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%’ ABSTRACT

This report treats the theory of the stability of an elastic rotor. Tt covers

such effects as instability caused by friction damping in the rotor, instability
caused by shaft asymmetry, instability caused by asymmetry of the rotor mass,
instability induced by fluid film journal bearings, the effect of static damping
on the stability of the rotor, the influence of gyroscopic effects, the effect

of flexible bearing supports, and the effect of gravitational and unbalance

forces.

The report gives the basic governing equations and the methods of their solution.
The conditions are established under which instability is encountered and it is

shown how the results relate to a practical rotor system.
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K INTRODUCTION

1o the following @ sevicw ie piven vi siavliiiiy vl rviurs for >amil
displacements, both linear and angular, from the axis of rotation. MNeny
of the results are well-known and are summarized here just for the sake
of complateness. Some results are believed to be nev, or at lesst wers
nev when first obtained by the suthor.

The restriction to small displacements renders the dynamfcal
equatfons of motion linear. This linearity allows one to use supsr-
position, thus computing separately the rotor aotion nndar ~-ffecte of
gravity, rotor unbalance, and the free motion of the zotor, that is,
its motion near squilibrium, in absence of any sx’ernal forces and
torques. Most of ths following i{s confinad to a study of the free
motion. The effects of external forces, however, ars considered bdriefly
in Bection IXI.

As regards the rotational spead of the rotor, it is sseumed throughout
most of the following that this speed is msintained ¢onstaat. This may
require & special Jrive, such as an slectric motor, turbine, or belt

. drive, In ordar to simplify mattors, the mechanism for fnsuring thg
constency of speed s neglected, as is also the frictional torgue.
However, the sffect of variable rotor spesad is brisfly conaldsred in
Section 11, iirgely in running through the critical.

Vith gravity, unbalance or othsr external forces absent, tha differ-
entisl aquations for the 'free motion' of the rotor become both linsar and
homogenous. When thes cosfficisents of these diffarential equations are
constant, their solutions consist of linear cosbinstions of axpongntials

At At
A (1)

where the A's are routs of a proper algebraic aquation, known as the

‘eharacteristic equation':

- n n-1 (2)
£(N) aox +al>. +.....+ln'0

if all roots ).1, Aa» ,,,An of (2) have a resl negative part, then

2

‘.
N .
X wa P
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every solution of t. dynamical system rspresenting displacements from
equilibrium approaches zaro ss time increases. On the other hand, {if
apy ope of the rooto' of (2) hes a positive real part, then the ganeral
solution increases indefinitely with tims, and the equiiidrium position
is unstable.

From point of view of stability 4t is not really necessary to solve
the characteristic algebraic equation (2) for all of its roots; it 1is

sufficient to determine whether each root has a negative real part:

le(x1)< 0; i{=1,2, ..., 0, 3)

In the following, such equations will be referred to, quits {paccurately,
as "stable equations'. Likewiss, wve refer to (2) as a 'real equatica,
when its coefficients 8gr 814 ..oy 8 BT all real numbers, or can bs
made real by dividipg (2) by & constent. An equation which is not “real™
in the above ssnse, will be referred to as & “complex equation'. .

A well-known test for the stability of s real equation is dus to
Adolf Hurwite (Ref.l). It is :

Let
a,>0. (@

Prom the coefficient of (2) form the nXn matrix

‘1 .Q 0 0 R

8, s, a, & ..

s ., 8, eeeen (5)
20-1 " ta

vhere the subscripts of the elements in the first column incresse {n steps of




2 from one row to the next one, while the subscripts of the elements in any

one row decresse regularly; when the subscript is larger than that of any

coefficient occurring in equation (2), or negative, that slement is re-

a =0 for k<0 or k>u. (6

A necessary and sufficient condition for the stability of tha real

equation (2) is that the following inequalities holl:

D,>0, D,>0, ... DO, )
all hold, where Dl' . Dn are the "principal" determinants of the matrix

(5), given by

Dy =2y,
D2 - ‘l lo
43 80
D3 " | “o 0
8,8, 8 {8,
s %% %3]
Dn - L 'o o . .
‘Zn-.l v .n

An alternative stability criterion for a real equation, duas to
Bouth, (Ref. 2), will also be recalled.
Break up £ A) into two parts as follows:
£ (A)=mU (X)) +V (N)
wheve
n-2

n
U(k)-lok+lzh L ST

V(A) = alx""l A"

-3




whers U contains all the terms of (2) with sven subscripts (that is, the
terms with &, 8., ««:), while V contains the terms with odd subscripts.
Vivide V intv U, vsnoting the quotient by { and tha remainder by RS

C N V(A QIA) + R{A) (il)
Then, in order that the real equation (2) be stable it is necessary and

sufficient that

9y 2o (12)
and (4f n>1), the equation of degree (n -1):
£, (A = VOO + (Y a»

be stable. Por oml (12) 4s both nscassary and sufficifent.

Further applications of the above Routh critericn anabls cms to reduce
the condition for stability to a numbar of insqualities of ths form (12) andto
the stability of an ever lower degree squationm.

Turning to complex equations {2), two tests for stabiliry will now
be given.

A necessary and sufficient condi. for the stability of & complex
equation (2) is that the real squation of dagree 2n:

£00 B0 = [a a0 4., + .n} [iex“-+... + in]- 0 (14)
be stable. Here bars denots conjugates:

c+ id = c- 4d {15)

and £ () is obtained from f£(\) by replacing all tha cosfficlents of tha
latter by their conjugates.

A test for complex squations, which is similar to the Nouth test given
above for real equations, {s as followse.

Lat L in (2) ba rsal, and denote the following complex coefficients thus:

i




e e

PO e e Ty g

O et ] Bde o]

deme

B L T I

v pemea vpe

4G - bk + L Cer S ™ 0 (16)

Break up £(N\) as in (9), vhere now

Vo) = b A% e 4 e Aty paB 2 AL,
c 1 2 h ) (n

n-l a-2 n-3
V(\) = bnx +1 czk + bak * tieerss

DividV into U, as in (l1), denote tha quotient by Q and ths
remaindar by R, Then, in order that the complex equation (2) be
stable, it is necessary and sufficient that

b° b1 <0, (18)

and that the complex equation (13), of degree n-1, ba stable.

The last thaorem was proved by the suthor in an internal Genaral
Blectric rcport,"Stubili:y, Hunting, Pollo--up? issued in 1938, wvhere
various other tests for stability were also presented. After & lapse

" of a somewhat long interval (26 years), it i3 planned to publish soon

the rather interesting, purely geomatric proof of it.

In certain cases the lineariszed rotor dynsamical squations possasa
variabis, periodic coefficienta, genarally of a pariod aqual to half ths
period of rotation, It is known that special solutions of these equations
exist, of the form

kit :
e Pi(t) (19)

whare P1 are periodic, cf the same period as tha coefficients and A, are

i
constant. The ztability of the solutions now reduces to the requirsment (3)

for the exponential multipliers.

Unfortunately no simple test similar to the above .riteria for stability
of the solutions (19),0f & differential equation with periodic coefficients
exists. These equations will be briefly discussed in Ssction X .
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Consider a rotor coneieting of a disk of mass m, symmetrically .
supported on s relatively light shaft of stiffuess k, and rotating
with constant angulsr velocity about a fixed axis 00 (ses Fij3.l).
Assume no unbalance, naglect frictional torques, or

“d=p/k

rather assuma cthat any frictionsl torqua is overcoms by & proper -
driring torque, so that s constant speed of rotation is maintained.

Dsnote by x, y the displacement of the rotor (and shaft) center,
relative to fixed (i.es.Newtonisn) (x,y,s) - axes, with oxrigin om the
z-axis, at the centar of the undeflected shaft. Then the equations

of the rotor motion are
=X = -kx , my = -ky. | (1)
In the above wa have naglected forces othar than the one due to the

shaft stiffness k.

The solution of (1) leads to simply harmonic¢c motion of x,y, of

(radian) frequency
w = VE/G ‘ (2)
This will be called tha "critical lpicd" ¢f the rotor. More explicitly

x m A con(mot +€¢), y=?3 con(wct +6") (3)

1f the phaae angles ¢, ¢' are squal, then the path is & straight
line through the origin., For genaral ¢, ¢', thea path may be shown
to be on ellipse, If
€' me+n/2, A=+8B (%)
the path s a circle,.
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We naxt add to the shaft force a "frictionsl" force, opposing
the velocity:
'f;;‘fg'o - (5)
vhere £ is & positive ﬁonatlnt. This force we term, somewhat in~-
. ‘appropriately, 'static'" friction, in the sense that it opposés the

velocity relative to static, i.a. fixed, axes. The equations of
translational motion of the rotor center now become

mx = - kx - fx, - (6)
my = - ky - £y, :
The solution of esach one consiste supsrposition of exponentials

o, | M
where A\ satisfies the equation

oAl + 4 k = O, (8)
The two roots of (8) ars given by
2 .
Amaph e 2 0 %)

and each one has a negative real part., Thus the displacements from
the undeflected position x = 0, y = 0 approach zero with time; the
affect of friction is to dampen out'lny initial disturbance from the
equilibrium position, which position is thus seen to be & truly stable
position,

In the above it will be noted that the rotation of the rotor has no
sffect on the bending of the shaft and the motion of the rotor center.
In fact, Eqs. (1), (6) and (9) do not.involve @, and they remain the
same whether the rotor is rotating or not. The rotation of the rotor
is merely suparposed on the top of the displacement of the rotor center,
the shaft rotating about its bent center line, the rotor and shaft center
undergoing the displacement x, y corresponding to a forcs squal to the
right-hand member of (6) applied at its center.

S S




In general, - f e mn compavad with the term k=, 2nd the roots
A in (9) may be put in the form

T T3 I RN T (10)

where 12 - -l;fkr isithc real part of A, and t;A] the imgzina;y part,
leading to axpres'sipna for both x and y as linear combinations of products

of
At +\ t

e , @ ] (11)‘
The pure maginary exponentials represented by the second factor in
{11) when properly combined, yield real sinusoidal terms of frequency M\

3
given by
"E-Lz_’_‘. -..L .1..§_ .,, l

while the real exponential in (11) as stated above, leads to an ex-
ponential lecay of smplitude. Por £ = 0,i.e. in absence of friction,
)'j reduces to the critical speed @, given by (2), while for small £,

f2 .
?xj-mo(l--s-ﬁ). (13)
The introduction of friction thus leads to s slight, second ordetr

decrease in the frequency }‘j‘ Nevertheless, we shall continue to refer
to w (rather than xj) as the critical speed of the rotor. ’

For £ = 0 the motion has been described above. For £ > 0, the general
motion may be viewed as describing an ellipse whose axes remain fixed
in direction, but whose semi-axes are decreasing exponentially. For
special motiomsthe ellipses become circles and then the path is a logarithmic
spiral; these are represented by the equations

-theik t

x+1y'-Ae 3, (14)

%+ 1y =B e-}\zte‘ﬂ‘jt - (15)

M




The genaral motion may also be viswad £3 & supsrpositics of the
two logerthmic spiral motions, glvea by Bgs. {14} and (15); slso
as obtainedle from either {i4) or {13) by sffscting & homoganscus
strain, or skewing,of the (x,y) plans, of ths typs in which perailisl
straight lines go into parsllel straight linss, but distances end
angles are not preservsd,

v
b R R T

Summarizing, it hes been shown above that the effect of static
friction on & balanced rotor consists ia reducing sny initiel dis-
placement of the rotor center to zero, both the x and the y coor-
dinates varying with time as exponentielly damped sinusoids. The
motion of the rotor center takes place in an ellipse whose dimensions
decrease exponentially with time, the frequency being given by AJ,
the damping being determined by Xr, given by equation (10). Generally,
Aj is close to the critical frequency @ and Xr is independent of

the rotational speed of the rotor.
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The elastic shaft fdfcél for a round shaft, is directed along
a radius, from %, y toward the center of the undeflected shaft; it
may thus be described as a "radial" elastic (return) force. To
this ellitic‘forbélzi {n 2 (1) we now add a fotcc'rn, nommal to the
displacement (x,y) and given by ~ '

sn:(-kly , “1") o (1)

wvhere kl is a constant (see Fig.2).

Figure 2

The equations of motfon 2 (1) are replacad by

mx = ~kx - kly,
. (2)
oy = ~Ky + klx.

In the system (2) the variables x, y do not separate as in 2 (1).
This system cen be solved by putting

X .
x=Xe t y Y=Y ext (3)

leading to an algebraic equation in A, of degree 4. A slight simplifi-

cation results by proceeding as follows:

Multiply the second Eq. (Z) by i = J—l and add to the first one. In-
troducing the variable )

Zwx+1iy (4)

=10~

s




e L AT o Pk 7 i

[ it o > 4

one is led to the second order differential equation

nE = (k1 k)Z (s)

This {s solved by putting
z=a (6)

resulting

mx2+(k-1k1)-o,

Tk, - & %, (7
A= y - i Y= - ===,
- m m m

Since kz complex, one of its two roots, say Xl’ will the & real

positivé part, the other, -xl, a real negative part (see Fig.3).

*_» /
m

~k/m

|
.hl,

Figure 3
The general solution of (5) is

Ze4 et A, e ™Mt (8)

where Al’Az are arbitrary complex constants. The Al-term (i.e. the term
involving Al) becomes infinite with time; the Az-term approaches zero,
From (8) x and y are obtained by taking real and imaginary parts respectively,

Thus the effect of the force Fn normal to the displacement and pro-
Ay
portional to it, is to make the rotor motion unstable. This conclusion

holds whether kl is positive, as in Figs. 2, 3, or negative, that is,
whether the normal force is in the direction of rotation or in the

opposite direction.

-11-
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The path described by the Al ~teym on the right of (8) re~
presents motion in a logarithmic spiral, with ]z§ increasing ex-
ponentially with time; the second terms reprasents wmotion in & log~
arithmic spiral, nof the same angular frequency but rotating in the
opposite direction and IZ] decreaging exponentislly with time., The
genersl solution (8) is the vector resultant of the two motions, and
as time gets large, approaches the receding logarithmic spiral.

The notion of a normal force is not purely an scademic one. For
a steam turbine or a gas turbine, bending of the rotor shaft de-
creases the radial clearance between the rotor and stator blades on
the side of the displacement. This éausel a decrease in the gas lesk-
age over the edges of the rotor and stator bladeg, with a consequent
increase in the local gas reaction on the rotor blades. On the opposite
side an opposite effect takes place. However, the increase in force
on the displacement side generally overbalances the decrease on the -
opposite side. Thus, there results a net‘(resultant) fqrceﬁ?n, normal

to the displacement of the center.

It will be shown in Section IX, that the lubricant in & journal .
bearing, generally also produces a force Fn on the journal, normal to
A
the displacement (in the bearing) of the journal center.

At
Returning to Eq(8) it is will be noted that -the unstable term A;e

eventually leads to increasing energy of rotor motion. This energy
can only grow from the work W done by the forcelzt +.gn , during the rotor

motion, where

wzz = ftz {Z-kx - k,y) x+ (-ky +k x)y] dt
1 1'2 NI (9)
- - kf!‘——*z'—l’—)_-l + kJ(-x;z + yx) de
A1
1f kllk is small, then
A o= i‘”o*%;}'“’o (10)

-12~
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At
and the exponential growth of e 1 per cycle ig small,and so {s the

decay of c-xlc. Then, for the eMt term in ( 8), the {integral in
(9) per cycle becomes
2 -l y\, 2 2
kyr' [ d(tan x) 27 kyx* = 2x 21,:.1} , (11)
At
For the e 1" {t becomes
2 »
- 22x [ay] (12)

while for the cross terms the integrals vanish.

It is clear from the above that if lAzi {n (8) {s much larger
than lAl’ » then the rotor motion ?111 be largely clockwise and the
force Fn will take energy out of the rotor. Eventually the Artern
will become equal to and exceed the Az-term and then‘gn will feed

energy into the motion.

If, on the other hahnd, the direction of Fn vere reversed in Fig.4
by rep lacing k1 by -kl,then Fn would cause decay of the ehlt ~term
A

and growth of the e ME Leerm,

This explains why the motion {is uﬁstable irrespective of the
sign of kl' Each sign promotes its own exponential motion.

g




‘ Iy .

We now return to the case considered in SectionIl, but replace
the "static friction' force 2(5) by a "rotary friction" force. By
this i{s meant a force proportional to, but opposite in direction of,
the velocity of the rotor center relative to a rotuting system of
axes, rotating about the (fixed) z-axis with the same {constant)
angular velocity w as the rotor. This relative velocity may be ob-
tained by subtracting from the actual velocity (i,i) the entrainment
velocity due to the rotation of the system, given by (-wy, wux) (see
Fig. 4). Denoting the coeffic{ent of rotary friction by fl’ we now
obtain for the equations of motion replacing 2(6).

m¥X = -kx - fl(;:+wy),

.0 . (1)
my = -ky - fl(y - wx),
where w is the velocity of the rotor.
y
relative
velocity
entrained
velocity Jy
' T\ true velocity
x
y
x
Fig. 4
Intrcducing Z as in 3(4), one obtains
nZ + £12 + (k - L£,0)Z = 0. (2)

Once more thf&~c9n be solved as in 3(6) where A is now the root

of the complex equation

mkz + EA+ (k- 1flw) = 0. (3)

To insure stability each root A must have a real negative part.
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For a second degree complex algebraic equation
2.
boh + (b1 + icl)k + (b2 + 1c2) = 0 %)

where bo, b1 yoreseneenis €y are real, the teat deecribed in the

text accompanyiﬁg Eqs . 1(16), 1(17) leads to the following in-

equalities, \

IITTIAEITICIT FIA TS FIIF S G TE TN FF

>0,
1 2 (5)

(byby + ¢4c) - 3

b b
o

as a necessary and sufficient condition for the sta?ility of (4).

Applying (5) to (3) one 1s led to

mf, > 0, (6)

£ (k - m?) >0,
. /

The first inéﬁuaILCy in (6) is automatically satisfied (since f1

is pesitive). The second one leads to
w< kim= @ . (7 ’

Thus, for rotor speeds below the critical, the rotor motion is stable.

For rotor speeds greater than the crikical -

© >0 “‘: (8)

the second inequality in (6) will fail, at igast one of the roots of

\
(3), say Kl’ will have a real positive part, and the rotor motion will
be unstable. Since the sum of the two roots is

£
Mot = 9

-15-




it follows that for

Rz(hl) >0, 8&(&2) <0. .A (10)

The transition to instability occurs fcr‘

®-w (} an

vhen Al is pure imaginary. Eq.  (3) now yields

arl+x=o,
(12)
£1k1 - iffbo ,
and hence
kl-mol (13)

Thus the transition to instability occurs when the rotor is running
at the critical speed, and it is characterized by a circular synchronous

whirl in the direction of rotation, with the shaft "frozen" in its
whirling, deflected shape.

‘It follows from (9) that the roct A
whirl, which dampens out with time.

2 leads to an oppositely rotating

In the unstable range (8), the root A, yields an exponentially in-

1

creasing whirl. While the unstable range is 1ﬁdependent of £., it can

1’
be shown that the rate of growth of unstability increases with fl’
The notion of "rotary" friction is,itself, by no means academic.
Rotary friction is produced by any device, such as rubber pads or rubbing

surfaces mounted on the rotor. Shrink fits, especially of wide disks

or plates shrunk on the shaft, are another cause of rotary friction, since
if the shaft bends the shrunk element does not follow the axial extension
and compression due to bending of the shaft. Thus, slippage takes place
along the shrunk surfaces when the shaft bending changes,and the shaft
center displaces relative to a system of axes rotating about the z-axis

with the rotor speed.

v -
~1G-



Likewisa "'solid friction" of the shaft material contributes to the
rotary friction; by "solid friction" is implied the small hystersis
loop obtained by plotting the strain vs stress for a periodic stress-

strain: . even in the elastic range, the'cutve is not a straight line

P 2 e T

but forms a thin loop whose area is a measure of the energy loss per -
unit volume, per cycle. For stresses within the elastic limit, the
energy loss per cycle is cf the form

£V (14)
where V is the maximum elastic strain energy acd f is a "solid friction"
coefficient, characteristic of the shaft material. For larger stresses
f is not constant, but increases with anp{itude.

It is not evident that the above rotary friction effects are truly
represented by the fl-terms in (1), namely as & "viscous" force, pro-
portional to, but opposing the relative velocity. The following consid-

erations show in fact that they are not. ' _ ' .

For sinusoidal strains and displacements, solid friction effects
are more correctly treated by replacing the Young's modulus E by the com-
?

plex number

(L -1is)E, i w1 (15)

Thus, for the complex solution 3(4), if time is assumed to enter as a
factor
Pt (16)
Eq. 3(2) can be treated by replacing the shaft stiffness constant by
k(1 - 1 8) (17)

and this is analogous to Eq. 2 (6 ) if the friction terms - fi, -f} are
replaced by -kipx, -~ kipy corresponding to a value of s in (15) pro-
portional to the frequency:

s = kp. (18)

It is of interest to note from Eqs. (1), (2) that the "rotary friction”

force terms involving f1 can be represented as the sum of »

- £,2 + 1f, «Z (19) . .
of a static damping force and a force perpendicular to the displacement,

and analogous to Fn in 3(1) but with a constant kl proportional to the rotor

speed: - '
k, = f0. (20)

-17~
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We now consider a: rotor possessing both static and rotary fiictlon in a
manner similar to that of Sections IT & IV. The equations of moticn ere

Wi+ g+t (R+ay) +hxe 0,

n'y'+f§+££§-m) + ky = 0,
Introducing Z as in 3(4), one obtaine
k4 «""'i’ Pe -1t 0)zmo,

One is led to solutions 3(6) whers A are roots of

2

mASH (£ LI N+ (k- if0) = O,

Applying the criteria 4(5) for etability c¢f this complex equation, ons
obtains the inequalities: V
-o(f + fl:)> 0, ‘

1

(£ + :’1)21'5' - at,2 o® >o0.

The £first inequality is again automatically satisfied, while the second one
can be put in the dimensionless form

£.2 w2 w2
a+r e > =)
o o
leading to »ﬁ§
£ W | o
=—>= -1. *
f1 % A

Two cases arise, If the rotational speed is -i"esa than the critical speed @y
t-en the right-hand member of (6) is negative, and (6) is wtmatically

satisfied irrespective of what the values of f, f, are. On the other hand,

(1)

(2)

3)

)

(s)

(6)

if w is greater than @ the right-hand member of (6) is positive, and (6) will

be satisfied provided that the static friction coefficient f is sufficiently

large compared with the rotary coefficient fl'

The relation between a.)/wo and f/fl 1s shown in Fig. 5 where the solid line
AB marks the boundary between the reglion of stability and instability. We thus

arrive at the criterion that if the rotor is running above its critical speed,

there will be stability provided that the static friction be sufficiently large

-18-
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Pig. 5

compared to the rotary friction or, what smounts to the same thing, that the
rotary friction be sufficiently small compared to the gtatic friction.

As an exsmple, for a#mb = 2 corresponding to a rotor speed which is double
the critical speed, f/f1 must exceed unity, that is, the coefficient of static
friction f must at least be equal Fo the coefficient of rotary friction fl’ to
insure stability. For w/m = 2, if £, > f, there will be instability; '
if fl < f, stability will obtain. . )

In the unstable range the rate of increase of whirl incrcases with fi/f.

Finally, 1f to the forces in (1) one also adds the normal force 3(1l), one
is led to

mSE--lc:-kly-f:':-fl(i+my),

)
my = -ky + k;x - £ - £ (y -ox).
Introducing Z as in III (4), one is led to
w4+ (E+E) 2+ (k-1k 16 @) 2=0 (8)
and to exponential solutions for Z as in 3(6) where
nnZ + (£ + EON+k - 1(k; + of)) = 0. (9)

-19-
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By npplytng liniltr tochntqucn, one now obtatnn for stability of (9) the
followiag 1ncqu-11ty ‘ B
£ R "

Boe % ‘ T o
f1 a% : fl : . : S

The boundary of the region of atabiltty‘ii lhouu'is the dotted slanting line A' B'
on Pig. 5, for positive kl’ for nogativc 1 A'B' 18 to the right of AB. '
Remarks ainilnr te. those made at the ends -of Socs III, IV apply equally

well here. In some csses it is possiblc to fit. thc above theory so as to
include effects of solid friction and other aspects of frictional losses, by
assuming thet the "conptnntn" kl, £, fl’ vary with o (or even with the
amplitude of oscillation). When this is done, it is evident that the
rectilinear boundaries of the stability region of Pig. 5 may be greatly
distorted. - ’ '
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DLFFERENT SHAFT STLFFNESS CONSTANIS

. ﬁe{nqqﬂcoﬁbtder~a{foCbi?ﬁBhﬁféd on a ihqft of uniform but non-circular
érosn-sectian. A nbrmdl aéction of such a shnft,ﬁb!sesnes two mutually per-
pendicular direggionb“EQifespondLng to the maximum and minimum moments of
inertia and it possesses different bending stiffness constants kl’ K:, k2>'k1.
in these two mutually perpendicular directions. One may define two vibrations

frequencies . : ,
k k ,
- q__l. Q_z
@, =, o= » W, > ®, . (1

As a tesu1t4of the two stiffnesses it can be shown that a force ‘in a

direction different from the principal directions of inertia produces shaft
deflections lying in a plane different from the plane-through the z-axis- con-
taining the force. To find the displacement one resolves the force along the
principal directions of the shaft section,‘determines the deflection along

each one and superposes them.

If the shaft is rotating and the force is fixed, then the deflection com-
ponents turn out to involve in the coefficients sin2wt, cos2wt, where @ is

the velocity of rotation of the shaft.

As a result of the above the differential equation of motion also involves :

the above trigonometric functions.

To avoid this complication we refer the motion to a system of axes, (x,y)
which rotates about the fixed z~axis with the rotor (and shaft) speed w. The

deflection of the rotor center is given by

xi + yi (2)

~ ~

where i, } are unit vectors along the (rotating) x,y-axes.
~ N

Theee i,j are not constant, but

AL
o di
= ’ - - <
ac - @ ac -~ €l (3)
nt

ORI,

ks ﬂm«vm:-w ————

b
|
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¢
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Differentiating (2) we have for the (true) velocity

» L d£ di
vexi+ +xT+y =T
LexteyddxgFHEHy k&

and substituting from (3) N
ve(x-oy) L+ (y+am))

Further differentiation yields for the acceleration
TS ': . 2 e ‘ . 2 :
aw (% - 207y - 0x)L + (Y + 2 -y §.
o ) ~ st

Hence the dynamical equations of the rotor are
nek - Wy - ox) = -k, X,

(G + 2w x.- oy) =k, .

'rﬁis system has constant coefficients. The variables x,
do not separate. Nor can these equations be simplified by intro-

ducing complex variables as in 3(4).

(4) . ', ‘ £

(5)

(6)

N

y in (7)

Assuming a solution of the form 3(3) one is now led to the fourth

degree equation

IR WG e AT T A

This is quadratic in kz. Hence, unless both roots 7\2 are negative,

the solution.Eq.. (7). wil1l be unstable. .
Put (8) in the form
N + ZX?)J+ c=0,

where 2 2 2
b= (@ +w,) /2+6">0

2 2 2 2
Cm (a:.1 w ), (mz @ )a

The A2 roots of (3) are

Al = - b -j-_\)(bz Y

The radicand above is 2

.2 2
b2 - ¢ =(—-1——-%-——2-) + 2w (wlz + u)22) > 0,

-292-
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(11)

(12)
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ans is aiways positive. Hence the roots (11) ara always teal}‘ 1t

c is positive, then both roots (11) are negative. On the other hand,
if ¢ is negative, then the root =b +| b"~c will -be positive, and acme
solutions of (7) will!be unstable. Examination of (10) shows that -
this happens for

2 2 2
© < w <cn2» o (13)
Thus, for a rotor with a shaft possessing two different stiffnése
constants in two mutunlly perpendicular directionh, the speed range

(13) between the two vibration frequencies (1) is unstable.

If static friction also exists, then thé rque'of instability
narrows, and for a sufficiently large value of the coefficient f,
may disappear altogether. On the other hand, normal forces and-

rotary friction may enlarge it. ;

Thus far we have considered only translational displacements of

" the rotor. Angular displacements of the rotor axis, it will be showm

in Section VIII, introduce‘gyroacoﬁic.effects; and may produce. a further
unatable range at high enough speedd.

_23-
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GYROSCOPIC EFFECIS

Even when the rotor is mounted as im Pig. 1, it msy executa both
translational motion, normal to the z-sxis, 88 well zz rotstiopal motions about
transverse axes. The latter motions are even more likely to occur whan the
rotor is mounted asymmetrically, for instance L{f it is overhung, as indicated
schematically in Fig., 6. The following analysis applies to_apny mcde of '
support of the rotor.

7{ 1
CM
y 5
Let the z-axis contain the undeflected shaft center line 'position,
and denote by x,y the normal translational displacements of the rotor center,
and by A, M its angular (or rotational) displacements about the x, y-axes;
all four quantities x, y,M\ i are assumed to be small.. _
In this Section we assume that the shaft is axially symmetric elastically,
and that the rotor is axially symmetric; in Section VIII we consider the case when
the shaft stiffness constants in two mutually perpendicular directions are
different, aud the rotor has different moments of inertia.Il, J, I1¢J,
about the principal axes of irertie, normal to the spin axis; the third prin-
cipal moment of inertia, about the spin axis, will be denoted by K.
For the axially symmetric shaft (and rotor), a force Fx’ applied to the

shaft at the rotor center, and a moment Ty (about the y-axis), produce a linear

Y o
Figure 6. ¥

displacement x and a rotation p about the y-axis, given by

x=aF +bT,
x y

(L
u-be+cTy,

where &,b are the linear and angular displacements produced by & unit force F

-

_24_




acting alone; b,c the similer displacements produced by a unit torque Z

about the y~axis, acting alone. The matrix of coeificien:s a,b,c in (1) is the
Vflexibility matrix"., Solution of (1) yields '

=z
&

F= Ax + By, (2)
Ty' Bx + Cu,

where the matrix A,B,C is the "stiffness matrix', and is the inverse of the
matrix in (1).
Similarly, an applied forxce Fy and moment Tx (about the x-axis) produce
displacements in the (y, £ )-plane, giren by '
y= a_Fy -b Tx' . _ ' (3)
;\- -bF +CT’ )
y x

and by the inverse equations

Tx w =By +CAN .

If the z-axis is a stable position of equilibrium, then the quadratic form
Q- (ax’+ 28xu+cud) /2 (s)

representing the elastic energy corresponding to the deflectien (x, n), is
positive definite, The conditions for this are

A>0, AC- B2>0,  (C>0) o (6)

(where C>0 follows from the preceding conditions). Similar remarks apply to
the matrices (1), (3), (4). v ‘

It is assumed above that the displacements, both linear and angular, zxe
small, so that superposition applies, and the order of the rotatfions A, u is
immaterial,

It is further assumed that the rotor is balanced about its axis of
rotation; this assumption ifmplies that

(a) the center of mass (c.m.) of the rotor lies on its axis of rotation;

(b) the axis of rotation is a principal axis of inertia of the rotor,

- through its c.m.

These conditions are assumed to obtain. The assumed rotational symmetzy
impliea equality of the two transverse moments of inertia, I = J, Hence any
two axcc through the c.m. mutually perpendicular and normel to the z-axis, can
be conslidered as principeal axes of inertie >f the rotor in its undaflacted

position., In particular the unit vectors i, j, k, parallel to the », y, z-2xes,

-25-
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can be used as principal directions of inerties, even though they are fixed
in space and hence not in the rotor. After the (small) angular deflections
N, #, the above principal directions vectors beccme:

=1 -, .
PRI S @

K o=+ Atk

~

Now let A, ¢ vary with time. The motion of the rotor R, at any time instant,

consists of a translational velocity of its c.m.

ve xi+¥), (8)

-~

and of a rotation rusresented by a proper rotation vector through its c.m.

given by
9'“""1.1"'“’.‘51 (%)

assuming that R continues to rotate about its bent shaft with velocity w.

-

Utilizing Bq.(7), ® can also be put in the form
o= Xil + ujl+ wfl (10)
provided sccond order terms in A, p: X, [ are neglected. This form yields
the component of w along the (instantaneous) principal axes, and this sfmpli-
fies the expression of M,: the moment of the momentum, to be referred as
m,m,: . .
! ‘”.“11) + Kok an
=I(M +u)) + Km(ﬁu - {k +}:)_,
where the last form is obtained again by using (7) and neglecting second

order terms.
Differentiation of M ylelds

g-(xi+xﬁw)5+(1;—xolm)j. (12)

We now procead to set up the dynsmicsl equations of motion of R. Recall
that in Eq. (1) in + ij is the force applied to the shaft st the c.m. of R}
~ s
this force is either an external force or it i{g applied by R to the shaft.
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The reaction force, -?*g - ij, is therefore applied by the shaft to R.

Simi{larly the shaft applies the torque -Tx£ - Tyjfto R. BEquating these

shaft reactions on R to the mv and M, we obtain tha dynamical equations
~ ~

mx + Ax + Bu -0,
. my . + Ay B\ = 0, {13)
IA + Ko ~By +CA = 0,
I; - Kim 4Bx +Cu = 0.

Assuming a solution of (13) in which time enters as a factor
e¥t, (14)

ind rearranging the order of the equations there results the following

determinantal equation

x > 3 A4 A (15)
A+nmny B 0 0
A(Y)= B C+1I v2 0 “-Kwwv =0, -
0 0 A+mv: -B
0 K wv -B c+‘.(v2

where the coefficients in any one column arise from the variable indicated in

that column, in the row above the determinant.

The function A(v) is evidently even in v, and of the fourth degree in
vz. Thus, unless all four roots vz are negative, at least one root will have

a real positive part and the solution of (13) will be unstable.

We expand A(V) in a Laplace expansion in terms of its first two columns:
A= (12) [_34] - 13) [24] + (14) [23]
+(23) [14] - o [ + @o (13

where (ij) 1s the 2nd order determinant in the first two columns and rows {1, ]

(16)

while [1j] 1is the determinant in the last two columne and the same rowa.

There results
A= 12)% + (6)? |
= [(A«mvz) (C+Iv2) —32}2+[§A+mv2) Kv w_}z -0 (7N




To consider negative v2, we put

veaip, v:e-pl (18)
Then A can be factored thus

A= [(A-npz) ( c-1p%) - B?]- (A=) K p m}

(19
[ame?) (c-16?) - 82+ (a-m® w}.

The first factor is linear in o and)vhen equated to zero)yields

2
1
o= £(p) = % {(C-lpz) - -2 2] (20)
P A
-zp
The right hand member is odd in p, and has the asymptotes
p=0, p-:JA/m, o= -(I/K) p. (21)
Near p = 0 -
: ‘ 2
- (CA-B)1
m ’n p + ce s 000 (22) )

where +.. 18 analytic at p = 0, If we assume that the g-axis is a position
of stable equilibrium, then [qoti.ng Eq. (6)] the residue at p = 0 1a positive.

Likewise the residue at p’ -‘VA/m is positive. '
o= £(p)

? \

® = Const,

VUSSP O SO DU LRI U U

B>

Figure 7



A schematic plot of Eq. (20) is shown in Fig. 7.

& line nf constant ®>0, cuts this curve in 4 distinct points:

P = Pls_ PZ: P3) Pa}
two positive, two negative; but these roots cannot be negatives of each

other, They correspond to the time factors.
e'Pt P=py 1=1,2,34 (26)
The second factor in (19) leads to
w = -£(p) (25)

and hence on Fig. 7 to the reflection of the curve showm in the p-axis,
and to 4 roots which are the negatives of (23).

It has thus been shown that all four roots v2 of A are indeed nega-
tive and distinct. Thus for . symmetric rotor and shaft the gyroscopic
effects never lead to instability.

The factorization of A suggestrs that the system (13) may be reducuuc.ie

.0 two systems of lower order.

By multiplying the second Eq. (13) by 1 and adding to the first one, the
third one by -1 and adding to the fourth one, one is led to the second order

system of differential equations

mZ+AZ+BM =20, (26)

BZ+IM-1iKM+CM=0,

where

Z=73y +1iy, M<=pn - iX (27)

A conjugate set of equaticns can be derived for the variablgs

Z=x-1y, M=y + iA. (28)

Egs. (26) and their conjugate equations could have been used in place of

Egs. (13).

icn of (26) in which time entere as a factor
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Bach of the four rocts of {23) results in & solution 0f the fonx

ipt

x+ iy =z o, u-nan P 30}

Taking real parts ons may interpret the motion &s & wiirl of :tho rotey,
in which the shaft executes a rotation of fragusacy p, with cach point

-
QL

s

on the axis describing a circle and the sxis @s a whole & hypsvriolol
rotation. This motion may be described a&s & circular whiri. Ie pazti-
culer the point on. the .rotor pxia at a distance g from ths origin describes
the circular path .

" - ipt L3R
x+ iy + (2 - :o) (b = IA) = [z°+ (e so) Hb] = {(31)
vhere z = R corresponds to the roter ¢

The first factor in (19), put in the fomm
w-mh[c-a-x® p2]-a? ao, (32)

shows that for each circular whirl Eq. (32) is the ssmse as the equaiion of
vibration of & non-rotating rotor whose transverse moment of inertis I .
is replaced by

I'= 1 - (o/p) (333

In certain cases this may lead to negative I', but always to real

frequencies of vibration.

Similarly, from the conjugate equations for E, ﬁ, one obtains four

circular whirls corresponding to the negatives of the roots of (29).

As a special case, suppose that the shaft is rigid, and iz restrained
toward z-axis by springs of (angular) stiffness C., Then the equations of
motion corresponding to the moment of momentum equations about the origin

suffice for describing the dynamical behavior, and they lead :o

IN + Kuw + CA = O, (34)
Ip ~ K + Cu = 0,

where now I is the moment of inertis of the rotor 4bout the x- and y-axes.

I



One is led to the frequency equation

2

@p?-0?-xpla’ao (35)

Solving for w, there results
2
o=+ (Ip -C) /Kp. (36)

A plot of w vep>0 is shown in Fig. 8. Again, for each constant w, there =::

now two real, distinct values of p, corresponding to Iwo circuler vrecessions

of whirls, both. positive!l . thére.are also two negative oner (vot shown).

[43]
w= (I/K) P

\
B
\ -
.
~.
~
\'\
-1 C/1
K / Figure 8

It i8 of interest to note that if thg z-axls is not a stable equilibrium

position, then the residue in (22) is negative, and some of the real roots
of (20) may be lost, leading to positive vz and unstable solutions, esp-

ecially for small w.

For the special case implied in Eqs. (34) such an unstable equilibrium
along the z-axis corresponds to negative C. For negative C. Fig. 8 is

modified into Fig. 9, with a minimum for w at the point
oy ew = 2L
P = P, l”{—I- » Q=0 K Po (37

It will be noted that for

W>w (38)




that are two real roots of (36) corresponding to two precessionsl fre-
quencies and stable solutions of (34). On the other hand, for

i) <‘°6 R (%)

there exist no real roots of (36); hence, the roots of (36) are com-

plex and the motion is unstable.

w= (I/K) p

Figure 9

From the above it ia‘evident that gyroscopic effects may stabilize an

otherwise unstable position of equilibrium.

An illustration of the above occurs for a top spinning on a horizontal
table. Here the negative C arises from thé gravity force. For a high enough
speed, the top '"goes to sleep", with its center of mass above its point of
support. As the rate of spin decreases as & result of friztion, the

" "
position becomes unstable, the top wobbles, and eventually falls down.
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DIFFERENT STIFFNESSES

Let I, J, K be the three priﬁ;ipal noments of inertia of the vTogor
through its c.m, K being the moment of inertia about the rotaziom axis. We con-~
sider & system S of (X, y, z) - aies, with unit vectors i, 1, k, rotating re-
lative to fixed space about the z-axis, w;th the constant :etsrﬁéslccity S,
Suppose that in the undeflected position the diréctiona i, jcorrespoud to the
principal axes of inertia of the rotor, as well as to tﬁ;’ézincipal axss of
bending stiffness of the shaft crosssection, that is, to the largest and
smallest moments of inertia of that section about axes through its center.

Suppose that relative to axes of thevrotating system S, Eqs. 7(1) - 7(4)
hold for the deflections of the shaft, but different sets of sfiffness congtsents?

Fx b Alx + Bluf Ty - le + Clu, (1)
F = Ay - BA, T, = -Byy + Cph e (2)
Here x,y; A,u represent the (small) linear and angular deflections of the rotor
shaft at the rotor c.m., z = z s relative to the rotating axes of S, while
F , F
b3 y
these axes acting on the shaft at the c.m.

H Tx’ Ty represent the forces parallel to these axes and the moments about

Since the system is rotating about the z-axis, it follows that
“\
ey B o-er | &)
To avoid ambiguity, we suppose that the angular displacements A , p are

carried ovt as follows. First the rotation ) 1s carried out about the vector i;

this rotates the vectors i, j,‘g into il’ 21, kl’ given by

1, =1,

000 S

Next carry out the rotation p about the vector jl’ leading to
-~

= j cosA + k sin], kl = -~ j sinA+ k cosAh . (4)
~ ~ ~ ~

= i - k si j,, = k, =1 i .
iz 4 cos W k sin T 22 31, k=1 sin p + El cos i (5)

Egs. (4), (5) apply at any time t, with the values of A, 1 corresponding to that

time instant. The vectors iz, 12, kz correspond to the principal directions of the

~

rotor at the time t, in its deflected (and rotating) position; they are fixed in

the rotor R.
From Egqs. (3), (4), (5) follows that the net rotation vector of R, relative

£ figed space, 1s given by
.
N s o 2§ A 1 3 s
W= oK+ i N G, R {6}
E ~, - “
~ N ]
< e 5 2y fg .
For snall Ay BOS. (&}, (2; reguce Lo
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provided powers of A, ¢ higher than the first, be neglectad; hence

‘Ezuiopi,j}-’j/-& «1:‘, kz-m_-ké-!- k.

v N

The inverse of Eqs. (4), (5) take on the same form, but with sinkh ,

sin p (or A, n) replaced by their negatives. Eq. (6) yields, upon retention

of terms linear, in A @ only,
o= (k- p i ¥ M)+ LA+ dE
~ ~

-12 (N - @p)+ 13(u+wk) +c.>k2.

~/ Ly

The cross product of m by 12, 32’ k leads to their time rates:

ady 42 B2
Fralle i (wh + u)kz s ot M ok, > FpT (u + )i,

- (A - ),

Alternatively equations (11) can be obtained by differentiating (9)
and utilizing (3). From Eq. (10) follows for the m.m. of R

- n- : .
5 Ii}( mu)+Jj2(u+m A) + Kok,
~/

and substituting from (9)

nn[zw (K-I)um]1+ [J +(J—K)m?\)j+xmk.

la 4

o ¥4

Differentiating and utilizing (3), there results
M= (1,@- ®-1-3)po + &I sz]i

+ [Ju-(‘{—I-J):\m+(K-I)w u]j

e e OB v 0N

(i)

O

(10)

11

12)

(13)

(14}

. (1), to (L&) and 6 (6) the following dynamical equations of rotor

JE i

[P
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m -2 -0’0 +Ax BN = O,

a(}’+2xm’:-m2y)+azy-nz>.-,o,

- {35)
Ih +-1-3) fo +(®-3o’h=~By+c, w0,
Ju- (XK-1I-Dro+ (XK-1I) m2p+31x+c1u = i,
Assuning 8 solution of Bqs. (15) of the form 7(14) one is led to the
determinental equation ;
: M ' y A
am= |B? - 0P +4)) B - 2mw 0 =0
2 2
B, (3v*+ ®-Da®+c) 0 @+I-Rov (16
2 2
2mo v 0 (m(v-w)+A2) - B,
2 2 :
0 (RK-I-J)av - B, (Lv + (K-J) o +c2)

Expanding as in 7(16) shows that A (v) is even in v as well a8 in ®. Thus
only if all four roots vz are negative, will the solution of (15) be stable.

As a spetial case, consider
w= 0, (17)

that is, the case of a non-rotating rotor. The (x,y) -~axes are now fixed.

Eqs. (15) separate into one pair of (x,i) equations for the (static) vibrations
of the rotor in the (x,z)-plane, and a pair of (y,A) equations for similar
vibrations in the .(y,z)-plane. The resulting determinental Eq. (16)‘ factors
into two second order determinants, agreeing with Eq. 7(15) for w = 0. The

four roots of (16), provided the z-axis is a position of stable equilibrium, are
negative and distinct. By continuity follows that Eq. (16) is stable for a

proper range of small speeds:
w<w'. (18)
As & ﬁore significant check, consider the speclal case

I=J,A =A™, B =58 =8 C=C=0 (19)

of an axially symmetric rotor and shaft -- the case considered in Sec. 7.

By proper manipulation of Eqs. (15), and vy introducing the variables

&

Z=x+ iy, M=u - 1A, (20}

e obtains the fourth order system

L e v . . P . - .
e e i i o st Al D N

e
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u(z+z£mz-m2z)+az+sﬁas,‘ : ' (2L}

LR 2

BZ+CH+IM -(R-2D) 10N+ (K- a" M=o,

Assuming time to enter as thelfac:or

e’-‘lt ’ ¢223
one is led to the equation

A-m(q-l-a))z B
2 : 2 =u 0 (23)
B C+R (@ +wq) ~I (q+

It will be noted that this agrees with 7(29) provided that one replaces

w by w, p by q + , (24)

iw i

and notes that factoring out e t frome - P tin 7(31):
ei Pt ei wt e iqt (25)

corresponds to passage from fixed to rotating axes.

<

The plot of q. vs w can be obtained from Fig. 7 by mcans of the transformation
= w, q=p -0, ' (25)

that is by moving the points of the curve of Fig. 7 at any constant height w
to the left a constant distance equal to w. Again one is led to four values
of q for each w.

The transformation (26) at first sight appears to be at odds with the
conclusion thatA (v) in Eq. (16) is even in v. However, it will be recalled
that the fourth order systems(2l), 7(26) hold only for the variable Z, M. Th=

conjugate systems, for Z, M, lead not to (26), but to
W=w, q=p+ow, (27)

and this corresponds to shifting the reflection of the curve of Fig. 7 in the
horizontal axis, a distance w to the right. Geometricallx)differenc portions of
the curve w = + f(p), w > 0, are skewed; w = f(p) to the left, w = -f(p) to the
right, so that equal and opposite v-roots, still go into equal and opposite roots.
Since the special case (19) is thus always stable, it follows, by continuity,
tkat the system (15) is stable for sufficiently slight rotor and shaft asymmetries.
We turn next to another special case, namely when all the elas:ic constants

vanish:

A, =4A, =0,B =B,=0,C =¢C,=0. (28)

fhis lesds to an unrestrained or free rotor.
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Egs. (15) now umitn 4ato (= ,y)~ cquati.m which lead to
2 -m’) +4m2v2-(v +cnz) o | R Et3)

and to ( ‘\ u)- cquation: from vhich f.ollovs

-IJv‘=+ EJ+(:-I) X - J)] m v

+(x-1)(x-J) ot e 0

It is of interest to point out that Egqs. (29), (30) also follow from (16)
when the elsstic constants do pot vanish, 1f @ is allowed to get large, provided
it is assumed that the roots v of A (v) also get large, so that v2/w? remain
finite. This assumption-is, indeed, valid for (29), (30). Hence the roots of (16)
behave like the roots of (29), (30) for large coz, In the (c\) s V ) -plane the

ratios vzloaz correspdnd to slopes of asymptates of the curve A(v , ® ) = O,

The repeated rcots
v e - o?, - o? | (31)

*1owe¢t, e * iow t’. which represent uniform rectilinear

lead to solutions e
motion of the c.m.,when described in terms of x, y of che rotating system S.

Eq. (30) can be put in the form

" :
x* + (L+a) x+a=0, x ‘—‘:)5 , am= (K-I) (K-J)/ 1J, (32)
and factors into ‘
(x+1) (x+a) = 0 (33)
thus yielding
v2/a2 =- -1 , v?'/mz- (K - I)(K-J) / 1J = -a. (34)

It will be noted that 1if K is the largest or the smallest moment. of inertia, the
roots (34) lead to stable solutions; on the other hand if

I<K<J or J<K<I. (35)
then one root of (30) leads to instability.

The above results for (34) agree with the classical Poinsot motion, where
the hodograph paths near the principal axes with largest and smallest moments of

are closed curves {on the elliproid of inertia), but form two self-

intersecting curves through the intermediate axis of inertia. (The root vzu -wz

RO I R
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corresponds to & rototion gbout & principel axic Asld fixed i{n opaeal)

Returning to general velues of the elastic constants, the irctobility ia
case (33) implies thet the solution of (13) is unstable for larps sacugh «. Ghea
K is maximum or winiww, no conclusion can be drawm regerding ths stebilily of
(15), except that for large enouah.mz the roots are all steble.

It is of interest to find the valuee of m? for which vz a 0 {8 & voot of (i6},
since passages from stability to instability mey occur by vz passing from & nagative
to a positive value, hence through v = 0. '

If v = 0, then x, U,»,5, become constents, and eqs. (15) separate intc an

(x, k) - pair leading to
[Faa?+a] [@-De?sc] -2 = o (36)

and a (y, M) - pair, resulting in

[‘ﬂmz*'Az] [(K-J)cuz*-cz']-x.v,,‘,2 - o | an

A study of the roots of (36), (37), under the assumption that :the z-axis-is a
stable position of (static) equilibrium, leads to tho _sn:lusics $%3%, e 133)
kolds, three roots mz of (16) for v = O are positive, one ncgative. aen (35)
does not hold, then ell the four zoots of (16) are positive for K> 1, X> J, or
two are positive and two are negative. Plots of A (0, v) for v = 0 are indicated

schematically in Fig. 10.

/ K< . [5 IX<I E>I,KE>J
8 R<J ~J or i |

N
AN \\\
\

7
1
i
{
a?,0) ™ A, 0

Z\Z\‘-\\\\\/\\\ N

2
A AW, 0)
TN :
| ///’/’// V[
, Fig. 10a Fig. 10b ! <: Fig. 10c
Eq.. (16), when c.randed in powers of vz, yields
Afw, vy = mz IJ vs + ) v6 + ...+ Alw, 0) = 0, (38)

The product of the roots of (16) is thus equal to



s OV VUSRI

Ny

LR T PR

Eaaiads Aot PR ST

- . & . .

: : Lz alay V) " a

1 2 3 & % T ' Al
ulld ' .

Bence folloxs that for cn2 corrasponding to negative: A(az. 0) 1a ¥ig. 10, n-e 1

all four roots of (15) can be negative. Thase rotor speed imtervals thus cor-

respond to unstable solutionma.
W mawm B ol S s A » . * ew .. . - . e - .2 . - E
fePoaps LiVAR SLAaVALILY CO 1nsTEDLILILY MAY OCCUX NOT OP4Yy CTAFOLER ¥V passing Izom

negative to positive valuas-théee. occur at the mz-roou of (36), (37)= but clso
through tw negative roota Viz. sz meeting and receding at Tight angles in the
complex plane. This happens st simultansous roots of the two equations

A? V) =0,  aa@?, vAyav = o (40)

In conclusinn,’ for an uasymmatric rotor and shaft, there always exist unstable
rotor speed ranges.

As an example, we return to the rotor of Saction 6 with ths two shaft stiffnesses
kl. k2 (corresponding to Al’ Lz) and the cantrally supportad rotor, but assume
that the latter has two different transverse mowents of inertia I, J, I #J. Ia

terms of the constants in Eqs. (1), (2) we have

B, =B, =0 (41)

Eqs. (15) now separata into x, y equations whose solution has been found in
Section 6 énd A; B equations leading to the determinant equatiom

£(v2 oh) -|:Jv2 T °1] [Ivz + (K- J) o+ c:z]

+K-1-0% vt =0 (42)

Since f is quadratic in v2 and wz, Eq. (42),vhen plotted in the (mz, vz) -plane,
yields a conic section C. For large u)z. Vz, the roots of Bq. (4%2) approach those
of (30); thus C has real asymptotes whose slopes are equal to the right-hand
numbers of (34).

-39-




The center of C is found by putting

. .o, & a0, o ' (:.3).
»° g? . |

Solution of t5: regulting " inear equations yields

V2-§°2- 2a (El-n--c-l),--L——)-l"" (Kiv_l)ct*-“-ncl

° (l.-a)2 Q - a)z IJ : ’
(44)
Papla 2 %m+1)+%m-3)_ 1+a :3+ﬁ9_
0 T (1 - ay? 1J a-o2 1 3

AN

Expanding f in a Taylor's series about the center and factoring as in (32), (33),
there results for C

-

[# - v + @ - 0 D) |67, + e P + 200,20 /D ®-D) =0 @s)
Schematic plots for C are shown in Figure 11.

u)2 2

'a>0s - 2 <0,

K largest or K between
smallest 2 IandJ
. =] y
e

2

N ‘l’

Fig. lla Fig. 11b

Thus far it has been assumed that the I,J axes of inertia of the rotor are

parallel to the principal directions of bending of the shaft. Suppose now

that this is no longer the case, and that while Eqs. (3) - (14) apply, the
principal directions of bending of the shaft make an angle y with the principal

directions 1, j of rotor moments of inertia. We shall indicate the modifications

in the dynamical equations (15) arising from this misaligmment of principal axes.

-40-



“quations (1), (2) imply an elastic potential energy Q of the shaft given by
for y = Q) .

2 2 2 2
2Q = (Ap x” + 2B xu +C 1)+ (Ay - 2B, YA + CA%) (46)

ith 0 < y < %n/2, the energy Q is obtained by replacing (x,y; A,u) in (46) by

'x',y";N',u") where x'..u' are the linear and angular displacements along (and

bout) the principal shaft stiffness axes x',y', where

x' =x co8 Y+ ysiny, y' =-x8iny+ ycos y,

A mhcos y+pusiny, # =-Asiny +pcos . (47)

- :placing x,..., p in (46) by x', .., u', then expressing the latter in terms

~f x, «., B by means of (47), there results for Q the quadrative form

2Q-ZaAi u u, A mAL -
AR R T S L R

iere, to make the summational notation available,ui; i= 1,2,3,4 have been intro-

- 1ced for x,y; N,u, and A,, are shown in Table I &nd where the further notational

14

~bbreviations

¢ =mcos 7, 8 =gin vy (49)

- 1ve been made.

TABLE I

2 2 2 2 ,2
= AT €+ A e A, =B ¢+ B, 8, A, = (A - A)BCS, ¢t

1 2 = (Bz- Bl) BC

14

2 2
Ajy =€ €+ ¢y 8, Ay = (By - By) 8C, Ay = (€0 61) B

- (B 82+B

2 2 _ 2
Ayy = (A & + 4, c°) Ay = ! , <)

2 2
A64 - (c1 8 + 02 )

e dynamical equations replacing (15) are now obtained by replacing the force and

raue terms in (15) (i.e. the terms involving Al e el) recpectively by

_41_
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%3'1 = "_“' Apgy + Apgh + A

-S4

%%z = Ay X AT AR+ A
(50) .

S A AT A A

QQ, A x+ A

du, " A1 n2? + A

43

-1

)‘+Au‘p..

The resulting equations lead to & corresponding determinantal equation replacing

(16), but now with no vanishing elements.

42



Thus far each bearing has been assumed to act as a''fized" support for the
rotor shaft or jfournal, so that while the rotor shaft rotates frealy inaide the
bearing, the point on the axis of the shaft (or journal) at the bearing center
was assumed to undergo no transverse displacemente. Even for pre-compressed
ball or roller bearings, this assumption is satisfied only approximastely, due to
the compliance of the bearings. For cylindrical journals, however, where there is
definite radial clearance between the journal and bearing surfaces, this
assumption will never do, in view of the added freedom of motion of the journal
center in its '"circle of clearance'.

The position, in the middle plane of the bearing, of the journal zeater

01 relative to the bearing center 0, for a given load on the rotor (guch as the
rotor weight), automatically adjusts itself so that both bearings 'carry" this
load; that is 01

lubricant in the bearing has a net resultant acting on the journal which is

moves to such a position that the pressure developed by the

equal and opposite to the applied load. Basically this press:re distribution
is due to the shaft "dragging in' the lubricant into the convergent portion of
the film.

It has been known for many years that at times,the rotor -
vibrations apparently may be induced by the lubricant in the bearings. This
can be demonstrated in a laboratory model: by temporarily reducing the
lubricant supplied to the bearing, the vibrations diminish. For a horizontal
shaft and reasonably high loads these instabilities occur at speeds considerably
higher than the critical speed; for lightly loaded bearings or for a vertical
shaft they may occur even at low speeds.

To include the effects of journal bearings on rotor stability, it is
evident that not only is knowledge needed of the steady state bearing

forces corresponding to a fixed position 01 of the journal center, but also
of the transient forces arising from the motion of 01 near its equilibrium
position. 7

For simplicity, we consider only complete, 360° , self-acting (that is,
non-pressurized) journal bearings. We suppose that, as in Fig. 1, the rotor is
mounted at the center of the shaft, and that the shaft 1s supported at its ends
by two, exactly similar, perfectly aligned bearings. We assume, furthermore, that

the displacement 00, ¢f the journal center from the bearing center is the same at

1
each bearing, at all times. Then the same force




0 1) )

vwill ba exerted on the rotor journal by the lubricaat ia gach beariag; here,

éa shown ia Tig. 12, ‘.'r “sholes Lhe Tasial cumpumsnt ol I&cs, ssasuisd pmills

vhen directed towerd the bearing center 0, while rt 1is the force compoment st

right angles to ool.
A section of the bearing (with an exsggerated radial clearances C) i3 showm

in Pig. 12, The journal center O1 can evidantly be located only within the

"clearauce circle) with center at the bearing center O,and of radius C. Bence

00, =¢ C 0<¢<l,

1 (2)

where ¢ is known as the "ecceatricity”; € = 0 corresponds to coincident O, 0,:

€ = 1 to actual contact of journal and bearing surfaces.

Set up axes as {n Pig. 12, with the y-axie in the direction 00l of tha
journal center, steady-state displacement, and let © be measured from the
y-axis. The gap is given by

heC(l -¢ cos 9); (3)

it is evidently 2ven in 6.

Ragion of potential
negative pressure.

Figure 12

Also shown on Fig. 12 are the force components rr, rt acting on the journal,




i . . A £

as well as the "attitude amgle™ -

-1
P = tan A

that is the angle between the applisd load,and the displacemant vector, 001.

The Prces r‘-,, rt are given by

L/2 ix
y, =a | ds [ p cos @ d0,
-L/2 0 )
L/2 2x
T, = - i) ds | p sin 0 d9,
-L/2 0

where p is the pressure, a the radius of the journal, L the axial bearicg length,
g the axial distance along the bearing surface from its canter lins, and !; is
positive vhan directed radially inward. The pressure may be found by integrating
the Raynolds equation, which for an incompresaible lubricant 1is

y [ 3 3 h1 ] X 2
T[:a‘:%“a:‘-f” = Ut (6) ,

whers u = viscosity of lubricant,
: U =aw = linear velocity of journal due to its rotation,

W= h = normal, (i.e. radial) velocity of journal surface, positive when f

directed toward 01.

W vanishes {f 01 is stationary; otherwise it is given by

§ We- (ur cos O + u, sin @), u = Ce, u, = Ce& (7)\;

: ~

: ~

3 wvhere u. is the radial, u, the tangential componsnts of velocity of 01, and g 1ls

i the angle forumed by 001 with a fixed direction (on Pig.1l2 oy = 0). Hence -
W = -C& cos 9 - Ceg 8in 6. (8)

Substitution from (3), (8) into (6) yields

-45-
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—&-{—15 g—o- [(l-eccu 0)3 %} + g;- [(l-ecm 9)3 gs]}

* (%) -

= -Ce (0 - 23) sin ® - 2 Ce cos 6. ‘-

This equation has to be solved so that p is periodic in O and satisfies the
boundary condition

P =P, at z =+ L/2 (10)
at the bearing ends, where P, is ambient pressure.

Solutions of (9) have been obtained under the assumption that p is inde-

pendent of z:
p =p(6) T (1)

an assumption that is valid for a long bearing except near the énds, see
references (4), (5). Substituted in (5) they lead to

F, =-K f., F =K-2)f£, (12)
provided F. is measured positively outward, where )
K = 12x p.a3 L/Cz, (13)
£ = ——1——7 f = < (14)
(1_€2)3 2 t (2 + ez)(l - €2)1/2

Consider first stationary 01:
€ =0, ag=0. ' (15)

Eqs. (12) yield ,

F =20, Ft = Ko ft<€)' (16)

-46-
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This implies that
o = x/2 (17

The vanishing of ?r for a stationary 01 slso foliows from the eymmetry of the
iilm thickness about 6 = 0 end 6 = x, as a result, the pressure increase over the coo-
vergent half of the film is matched by an equal pressure decrease over the divergent

film half. In equation form:
P(6) + p(-6) = 2p(0) = 2p(x); : (18)

This states that p(6) - p(0) is odd about 8 = 0, and p(6) - p(x) is odd about & = =.
(That p(0) = p(x) follows by putting 6 = x in the first eq. (18) since p(8) is
periodic of period 2x). 1Indeed, eq. (18) follows from eq. (9) for € = 0, by noting
that the right-hand member of (9) is odd imn 6.

Likewise, the coefficient of € in Eq. (9) is even in 6, and the resulting con-
tribution to Fr’ Ft in (5) leads to a vanishing Ft'

The same considerations of evenness and oddness of p carry over to sclutions
of Eq. (9) for bearings of finite axial length L. Eqs. (12) are valid for them, too,
but with a different K, and with fr’ ft functions of ¢ and L/2a.

Actually, the above prediction (17) does not agree with observed positions of 01.
For a vertical load of different magnitudes and at different speede ®, the equilibrium
positions of 01 in its circle of clearance, tend to cluster near a locus schematically
shown in Figure 13, and approximating a semi-ellipse. At most, (17) holds only for
small ¢, that is for light loads, or very high speeds.
poo— 2C ==

Figure 13

The explanation of the above discrepancy between theory and tests is due to the

negative pressures which are allowed in the solvation of Eq. (9), but which cannot

be realized in a liquid lubricant. If the pressure is decreased in oil, it wili tend
to cavitate and release dissolved air and oil vapor. Therefore, Eq. (9) must be

solved subject to the condition *
p20, (19)
and putting

p = 0 over Ac (20)

47~




wvhere Ac denotes the cavitating area. Many shapes of A_ wmay te found.
A "ainimum loss" principle, Cameron and Wood, reference (6 ), have proposed the con-
'dition of vanishing normal pressurs gradient at the edge of A :

% = 0 at boundary of A_. (21)

On Pigure 12 the cavitating area Ah is shown ~schematically between the
broken lines on the divergent film half. With (20) holding on Ab’ Eq. (18)

fails to apply for @ = 0, é = 0, and a non-zero F_ results.

For a long bearing, if Eq. (11) is assumed, Ab is bounded by two lines
of constant 6, and these are determined by Eqs. (20), (21). For finite L, the
determination of Ac may require trial and error methods and special programming

on high-speed computing machines.
Physically, the ‘boundary Ac may vary with P, in Eq. (10) and with th;
nature of the liquid lubricant, its vapor pressure, and its dissolved gases.

while (9) remains linear in p outside Ab, the introduction of Ac whose
boundary may change with the right-hand number of (9), renders the problem

non-linear, and superpositionof solutions no longer applies.

It will be noted that while the right-hand member of Eq. (9) involves w,
& and &, the two former occur in the combination a-23. Therefore, the integra-

tion, even with the cavitating conditions, Egs. (19) - (21), can be confined to
a=0, (22)
and the results used to obtain Fr’ Ft for any g, by replacing o with
W-e-w - 20 =g, 8 =1 - 23/w. (23)

Assuming & to vanish, and using dimensional analysis considerations, one

obtains, for a particular ratio of L/2a,

Fr £ -de;__l(l)fr (G,E'), Ft =g V4] ft(exe')) (24)

where [, ft are dimensionless measures of Fr’ Ft’ £ has the dimensions of a
r

lergrh so that £ yw has the units of a force, and ¢ has been rendered dimensionless



;

by introducing
Teat, €' =éfo=da/dr, (25)
It may be shown that the leng:i: £ can be put in the form

2 =a> 1/c?, (26)

as in Eqs. (12), (13). It follows now that for & # O,

Fo=-tu (0 - 23) £, (e,¢/8),
g =~1-2 (27)
F, =tp(w - 20) £, (e, €'/g).

For small € cavitation is not likely to occur. If L/a is large, Eq;. (12) -
(14) may form a fair approximation. Neglecting powers of ¢, € higher than the

first, they yield,
Koe

F_= -Ké, F, =K - 23) /2= 5 - Kae , (28)

Note on Figure 14, that Cé, Ceq are the radial and tangential velocity components
of 01. Hence, the force exerted by both bearings on the shaft, in rectangular

components, is

. . K
Fx = -2f§ - fwn, Fy = 20 + fof, £ = C (29)

where £,7 are the components of 001 in the x- and y- directions.

Suppose now that the shaft is infinitely rigid. Then the equations of motion are

mg =F = -f} - foy, my = F, o= -2f7 + fof (30)
Introducing

AL
and assuming time to enter in the form e -, one is led to



w2 + 26\ + ifo = 0, (32)
1an equation which by the tests of Section I is always unstable. '

Suppose now that a radial bearing force be added to the above so chat (29) is

changed into
Fy = - 28§ -fon - ok, E = - 2fn + faf - Ky (33)

where kb is the radial bearing "spring stiffness" constant. Equation (32) becomes
w? + 200 + (k, + 1f0) = 0. (34)
This equation agrees w_th 5(3) provided, in the latter, one puts

f1 = f, k = kb' (35)

Hence, applying 5(6),we find that the rotor is stable for speeds

® < 2w , @ -{7?- , (36)

that is, for speeds below double the critical, defined as the frequency of vibra-
tion of the rotor mass against the bearing (radial) stiffness. For all higher

rotor speeds, the rotor motion is unstable.

Suppose next that the shaft is not infinitely rigid but possesses a finite stiff-
ness constant, k. Then, to the given center deflection (£, %) is added a further

deflection of the rotor center, given by
x =F [k, y= Fy/k, ' 37

resulting in a more complex set of dynamical equations than (30). The exponential

solutions ekt of these equations are determined by the cubic

k k
3, ek 2k My k(D ]
T+ e - o) A +2xf+m£k) w il G0 B T (38)

It is shown in Reference ( 7) that this equation is stable for

w < 2m, (39)
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and unstable for higher rotor speeds, where o, is defined by

0le—1 . My 1 (40)
o c% + %£)m (k + Kb) m
This critical @ is the vibration frequency of the rotor mase against the joint

bearing and shaft flexibilities (in series).

The transition to instability occurs as the rotor speed @ = Zmb. As @
passes through this value, one of the roots of (38) can be shown to cross over

into the half-plane Re(A) > 0, the zrossing taking place at

A= in 1)
corresponding to a circular whirl of angular frequency equal to the critical
frequency, even though the rctor speed is_twice the critical.

For a)>>2wb a root of (38) repressnting an expanding whirl results, with

the frequency of whirl increasing, but. slowly, with w.

If kb is allowed to approach zero, but k tc remain finite, then @, in
Equation (41) approsches zero, and rotor instability at _all speeds results.
This result agrees with earlier studies of bearing-rotor motion, based on Equa-

tions (12, (l4), Reference (8).

In Equations (28)-(41) we have considered motion of 01 about the bearing
center 0 for a journal free from external load. Actually, kb is likely to vanish
for small €, judging from Figure 13, and some external load is required to bring
about cavitation on the expanding film side and generate a non-zero Fr and kb.
With a constant external load, Equation (33) is applicable, with £, n repre-
senting the displacements of the journal center from the equilibrium portion
(see Figure 14}, and Fx’ Fy the added bearing forces due to this added displace-
ment. At the same time ¢ must be sufficiently small to justify the approxima-

tions in Equation (28) tc Equations (12) and (14).

The above theory historically represented the first successful theoretical
trcatment of bearing induced whirl (see Referencé(7) ), and it was obtained at a

time when no solutions of Equations (9) and (19) were available. By increasing

-51-

NI
VI



o e et e A 7 e

kb with €, one obtains & higher @ in Equation (40), -thus explaining the increased
stable speed range (39), with higher static loads. Ye. a more sound treatment
should be based on solution of Equation (9) with cavitation.

Such solutions hsve been carried out for various L/2a (see Reference 9 ),
go that the functions ft, ft and their derivations at ' = 0 are available. We

outline the small displacement stability calculation, based on them and on Equa-

tion (27), for sizcable €.

y Figure 14

On Figure 14 let 01 on the y-axis be the equilibrium position of the journal
center for a given static load, £, N the small displacement O,P of the journal
-

center from Ol,and de, do the corresponding increment in e, a. Ecuations (27)

for small de, da, dé, dd yield
of of

= L X 'y o .
dFr £y w ( 3¢ de + 3¢ de') Zdafr

aft of ' (42)
= —— - ! - >
TdFt £y w ( Sc de ST de') 2daft’

where fr and fE and their derivatives are evaluated at ¢' = 0. In rectangular

compcnents, Equation (42) yields for the added forces exerted on both journals.



= K' . —t - —— T 4 —
X =K' ( " £ . E+ o eyl B )
£ 3 y
wE 2f . wof of , (43}

Attention must be called to the fact that dFr’ Y have opposite sign conventions,

and to the use of the relations,
da = £/Cae,  d& = £/Cae (44)
in obtaining (43). Equatiors (44) definitely excludes the small ¢ case.
We now turn to the solution of the dynamical rotor equations
mE =X, mp=Y, (45)

considering first a rigid rotor shait. We assume a solution ovi Equations (43),

(45) varying with time as ekt, and put
A = W.\o, w = :=m° (46)

where w_ has the dimensions of w,(l/sec), but as yet unletermined, so that v, s are

dimensionless. There results

c)fr dft

sfr + 2vft + Ee¢ s —sz + v _5?

r Y

- sft + Zfrv S "¢ + v —d€‘+ E
where 2 3
nuzv mC mbv
E = = 3 (48)

K' 2ula

s

Equation (47) can be shown to be stable for low s and unstable for high
enough s. The transition to instability occurs by Vv crossing the pure imaginary
axis, at v = jivo # 0. By substituting v = ivo in Equation (47) and 2quating to

zero the real and imaginary parts separately, two equations resutrt. The second




equation ylelde of af af of

3 X
(f + £ —r) + 2(f, —1 - —F)
g R L
L NG I = TR T EEEE— “9)
(96 & o —Ey
t T oo’
«nd applying this to the tiret one, one obtatins
of of
t t
[fr- ef ()] =2 £, 5o
2 .
L - | v 50
) £, (e) ] d_f_!_ o . of (30)
t | ce 1 r e’
Dividing Equaticn (49) by (50) and recalling (48), there results
t mC3m 2
. . o (51)
éfl " 1'.3
Now choose w, 8o that 8 = 1. Then Bquations (46) and (51) lead to
1
2 2 _ 4ule’ 4y (e) :
w = - 3 ) (52)
wC 2
while Equations (46) and (50) yleld
2 2
A - 2f2(€) @® . (53)

Equation (52) determines the critical speed, w = Wy s at which rotor motion
becomes unstable, while BEquation (53) yields the frequency of the insipient whirl
at that speed.

The above theory can hLe extended to include a finite shaft atiffness coeffi-

clency k, by properly changing the definition of E. (see Reference 9 )

Turning to a brief consideration of compressible lubricants, it is evident
that cavitation does not occur since a gas can expand to fill the divergent film
hali. A (p, V) curve of the form schematically indicated in Figure 15 results,
where V is the apecific volume. 1t is evident that equal and opposite volume

changes + AV,lead to unequal pressure changes (Ap)+, (ap) . Thus mors pressure
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increase is obtained on the couvergent film half on Figure 12, than pressure de-

crease on the divergent film half, and Equation (5) leads to s non-zerc Fr.

v
Figure 15
The Reynolds Equation (9) is replaced by
S (w3, 9] 4 O 13, o). .y &She) 92]
3z (hpdz}+ad9 e 5 6“[” ax T W+ 2h 50 (54)

Asguming an isothermal (p,p) curve simplifies Equation (54) to

O 3. 9P L 9 3 _9p .. [ O(hp) op
oz (P 32 *+ 258 (WP 33e) 6“[‘“’ ox ¥ 2pW + 2h }

ot (55)

This is non-linear in p. It no longer involves &, @ in the simple form w - 2¢,

as in Equations (9) and (12). For stability calculations near equilibrium

positions, solutions varying with tfme as eht, require further solution of Equa-

tion (55), due to the term Jp/dt on the right.



X

EFFECT OF DIFFERZINT BEARING SUPPORT STIFFNESS CONSTANTS

Thus far, the bearing supports have been assumed to be rigid. We now
coraider the effect of resilience or flexibility of these supports on the
¢tability of the rotors and shafts considered in Sections VI - VITl. The inertia
of the supports will be neglected.

The bearing supporta generally posses different stiffness constants ina -
two mutually perpendicular, fixed directions, say, the horizontal and vertical
directions. Suppose that as in Section VIII, the shaft, tor, has different bending
stiffness constants in two directione; these rotate with the shaft. The net
resilience of the shaft and bearing supports turn out t2 vary with the

rotation angle

T =t - 1)

whether {t ‘s expre red elcng fixed ~ -utating axes. One is thus led to

linear di:iever*’ s#rions oi rotor motion with periodic coeffi{cients. For

the roto: .- ...tion ¥{ 4n 8th order system with periodic coefficient results; for
special cases this separates into two 4th order systems, or reduces to a single

4th order system. PFor the rotor of Section VI, the tranlational motion leads to

the system
d2 d2
ux + (l+0+p cos 27) -—3‘2-+ (p sin 27) =% = 0,
dr dr
(2)
d2x d2
uy + p sin 27 —5 + (l-0-p cos 271) ——% =0,
dr dr

where p,p,0 are proper constants. The rotational displacements (with unequal

I1,J, leads to another 4th order system. We consider the stability of soluticns
of (2).

As stated in Section I there exists special solutions of linear differential

equations with periodic coefficients such as (2) of the form

p(r) " (3)



where P {8 periodic of period ATr=r and X\ ig a constant. Ffour such solutions
T

exist for the 4th crder system (2), each with ifs own exponential ek . and

general solution is & linear combination of th-se four. For stability of the

motion all four A's must be in the half-plane
Re (M) £o b))

If any one of the A's fails to satisfy (4), then the general solution of Eq. (2)

will become infinite at t increases.

The stability conditions (4) are similar to those for linear differen-
tial equations with constant coefficients; the difference lies in the great dif-

ficulty of obtaining the values of A.

Since

e}\.('r+n) _ CexT, C = eXﬂ’ i (

(%3]
N

the solutions (3) have the property of being multiplied by a constant C when
ircveases by the periodn . The requirement (4) leads to the conditicn that all

four C's lie within or on the unit circle
el 1. | (e

The derivationof (2) proceeds as follows. Denote by.&o’,ﬁo unit vectors
along the (fixed) (x,y)-axes of Fig. g,and by i ,‘é unit vectors rotating with

the shaft, and corresponding to the directions of the principal moments of inertia

of its cross section. A force

F=F {I +F = F (1 cost - J cdin1) + P (i s8in T+ Jcos 7 7
AR A Pt ) e R j cos 7) 7

applied to the rotor, will produce a deflection due to shaft bending

f1 (Fx cos T + Fy sin 1) i’+ f2 (-Fx sin 7 + Fy cos T)i . (8)
and a deflection
£3 Py io + f& Fy o (9)
~s A
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due to bearing support deflections, where fl’ f2 are the flexibilities (i.e. re-

ciprocals of stiffnesses) of the ghaft in the i, j - directions; 53, fA
flexibilities of the bearing supports in the io”jo directions. We gssume that
fl )vfz, f3:,f&' Adding the displezcements (éj (93, expressing 1, 3 in (7) in

~

the

~

termg of 4 , § , and introducing the notation
~0 :\9

fm = (fl + fz + f3 + fa)/Z, L= (fl-fz)/me, g = (f3-f4)/2fm (10)

vhere fm is the mean, joint flexibility of the shaft and bearing supports, there

results for the net rotor center deflection x, y

x/fln = (1l + 0+ pcos 27) Fx Hpsin 2'0Fy,

(11)
y/ﬁ“ = (sin 21')Fx + (1l -0~ pcos 271) Fy.
If the force Fx’ Fy is due to the rotor inertia, then
2 2
Fx = -m é—% , F_ = -m Q_% . (12)
du M dt
Then, replacing Fx, Fy in (11) from (12) intrcZucing T as in (1), and putting
2
2 1 %o
O *TmE o= (13)
m w
one arrives at Eqs. (2).
Before considering the solution of (2) proper, we first note the special
cases P =0, and 0 = 0 of equal shaft or bearing support flexibilities. In
the former case
P=0,1f =£ =1, (14)

the trigonometric terms in (2) disappear, the periodic terms P(r) in (3) reduce
to constants, the A's turn out to be pure imaginary and correspond to sinusoidal

solutions in x, y of frequencies Wy Wy respectively where

x 2 1 2 1
N T A YT Sy (15
m(!2 + 13) 2 m(fS + f4) )



In the latter case,

o=0,f3=f4-f.n; | (16)

by nsing rotating axes, eqs. (2) mey now be reduced to Egqs. 6(7), but with

kl, kz replaced by
1 1 '
kl = f1 + fb’ , = £2 + fb. (17)

Egqs. 6(13) yields the uustable range.

1 2 1

< < (18)
m(E, + £,) m(f, + £,)

erms of o, P Eqs. (15)

-t

while for mz outside this range the motion is stable.

- (18) become -
Gae0; p=(i-0),u=1+9, (18)
g=0; 1l-p<p<l+ o, , (19)

Summarizing, it is seen that for p = 0 the constant bearing flexibility may
be added io each shaft flexibility.

For general o, p periodic coefficients persist in Eqs. (2) whether fixed

or rotating axes are used.

Following Floquet, an algebraic equation for the four characteristic con-
stants C (see Eqs. (3) - (6))can be formulated if four (linearly independent)
solutions of (2) are available. It is given by the fourth-order algebraic

equation

(1) - C Ei = 0, (20)

luij j

wherel{& .H is the fourth-order, unit matrix (5,, =1 for i = j, &, . = 0 for
ij _ i) ij
i #j), and

L]
= Eg ¢ =\ - ! M
= (), u, =y (1), u =y (), u, =y ()5 L= 1,2,3,6 (21)

are four solutions of (2) whose initial values are equal to the i-th row of the

unit matrix bii' H~ wever, since separate integrations of (2) over the interval



0 <+ < % have to be carried out for each o, u, procedures based on (20) sppear

economically prohibitive, even with the ajid of high sgpeed computing machines.

Expansion of the solutions of (2) in powers of P is a possible method of
integration of Eqs. (2), provided both A and P(T) in (3) are expanded in powers

of p. The convergence for sizable Pis very slow, however.

Also slow is the convergence of the '‘classical' method, due to A, V. Hill,
based on the expansion of P(1) in (3) in Fourier series in T. A significant

improvement in its convergence was effected by Foote, Poritsky, and Slade, in

Ref. (0); we proceed with a qualitative description of this methou. ioee Ref. 11)

First, we simplify Eqs. (2) by introducing, as in Sections I1I-V, VII, VIII

Z~x+iy,2=x-iy,i-v-1. (22)

One obtains from Eqs. (2)

o 2 5
Z+p 2+ (o+ ei‘r)z=0,
. (23)
g - -217 ..
Z4+puZ+(o+ e YZ =0.
Setting
T -
Z = eh = An eniT, Z = ext = Bn enir;n =4 1,+3,... {24)

substituting (24) into (2) and equating net coefficients of each exponentia. to

zero, one arrives at the equations

PB_,+ [1+'('>T+inLT)'2] A +0B =0
(25)

( 2|B
oAn+l.1+ On + m) Lt PA L, =0

for the coefficients An’ Bn, where n =+ 1, + 3, ... By equating determinants

cf central blocks to zero, one obtains

An (M) = 0. (26)

The limit of the root: of (26) as n gets large, yield the values of A.

~H0 -



First, it will benoted that renaming the (dummy) summation index n in (24) as n + 2

or n - 2, ir equivaleuat to replacing A by A-2i, AZ2i respectively. Hence, tc each

-

value of A 'n (3), the periodic array A+2ni also furnishes possible values; they all

lead to the same value of C in (5) since e2n1= 1. Next note that changing t into

-t and interchanging Z, Z leaves {2) invariant. Hence the four A's are arranged in

two pairs, i)"l’ A Finally, from (25) it will also be seen that A\ = + ni; n=1,3...

9
are fourth order poles OfAnO\). Now a function of N having all the atove properties

is given by

AL AT
( sinb® 224 aion? 2y (sinmn® B - sim® £
£(N) = ~ 7 (27)
cosh (n A\/2)
It is therefore to be expected that the ratio of A, by a proper function of n ap-
proaches f{\) as n —® «.
The function of £(A) can be expressed as a trigonometric function of
(ax/2), A= ai, (28)
and its numerator as a quadratic
<% - ¥(K.-K, + 1) + K. =0, (29)
b4 . l Z s 1 H
where
2 2
x = sinh -5 = (C-1)"/4C (30)
AT AT
21 2 2
Kl sinh 2 sinh 5
AL AT
_ 21 L2 2
K2 = cosh 5 cosh -

Thus the C's and A's can be found once Kl’ K2 have been obtained.

The convergence cf (the roots of) An(k) to (the roots of) f(\) is very slow. This

can be demonstrated from the convergence of the infinite products in

nu o’ nu _ 1x u?
cos o = ”(1—‘—2'). sin 5= = 5= TT(1 "‘2‘) (31)
k k
k=1,3,... k=24,

to their limits. 1In Refererne {10, Kl, K2 are computed as limits of certain

sequences of Kln to Kl’ and Kz to K2 is speeded up by means of ™convergence factors'
n
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which are beusically the ratio of the left-hand members of {(31) to their finite pro-

duct sums. For details the reader is referred tou the reference proper.

Figure 16 shows the unstac_« regions in the (p,u) plane; fur 0 = 0, to the right

of the broken lines; for o = .1, to the right of the solid lines with a triple

zig-zag. It will be noted that the

into several separate ranges for ¢ =

single wunstable range for ¢ = 0 breaks up

0.1, for small p, but continue as a single

wider range for larger p. For large ¢ , the unstable speed ranges separate even

further. The boundaries of the unstable region correspond to passage of one A-pair

from pure imaginary to real or complex values, and belong to the loci

(32)

corresponding to the roots of Equation 29. The geometry of the change is indicated

in Figure 17.

X = 0, X, = -1, X, =%,

Fig. 17a Fig. 17b

On Figure 16, the upper and lower curves correspond %o A

and "grow'" out of the loci (18) for p = 0; the middle one.borresponds to A 2 . A

and, Figure 17c.

For small p,o the above unstable ranges. occur near u

similar, but smaller, unstable ranges occur near

that is, when the rotor speed is near a submultiple of w, -

oo/mo = 1/2, 1/3,....

2

[ i

.

D S
!
1

Fig. l7c

= (0 and Figure 17a

! 2

1 2
\

\ B
\ '

= 1. It can be shown that

1
1

(34)

-

(35)
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The effect of static friction has been considered in Reference (10); it narrows

the. unstable range and may even.abolish it.

Similar analysis 1is possible when unequal bearing support flexibilities are added

on to the votors of Section VIII, where both angular and tranalatory motion are in-
cluded. 1In particular, the (A, u) motion of the symmetrically mounted rotor of
Section VI considered in the text near Equations 8(41), 8(42), with added fl’ f2

due to the bearing supports (converted to an equivalent angular stiffness constant),
leads to a fourth order system with periodic coefficients. In form, these equations
are the same as for a rigid shaft passing through the origin,with different angular
stiffnesses for the angular deflections A, u. This case has been studied by

Brosen's and Crandall, Reference (12), using the’same method of solution.

The addition of fl’
system with periodic coefficients.

f2 to the general rotor of Section 8 leads to an eighth order

-

The method of convergence factors is applicable to higher order differential equa-

tions and will be discussed in another paper.

-64-



X1

Thus far, the rotors have been assumed balanced, and free from external
forces. We now consider briefly rotors subject to gravity,and unbalance forces

and torques.

With the addition of external forces (and torques) the linear equations of
motion become non-homogeneous. Their solution consists of the sum of a particular
solution and a general solution of the homogeneous equations described in Sections
I1-VIII.

Particular solutions will now be considered corresponding to a constant

force, such as gravity force; then to the unbalance of the rotor.

Under a constant applied force (X, O,) such as the gravity force X = -mg,
eqs.2(1) become

mx + kx = X, my +ky = 0 (1)

A particular solution' is given by

x = X/k, y = 0 . (2)

corresponding to the static shaft deflection under the action of this force. As
stated above, to this is added the general solution of the homogeneous system
2(1). Hence, the motion can be described as the oscillation2(2), not about

x =0, y =0, but about the point (2).

Likewise, for eqs. 2(6), the solution consists of a sum of (2) and the
damped oscillatory solutions of 2(6).

For the rotors of Sections III - V, a constant applied force producs a deflec-
tion in the direction of the forée, as well as at right angles to it. 1In par-
ticular, under rotary friction, the additfon of the force (X, 0) to the right-

hand members of eqs. 4(l) yields the constant displacement given by
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kx + f1 wy = X,

leading to
£.aX
kX 1
x = ’ Y B S ) . %)
K2+ £,2 o K2+ £,% o

producing an angular displacement relative to the direction cf the force, given by

f.0
tan 0 = '-E-

' (5)

The above was utilized by A. L. Kimball in measuring the coefficient of
internal damping, reference (13), by loading a horizontal rotating shaft vertically,
and measuring its horizontal deflection. It had been expected that & would vary
with the rotor speed, and with the load; it turned out, hdwever, that within
elastic range of stress, @ was quite constant, and small. Thus, if a rotary fric-
tion model is used for internal damping, then fl muat be assumed to vary inversely

as w.

Assuming the existence of a normal force En as in Section III, Eqs.3(2), but
changing kl to -kl, one finds that a constant applied force (X, 0) produces for

small kllk a displacement

k. X

X - i -
x= 1 y ot a = k,/k. (6)

The elastic energy of the bent shaft. due to the force X is given by

Ve x2/2k @)

Since the shaft is revolving, the elastic strain of any element of the shaft can

be shown to vary sinusoidally with time. The existence of the force En can be ex-
plained by the assumption that the stress-strain behavior of the shaft material is
described by narrow, elliptical hysteresis loops, and this assumption leads to the

energy loss
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ukl » v
e V = acV (8)

per cycle, Thus, o is a measure of the "solid friction" or internal damping
of the material,

For the rotor of Section 10, a constant applied force‘Fxproduces a deflec-
tion given by eqs. 10( ) ‘

X = fmrx (1 +0 +p cos 27), y = -fm ; p 8in x 27 9)

As T varies over half a rotation, AT = x, this describes a circle, shown
in Fig. 8, whose diameter is at

x = £ F (lL+o+p), vy = 0, (10)

X = fﬁ Fx (40 -p), vy = 0,

-

and whose radius is fﬁrxp.: The motion.along this circle is counter-clockwise.

/’ y

x

Fig. 18

We now consider the effect of unbalance, Assume the rotor symmetrically
mounted between two bearings, as in Fig, 1, and suppose that the unbalance is
likewise symmetrical, so that 02, the c.m, of the rotor, lies in the midplane
normal to the z-axis, at a distance ¢ from 01, the shaft center,

Denote by (x, y) the componentes of the displacement of 01, from the unbent

shaft center portion 0. The position of the c.m, 02, when the shaft {s rotating,
is
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x + ¢ cos wt, y+ e sin ot (11)

assuming that as t = 0, 0,0, is parallel to the x-axis. The dynamical cquations
2(1) become

2 2
m 4 (x+ e cos Wt) = .-kx, m 4 (y + ¢ sin wt) = -ky (12)
2 2
dt dt
and introducing @, as in 2(2),
&+ cuozx = ¢ coz cos wt, ¥ + wozy = € wz sin wt, (13)

The effect of the unbalance is thus the same as of an applied rotating

force, equal to the centrifugal force,

A particular solution of eqs. (13) is

2 ) 2
- EW cos wt - £O® sin wt
x 2 - 2 ’ y 2 ) 2 (14)
w, w ‘ @ w

Thus, the shaft center point 01 describes a circle of radius r, where

2
€ 2 - 2 (15)
@, w
- s
and 001 is in the same direction as 01 02 if
of < w? (16)

but in opposite directions if
2
w > o (17)
Eqs. (14) imply that, for speeds below the critical, the rotor rotates with
"the heavy side out”; at speeds above the critical, it moves with the "heavy

side in". See Fig. 19.

A plot of r/e va. ® is shown in Fig. 20, Page 69.
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Fig. 19
Fig. 20

where the ordinate plotted represents the right-hand member of (15), but without
the absolute value sign.

From the above, it {s evident that the cr'tical speed w, can be defined as
the speed at which an unbalance causes a larg~ (theoretically infinite) ampli-
tude of shaft displacement, The angle between 001 and 0102 changes from 0 to
180° at the critical,

As o becomes infinite, the ordinate of Fig. 19 approaches -1, This means
that 02 approaches 0 and the rotor rotates about its c.m,, which approaches the

z-axis.

At w = @, 8 particular solution of (2) {s given by

Aeowt € ot
x = — sin @ t , y = --—g-coswt (18)

This may be described as motion in a spiral, known as "arithmetic' or
YArchimedean" spiral, with the radius r increasing linearly with time, indefi-
nitely.

If a "static" friction force (-fx°, -fy®) is added to the right-hand member
of (12), then, introducing Z = x + iy as in 3( ), the dynamical equation becomes

't+£'z+wozz - ewzem}r (19)
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This leads to the particular solution
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Z wz emt
L . (20)
€ ot eifR, 2
m o
whence, taking real and imaginary parts,
x = r cos (wt - 9), y = r sin (wt - 0) (21)
where (see Fig. 20)
r mz
. - , (22)
€ [-(wZ _ w°2)2 + f2 u)2,,‘“2]1/2
tan ¢ = fw/m (woz - wz). 02 (23)
0] - 0 o
€ wt
nk
r
-1 Wy 0
Fig. 21 Fig. 22

A schematic plot of ¢ vs. w is shown in Fig. 22, and r/e vs. w.is in Fig. 25 .

There is now a gradual change in ¢, from 0 to -180°, as w increases.

|
|
I
!
l
l
w

\
w
° . Fig. 23
It {s of interest to compare (20) with
I . iw/L z 1
E 2’ wo LC (24)

2 R
-0+ L w + wo
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for the ratio of the current I = Iem

R, L, C circuit, The typical resonance curve is obtained by plotting the ab-
solute value of (24) vs. w. Essentially, (20) differs from (24) in having an
extta factor i® {n the numerator. The maximum of Z/¢ occurs at @ = wm> @y
vhile for (24) it odccurs gt w = @, However, if £ wb/m is small, as is generally

to an applied voitage E = Een”t in an

the case, 0 - W, is also small,

Thus, unbalance causes a& rotor whirl or vibration:, whose amplitude is
large near the speed w = Dy - This is the reason for thes term "criticali® Ius
this speed, which was initially defined in 2(2) as the vibration frequency of

the rotor mass m vs. the spring stiffness k.

For the rotors of Sections 3-5, a particular solution due to unbalance
is still given by a circular motion of 01, described by equations similar to
(18)-(23), but with r/e¢ and ¢ given by different functions of w. This is the
case, even when the golution ~€ the homogeneous system is unstable, as for rotors

with a normal force gn as in =q. 3(1),

Addition of unequal bearing support flexibilities to the above rotors and
shafts yields two criticals @y, Woe Nov unbalance leads to an elliptic path
for 0, and to large amplitudes at each critical., The phase changes of ¢ for each
one near w,;, W,, have the effect of producing for o)< < w, & retrograde motion

of 0,, that is, opposite in direction to the rotation of the rotor.

1’

Likewise, for the symmetrically mounted rotors of Section 10 with different
shaft and different bearing flexibilities, unbalance leads to a periodic solutiom

for the path of 0. For small p, the path {s nearly elliptical.

Thus far, only "“translational unbalance' has been considered, involving
¢, y)Ybut not (A, p). We now turn to the rotors of Section VIII, under General
unbalance, where the rotor displacement involves x, y and A, pu, and the unbalance
involves both ¢.m. off the z-axis, and the principal axis of inertias off the

z-axise.

Adopting the rotating axes of Section VIII, we suppose that the rotor, c.g.,
for the unbent shaft, is located off the z-axis, at
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x = ¢, y = ¢, z =z (25)

We suppose further that a line through the c.m. parallel to the z-axis is not a
principal axis of inertia of the (undeflected) rotor, through its c.m. Put
Eq. 8(10) in the form

- - (N - Y 6
2 wx;z+my2,{2+mzzl:2 O au)iz+(u+u&)32+ui:2 (26)

Then eq.8(12) is replaced “:-

M =1, [l -1 o -1 _ o
2 z
~ & x xXy ¥, yze 2]
, - - - 27)
+ 3, L I y % +J @, Iy s 9 J (
~ 2 2 2
+ k, -1 w =1 w +Kw |
& [ xz Xy yz 2 z,)
where Ix y +-+ are the products of inertia about the X,¥, -+ axes

I1f we assume '"glight" rotary unbalances, then the products of inertia.

s Iy , ore small in comparison with the remaining moments and products

of inertia.

I
Xz

Substituting for iz, 12’ k2 from 8(9), differentiating with respect to
time and recalling 8(3), one obtains 1, § - equations which differ from 8(15)

(a) in the introduction of added terms linear in x, y, A, u on the
left side of 8(15) involving I_ , I__, I _, and
— xy’' “xz’ “yz

(b) 1in acquiring the right-hand force and torque terms.

2 2 2 2
- , - I .
e €r m ey, Iyz @ w (28)

As regards the terms on the left which are linear in A, u and

involve Ixz' Iyz’ these may be onsidered small of the' second
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order, and will be neglected. On the other hand, the terms involving Ixy are
equivalent to the existence of an angle y between the principal axes of the rotor
and of the shaft cross-section. 1In absence of Fig. 28, one is led to a form cf

equations equivalent to those described at the end of Section VIII, involving the

angle 7.

As regards the terms (28), the first two terms represent the unbalance forces cor-
responding to the righ.-hand members of (13); the last two, the unbalance moments

due to the angle between the gz-axis and the nearest principal axes of inertia.

Particular solutions of the resulting differential equations can be obtained

by assuming that x, y, A, 4 are constants, and are given by

Nx (‘D,V) . N ((D,V)
X" a,v) v=0 LN RY) ve=0 (29)

where Nx..., Nu are obtained from A by replacing a proper column of A by the

unbalance terms (28).

Since the axes of Section VIIl are rotating axes, the solutions (29) represent
a circular whirl of the rotor with the rotational speed w, with the unbalance
forces and torques balanced by the elastic forces and moments. The amplitudes
(29) become infinite as ® approaches the "critical speeds" given by the o? roots
of A(w,0). As pointed out in Section VIII, these critical speeds given by the mzroots
as transition points, at which the solutions of the homogeneous system 8(15)
change from stable to unstable solutions. [Properly speaking, A above represents
not A in Fig. 8(16), but obtained fromthe modified system resulting from the replace-
ment of {4‘ in Fig. 8(14) by Fig. (27) ]
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X1l
VARIABLE SPEED

Thus far, we have alwave zssumed that the rotational speed of the rotor, w,
while arbitrary, is constant, without inquiring how this speed is maintained. Gen-
erally, the needed power for maintaining this speed is supplied by an electric motor,
a turbine, a diesel or some other "prime mover'. It has thus been assumed that
these "prime movers" supply whatever torque is needed to maintain the assumed con-
stant rotational speed, w, even when the rotor is unstable and both kinetic and po-

tential energy is required for the increasing amplitude of x, y, A, u.

In view of the large amplitude vibrations due to unbalance near the critical
speed (See Equations XI (13), XI (19)), no rotor is ever designed to run at or near
its critical speed if it has one such speed,or if it has several criticals near
any one of its criticals. If the operating speed of the rotor is above its
critical(s), then it must pass through the critical(s). For a perfectly balanced
rotor, as in SectionIIl the rotation,and the translational motion, x,y}do~;ot
interfere with each other even when the rotor speed is variable, and the passage
through the critical(s) is uneventful. On the other hand, for an unbalanced rrtor
whose speed is changing, the translational motion is affected by the variable
speed. We proceed to consider this motion of an unbalanced rotor whose speed is
uniformly accelerating from rest, so that its angle of rotation © and speed é are
given by

" .
0= qat /2, 0= qt. (1)

Unless @ is very small, the solutions of Section XI say Equations XI (14), are quite

inadequate for describing the rotor behavior.

Of special interest is the rotor motion near t = to’ the time at which the

rotor speed 8 = ot is equal to the critical speed a:
t, = mb/a. (2)

For simplicity we consider the same rotor as in the first part of Section 11,
that is a centrally mounted rotor, with the c.m. 02 at a distance ¢ from the shaft axis

0 , and with the principal inertia axis through O, parallel to the z-axis. For

1
Fs

2
such a rotor the translational motion x,y of the points 01,02 can be considered
apart from the angular motion (A,n) of the axis, and we proceed to consider the
former.
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Denote by x,y the position of 01, the shaft center point in the planc contain-

——y

ing 02, the c.m. Then the position of 02, assuming that Ol 02 is initially parallel

to the x-axis, is given by
x' = x+ccos®, y' my+¢esind, 0= at2/2.

In place of Equations 11(12) one now obtains the dynamical equations of

motion:
2
¥t+mixm -9 (e cos Z-,
o d 2 2
t
2 2 (4
§+m2y- -4 € sin &),
[} dt2 2

For definiteness we consider a particular solution of Equations (4) subject to the

initial conditions of an unbent shaft, and starting from rest:
x=0,x=0,y=0,y=0 for t = 0. ’ (5)

The general solution is obtained by adding the solution 2(3) to the above particu-
lar solution. (The effect of gravity changes the initial value of x.)

In terms of x] y; and the coordinates ol the c.m., Equations (4) become

®x' + (Dozx' = moz € cos(at2/2)

(6)
¥'+ 2y' = o 2 € sin(atZIZ)
o o

while the boundary conditions (5) become

x'=m¢g, y' =0, x'"=0, y' =0;
these can be reduced to (5)by - - — the solution x' = ¢ cos w.t, y' = 0. In-
troducing the complex variable

Z=x'+ iy’ (8)
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one obtains from (6), (5)

2 :
z+m°2z - mozeeiat /2 za0,2=0fort=o0. ()

The solution of (9), or more generally, of
g+ wbzu = £(t), u=0, =0 for t = 0. (10)

can be carried out in terms of its "Green's Function" G(t,s), as follows

t
u(t)= L)G(t,s) f(s) ds, 11

where G is defined as follows:

G(t,s) = 0 for ¢t < s,

2
§-§+m2c-o for t > 3 (12)
o
>f
AG(t,s -]
ot =t

Physically, G represents the solution of (10) for an "impulse" force at the time

t=3s
f£(t) = 8 (t-s) (13)

where 8 is the '"Dirac Function'", while Equation (11) represents the response to any

f(t) es a superposition of responses to equally spaced impulses.

The solution of (12) yields

sin mb(t-s)

G (t,s) = G(t - 8) = e for t > s.
o

The dependence of G on (t-s) is characteristic of linear differential equations

with constant coefficients.



=

Applying (11), (14) to (9), we obtain

t ‘ 2
Z2{t) =o¢ [ sinao_ (t-s) em /2 ds (15)
) o o
By expressing the sine in terms of imaginary exponentials, and completing the squares

of the quadratic expcnents, the (15) can be put in the form

® e t-t 2 t+t 2
A(t) = -2 " itof2 [e*‘%" I %l /2y - TINE f ° (lou ,Zdu]’ (16)
B o] [+]

The integral in (16) is related to the Fresnel integrals defined by

v 2
E(v) = C(v) + iS(v) = [ P2 4q,
v 2
C(v) = [ cos (ng"/2) dp, -
v 2
S(v) = fo sin (np“/2) dB.
There results
( we -im t./2
2ty = 222 \]‘% {ei“’"t [Gv-vy) - EGvy)] - e 100t [BCrtv,) - E(vo)]}
<where (18)
ve & t, v_= . ' e~
k14 [+ b4 o]

Tables of the functions C(v),S(v)may be found in Jahnke-Ende. The function
E(v), plotted in the complex O+iS plane, yields the well-known Cornu Spiral indi-
cated schematically in Figure 24 . For large v , the following asymptotic ex-

pression holds:

2
‘ iav©/2
1+1 i e
E(v) 2 - - T e ‘ (19)
1 1
where .... refer to terms involving 3 T e
v v
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The path described by O2 is given by
x' + iy' = 2(t) + ¢ cos @t (18)

and aside from the angle @ = at2/2, it depends on the angles

2
o, = @t O(t:o) =at /2,
where @ is the rotation of the shaft, Go the rotation angle of a rotor rotating with

constant angular velocity L In particular, at the time t, v e Vo and Equation
(18) yields

@ ti [ .
z(to) - 02 Fg 18 190/2 E(Vo) + 8-3190/2 [z(Zvo) - E(Vo)]} . (20)

The maximum of |Z‘ occurs generally for t 5 to'

A solution similar to (11) can be obtained for a rotor possessing static damp-

ing, as in Equations 2(6), provided G is replaced by

e-‘(t-s)sin b(t-s)

b 2

G = a+b=Ax\ (21)

where Kl is given by II(9), Likewise, the integration can be expressed in terms of
the integral E but for non-real arguments. The integral E {8 related to the error-

function but again for complex arguments.

The assumption of Equation (1), even for a massmive prime mover exerting a con-

stant torque, 18 not necessarily valid, du= to uvihe vsriable torque that the shaft
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must apply to maintain the motion of the unbalanced rotor. Indeed, the kinetic and
potential energies of the rotor are given by

2 2
T - ?{[%&' (x + ¢ co.o] + {%&' (y + ¢ .me)ﬁ+ -}e
(22)
-'% [‘2 + 92 + 2¢0 (y cos® - x ainO)] +'§ 62,
V= %'(x2 + yz). 23
The first two Lagrange equations agree with (4) while the third one yields
d . . 2 . ‘2. .
It [me (y cos® - x 8inB) + (me"+K) 9]+ me@ (y 8in® + % cos@) = Qg, (24)

where Q9 is the external torque about the z-axis. I1f the above solution for“x,y,@
is valid, then the torque-Qe must act on the shaft. 1In general, the torsional
stiffness coefficient of a shaft is of the same order of magnitude as its bending

stiffness. Hence, the assumed Equation (1) must be corrected.

If the prime mover is not very massive, the effect of its moment of inertia

and of its torque vs. speed characteristic must be taken into account.

-79-



e e, A M 4l P 7 gt o+ o vm e w for

X1irx
COMPOUND ROTORS
Thus far, in SectionsIIl to Xil, many basic featurea affecting rotor motion and
stability have been conaidered. For clarity, the effect of each comﬁiieatiug fea-
ture was treated by itself, and under simplest possible assumptions. Thus the
effect of bearing lubricant ﬁas considered in Section IXonly for a symmetrically

mounted rotor consisting of a single disk rotor, but it was neglected in Sections

II to VIII, X to XI1I.

In practice, rotors may have more complex structures, and many of the features
considered in Sections IT tc XIImay be present sihultaneously. Az an example, a
steam turbine rotor consists of a fairly massive shaft whose thickness varies
axialiy, and on it are shrunk many disks carrying steam buckets. This '"prime
mover' may be coupled to a massive turbine generator. The "active length" of the
lafter forms a constant radius cylinder, carrying imbedded current ccils in slots,
and for a two-pole machine, may lead to different bending stiffnesses ih two_direc-
tions. The coupled, two-span rotor is mounted on several bearings and may have

an overhung, small rotor (voltage regulator).

A complex rotor with distributed inertias and a variable thickness shaft is
treated by breaking it up into many sections, each one with its own translatory
and rotary inertias m, Ii' The large number of degrees of freedom gives rise to
a higher order system of differential equations, with more criticals. Inclusion
of damping, bearings, pedestal support flexibility further complicates the system,
very often to such an extent that high speed computing machines are required for

their treatment.

To illustrate some of the features arising from an increase of degrees of

freedom, we consider a rotor with two disks, as shown schematically in Figure 25

H"d
L____ n .
<.
O

3
ot
8

[}

Fig. 25
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We assume that the shaft and the disks are axially symmetric, and that each disk is
perfectly balanced.

To set up the equations of mbtién, e start with the diaplacemehc load equ@-

tions similar to those of Section VII. '

F + a

8 1Fx1 I

12%y1 ¥ 81372 ¥ 2147y 0

851Fx1 ¥ 822Tgp F ayaF 0 * 8 T00 s

b
[
L}

4y =8y (L

T.. 4 a,.F_, + a,,T .

= 831 F0 F 3Ty ¥ 835, + a3, T

31" x1

+a,,T .

F + a 44 y2

My = 8,F 0 T, * @

42%y2 F

43" x2
Here Xys By are the linear and angular deflections in the x, z plane of "the shaft

at Pl, the center point m Xy, By the corresponding deflections of Pz, the center
point of m,, while Fxl and T 1 ore the external force in the x-direction, external
torque about a line parallel to the y-axis, applied at Pl; sz, Tyz a similer force

and torque applied at P Thus, 1if only a force Fx1 is acting, then the deflect-

2"

. ions produced by it at Pl, P, are given by the terms in the first column on the

2
right of Equation () and so forth.

Solution of equations(l) yields
Boy T AnXp FARM t A% t A,

R S T Y L T S A

(]
n

(2)

F_,=A Xy + A + A

x2 - P31 3gMy t Aga%y F Ay,

T, = A

g2 ™ Agp¥p tApHy A

43%2 T Aygto

where Aij is the ''stiffness matrix". Both the Aij and the flexibility matrix =

by Maxwell's reciprocity theorem, are symmetric:

TP IVE Aij-Aji (3)
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For sn axially symmetric rotor, the (y,\) equations sre similar to Equations
1 and 2, and can be obtained from them by carrying out the following substitutions:

yl-b X5 u.l-» .)‘1’ yz—O X, uz-b-hz’
(4)
Ta™® Py T, T, P, P, T, T,

Consider first @w = 0, that is, a non-rotating rotor. The dynamic equations of
vibration in the (x,z)-plane are obtained from Equations (2 by replacing its left-
hand members by the inertia farces and torques of the disks:

Fal = ®%pr Ty % cLHs Fp 7 oomp¥ys Ny = oLy (%)

There results an eighth-order system of four differential equations. The vibrations
in the (y,z)-plane follow under the substitutions (4)

Assuming a solution of either set of equations in which time enters as a factor,
eipt, (6

one is led to the following equation for p:

1 K1 Y2 Ha

Xy M Xy )

Apomypy A2 A3 A

A A -1.p° A A 7
21 22" 1P 23 24

= =0

A iy Ay3-myp Ay

A A A A -1.p°
41 42 43 44" 2P

where the first row on the top indicates the variable occurring in each column.
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The (y,u) frequency equation i{s exactly the same, provided the variables be
chosen in accordance with the substitution {n Equation 4, hence as {ndicated by
the second row sbove the determinant

Consider next w > 0, that is & rotating votor. For it, the rotary inertis

terms must be corrected by the addition of gyroscopic terms. Recalling Equaticns
7(11) and 7(12), one obtains for P& :& the rate of change of moment of momentum
of each disk,

’):1,1-(Ih.1+1(1p.)1+(11u1 11cn)J

| (®)
}& = (I, +Kum) 1+ (I, - K hzw) .1.
and the i - components of M

Ez are equated to Tyl’ Tyz; the j-components to
There results now a system of eight differential equations of net
involving all eight variables Xys eeees oo

to - T <1’” 2.
order 16,

It is possible to halve the order of the system by introducing the variables

Z

Z1 =X + iyl, M = ul - i&l, 2 = X, + iyz, Mz = By - ihz.

1 9

By proper manipulation of the (x

......

2)-equations, there results a system similar to

the (x,u)-equations, except for the addition, in the principal diagonal, of the
terms

0, -kl(lli, 0 , -iszMz. (10)
Under the assumption !in Equation(6),these added terms become
0, KICDPM]_, 0, KZ““PMZ’ (11)

and lead to the net inertia terms

2 2 2 2
_mlp 21) ('Ilp + KluP) Ml) - mzp 22: ('Izp + szP) Mz‘

There result in the variables of Equatioms(9) four simultaneous equations which are
the same as the (y,p)-equaticns.

The determinant of the coefficients, when equated
to zevo, resembleg Equation 7 for a non-rotating :cotor, provided Il’ 12 are repiaced by
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In general, for only @, the p-roots are resl, and the solution represents a
possible circular precession. If the critical speeds are now defined, as in
Section 12, as the w-values for which the precessional frequency is equsl to the

rotationsal spsed o:
p = O (14)
then Equations (13) are replaced by

L - ''= -
11 11 Kl, 12 12 Kz. | (15)

Hence, we conclude that so fer as the gyroscopic effect on the critical speeds
is concerned, the static vibrational equations, say in the (x,z)-plane, can be used,

provided the rotary inertias of each disk ba modified as in Equation (15).
This rule appiies to an axially symmetric rotor with any number cf disks.

In practice even the calculation of the stiffness and flexibility matrices

‘ij’ Aij becomes irksome for a complex rotor. One proceeds by step-wise integra-
tion of the '"beam equations', say for the deflections in the (x,z)-plans for x

and u:
ax du dT
B = 3z ° EI dz - . Ty, —Ef + Sx + my = 0,
(16)
de .
a3z + L = 0

for the deflection x, slope p, moment Ty, shear Sx, where vy is the external load

per unit z, m_ the external applied moment per unit z. Both Ve and my are derived

y
from the inertia load of each section, and are concentrated, say by being divided

equally at the two end points.

Assuming a value of w, one solves the fourth-order system, subject to proper boundary

conditions at each end. For a single rotor span of length £, mounted on "fixed"
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bearings at each rod, these conditions are

x=0, T =0 atz=0, (17

x =0, 'ry-o at z = 4.
One proceeds by spplying Equation (17) and assuming several sets of further conditions
at x = 0, say the values of p and Sf. The resulting solutions are then interpolated

to satisfy, say x = 0 at z = L, and T at z = 2, is computed. Then ® is varied

until 'ry venishes at z = £. See References (16), (17).
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