to

the matrices (1), (3), (4).

It is assumed above that the displacements, both linear and angular, are

small, so that superposition applies, and the order of the rotations X, p is

immnaterial.

It is further assumed that the rotor is balanced about its axis of

rotation; this assumption implies that

(a) the center of mass (c.m.) of the rotor lies on its axis of rotation;

(b) the axis of rotation is a principal axis of inertia of the rotor,

through its c.m.

These conditions are assumed to obtain. The assumed rotational symmetry

implies equality of the two transverse moments of inertia, I - J. Hence any

two axcz through the c.m. mutually perpendicular and normal to the z-axis, can

be considered as principal axes of inertic of the rotor in its undeflected

position. In particular the unit vectors i, J, k, parallel to the x, y, z-axes,
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can be used as principal directions of inertia, even though they are fixed

in space and hence not in the rotor. After the (small) angular deflections

X, p., the above principal directions vectors become:

.vi " • -k ,
2i j + ÷ , (7)

k i + JX +k.

Ncw let X, V vary vith time. The motion of the rotor R, at any time instant,

consists of a translational velocity of its c.m.

v - ki + #j )(8)

and of a rotation rt-resented by a proper rotation vector through its c.m.

given by

-Xi + aj +a (9)

assuming that R continues to rotate about its bent shaft with velocity w.

Utilizing Eq.(7), a can also be put in the form

C 0 + pj + (k (10)

provided second order terms in X, p: ). & are neglected. This form yields

the component of w along the (instantaneous) principal axes, and this simpli-

fies the expression of M,ý the moment of the momentum, to be referred as

M -I(Xi1 + 4,j )+ d

MI(Xi + j J) + Kht(i. - jX + k).,
IV ,.- IVP

where the last form is obtained again by using (7) and neglecting second

order terms.

Differentiation of M yields

M - 0 X+ K ) i + (I p- K ) J. (12)

We now proceed to set up the dynamical equations of motion of R. Recall

that in Eq. (1) F i + FY j is the force applied to the shaft at the c.m. of R;
xtf i i yaf

this force is either an external force or it is applied by R to the shaft.



The reaction force, -F i F J, is therefore applied by the shaft to R.

Similarly the shaft applies the torque -TxI - T J to R. Equating these

shaft reactions on R to the mv and M, we obtain tbe dynamical equitions

Mx + Ax+ Bp M 0,
my + Ay -B% - 0, (13)

1% + Kz -By +CA - 0,

Ig - Iw +Bx +C- m O.

Assuming a solution of (13) in which time enters as a factor

eVt (14)e

Lnd rearranging the order of the equations there results the following

determinantal equation

(15)
2

A+mV B 2 0 0,
L(v)= B C + I v 0 -K a V O,

0 0 A+mv2

0 K aw -B C + I V

where the coefficients in any one column arise from the variable indicated in

that column, in the row above the determinant.

The function A(v) is evidently even in v, and of the fourth degree in
2 2v . Thus, unless all four roots v are negative, at least one root will have

a real positive part and the solution of (13) will be unstable.

We expand A(v) in a Laplace expansion in terms of its first two columns:

-(12) [34] - (13) [241 + (14) [ý3]

+r (2)(4 (24) [1l + (34) p.2]16

where (iJ) is the 2nd order determinant in the first two columns and rows i,j

while iJLj is the determinant in the last two columns and the same rows.

There results

A- (12)2 + (14)2

(A-Hnv2 (c+IV2)-B23+[(A-nv 2 K v w 32 - (17)



t~

To cousider negative v2 , we put

V WV2 -2 (18)-ip .-- p)

then A can be factored thus

- (W C-Ip B 3] (A-up) K }
IAW (C-It 2  B 32+ (A-up2  K p W

The first factor is linear in a) and when equated to zeroyields

CO- fc(P) - c-I 32 (20)= ()=K p Aiw 2

L( A-up
The right hand member is odd in p, and has the asymptotes

p m 0 , p =_ r, z•=-(I/K) p. (21)

Near p 0

(CA-. B2) 1 ....... (22)
KA p

where -.. is analytic at p - 0. If we assume that the z-axis is a position

of stable equilibrium, then[noting Eq. (6)] the residue at p - 0 is positive.

Likewise the residue at p, --mi is positive.

(0 f (p)

Cl)l

Figure 7



A schematic plot of Eq. (20) is shown in Fig. 7 is n th

a line of constant M> 0, cuts this curve in 4 distinct pointsn

P P12' P2* P3 P4 (23

two positive, two negative; but these roots cannot be negative- of each

other, They correspond to the time factors.

ipt
e p - p, J - 1,2,3,4. (24)

The second factor in (19) leads to

U- -f(p) (25)

and hence on Fig. 7 to the reflection of the curve sh-own in the p-axis,
and to 4 roots which are the negatives of (23).

2
It has thus been shown that all four roots v of A are indeed nega-

tive and distinct. Thus f-r - symmetric rotor and shaft the gyroscopic

effects never lead to instability.

The factorization of A suggestr that the system (13) may be reducc.e e

-o two systems of lower order.

By multiplying the second Eq. (13) by i and adding to the first one, the

third one by -i and adding to the fourth one, one is led to the second order

system of differential equations

mZ+ A Z+BM O0,
(26)

B Z + I M - i KaV + C M 0 ,

where

Z = y + iy, M - i% (27)

A conjugate set of equati-ons can be derived for the variabl•i.z

Z=x- i y, M + ix. (28)

Eqs. (26) and their conjugate equations could have been used in place of

Eqs. (13).

indeed, assuming a solution of (26) in which time enters as a factor

-i-eis the frequency equation
(A B •
-!- ce-ad B E (29)

•c hnc Lad t £.(rK,.

S-C,



Each of the four roots of (23) re3ults in a s3uVCA'M th'!

~~~~ z+ iy - Zo 0•• 0 A °•p.•

Taking real parts one may interpret the motion as a •i•irl ot : ýthit v

in which the shaft executes a rotation of frequency p, vltb cch rmin

on the axis describing a circle and the axic cc a whol c•o.,

rotation. This motion may be described as a circular -hirt.. In pczti-

cular the point on..the rotor axis at a distance z from the origin detccrbez

the circular path

x + Ly + (2 , ( i [z.+ (2 So) X.]

where z = z corresponds to the rotcr c0

The first factor in (19), put in the form

(A - p2 )C -(I - KZ p2.D2 .0 (32)

shows that for each circular whirl Eq. (32) is the same as the equttion of

vibration of a non-rotating rotor whose transverse mment of inertic I
is replaeed by

H i'= I " K (W/p) (3

In certain cases this may lead to negative I', but always to real

frequencies of vibration.

Similarly, from the conjugate equations for Z, M, one obtains four

circular whirls corresponding to the negatives of the roots of (29).

As a special case, suppose that the shaft is rigid, and io restrained

toward z-axis by springs of (angular) stiffness C. Then the equations of

motion corresponding to the moment of momentum equations about the origin

suffice for describing the dynamical behavior, and they lead to

I% + KiW• + Ck - 0, (34)

Ip - KeLu + Cgi =0,

where now i is the moment of inertia of the rotor about the x- and y-axes.



One is led to the frequency equation

(I p -C)2 X-p2 -K 2 M 0. (35)

Solving for a, there results

S- ± (I p2 _ C) /Kp. (36)

A plot of w vsVp>O is shown in Fig. 8. Again, for each constant a, there •

now two real, distinct values of p, corresponding to two circular orecesaions

of whirls, both, positive4.. thre.are also two negative one- (vot showm).

p (Ch:Figure 8

It is of interest to note that if the z-axis is not a stable equilibrium

position, then the residue in (22) is negative, and some of the real roots
2

of (20) may be lost, leading to positive V and unstable solutions, esp-

ecially for small w.

For the special case implied in Eqs. (34) such an unstable equilibrium

along the z-axis corresponds to negative C. For negative C. Fig. 8 is

modified into Fig. 9,with a minimum for c at the point

. FT.21
Pp IW p (37)

0 1 "0 K o

It will be noted that for

W,> 0(38)



r
that are two real. roots of (36) corresponding to two precessional fre-

quencies and stable solutions of (34). Onthe other hand, for

CUo - (39)

there exist no real roots of (36); hence, the roots of (36) are com-

plex and the motion is unstable.

co (I/K) p

SPo Figure 9

0pp

From the above it is evident that gyroscopic effects may stabilize an

otherwise unstable position of equilibrium.

An illustration of the above occurs for a top spinning on a horizontal

table. Here the negative C arises from the gravity force. For a high enough

speed, the top "goes to sleep", with its center of mass above its point of

support. As the rate of spin decreases as a result of friction, the

position becomes unstable, the top wobbles, and eventually falls down.



VIII

STABILITY OF A R 1f&Lt ROTOR. -'mIn 0,' sy'Z' -;3
DIFFERENT STI2= E

Let I, J, K be the. three principal moments of inerti-a • th rotar

through its c.m, K being the moment of inertia about the reataion a-is, lE COl -

sider a system S of (k, y, z) - axes, with unit vectors i, j, k, rotating re-

lative to fixed space about the z-axis, with the constant rotor vel -city *.

Suppose that in the undeflected position the directions i, jcorrespond to the

principal axes of inertia of the rotor, as well as to the principal axes of

bending stiffness of the shaft crosssection, that is, to the largest and

smallest moments of inertia of that section about axes through its center.

Suppose that relative to axes of the rotating system S, Eqs. 7(l) - 7(4)

hold for the deflections of the shaft, ,but different sets of stiffness constants:

F- AIx + BIp, Ty Bx + C (1)

Fy A22 y B2X, T x + C2X (2)

Here xy; X,p represent the (small) linear and angular deflections of the rotor

shaft at the rotor c.m., z zo, relative to the rotating axes of S, while

F , Fy; T , T represent the forces parallel to these axes and the moments aboutx y X y
these axes acting on the sbaft at the c.m.

Since the system is rotating about the z-axis, it follows that

S-(= i. (3)

To avoid ambiguity, we suppose that the angular displacements X , P are

carried out as follows. First the rotation X is carried out about the vector i;

this rotates the vectors i, J, k into il•J, kl, given by

i, j cos\ + k sin\, kl--jsin%+ kcos% (4)

Next carry out the rotation p about the vector J1, leading to

i -i Cos - ksini, j, k =i sin p + k cosp . (5)12 ev,ý

Eqs. (4), (5) apply at any time t, with the values of X, g corresponding to that
time instant. The vectors i 2 , •, k2  correspond to the principal directions of the

rotor at the time t, in its deflected (and rotating) position; they are fixed int

the rotor R.

From Eqs. (3), (4), (5) follows that the net rotation vector of R, relative

tii- • e is giver, by

-k .+- (6) •
(4,()reuet

J ~ ~ Eqs 4IF )N~'



j,, + X

-i .i "k ik A 12 IV . "2 i + k+ '

provided powers of I s higher than the first, be neglected; heocO

i ~pk, j 2  j + 'N k, IL2 - L X+k

The inverse of Eqs. (4), (5) take on the sme form, but with sin.X

sin p. (or X, Vt) replaced by their negatives. Eq. (6) yields, upon retention

of terms linear, in % p. only,

U)- w(k -i2 + 1. j 2 ) + i2

,v 2 2 2., +, J 2 ( O

-V - IV- +(10)

j(+c~k +U~ 2
2+ 2

The cross product of D by i , 2 , k2 leads to their time rates:

.. •.+ 2• I2+ (P'2 dt " + 2

2- (UJ+ 2)k 2  dt 4

I2

Alternatively equations (11) can be obtained by differentiating (9)

and utilizing (3). From Eq. (10) follows for the m.m. of R

14- A - ) + J J2( + a) X) + K wk 2, (12)

and substituting from (9)

M - + (K - 1) L L i + "+ (j K) N + K Uk. (13)

Differentiating and utilizing (3), there results

[!:i+ (K - -J) a + (K-J) Wl J1,X*+ J( K- ) I ( ) * (14)+ (.,,i,'-¢- J), + (K 1) 2• ý1• ] J"

7ro•. Eqs. (1), to (14) and 6f(6) the following dynamical equatione of rotor

ocbta.ined:



77 7% 7- 77

2* ' (X-• J) + A x + Bl 0,
C y- Y) + A2Y - Bz 0.- 0,

*~ X 0

2.
I".+ (X--J) P'W + (K - J) CO 2  Y+C 2 0,

Assuming a solution of Eqs. (15) of the form 7(14) one is led to the

determinental equation

2 _2t(v)u •i(v . ) + A1) -2z- v 0 -0

B P V2 + (K - 1) 2+ Cl o0 (J + I - K) (0v (16)

2mo v 0 M(V2-c32) + A,) -B 2

0 (K - I -J) V - B2  V2 + (K-J)t 2 + C21

Expanding as in 7(16) shows that &• (v) is even in v as well as in cu. Thus

only if all four roots V2 are negative, will the solution of (15) be stableo

As a spetial case, consider

CL -0, (17)

that is, the case of a non-rotating rotor. The (x,y)-axes are now fixed.

Eqs. (15) separate into one pair of (x,p) equations for the (static) vibrations

of the rotor in the (x,z)-plane, and a pair of (y,% ) equations for similar

vibrations in the.(y,z)-plane. The resulting determinental Eq. (16) factors

into two second order determinants, agreeing with Eq. 7(15) for 0) - 0. The

four roots of (16), provided the z-axis is a position of stable equilibrium, are

negative and distinct. By continuity follows that Eq. (16) is stable for a

proper range of small speeds:

W < '. (18)

As a more significant check, consider the special case

I - J, A = A2 -A, BI M B2 - B, C1 W C2 = -ý (M

of an axially symmetric rotor and shaft -- the case considered in Sec. 7.
Byp•-op-er manipulation of Eqs. (15), and by introducing the variables

Z - x + i y, M N- , (20)

I i the fourth order system
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m (Z +21wZ -CZ) +AZ + B - 0,

BZ+CM+-I - (K2 12) 1 L + (KM) 2M+.

Assuming time to enter as the factor

e 22)

one is led to the equation

2A -m (q + ow) B+ -0 (23)
22

B C+K (w + a q)- I (q + a) 2

It will be noted that this agrees with 7(29) provided that one replaces

co by w, p by q + co, (24)

and notes that factoring out e from e in 7(31):

i p t M e t e iqt (25)e me e (5

corresponds to passage from fixed to rotating axes.

The plot of q. vs cu can be obtained from Fig. 7 by means of the transformation

w - ¢, q = p - •, (26)

that is by moving the points of the curve of Fig. 7 at any constant height W

to the left a constant distance equal to cu. Again one is led to four values

of q for each c.

The transformation (26) at first sight appears to be at odds with the

conclusion that A (v) in Eq. (16) is even in v. However, it will be recalled

that the fourth order systems(21), 7(26) hold only for the variable Z, M. Tht

conjugate systems, for Z, M, lead not to (26), but to

W w, q - p + CJ, (27)

and this corresponds to shifting the reflection of the curve of Fig. 7 in the

horizontal axis) a distance w0 to the right. Geometrically,,different portions of

the curve w + f(p), w > 0, are skewed; w - f(p) to the left, w - -f(p) to the

right, so that equal and opposite v-roots, still go into equal and opposite roots.

Since the special case (19) is thus always stable, it follows, by continuity,

that the system (15) is stable for sufficiently slight rotor and shaft asymmetries.

We turn next to another special case, namely when all the elaszic constants

vanish:

A. = A = O B, = B2 = 0, C1 = C2 = 0. (28)

leads to an unrestrained or free rotor.



Xqs. (15) now veparate into (ýy) equations whUch ae~d to

22
(V2 - + 4F V2 u .(v2 2 + 2.. o 0

and to (X, )- equations from which folloies

I IJV4' + J-+ (K - I) (K'- 3) 0 V 4(30) •
+ (-K ) (K•-) W 0

It is of interest to point out that Eqs. (29), (30) also follow from (16)

when the elastic constants do not vanish, if o is allowed to got large, provided

it is assumed that the roots v2 of A (v) also get large, so that V2 2 remain

finite. This assumption-is, indeed, valid for (29), (30). Hence the roots of (16)
behave like the roots of (29), (30) for large M In the ( 2 v2) -plane the

ratios v2 /0r2 correspond to slopes of asymptates of the curve A(v 2 ) C 0.

The repeated roots

2 2 (31)V = - C , -•(

lead to solutions e tiwt, . which represent uniform rectilinear

motion of the c.m. when described in terms of x, y of the rotating system S.

Eq. (30) can be put in the form

2 
v. 2

x + (1 + a) x+ a - 0, x ., a (K-I) (K-J)/ IJ, (32)

and factors into

(x +) (x+ a) - 0 (33)

thus yielding
V22 / V22 -(K - 1)(K-J) / IJ - -a. (34) 5

It will be noted that if K is the largest or the smallest moment.of inertia, the

roots (34) lead to stable solutions; on the other hand if

I< K< J or J<K<I (35)

then one root of (30) leads to instability.

The above results for (34) agree with the classical Poinsot motion, where

the hodograph paths near the principal axes with largest and smallest moments of

T , are closed curves (on the elliproid of inertia), but form two self-
2" 2 •

S-...ct..ing curves through the interrmediate axis of inertia. (The root v _W
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corresponds to a rotation "out a 0tincipal dZi hil fizA4I.u to

Returning to generu~l veluos of the elastic constants, the irxtabihity in

case (35) inplies that the solution of (15) is unstable for la•r•ai augh ac.- g &

K is Um&im or niULwm,, no conclusion can be drawn regerding t: stabilit' of

(15), except that for large enough 2 the roots are all stvble.
It is of interest to find the values efco2 for i v2 -O0ga root of (. 64

since passage from stability to instability may occur by v2 passing fros a n*&tive

to a positive value, hence through v - 0.

If V - 0, then x, ,jLpt. becme constants, and eqs. (15) separate into an

(x, ;) - pair leading to

'[-a2 + A,1 [(X - ) 2 +c C, 12 ft 0, (36)

and a (y, • ) - pair, resulting in

[Mo 2+A2 [(_J)C2+ C2 - 0. (37)

A study of the roots of (36), (37), under the assumption th:t th- :-ZAsAs a

stable position of (static) equilibriu, leads to th. ' . .. t, •.; (.

holds, three roots w2 of (16) for v - 0 are positive, one ncsvJW';. ,ion (35)

does not hold, then ell the four roots of (16) are positive for K> I, K> J, or

two are positive end two are negative. Plots of A (co, v) for v - 0 are indicated

schematically in Fig. 10.
2 z2 2

I I<.<J K,>,, >J

K<J or J<Z<I

/

2( ,0) 20)

Fig. 10a Fig. 0Oc

Eq.. (16), when ,qanded in powers of v , yields

t'(w, V) - m2 I J v8 + ( ) v6 + ... + A(W, 0) 0. (38)

product of the roots of (16) is thus equal to



1 2 3 4 2

2 2J
Huen. follows that for CoD correspon~±nj to negative: &2 )Uva1 "

all four roots of (15) can be negative. f•*es rotor speed intervals thus cef-

resnoud to unstable solutiosa.

2-negative to positive values-ttw occur at the 0 -rots of eU), (37)!-but also

through tvc negative roots V1 , 2#2 2metinS and receding at riSht angles in the
complex plane. This happens at simultaneous roots of the two equations

A(W2,2V) 2 0, •(2, V2 )/2V2  .0 (40)

in conc.usirm,, for an unsymmetric rotor and shaft, there always exist wmitabI,.

rotor speed ranges.

As an example, we return to the rotor of Section 6 with the two shaft stiffnessea
ki, k2 (corresponding to A., A2 ) and the centrally supported rotor, but assam

that the latter has two different transverse moments of Inertia 1, J, I A J. Ia

terms of the constants in Zqs. (1), (2) we have

B i .B2 M-0 (411)'

Eqs. (15) now separate into x, y equations whose solution has been fouad in

Section 6 Ond X, p equotions leading to the determinant equa4tio•

2 2 V (K- 1) W2~ + [C 2 + ( J)W2+C

2 2 2+(KI- I - j) V 0 (42)

2 2 2 2Since f is quadratic in V and cW2, Eq. (42),when plotted in the (2, 2) -plane,
2 2

yields a conic section C. For large w , V , the roots of Eq. (42) approach those

of (30); thus C has real asymptotes whose slopes are equal to the right-hand

numbers of (34).
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The center of C in found by putting

-0, f1 .0 (43)

Solution of tm4 re:ulting "near equations yields

2C C (K-) C2.+(K-J)C22.2a + ÷ ''(I (+a)

(1-a) (1. - a)2

2 2 2 C2 (K + ) + C (K -J) + I+a C2 (•._ .)0)(1 (1 - a)

Expanding f in a Taylor's series about the center and factoring as in (32), (33),

there results for C

[ -V v 2 ) + ( 2 2 '22 2)] [ý D _a)v ) + a (W -<D) + f (v2 to) /IJ(I) (KýJ)- 0 (45)

Schematic plots for C are shown in Figure 11.

2 2

a >0, 
a<0,

K largest or K between
smallest 2 1 and .'

2

Fig. lla Fig. llb

Thus far it has been assumed that the I,J axes of Inertia of the rotor are

parallel to the principal directions of bending of the shaft. Suppose now

that this is no longer the case, and that while Eqs. (3) - (14) apply, the

principal directions of bending of the shaft make an angle y with the principal

directions i, j of rotor moments of inertia. We shall indicate the modifications

in the dynamical equations (15) arising from this misaligrnent of principal axes.
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" quations (1), (2) imply an elastLc potential energy Q of the shaft given by

for y mO)

2 2 2 2
2Q- (A x + 2B1  i+cp )+ (Ay . 2B 2 yX+C 2 ) % (46)

ith 0 < y < n/2, the energy Q is obtained by replacing (x,y; X,g) in (46) by

x',y' ;X',p') where x'..g' are the linear and angular displacements along (and

bout) the principal shaft stiffness axes x',y', where

X x cos 7 + y sin y, y' - -x sin 7 + y cos 7,

)'uX - cos 7+p sin y, I' -- Xasin7.+g cosy. (47)

ý.placing x,..., g in (46) by x', .. , P', then expressing the latter in terms

f x, .. , g by means of (47), there results for Q the quadrative form

4
2Q= A u U Au

,J--1 ij i u ij A ji

iere• to make the siumational notation available.,u; i 1,2,3,4 have been intro-

iced for x,y; X,g, and A are shown in Table I &nd where the further notational
I. ij

bbreviatione

c - cos 7, s sin y (49)

ive been mAde.

TABLE I

AI2  2 + A2 2  A B c 2 +B = ( sc, t - B1 ) C
12+B2 A 13  ( 1  Ac) t14  (B2-

2 2

A (A1 d2 + A2 c 2A a 2 + B2  2)

A4 4 = (c 1  + C2  )

.e dynamical equations replacing (15) are now obtained by replacing the force and

rque terms in (15) (i.e. the terms involving A ... el) reepecti-,ely by
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<)x 5ul 'A~ll A12y+A13"+A 1 4 1

y "2 A2 1  + A 2 2 Y + A2 3+ + A 20

(50)

x " A31 + +A 3 Y + A 33 X + A343

~A x + A

au 4 1  4A2 Y + A4 3X.+ A44

The iesulting equations lead to i corresponding determinantal equation replacing

(16), but now with no vanishing elements.
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EFFECT OF JOLZMAL BEARINGS ON ROTOR STABILIT

Thus far each bearing has been assumed to act as a"fixed" support for the

rotor shaft or journal, so that while the rotor shaft rotates freely inside the

bearing, the point on the axis of the shaft (or journal) at the bearing center

was assumed to undergo no transverse displacemente. Even for pre-compressed

ball or roller bearings, this assumption is satisfied only approximately, due to

the compliance of the bearings. For cylindrical Journals, however, where there is

definite radial clearance between the journal and bearing surfaces, this

assumption will never do, in view of the added freedom of motion of the journal

center in its "circle of clearance".

The position, in the middle plane of the bearing, of the journal Zeater

01 relative to the bearing center 0, for a given load on the rotor (such as the

rotor weight), automatically adjusts itself so that both bearings "carry" this

load; that is 01 moves to such a position that the pressure developed by the

lubricant in the bearing has a net resultant acting on the journal which is

equal and opposite to the applied load. Basically this pressure distribution

is due to the shaft "dragging in" the lubricant into the convergent portion of

the film.

It has been known for many years thatý at times ,the rotor

vibrations apparently maybe induced by the lubricant in the bearings. This

can be demonstrated in a laboratory model: by temporarily reducing the

lubricant supplied to the bearing, the vibrations diminish. For a horizontal

shaft and reasonably high loads these instabilities occur at speeds considerably

higher than the critical speed; for lightly loaded bearings or for a vertical

shaft they may occur even at low speeds.

To include the effects of journal bearings on rotor stability, it is

evident that not only is knowledge needed of the steady state bearing

forces corresponding to a fixed position 01 of the journal center, but also

of the transient forces arising from the motion of 0 near its equilibrium

position.

For simplicity, we consider only complete, 3600 , self-acting (that is,

non-pressurized) journal bearings. We suppose that, as in Fig. I, the rotor is

mounted at the center of the shaft, and that the shaft is supported at its ends

by two, exactly similar, perfectly aligned bearings. We assume, furthermore, that

the displacement 001 of the journal center from the bearing center is the same at

each bearing, at all times. Then the same force

I- , -



(* , rt)

will be awmrted an tha rotor Josunal by the lubricant in eh bearia; h•ect

r

when directed toward the barizng center 0, while is the forct cI tI et

right angles to 00 .

A section of the bearing (with an ewagerated radial clearance C) i shoew

in Fig. 12. The Journal center 01 can evidently be located only within the

"clearance circle" ,eith center at the bearing center O and of radius C. %once

DO cC 0 < < 1, (2)

where c is know as the "eccentricity"; a w 0 corresponda to coincident 0, 0

1 - 1 to actual contact of journal And bearing surfaces.

Set up axes as in Fig. 12, with the y-axis in the direction 001 of thi

Journal center, steady-state displacment, and let 0 be measured from the

y-axis. The tap is given by

h- C (1 -i coo 0); (3)

it is evidently even in 0.

lagion of potential
negative pressure.

V t
Y

Figure 12

Also shown on Fig. 1.2 are the force components Fr) F acting on the journal,



as veil a the "attitude, s1le"

that is the angle between the applied load,en4 the diepLacmmnt vector, 00. V

The trceas 'r', It are liven by

L/2 2x'P "a f di f pce dO,
r -L/2 0 (5)

L/2 2x
a do d p ain 0 dOQ,

-/2 0

where p is the pressure, a the radius of the journal, L the axial bearlsr Length,

z the axial distance along the bearing surface from its center line, and 1ý is

positive when directed radially inward. 7he pressure say be found by integrating

the Reynolds equation, which for an incompressible lubricant is

where i - viscosity of lubricant,

U -acu a linear velocity of Journal due to its rotation,

W - h - normal, (i.e. radial) velocity of Journal surface positive wbhen

directed toward 0

W vanishes if 01 is stationary; otherwise it is given by

w - (ur cos g + u sin 0), t - C, u -Cc6 (7),.

where u is the radial, u the tangential components of velocity of 01) and a is

the angle formed by 001 with a fixed direction (on Fig. 12 g - 0). Hence

W - -c cos0o - Ca sin 0. (8)

Substitution from (3), (8) into (6) yields
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[(l 9os )3 ]+ C[( -coo 0) 3 }
(9)

- -Ce (w- 2&) sing -2 Ci cos 9.

This equation has to be solved so that p is periodic in 0 and satisfies the
boundary condition

P = Pa at z - + L/2 (10)

at the bearing ends, where pa is ambient pressure.

Solutions of (9) have been obtained under the assumption that p is inde-

pendent of z:

p -p(e) (11)

an assumption that is valid for a long bearing except near the ends, see

references (4), (5). Substituted in (5) they lead to

Fr-. -Ký ,r' Ft - K( - 2&) ft, (12)

provided F* is measured positively outward, where

3 2
K - 12-x pa L/C2, (13)

(1_ 2)3/2 ' 2 21/2 (14)
(2 + )(1-2)

Consider first stationary 01:

ý . 0 - .1 W0(15)

Eqs. (12) yield

F = 0, Ft KB f t(c). (16)
r t t
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This implies that

X/2(17)

The vanishing of F for a stationary 01 also follows from the syusetry of the

tilm thickness about 9 - 0 and 9 - x, as a result, the pressure increase over the con-
vergent half of the film is matched by an equal pressure decrease over the divergent

film half. In equation form:

p(6) + p(-9) - 2p(O) - 2p(x); (18)

This states that p(O) - p(O) is odd about 8 - 0, and p(e) - p(n) is odd about 9 .

(That p(O) - p(x) follows by putting 9 - o in the first eq. (18) since p(G) is

periodic of period 2x). Indeed, eq. (18) follows from eq. (9) for i - 0, by noting

that the right-hand member of (9) is odd in 9.

Likewise, the coefficient of i in Eq. (9) is even in e, and the resulting con-

tribution to Fr, F in (5) leads to a vanishing F
r t t*

The same considerations of evenness and oddness of p carry over to solutions

of Eq. (9) for bearings of finite axial length L. Eqs. (12) are valid for them, too,

but with a different K, and with fr' ft functions of E and L/2a.

Actually, the above prediction (17) does not agree with observed positions of 01.

For a vertical load of different magnitudes and at different speeds co, the equilibrium

positions of 01 in its circle of clearance, tend to cluster near a locus schematically

shown in Figure 13, and approximating a semi-ellipse. At most, (17) holds only for

small e, that is for light loads, or very high speeds.

-- 2C--i

Figure 13

The explanation of the above discrepancy between theory and tests is due to the

negative pressures which are allowed in the solvation of Eq. (9), but which cannot

be realized in a liquid lubricant. If the pressure is decreased in oil, it will tend

to cavitate and release dissolved air and oil vapor. Therefore, Eq. (9) must be

solved subject to the condition

p > 0, (19)

and putting

p 0 over A (20)
c
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where A denotes the cavitating area. Many shapes of A may be found.

A '1inimum lose" principle, Cameron and Wood, reference (6 ), have proposed the con-

dition of vanishing normal pressure grodient at the edge of -1.

0 at boundary of A (21)

On Pigure 12 the cavitating area A is shown -schematically between the

broken lines on the divergent film half. With (20) holding on A c, Eq. (18)

fails to apply for & - 0, i - 0, and a non-zero Fr results.

For a long bearing, if Eq. (11) is assumed, Ac is bounded by two lines

of constant 9, and these are determined by Eqs. (20), (21). Forfinite L, the

determination of A may require trial and error methods and special programming
c

on high-speed computing machines.

Physically, the 'boundary Ac may vary with pa in Eq. (10) and with the

nature of the liquid lubricant, its vapor pressure, and its dissolved gases.

While (9) remains linear in p outside Ac, the introduction of Ac whose

boundary may change with the right-hand number of (9), renders the problem

non-linear, and superpositionof solutions no longer applies.

It 'ill be noted that while the right-hand member of Eq. (9) involves (0,

aand ý, the two former occur in the combination a)-2&. Therefore, the integra-

tion, even with the cavitating conditions, Eqs. (19) - (21), can be confined to

& a 0, (22)

and the results used to obtain Fr, Ft for any &,-by replacing w with

2ao- -a-, g T-2&/w. (23)

Assuming & to vanish, and using dimensional analysis considerations, one

obtains, for a particular ratio of L/2a,

F r -2 .Lwf (rc'), F =e1 iru f (E,e'), (24)"r • r t t'

wh<.re 1 , f are dimensionless measures of F, Ft, A has the dimensions of a
r t r

lrlgsrL so thatý •w has the units of a force, and • has been rendered dimensionless



by introducing

'r - OXt, -C C/a d/dr. (25)

It may be shown that the length A can be put in the form

3 2
A - a L/C2 (26)

as in Eqs. (12), (13). It follows now that for 6C 0 0,

F r -1. (w - 2&) fr (r,•'Ig),
g - 1 - 2a' (27)

Ft - (-2&) f t (C, C'Ig).

For small e cavitation is not likely to occur. If L/a is large, Eqs. (12) -

(14) may form a fair approximation. Neglecting powers of e, i higher than the

first, they yield,

Fr - -Kc, Ft M K(o - 2&) e/2- -2 1ze. (28)

Note on Figure 14, that Ci, Ce& are the radial and tangential velocity components

of 0I. Hence, the force exerted by both bearings on the shaft, in rectangular

components, is

F =-2f - fw, Fy M-2n + fa, f "K (29)

where ý,n are the components of 001 in the x- and y- directions.

Suppose now that the shaft is infinitely rigid. Then the equations of motion are

m F F =-ft- fwn, v y=F =-2fh+ f4 (30)

Introducing

+ in (31)

4nd assuming time to enter in the form e , one is led to
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ak2 + 2f. + ift O, (32)

an equation which by the tests of Section I is always unstable.

Suppose now that a radial bearing force be added to the above so that (29) is

changed into

Fx - 2f4 -fan - kbt, FY " - 2fT + fa) - kby (33)

where kb is the radial bearing "spring stiffness" constant. Equation (32) becomes

MX2 + 2f + (kb + ifW) - 0. (34)

This equation agrees wth 5(3)provided, in the latter, one puts

f, = f, k - kb. (35)

Hence, applying 5(6),we find that the rotor is stable for speeds

a < 2 , (36)

that is, for speeds below double the critical, defined as the frequency of vibra-

tion of the rotor mass against the bearing (radial) stiffness. For all higher

rotor speeds, the rotor motion is unstable.

Suppose next that the shaft is not infinitely rigid but possesses a finite stiff-

ness constant, k. Then, to the given center deflection (Q, T) is added a further

deflection of the rotor center, given by

x = FxF/k, y - Fy/k, (37)

resulting in a more complex set of dynamical equations than (30). The exponential

solutions e of these equations are determined by the cubic

3 k b +k 2 k k~b k b~~2 X + ioW) + 2 %T +--) - .- (- _ (38)

it is shown in Reference ( 7) that this equation is stable for

w < 2mo (39)
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and unstable for higher rotor speeds, where ao is defined by

2 I - kb 1

+ Ak)M (k + Kb) m

This critical aw is the vibration frequency of the rotor mass against the joint

bearing and shaft flexibilities (in series).

The transition to instability occurs as the rotor speed c - 2m . As a0

passes through this value, one of the roots of (38) can be shown to cross over

into the half-plane Re(X) > 0, the crossing taking place at

X = i0 (41)

corresponding to a circular whirl of angular frequency equal to the critical

frequency, even though the rotor speed is twice the critical.

For a> 2w a root of (38) representing an expanding whirl results, with0

the frequency of whirl increasing, but slowly, with w.

If kb is allowed to approach zero, but k tc remain finite, then c° in

Equation (41) appro'ches zero, and rotor instability at all speeds results.

This result agrees with earlier studies of bearing-rotor motion, based on Equa-

tions (12, (14), Reference (8).

In Equations (28)-(41) we have considered motion of 0 about the bearing

center 0 for a journal free from external load. Actually, kb is likely to vanish

for small c, judging from Figure 13, and some external load is required to briny

about cavitation on the expanding film side and generate a non-zero Fr and kb.

With a constant external load, Equation (33) is applicable, with t, n repre-

senting the displacements of the journal center from the equilibrium portion

(see Figure 14), and Fx, F the added bearing forces due to this added displace-x y

ment. At the same time e must be sufficiently small to justify the approxima-

tions in Equation (28) to Equations (12) and (14).

The above theory historically represented the first successful theoretical

"treatment of bearing 4 nduced whirl (see Reference (7) ), and it was obtained at a

timne when no solutions of Equations (9) and (19) were available. By increasing
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kb with e, one obtains a higher co in Equation (40), .thus explaining the increased
stable speed range (39), with higher static loads. Ye' a more sound treatment

should be based on solution of Equation (9) with cavitation.

Such solutions have been carried out for various L/2a (see Reference 9 ),

so that the functions fr, ft and their derivations at c' - 0 are available. We

outline the small displacement stability calculation, based on them and on Equa-

tion (27), for sizcable e.

0

x

'I P

y

Figure 14

On Figure 14 )et 01 on the y-axis be the equilibrium position of the journal!1
center for a given static load, •, T the small displacement OIP of the journal

center from Ol.,and de, da the corresponding increment in c, a. Ec-ations (27)

for small de, da, dý, d& yield

3f af
r r

dF - o("-r dc + dE') - 2d&,f
r 6E 6E r

+f t (42)
dFt =; 7 - dc') 2d&ft,

where fr and f and their derivatives are evaluated at c' 0 0. in rectangular
ce

components,' Equation (42) yields for the added forces exerted on both journals.



Wf 2f df i
~ K' ( - r. • -- L )..+

Xr+ W i

SdLfft 2fr a•af 6 f •

Y K' (+ " r 7 ,1

3 3
K' m 2P La 3/C

Attention must be called to the fact that dFr, Y have opposite sign conventions,

and to the use of the relations,

dca = /CUc, d& - 4/CxUC (44)

in obtaining (43). Equatiors (44) definitely excludes the small c case.

We now tutn to the solution of the dynamical rotor equations -

=' X m • Y , (45)

considering first a rigid rotor shait. We assume a solution ui Equations (43),
%t

(45) varying with time as e , and put

S= W ' (4b)

where (o has the dimenbions ofa),(I/sec), but as yet unetermined, so that v, s are

dimensionless. There results

sf + 2vf + EE s --3 + V--ft
r t O E

6s(v) -Of 3f 0 (47)

sf + 2frv sv- r + V -' + E
t r -e d

where 2 3 2nw)v mC3a v

E - 0 0 3 (48)

K' 2pLa 3

Equation (47) can be shown to be stable for low s and unstable for high

enough s. The transition to instability occurs by v crossing the pure imaginary

axis, at v = +iv 0 0. By substituting V = iv in Equation (47) and ?qquating to

zero the real and imaginary parts separately, two equations resuit. The second



equatior, yields Of (f

(f -4 + f -) + 2(f f
f - r dt t Jt d r _ 09)EI

Lnd applying this to the tir4t one, one obtains

of d"'f
f r C Ef 1(C) ft d

2 f 2 W "df of (50)
2- " fL f > fr de

Dividing lquaticn (49) by (50) and recalling (48), there results

3 2f2 mC3wo

6 = 4f- (51)SLa3

Now choose w so that a - 1. Then Equations (46) and (51) lead to

m2 • 2 2 4f l(C)
2 2 -2 4wLC 1  (52)

0 MC3  f2 (c)

while Equations (46) and (50) yield

2 0
-2 - 2f 2 (c) w0o2 (53)

Equation (52) determines the critical speed, w w0 o at which rotor motion

becomes unstable, while Equation (53) yields the frequency of the insipient whirl

at that spued.

The above theory can te extended to include a finite shaft atiffness coeffi-

ciency k, by properly changing the definition of 1. (see Reference 9

Turning to a brief consideration of compressible lubricants, it is evident

that cavitation does not occur since a gas can expand to fill the divergent film

half, A (p, V) curve of the form schematically indicated in Figure 15 results,

where V is the specific volume. It is evident that equal and opposite volue

changes + ,IV,lead to unequal pressure change% (p) +, (,p)'. Thus more pressure
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increase is obtained on the convergent film halt on Figure 12, than pressure de-

crease on the divergent film half, and Equation (5) leads to a non-zero Fr

p

I V
Figure 15

The Reynolds Equation (9) ia replaced by

az (h 3 P a ) + _ fh 3  :P 4 ap)-6i[Uj--+2W+2 (54)

Assuming an isothermal (p,p) curve simplifies Equation (54) to

(h3p ") + a~- ( h3p -a-) - 6 ria d(hR) + 2pW + 2h a -(55)

adC) a adoLad dx at]

This is non-linear in p. It no longer involves &, a in the simple form c- 2&,

as in Equations (9) and (12). For stability calculations near equilibrium
•bt

positions, solutions varying with time as e , require further solution of Equa-

tion (55), due to the term 6p/ct on the right.
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x

EFFECT OF DIFERZNT BEARING SUPPORT STIFFNESS CONSTANTS

Thus far, the bearing sup-gorts have been assumed to be rigid. We now

corsider the effect of resilience or flexibility of these support5 on the

rtability of the rotors and shafts considered in Sections VI - VII. The inertia

of the supports will be neglected.

The bearing supporta generally posses different stiffness constants in

two mutually perpendicular, fixed directions, say, the horizontal and vertical

directions. Suppose that as in Section VIII, the shaft, to., has different bending

stiffness constants in two directions; these rotate with the shaft. The net

resilience of the shaft and bearing supports turn out to vary with the

rotation angle

•' r t - (W)

whether it 'a exprt ,ed tio.- fIxed v' Jtatin3 axes. One is thus led to

linear dit&erer' P,pronss oi rotor motion with periodic coefficients. For

the roto: .- ; .tion Vi An 8th order system with periodic coefficient results; for

special cases this separates into two 4th order systems, or reduces to a single

4th order system. For the rotor of Section Vt,the tranletional motion leads to

the system

4x + (l+o*-p coo 2T) d2x + (p sin 2 -) d 2 - 0,
di2 

dT2

(2)d2xd

py + p nin 2T Lx + (1-o-p cos 2 T) d-2 - 0,
dr2 dT

where 4,p,a are proper constants. The rotational displacements (with unequal

I,J, leads to another 4th order system. We consider the stability of soluticnz

of (2).

As stated in Section i there exists special solutions of linear differential

equations with periodic coefficients such as (2) of the form

P(T) e (3)
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where P is periodic of periodnT- n, and., is a constant. iour such solutions
%T

exist for the 4th order system (2), each with its own exponential e And

general solution is a linear combination of th-se four. For stability of the

motion all four \'s must be in the half-plane

Re (X) = 0 -4,

If any one of the X's fails to satisfy (4), then the general solution of Eq. (2)

will become infinite at t increases.

The stability conditions (4) are similar to those for linear differen-

tial equations with constant coefficients; the difference lies in the great dif-

ficulty of obtaining the values of X.

Since

X(r+n) eX,
e Cee , (-,

the solutions (3) have the property of being multiplied by a constant C when

ir.creases by the periodn. The requirement (4) leads to the condition that all

four C's lie within or on the unit circle

ICl 1. (6)

The derivationof (2) proceeds as fbllows. Denote by i j unit vectors

along the (fixed) (x,y)-axes of Fig. 1 and by i , j unit vectors rotating with

the shaft, and corresponding to the directions of the principal moments of inertia

of its cross section. A force

F - F i + F j - F (i cosT - .in T) -,- F (i sin T + j cos T) (7)
0 x o0 yp Y X~ y

opplied to the roitor, will produce a deflection due to shaft bending

fl (Fx coS T + F sin T) i + f 2 (-Fr sin T + F cos r)j (8)

and a deflection

f3 F F +1f0 Fv jo (9)
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due to bearing support deflections, where fl, f 2 are the flexibilities (i.e. re-

ciprocals of stiffnesses) of the shaft in the i, j - directions; fr the
-~~ -~ ~' -4

flexibilities of the bearing supports in the i , directions. We assume that

fl 1> f2 0 f 3 >f 4 " Adding the displacements (8) (9), expressing i, j in (7) in

terms of i , j , and introducing the notation

f- = (f + f2 + f 3 + f4 )/2, p- (flf2)/2fm , = (f 3-f4 )/2fm (10)

where f is the mean, joint flexibility of the shaft and bearing supports, therem

results for the net rotor center deflection x, y

x/f = (I + a + P cos 2-C) Fx +(psin 2T)F ,

Y/fo =- (sin 2T)Fx + (1 - - p cos 2r) F y

If the force F , F is due to the rotor inertia, then
x y

2 2F -m , F - 12
F x ft Md 2 ' y d.2

Then, replacing F., Fy in (11) from (12) intri)2ucing T as in (1), and putting

22 1
02W 0 (13)0 mf2m CU

one arrives at Eqs. (2).

Before considering the solution of (2) proper, we first note the special

cases P = 0, and a 0 of equal shaft or bearing support flexibilities. In

the former case

P - O, f1= f2 =f a (14)

the trigonometric terms in (2) disappear, the periodic terms P(T) in (3) reduce

to constants, the X's turn out to be pure imaginary and correspond to sinusoidal

solutions in x, y of frequencies a), W2 respectively where

2 I1 0 2 1 (1 5 )
" 1110 = u 2 + _3) ' 2 = m(fs + f 4)
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In the latter case,

a = O, f3 - f4 . f (16)

by using rotating axes, eqs. (2) may now be reduced to Eqs 6(7), but with

kip k2 replaced by

f f - f + f (17)
k 1 bp k 2  2 b

Eqs. 6(13) yields the u'•stable range.

1 2 1I18

m(fb + f 3 ) m(fb + f 4 )

2
while for *cn outside this range the motion is stable. 11 erms of 0, P Eqs. (15)

(18) become

D., o; v Ci -), 0, 1+ C, (18)

0 0; 1 - P< K < I + P . (19)

Summarizing, it is seen that for P - 0 the constant bearing flexibility may

be added Lo each shaft flexibility.

For general a, P periodic coefficients persist in Eqs. (2) whether fixed

or rotating axes are used.

Following Floquet, an algebraic equation for the four characteristic con-

stants C (see Eqs. (3) - (6))can be formulated if four (linearly independent)

solutions of (2) are available. It is given by the fourth-order algebraic

equation

[uij(J) - C .j 0 , (20)

where 11j5 ji is the fourth-order, unit matrix (b. 1 for i j, 5 = 0 for

i A j), and

u = xi(r), u i2 x1 (T), ui 3 ' yi(T), ui 4 - y(T); i = 1,2,3,4 (21)

are four solutions of (2) whose initial values are equal to the i-th row of the

unit matrix. 6-. ii-wever, since separate integrations of (2) over the interval
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0 < T < v have to be carried out for each a, P, procedures based on (20) appear

economically prohibitive, even with the aid of high speed computing machines.

Expansion of the solutions of (2) in powers of P is a possible method of

integration of Eqs. (2), provided both X and P(T) in (3) aie expanded in powers

of P. The convergence for sizable P is very slow, however.

Also slow is the convergence of the "classical" method, due to A. V. Hill,

babed on the expansion of P(T) in (3) in Fourier series in T. A significant

improvement in its convergence was effected by Foote, Poritsky, and Slade, in

Ref. (D); we proceed with a qualitative description of this methoo. koee Ref. 11)

First, we simplify Eqs. (2) by introducing, as in Sections III-V, VII, VIII

Z - x + iy, Z - x - iy, i =V . (22)

One obtains from Eqs. (2)

+ pZ + (a + e 2e )-Z O0,

(23)-2 in" "

Z+ (a + e )Z 0.

Setting
XT n iT - t niTZe L. ne , Z- e L:B e n- +l,+3,.. (24)Z = e Z A e , ~ ;n .

n n-- -

substituting (24) into (2) arid equating net coefficients of each exponential to

zero, one arrives at the equations

?P'Bn2 + [I +2 A n+a Bn -O0

(25)

aA + 1++ 21B + P A0n (k•+ m) jnn

for the coefficients An' B , where n + 1, + 3, ... By equating determinants

of central blocks to zero, one obtains

£n (n ) 0. (26)

The limit of the root:: of (26) as n gets large, yield the values of X..
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First, it wili benoted that renaming the (dummy) summation index n in (24) as n + 2

or n - 2, i, equivaleat to replacing k by &-21, 1+2i respectively. Hence, to each

value of . :n (3), the periodic array %+2ni also furnishes possible values; they all

lead to the same value of C in (5) since e 2 = 1. Ncxt note that changing t into

-t and interchanging Z, Z laves (2) invariant. Hence the four A.'s are arranged in

two pairs, +&-1' ±+2". Finally, from (25) it will also be seen that X = + ni; n=1,3...

are fourth order polesofiln). Now a function of X having all the above properties

is given by

( h2 X1IhA 2 l•i - 2 2sfinh + sinh -,-) ( sinh sinh )
fW22 (27)

cosh (nA k/2)

It is therefore to be expected that the ratio of L. by a proper f-nction of n ap-

proaches f(%) as n - •.

The function off(%) can be expressed as a trigonometric function of

(av/2), % = ai, (28)

and its numerator as a quadratic

2 - x(K -K + 1N + VK.. 0. (29)
I-

where

x = sinh2  (C-) 2 /4C (30)
2

K1  sinh 2 sinh2

K, = cosh2 cosh -
22

Thus the C's and X's can be found once KI, K2 have been obtained.

The convergence cf (the roots of) An(%) to (the roots of) f(%) is very slow. This

can be demonstrated from the convergence of the infinite products in

k2 00 2
Cos!-U W(l - M) . sn~' nuw- AX r - -u (31)

k=2 ,3 .. , k=2,4,...

t-o their limits. In Referere (10) K u K2 are computed as limits of certain

sequences of KIn to Ki, and K2n to K2 is speeded up by means of "convergence factors"
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which are bejically the ratio of the left-hand members of (31) to their finite pro-

duct sums, For details the reader is referred to the reference proper.

Figure 10 shows the unstavl, regions in the (p,Ii) plane; fir a = 0, to the right

of the broken lines; for a = .1, to the right of the solid lines with a triple

zig-zag. It will be noted that the single unstable range ior 0 0 breaks up

into several separate ranges for o = 0.1, for small p, but continue as a single

wider range for larger p. For large o , the unstable speed ranges separate even

further. The boundaries of the unstable region correspond to passage of one &-pair

from pure imaginary to real or complex values, and belong to the loci

%I2 = 0, %i2 _ i, %12 = X22 (32)

corresponding to the roots of Equation 29. The geometry of the change is indicated

in Figure 17.

xI 0, x =-i, x 2

-i ji ___

Fig. 17a Fig. 17b \Fig. 17c

On Figure 16, the upper and lower curves correspond to XI 0 and Figure 17a

and "grow" out of the loci (18) for p = 0; the middle one. 2 2rrespondsto 1
1 2

and.Figure 17c.

For small p,o the above unstable ranges. occur near aL I. It can bf. shown that

similar, but smaller, un.table ranges occur near

=22 32 42 (34)
2 , 3 , 4(4

zmat is, when the rotor speed is near a submultiple of ao

w/w 0 = 1/2, 1/3, .... (35)
0•2



1.6

1.4 =.I o 0

1.2

1.0
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co - rotor speed
0. - main critical

.2 P - shaft dissymmetry

- bearipg dissymmetry
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Fig\.16 Stable and Unstable Regions
for ai 0, .1

-
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The effect of static friction has been considered in Reference (10); it narrows

the. unatable range and may even abolish it.

Similar analysis is possible when unequal bearing support flexibilities are added

on to the rotors of Section VIII, where both angular and tranelatory motion are in-

cluded. In particular, the (%, p) motion of the symmetrically mounted rotor of

Section VI considered in the text near Equations 8(41), 8(42), with added fl' f 2

due to the bearing supports (converted to an equivalent angular stiffness constant),

leads to a fourth order system with periodic coefficients. In form, these equations

are the same as for a rigid shaft passing through the origin,with different angular

stiffnesses for the angular deflections %, g. This case has been studied by

Brosens and Crandall, Reference(l4, using the same method of solution.

The addition of fl, f 2 to the general rotor of Section 8 leads to an eighth order

system with periodic coefficients.

The method of convergence factors is applicable to higher order differential equa-

tions and will be discussed in another paper.
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XI

APPLIED FORCES. GRAVITY. UNBALANCE

Thus far, the rotors have been assumed balanced, and free from external

forces. We now consider briefly rotors subject to gravity,and unbalance forces

and torques.

With the addition of external forces (and torques) the linear equations of

motion become non-homogeneous. Their solution consists of the sum of a particular

solution and a general solution of the homogeneous equations described in Sections

"II-VIII.

Particular solutions will now be considered corresponding to a constant

force, such as gravity force; then to the unbalance of the rotor.

Under a constant applied force (X, 0,) such as the gravity force X - -mg,

eqs.2(l) become

mi + kx - X, m+ ky - 0 (1)

A particular solution'is given by

x - X/k, y - 0 (2)

corresponding to the static shaft deflection under the action of this force. As

stated above, to this is added the general solution of the homogeneous system

2(1). Hence, the motion can be described as the oscillation2(2), not about

x - 0, y - 0, but about the point (2).

Likewise, for eqs. 2(6), the solution consists of a sum of (2) and the

damped oscillatory solutions of 2(6).

For the rotors of Sections III - V, a constant applied force producs a deflec-

tion in the direction of the force, as well as at right angles to it. In par-

ticular, under rotary friction, the addition of the force (X, 0) to the right-

hand members of eqs. 4(1) yields the constant displacement given by
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kx+fl• X, (3)

ky-f a- f - 0,

leading to

kX f I Cox (4)

k2 + f 12 W 2 . 2 + f1

producing an angular displacement relative to the direction of the force, given by

f W
tan a - - (5)

The above was utilized by A. L. Kimball in measuring the coefficient of

internal damping, reference (23), by loading a horizontal rotating shaft vertically,

and measuring its horizontal deflection. It had been expected that a would vary

with the rotor speed, and with the load; it turned out, however, that within

elastic range of stress•a was quite constant, and small. Thus, if a rotary fric-

tion model is used for internal damping, then f must be assumed to vary inversely

as cu.

Assuming the existence of a normal force F as in Section III, Eqs.3(2), but
wn.

changing k1 to -k 1 , one finds that a constant applied force (X, 0) produces for

small kA/k a displacement

X k1Xx y a -' a k 1 /k. (6)

The elastic energy of the bent shaft, due to the force X is given by

V - X2 /2k (7)

Since the shaft is revolving, the elastic strain of any element of the shaft can

be shown to vary sinusoidally with time. The existence of the force F can be ex-

plained by the assumption that the stress-strain behavior of the shaft material is

described by narrow, elliptical hysteresis loops, and this assumption leads to the

energy loss
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ick V J1  (8)

per cycle. Thus, a is a measure of the "solid friction" or internal damping

of the material.

For the rotor of Section 10, a constant applied force Fx produces a deflec-

tion given by eqs. 10( )

x - f F (1 + a + p cos 2-"), y - -f F p sin x 2-r (9)
m x m x

As r varies over half a rotation, AT n n, this describes a circle, shown

in Fig. 8, whose diameter is at

f - f 3 Fx (l+ +P), y - 0, (10)

x -fm F (1l+o - P), y - 0,

and whose radius is fFp. The motion.along this circle is counter-clockwise.

Px

Fig. 18

We now consider the effect of unbalance. Assume the rotor symmetrically

mounted between two bearings, as in Fig. 1, and suppose that the unbalance is

likewise symmetrical, so that 02, the c.m. of the rotor, lies in the midplane

normal to the z-axis, at a distance e from 01, the shaft center.

Denote by (x, y) the components of the displacement of 01, from the unbent

shaft center portion 0. The position of the c.m. 02, when the shaft is rotating,

is
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x + e cos cot, y + C sin OX, (11)

assuming that as t - 0, 0102 is parallel to the x-axis. The dynamical equations

2(1) become

d2  d2

m d2 (x + e cos (ot) - -kx, m 2(y + c sin cot) - -ky (12)dt2 dt2

and introducing w as in 2(2),

R + ao° x M C CO Cos wt.$ + wo y - c a sin (ot. (13)

The effect of the unbalance is thus the same as of an applied rotating

force, equal to the centrifugal force.

A particular solution of eqs. (13) is

e2 Cos cut t (14)

2 2 y 2 2 (14
(0

Thus, the shaft center point 01 describes a circle of radius r, where

2r = (15)
cu -w)

and 001 is in the same direction as 01 02 if

2 2 (6
CO<ao' (16)

but in opposite directions- if

2 2 (7

WD > CD0  (17)

Eqs. (14) imply that, for speeds below the critical, the rotor rotates with

"the heavy side out"; at speeds above the critical, it moves with the "heavy

side in". See Fig. 19.

A plot of r/e vs. w is shown in Fig. 20, Page 69.
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7 y /

r 02 0 01 CUo 0

0 x 0 x 7

Fig. 19

Fig. 20

where the ordinate plotted represents the right-hand member of (15), but without

the absolute value sign.

From the above, it is evident that the cr~tical speed w° can be defined as

the speed at which an unbalance causes a larg'- (theoretically infinite) ampli-

tude of shaft displacement. The angle between 001 and 0102 changes from 0 to

1800 at the critical.

As co becomes infinite, the ordinate of Fig. 19 approaches -1. This means

that 02 approaches 0 and the rotor rotates about its c.m., which approaches the

z-axis.

At a) - co, a particular solution of (2) is given by

A C e t eU t
x - sinot, y t " 2 cog t (18)

2 0 2

This may be described as motion in a spiral, known as 'arithmetic" or

"Archimedean" spiral, with the radius r increasing linearly with time, indefi-

nitely.

If a "static" friction force (-fx°, -fyO) is added to the right-hand member

of (12), then, introducing Z - x + iy as in 3(), the dynamical equation becomes

+_ 2 Z2 iWt

2 M - 2 io (19)

-69-



This leads to the particular solution

w2 eImt
o2 + i__ + 2 (20)

m o

whence, taking real and imaginary parts,

x - r cos (wt 0), y - r sin (wt -0) (21)

where (see Fig. 20)

2r . 22 (22)
F [D2 _ Wo2 ) 2 + f2 CO m2M211/2

tan = fW/m (W 2 W

0-

711 0

Fig. 21 Fig. 22

A schematic plot of 0 vs. w is shown in Fig. 22 ,and nce vsw. cois in Fig. 23

There is now a gradual change in 0, from 0 to -1800, as a) increases.

r

0 Fig. 23
It is of interest to compare (20) with

I ico/L $W2 (24
E 2 R 2' 0 LC (4

-70-



for the ratio of the current I =I*Vc to an applied voltage E - Ee*it in an

R, L, C circuit. Thetypical resonance curve is obtained by plotting the ab-

solute value of (24) vs. w. Essentially, (20) differs from (24) in having an

extta factor Im in the numerator. The maximum of Z/e occurs at co-m c)m> CDO

while for (24) it occurs &I• w - mo. However, if f %D/m is small, as is generally

the case, % - wo0 is also small.

Thus, unbalance causes a rotor whirl or vibration: , whose amplitude is

large near the speed t - wo" This is the reason for the term "critical" £'i

this speed, which was inLtially defined in 2(2) as the vibration frequency of

the rotor mass m vs. the spring stiffness k.

For the rotors of Sections 3-5, a particular solution due to unbalance

is still given by a circular motion of 01, described by equations similar to

(18)-(23), but with r/e and * given by different functions of a). This is the

case, even when the solution -f the homogeneous system is unstable, as for rotors

with a normal force F n as in 4?4. 3(l).

Addition of unequal bearing support flexibilities to the above rotors and

shafts yields two criticals 1 ', w2. Now unbalance leads to an elliptic path

for 0, and to large amplitudes at each critical. The phase changes of 0 for each

one near w1 ,' W 2 , have the effect of producing for a)< a)< a2 a retrograde motion

of 01, that is, opposite in direction to the rotation of the rotor.

Likewise, for the symmetrically mounted rotors of Section 10 with different

shaft and different bearing flexibilities, unbalance leads to a periodic solution

for the path of 0. For small p, the path is nearly elliptical.

Thus far, only "translational unbalance" has been considered, involving

(k, y)but not (h, V). We now turn to the rotors of Section VIII, under General

unbalance, where the rotor displacement involves x, y and X, j, and the unbalance

involves both c.m. off the z-axis, and the principal axis of inertia off the

z-axis.

Adopting the rotating axes of Section VIII, we suppose that the rotor, c.g.,

for the unbent shaft, is located off the z-axis, at
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x y - y, -Z (25)

We suppose further that a line through the c.m. parallel to the z-axis is not a

principal axis of inertia of the (undeflected) rotor, through its c.m. Put

Eq. 8(10) in the form

CD2 + W i+ J 2 + %k 2  -. U ,'2+ +u) (26)

Then eq.8(12) is replaced

M " 2 ICox "x Y OY Y z 2
H-i2 [c zI 2

"" 12 x Y WX2 + J WY2 , z WZ2 (27)

"k• Ix z COx2- Iy z 2 + K c z
2 z Y2  Z2J

where Ix Y ... are the products of inertia about the x 2 Y2 .. axes

If we assume "slight" rotary unbalancem, then the products of inertia.

1 , .. are small in comparison with the remaining moments and products

of inertia.

Substituting for i, j2, k2 from 8(9), differentiating with respect to

timesand recalling 8(3), one oýtains i, j - equations which differ from 8(15)

(a) in the introduction of added terms linear in x, y, X., p on the

left side of 8(15) involving Ixy, Ixz, Iyz, and

(b) in acquiring the right-hand force and torque terms.

2 2 2 2
MW ex, M: 2 y, - Iyz W 2, - Ixz a) 2 (28)

As regards the terms on the left which are linear in X, g and

involve I.., Iy,, these may be :onsidered small of the second
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order, and will be neglected. On the other hand, the terms involving I arexy

equivalent to the existence of an angle y between te principal axes of the rotor

and of the shaft cross-section. In absence of Fig. 28, one is led to a form of

equations equivalent to those described at the end of Section VIII, involving the

angle 7.

As regards the terms (28), the first two terms represent the unbalance forces cor-

responding to the righbL-hand members of (13); the last two, the unbalance moments

due to the angle between the z-axis and the nearest principal axes of inertia.

Particular solutions of the resulting differential equations can be obtained

by assuming that x, y, N, g are constants, and are given by

N (co, V) N (a), V)=x ... =P "(29)
x •(wv) vl 0 &A (,v) v-= 0

where N ... , N are obtained from A by replacing a proper colnum of a by the

unbalance terms (28).

Since the axes of Section VIII are rotating axes, the solutions (29) represent

a circular whirl of the rotor with the rotational speed w, with the unbalance

forces and torques balanced by the elastic forces and moments. The amplitudes

(29) become infinite as w approaches the "critical speeds" given by the W2 roots

of A(w,O). As pointed out in Section VIII, these critical speeds given by the c2roots

as transition points, at which the solutions of the homogeneous system 8(15)

change from stable to unstable solutions. [Properly speaking, a above represents

not A in Fig. 8(16), but obtained fromte modified system resulting from the replace-

ment of M in Fig. 8(14) by Fig. (27).]
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XII

VARIABLZ SPEED

Thus far, we have alweys assumed that the rotational speed of the rotor, 0,

while arbitrary, is constant, without inquiring how this speed is maintained. Gen-

erally, the needed power for maintaining this speed is supplied by an electric motor,

a turbine, a diesel],or some other "prime mover". It has thus been assumed that

these "prime movers" supply whatever torque is needed to maintain the assumed con-

stant rotational speed, CD, even when the rotor is unstable and both kinetic and po-

tential energy is required for the increasing amplitude of x, y, ), i.

In view of the large amplitude vibrations due to unbalance near the critical

speed (See Equations XI (13), XI (19)), no rotor is ever designed to run at or near

its critical speed if it has one such speed, or if it has several criticals, near

any one of its criticals. If the operating speed of the rotor is above its

critical(s), then it must pass through the critical(s). For a perfectly balanced

rotor, as in SectionlI the rotation and the translational motion, x,y do not

interfere with each other even when the rotor speed is variable, and the passage
through the critical(s) is uneventful. On the other hand, for an unbalanced rrtor

whose speed is changing, the translational motion is affected by the variable
speed. We proceed to consider this motion of an unbalanced rotor whose speed is

uniformly accelerating from rest, so that its angle of rotation 0 and speed 9 are

given by

-t12, 0at at. (1)

Unless a is very small, the solutions of Section XI say Equations XI(14), are quite

inadequate for describing the rotor behavior.

Of special interest is the rotor motion near t - to, the time at which the

rotor speed 0 - at is equal to the critical speed oo:

t 0W0 /a. (2)0 0

For simplicity we consider the same rotor as in the first part of Section 11,

that is a centrally mounted rotor, with the c.m. 02 at a distance E from the shaft axis

01 , and with the principal inertia axis through 02 parallel to the =-axis. For

22such a rotor the translational motion x,y of the points 01.0 2 can be considered

apart from the angular motion (%,4) of the axis, and we proceed to consider the

former.
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Denote by x,y the position of 0,, the shaft ctnter point in the plane contain-

ing 02' the c.m. Then the position of 02, assuming that 01 02 is initially parallel

to the x-axis, is Siven by

X1 M X +e" Cole, y' m y + e sing, 9 - at 2 /2.

In place of Equations 11(12) one now obtaina the dynamical equations of

motion*'

" 2 d 2  i 2)
0dt2 C•2 (4)

Y + Wo~ Y T (- H i •-.

dt 2

For definiteness we consider a particular solution of Equations (4) subject to the

initial conditions of'an unbent shaft, and starting from rest:

x = 0,x - 0, y = 0, ' -0 for t - 0. (5)

The general solution is obtained by adding the solution 2(3) to the above particu-

lar solution. (The effect of gravity changes the initial value of x.)

In terms of x: y' tnd the coordinates of the c.m., Equations (4) become

=+ O t coa(C~t 2 /2)0 0

(6)

'+ wo2y' - o2 2S sin(at/2)

while the boundary conditions (5) become

x ' E= € ' =, 0, 0: , 0' = ;

these can be reduced to (5)by - the solution x' - c cos w t, y' - 0. In-
0

troducing the complex variable

Z - x' + iy' (8)
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one obtain* from (6), (5)

+- +2 0 ic t 2 12 Z 0,Z-fort 0O (9)

The solution of (9), or more generally, of

S+ w u f(t), u -0, C± 0 for t- 0. (10)

can be carried out in terms of its "Green's Function" G(t,s), as follows

t
u(t)- foG(t,s) f(s) ds, (11)

where G is defined as follows:

G(t,s) = 0 for t < s,

2 2
- + w G= 0 for t > s (12)•f 2  

0

•G(t,s) 1 .

S-t

Physically, G represents the solution of (10) for an "impulse" force at the time

f(t) = (t-s) (13)

where 6 is the "Dirac Function", while Equation (11) represents the response to any

f(t) es a superposition of responses to equally spaced impulses.

The solution of (12) yields

sin w (t-s)
G (t,s) G(t - s) = for t > s.

0)

The dependence of G on (t-s) is characteristic of linear differential equations

with constant coefficients.
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Applying (11); (14) to (9), we obtain

t eas2/2
z -W ods (15)

By expressing the sine in terms of. imaginary exponentials, and completing the squares

of the quadratic exponents, the (15) can be put in the form

A -t 0~ e'/t/ e/o f'te a2/du - e" fot e Ciu2 /2 "(16)

2i 2 -tt
O 0

The integral in (16) is related to the Fresnel integrals defined by

Z(v) = C(v) + iS(v) e fo do,

V
C(v) f cos (nl /2) do,

0

S(v) = f sin (no /2) do.

There results

•~t • • •• {e 0"O L'-o' - " -V' "L a•o - •o
2ie E~- E(-v 0 )] -eio~3 t (VE(vo)]

where (18)

V= Ma t, vo = t"'-
Vt t 0 - •

Tables of the functions C(v),S(v)may be found in Jahnke-Ende. The function

E(v), plotted in the complex C+iS plane, yields the well-known Cornu Spiral indi-

cated schematically in Figure 24 For large v , the following asymptotic ex-

pression holds:

2
iiav /2Y

l+i i e
E(v) - 2 V +*... (19?

2 n v

where .... refer to terms involving 3, 51 ....

v v
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The path described by +2 is given by

x' +ity' - Z(t)+÷ ccosomt (18)
0

and aside from the angle 0 =at /2, it depends on the angles

2
Qo =oto, 0(t) - at /2,

where 0 is the rotation of the shaft, 0 the rotation angle of a rotor rotating with

constant angular velocity wo" In particular, at the time to, v - v° and Equation
0 0

(18) yields

Z(t) e 'E(vo) + -E(2v (20)

The maximum of 17.1 occurs generally for t > t

2to•

A solution similar to (11) can be obtained for a rotor possessing static damp-

ing, as in Equations 2(6), provided G is replaced by

-a(t-s)
G e sin b~t-s)

eb s a + b b X (21)
b

where >. is given by 11(9), Likewise, the integration can be expressed in terms of
the integral E but for non-real arguments. The integral E is related to the error-

function but again for complex arguments.

The assumption of Equation (1), e-ven for a mas-ive prime mover exerting a con-

stant torque, is not necessarily valid, d,:-. to 'h,; variable torque that the shaft
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must apply to maintain the motion of the unbalanced rotor. Indeed, the kinetic and

potential energies of the rotor are given by

m, [d 2Lo< + [.-_ (y> +,, C sing)] + 1.
(22)

m 2 + ,2 + 26 (Q cos - : sing)) K -• 2 (

V (x2 + y2) (23)

The first two Lagrange equations agree with (4) while the third one yields

[me.[", cos. - .,,.,n) + + me U sing + i co.0> (24)d-"t

where is the external torque about the z-axis. If the above solution for-'x,y,t

is valid, then the torque-Q6 must act on the shaft. In general, the torsional

stiffness coefficient' of a shaft is of the same order of magnitude as its bending

stiffness. Hence, the assumed Equation (1) must be corrected.

If the prime mover is not very massive, the effect of its moment of inertia

"and of its torque vs. speed characteristic must be taken into account.
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XIII

COMP-OMN ROTMR

Thus far, in Sectionsll toXlI, many basic features affecting rotor motion and

stability have been considered. For clarity, the effect of each complicating fea-

ture was treated by itself, and under simplest possible assumptions. Thus the

effect of bearing lubricant was considered in Section IXonly for a symmetrically

mounted rotor consisting of a single disk rotor, but it was neglected in Sections

II to VIII, X to XII.

In practice, rotors may have more complex structures, and many of the features

considered in Sections II to XIImay be present simultaneously. Ac an example, a

steam vurbine rotor consists of a fairly massive shaft whose thickness varies

axially, and on it are shrunk many disks carrying steam buckets. This "prime

mover" may be coupled to a massive turbine generator. The "active length" of the

latter forms a constant radius cylinder, carrying imbedded current coils in slots,

and for a two-pole machine, may lead to different bending stiffnesses in two direc-

tions. The coupled, two-span rotor is mounted on several bearings and may have

an overhung, small rotor (voltage regulator).

A complex rotor with distributed inertias and a variable thickness shaft is

treated by breaking it up into many sections, each one with its own translatory

and rotary inertias mi, Ii. The large number of degrees of freedom gives rise to

a higher order system of differential equations, with more criticals. Inclusion

of damping, bearings, pedestal support flexibility further complicates the system,

very often to such an extent that high speed computing machines are required for

their treatment.

To illustrate some of the features arising from an increase of degrees of

freedom, we consider a rotor with two disks, as shown schematically in Figure 25

Pi

m2

Fig. 25

-80-



We assume that the shaft and the disks are axially symmetric, and that each disk is

perfectly balanced.

To set up the equations of motion, -#e start with the displacement load equa-

tions similar to those of Section VII.

11 F x1 + &12Ty1 + al3Fx2 + a14 Ty2 ,

11" a21Fxl + a 2 2 Ty2 + a23Fx2 + a24 Ty2

Io x n aF + a T + a F + a T, aj - aj (1)

2 31 xl 32Ty2 33Fx2 34y2,

-2 a41Fxl + a4 2 Ty 2 + a4 3 Fx 2 + a4 4 T y2

Here x1 , p, are the linear and angular deflections in the x, z plane of the shaft

at P1, the center point mi; x2 , .2 the corresponding deflections of P2  the center

point of m 2 , while Fxl and T are the external force in the x-direction, external

ylytorque a line parallel to the y-axis, applied at T a similar force

and torque applied at P2. Thus, if only a force Fxl is acting, then the deflect-

. ions produced by it at Pit P2 are given by the terms in the first column on the

right of Equaticn Q) and so forth.

Solution of equations(D yields

ExI - AlX1 + A12 p1 + Al3x2 + A14"2

Ty1 .A2 1x 1  + + A2 3 x2 + A24L2

(2)
F x2 = A 31xI1 + A 32'L1 + A 33 x2 + A 34"2

T y2 = A 41 xI + A 42p1 + A 43 x2 + A 44"2

where Aiy is the "stiffness matrix". Both the Aij and the flexibility matrix a,
by Maxwellis reciprocity theorem, are symmetric:

aij =ei Aij = ji 3

ii
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For an axially syestric rotor, the (y,h) equations are similar to Equations

I and 2, and can be obtained from them by carrying out the following substitution&:

(4)
txl 1y2' T_-. Tx2, 'x2 Y2 F y2

Consider first w - 0, that is, a non-rotating rotor. The dynamic equations of

vibration in the (x,z)-plane are obtained from Equations(2)by replacing its left-

hand members by the inertia forces and torques of the disks:

F 1 -ml il' Ty1 - "I• Fx2= "m2 x 2 ' y2 - "I2I2 (5)

There results an eighth-order system of four differential equations. The vibrations

in the (y,z)-plane follow under the substitutionm (4)

Assuming a solution of either set of equations in which time enters as a factor,

eit (6)

one is led to the following equation for p:

Yl Y1 Y2  P2

1  2 32

Al'mlP2 A 12 A3 A (4

A21 A22-1lp A23 A24 (7)
•= =0

A A32
A31 A32 A33"m2P A34

A41 A42 A43 A44" 12P

where the first row on the top indicates the variable occurring in each column.
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The (yg) frequency equation is exactly the same, provided the variables be
chosen in accordance with the substitution in Equation 4, hence as indicated b7

the second row above the determinant.
A

Consider next w > 0, that is a rotating rotor. For it, the rotary inertia

terms must be corrected by the addition of gyroscopic terms. Recalling Equations

7(11) and 7(12), one obtains for M, , the rate of change of moment of momentum

of each disk,

M~(IlA, IK1ý1) £i I (Il~ -l W~c) j

+ KKo a, C()$ (~2 (Y-23C+i 24 + ( 22  2 2: e)J

and the i -components of M , are equated to T, Ty; the i-components to

to r xl-T There results now a system of eighL differential equations of net

order 16, involving all eight variables x, . . . . . . ý2"

It is possible to halve the order of the system by introducing the variablez

Zl M x1 + iy, M -N = i ikl' 2 = x2 + iy 2 ' M2 - "2 -" 2 (9)

By proper manipulation of the (x 1 . .... 2 )-equations, there results a system similar to

the (x,•)-equations, except for the addition, in the principal diagonal, of the

terms

0, -kKla*1, 0, -iK 2 MM2 . (10)

Under the assumption :in Equation(6),these added terms become

0, K1w M1, 0, K2apM2 , (I1)

and lead to the net inertia terms

-mlp 2 Zi, (-Ilp2 + KIav) M - m p2 Z - K2(-1) 2

There result in the variables of Equatiors(9four simultaneous equations which are

the same as the (y,p)-equations. The determinant of the coefficients, when equated

t- zero. resembls Equation 7 for a non-rotating Lotor, provided I1, 1I are replaced by
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I

Il 12 12 -K 2~

In Seneral, for only m, the p-roots are real, and the solution represents a

possible circular precession. If the critical speeds are now defined, as in

Section 12, as the o-values for which the precessional frequency is equal to the

rotational speed c:

p - ®; (14)

then Equations (13) are replaced by

I., = II - Kip 1 2 =M 1 2 - K. (15)

Hence, we conclude that so far as the gyroscopic effect on the critical speeds

is concerned, the static vibrational equations, say in the (xz)-plane, can be used,

provided the rotary inertias of each disk be modified as in Equation (15).

This rule applies to an axially symmetric rotor with any number cf disks.

In practice even the calculation of the stiffness and flexibility matrices

aijo Aue becomes irksome for a complex rotor. One proceeds by step-wise integra-

tion of the "beam equations", say for the deflections in the (xz)-plane for x

and p:

ax 2 ET dT
6z - F + Sx -r " 0,

(16)
dS x + W, = 0

dz x

for the deflection x, slope ý., moment Ty, shear Sx, where wx is the external load

per unit z, my the external applied moment per unit z. Both wf and m are derivedy
from the inertia load of each section, and are concentrated, say by being divided

equally at the two end points.

Assuming a value of a, one solves the fourth-order system, subject to proper boundary

conditions at each end. For a single rotor span of length 1, mounted on "fixed"
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bearings at each rod, these conditions are

x - O, T - 0 at zO, 
(17)

$

x -O, T - 0 at zx .

One proceeds by applying Equation (17)snd assuming several sets of further conditions

at x - 0, say the values of ýL and S The resulting solutions are then interpolated

to satisfy, say x - 0 at z - A, and Ty at z - 1, is computed. Then t is varied

until T vanishes at z A. See References (16), (17).
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