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‘ ABSTRACT

The basic aspects of rotor-bearing dynsmics have been c¢ollated and

are here presented in systematic fashion. The rotor-bearing system

and its faces are first discussed. The properties of rotor whirl,

critical speed and system stability are discussed in detail. Effects
arising from running a rotor through its critical speed are reviewed.
Balancing of rigid and flexible rotors is considered with regard to
balancing machines, computed calculation of untalance, and acceptable
levels of unbalance. Axial und torsiomal efféctn on mschine systems

are included. Throughout, the important literature relating to each

. topic is specified, discussed and set in perspective.
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NOMENCLATURE

Principal nomenclature is listed below. 1In certain ceses the same symbol has been
ie-used to denote another variable, in two separate places in the text. In these
instances, symbols are specifically derined witnin the texc.

The nomenclature used in the cited literature {s not uniform, and in presenting
certain parameters from the literature as curves herein, and in analysis, it has
not always been possible to present a wholly uniform set of motstion. Where ex-
ceptions occur, these are either re-defined within the text, or, in the case of
a curve figure, the figure source is specified for direct referral.

A Cross sectional area

A,B Integration constants

a Eccentricity of mass center

a,b Shaft semi-lengths

Y Bearing radial clearance

c Torsional rigidity of cross-section

cxx’cxy’cyx’cyy Bearing velocity damping coefficients

c Viscous damping coefficient of velocity

e Critical velocity damping coefficient 2 an

d Diameter y
E Modulus of elasticity

E Hysterisis 2snergy loss per cycle

e Radial displacement of journal

F Force . /
g Gravitational acceleration /
h Fluid film thickness

1 Moment of inertia of disk

I Polar moment of inertia

I, Tranaverse moment of inertia 4

i V-1

f,? Unit vectors in n directions

Kxx'ny'ny'xyy Bearing opring coefficients

k Shaft flexibilfity

kij Stiffness influence coefficients

L Length
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Length ratio (LZ/LI)
Shaft semi-lengths

Unbalance pusiiiva rativ
Bending moment
Bearing gas mass

Bearing restoring moment

Mass
Speed, rpm
Critical speed

End force
Buler critical load ( n2E1/1%)

Pressure

Ambient pressure

Recess pressure

Whirl ellipse major and minor radii
Small tangential force

Damped critical speed

Toreional shaft stiffness
Generalized displacement coordinate
Generalized velocity coordinate
Coefficients

Journal radius

Gas constant

Radius whiri orbit in x, y coordinates
Polar coordinates of position

Unit vectors in n directions
Sommerfeld number

Whirl threshold speed ratio (u/a&)
Temperature

Torque

Kinetic energy
Time
Thickness
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Tangential velocity
Unbelance, “, 6;. in
Paranrial anarev

Linear vcloci:y:
Journal radial velocity
Work per shaft revolution
Work

Bearing lcad

Weight ratio (ulL/w)
Specific weight

Gas flow rate

‘Journal velocity in x-direction

Stationary Cartesian coordinates of position
Journal velocity in y-direction

Bearing length coordinate

Shafc length coordinate

Transient phase angle

Angular acceleration

Synchronous angular whirl velocity
Discrete-effect eigenvalues

Influence coefficients
Influence coefficient

Steady-gtate phase angle -

Instantaneous small angles of {aclination

.Dimensionless damping coefficient (Lewis)

Constant

Deflection e)
Bearing eccentricity ratio (;i
Strain

Eccentricity ratio

e/t

Phage sngle

Error perturbation
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Damping ratio (c/cc)

Whird orbit radius in £, n coordinates
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Dimensionless shaft stiffanees ratio

Bearing angular coordinate

Angles

Speed-dependent shaft stiffness

Compressibility number [6um/p ] ( 1

Cumplex eigenvalue

Transient vibration frequency with coulomb damping
- A [1 (ua/uQ]

Natural frequency parameter (uAm /gBI)
Viscosity

Poisson's ratio

Stiffness ratio (nhnft begring)

Rotor whirl frequency

Mode shape coefficient

Span ratio for mass location

Rotating Cartesian coordinates of position
3.141592....

Styress

Dimensionless time w,t

Attitude angle
Angle of shaft twist per unit length

Displacement function

Dimensionless speed ratio (w/ax)
Circular frequency of rotatiom

Critical speed, radiai/sec.
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INTRODUCTION

Purpose and Need
Rotor-bearing dynamics has racently emerged as a specislized technology in

machine design, due to the growing demand for Yeliable rotating mschinery capable
of stable operation at higher and higher speeds. As machine operating speeds

have increased, so has the presence of dynamic effects in the motion become more
significant. The design and development of high-speed rotating machinery has

thus become increasingly dependent upon a knowledge of the dynamic characteristics
of the rotor in its bearings.

The purpose of this volume is to present the existing knowledge in the major
areas of potor-bearing dynamics in a single volume. As such it comstitutes for
each area a comprehensive and definitive introduction to the mechanics of rotors
in bearings, and also a fully-documented reference to the subject literature, in
which the contributions are collated, evaluated and set in perspective. This in-
formation is of value to designers of rotating machinery as a sourcebook of
rotordynamic effects and of experience obtained by many investigators with many
different machine types. It may be used by analysts seeking data on the basic
mechanics of whirl motions, stability, run-up or run-down rotor characteristics,
or any type 6f system critical speed calculation; and on the formulation of the
equations of motion in each of these instances. Despite the wery extensive sub-
ject literature in both rotordynamics and bearing technology, there exists no
specific text devoted to the problems of rotors in bearings, nor is any

critical compilation of the subject litarature available. Therefore, this

volume meets both these needs.

Dynamical Problems of Rotating Machinery

The dynamic aspects of high-speed rotating machinery cesign are directed towards
achieving stable motions of minimum amplitude at all operating speeds. At low
speeds, less than the first system critical speed, the overall problem may be
dealt with by careful balancing. But at high speeds, above the firet system
critical speed, the most refined multiplane balancing cannot avert the stability
problems of hysteretic whirling, dissimilar rotor lateral stiffness, and resonant
whipping. Other methods involving rotor construction and system viscous damping

|
i
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are effective in overcoming these problems — the existence of which may be pre-

dicted at the design stage using the data contained herein.

1 The design problems of rotating machinery may be classified as follows: {J

)

1. Function capability and operational safety.

»

T

2. Static stress levels: The influence of centrifugal, thermal, and bending c
néffects; sereep. and fatigue of disky, shafts, bearings, and stator casing

under environmental condicions.

: —

3. Dynamic stress leveis: bending, torsional, and axial stresses in the
rotor. e

4. Clearance maintenance; rotor-stator, journul-beafing; no touching,

5. Erosion, corrosion of working surfaces. S : = E}

P“‘x\ 6. Transmitted structural vibretions and noise level. _ - ' - '{]
2 v\-\ !

The Ftoblcma of rotor-bearing dynamics must be solved within this total framework. {j

Specifii gynnmicnl problem areas of the machine design are as follows:
1. Critical speed amplitude buildup.
2, Multtpliae baldncings.
3. Rotor dynamic stress levels. Bending, axial, torsional.
4. Shrink-fit or elastic hysteresis whirl stability.
5. Stability with differing lateral stiffnesses.

6. Bearing stability. Resonant whipping. Half-frequency whirl. Pneumatic

hammer.

[}




—y

P TANTNE " T

FITET N G T AT AT

"

-

WA TR T

TV M S R Ty s

it St (ot nar AP

1)

I X0 0N OM R M Y PO Y P PO B lﬁll ) Em e BN oW ep o aw &

7. 8ubharmonic whirl ssplitude buildup.
8. Transmitted bearing fovrce., 8tructural vibratioen.
9. MNoise ganeration.

A knowledge of the manner in which sach separate effect influencas ths rotor bas-
havior is needed for the design of both rotor and bearings. Anslytically, the
complete interrelacionship of all factors cannot be known explicitly — evan for
the most simple rotor type. However, it is usually sufficient to investigate
eacl effect separately, and in instances where contrary tendencies exist, the
combined affect may be considered. This is the lpproiéh used in the following -

sections.

Scope of the Pregent Volume

Before analysing the motion of & rotor in bearings, it is firit.hocco.ozy.to
specify what is intended by the terms "rotor" and 'bearing'. - This is done in
Section 2. The constructional make-up of a rotor is reviewed together with the
manner in which the physical proportions contribute to the dynamic rotor
properties. The various types of bearing are discussed; gas, liquid; hydro-
static, hydrodynamic, hybrid; laminar, turbulent; and the features which con-
tribute to the motion of the rotor are identified and classified in terms of

relative importance for each of the above cases. Forces which arise in the motion
are also reviewed in this Section. These are classified in terms of their origin

and action on the rotor-bearing syatem.

Section 3 is a discussion of the effects produced by a number of specific in-
fluences on the rotor in its bearings. In particular these are: rotor un-
balance; viscous friction arising from bearings, process fluid or environment;
internal friction due to shrink-fit slippage or elastic hysteresis; dissimilar
lateral stiffness of the shaft; flexible bearings; subharmonic whirling fluid-film
bearings; attenuation of transmitted rotor force by the beating fluid-film. In
mosat caseg, it is only necessary to consider the performance of a simple, single-
disk rotor to gain sufficient understandirg of the principles associsted with.
each effect. These results cover the fundamental system critical speed. Where




information is needed on higher critical speeds, the rotor profile must possess as
TEL) masecs @s LIGTE @i€ ciiltical speeds luvuived,

Each rotor-bearing system possesses a nunbér of critical speeds, but the:most suit-
able method for calculating a given case varies according to complexity and the
accuracy to which the required result must be sttained. Sccgtén 4 consists of a
discussion, with examples, of the most commonly-used exact and approximate methods
for the calculation of critical speeds. The influence of system damping, sheasr,

rotatory inertia and gyroscopic effects are considered.

The stability of rotors in bearings is considered in Sectfon 5. PFollowing an
introductory statement on the nature of whirl motions and their basic mechanics,
the stability properties of elastic rotor-bearing systems is examined. This 1is
extended to the case of an elastic rotor in flexible bearings subjected to both
viscous and hysteretic friction. The stability criterion uood vitios from ca.‘ o
case. In simple instances, it is sufficient to check the rotor whirl amplitude
equltiono'for instability indicated by positive, real time exponents. Others may
require the stability condition be obtained using the Routh-Hurwits criterion.
Hydrodynamic instability is introduced by a discussion of the mechanics of fluid?
film whirl. From this, the method of stability analysis of rotors in bearings 4is
developed and applied in turn to ltquid bearings, gas bearings, rigid rotors, and.
elastic rotors. Results for several bearing types are included, extending through

the two-mass rotor in damped, flexible supports.

All high-speed rotors pass through at least one system critical speed during each
cycle of operation. The dynamics of this transition are discussed in Section 6

for the cases of a simple rotor in rigid bearings, damped rigid bearing rotor, and
for flexible bearings. The rotor motion includes the influence of the transients
induced during start-up, and the interaction between the transient and the critical
speed amplitude buildup may determine the performance of the machine. ™

Balancing of flexible rotors is diécussed in Section i. This subject is the least
tangible aspect of rotordynamics, and at present it may not be reduced to an
identical routine even between rotors of the seme size and shape — much less
eliminated by-standard design practice. The need and technique for balancing a
rigid rotor statically and dynamically are stated, and the distinction between

4

(D o e,

g3

xS ot B S SRR S




Ty T ey~ ———— — gy

—

T p———. ey

v . vy

T

this and flexible rotor balancing is discussed. Practical aspects of machine
balancing and field balancing are considered, followed by a discussion of the
principles of balancing machines, and the detsrmination of the required corrvection
weights. The influence-coefficieat method is then discussed in detail as applied
to the balancing of high-speed flexible rotors. The exampls of a small high-
speed rotor is used to demonstrate and cowpare the effectivensss of multi-plane
balancing by thea influence-coefficient method with rigid-rotor two-plane static-
dynamic balancing. Finally, the levels of residual unbalance which will be
acceptable in operation is discussed.

Section 8, the final section, deals with additional effects such as the axial

- and torsional motions which occur noii:counonly;in high-speed machinery. Sources,
--critical speed calculations, and methods of suppression for both torsiomal and

axial vibrations are considered. Axial vibrations of a fluid-film thrust bearing
are discussed in detail . These effects are drawn together by considering the
influence of torsion and axial motion on the bending motions during whirling for
a.rotor with distributed mass-elastic properties.

Considerable specialized knowledge in disciplines other than rotor-bearing
dynamics is drawn on in the text snd, where possible, .the required analytical
procedure has been given in some detail to make the particulﬂr subject self-
contained. Hydrodynamic lubrication is & subject in itself. The basic steps
from Reynolds' equation of three-dimensional viscous lubricant flow to pressure
distribution load capacity, friction, and damping and elastic properties of the
fluid-film are outlined in Appendix A. Appendix B presents the derivation on
various equations of the rotating coordinates; complex plane, vectorially, §, g
coordinates, r, € coordinates. Appendix C is the bibliographical listing of
the published references cited in the matn text.

Sourceg of Text Material
The references lidted in Appendix C are the major source from which the material

of this book has been drawn. As this volume is unique in its field, no other texts
were available for comparison — with the exception of Dimentberg (Ref. 1). This
work is concerned with the mathematical analysis of rotor motions for amplitude

and stability, an objective which it accomplighes with elegance and thorouzhnen..l

P L L R R R R R Y il L L L LI T XY T P PP R TR Y TY PR Y TR Y T Py e

1. On translation from Russian to English, iinadequate proof-reading has permitted
the inclusion of a great number of algebraic and textual errors.

5
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Dimentberg deals with elastic rotor-bearing systems, but omits all reference to
fiuid-film bearing s and their affart an ratar marinne. Tha anly suidance ara-
vided in this direction concerns a relatively simple use of a simple, unbalunced,
elastic rotor which eoprrates in bearings having identical coordinate stifinesses, - ' -
that ar~» damped in one direction. The emphasis throughout is on obtaining analy-
tical, c:-sed-form solutfons ro the problems coasidered, often in the.'fuce of ex-
tremely c¢i - lex and tedious & 'gebra, No use is made of the digital computer.
Bearing in ' ‘2d that the first ga=isfactory solutions to the lubricatica problem
were obtained after ddapting the brsi: equations to digital computation, it is
obvious that the rotor in fluid-film beervirgs was beyond the scope. of Dimentberg' s
book. Pinkus and Sternlicht (Ref. 2) contains basic hyd:odynamic chcory, plus &
chapter on hydrodynamic instability.that includes an atalysis of the balanced

rotor in fluid-film bearings. This work is the only reference which discusses
bearing stability theory in its modern analytical aspect. The runerical result
included for many bearing typei make this uork{l valuable desisn text. Most of

the techniques and applications for bearing .tability cited in the: preoent volume °
have been developed since the publicttion of the above reference. ' '

Rotor-Bearing System Analysig T

Th-oughout this wo}k, the objective of all analyses is to obtain a knowledge of
the dynamic pé;fo:ﬁﬁnce of the entire machine. This is implied by the term "rotor-
bearing syctqﬁ?, ;nﬁwhich the basic components involved in the total motion are

. coupled aq:lggaédily‘ao occurs physically in the machine. Dynamic considerations
asgsociated vi?p'rotor. bearings, and foundation are discussed in Section 2, This
analytical representation is possible on the condition that the motions of all
components are small allowing the system equations to be lineariged. The dynamic
gfoperties of the rotor and its bearing supports may then be determined individually
and linked together through the boundary conditions. This approach applied to
liquid and gas bearing systems has been very succesgful in determining the
threshold of stability since the stable, balanced state from’ which instability is
approached consists of small motions which satisfy the analytical assumptions.
However, the true dynamic response of a fluid-film bearing is highly non-linear,
and so relatively little work has been done on the .aﬂllyoil of systems with large
amplitude motions. This is due to the analytical complexity involved in solving

the non-linear response equations. Apart from certain exploratory studies, the




practical need for a total solution has not been pressing, pur:tculufly ag {t¢

means that a separate rotor-bearing rispcase analysis is required for esch bearing

tvna. Practical conaiderations. therefore. comvel the investisator to separate
the rotor and the bear.ng and to represent the fluid-fila forces by linear
gradients, harmonic motions, and smail displecements. This méthod 1é quite
general in application, and is well-suited to the preparation of a general com-
puter progrsm in which the rotor becomes a discrete-mass-elastic systeam, The
effect of any type of bearing may then be examined for which the dynamic co-
efficients are available.

The ning Problems of Rotor-Bearin c

‘Remaining problems are concerned with: | (1) obtaining a better understanding of

the mechanics of certain system processes, such as hysteretic damping and
tesonant vhipping, and (2) with obtaining data on various configurations which
inherently possess a high threshold of stalility, or induce cmali-anp}itude
vhirl motions through damping. An itemized listing of the most significant of
these problems is as-follows:

Rotor

1., S8Stiffness charscteristics for built-up rotors.
At present, experience is used to assign practical stiffness values
where Yorcs is trangmitted between components across a friction {nter-
face, such as a shrunk-on sleeve. A problem ekists in deciding the
effective contact area and variation in constant pressure.

2. Stiffness characteristice for rotor with abrupt section change.
These changes do not allow the full ctiffness of the section to be
utilized because of 8t. Venantrend effects. A meaningful general
avaluation is needed for guidance.

3. Refined balancing technique.
Faster, larger, more flexible rotors operate between higher,critical
speeds and must have smaller unbalafice lévels. Further. information
on the influence of typical unbalance on the rotor-bearing system is
needed for more refined balancing, including dynamic pedestal effects,
the influence of thermal distortions of the rotor and techniques for
overcoming or compensating, and the effect of gravity.

4, Rotor repregentation as a simple system,
Where a simple rotor model gives adequate dynamic data, the problem
of accurate representation of mass-elastic data from a complex rotor,
with several disks and a shaft, exists. Better guidance data on rotor
model specification is required.

Ik




5., Bffective msss of a submerged rotor.
Pump rotors for many fluids includingiliquid metals entrain the sur-
rounding medium {n which che inertia properties contribute to the
system mass and, hence,.dynamic characteristics.

6. Vertical rotor precession and nutation.
Uitracentrifuge and spin-test rotors involve these effects. Data on safe
working practice and gyroscopic stability boundaries is needed.

Bearing

1. Nor-linear bearing effects on rotor motion.
The rubharmonic and superharmonic properties arising from large ampli-
tude rotor motions are little known. A conveaient method of calculation:
is needed which is also suitable for stability analyses. At presant,
stability calculations are based on small displacemsnt stability from
the steady-state position, The stability of the whirl orbit itself 1s
‘unknown. ,

2. Acceleration of gas-bearing rotor. through critical speeds. '
These systems have small clearances and low damping and the ponnibility
of touching is greater during transitton. An examination of the simple
rotor in a damped elastic gas bearing is needud to determine amplitude
butldup.

3. Reoonant whipping.
An examination of the conditions under which a rotor may be drivtn
through the resonant whipping condition, is required for ultra-high
speed rotors and to permit less stringent bearing stability design
requirements.

4. Shock, impact, and random\vibration response,
The performance of gas and fluid-film bearings under shock and impact
conditions ig lacking, although recent experiments indicate toukh can
be survived quite readily, and that the bearing may not be the limiting
component. Harmonic load component performance has been documented and
offers an introduction. Random vibration studies of gas besriugs are
needed to establigh design criteria for non-steady environments.

Rotor-bearing system.

1. Shock, impact and random vibration response.
An extension of bewsing requirement No. 4 to a system study is needed,
beginning with a simple rotor in fluid-film bearings.

2. GBending, axial, and torsional mode coupling.
Simultaneous existence of several modes of vibration can result in -
coupling. Bending-torsional system studies have been initiated for
geared systems. The influence osn the mode shape and the critical
speed due to the coupling gears contact forces may be significant,’
and variable.
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3. Built-in dampers.
Possible attenuation improvement in rotor and pedestal motions by
built-ia dampers and tuners designed to suit the system msy be
ackieved. The damper attenuation studies are required.

4. Bystem response to external excitation.
Tha affect on the systam of 2 resonating component would be valuable
in determining the dynamic response of the system to turbine
blade vibrations, disk axial vibrations, or to externslly impressed
high-frequency forces.

State-of-the-Art. _

The small-amplitude motions of the system are understood with .ufﬂc.hnt
accuracy for immediate practical purposes. The amlytiul tools have been
developed to deal with these problems. More data is now required on many
practical aspects of dyunie response and on hov these influence the systea
and its motions.
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ANALYTICAL REPRESENTATION OF THE ROTOR-BEARING SYSTEM

Dynamical System of the Machine

As a first step in the dynamical snalysis of any machine it is necessary to
establish from the proposed machine layout those components which will act to-
gether to constitute the dynamical system of the machine. In most i{nstances,
the rigidity of the bearing housings and their supports reduces notioas of '
these components to a minimum. The rotating components are, in general, much
more able to respond to rotor dynamic forces, and so the dynamical system of

any machine is centered around the rotor itself. In a complex system the

. dynamical constitution of che rotor may be diffcrent for different types of

motion; for exsmple, in the geared system shown in Figure 2.01, banding motions

* of each shaft are unlikely to be transmitted to any significant degree through

the gear meshes, whereas torsional motions will be both transmitted and

“~tafluenced by the gear ratio. If the shafts shown in this system are very
_§1exible, the total motion may contain both bending and torsionsl component

motions. But if the shafts are designed to transmit power and to resist bending
deflection, the system motions are unlikely to be coupled, and the equations

. describing both types of motion are thereby greatly simplified. The wost com-

‘monly-occurring motions in any machine system arae:

1. Rigid body motions

2. Bending motions of shafts

3. Torsidnal moticns

4.. Axial motions .
,’5. Plate-mode motions of impellers, disks and gear wheels

Both translatory and conical rigid-body intermodal coupling, and rigid-body-bend-

~ ing coupling are common in rotordynapic systems; torsional motions with some

" bending motion due to shaft and bearing displacement are encountered in.high-
 speed gearboxes and other transmission systems. The influence of torsion on
 bending modes has been considered by Johnson (Réf. 3). Axial-torsional coupling

may occur with long transmission- and propeller-shaft systems, where the
thrust bearing flexibility allows the system te move axially, and bending-axiai

motions due to axial thrust in turbomachinery are well known.. Where the shaft

10
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is short sand light-weight, it may participate in the high-frequency plats mode
vibrations of the disks or gears which it carries. . Bach of thes: typas ‘of
motion i{s shown diagremmatically in Figure 2.02.

Generally speaking. the poasibility of coupling wil] be gadicoggd-if-g.ggi-..u
culated neatural frequency of any of the above simple, uncoupled, types of mo-
tion lies close to ths natural frequency of sny other simple uncoupled motion.
Where this occurs, an snalysis of the coupled motions is aecessary to obtain
the true natural frequencies and mode shapes. -

The motions with which this report is mainly concerned are the rigid-body modes
and the bending modes of a flexible rotor in flexible supports. Analysis of
these particular motions is an important part of the dosign of all rotating ”'
machinery. The other types of motion listed above elso occur in these
systems, but their effect is generally speaking more straightforward, and ade-
quate treatments are available in the subject literature, except insofar as
coupling, -particularly bending coupling, 1is concerned. 8ection 8 deals mors
specifically with the influence of axial and torsional effscts on the system.

In order to establiah the dynamic system it is nncillary to anticipate the
extent to which each individual mechsnical component is likely to enter into
the system motions. The rotor, the bearings, and the foundation are three
basic component groupings. 'The following sectioni revies the make-up, inter-
action, and participation of these items. ‘

The Rotor

Mechanically, a rotor consists of a number of componente which,are rigidly
attached, forming a shaft which rotates and performs useful work. Many
rotors consist of a basic shaft upon which are mounted components such as
bladed turbine wheels, impellers, drive couplings, electrical armature lami- .
nations and coil windings, gear wheels, and so on, Figure 2.03. The shaft
serves to locate the working components centrally along the elastic axis of
the rotor. They may also be attached elsewhere, perhaps by disk-to-disk
bolting, in which case the rotor is made stiffer. A drum-type rotor way

also be used tc reduce rotor deflections where the bearing span is large,

FPigure 2.04. This type of construction {8 common in turbine practice, and

11




is also used for high-speed guide rolls on paper-msking machinss, newsprint
machines, etc. Other rotor types are short in length, ss in the case of
helicopter rotors. Ome end of the shaft is connected throush a gesrbox. clutch.
flywheel and universsl joints to & prime mover, vhich itself has either a crank-
shaft or g rosor. The other end of the shaft carriss & propaller condisting of
several long flexible blades, Pigure 2.05. The ventilation fun unit of Pigure
2.06 has a similar overall construction. In each of thesa cases, the designer
wishes to know: How will the stiffness of each rotor component influence the
overall motion of the rotor in its supports? How will the mass and inertia

properties of each rotor component influence this motion?

Dynamical Representation of Rotor

Dynumicaily, a rotor is the aggregate of fbe cffective mass-elastic properties
of its constituent mechnnical components. It responds as such in propurtion
to the variety of harmonic impulses which it rcceival. lrnqucntly, rotor

motions may be analyzed directly using known fomln, due to the simplicity and '

symaetry of the mechanical system which they roprc.cnt. Such calculations are
often possible where the information required concerns only the first few
critical speeds. As the speed range of many simple mgchincl contains only one
or, at the most, two critical speeds, these mnchgpco/may often be calculatéd
quickly and conveniently. The rotor elasticity ie represented by a simple
equivalent shaft, and the rotor mass is concentrated at as many man-statlions

as there are modes to be calculated. The msss arrangement is determined by the
actual machire layout. Both bending and torsional oscillations of one-, twc-,
and three-span machines may be calculated with good accuracy with such a re-
presentation., Very frequently, the shaft mass is relatively small compared with
the mass of the gears, impellers, and so one, carried by the shaft, and the mass-
elastic layout is eetablished directly. Figure 2.07 shows the analytical

representation of several mechanical rotor systems.

More complex rotor systems cannot be evaluated through any simple method, and
an adequate mass-elastic representation often requires a large number of masses,
joined by shafts of differing stiffnesses. Where the actusl rotor is a

stepped shaft,the calculation of an equivalent shaft in bending is tedious,

and the inconvenience of hand calculations may warrant the use of a computer in
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this {nstance. The equivalent torsionsl shaft may be calculitod'dirac:ly.
Where sywmatry is absent between the stiffnesses, or betwean the masses, com-
puter cslculation usually becomes an essentfal time-saver. -

Large rotating disks have ccnsiderable gyrescopic snd :ct:t_q’:f inerdlan, At
nodctntely-high speeds, cipecially vhere large smplitude o criticul mozions
occur, the inclusion of the forces arising from mouoﬂc and rvtatcfty
effects in the equations of ‘motion 1is usually nocuury. or the lceurlcy

of the result will be mpai.ud. The mass and the stiffness of both systems
shown in Figure 2.08nlre-equdlg the criticel speeds and mode shapes are

not equal, because th: end inertias are dissimilar. Where these effects

must be included, critical speed calculations become more ‘complicated by tho o
‘eddition of another degres of freedom in the rotor system for each mess- -

ltagio:n_. These effeccs are discussed more fully in Sectlon 4§, -

‘Computer analysis of the dynamic pcrfomncc of a rotor in its bcari.ngo al-

lows all simplifying assumptions to be dispensed with, and the rotor ;eo-try

‘may then bes faithfully represented in the calculation input glntn. - The rotor.

profile becomes increasingly complex as the operational demsnds of the
machine in which it operates become more stringent. Smaller sise, groater
speed, minimum thermal distortion, and volume,machinesand function-optimisa-

. tion all tend toward rotor; which have abrupt profile chenges, minimum-

weight sections, dissimilar materials acting in composite sections, all re-

‘quire an optimized distribution of mass-elastic properties to achieve the

required dynamic performance cbptictetictict. In these cases, the only way
to obtain meaningful design data is by a computerized analysis. In this,

the rotor is first divided into an appropriate number of ssctions so that

its mass-elastic properties may be represented with reasonable accuracy by
the system shown in Pigure 2.09. Within each prescribed section of the rotor,
the section mass %- [d°2 - diz]L is concentrated at its c.g., and is con-
sidered to act at this c.g. throughout the motion being analyzed. These con-
centrated masses are further assumed to be linked by massless elastic

members which represent the transverse flexural beam stiffness over the
distance between the rotor masses. This is the basic mass-elastic re-
presentation. More refined programs also take into sccount the rotatory

inertia of each concentrated mass, and the gyroscopic effect arising from

13
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rotation of the deflected rotor share. Shear effects may also be included with
-bending 1f neaded, hut this effect is generally quite minor.

In preparing progrsm input, the rotor mass values are resdily obtained from the
proposed layour, Greeter difficulty is experienced in selecting stiffn2ss
values between shaft purtions of different sections, or in tapering sections of
shaft. One msthod of overcoming the first problem is to piace a 'dummy'

station of zero mass at the junction between the shaft sections. The stiffness
of each length of uniform shaft is then calculsted, overcoming the need for
determining the equivalent second moment of area for the stepped section. Where
the shaft is tapered, it may be replaced by a number of stepped sections. These
arerthan incorporated using the ibovc method. These affects ere .hpwh in |
Pigure 2.10.

In many instances, the lhafc sections are made tubuler to minimize weight or
heat transfer and rotor thermal expansion, for example, between a turbine disk
and a gas bearing. The flexural stiffness of a short thin tube may be calculated
approximately using beam theory, but the actual deflections sre governed by the

r'cy}indric11 shell equations and the particular boundary conditions of the ap-
plicetion. No actual design data is available for this condition which will :
clarify the extent to which the beam theory is valid.

The reinforcing effect of shrunk-on disks or sleeves is also incompletely under-
stood at present. A turbine disk shrunk-on to the center of a thin flexible '
shaft will provide little additional stiffness, whereas an outer coating applied
to a roll may stiffen the roll considerably, even though the stiffness is trans-
mitted by contact friction between the surfaces. In estimating both thase

cases the experience of the analyst is at present needed to allow for the
stiffening. It is customary to sssume that the effect of the shrunk-on section
is effective over the length of the disk or sleeve, and that it may be represented
by & certain increase in diameter of the basic shaft. Similar problems occur in
the representation of bolted Joincag’ Here, the true stiffness involves the

bolt tension, the effectiveness of the joint, clearance of the studs in their

: holes, and the support provided by other mating or guide surfaces of the joLnﬁ.
'3 This complexity is usually avoided in analysis by assuming & rigid joint which

' has the stiffness of the built-up portion of the rotor, as shown in Figure 2.11.
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The above remsrks on analysis of complex rotor profiles mey be susmarised by
saying that when the desired mass distribution of the rotor has been decided
with reference to complexity and the number of anticipated bending critical
spseds within the speed range to be investigated, the calculation of stiffness
proparties of the rotor betwaen the various stations is then uadiruhn. Com-
plications ariss wharc changes of scction occur, either sbruptly or by taper.
Usually tapered sections may be adequately represented by a relatively fev
stepped sections. The use of dummy mass stations then allows untfognjbcup_lg
anslysis to be applied, through the computer calculation itself. tﬁn 7 . ,
stiffening affect of shrunk-on disks and sleeves is allowed for by providing = -
@ suitable diameter increase for the basic shaft or rotor section, based on
experience. Bolted joints are assumed rigid for small amplitude motioms.
The required rotor input data for the computer program is then: o
Por each msss station: - mass m; .
polar and transverse moments of intertia
Ipi' Iti'
Between each mass station: cross section area At;
second moment of ares Ii;
shaft section length Li;
modulus of elasticity E,

Speed range requirement: Speed ringe and {ncrements.

Torsional Systems
4

As moment of inertia is proportional to D, the inertia properties of torsional
systems are usually concentrated in the large disks such as turbine disks,
impellers, and gears. Where the shaft inertia is important, it may usually

be included as a single additional msss located at the center of each shaft
length. A more difficult problem is posed in determining the torsicnal
stiffness of the shafts and other mechanical elements betwaen the gears. In
any torsional system experience indicates that accurate results may be ob-
tained only if che total torsional system is considered, including the
flexibilicy of all gear teeth, shafts of varying section, splines, keys,
couplings, bolted connections, stiffening sleevea, clutch and drive mecha-
niems. Data on these effects is given by Nestorides (Ref. 4) and by

Ker Wilson (Ref. 5). The predominant effects in the analytical system emerge

when the total system is prepared.
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The analysis of complex torsional systems is fcadily performed on a digital com-

puter. This approach again allows the real problem to be investigated; complexity

is no longer a barrier often requiring unscceptable simplificetion. This 1s
PSTTiculariy imporcant whnere Dranched and Looped TCOTrsional Systems ars con-

carnad. ,
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The end result of a torsional vibration snalysis is the natural frequencies of
't’hc system, snd the associated mode shapes. The torsionsl damping vhich arisas
from elastic hysteresis and bearing and gear lubrication is usually extremely
small, and unless the system carries a fan or a propeller, the smplitudes of
vibration at a system natural- frequency may be very large. In this case a
torsional vibration damper, such ss a viscous shesr damper, a pumping-chamber
damper, or a Coulomb friction damper may be required. The mode shape then
allows the most suitable position for this damper to be selected. In genersl,
the introduction of even a omill amount of dcnping.rcducct vibration ampli-
tudes manyfold. Optimum damper design will usually maks the toflionnl vibra-
tions of a machine quite negligibic. '

The Benrig‘n

Bearings support and constrain the rotor. As mechanical components, thay serve
a variety of functions, ranging from providing a means of low-friction static
load support, to the sttenuation of rotor amplitude, transmitted force, snd
structure-borne noise in high-epeed rotating machinery. Becasuss of their
flexibility, bearings influence the dynamic performance of the rotor which they
support, by determining the position of the system critical speeds, along with
the flexibility of the rotor itself. For this reason, unless the bearing
stiffness is high compared with the rotor stiffness, calculated values of-rigid-
bearing critical speeds may differ considerably from the real values. Linn and
Prohl (Ref. 6) have cénoidered the influence of bearing flexibility on critical
apeed calculations, and recent investigations have also included the influence
of bearing damping. There exists a wide variety of bearing types, and the
particular choice for a given application is based on the range of performance
requirements which must be fulfilled. For example, where high load capacity

is the predominant requirement, an externally-pressurized (hydrostatic)
bearing may be needed; and if low bearing power loss or minimal temperature

rise is also required, the hydrostatic bearing may have to be gas lubri-

cated. In cases where rotor stability is the limiting factor, cylindricsl
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self-acting (hydrodynamic) bearings are known to have s lowr stabflity
threshold speed, whereas hydrodynamic tilting-pad journal bearinga »srve .
highlv stablea. An extensive compara®!/va listing of bearing tyves with ad- . ..
vantages and disadvantages could be 1 3pared.

 Bearings may be classified in the following ways: el T
1. Directionsl Journal Thrust Combination - .- g

2. Type RBolling Element Fluid-film. . = . = .

Fluid-film bearings may be further clnilified: ‘ 7
3. Mechanism of Load Support: Hydrodynamic Hydrostatic Rybrid

4, Lubricant type: _ Incanprcintblc‘COQPtclliblc, : - {f};ﬁgqggié'ii'

5. Lubricant Laminar - Turbulent .
Most machines require both journal and thrust bearings. The choice between '
rolling element bearings and fluid-film bearings depends upon many factors - = '

such as load, speed, temperatures, rcliability,‘ltability; durability, pgp,ﬁ{l_ﬁj,;;ﬁ'

port equipment, radiocsctive environment, corrosion, and other factors. In ﬁ -
general, where moderate operating conditions apply thrqughout,_thqﬁlyw qé‘@l"'_
and overall coﬁvqniénce of rolling element bearings offer great ad#cnta;ol

in s design. But where any single factor becomes ovarriding in'thc,dnlign.

such as extreme load, ultra-high speed, extremes of temperature, or either

a radiocactive or corrosive environment, some form or type of fluidffiln 7
bearing exists which is well-suited to the overriding fuctor, and this type

of beaiing is then selected in preference. '

Hydrodynamic bearings operate by creating a convergent wedge of fluid be-
tween the bearing surfeces through their relative motion. The resultant
pressures generated by the motion of the fluid are sufficient to support the
bearing load. A number of hydrodynamic bearing types are shown in Figure
2.12, This type of bearing has the advantage of simplicity of operation
with a minimum of supporting apparatus. Load capacity may be modarately high,
and bearing stiffness may be made fairly high by design. As there is little
associated apparatus,dynemically stable hydrodynamic bearings are obtained
by selection of a geometric form which has inherent stadbility, or a high
threshold, if high speeds of rotation are involved, or the impressed cyclic
loading of the machine occurs at submultiples of the spead of rotation.
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As stated above, plain cylindricsl bearings have a low stability threshwld;
four-axisal groove, elliptical, segmented arc, and psrtial-src bou:in.l icvt
inherently much highar instability threshold apeeds; end tilting-ped’ hllrinct
avs inherently stable up to pad flutter speeds, 1.s., e lon.*la ‘the peds tend -
to "follow™ the shaft motions. Ths dynsmic stiffness and dlnp!ag chnraceortletcs
of most important hydrodynamic besring types have baen obtained for ucn in rotor
dynemic calculations. The influance of thess beering gtopnttt.l oa th- ’-rv
formance of a rotor are discussed in Sections 3 and 5. ‘ '

Hydrostatic bearings operate by supporting the applied journal loid'upoﬁri film
of lubricant which is fed into the bearing under pressure from some external
source, such as a pump. . This principle 1is. showm in Pigure 2.13 tot '] hydto-‘
static journal bearing. The flow of the lubricent is restricted (l) by rcl:ric- :
| tions within the bearing, and (b) by the naxrow clesrance ‘pnco. Better con-
trol over baaring porforninco is cbtqinod by adequato restrictor design. . Bxternsal
restcl=rors may be either inlet nossles feeding into the clearance space, or
capillary feeders. Some baarings have been ddnigncd aorthit the iriq surround-
ing the lub:igant inlet holes act as a restrictor. These bearings are said to ;
be inherently compensated. Some form of flow restrictor is required for 511 -
'hydroltatic Bnlringu; - The critical design area for all types of hydroitdtic
bearings is the area surrcunding the inlet restrictor or noezsle, the diftuior'

or pressure chamber, and the sone where the lubricant flow enters the clearance
space. This area controls the ptll‘ur. drop, bearing flow and dynemic per-
formance of the bearing. A particular problem associated with hydrostatic
bearings is pneumatic harmer, in which prassure surges cause heavy vibrations

in the supply lines and of the journal within the housing. Pneumatic hammer is
closely associated with the depth of the pressure chamber. Deep chambers .in-
crease the likelihood of thia effsct. This is less important with a multi-inlet
bearing using diffusers to avoid inherent compensation. Pnaumstic hammer may
lead to lock-up of ‘a journal against its bearing in certain cases. Dynmmic
stiffness and damping properties have been obtained by Lund (Ref. 7)) and otherd .for
the more common types of hydrostatic besrings. Hydrostatic bearings are im-
portant where either high load capacity, high axial or radial stiffness, or
accurate control of positfon or concentricity are required.
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the prassurss generated by thn rotation 1n£1uenc¢ thn regular hydroltntic o

ook B o |

ing load copqcity. ltiffn.ll and dynantc ro.ponco ars ifferent !to- the pur,ly
hydrosutic bearing. Analyees have been mde to detamin- the ment o‘ '
effacts, sea Lund (Ref. 7).
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oil, water, kerosene, mercury; liquid butsne, nitrogen, and other liquificd
process gases; liquid metals such as aodium. potallium, NeK. Canrclotblo
lubticantl fnclude: air, hydrogln, helium, nitroucn, otygcn, lnd the tnnrt

the major property governing the pcrfornwncc of the bearing, and h‘ncc the ,
system, is the viscosity. This is ptinctpauy dourminod by the opcuttng tu-

governed to a lesser extent by the operating pressures of the fluid. Density
is not a factor in incompressible lubrication, except in deterring miss flow.
Mass flow may be 1mp6rtant where the lubricant acte as a bsaring coolint, in
which the heat tranufer coefficient of the lubricant will also be importent.
Thrust bearing deaigns often requirs consideration of the heat transfer '
characteristics. H;aviiy loaded designs may be water cooled through the
padastals.

For compracsiﬁle lubricants the variation of density with pressure is of im-
portanée in détermining bearing performance, in addition to viscosity. Por
conventional circumstances, the flow of gas through the bearing is iaothermal
and so the thermal characteristics of these bearings are usually unimportamt.
Both compressibility aud viscoeity appear in the compressible Reynolds'
equation, as indicated in Appendix A. The load capacity conferred by a com-
pressible lubricant is considerably less than that of an imcompressible lubri-
cant, and the dynamic stiffness and damping characteristics are likewise much
lower. An exception exists in the case of an externally pressurized gas bear-
ing, where the bearing stiffness properties may be wmade comparable with those
for an incompressible lubricant. '
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Where an externally pressuriged boating is uood in & high ovcod lppltcltton._

pressure distribution. Thil type is known as & hybrid besring, and the bolr-t¥‘

Bach of thc beariug typcn dlnculood nbovc hav. bccn opctatod on both 1nco--ft _“_ ,
pressible and compressible lubricants. Incomprllnibla lubricants includnz ;ﬁ*fi L

gases; butane and other organic vapors; annonin, freon. 'and och.r rolxlgptone :
gases; and ltanm, vet and superheated. Where the lubricant is 1nconproootb1., i

perature of the bearing, which depends upon the bearing frictiom; it is aleo h:,‘
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Conventional besaring operetion involves laminar flow of the lubricant, but ap-
plications exist vhere the flow is turbulent. High spesd operstion with low
viscosity, high density lubricants promotes turbulent lubrication. Closed cycle
space power plants may opsrate with liquid msrcury or 1{quid metals es the

lubricant. Water lubricated bearings in a high spaed pump may lesd to turbclont '

operation. 8tudies in turbylent lubritation were initiated by letot ﬂlf. 0).
Wilcock (Ref. 9) and Smith snd Puller (Ref. 10). Constantinescu (Ref. n) de-
veloped a theoretical analysis based on Prandtl's n&xgng }qp;th-hypothoot..

The basic equations were conputéiiipd by )rval, Steranlicht and Wernick (Ref.12).
Results were compsred for several geomstries with the expsrimsntsl results of
Smith and Puller (Ref. 10) and others. The unsatisfactory comparison led to

the development of a new approach based on the Boussinesq-Reichard-Elrod 'eddy-
viscosity' concept by Mg (Ref. 13), extended to finite length baarings by

Ng and Pan (Ref. 14). The predictions of the cddy-vucmtty'thcory have unco
been verified for a variety of bearing typco by Orcutt (Refs. 15 and 16) for
both static and dynlnic bearing properties.

-
n

e

gxgantc Representation of the !garigi

"With £luid-£ilm bearings, rotor response is influsnced by the bearing lcufun.

and by the fluid-film demping properties. These properties srea.dstermined by
the besaring geometry and by the conditions of opsration, and their dgrivatioﬁ is
briefly summarized in Appendix A. For a journal opsrating with sccentricity
ratio ¢ within the clesrance, any sdditional load P! applied as ohbvn ggvni rise
to a displacement x in the direction of the load, plus an additional displace-
ment y at right angles to this displacement. In addition, if the displacemants
are applied dynamicelly, additional resistsnces arise due to the velocity of
load aspplication, in both x and y directions. The fecring'forcel resulting

from a general x.y diaplacement of the journal in the x- and y- directions are
therefore

P, = K + K +C i + C__y
r T Rt t Ky o

Fo= K,k + Ky +C % + C
y yx* y Gy vy’

The coefficients K ny vx ‘yy are referred to as the bearing stiffness co-
efficients, and the coefficiontl Cxx cxy cyx cyy are the bearing damping co-

efficients. These coefficients depend on bearing operating eccentricity & vhich
for any given bearing type is a function of Sommerfeld number § = (EE) (%)

Values of the bearing stiffness and damping coefficients are listed in Table 2.0l

(2f01)
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for the plain cylindrical bearing, the four axial-groove bcnriu., ad for the'
tilting-pad baaring, for inco-prcnotblc lubricents.

Equations 2.01 are the analytical representation of the bearing in terms of
ita dynemic érop.rtiol. The motions of a rigid totor o’.rnttng in fludde
film bearings may be investigated using thess expressions. The !luld film:
demping is the major source ‘of demping in such systems, and {ts inooxporczton

" into the system equations allows the rotor amplitude and trensmitted force

to be calculated at the critical speeds. When the rotor is displaced from
its equilibrium operating position, the dynami: forces gonorltdd'by,thn fluid-
film act upon its mass and tend to restore it. If the motions are in-

" duced by rotating unbalance, the resulting vhirl motions involve the ume - . -

balance force, the rotor mass, and. the dynanic besring forces. This pro-
blnn‘nny thus be fornnlatad for nnnlyoto uoln; these oxprcootona Unballhcq
response of a rotor in fluid-film bearings fe dilcultcd i Section .), snd
the stability of rotor motion is concidcrcd in Section 5. :

a

The Machine Sttuccurc

SOma form of supporting structure is required to carry thc rotor-bonrtn;
system. In “small mnchinel such as motors this usually takes the form of a '
casing, whereas 1n a llrgcr machine such as & steam turbine, the totor-boaring
system may be nupported on pedestals which are attached directly to the
foundations of the building. In most cases these supports are elastic to
some discernible degree, and thereby pnrticiﬁaﬁc in the overall motion of the
system,

Vibrations of motor casings as rings are discussed by Den Hartog (Ref. 17). At
certain frequencies within the machine operating speed range, residual un-
balance in the rotor has been known to excite ring modes of the casing.

These vibrations give rise to noticeable noise (casing hum) which must be
eliminated by deeign changes, or by the inclusion of additional damping in

the casing. Oscillations of turbine platforms are discussed by Stodala(Ref.18)
and by Geiger(Ref. 19) both of whom indicated that the.foundation sway flexi-
bility lowers the fundamental bending critical speed of the turbine set.

In small compressors, the bearing housings are often attached to the casing,

and may possess considerable flexibility. Figure 2.14 shows & design where

21
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each bearing support is a thin disphragm to provide msximum sngular flexibility
for the bearings to follow the fres-free bending mode of the rotor without secri-
fice of radial support stiffness.

In most uuuncu it is quite adequate to incorporate tha stiffnsss and dmtu
properties of s bearing housing or pld‘ltll by the addition of a further nprtng
and dashpot connected to the housing mass as shown in Figure 2.09. lhoaqaot-r,;ﬂ
fects may be readily 1néorporatud into a genaral computer program vhich qcl-‘An
culated dynsmic respounse, or critical speed, for the multi-mass rotor discussed
previously. Pedestal flexibility may significantly affect the dynsmic per-
formance of a machine by lowering the fundamental bending critical speed, if

the pedestal spring and damping properties are comparable in value to bearing oz
rotor properties, particularly if the pedestal mass is large and capsble of jotn-;
ing the system oscillations, possibly as a separats padestal mode in vhich the
rotor stands still, Certain bearing supports have been proposed based on this
principle to minimize rotor vibrations. The arrangemént, consists of s epring
and a dashpot of some type which is conneétnd to'thorrotof, bick.d up with
second spring, as shown in Figure 2.15. The back-up spring is considerably

stiffer than the other spring. When the rotor speeds are low, dynamic tranhluttcd

forces are small, and the back-up spring is effectively rigid. The soft spring
restrains the smplitudes somewhat, but the motions are sufficient to cause the g
dashpot to operate and dissipate vibrationaljcn.rgy. At high speeds, trans-
mitted forces are much higher, and the stiff spring then provides attenuation
not available with a rigid foundation. The dashpot is conbid.rcbly stiffer, in
the same order as the back-up spring, a4 ite resistance forces ci'dopond upon
the vciocity_of motion. The soft spring here has negligible effect, and the
system stiffness is thus shared between the dnlhpot and the back-up spring.
Betwe:n low and high speeds there is a gradual transition between these tﬁo cone-
ditions. The overall effect is a support with effectively éonotant increass in
stiffness and demping. Any type of linear dnshpot’hill give this effect, such

as an orifice- or piston-dashpot.

Forces Acting in a Rotor-Bearing System

In order to determine the notion of the rotor mass it is necsssary first to de-
termine the nature and magnitude of the forces to which it is subjected. Knowing
the forces involved allows the equation of motion to ba formulated and integrated

to give the required rotor dynamic properties.
22
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Forces arise from the savironment in which che rotor-besving systes overatas,
and from the nature of tha system itself. A ugeful clasaificetion of forces
in mechanical systems has been given by Ziagler (Ref. '20), Table 2.02. From
the classification given it is possible to infer the Aynsmic charecteristics
of particular system types. ' :

Table 2.03 classifies the forces acting on & rotor-bsaring system in terms
of the nature of their application, together with examples of systems where'

these forces occur.

In Table 2.03 the forces are classified as:

1. Externally-applied forces which act on the machine as a whols, from
without. They are transmitted to the rotor-bearing system via the
foundations or machine casing. Such forces are experienced in aero-
space maneuvers, in explosion-proof, blast-proof, and shock-proof,
and earthquake-proof designs, notably power plants and delicate
measuring appsratus. The impulsive nature of the loading is
attenuated to some extent by the rotor-supporting structure, in-
cluding the bearings, before it reaches the rotor. The effects may
range from transient-initiated instabilitiea in the motion which
either are sustained or decay, to bearing touching accompanied by
shaft deformation followed by severe unbaiance whirling. A knowledge of
the forces involved in gshock motions 1s impoitant in the design
of all delicete, high-reliability, and accurate position-control
equipment.

2. Forces gene ated by the rotor motion. These forces are absent from

the environment when the machine is not operating. In each instance,
the specific nature of the equipment determines the forces involved.
Usually, a number of these forces act together. The overail motion
is then determined by their relative magnitudes. Specific effects
are discussed in detail in the following chapters, and methods for
overconing related problems are indicated.

3. Forces applied to rotor. These forces occur during operation, and

are applied by the system in which the rotor operates. These in-
clude drive torques; steady, accelerating, oscillating, or trancient;
redial or tangentisl rotor forces existing from drive applica*ion
or transmission, end field forces either gravity or electromagnetic ;

and axial or normel applied forces resulting from the balance of
23
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pressures required for the machine operstionsl fumcticoing, or for com~

ponent function such as high losd accurste position hydrostatic bsarings.

In calculating the dynamic performance of 1 rotor in bearings, the only forces
ususally required are the rotor unbalance valus, ite location, and the besring
forces corresponding to the operating eccentricity. Thess forces allow the .

amplit:de rasponse and transamitted besring force, and the rorm-burmro':.ututi ‘

properties to Le calculated fur the system. From this information the rovor per-
formance characteristics may Ye cptimized 2t the design stage. 1If the rotor -
encounters operational problems such as half-frequency whirl, synchronous whirl,
Coulomb friction whirl, or resonant whipping, the sbove dynsmic parformance =
data allows these problems to be dugno:id. providing the action of the forces
which promote these motions is c¢learly understood. A destailed knowledge of
all the forces which act on a rotor {s not required for design, but racognition
of the significant forces occurring in an operational environment is essential
for the diagnosis of rotor-bearing system problems. PFinally, the analytical '
formulation of any rotor-bearing problem also requires an appreciation of all
the forces involved in the motion. The influence of the forces listed in

Table 2.03 on rotor motions is discussed in the following chapters.
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- Classification of Loads
.active forces
|

] H
unstationary loeds ctationary loads

¥ (q, :lo t) ¥ (q, :l)

velocity—dep. loads vnlo‘ctl:r-tndcﬁ. 1oads
F (a4 Q) LG

]
I |

gyroscopic dissipative noncirculatory - circulatory
dW =0 dWw< 0 W = - 4V ‘ ' daw » - dv

Cinuificntion of Reactions
reactive forces

workless reactions diuiputivJ reactions
dW = 0 dWw< 0

Table 2.02 Classification of Forces and of Reaction
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?ig. 2.05 'Helicopter Rotor. Flexible Blades and a Flexible Shaft
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Fig. 2.06 Ventilation Far Rotor
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Fig. 2.07 Representation of Actual Rotor by Analytical Model
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Fig. 2.08 Equal Mass-Stiffness, Differing Inertia Systems (After Den Kartog)
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Section A Dumy_ Station

]// v \ Section B
- ' Actual Rotor
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—vW—| | v/ Ve Rotor Model
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(a) Representation of Abrupt Section Change Using Uniform Shaft Sections
by Introducing a Dummy Mass Station At 3

S
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(b) Representatior of Conical Section by Twn Equivalent Cylindrical Sections

Fig. 2.10 Methods for Representing Rotor Section Changes
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Fig. 2.11 Representation of Bolted Joint
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(b) Partial Arc

(d) Elliptical
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Three-Lobe (f) Tilting-Pad

Fig. 2.12 Hydrodynamic Bearing Types
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Fig. 2,13 Principle of Hydrostatic Bearing
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Fig. 2.14 Diaphragm-Supported Rotor
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Fig. 2.15 Damped Support System for Attenuating Vibrations
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DYNAMIC RESPONSE OF UNBALANCED FLEXIBLE ROTORS

introductory Remarks on the Influence of Unbalance

All rotors ietaLn some degree of residual unhalance. The purpose of this gection
is to discuss the effects produced by unbalance on a rotcr-bearing system. Each
system has, through its shape or constructinn, a number cf specific features such
as ghaft cross-section, fricrion, bearing properties, pedestal propertiss, and 0
on, which influence the rotor motion. The effect of some features is known in
advance, at least qualitatively. Here, rotordynamic analysis seeks to make these
effects predictable, and so to optimize their overall contritution to system per-
formance. Other effects such as high-speed balancing irvolve several system
psrameters simultaneously, and so may not be predicted readily by experience or
intuition. 1In these cases, systematic investigation of parameter intersction is
provided. This is accomplished through the analysis of a rotor-bearing system
which contains the mechanical features required to simulate the effects observed

in practice.

Rotor amplitude and transmitted bearing force are both governed by rotor un-
balance — where the motion is stable. When the variation of ampiitude with
operating speed is known at critical stations along the rotor throughout the speed
range, it is then possible to decide on other aspects of the mechanical design,
such as: degree of balance neceesary for machine operation, suitability of bearing
design, possibility of rotor fatigue and creep-jnduced permanent bowing at high
operating temperatures, and others. The level of bearing-transmitted force may

be gignificantly modified by “he type of bearing used. This, in turn, iniluences
the rotor motions, and, therefore, may determine the degree of balance required

for operation at high speeds. Also, by attenuating the transmitted forcg“;hrough

bearing desiga, the structural noise level is reduced.

Very few rotors operate in '"rigid" bearings. Heavily loaded hydrodynamic begrings
come the closest to this condition, but even these bearings possess a degree of
flexibility and damping which influences the motion, particularly the critical
speeds. The simple vertical rotor, consisting of a single unbalanced central

disk mounted on a flexible undamped circular shaft, and which operates imn short

rigid bearings, has been considered initially in order to simplify the analysis
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of certain more basic effects of unbalance on rotor whirl. Later, this simple
concept is modified to include horizontal operation, the bearing properties, and
rotor asymmetry. The gyroscopic effect is conscidered in Section 4- Critical
Speeds, since its main effect is to dynamically stiifer the rotor and raise the
; rotor natural frequency in bending. Likewise, certain effects of friction dnd

| of rotor shape, which concern the stability of rotor-bearing motions, are dis-

e IO e B o B Bl =

cussed im Section 3.

The distribution of the unbalance in an actual machine caniiot be predicted in

advance. It is known through its effects on rotor amplitude and bearing-

= &=

transmitted force. These effects are commonly discussed in terms of "static"
{  unbalance, where the disturbing faces lie in a single plane; and "dynamic" [J
unbalance, where there may be several disturbing forces — each acting in its own
E plane. Both static and dynamic unbslance are usually present in a given machine. []
Unbalance is customarily thought of as being the whole or portion of the rotor
weight, W, acting at a small eccentricity, a, from the elastic axis. The um- [‘
balance is thus referred to as W.a oz.in. in each plane. This is shown in

Figure 3.01. Balaucing of rotors is more fully dealt with in Section 7, {1

Nature of Whirl Motions [j

During its rotation, a rotor is sald to whirl when the mess center of any por-
tion of it travels around a circle or any other closed curve = instead of re- ti
maining at a fixed point. If identical whirl orbits are traced out with
successive rotations, the whirl is said to be stable. When the whirl orbit is [
growing or decaying, the whirl is transient and may be unstable. Stable whirls ‘
alone are ddscussed in this section. (!
!

Any rotating force which acts on the rotor will induce a whirl. If the votor
c.g. is eccentric with respect to the axis about which it rotates, a radial force
_._will exist which rotates in synchronism with the rotor during operation. This {
wiilrcause the rotor to assume & deflected shape in the direccion of the rotating
force, and thig shape then whirls about the axis of rotation at all speeds. All é
forces which act on the rotor, including applied forces snd those induced by the

whirl motion, contribute to the overall resultant motion. 1
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At the critical gpeed, the viscous friction which is present in practical rotor-
bearing systems acts in the tangential direction and is in equilibrium vith the

rotor unbslance force. The system is then stable. This is shown in Figure 3.07.
The initial phase of the motion causes a transient whirl consiiting of two com-

~—

_ - ponents which rotate in opposite directions with a frequency aqual to the systea
natural frequency. In systems which have viscous damping, these trangients
decay, irrespective of whether the rotor operating speed is above or beiow the
system critical, leaving only the unbalance whirl motion. For systems which
have hysteretic damping, the whirl motion is again made up of two counter-
rotating transients with system critical frequency together with a steady
synchronous component. Below the critical gpeed this system is stable, and the
transients decay with time. However, above the .critical speed, the forward
transient component becomes a sustained whirl of increasing ampiitude, and the

system is unstable, This is caused by the friction force vhich changes direction

— — — — frm——

[

as the rotation speed exceeds the natural frequency of the system, and drives the

unbalance motion instead of opposing it.

—

A rotor which has different lateral stiffnesses gives rise to a growing transient

ey

within the speed range between the natural frequencies corresponding to the
stiffnesses. These unatable motions become stabilized by the inclusion of

—

viscous friction damping, but may be worsened by the presence of hysteretic

damping, for operation above the first critical speed.

Flexibility of the rotor supports and foundations does not itself cause whirling,
but it may greatly modify the whirling characteristics of the system. In cases

where the support stiffnesses are dissimilar, two system critical speeds exist

and the rotor exhibits backward precession in the speed range between them.

i These motions are stable.

f' A rotor which is supported in fluid-film bearings may whirl at a .frequency
around half the operating speed of the machine when operating in the order of
i twice the system critical speed. This whirl becomes resonant with the corre-

sponding system critical speed. The large whirl amplitude which develops is

l known as resonant whipping and is a self-gustained motion of the journal within

the bearing. For further increases in speed, the whirl frequency continues at

43




. e L - et e

|
|
|
l |

I
i the system critical frequency and the large amplitude motions ususlly persist.
! Only in rare cases has the resonant whipping condition been passad through .

Mhirling of a Simple Undamped Rotor

The simple rotor shown in Figure 3.0l coniisto of a single massive disk mounted

on & flexible circular shaft. The disk mass, i, {s concentrated at its center of ll
gravity, G, which is digtance a from the point of attachment, E, between disk and -
shaft. The shaft has stiffness, k, and elastic shaft force is applied to the []
disk at E, which 18 referred to as the elastic center. Any outwardly-directed -
radial displacement of the shaft from its position of equilibrium causes an tj

opposing radial force, F in proportion to the displscement. In the case of a

i E)
: vertical shaft, the static equilibrium position is the bearing axis, 0Z. A

r_v
—r—t

horizontal shaft has a static deflection line about which it rotates. In both

ot “ees, the bearing axis is a convenient datum from which displacements will be

—m
| S,

measured. Gyroscopic and gravitational influences are excluded from the rotor

motion. These effects are congsidered later.

—

In establishing the basic features of the rotor motion, a rotor without friction
will be considered first. Figure 3.02 shows a simple, undamped rotor whirling
about its static equilibrium position under the effects of centrifugal unbalance.

fr—
| S,

h/—\-‘

The whirl motion acts in synchronism with the externally-applied rotation, w,
which drives the rotor., Referring this motion to the stationary coordinates x,

| S——

y, and writing the displacement coordinates of G gives:

+
XG =X a4 cos ¢

yG =y + a sin ¢
(3.01)

The equations of motion of the disk are:

mx + kx = mauF cos ¢

my + ky = maw2 gin ¢

- o, ——— ———— P — — fr———— PR,
. . . . : .- . ——

IY + ka [x 8in ¢ - v cos 0] - To A (3.02)
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[ For constant speed of rotstion ¢ = ux, and * = To = 0 since there is no asngular :
[~ acceleration and no energy dissipation. From this, it follows that for harmonic &

motions where the solution to the above equat.ons has the form:
{ X = A cos ut
i
{ y = B sin ux . (3.03)
I The moment equation ghows that:
[ Y = tan at = tan ¢
X

which indicates that OE and EG fall on the game straight radial line for an
undamped rotor which fa whirling about its static equilibrium position. This

L

[' indicates that the rotor whirl frequency, v, is the same as the rotor speed, W,
(i.e., the whirl is in synchronism with the rotation). Equations 3.02 are

[ linearly independent, and may be solved individually or combined by recalling

[ that x + iy w r, 1 -“V—l, to give the general solution for the whirl radius,

r, of the elastic center. Writing:

k
“* "V (3.04)

wvhere w, is the frequency of the natural transverse vibrations of the system, This

allows the solution to be written as:

2
1 iwkt + Aze-iwct + _—QE a cos Wt
1-0
2
iw t -iw ¢t Y]
y = Ble c + Bze c  + 1-n2 a sin wt (3.05)

where (| = %% is the dimensionless speed ratio.
c

The general solution shows that the total motion of E is made up of three

l

{

|

| ‘n A
!

|

i

I

component motions. The first and second terms represent counter-rotating

{ trangsient vibrations in the radial direction which rotate along with
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with the synchronous whirl(Fig.303).The frequency of vibration is shown by the
exponent to be the natural frequency of the rotor, W, s snd is independent of speed
of rotation. The transient amplitude is determined by the conditions under which

the motion was initiacted. Although the above transients are sustsined by the ab-

sence of friction, this condition only sccurs under cartsin conditions in practical

rotors. The influence of friction on rotor motion including transients is discussed

oo e =

in the following sections. 7l third term demcribes the synchronous whirling of the

elastic center, E, in a circular orbit about O due to unbalance. The orbit radfus,

&

OE, is given by:

2 1
afl [ J [}
r=x+1iy = 2 cos Wt + 1 sin wt
1-8 []
thus
2 -~
% - —ﬂ-i (3.06) “
1-Q

The dimensionless transmitted force, ¥, depends on the elastic displacement of the

rotor, r, and is therefore: 1{
F 2 : l i
E _1 Q i
ka 2 ° 1 QZ (3.07)
- }l
Similarly, the orbitlradius of G is given by: l
a
r.=1r +amw= -
¢ 1-0° s
or 'T
o __1 (3.08)
a 1_92 i
Synchronous whirl radius thus depends on speed and eccentricity. If unbalance can !

be minimized by design and construction, and eliminated by accurate balancing, the
whirl must disappear for all speeds, except when @ = 1, {.e., when 0 = wc. Ar 5

this speed, the forcing frequency, ®, of the whirl becomes resonant with the
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transverse natural frequency, @, of the rotor. Bustained resonant opsrstion must
lead to the buildup of large whirl amplitudes, and also to heavy trausmittad for:es
at thne Dearings «$ CA&N De seen L[rOM EQuation J.U/. this condition is xnown ss
"eritical" whirling, and the sp~ed at which it takes place is known as the criticsl
whirling speed. As the motion is characterized by bending of the rotor shaft, this
type of critical whirl is commonly referred to as the flexural or bending critical
whirl mode of the rotor. Sustained operation at any critical speed may lead to:
largc whirl amplitude and the danger of rotor-stator contsct; heavy dynamic bear-
ing loads, touching and wear; increased seal wear; and undesirable levels of

structure-borne vibration and noise.

Below the critical speed, the static equilibrium position, 0O, the elastic center,
E, and the cenLer of gravity, G, form & single, straight line OEG, as shown in
Figure 3.04 (a). As the rotor plaséu through the critical speed, the radius
changes from positive to negative, as ! changes from <l to >1. This can be
concluded from Equation 3.06 and corresponds to a phase change of 180 degrees.
Physically, as the rotor passes steadily through the critical speed, it may be
seen to "shudder" as the whirl radius changes from positive, Figure 3.04 (a),
through the critical position with the eccentricity leading the radius by 90
degrees, Figure 3.04 (b), to neg‘tive where the elastic center, B, whirls at a
greater radius than the elastic center. For undamped motions the super-critical
whirl is a straight-line OGE, Figure 3.04 (c).

The dimensionless whixl radius, f, as a function of speed ratio, ﬁ% , is showu
in Figure 3.05. Negative'f values for w > w, are plotted ponitivg for

convenience,

Critical Whirling of a Simple, Undamped Rotor
Although Equations (3.02) apply at all speeds, the solutions (3.05) are invalid

at W= W . Rewriting the equations of motion for this case as:
$€+w2x-lw2conwt
[ c c

(3.02)

&'+w2x-nw231nwt
c c c
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1n this instence, the quesi steady-staste soclutions are:

X =g S ein W t
2 c

(3.09)

These expressions indicate that the whirl radius does not become infinite at the
instant the critical speed is reached, but rather it grows linearly with time as
the shaft continues to rotate at the critical speed. Note that this result {s
true even where there is no viscous damping in the system. The time-path is a
growing logarithmic cycle as shown in Figure 3.06. 1In this condition, there is
a phase difference of 90 degrees as the cencrifugui unbalance leads the whirl
radius, OE.

The complete solution to Bquations (3.02) elso includes sustained trasnsient
motions tc which the previous remarks again apply. In the above analysis, ths
rate of groﬁch of the whirl radius is assumed to be smail so that the motion is
not significantly influenced by Coriolis forces. A rigorous analysis should -
include these effects to allow all growth rates to be 1nveo£13ﬂtod.

Influence of Viscous Friction on Rotor Motion

Viscous friction effects in a rotor-bearing system may arise from fluid-film
action in the bearings and from the drag of the gas or liquid in which the
machine rotates. For the present it is convenient to represent the viscous
friction forces as being linearly dependent on velocity with a coefficient, c,
and in the case of the single-disk rotor to consider their effect as being con-
centrated at thc shaft center, 0. The forces which act on the disk are then as
shown in Figure 3.07. Gyroscopic and gravitational effects ars again negligible
in the motion considered. Again, employing the coordinate equations (3.01) for
the disk c.g. gives the equations of motion for a damped, elastic rotor operated

at constant aspeed, w, a&s:

mX + cx + kx = mlwz cos wt
(3.10)

oy + ¢y + ky = mnu? sin wt
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The damping force opposes the coordinate motiou. Where motion is outward, the
damping force {s inwardly directed and vice versa. Assuming & solution of the

form:

vy = A cos (mt-Q)

(3.11)
y = B sin (wt-0)
leads to the coordinate solutions:
X = A exp [- 55.1 exp [i(qt+y )] + A exp |- 25] exp [-i( t+7 )]
1 2m.) [ 1 2 2m =)

. lu? cos ‘g&-ﬁi
A -a:) + b w

y = Bl exp [- %ﬁ] exp [i(qt+§)] + Bz exp [- %& exp [-1(qt+72)]
2

+ in_(peo A (3.12)
. W ‘ + b w .

where

1k
q= [akz - (Eﬁ—fj H 71~72 - constnnts’ { i =7y-1,

and c

K . JE
B = artan 7| Q o w. = Vg

The first two terms in Equations 3.12 represent damped transient vibrations of
the rotor in the radial direction, occurring with a frequency, q, rad/sec , {.e.,
the damped natural frequency of the rotor in the transverse direction. As in
the previous case, these transients rotate in opposite directions, along with
the main unbalance whirl, until damped out. The actual value of the damping
coefficient, ¢, need not be large enough to effect & rapid decrease in vibration
amplitude,and alsc a sizable change in the amplitude build-up near the critical
speed., For small to moderate values of the damping coefficient, ¢, the damped
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natural frequency, q, is slightly less than W, . The sise and significance of F
these transients depends on the initial conditions of the motion. This feature

{a Afaraesd furthar in Qartinn &

The third term in Equations 3.12 is the synchronous whirl amplitude, the radius

of which is given by (x2 + y% , Or:

[
PR VY -

2
[coa2 (wt-p) + lin2 (ut-B)] A
(“E -w) + clw

1 2
é (w,” =@y +cw ' ' []
" or [_I
: z . 92 ) : - :
8" bt + 4 oit? (3.13) £
_ | | [7
3
vhere = :_ : cc - zﬁ l
¢

For a shaft iu rigid bearings with identical lateral stiffnesses, the vhirl {s, .
therefore, circular about the static equilibrium position with radius r. The . (4
dimensionless whirl radius (f) depends on the speed ratio, &, and the damping ‘

————

ratio, {, and its variation with both these factors is shown Ln Figure 3.08.

-

Negative (f) values occurring when {1 > 1 are plotted positive for convenience.
The whirl radius reaches a maximum, but finite value when:

@D
[+]

{ i .
| - [

Damping, therefore, increases the critical speed in a system vhich has frequency-

dependent excitation.

The term,''critical damping", L) refers to the degree of viscous damping required

to just permit a mass to return to its initial position without cscillation following
a displacement. The dimensioniess damping ratio, {, expresses the ratio (actual-
to-critical) damping, (c/cc).
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The phase relatfonship between the rotor eccentricity, a, and the whirl
radius {s given by:
M ew )

tan B = L—“;J (3.14)
1-0

As the rotor pagsses through the critical speed, the phase angle again changes
as shown in Figure 3.04, but with damping the change is continuous throughout
the speed range. With low damping values, the abruptness of the inversion is
similar to that indicated by the undamped rotor results. Figure 3.09 shows
the relationship between speed, damping and phase angle,.

The above resu.ts verify that practical rotors also whirl with the c.g. situated

beyond the point of attachment between disk and shaft where w < uk,allo wIw,, the c.f

occupies & position between the point of attachment and the whirl center. As - -
the speed becomes higher and higher, the c.g. moves still clonef_taward. 0.
Hence, it im said that beyond the critical speed a rotor is '"self-balancing"
and that it tends to 'whirl about its c.g.". Practical fpcofg possass a num-
ber of critical speeds each of which has the above tendencies to some degree.
The true situation in a given case is a matter for dynamic analysis of the

particular rotor-bearing system. !

Force Trangmitted from an Unbalanced tor with Vigcoug Dampin

Although a damped rotor whirls rather than vibrates, the force transmitted to
the bearings varies cyclically in both x-y directions. This is & source of
both structural vibration and noise generation, as well as bearing fatigue.
The magnitude of the transmitted force in any direction for a system with a
rotating unbalance and viscous damping is given by:

2F_ = kx + cx
X
as x = ¢ cos (wt - Q) r constant

Hence

2Fx = r sz + c2w2 . cos (wt=-€)
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where
afl 2

r-
Vo ? + ag!n!

e =Q- actranﬂ:

20
[c1-0) + wa?

The amplitude of the transmitted force in the x-direction is therefore:

= arcan

2.2

Zl'x - m2 P—lﬂ—nﬂ . cos (wt-€) (3.15)

(1-0%)% + 42q

The dimensionless maximum transmitted force

: 2.2
2F 2F -1+ 48%
st S S .\// ol 24§
nau? kao? (1-09)° + 4{-202

is plotted as & function of speed ratioc {l in Figuri 3.10. The phase angle, B, -

is shown as a function of speed and damping in Figure 3.11.
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Influence of Internal Friction on BRotor Whirl Motion

The laws of elastic hysteresis on the basis of existing experimental data do not
permif s simple forwulation suitable for analvsis of rotor motions. However, by
the use of certain approximations it is possible to develop a rational theory
which cen Le used to explain the roter behavior where internal friction forces

ore present. Internal friction effects arise from elastic hysteresis of the rotor
material, end from any interface Coulomb slippage between the components of #
built-up rotor. In both instances, the resulting energy loss gives rise to a
tangential force acting on the rotor. When the rotor speed, @, is below the whirl
speed, v, the tangential force opposes the rotation, aend the rotor is stable; but,
where the rotor speed exceeds the whirl speed, the tangential force reverses
direction an¢ tends to drive the rotor. In this condition, the whirl radius
incresses with time unless arrestad by some additional system force. The stabilfity -
of this system is discussed at greater length in Section 5. '

Inveitiéatora from Rowett (Ref.21) to Lazan (Ref.22) and 1n.§q:£1§9}§r Kicball
(Ref.23) in the case of rotors have found that:

1. The energy loss is independent of the cyclic frcquoncy, and
Energy loss is approximately proportional to the square of the maximum
.eyclic amplitude, for a steadily vibrating system vith a ltabili:ed
hysteresis loop.
Built-up totors, where there is relative ulip between the annembled componentc,
show & similar cyclic hysteresis loss of energy, resulting from interflce Coulomb

‘friction. A typical hysteresis loop is shown in Figure 3.12,

The loss of energy arises from some form of vibration , and not from the steady
whirl motion itself. It may be generlted through the transient rotor motions

wvhich, as stated previously, are redial vibrations that rotate along with the
synchronous whirl motion; another source is the deflected rotor shape‘of hori-
zontal rotors. When at rest, the rotor is stressed 3s a beam by gravity. Unbalance
whirling sbout this static equilibrium positioﬁ results in a cyclic‘ntrelsing of

the rotor material and leads to a loas of energy by hysteresis. Any action which
disturbs the dynamic equilibrium of rhe rotor, such as a speed change, cyclic

torque variation, or an external impulse or a blow, may init ite hysteretic

vhirling under suitable circumstances.
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The following analysis concerns the dynsmic behsvior of s simple rotor in rigid
bearings acted on by internsl friction. The laws of hysteretic damping stated

above are used to describe the energy dissipstion, exprassed as

Consider the rotor whirl configuretion shown in Figure 3.13 in which the x, y
axes are stationary, and the §, n axes rotate with the shaft. The whirl redius,
T, in rotating coordinstes is given by:

T =

CQMDC vhere r = x + 1y

Differentiation gives

P (€ + 1a)e®t

f o (€42 b - o) ¥t

Substituting these expressions into Equetions:3.02 gives the equationc ot motion
for a simple undnmped rotor in rotdting coordinates: '

,C"‘““’C + (;-”m )C,,_ikg . e . (3.16a)

In these coordinates, the shaft is stationary and any small radial motion of the
shaft due to the rotating unbalance (similar to a spring with an eccentric load
rotating at velocity V-, gives rise to the hysteretic desmping force ct. In-

cluding this damping force in the above system equation gives: _
. .k
o+ (S + 2f +5(S-alg = 2 (3.16)

The x, y coordinate equations are now obtained as follows:

C = e £ o= (- 1ae)e?®; F o= (F- 20 - oPr)el®t
Thus:

¢+ S e (5o wbye - BBt

Xx + §x+ §x+ :—a-)y = ?coomt

¥y o+ i‘)"-o-‘sy _%;x = ?oinmt

f
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(; From the ahove, it can be seen that the internal friction in the complex equation

for r in stationary coordinetes is characterised by the term:

Hio

t - 1w

110

r

—

The total integral of this equation is

T = Aexp [11\1:] + B exp [-U&t] + a 7 exp [wg H 0-% 3.17)
) 1-0 . c

The third term of this solution describes the synchronous whirling of the shaft
to unbalance. The critical speed of the rotor is sgain @ =Vg . 8% mey be seen
from the form of the denominator. Internal friction does not influence the un-
balance whirl motion for there is no radial oscillation to invoke the hysteretic
damping force. Por this reason, internal damping canuot limit the critical speed
resonant whirl amplitude, end so a system which has hysteretic damping alons
equrienceo heavy vibrations 1f the passage through the critical speed is slow

e .

danger of rotor duﬁ-ge_il'considepnble. Fortunately, practical rotors usually
possess a certain smount of viscous damping due o their environment. The vis-
cous drag of the surrnunding medium, and of the bearings acts along with the
unbalance whirl motions to inhibit amplitude build-up and transmitted bcliing

:[-g and if operation at the critical speed or in its vicinity is sustained, the

| Q-

: Y

force.

The first twn terms of Equation 3.17 describe the transient radial vibrations
which arise from the initial conditions of the motion, or from a radiel dis-
turbance as discussed above. The frequencies of vibration Al’ A} are deter-

mined from the roots of the characteristic equation:

[ k c
-1mA'[m- w.‘;] =0 (3.18)

From which:

A, = 2 2+ 0,

Where

—— pm—

Az

A= ®
c

;—-—7 . —~— ]

k
[(1 Catty s Y- adH? + agh? ]
2
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as previously.

The sbove expreseions for the transient vibration frequencies 1\, 15 vere ob-
tained by Dimentberg (Ref. 1), and are expleined s#s follows: The complex

nature of the expressions indicates vibrations in which the amplitude varies,
according to the smount of damping present. A is the natural frequency which,
for small values of { is equal to @ . This is then the hysteretic whirl fre-

quency of the rotor. ¢, and Q  are the variations in the transient smplitude.

1 2
The coefficient O, may be positive or negative, and so the tranaient vibrations

are accompanied b; damping and amplitude variation depending on whether the sign
is plus or minus. Examining the formula indicates that the difference, i.e., the
sign of G will be positive when w < o, and negative when °°>'QE' The phynicil
meaning of this result is that the motion is stable where the speed of rotation,
W, is less than the critical speed, W, i.e., vhere the index is negative, nnd
that the motion is unstable where @ is greater than w,. In this latter condition,
the friction forces will increase due to the incressing transient vibration, and
their direction will be to drive the rotor and thereby increase the whirl radius

until limited by some other external constraint.

Rotor namic Characteristics with Viscous and Hysteretic Dampin

The re;ultl of the two previous sections are that: (1) viscous friction tends
to promote stable operation at all times, with finite amplitudes at the
critical speed; also, that the whirl is synchronous with the speed of rota-
tion, and (2) that hysteretic dsmping ceuses the rotor to whirl at its cri-
tical speed. The whirl is stable below the critical speed, but unstable
above it, causing the whirl samplitude toc grow. Several questions immediately
arise: Mow does a practical rotor behave, possessing as it does both viscous
and hysteretic damping? What are the conditions under which the viscous
demping will maintain stable whirling at speeds above the criticall 4And, at
which speed will the rotor whirl, the critical speed or at synchronous speed;

or betweenl
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The equations of motion for this case sre obtained by fatrc®uciog & viscous
demping term ¢y with the hysteretic damping term <, inte the coordinate equa-
tions for the eisetic-center, E. Doing this for stationary coordinates gives:
nx + (Cl + cz) x + kx+ coy = nan’ cos ot (3.19)
oy + (c1 + c2) y + ky- cox = zn2 sin mt *
Considering the homogeneous portion of tihese equations, and reformulating gives: .
X+ ax + a,y + fax - 0 :
¥+ 019 - ayx 4 a5y = 0 rf
This may be written as .
2, o . 2 rd 3,20
+ 22, + (20, +4,°) & +2¢113x+(12 +¢3)x-0(- )

The primitive is a quartic polynomial as found on substituting x= um" with
A complex e.g.,

4 3 2
A A3A +A2A +A1A+A 0

0
where e + c’
A, = 22, = 1 '
3 1 2
2
+ c
. 2 2  [&atS :
A, 253 + a4 ZQE * s ] -i*
&1
c, + C i
2 1 2 v
Al - 2a1a3 @ ( ) b
2 2 Pt
- 2 2 4 ] e
Ay 0,  + a, w '+ (“T’a;__.) €

The stability of the system wmay be examined by Routh's criterion which
for a quartic polynomial requires '

2

2 .
A A, Ay > AT+ A A

for a negative real part in A = X\ + ix. This coadition reduces to the
stability condition:
c
o < [1 + -l] (3.21
c C
2
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influence of Unsymmetrical Bearing Stiffness on Rotor Motions

A large propnrtion of practical bearings have stiffness properties which vary
according to the radial direction from which the bearing load is applied. This

A e prve S T T WA W

can be dus to: (1) shape of the beariug, for example, a partial-arc journsl
bearing (2) vhether tha rotor-bsaring system operates horizontally or vertically,

R

g or (3) differing transverse stiffness properties of the bearing pedestal. Rolling-

prv—
| QUL

§ element bearings, vertical cylindrical journal bearings, and vertical multi-pad
journal bearings have stiffness symmetry.

o
[ —

The {ufluence of unsymmetrical bearing stiffness on the motion of the rotor which

they carry is as follows. Consider again a simple vertical rotor which consists

of an unbalanced circuler disk which is centrally mounted on & 1light, flexible,
circular shaft. The rotor is mounted in undemped flexible bearings which have
different stiffnesses in the x, y directions. The principal features of ths rotor-
bearing system are shown in Figure 3.14 and Figure 3.15 shows thn'dilplaccnnnt of

the rotor c.g from the bearing centerline OZ.

It N
N

The equations which govern the translatory motions are:

mX + k (x - x, - 8 cos wt) = 0

my + k (y - Yoo 8 sinot) = 0

k (xo -x) + kl x = 0

TP AT IS P T T A S W IR M I G0 T TR S Y T

k(y,-v) + k,y, = 0 : 3.22)

-
14

Simplifying these expressions and introducing the expressions

S

2kk
9 2k +k 1 7k,

K
»°
1
1
L R e

leads to the equations

mX + qx = q; & cosat

my + Ry = qp & sin wt (3.23)

: ; [ o
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This shows that the coordinate motions are indeperdent,: each having its

critical speed at -
ro. 'ra__.]l

R ™
‘11 - P -
o = |3 o =24
Solving Equations 3.23 and combining their steady-utate unbalance whir!l
components by writing r w x +1iy leads to the following ¢xpression for the

motion of G about Oz

2,2 2 2
2 2 G T g o N U
@ P - 2 O e 2 il - 1ot
- 7 2., 2 2 ae + 7 2., 2 2 ae
(@, ~© )(w, - ) (@, "~w ) (w, ~w)
1 2 : 9 2
The motion of the elastic center E is found from:
t‘x- r-um
2 2 2 2
[“’z*‘“& ! 2 "%
- w 222 72 o1t + 222 3 2 Sl N
l_(ml-m)(mz-m) (@ ") (@, " -w") '

Bquatien 3. 24 shows that the whirl motion relative to a stationary coordinate .
systen is made up of two separste whirls which rotate in opposite directions
with angular velocity w. The rotation of the first vector consists of forward
translatory precessicn of the disk in the direction of shaft rotation; whereas,
the second vector represents backward precassion in the reverss direction to
shaft rotation. The length of each whirl vector is fixed for any given spaed,

e

However, when the length of the forward whirl vector becomes zero, the length

of the backward whirl vector becomes !

4 4
@ - o e
(2D (g 20
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At this spsed, therefore, the motion will be pure reverse pracession of the shaft
center, despite the presence of excitation by the unbalance in ths forward direc-
tion. This motion is sustained up to the second critical spesed. For speeds below
the first critical. tha firat term in the ahnua arnraaninn ia larear rhan tha
second, and so the forward precession whirl dominates the motion; also, for

speades beyond the second critical, this term again becomes predominant.

The brelcncc of the two critical spesds, and the variation in whirl diraction
between forward and backward precession has been examined using models by
Downham (Ref.24 ) and by Hull (Ref.25 ). Hull'm results are shown in Figure 3.16
and this author discusses the physical origin of thm backward whirl. This motion
becomes necessary when the machine is operating abowva the critical speed in one
direction, and below the critical speed in the other, due to the 180 dn;ric

phase shift which occurs in the position of the disk c.g. in ona plane, but not
in tha other.

Hhiiling of a Rotor Having Unsymmetrical 8tiffnesses . ' 5

¥
The most important dynamic feature of a rotor which has dissimilar transverse

moments of inertia is the inherent instability which exists at speeds which lie.
between the two bending critical spaeds — corresponding to the two stiffnasses,
For this reason, this section is limited to a brief discussion of the rotor

motion, including the derivation of the required equations of motion. The
stability of this motion is discussed in Section5.

The rotor consists of & single, massive disk in which the c.g. is accentric from
the elastic axis of the shaft by an mmount, a, and is located at an angle to
the atiffer transverse axis of the shafc. The shaft operates in rigid bearings

and has dissimilar stiffnesses in the traneverse direction. Aligning the

™

principal inertia axes with the rotating coordinates §, 1 aes shown in Pigure
3.17, the deflection OR = Ty of the whirling elastic axis at the disk loca-

tion.gives rise to the deflecting force components kl Iy cos x and kz Ty sin x.
Both force components may be resolved radially and tangentially to give res-
pactively the total radial force:
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- R Ty l_kl cos” g + 32 sin” 3
- wdemd Eha bmbat e —n.as.t r
Wi e CWrE A CEURSHSAS A AVLIWY
L ’T - (32 - kl) sin X cos
writing

9 v Bt g)/2 ad g, = (% - k)2
and substituting in the above gives

rn -, (q1 - q, cos )

¥

T rx qz sin 20

A viscous damping force is considered to act npposing the whirl at the elastic
center. To obtain the total vector deflecting force on the shaft uiprqlold
in terms of the atationary coordinate system, note that ths reflection of .
;i about the rotating axis { is ?i“ which leads !k by angle 2%, Ihul, r. - ‘:ﬁ

is parallel to, but opposite in direction to, the vector q2 2 showing in '
Figure 3,18.. The vactor doflccting force in rotating coordinates is,

therefore, (q1 E" qzrn ). Use is now made of the property that the re-
flection of T

E
for a phase laad of 2ut. This leads to the relationship:

in the stationary axis x is ?i' which is the same as T

g tXcept

?g" - ?B' eim R

From this, the force exerted on the disk by the shaft is

F = -, T+ q,E ol (3.26)

The vector damping force equation is

D = -¢ ri
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The equation of motion for the shaft center may now be written, firetly
neglecting the influence of gravity for simplicity. This step reveals
uniqualy. the influence of dissimilar stiffness on the rotor motion, which

is:
i, = F 4+ 0
B F+ 0 -.'F"-lozo"[“*'p]
Thus,
m?z + céﬁ + ql?! - qz?g' olaat naae .1[a£ + ’4 (3.27)

vhich is the equation of motion of a damped unbdalanced rotor with dissimilar
stiffnesses in stationary coordinates.
As a trial solution, select

= {ot
?i = Re

R = X+4%Y
R' = xX-4i%Y

Here, X and Y are constants to be evaluated by'lubltitution. Introducing the
following ratios for speed, damping and dissymmetry:

Q = =2

The scalar value of the deflection (or half amplituds) Ty is then obtained from

r, = [xz + 22]1/2 )
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Thus,

nz[(x-nz)z + z.ccn2 +8%+ 20 (1-0%cos 28 + 4c_ 0@ sin 2 p] L

(1-0%) +t.czn2 2

The phase angle & is obtained from

Y -2° - @ ain B - 2
tan @ = tan (& - B) = " 2
unz+6)co.a+zcaunp

These expressions for amplitude and phase angle assuma simpler forms vhere

the unbalance angle 8 has some simple numerical values, such as O, 30, 45,
60, 90, etc., degrees, Further simplifications result from zero damping,
and sero dissymmstry leads to previously obtained solutions.

The critical speeds of the system occur whare (rx/a) is a maximum; 'ﬁhu

-condition may os found from

LA S R

_Taylor (lof 8.) has obtcinad an spproximate reasult for the critical lpl.d‘

condition by equaling the denominator of Equation 3.28 to zero, vis.,

‘ — 1%
By, = [(1 a1 \/e? - il e :’>]

but i{s in error when he suggests that a damped critical speed may have

infinite amplitude &nd also when he attempts to‘obtnin it by the above
opsration, except where { = 0. In this case.

Ax,z. "\/;1—92

which leads to:

‘Dl = m— H mz =

63
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For moderate damping, { is small and the system critical speeds will fall
close to theses values. The question of stability of the motion between these

critical speeds is discussed in B8e:tion 3.

Theoretica) results for averages whirl amplitude L obtained by Taylor are shown
in FPigure 3.19, for the case of a shaft with moderate dissymmstry Hw= 0.05 and
moderate damping { = 0.035. Note that the smplitude is finice at all speads.
The influence of the phase angle, B, leading the rotor motion is to cause the
critical speed to occur at a lower speed ratio. A considerable increasa in
amplitude is associated vith p = 45°, and where B = -45 the rotor smplitude is
lowest. The amplitude build-up for a circular shaft is in keeping with the
moderate damping pressnt, Tg
: - " 1/2 § = 4.
Yigure 3. 20 shows the results for large dissymmetry H = 0.09, demping again
{ = 0.035. The greater dissymmatry has promoted larger whirl smplitudes and
slso widened the unstsble speed range between the two critical spseds. The
rotor amplitude in this zons, however large,is, in fact, finite where the system
possesses viscous damping. ¥Figure 3.21 presents more of the speed range for
saveral values of dissymmetry H = 0, 0.5 and 0.09 and with the same danping L.
The half frequency critical spesad is discussed in the following section.

A series of cxborimontl were mads to confirm the above.findings using a 5300 1b.
rotor, 66 in. long and 7.75 in. in dismeter, carrying several masses. This is
shown in Pigure 3.22 together with results obtained for & circular shaft, Results
for an unsymmetrical shaft are shown in Figure 3.23 for a range of unbdalance
weights and unrbalance angles. The critical speed amplitude build-up in bdoth the
horigontal direction and the vertical direction wers detacted with the horisontal
propsrties occurring as usual in practice at a somewhat lower speed. Results
{ndicated that horisontal smplitude build-up is slways larger; the 45 degree
unbalance angle gives the greatest amplitude build—ﬁp; and both horigontal and
vertical amplitudes are finite, though large, in all cases. The demping vatio

{ was 0.07, determined experimentally, and due mainly to the fluid-fi1m bearinge
used. The motion of a rotor which has its mass-elastic propertias uniformly
distributed along its length and dissimilar lateral siiffnesses has been studied

by Kellenberger (Ref.26 )
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Subharmenic Whirling

During run-up and run-down, it is noticed with certain mathines that a minor
vihrarion af the machine occurs at precise sub-multiples of the critical
speed luﬂxaaa%/Z, mclé, and 80 on., The GE/Z subharmonic amplitude is noticed
quite frequently, and the other smallar amplitude subharmonics are seen less
often. These motions may be caused by: (1) dissimilar lateral stiffnass
properties of the rotor, (2) gravity causing a twice-per-cycle fluctuating
torque to act on the rotor unbalance, and (3) any other source of cyclic
torque fluctuation in the rotor drive with a frequency n tites:the rotor
speed. The relative signifi~ance of thase three sources was evaluatel by
Soderberg (Ref.27), who, with a linearized solution to a very complex
analysis, established that the predominant effect was stiffnsss dissymmet:y,

The influence of stiffness dissymmetry and gravity may be considersd using

the equations developed in the previcus se:tion, as follows: Considar the
rotor to be perfectly balanced and oporltiag in the horisontal ponition.

Here G coincides with E, and the gravitational force vector W= -Ths is
included into the equation of motion to givet ) . L;”;”i"; %

b, =+ F 4+ D+ W = m,

&

b - b - ] 1m by - ' V V N
mr, + c?x + QT qz’g [ + img 0 (3. 30)

For a treil solution, assums that the vector amplitude P! consists of a

stationary vectur E, plus a double-frequency vactor i, or:

T. =T + Reil*
B
where
C = xl + 1 Yl
R = X 1Y
R = X+ 1Y
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By substituting in Bquation 3.30 the values of ‘1' ¥1, lz, and ?2 are obtained,

The smplitude of the double-frequency vector R is found from:

= 2
T - [‘12 +le] 1/

Employing the same dimensionless ratios £, { and © given previously, thn
smplitude R is found to be:

(3.31)

N "2) _ -9
) ( 2 [ An%-ez) r 160oF

For =0, R = (y1 - yz)/l, f.e. tha 'static' whir)l mentioned by Robertson(Ref 28).
The smplitude of R becomes infinite by large where:

@
= = =
@
For small dumpihg %— = 0.5 \/1 -E;F
c

~ 0.5

for small @, the usual case. This explains the half-critical subharmonic
observed in nlmont-thrical systems. The experiments conducted by A'!nylor '
also shoved the half-critical peaks at 600 rpm quite prominently (not included).
Laffoon and Rosa (Ref. 29) alsoc show results for the haif-critical speed,

The lower subharmonics do not appsar in the above theoretical result. Theay
were excluded by the type of solution chosen, R 12&' They are revealed in s
more detailed snalysis which included non-linear effects. Dea Hartog (Ref. 17)
gives an introduction to this problem, which involves Mathieu's equation.

The solution of Mathieu equations is discussed by Stoker (Ref. 30 and Mclaughlin
(Ref. 3D.
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Oparatfon of Rotors {n Pluid-Fiim Bearings

The motions of a flexible rotor which operstes in fluid-film bearings are deter-
mined by the interaction between the rotor mass-elastic properties and bearing
elastic-damping properties. The bearing characteristics depend on geometry snd
proportions and on lubr{cant viscosity, rotor operating speed. and bearing load.
For small vibratory movemants of the aystem, thess characteristics may be
linesrized to represent the bearing as an azzangement of springs and dashpots

as shown in Pigure 3.24. The derivation of thease buiffﬁh coefficients is given
in Appendix A, together with tables of values far several bearing types. The

same general bearing representation applies for hydrodynamic and hydrostatic

bearings, liquid or gas bearings, and laminar or turbulent bearing operation,
As in the case of the elastically supported rotoér considered prcyLouliy, the
elasticity of the fluid film contributes to the overall system flexibility,
and the critical speeds of the sys:em occur at lower speeds of rotation.
Critical whirl amplitudes of the rotor are reduced as a result of the dslptng‘
properties of the fluid-film, but for higher speeds the damping causes larger
whirl amplitudes. As the baaring stiffness and damping coefficients vary with
speed, due to changes in bearing operating eccentricity, ona cf the problems
in designing high-speed machinery is to select the bearihg properties 0 that
the critical speed occurs within the most suitable range, and the saximum

attenuation of transaitted force occurs at the critical spesd. Force
attenuation depands on bearinrg flexibility, but so does whirl amplitude. A £
compromise solution must, thersfors, be found in which the transmitted forco . g
is minimized in keeping with journal whirl smplitudes of practicil magnitude eE
for a given level of unbalance. Attempts to optimize rotor-bearing attenuation 25
usually involve a lower system critical speed, and the machine operating raagse
is oftan such that two or more critical speeds may be involvad. Minimum force
transmission at the operating speed may then result in large amplitudes and

forces at the criticals which lie within che range. In the followving ansalyses, 4
the design problems of the flexible, high-speed rotorsin damped, flexible

bearings are discussed in detail. A vertical undalanced rotor with uniform
elastic properties is assumed in all cases in order to coniider the problems
associated with unbalemce synchronous whirl in fluid-film machinery. The
stability of rotors in fluid-fi{lm bearings iqldilCUIlCd in Section 5,
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Single-Disk Elastic Rotor in Fluid-Film Basrings

Lund and Sternlicht (Ref.32) have examined the rotor dynamic performance
af tha simpla alastic rotnr nnararine in filu{d-fi{lm hearinga shrun in
Figure 13.25. The effect of rotor mass is taken to be concentrsted at
mid-span and located at G, which is eccentric from the shaft center, E,

by a. The shaft is massless and has symmetrical elastic properties but no
damping. The bearings possess both elastic snd demping properties which
are linear for small displacements. Both supporting pedastals are rigid.
Thus, the rotor whirls as shown about 0 in synchronism with the shaft

rotation, @. The equations of motion for G are

X + k(x - x) = naa? cos ot

kix - xl) - Zl‘x x, + ZCxx x - leyyl - 2c‘y§1
2
af + k(y - yl) = man sin at

k(y - Yl) = z‘yy'yl + 2cyy y, - Z‘yx‘l - ch‘ )

2 _ ok
QO m
1__01_
kK = 3k —3—3
@ -0

- 2 £

: -—L wo - s . mo )
2o 1. (2 )2 1-(—":51-
c Po @
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where S is the bearing number. Taking the sclution to the abovs squations

in the form

[; X = Acosaot + B sinat
[; A mbz + a mz B 2
x, = 5 T cos @t + —-2—-9——2 sin ot €3.33)y, o
@ - o o - o

J': B 5)02 Fo + lmz
v y1 - —2—'—2 cos ot + —3'2"——2—' sin wt (303“)’j' O
[ ab - n%- - ®

Substituting Bquations (3, 33 and (3.34) info (3.32) yields a matrix in
terms of the eight bearing coefficionts which may be reduced to a matrix of

{ the same form as the one for & rotor without cross-coupling terms. 8Such a
rotor has only four spring and demping cnefficients denoted by Kx, Cx, K& and
[ﬁ Cy. The reduced matrix is:
L A B < 2
’ xd xd ng 1)
: (R - @B 0 1
~aB K -x 0 0 0
[ 0 ( 0 K _-x) @B o (U3
. -%
0 ( y y
i -oB K -2 1 :
[ y (Ky-2) 3

The velationship between the above four bearing coefficients and the original o

eight coefficients is:




SR R e

y
C. = ¢ - L'ﬂl - facC
¥ Yy 'y | (3.38)
vhere

xy X/

2

v -[x ~x+ac, |2 +<x,‘y-e»c">2
k -x = aC. +(.‘rh+¢cn)2

¢ -y o x - o, | % K [, - rre] [x..”ucn]
el by s e b breed o

Solving Equations 3.3%5 for the coefficiants A, B, B and ¥ gives

A R“x")
ree 2 2

& k) + (@)
B k@)
Yo -+ @)
£ -n(wcx)
. (K - n)z + (wC )2

X X
K -

.:1 - Ry (3.38)

2 2
(lty - k)" + (wcy)

30T I I 6 0 Om e D Ew ew ST D TN E

These expressions allow the rotor whirl coordinstes to be obtained from Equation
3.33 and 3. 34. The whirl path of G is an ellipse (Figure 3.26) and the

motion may be comprehended more concisely by determining the geometric

=

proportions of this orbit. These are found to be
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[T/82 702 7vs 12l . [2a2 102 /82 A2 Do vy 2 282
By SV E AT 1 1 1) )8 *t’:}j £iErEE)

(3.3%)

rovun RN e B e Y ——

—

Minor axis
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Angle of inc lination

z(*)(‘M)( )]
. e H]

Tan

r1 .3

Th,aA force transmitted to the bearing pedescal is given by

=y
L}
F o
<
+
O
“<

Introducing Eqult-ionn.3.38 and 3.39 and simplifying gives

2 2
+ (wC.)
- o 5 x 3 con[wt-’x+7x]
VIk, - )+ @cp .
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and
r .‘ (= )1 : i
7 - \/ —L otn [ox -0 47 ] (3.4
(t - n) + (mc ) S - .
vhere
oC aC
tan ¢ -{ —-J—-] tan ¥ = —L
y ‘y‘- [ y ty

The force transmitted to the bearing pedestals also varies in an elliptical
manner with the maximum ead minimum values correasponding to the major snd minor
axes of the force sllipse. These values may be found in a similer lnnnof to
that described forvcllculntin‘ the whirl ellipse proportions.

The above analysis has been applied in the case of several importamt bdearing
profiles to determine the affact of the fluid film on rbtor uhirl‘;lpiftudo

and bearing transmitted fcrce. Results are given in Figures 3.27 and 3 28 for
the cylindrical journal bearing and the four-axial-groove bdbearing, for a rangse
of bearing eccentricity ratios. The single rotor-bearing system critical spsad,
L follows directly frowm the simpls rotor-bearing model considered.
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The results of the praviocus analysis are limited in their appllclttil to: th‘
vicinity of the fundamental critical speed of the rotor-bm!.n. _system, ‘&q
operating lpucd rangs of many high-speed mechines faciudes ocvtrnl sxsizsii;.'
speads, and in order to obtain adequate design information for these c...c.'

it is necessary to consider a rotor which has seversl duruo ot f:u‘m m S

translatory motion.

A two-mass rotor nas been analysed by Warner and Thoman (Ref.33) using bciflii m‘ur“
data obtained by Warner (Ref.34) for 150-degree partial-arc bearings. This rotor '
is shown in FPigure 3.29 , and certain results for tranmitted force cg‘fibgqtgjg57ﬁ;f"

papar cover msximum transmitted bearing force, -514-3 s lagiqulvjoétngl

displacement, — = , and maximum mass displacement _] , over & speed ranga,

(ﬁf}, 0.05 to 5.00, and for a range of bearing operating ccccntrtcity;‘n. f!ﬂl ’
¢ - '_::A‘."f‘,...”. R

0.05 through 0.95. By means of a device, {, the charts apply to «ither the -
fundamuntal mode or to the second mode — according to the valua of § used {8
the dimensionless system parameters. For mode 1, { = 1.,00. and thi'gofot 1s 18
a state of "static" unbalance in which the eccentric masses act in phase. Por
mode 2,

£ - distance from center of discrete masg to center of span

half span length

and the rotor is in a state of 'dynamic" unbalance in which the tvé eccentric
masses act in anti-phase, 180 degrees apart, as indicated in Pigure 3.29.

The results givem in this paper cover a very wide range of machine proportiohl §
&nd operating conditions, and are directly applicable to high-lpncd rotor
design. In discussing this paper, Lund (Ref.35) has shown how the results

may be condenged into a single diagram by a different chofc. of parameters.
The basic equations given by Warner and Thoman are

Laha A0 Lok

£ . ]. L o
[x Ex, Kex, +B %, =D Y, +B ¥

aa

2

(3.43)




vhere lx ly Dx and Dy are the direct and cross-coupled Vearing stiffmesdds,; :! .~

Bx By, B,y a0d B are the direct and cross-coupled dempiag coefficieats, mé. -
all ia an influence coefficient. As X X, 7, and y, are comp lex dispiac S
writing o o o

[P 3

£x 2
i ¢
a ; _(JR_ 2
w
(o3
.€y'2+ e
y, ws, } o
T R
where ’ ’
o -
CH ;

A"'

allows the above equnﬁionn1to bs written in terms of the basic psramsters as .

follows: . '
/ \ ¢/ } (" _
[‘C_:‘— "“'ci:';g] [‘IIJ‘?“E’TP] E:‘z T (w_}z
< EEEREIN o A%

AR (3.45)
Hence, k. is the only basic variabls vwhereas in the paper by Warner and Thomas
. .
this has been treated as two separate variable, 1 and ® + Likewise, the
p2 w
ct ¢

dimensionless transmitted force becomes:

vhere k = -
cD CuB CK CaB_ Es 1 ¥ 1.(9.)
wrs] [See Sel 5| 2
\ / N/

cer . (e | _x
CAR Emwcz
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Plotting the transmitted force as s function of k reduces the figuras to a

' b ¥
single curve, eliainating the paramater {2 « The:zame {3 true for the
. ' c

[ 2N 2

.- -~ . :
journal smplitude -:2 » but not :l « Pigure 3.31.;15 based on thess param-

eters and unifies tha Warner-Thomsa data into one curve = including tha:varfl-
tion of eccentricity ratio v with speed. The physicsl significance of ¥ 18
given by ‘

CEI.
Wa

such that_i 1s the dimensionless transmitted force when the bhaiin;ssgtd‘iisid;;“UTQf .
'This msy be seen from Figure 3.31, . The ratio between the dimansionless trans- N
mitted force and B is, thersfore, a measurs of the force attenuation dus bol§hq',w"

bearings.

It is of interest to note that vhen’ ﬁf = 1, =0, and X i3 thus independent
e RIS A
, Xy i &y
of the rotor parapeter. Yor this case, '-:2‘ = { and _:3 = -1, so that the

journal whirl path is circular nnd,th; maximum displacement is 180 degraes _
out-of-phase with the unbalance, independent of the bearing eccentricity ratio. :

lagt otor in 1

The results of Lund and Sternlicht allow an op~rating eccentricity to ba chosen
so that attenuation of the bearing transmitted-force is & maximm, in the
vicinity of the first critical speed. Ceneral rotor ocperating characteristics
including attenuation ware investigated Sy Rieger (Ref. 36) for speed ratios,

[ﬁ}4 up to 25. The results obtained cover the operating speed runge for all
c

but the most exotic machines. A uniform elastic rotor with distributed mass
operating in cylindrical fluid-fllm bearings and having a rotuting unbalance
located at some point along its length was considered. The snfluence of:
stiffness ratio, v, (ohafg/gosring), bearing eccentricity iatio, n, and unbalance

positicn Zf?on transmitted force, rotor displacement, and journal displacement
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was fnvestigated throughout the speed rangs. Typicsl rasults for 4 = 0.7 with

a central unbalance R =0.5 are shown ir Pigure: 3.32 Ce)(b) amdl (c). This
static unbalance condition gives rise to symmetrical condition gives rise¢ to
symuetrical modes alone, due to symmtry. Buperposition of two unbalance solu-
tions with s 180 degree phase diffaerence between the vnbalance loads situsted

at £ = 0.4% urd = 0.55 corresponds to s dynsaic unbalance condition. Results
are given in r.gure 3.33 (a) and (b) . Mode shaper for atatic uaﬁclahccvprti.
st.own {n Figure 3. 34 aad for dynamic unhalance-in Figure 3, 35 .

Since th- mass and elasti:z!/tv of the rotor are uniformly distributed along its
) length, the solutions obtained include the influence of all rotor modes on each =~
particular motion directly. The rotor-besring system doss not apply’:o any ' N
specific nachinc configuration. Tho relultl obtained bripg out the rolntivc

IR

influence of each parameter on the motion for a wide ranges of the varllbl.l

]

r:

T O m e em S e T oET AW W W

chosen.

In general, the results show that rotor motions are principally determined by
thc interaction between rotor stiffness and bearing stiffness and by the type
of unbalance (static or dynamic) which is present in the system. A flexible
rotor tends to adopt a whirl configuration which is determined by the rigidity
of the bearings. A rigid rotor whirls as a rigid body within its bearings at
low speeds; but, at higher speeds where bending sffects predominate its motiona
are similar to those of a free-free bsam. The operating eccentricity corres-
4 ponding to maximum transmitted force attenuation depends on the system stiff-
ness ratio, v} the nature of the unbalaance (static or dynamic), and on the
speed of operation. . In the low speed range, n = 0.5 gives the greatest
attenuation; however, at higher speeds, the condition for optimum oparnticn'
must be selected to suit each case individually and. depends on the machine

Jpa—
A Y- FUTIR

operating requirements. A different eccentricity will be rdquircd for best
overall performance throughout the speed range as opposed to minimum trans-

mitted force at a specific operating speed.

1. The notation of this reference.
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Development cf Rotor-Besring Dynsmice B e uﬁi
Present understanding of the Op.rntion of rotors in boarlngl is based on » long '
anG arduous development. The coptoun subject literature reflects both tbo vtdo
range of applications r¢Qutr1n; consideration and the dt‘!icui:tot Ih(ni
have been surmounted in obtninin; the prasent ‘level of :nchaolostcll dainlp@l-ut. .
The present section is intanded asa ;uid. to the Iotc 1lportant of thﬂl‘ o i
literature contributions. A conplctc discunsion vould require a lpccinl vclull
The mos: necessary purposs will ba served by indicating those works which hnvu T
pioneered further developments, and also by mentioning a number of othcr vorhc S
which zontain either erroneous or misguiding information. The basic mechanics

of several aspects of the subject have given ride to comtroversial dob(:t. a.i 5

the fret!i reader until now has bean left to find thn rclolutzan of nach as’ncc
R R LA s
without guidanco.

r-*

Rotor dyntmic annlylil vas 1nitiatcd by lnnkin. (Ret. 37), s:uditd :h. ul-
dlmpad radial motion of a flexible shaft, From this work 1: vas concludcd o
erroneously that no rotor could survive tho sustainad 1nfinitoly-lnr.¢ -ny1t~r
tude build-up caused by the fundamental transverse natural frequency of ‘the
shaft, the 'critical'speed. This result limited the design of rogatin;
machinery until DeLaval in 1889 demonstrated oxp.rimnntcily'thlt stable ' h .
operation beyond the critical speed was possible, and that the supposed in-

stability threshold was manifest only as a zons of large tmpliaﬁdo. lnnkinc'q .
analysis was extended by Foppl (105:38) vho demonstrated that dyncnié squilibrium

was restored beyond the critical speed by the inversion of the rotor, e.g.

batwsen the elastic and the wheel axis. Greenhill (Ref.39) investigated the

elastic stability of a rotating shaft subjected to a combination of axial thrust

and applied torque, and obtained critical speed formulas for several kinds of

end support. The extensive investigation of systems and methods of calculation

for critical speeds made by Dunkerley (Ref.40) emphasized the analytical com-

plexity involved with all but uniform rotors with the simplest layouts. The

PN T £ daba

CRREN R S

question of applicabllity and accuracy of tha simple method suggested by Dunkerley
was soon taken up by eminent analysts. such as Chree (Ref.4D, Jeffcott (Ref.4d,
and Morley (Ref,43). At that time, analysis of rotor critical speed phenomena

e MR L

as stated by Chree was based on the fallacious elastic stability concept wheraeirn

L w. PR

the action of the rotor centrifugal forces is to reduce the elastic restoring

v

forces to zero, so that at the critical speed the natural frequency of the
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shaft diminigshes to zero.

This cuncepi wveniueily geve riss 0 8 Vigorous CONLIOVErsy wasn il"r T ig.v)

3 published theoretical and expsrimentsl critical opnod results for twe mechines
- which could not be raconeiled. Al:hou;h tha dtlcg:ocuont now l.‘ll eo hnv-

been dus to neglecting thn dynamic bearing propc:tiol, it rc-op-a‘d the

question of tha mechanics of rotor behavior, and received attcnttoa !to-

Chres (Ref.44), Stodola (Ref.44), and Jeffcott (Ref.44), amongst sevaral '
others. Jeffcott (Ref.42) finally resolved the controversy by considering am
eccentric unbalancz as the exciting force, and ihcluded the effect of viscous(valo-
5 city,damping in his analysis.Thus the radial aad tangential effacts wers com- :‘
sidered simultaneously. This analysis forms the basie of tho rotor dynamic .
theory given in the present chapter. Jeffcott's basic concept of a roter

| £ which vhirled about its static equilibrium position was restated and extendsd

| by Rogers (Ref. 45) in discussing the existance of the critical speeds of o 2
(S:odola) and at © /\/- 2 (Kerr). This latter critical is the tcsult of an tn—
correct phyli al concapt in which the clnotical1y unstable rotor is allunod :o
whirl about the Ucarinc axis. Howland (Ref. 46) also discussed these eti:teal
speeds, but in actouptin; to derive the basic equations in rotating coordinlco'
he omitted Coriolis effects, thus 1n~alidnt1n¢ the subsequent analytical coa-
clusion, as indicated by Robertson (Ref. 47). 1In a series of classical papers,
Robertson discussed the nature and oxurrence of nhn!tAvhirling phencmena

(Ref. 48), unalyzed the static and dynsmic aspects of shafts with dissimilar
lateral stiffnesses (Ref. 28), collated the existing data on shaft hysteretic

: vhirling (Ref. 49), analyzed the nature of transient whirl motions arising from

& disturbance of dynamic equilibrium with supporting experiments and developed

; & graphical method of analysis (Ref. 50), discussed the influance of speed
oscillations on inducing shaft whirling (Ref. 51), and established, without

1 solving, the basic equations of an infinitely long rigid rotor in a full
¢ylindrical journal bearing, using Sommerield's lubrication theory (Ref. 52).

In the course of development of a high-speed turbo-blower, Newkirk and Kimball
encountered large amplitude whirling motions which could not be eliminated by
more refined rotor balancing. The rotors operated in rolling-element above
their bending critical speed, and it was noted that although the whirl motion
wvas synchronous with the rotation, at speeds beyond the critical, the rotor
vwhirl was constant at the critical rotor speed, and the rotor ampiitude grew
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to dangercusly large proportions, Kimball (Ref. 23 ) (Raf, 83 ), fouml thet -
shrink-fitted assemblies with inadequate contect pressure gavé rise to & eyelin:
energy loss, and showed that this loss generated a tangentisl (i ee, which, o8 . L'
speads above the critical, reversed in direction to promote an unstebls whérl
motion of incressing amplitude. Itmediately following this: M.J m _
outbreak of rotor instability occurrdd in the ssme mackins works to which. m
refined balance nor improved shrink-fit design mede any mm Nl‘tlll{

experiments conducted by Mewkirk (Ref. 54) established that this. ‘uood typ‘ of- .
whirling commenced at speede in the order of twice the bending crttull apaed,
and that at still higher speeds the whirling persisted accompanied by very 1“‘3"‘ o

amplitudes of the rotor within the fluid-film bearings. Moreover, the whirl

frequency was again thlrotor beanding critical frequancy, which laad. totln

sarlier (incorrect) m;:polition that this vas a further case of hysteretic

whirling. Newkirk and Taylor (Ref. 55) subsequently noted tiat this second tno

of whirl vas predominantly hydrodyu-ic in nature and could be nu”uuu by .

diminishing the bearing clearance,and by increasing the viscoaity of tha. lubris:

cating oil. Rotor motions of this type cams to bs known as resonant 'ht"h..
Newkirk and Grobel (Ref. 56 ) experimented with the gmtry of the baﬁn lwtm
to develop a complex "non-whirling” bearing. Although valuable u;pcrhut.l work

wvas done on hydrodynamic whirl duxring this period, the only significant assalytigel :

achievement vas the rigid-rotor full-bearing work of Robertson (Ref, 52) who
inferred (correctly) for the case considered that the full journal bearing vas
inherently unstable, without solving the squations which had boen derived. These

. developments were reviewed by Newkirk (Ref. 57) and later by Newkirk (Ref. 58).

At the same time Swift (Ref, 59, and later Ref. 60).had)analysed the in-. ...
fluence of higher harmonic components on the infinit_ily- long full journal bearimg
using the Sommerfeld theory, in connection with crankshaft wrist-pin lubricstionm,
This work led to the important observation that the load-carrying capacity of the
oil-film vanishes when the frequency of the applied force is exactly twics the
rotational frequency. This finding corroborated the results of Nawkirk for the
onsct of resonant whipping at twice the critical speed. The level of knowledge ‘
was greatly extended by Burwell (Ref. 61)(Ref. 62)(Raf. 63) and Shawki (Ref.64)

(Ref, 65 )(Ref, 66 ), both of whom conducted more detailed experimental and .
theoretical analyses of this problem, including the application of the digital ;

computer to the golution of the hydrodymmic cqun:ion with timn-dopcndont
forces, o '
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Yor a long tims the principal rotor dynamic characteristic of any system was the
fundamental flexural .ritical speed and calculations were based on methods

ad - -laa - AN _ _
! elwan hw Twnbarlow (Baf LAY Bowlod b /024 £7) ) Moolos (e, 42) s Sou-

mentod in detail in Stodola (Ref. 18)., Critical spesd calculations for com~
plex rotors wers done iu rare cases by hand calculation until Prohl (Ref, 68)
developed the discrete mass rigid bearing analysis end prepaxed {t first for
punch card machine caleculation.. Myklestad (Ref, 69) gave a similar method
at approximately the same time. These methods ara adaptations of the Bolser
method of vibration analysis, for massive flexible beams, and include the
effects of bending gyroscopic moments and where necessary, shear, PFurther f
- work using this discrete mass approach was carried out by Lund (Ref. 70) who '
. developed an unbalance amplitude and transmitted force response program for a
. gensralized rotor in damped flexible bearings. The effects of pedestal stiff-
{ ness and damping are also included, A sub=program of this analysis gives

' critical specds. Thus, at present it is possible to calculate accurltoly

the dynamic response to any specified unbalance for any rotor vhich can be
reprasented by an squivalent discrete mass system, operating in bearings of
known dynamic charactaristics.

ey B 4-9 S e

—

Where rotor performance is significantly affectad by the bearing charactetris-
tics, these properties must be known in advance. The first data wvas o§:¢1nc4
by 8todola (Ref. 18) and more refined values wera given by Hagg (Ref. 71) Hagg
and Warner (Ref. 72), Hagg and Sankey (Ref. 73), and when the digital computer
was applied to the bearing problem during the 1950's, Sternlicht (Ref. 74)

} obtained coupleto elastic and damping coefficients for the cylindrical bearing.

R ot

Lund and Sternlicht (Ref. 32) obtained similar proparties for other bearing
types. These prépertiel also allowed rotor bearing analysas to be made for
simple rotors on damped elastic bearings and the results of such analyses were
; then presanted as non-dimensional charts for amplitude relpohlg transmittad
force and rotor stability. Recently, Warner and Thoman (Kef. 33) have {nvesti-
gated the dynamic response of a two-mass rotor in partial-arc bearingas and
given design charts. For a similar rotor, Lund (Ref. 75) has extended thg
analysis to include pedestal mass, stiffness and damping, agein in charts from
wvhich the dynamic characteristics of the rotor may bes determined directly.
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Whirling and instability arising from dissimilar latersl stiffnesses of a rotor
have been troublesoms, and inwvestigation to determimne the dynamic performance
Lave LSin mads U7 Tayiui (Rei. Tu) Fouiw, fuilisky eod Jieus (mei. 77,

_Kellenburger (Ref. 26) and Dime tberg (Ref. 1 ). Although the rotor models
used ware simple to facilitate analysis, the results ave generel and provide

a guide for design, and slso for diagnosis of troublesume rotor whirling Zor
vhich the cause is to be determinesd.

= M

Rotors which operate beyond their bsnding critical speels are susceptible to
large amplitude build-up on passing through the critical speed. Although it

™

was recognized towards the end of last century that operation in tne post-
critical range was pcssible, the firgt detailed study of transition of a rotor
through its critical speed vas made by Lewis (Ref. 78). Afétr solving the
equations of motion by a graphical mathed, results werc obtained fer various

rates of transition, and for various smnuats of damping present in the system.
More recently, Dimentberg (Ref. 1 ) has investigated this problem more completsly :

Y

using an analytical method based on FPresnel intagrals, including damping and
flexible bearings. This method is discussed in detail in Chapter 6 and the
anslytical results are compared with experimentally obtained data, indicacing

good correlatiom.
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Fig. 3.01

Simple Rotor and Coordinate System

Fig. 3.02

Geomatry of the Whirling Rotor
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Steady Whirl Motion with Sustained Transient
Simple Undamped Vertical Rotor
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Fig. 3.04(a) Simple Rul.r Whirl Geometry Below Criticsl Spesd
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Fig. 3.04(b) Simple Rotor Whirl Geometry at Critical Speed
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Pig. 3.04(c) Simple Rotor Whirl Geomatry Above Critical S8peead
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Fig. 3.05 Dependence of Whirl Radius on Rotor Speed
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Fig. 3.08 Amplitude Ratio Versus Speed for Rotating Unbslance

Reprinted from FUNDAMENTALS OF VIBRATION ANALYSIS,
_ Fig. 8-15, by N. 0. Myklastad., McGraw-Hill Co. []
' New York, N.Y. 1956.
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Fig. 3.09

Amplitude Phase Angle Versus Spesd
Reprinted from FUNDAMENTALS OF VIBRATION ANALYSIS,

Fig. 9-4, by N. 0. Myklestad. McGraw-Hill Co.
New York, N.Y. 1956
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Fig. 3.10 Force Transmissibility Ratio Versus Speed
for Rotating Unbalance Load

Reprinted from FUNDAMENTALS OF VIBRATION ANALYSIS,
Fig. 11-5, by N. 0. Myklestad. McGraw-Hill Co.
New York, N.Y. 1956
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Fig. 3.11 Force Phase Angle Versus Spsed

. Reprinted from FUNDAMENTALS OF VIBRATION ANALYSIS,
[ - Fig. 11-3, by N. O, Mykleatad. McGraw-Hill Co.
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Fig. 3.12 Rlastic Hysteresia Loop
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Fig. 3.13 Rotor Whirl Geomatry. Internal Friction Damping
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Fig.-3.14 Whirling of a Flexible Rotor in Baarings With Dissimilar Stiffnesms
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Fig. 3.15 Whirl Geomet.y of Flexible Rotor in Bearings With Disaimilar Stiffnesses
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Fig. 3.16 Vertical and Horigontal Displacement versus Shaft Speed Symmetrical
Shaft in Unsymnetrical Stiffness Bearings

Reprinted from SHAFT WHIRLING AS INFLUENCED BY STIFFNESS ASYMMETRY,
Fig. 3, by E. H. Hull, Journal of Enginsering for Industry. May 196l
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Fig. 3.17 Deflection and Force Geometry for Shaft with Dissimilar Stiffness
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Rotor Whirl Geometry for Shaft with Dissimilar Lateral Sriffnesses
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Pig. .19

Rssonance Curves for Shaft with Moderate $tiffness Asyometry

Reprinted from CRITICAL-SPEED BRHAVIOR OF UNSYMMETRICAL SHAPTS,
rig. &4, by H. D. Taylor. Journal of Applied Machaniecs, Juns 1940
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Fig. 3.20

Resonance Curves for Shaft with Relatively large Stiffness Asymmetry

Reprinted from CRITICAL-SPEED BEHAVIOR OF UNSYMMETRICAL SHAPTS,

Fig. 6, by H. D. Taylor.

Journal of Applied Mechanics. June 1940
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Fig. 3.26

Unbalance Whirl Ellipss, Rotor Center of Gravity
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CRITICAL SPEED

Calculation of Critical Speed

Criticel speeds ure ol great importence since in any mode they correspond to
zones in which the rotcr amplitude buildup and transmitted bearing forces are
at a local maximum. Once the critical speeds of a particular machine layout
are known, other design aspects influenced by amplitude and transmitted force
may be considered. Good dynamic design requires the critical speeds to be
removed from speeds at which sustained operation takes place. To achieve this
may require substantial modifications in the layout of rotor-bearing gt'ffnesa
anv mass — leading to component redesign. Synchronous whirl amplitude, rotor
talance, bearing dynamic forces, structure-borne noise, and the threshold of
resonant whipping are all determined by the critical speed of the machine.

Where the rotating unbalance Lias been minimized and adequate damping has been

provided, the machine critical speeds may often be passed through unnoticed, and

non-critical operation is very smooth,

Whirling Modes of Elastic Systems

A rotor which is whirling at a critical speed adopts the characteristic deflected

mode shape associated with that particular whirl mode. The operating speed

L ianim BRI

range of a given machine may contain a number of critical speeds — each corresponding:

to a different mode shape. All whirling modes are potentially dangerous to
machine operat.on because of the large transverse displacements involved. The
occurrence of any mode is determined by the prevailing speed and the dynamical
constants of the system (such as inertia, stiffness and damping), which are
usually speed dependent. Several commonly-occurring modes ace shown in Figure
4.01. The most important trensverse rotor modes are: the so-called rigid-body
modes, translatory and conical; and the bending modes, of which t%_.¢ g, be
severai. Axlal and torsional rotor motions also occur. These are dealt with

in Section 8.
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The extent to which the modes shown in Figure 4.0l occur in the actual rotor

motion depends on the relationship between rotor flexural stiffness and bearing
radial stiffness, at & particular speed. FPor example, pure rigid-body modes

occur where the rotor is relatively stiff compsred with the bearings. This is

the case with gas-filx bearings. Altcrnatively, whers tha bsarings are stiff
compared with the rotor, pure bending modes with nodes at the bearings may occur.
This is the case with radially-preloaded rolling element bearings or with extremely
stiff externally-pressurized, fluid-film bearings. At very high speeds, the

rotor may have a bending critical speed corresponding to its free-free mode if the

bearing radial forces are relatively small at these speeds.

In general, there is considerable overlap, or coupling, between the various modes,
where the rotor and bearing stiffnesses are of comparable magnitude, Any differences
between the bearing stiffnesses, or axial mass-elastic varistion, tends to

reinforce the tendency toward modal coupling. The influence of coupling is included
in the solution of any system in which the number of degrees of freedom prescribed
for the analytical rotor-bearing model are adequate to describe all modes

anticipated within the operating speed range.

Influence of Rotor-Bearing Properties on Critical Speed

The important dynamic properties of the rotor and its bearings have been discussed
in Sectien 2. This section discusses the manner in which these properties

affect the various critical speed modes.
1. Rotor

In most instances, accurate values for critical speeds can be obtained using analy-
tical representations of the rotor which are simpler than the actual component.
Suitable rotor formulation depends on anticipation of the number nf critical

speeds which the speecd range will contain. For a discrete-mass rotor representation,
the number of masses into which the rotor is subdivided may not be less than the
number of critical speeds to be calculated, end preferably should be somewhat
greater to preserve accuracy. Where the critical speed occurs in the low-speed
range, gyroscopic effects may be neglected except where these have an obviously

strong influence on the motion. Shear deformations of the rotor may be ignored
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except for the most refined calculations on short, stubby rotors at very

high speeds.

Both hyeteretic and viscous damping are present in actual rotors; but, invariably
the magnitude is small enough to have little effect on the value of the calculated

critical speed.

2. Bearing

Both radial and tangential stiffness and velocity-damping properties influence

the critical speed. Rolling-element bearings and gas-lubricated bearings possess
little damping, and so it is customary to calculate the critical speed of such ‘
systems considering the radial stiffness alone. A procedure for calculating rolling
element bearing radial stiffness has been given by Palmgren (Ref.79), (and is.also
part of the present program) which includes speed, preload, and applied load

effects. For rolling-element bearings, the stiffness will vary little dee t@ changes
in the ma¢hine ppasd, and applied load conditions, and so the critical speed may

" be calculated directly from a frequency equation. But, with gas- and liquid-

lubricated bearings, the radial stiffness is a function of speed,and so the critical
speed 18 also speed-dependent. In this case a preliminary estimate may be used

to locate the critical speeds. Specific stiffnesses corresponding to each approximate
critical speed may then be used to refine the calculations. The need for refine-
ment depends on the stiffness change,'initial' to'refined, and on the extent to

which the beariung stiffness determines the system motiorn. This extent is greater
for rigid-body criticals than for bending criticals., Frequently, a plot is made

of critical speed versus bearing stiffness, and of bearing stiffness versus speed.
Using bearing stiffness as a common abcissa, the point where the two curves inter-
sect determines the critical speed., This procedure is shown in Figure 4.02.

The influence of bearing flexibility on mode shape is shown diagrammatically in
Figure 4.03 , This diagram shows how the fundamental critical speed of a rigid-
rotor flexible-bearing combination may be raised by stifferning the bearings.

Zero stiffness bearings induce a ri.gid-rotor critical at zero rpm. With stifler
bearings, the rotor bends and the critical speed is raised. TFurther stiffening
eventually leads to rigid-bearings, for which the fundamental critical speed

2
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In the second whirl mode, the influence of s»..ffening from zero to rigid changas
the conical whirl at zero speed to the second rigid bearing critical mode. The
rotor whirls with a mid-span node, as shown. The zero stiffness third critical
is the fundamental free-free hending mode of the rotor. Stiffening the bearings
eventually constrains tha rotor tn whirl in its third rigid bearing mode. These
properties are presented quantitatively in Figure 4.04 in terms of the critical
speed ratio (N/NC) for the uniform elastic rotor in elastic undamped bearings.
The abcissa (NC/IOOO)(lOOOw/K)l/2 represents increased bearing flexibility.
Where the bearing pedestals are n.t massless, their effect is to replace the
original critical speed with two critical speede, one above and one below the
former value. Motions of the system shown are similar to those of a tuned vibration
absorber. The rotor is considered to be uniform and rigid, with flexibility
included in KR which also includes the bearing stiffness. The pedestal (or
foundation) flexibility is Ks, and W, is the pedestal weight. The pedestal

K
natural frequency is NS = 187.7 ﬁ§ ., For convenience the overall flexibility
K ir expressed by: §
1 1 1 1
T = = = (4.01)
K K K 1 - N2
where
N =3
s

For N< 1, K is positive; for N> 1 the second term is negative and for a flexible
support may make K negative. Figure 4.05 again expresses the critical speed

ratio N for pesitive K; for negative K Figure 4.04 should be used. The effect of
a negative K value is the same as adding a mass 1/2 m to each end of the rotor,

2
where mo = K.
In calculating the free-free mode of a roter in its bearings, account should be

taken of the bearing engular stiffness, in addition to radial stiffness. An

estimate of angular stiffness has been made by Lund (Ref. 7).
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3. Foundation

Types of foundation range from stesm turbine pedestals, supported on a structural
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sulated pump. Foundation flexibility may influence the motions of the rotor 1if
its magnitude is comparable to that of the pedestal, ludbricant film (if any), or
the rotor. The method discussed above may also be used to determine the influence
of foundation flexibility on the lowest system critical speed. Frequently, the
foundation coordinate stiffnesses are dissimilar. This induces an elliptical
whirl orbit, and may promote two critical speeds if the difference is great.

The stiffness of a lightweight foundation acts in series with the pedestal,
lubricant £ilm, and rotor. 1If the inertia effects are large, the system equations
must include this effect. Stodola (Ref.18) discussed the problem of foundation
flexibility and its effect on the critical speed of a flexible rotor. He concluded
that the system acted as a double vendulum with critical speeds away from the
rigid foundation resonance. Geiger (Ref. 19) also consider this protlem for a
rigid rotor. Tondl (Ref.80)'haa'obtainad experimental and theoretical results

for a flexible rotor in oil bearings, and Lund (Ref. 75 ) has considered the

‘dynamic response and stability:of'a flexible rotor in gas benrings;'aeeﬁinj the

conditions of opfimum attenuation, with the foundation mass as & variable. 1In
instances where a high. fundamental bending critical speed is desired, the rotor

may be designed to assume its free-free mode. From Figure 4.03 this raquires

very low bearing angular stiffness. Whera stiff bearings are néeded for stability,

a very flexitle foundation in the form of a diaphragm may be used to give the

aame eftect, with low inertia bearing shella. Aside ffom metal fatigue conoidora;
ions, the ability of the bearing shell to follow the rotor whirl is an important

design feature 1n‘wh1ch low diaphragm angular stiffness is most important. Antilr

phase resonance across a gas film is a highly dangerous condition whidimust be avoided.

4. Damping

Rotor damping may be viscous, hysteretic, or Coulomb. In general, although the
basic rubbing or slipping mechanism may be sufficient for fretting corrosion to
occur, and the damping may be sufficient to limit rotor resonant amplitudes to
safe values, it is still too small to influence the actual speed at which tha

critical whirl tekes place. Common damping ratio values for rotor materials
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range from { = 0.005 to 0.010. For a single disk rotor, @, - mo\/l + Cz , 1.e.,

s maximum increass of 0.5 percent. Laminated rotors occur in elactrical machinery,
and where the opersting sceed differs from the whirl speed there can be considerable
internal hysteretic damping present. This effect is discuseed in Section3.

Other rotors such as those of turbomschinary, and certain ship propellar shafts,
operate immersad in a process fluid, and due to entruirment of the fluid during
rotation, considerable viscous damping is introduced into the system. Stodola

(Raf. 18) noted that the critical speed of ¢ long shaft tremained unchanged despite
tctal immersion in uvater, but that the water reduced the whirl amplitude to

negligible proportions. Bearing damping depends on speced, lubricant, operating
geometry, and bearing type. Rolling-element bearings operating efficiently have
extremely low damping values, even when very heavily loaded. However, lubricant
flooding greatly increases the power loss and demping present. Hydrodynamic

gas bearings have a small inherent damping capacity. Hydrostatic gas bearings
have somewhat higher properties. Moderate unbalance and low ccccntticity
correspond to maximum fluid-£ilm damping capacity which {s due to both squeeze-

film and rotational affect. The dnmping in liquid-lubricated bearings may reach
Ocrltical-dampins proportions when the Sommerfeld_numbqr (sec/min) exceeds 100,

as shown by Hagg and Sankey (Ref.73) and Lund (Ref. 81) for a vnfiety of common
belring types. Critical dlmping conditions are to be anticipated in lightly-
loaded (particularly vertical) high—:peed rotors. Under these cizcumltancel,

the usual critical speed amplitude buildup is suppressed, and the ‘éritical’ spsed
dissppears, as shown in Figure 4.06.

Pedestal and foundation damping for small motions is usually taken as being

proportional to velocity. The magnitude depends on foundation type, ranging from . {}
£ = 0.005 to 0.010 for a structural gridwork,with a minimum of bolted construction

to { = 0.100 to 0.5 or more for clay-soil foundations. For sccurate values

to induce Coulomb damping, through { = 0.010 to 0.100 for monolithic concrete, lf
under the latter condition, site test values are needed. |

In summary, damping may be neglected in the case of solid rotors in rollimrg- |

element or gas bearings operating in a gas or a vacuum, and the calculated

critical speeds will still be accurate. However, care is required in the case "
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of 1iquid-film bearings, particularly in the case of lightly-loaded high-speed
rotors which may generate critical dsmping under certain circumstances. 1If the
damping is shown to ba high, it should bs sllowed for by either a supplementary
spring force in parallel or by the actusl effect expressed ss viscous damping

in the calculations. A lower limit only will be obtained for the critical spesd
of 3 rotor whan significant systam damping 1s ignored.

Bxact Methods

Simple rotors are characterized by uuniform prismatic shape, few disks, and simple
support conditions. These features are readily handled mathematically, and so
there are available a large ~umber of formulae for the calculation of critical
speeds of simple rotor-bearing systems. Insofar as the mathemziical conditions
represent the rotor, these solutions are both exact and free from method

inaccuracies.

Exact methods discussed in the following sections are of two types: (1) d'screte

mass systems which operate by breaking down the rotor into a suitable number of S

constituent masses which are linked by massless flexible shafts; and (2) con-
tinous systems in which the distribution of mass-elastic properties may be
either constant or uniformly varying along the rotor length. These methods

formulate the critical speed problem from the basic equations;, and- renult in a -

The discuusion which follows is more concerned with the techniquel .nd their
capabilities, application and limitations, than in the solution of the ftequency

equation,

The exact method has the advantage that it also allows the higher critical speads
of the system to be calculated from the basic frequency equation. Ritz's method
is the only approxilmate method which determines harmonic critical speeds with good
gccuracy. With the aid of a computer, the labor of solving a complicated system
determinant is removed; instead, a computer program must be written and checked
out. High-speed machines which pass through several critical speeds must be
analyzed according to this procedure, whereas low-speed machines may often be

analyzed by some less-involved technique.
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Discrete-Mass Systems

A rotor which carxries a number of massive disks on a flexible shaft may often de
represenced vy & discrete-mags system, Figure %.U7 . 1ne caicuimiion ei ide critical
speeds of such a system is performed as follows. The mass, n, of each diek 1is
assumed to be concentrated at its c.g., and rotor flexural stiffness is wholly

due to the aggregate stiffness of the shaft sections, kij' betweaen the disks.

Where the motions are free of gyroscopic and torsional fnfluences, the squations

of motion for an n-mars system without damping are:

+ k..x. + k,.x, + ...... + k, x -

2
! 11"1 12*2 Xy = ™A cos(ut + €)

», 2
m iy + k21x1 + kzzxz + i+ k2nxn = w00 cos(wt+cl)

LR AT tte b e

" 2 )
m ¥, <+ knlxl + kmxz * iieees + knnxn - maow cos(wt + cl)

i} . 2
mi, + kv koY, o 4 Kidp = D80 sin(ot + <)

. 2
m,¥, + kZlyl + kzzyz I _anyn _t _mzyzm 'f99°s_+ eg) -

c e e veenae - YRR

" . 2 o
my  + knlyl + knzy2 + . * knnyn m & w sin(wt + 62) (4.02)

g =Xty

and noting that

oLt + € lwt e, tat

1) s @ - e

leads to the system of equations
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n‘rl + klltl + klZ'Z + . + kln'n - al-l'lm e '
- 2 1lox
(v nzYz + kzlrl + k22r2 R kznrn am 0 e
[. m¥ <+ k.r. + k,.r, + + k r = agoa 20‘“‘ 4.03 |
nn nl'l n2 2 et an n 2 n"n® (4.03)
[. Selecting solutions of the form

-

leads to

r-': F—
-
>\r
-
—
-

— 2
(kyy = m@)  ky, In 1 aymy 8y

2 |
21 (kpp = m®) .o “an |2 A%, g

gy ,l { v §
e
. Ji
]
SN
—
)

pum—
Vo d
.
-
.
.
-
.
.

- - - 2’ .. . -
nl kq2 T (‘l.;m;._-‘.-mnm ] "tS ) \ "™ /

|

[ - e B - e (.00

where 1 is the unit diagonal matrix. The compiex amplitudes Ai are obtained

| S

from the above expression, except~where the denominatov
b

§ - SHMH -0

For a given system IK] and [M] are fixed and so the shove condition is satisfiad

]

S—y p————
. .. .

. .

by particulsar values of w , corresponding to the critical speeds of the system.

For an n-mass system there are n critical speeds. Equation 4.05 is independent
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of the right-hend column metrix, indiceting thet the criticsl speeds occur
independently of the unbalence proparties of any disk.

i
i
Methods of Sclution u
1f the system involves relatively few masses, Equation 4.05 may bs expanded

snd solved: (1) exactly by a standard algebraic method, (2) graphically, by l]
substitution using Newton's method, or (3) numerically, by Graffa's method,

or by the technique given in Duncan and Collar (Ref. 82 ). Where many masses [}
are involved, a digital computer is usually required to faciliate the matrix

algebra, at least for computing values of the matrix over a renge of w? for [;
graphical solution, and preferably with a prozram which seeks out the eigenvalues

sutomatically. ,{j

Example 1: Single disk, flexible shaft, rigid bearings

§ ! The simple rotor shown consists of a single thip disk mounted centrally on a R
y,; massless flexible shaft, Figure 4.08. The equation of motion derives from 'tj
Equation 4.05 and is: tﬂ

mi + kr = amau)zem>t . (4.06)

\ .
J e T ST e

: As above, the critical speed is obtained from the homogeneous equation, and is
. '- K 1/2
i ©e m

For inelastic bearings the syastem flexibility is the flexibility of the shaft.

In the present case,

: k =
; L3

The critical speed is therefore:

.. L

48 EI - {;
[\

l

1/2 ,
o, = [“_gl (4.07) ;
mL
i Furthermore, note that the static defdction B. of the rotor ¢.g. under the action L
.
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of gravity is
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—
|

Substituting in Equation 4.07 and writing W = mg, givas

. s ] 1/2
Q
- B

Substituting the appropriate units leads to the expression:

——
(V8]

N - 187
C
V 8,
vhere N, is the rotor critical speed in rpm, and b. is the static daflection
of the disk c.g. in inches. This formula may be used to find the critical

o U0

At s 4 e e e e+ < e v

speed of any single mass system, in rigid or flexible bearings, once 6. is

known. L

RPN

B L L L L T

Example 2: Un!gggggricnl‘rotor;‘linglc'dgak,“flgg}blc'bcaringl : ces

Figure 4.09 shows the deflection geometry of this system. The shaft deflection -
‘s . _ S

g o JEBIL ' v '
5 wah? |

o oy
»~

The effective bearing displacement at the rotor is

o - ([E)0) [l 2 -

The total displacement of the rotor c.g. due to system flexibility is

L L E TR PP S,

1. 1In the case of & uniform shaft with a uniformly distributed load, it may
be shown from fundeamentals that the lowest critical speed is given by

y Nc . 221.8
[; For simple supported ends,
| R S
: [: 384 El i
_ : For a cantilever shaft, ’
s - 4 M
E 8 "1
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In this particular case, if the transverse inertia IT of the disk were signi-

"

ERY 2 RN HERE AR

e

PN

ficant, this would intrcduce a second critical spsed with a conical or rocking
mode. An exact solution would, therefore, involve simultaneous solution of the
translatory and rocking equations of motion, including the influence of gyro-
scopic forces.

Example 3: Symmetrical two-mass rotor in rigid besrings

Equations of motion 4.04 apply directly to the rotor shown in Figure (4.10), i.e.,

A B YT e ) S v T e S o 1T T 7 A O SRR S S AR L P

2
(kyy - my®) kia Ay o|%1™1"
)

2
k2 (kgg = m@™) |4y Aty

PR

=

6o

The critical speed condition i{s that the determinant of coefficients of the A
is zero. Multiplying out gives:

i

r—ﬂ

k k koikp, - K (N

& [ n o, zz] G2 s |fnf2 T Mmoo 4.08) §
m m m,m

1 2 1™2 1

"

This may be solved directly as a quadratic k\uﬁ. A total of four roots are
obtained of which the two positive roots alone are of physicsl significance.

.
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Continuous Systems

Rotors which have their mess-elastic properties distributed uniformly along
th ov sartinn of {4 mev slan hava their crifical ansada calrnlated

exactly. In these cases, the basic equation governing the whirling wotion is:

32 l! ) vA &
1 — - =t — 4§ ?(t) (‘0.09)
3 d2? 8 3
where
R =X+ iy 1 =41

Por & uniform shaft free from external forces, F(t) = 0, snd the x,y, coordinate

equations have solutions of the form:

X = x(z) ‘twt

Y = y(z) e — . (4.10) -

where x(z), y(z) are functions of length and frequency of vibration ouly.

" Substituting leads to the solutions: T ' o - Feem et

k(z) = Acos Az + BeinAz +C cosh Az + D sinh Az

y(z) = Ecoshz + Fsinhz + G cosh'Az + H sinh As (4.11)
where A, B, C, D, E, F, G, H, are integration constants to da detdrminod ffomi
the boundary conditions of particular cases, and:

& . [zu_nz
gkl

Continuous systems have an infinite number of degrees of freedom, and so there
exists an infinite number of AL solutions (eigenvalues) to the characteristic
equations listed in Table 4.01 . Each eigenvalue corresponds to a particular

critical whirling mode.
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Example 1: Uniform rotor in rigid supports
The characteristic equation msy be determined through either x(z) or y(z). li
Cc:‘.:i.‘!;:‘i‘.s aoticne i the s-a yl-ui, the 'vv\nu:os', cunvitivie tui thie cass amiw. {f

a2 ‘

P At z = 0: (y) = 31(—% )y - 0

.‘ de |

: 42 ’

P At zseL: () =e1(&%) = 0 (6.12) '

dz :
Substituting and reducing leads to the frequency equation for this case: {

£ sin A\L = 0 (4.13) {.‘ -

_E N

£

¢  The corresponding eigenvalues in this case are 0, x, 2x, ... nn, n integer. - “

3
- % i

§ Example 2: Uniform rotor, rigid supports, with overhang (Figure 4.11) “

t *

; Again considering motions in the x-z plane, the rotor equation must be integrated
g - separately in the two domains 0% 2, <-4, , 0%z, < 4,, leading to ' U
) + eight integration constants. The boundary cond tions for these two domains are: B B
= 2 -1
i ﬂ_yl R . . - __(—_j
-t At z, = 0: (y,) = 0 BL| —= = 0 e

: 1 1 2

& ; dz ! N
£ - 1 l i
% 2 SO

2 - _ - d_yl). ) N
2 £y =l (y;) = 0 Bl '5;'1-2- - K L

: at ' ! .,/

: . 2 .

: d YZ . r

: : £, = 0: (v,) = 0 EI | —5 = M

2 2 d 2 ” =

3 4 o'

! 2 .

5 2 3 ﬁ

d%, d7y,
~ £, = L,: El —= = 0 BI|—3] = o (4.14) _
2 2 de 2 dx 3
: A i
Substituting into the solutions: ~
: | g 1
x(zl) - Al cos kzl + B1 sin ).zl + C1 cosh kzl + Dl sinh A\ :1

PR

e
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x(zz) = Az cos Rzz + B, sin Az

2 2 + C

cosh Az, + D, sinh Agz
!

2 2 2

L I N S R Oy St N | . . .t - . Id - P [
A2ALMIAIGEALE GilHW LGUULLIIE ATSEUD LU LIE SYDPLEIW LLEYUSLEY BYUS LWL

LochKLl sin kLl -~ sfinh XLl cos XLI] [conh kLz sin NLZ - sinh kLz cos kLz]

- 2 sinh AL, sin XLI [1 + cosh AL, cos kLz] - 0 (4.15)

1 2

Solutions to this transcendental may be obtained by writing:

NLZ = L - XLI : - - (4.16)
where

L = (LZILI)_ .
Plutting values of Bquntion 4,158 against hLl leads to tha rcquired
sigenvalues. Altarnatively, ac lnnlyeic solution may be achiaved by pcrturhin'
on an approximute known solution (AL)'. Writing:

AL, = (AL)' + € ; XL

. -1 [V(u.)' + c]

2
where € is amall and unknéwﬁ. SuSutituiing, nxﬁanding, ind rejecting powers
higher than the first leeds to an expression for ¢, and hence, allows the required
ALl values to be calculatud, Table 4.02contains results given by Dunkeley
(Re£.40) for the fundamentzl moda of chis case.

It is apparent that the exact solution of contiauous systems rapidly bacome
complicated in both derivetion and solution for all but the simplast systems.

A number of methods exist for overcoming this,of which the Receptance method is
presently the moat highly developed in its application to beam and rotor problems.
A set of 'receptance' functions hus been prepared. corresponding to certain

bsaic beam vibration cases. The desired propartias of more complex systems
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End Condition Fre c
8liding-8liding sin AL = 0
Pinned-Pinned sin AL = 0
Clamped-Clamped cos AL cosh AL -1=0
Clamped-Free cos AL cosh AL+ 1 = @
Clamped-Pinned cos AL sinh AL - sin AL cosh AL = 0
Clamped-S1liding cos AL sinh AL + sin AL cosh AL =0
Free-Free cos AL rosh \L - 1 =0
TABLE 4.02
Value of kLl as Function of L. Fundamental Mode
Ratio L XLl
1.00 1.506
0.75 1.902
- 0.50 2,507
0.33 2.905
0.25 3.009
0.20 3.044
0.163 3,060
0.143 3.069
0.125 3.071
0.111 3.073
0.100 3,978
0 3.143
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including frequency equations may be obtained by combining these functions
according to certain laws. This procedure is described by Bishop (Ref.33)

LY
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Approximats Methods

Many practical systems cannot be adequately ropresented by & simple mathe-
matical rotor model for which an exact solution is available. In these
instances, such a representation gives only an e-timltg‘of the critical
speed. Where an exact solution would require an inordinate amount of
effort, an approximate calculation using one of the methods outlined in
the present section will usually yield a result of acceptable or good

accuracy in a fraction of the calculation timse.

The most useful approximate methods employed in rotor-bcaring”djnnnicl

are:

1. Rayleigh's Mathod A general calculation method based
' on the energy principle. Tha rasults
are slways high. ST :
A refinemant of Rayleigh's method

giving more exact results, baised on
the minimum principlc.

2. Rite's Mathod

3. S8todola's Mathod An iterative tachnique based on
recalculations of the deflection

curve, and hence tha critical speed.

4. Morley's Method Another itsrative technique vith more
rapid convagence than Stodola involving

comparison of the mean deflection curwve.

5. Southwell's Method Gives a lower frequency limit for
specific systems subjected to & number

of separate external influences.

The critical speed is obtained by
subdividing the system into a number
of simple standard cases, and summing
those effects in accordance with a
special forwula.

6. Dunksrley's Mathod

In all cases, the fundamental bending critical speed alone 1is calculated.
Certain methods exist for the calculation of harmonics, and saveral of

the given methods may be adapted to harmonics. In general, however, the
accuracy is considerably less for the calculation of harmonicc than for the

fundamental mode, and it becomes worse as the modes bacoms higher.
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The following sections discuss each of the above methods in detatil, indicating
the principle on which the mathod is based, the theoretical background
nacessary for its application, and giving examplas of importance using the
mathod for further clarification. The refarences cited apply to the original
fcurces or to conveniently-available explanations of {t. Important instances

of special application ave also mentioned.

Rayleigh's Method

The fundamental critical speed of an elastic rotor-bearing system may be
obtained from the energy properties of the system. A method for doing this
was developed by Rayleigh and is based on the fact that the distributlom
of the kinstic snd potantial energies In the fundamental mode of vibration is
such as to make the fraquency & minimum. The grest prectical utility of

this methiod s due to the relatively small errors which are introduced

by nlquﬁing any similar deflection profile for ths modal form in order to
simplify the analysis. As the method applies to the fundementsl mode alone,
the trus modal form may be reedily visualized. An spproximate anslytic
representation may then be prescribed.

¢ For & multi-mass system, such as a shaft carrying several massive disks,
the configuration of che system at any instant is completely spscified by
the values of a finite set of coordinatas PR PR S maasured from |dnn
equilibrium datum such as ths undeflected shaft canterline. The elastic

restoring force is proportional to these coordinates, and so the potential
energy,V , of the deflected shaft is a quadratic function of displacement, i.e,

1 2 2 2
V = 2 (qu1 + k2q2 + ...+ knqn.) (4.17)
where kl, kz, Ve kn are the system stiffnesses corresponding to each dis-

placement. The kinetic energy T is a function of the coordinate velocities

and takes the form

2

R . ) (4.18)
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For harmonic motions, the coordinate displacemsr ts and velocities may be
written as

9, = x, cos (cac + lk) . k=1,2, ....n

ﬁk - cax sin (mkt + ‘k)

As the system is conservstive, the potential and kinetic energies over a
cycle are equal in steady motion. Considering any mode of frequency, o,

the mean valuas of the kinetic and potential energies are

= 1, .2 2 2
Ve 2 lxiekm’e o vk

- 1 2 2 2 : 2
7 T ~- 2 < (nlx1 + m X, +7.....\+ mx ?

The frequency is thus obtained from

2, 2 N
¢3 ; E!xl + kzxz L PR kn‘n

7 7 o ia

t—

2 2
nx, + kzgz P it mx

and is a function of the amplitudes of the motion., If ﬁho grlﬁity dctinction
curve is chosen to reprasent the modal form, B kk‘k “ g, and hence
02 - (n!x1 + n2‘2 + .00t xn)
(mlxlz+ mzxzz+ e b nnxn?)
In the case of a shaft with distributed mass and elasticity where 1(3) and
w(z) are functions of x, the potential energy due to banding is given by

1 4 dzx 2

Vo= 2 B |25 de (4.20)
dz

and the kinetic energy is

2

4 2
T-%{v(t)x ds
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In addition, both end thrust P and torque Tmay act on the shaft. The thrust
causes a reducticn in the potential energy of

1 4 ‘dx 2 Eé
71 - 5P { 3z dz ‘ (4.22)
k|
vhereas the torque increases the potential enargy by smount C
] 2 B
1 de o
v, = 3 ¢{ 3 de (4.23) :

in which C 1s the torsional rigidity of the cross secticn and ¢ is the angle

of twist per unit length. The presence of torque in the system constraints
givas rise to the additional bending moments '

NE!!§T1QEE?§

& - -
Mx = T R Hy T

n.'n.
. ix

.
1

on the elemental length, as shown in Figure 4.12 . The éor:ccbénding strain .

1 d d C
% - %7 (a’f)(ﬁ) 4

4 2
i dx | (dy ' _ .
YW o~z d:)(d z) ds (.20 E
z .
In this case, the system must bs solved in both coordinate directiens simul- 7 (' %
taneously, Ij

The effect of 'imposing' an approximate deflection curve on the rotor causes

it to conform to an additional constraiat, and the implied stiffening causes

the critical speed as calculated by the Rayleigh Method to always da & faw

percent in excess of the true value. The assumption of the gravity d‘gloction !
line, although quite close, never exactly simulates the dynsmic deflection

line in the fundamental moda. This may be seen from the following:

oo Y |
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The static deflection is governed by the equation

4

S (4.2%)
-9 - -
dz
For a eimply supported shaft under uniform load, thie 18ads £o
4 3
16 z E L
x = 8y L] -2 (1.) + L) (4.26)
where x. is the center deflection. The dynamic deflections are obtaimed from

1
the equation

dx

d:4

2

v
El = = g
3 y

-Por the same simply-supported uniform shaft the deflection equation i3
X
x =x, sin L

comparison betwssn the two profiles will reveal their similarity and their
differance. Both theory and enginsering application of'lnyleigh‘l.nq;hq{—-“Am‘
~ are discussed in tha book by Temple and Bickley (Ref.85). 806.:@1 oxinyliqi -
will now be given to present the application and scope of Rayleigh's Mathed.

Jxample 1: ggngillvnr rotor with end mass

The cantilaver rotor and its fundsmental mode shape are shown in Pigure 4.13 .
The modal form.may be represented by the deflection equation:

ne ) -
x = x [1 - cos 33 , (§.27)

This expression satisfies the boundary conditions of x = D at £ = 0 and x = x,
at ¢ = L.

Potential energy:

4
; II[ xoz

2
7 - _,,_, 2 (a] .
3L cos 1 ds
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Kinetic energy: 2 2
R [ n ] 2 wa'x
T = 28 X 1 - cos 2T ds + 28
2_ 2
wx,
= %% 0.226 wlL + W

Rayleigh formula:
: L 11,2
S RI(x"7)" dx
2 . Is - L
w =8 gn 2 - Tyonew B ¥ - %
£ w x  dz ) WL

1f w(z) = 0, the critical speed formula reduces to

m2 = 3.04 Elg
WL

Prom discrete mass methods the exact formula is
o? = 3.00 g
WL b
representing & difference of 1.3 percent betWeen the two methods.

rted rotor with end thrust

The simple uniform rotor in rigid bearings has a central disk, W, diitiibﬁ:-d Vo
Its mode shape is

shaft weight, w, per unit length and an end thrust, P.
sinuscidal, similar to the deflection line under gravity load, {i.e.,

sin it

x-xl L

where x, is the deflection at the central disk.

(4.28)

(6.29)

(4.30)

o B o B e e

s

— £

o Y s B s TN e N o

Potential energy. PRending
4
1 o 2fxl 4 2 [ne
Vl = 3 Rl [ Xy L’ sin ‘ L) . de
- na!I x 2
a? 1
End thrust
4
- 1 2 |znl 2 2 [nz
V2 2 P [ x) L) cos ( L) dz
4L 1
134
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Kinetic energy

E-s[leinz(ﬂ‘.d: + !1
8 1 L 28
2.2
o xy

* —— + 0.
2 W+0.5wl

Rayleigh's formula:

2 _ e ath?ae - ff ah? e
éL wxz dz

which sinplifies t

2 E ST - - DR

[ ]

WL 1+405W
In cases where the end thrust is a significant portion of the Euler buckling
load of the shaft, the critical speed may be lowered considerably. This may
becoms an important design feature of single disk, tﬁ.itwflﬁxﬂbli ;hntt_ndchtn.h
in which the criticel speed is naturally fairly low. Where P = D,;h!hcgg;iqgl;
speed formula for a massive disk on 4 unitoim'bclvy shaft is obtained: '

o —bBI_|. EIg (4.32)
1.+ 0.5% WL

1f the shaft weight is small compared with the disk weight, the criticai speed
formula becomes

ol = 48.7EIg (4.33)

VLS

The critical speed-deflection formula mz = g/B derived previcusly gives

for this case, a differenceof 1.4 parosag hatpesn Hié-#xutt end approxinate
methods.
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'laylcigh formula obtained from the sscond cxpr.unton

Example J: Uniform rotor with section change

The astepped-section rotor shown in Pigure 4.14 is a common type, but the section
change makes exact critical speed analysis cumbarsome. An approximate critical
speed may be obtained by assuming a deflected profile of the form:

x = x “nx_:_ €4.34)
vhich has the effect of ignoring the additional rotoy deflection which results
from the grester flexibility of the end sections. This flexibility may be
{ncluded by adding a second term to the above erpression, e.g.,

sin 11-"- + x5 sin 5= 3" : ' . (4,33)

Superposition of these curves, togetner with suitable eoof!icien;l Xy, Xy
leads to & good representation of the daflection lines of actusl cases. Whare -
the deflection line is known, the critical speed may be found directly from tha

x
5+ |
2 4
o = B 7 > (4.36)
xl + x3

Where the deflection line must be calculated, ths graphical sres-momént method
is well-suited to rotors with changes of section. A numerical example will
illustrats this.

A rotor of Pigure 4.14 has the dimensions shown. Region 1 refsrs to the small
disweter end ssction., Region 2 refers to the central tube. Both besrings
are rigid and the span betwoan them is 168 inches. The tube O.D, is 10.25
inches, and the wall thickness is 0.5 inches. The material is steel throughout.

Calculations based on these dimensions give:

w, = 2,348 lb/in, w

1 = 4.334 1b/in

2

1, = 5.47 in®; 1, = 182 .47 in?
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Dividing the beam into the section shown and calculsting ths %% diagrem due

to the gravity, Figure 4.15 , load sllows the deflaction curve tu be caltulated

based on the moment of tha areas about the left-hand #md. -The Rayleigh Trble based
on the deflection at the centroid of each ssction 1is shown below.

4

Section W yixlo
1b.wt. in,
1 14.08 8.69
2 14.08 23.92
3 26.00 33.88
4 26.00 42.5
5 26.00 50.78
6 26.00  58.48
7 26,00 65,57
8 26.00 71.9
9 26.00 77.54
10 26,00 82.30
' 11 26.00 86.17
12 26.00 89.11
13 26.00 91.08
A 26.00 9z.06

_ 30 /gzwiyi L0
c N ? r.

z Hyi

= 2179 rpm

Curves for the calculation of critical speeds of stepped shafts are given by Rieger in
Ref. 86 . These curves give Nc = 2166 rpm when applied to the above examplas.

ylzxéoa wy1x1o“
in lb.vt.in.
75.55 122.44
572.37 337.00
1148.03 881.12
1810.18  1106.42
2578.88  1320.61
3420.36  1520.99
4299.43  1705.16
5176.28  1870.98
6013.27  2016.58
6774.14  2140.36
7426.10  2240.99
7941.15  2317.41
8297.24  2368.79
8475.44  +2394.10

yg=

22,343, 04x10

86.4)(2.234)

e

(1.657)(107%)
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Hyi x10

lb.vt.inz

1,064.34
8,0€2.5%

©29,8%5.00

47,074.30

67,064.54

88,960.43
111,807.89
134,610.58
156,376.70
176,163.45

198,117.89 .

206,511.93
215,771.96
220,407.53

2
Dy “=
105, 65x10°4
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Substitution of X1 %4 deflection values obtained from the above cnlchlction
in Equation 4.36 givas N, = 2167 rpm by that nathod.

Pitg's Method !

An exctension of Reyleigh's mathod made by Ritz diminishes the insccuracy imtro-
duced by the assumed deflection curve not exactly matching the trua whirling
form of the rotor at s critical spead, as follows: let 01(3), Oz(l), Cie
On(z) be a set of n linearly independent functions each of which satisfies

the boundary cnnditions of a given case, Combina these functions {(n the form

o o e —_tt Syt o Yt— o 0o}

X(z) = 2,0,(2) + a0 (2) + ..... 4+ a¢ (z) (4.37)

to represent the deflection curve of the rotor, in which the 81s 8gy wivn 8
are cosfficients. The essantirl feature of Ritx's msthod is that thess cuctti- o

- cieants are to be acluctad 1n such a nnnnc: as to nakc :h- calculatcd £rcqulncy
i a minigum, o '

In the case of a whirling shaft subjected to bandin. and cantrifugal torc‘l llona, 7
the frequancy equation, bll.d on energy considerations and lncetporactn; 7
. the above oxpr.nn}on, is:

2
11
Qz - g {;I<l>(x ) de xll - 23% ) ("3')
'(,v(') Ar(x)2 de o de

The Rite minimum condition will be satisfied if

4 2

{ 1EhH @ .
. ‘ - 0 i - i. 2’ e A
[ A (2)(x)? dx

o

i

Reforming the differentiation gives

4 . b J) 'y
IYOIORETE 3%- Loy xyae - [ xeeyxttyas ¢ 3‘:’—1 { k=)0 = 0

(4.39)
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But from tha Raylaigh frequency equation

s 11 2 2 4
r N . . (.. 3} ] ’ 2 s  dwma
‘ A(EZ)(X ) daz = ;i— ‘ A\z)\x ) ax (® ey

This leads to the minimums exprassion

4 2 -
3% { 1(z)(xH? - %A(l)(x)z dx = 0 (h.41)

In applica:iol, equating the above expressions to rero ieads to n linsar

homogeneous equetions in a,, a e When the determinant of these

cosfficiants is equated to :cr:, the frequency equation fer the systsm i3 -
obtained. Actual values of the coefficients e, are oot uquind in u:uag
up the frequancy aquation. The basic requirement is that sach t-xn>in thn
original series satisfies “the boundary conditions of the problem btin; -

considered. In the case of a simple-supported rotor, a trigsuometric ssrias

. e 3ns S ’
-3 8, sin L + °, sin L + ay sin L + el S B

fulfills this requirement. Likewise, a cantilever rotor may be investigated ;}5

using a cosine trigonometric series, or with a polynomial expression

IR RS 3 LR Y - R (B

The complete Fourier series may be applied to more complicated casss. This
method of cr’tical speed analysis has baen discussed by Inglis (Ref. 87).

2
+ ..

The Ritz method requires that the boundary conditiors should be satisfied by
all terms individually in the series. It has been applied with excellent
accuracy to rotors of both constant and smoothly varying cross sections.
However, with a rotor in which the section chapges abruptly, the method fails
wien & series satisfying the &nd conditicns alone is chosan, becausa ths
smoothly varying deflection iine fails to Mmeet e mowent and shear require-

ments at the abrupt section variationa.
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lterative Methods

Stodola (Ref. 18 ) describes a method which allows accurats resuits te be
obtained for the fundemental mode using a simple iterative procedure, as follews:

1. Assume 2z initial daflectcd form for the shaft., 7This {s fraguastly
the gravity deflection curve, detsrmined snalytically or graphieally,
but it may be any form which satisfies the end conditions. T

4
1

2. TFrom this deflection curve, obtain deflection values %y '2' vee By
corresponding to the distribution of waight carried by the rotor v
Wgs e W Rotors with uniformly distributed weight may be brokan
down into an sppropriate number of discrete weights, G e

3, Assume an angular velocity, ®. This may be any valus whatsosver. =
It iz ximply requirad for calculation. v ri:f  : e

4, Calculate the centrifugal force acting on each weight v, dva to the

whirl radius X at assuned spesd, w.

i

in

Calculate a second deflection cuive, dus to the centrifugal Yoress .
acting as static loads on the shaft. The deflections st w,, w, ..
w will then be denoted xi. ), ... xé for this curve. ‘

i

T
oo
i

b

»

6. Calculate the critical speed @, from the ratio of the asaumad daflection

1

x, to the calculated deflection xl‘, i.e.,

!

[ e I o B o B comn S s Y s B i O . O s 31

1
@, = cb'¥ ;In

The validity of the abovs formula is due to the fact that {f the centrifugal
for.'s were now recslculated using @, instesad of w, these forces would be
increased in the ratio xl/xl' and the static-centrifugal deflsction curve

would also be increased in smplitude by this swmount. If this defluction curwve,
thus enlarged, is exact it w{ll precisely match the initially assumad deflection

curve. This may onlv occur where the calculated speed @, is the true critical

whirling speed at which the centrifugal forcee are in fact sufficient to
retsin the whirling form of the lhnfﬁ against elastic restoring forces. e

4
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If the curves do not match, the calculated critical epasd is not tha trua ‘
value, and the procedure must be continpad, as follows:
7. Using the static-centrifugal deflection curve, calculats s sesesd
set of cantrifugal forcas corrssponding to LI and o.

8. Applying these serond centrifugal forces to the shaft, recalealata - .-VQ'V‘
the deflection cur\va. The deflections will then be 'i." correspending X
to W '

{

9. Calculates the critical speed @, from

This procedure may be continued until the differsnce between successive values
of ®, is as small as desired. .Experiencs has shown this methed to be rapidly
convergent, consistent with Rayleigh's principle that a considarable srror

in the deflected form introduces but a mmall error in ths value of mk; he
method is widely used and is quite general; it may be appliad to a rotor tqr
vhich a rsasonable, approximates rapresantation of ths deflectad profils

inl:hc fundamental mods may be obtained, Borowicz (Ref.88) has investigstaed
the application of this method to the critical speeds of multi-span rotors.
Morley (Ref.B9) has given a similar {terative mathod for which veoy rapid
convergence is claimed. From the exact formula for the critical speed of the

fundemental mode,

2 gL Wx £
fos) - = 6-‘2
c z Hiz x ( )

wvhare x is the mean daflaction value. But, for an arpitrarily assumed
deflection profile, x', che above formula is an approximation justified in
application by Rayleigh's principle. If it is assumed that x has values x'
proportional to those produced by gravity, the formula becomes

(CDC')Z - lz_“.xj - ;ﬂ'_ (4.63)
m

L w(x')
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where ,
x ! 0w RMGET) . (4.04)
" L E(x') i

A memn value of tha daflactions, x', and is a £irst sppromimation ts the wmls

x in Bquatiné.42), sné so coc' is & first spproximetion to the valus @ .
Pistributed loads may be included using the cerrssponding forwulas .

| 2 2 |2
A md [ W S8 a4 (4.43)
ds d 2
H]
The mathod is as follows:

1. Assums & deflected profile for the rotor ﬂth ' nnﬁ.-n hncctian 2,
Calculate @, from Rquation (4.42).

2. Calculate the centrifugal fores for esch rotor weight l corﬂ»onﬁm ‘ 7

to tha assumad deflection X, at the calculated spesd a .

3. Calculate the shaft deflection profils torrssponding to thass ceantri-
fugsl forces acting statically on the rotcr. Call the 't dsflection
x, in this case. ' ' '

i
4., Rescalculate the critical speed corresponding to new deflections.
Here, '
gC W, x,'
o' = __i.“_ 2
c '
Z Hl(xi )

5. 1f the difference between @ and mc' is too great, ths above proseduss
is repeated, recalculating the centri{fugal force, the deflection curwve,

and so the centrifugal force a%ll.

The convergence of the above procedure is claimed to be very rapid, and very
few cycles are neceseary. This is due to using the mean deflection, xm',

(Bquation 4 A4)rather than compazing the deflection at a single point

' m X ' t
@, cnc\/ 3 as {n 3tcdola's mathod. More computation is requirad a

each step, but the convergence is more rapid.
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Southwell's method

Where two or more external. effects contribute to the overall motioﬁ of the
fundamental mode, a method due to Southwell may be used to determine appro-
ximately the net effect on the critical speed of the system. This method

states that if al,.az, ‘
separately, the eigenvalue for all effects acting together satisfies the

. are the eigenvalues for each of the effects acting

inequality

\

o (%.46
a%+az+.... (4.46)

/
The inequality sign indicates that the critical speed obtained by this method

may be lower than the true value; in practice this is usually the case.

The proof of this inequality is given in Southwell (Ref. 90).

It has been demonstrated that this method gives accurate results in cases

where the vibrating structure itself remains unaltered, but where this structure is
subjected to several types of loading, e.g. centrifugal force, torque, shear

end load, gyroscopic loading. Substantial inaccuracies may result where the

system itself changes, such as adding a discrete mass to a distributed mass

to form a system. This is due to the nature of the method which is based

on synthesis of potential energy.

Example 1: Influence of end loading on critical speed, simple-supported uniform shaft

The fundamental critical speed of the shaft without end load is:

i ) 2 = "2 Elg
1 4
wL

The natural frequency of the bar due to a tensile force p neglecting flexural

stiffness, is:
y

méz - n2 Pg

wh
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By Southwell's theorem:

or

a2 o+ o | | (4.47)

4 2
mz > T Elg + Xpg (4.48)
- 4 2
wL w b

In the case of en:d thrust, where p is negative,

4 2
of > TEER . ZB (4.49)
wL wd

which may be written

2

> 1- (4.50)

'ﬂloq

o
2
w

where w, is the critical speed of the shaft without end load and Pc is the

Eulerian critical thrust.

- Temple and Bickley (Ref.85) have drawn attention to the generality of the form
of the above ineduality, indicating that where a system has several critical

numbers, such as end thrust f,P— , applied torque -%—-’, flexural critical speed
c c

%}2 , and so on, the general result may always be presented in the form of

t——

an equality of the above type. Thus,
P T (.L)2 4
< i = e .51
1 < P + T + 7 ( )
c c @,
applies to the above system, agreeing with the results of Southwell and
Gough (Ref.91) for this case. The following formulas have been obtained by

Greenhill (Ref.39) for the critical torque:

Shaft of length £, running in two short end _carings; T, = 27EL/1
Shaft of length £, running in two long end bearings; T, = 2C EI1/L
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where
~H;xr*ﬁ“f&.493

Usinaf80§ﬁﬁ§9§1fu method together with Rayleigh's method allows the critical

RIS

speed-fo be established within specific bounds.

- Dunkerley's Method

A convenient method for the fundamental crifical-speed calculation of systems
which consist of é number of components such as gears, compressor or turbine
disks, flywheels, etc., mounted on a ﬁasic shaft has been presented by Dunkerley
(Ref.40). The method consists of reducing the actual system into a number of

simple sub-systems, each of which may be calculated directly by gtandard

formulae. The critical speeds Wiy Woy covey O they combine accor&ing to the
law
L 1 1 L 4.52)
i e B _ (4.52)
@ w. @, ..
1 2 n

to give the actual critical speed w of the system. ' In the above, w, may be the

1

critical speed of an: unloaded shaft in its bearings,whileml, w,, ... Tepresent

2’
the critical speeds of the various loads, ignoring the mass of the shaft.
The:approximation is usually very close, for shafts which are mounted in two

bearings, especially where there is no overhang.

Example 1: Uniform cantilever shaft with end mass

For the unloaded shafts:

0.2 = 12.36Elg
1 4
wL

Massless shaft, with end mass

a)22 = 3.005‘-1%
WL

By Dunkerley's rule

RS 1 w1 1 1 W
2 5 + = —a + = —=
o @, 0.2 Elg 12.36 3 wh

2 s
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Thus,
2 12,36 .. EBlg: - B . Y
® T THeax 4 Bl (4.53)

This may be compared with the result obtained previously by Rayleigh's method,

i.e.,
‘3 - EIg~
4
wL

In general, results of good accuracy may be obtained by following the above
procedure. Any number of masses may be considered, and the shaft section may
vary although this introduces the analytical complications associated with
stepped shafts discussed earlier. Where rotating inertia and gyroscopic forces
appear likely to influence the motion, these factors should be included in the
sub-system calculations. The formulae for simple cases have been corrected for
rotatory inertia (but omitting the gyroscopic effect) by Morley (Ref. 43).
Dunkerley used two exact methods and the above approximate method to calculate

a wide variety of systems. Various end conditions were examined for one-,

two-, and three-span shafts. One- and two-pulley shaft systems were exsmined.
An extensive series of experiments was conducteé to verify the analytical
findings. The apparatus consisted of long thin shafts carrying heavy pulleys,
mounted in short oil-lubricated bearings. Maximum error found using the empiri-
cal method was 4.6 percent, for an extreme case. The general order of accuracy
was around 2.0 percent high. Several analyses by other authors, notably Chree
(Ref. 41), Morley (Ref. 43), and Jeffcott (Refs. 92 and 93), have discussed both
the accuracy and the applicability of Dunkerley's method. Morley's findings are

disc. ssed in the following section.

Effect of Disk Gyroscopic Action on Critical Speed

When the diameter of a disk is‘latge in relation to its thickness, it is neces-
sary to include the influence of gyroscopic action in calculating the critical

speeds of the system. Where this inertia is sufficiently large, it may give

rise to a number of critical speeds. Stodola (Ref. 18) discussed both positive and
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and negativ& synchronous gecession of a simple cantilever rotor. His results -
were confirmed by Foppl (Ref.94). A discussion of the gyroscopic effects in
a number of rigid-bearing rotors has been given by Green (Ref.95).

Consider a thin balanced disk mounted on a flexible massless shaft which rotates
at speed ® about the 0Z axis as shown in Pigure 4.16 . As the shaft whirls,
the inclination of the disk changes cyclicclly. This causes a gyroscopic
moment to act in opposition to the radial whirl forces, tending to reduce rotor
deflections. . The - instantaneous small angles of inclination 8, 7 in the

x-y and y-z planes each brings about an angular momentum component, the rate of
change of which causes the gyroscopic moments Hy and Hx. One principal inertig
axis of the disk coincides with the direction of the elastic axis of the shaft
at the disk. Since the disk is circular, the other two axes may be selected
parallel to the x and y axis respectively. Denoting the prircipal moments of
inertia as Ip along the shaft axis and IT in both fhe x and y axi{s , for

small values of 8 and 7, the gyroscopic moments in the x-z ard y-z planes

are given by:

-

* d L . !_ . ":-:A |
M= 'EE[Ip“ﬁ - I,r7] Moo= [Ipu)‘r + 115] (4.56)

These moments also cause the shaft to deflect, modifying the whirling form of
the rotor. The equations of motion of the system must, therefore, include
the gyroscopic effect. Under the action of the force P and the moment M,
Figure 4,17, the deflection and rotation at B are

-Eii.r*.&it?)n

. 3EIL 3EIL
‘_t"f.'f'y' 2 5 .
- 2ab(a-b) _ (a"-ab+b"™)
B 3EIL 3EIL . ¥ (4.55)
Thus
2
a -ab+b -b

P = 3EIL ( 33 )7 +(82b2)5 = o,y + a8
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= N A -L‘-—b)- St ,!-_ - - - v
M 3EIL |- .zbz 'y - g B @,,y 0225. '(4.56)

From Figure 4.17 the equations of motion are:

mx = P, = -Qx- a B

11
ny = -Py = -=a11z - 012 4 (4.?7)
and from Equations 4. 56
S A T TR
y - - - 4,
Ip‘°7-+ 115 (121y azzﬁ ( 58)_

These four equations may be solved for the critical speed by choosing a sclution

of the form ept which gives four linear homogenous equations for the above

balanced shaft.

Substituting

x = r cos wt y =1t sin ot B = ¢ cos wt 7 = ¢ gin ot (4.59)

and considering r and ¢ constant for any particular speed to obtain the
boundary conditions for the instant when the whirl plane of the shaft
coincides with the y-z plane:

p = ¢ B=o B=- sz
Y = 0 Y= ¥=0
o 2 (4.60)
X =T X =0 X = - ro
y =0 y = rw Yy = o
148
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reduces the equations of motion to
mx + -&llx + 0125 - 0
2
(Ip - IT)m B - °‘21Y + azza = 0 (4.61)
The above equations indicate the effect of centrifugal force (mmzx), and of
gyroscopic moment (IP - IT)wFB on the shaft deflection. Tc solve these
equations substitute

Yy =71 cos ot B = ¢ cos wt (4.62)

The critical speed of the above system under the influence of gfavity is then
obtained from the determinant of the coefficients of y, . This is

4 2 . -
o - (P -q)a? -pld® (1-¢) =0 » ~ (6.63)
where ,

2 %4

o

? 22
IP - IT

c_az-zabli.-bz (6. 64)
82 - ab+b2 )

For a, b real, ¢ < 1, Equation 4. 63 has only one real root, w, corresponding

to forward precession. This is the condition which occurs most frequently in
practice. The gyroscopic effect stiffens.the shaft and raisec the critical

speed, due to the forward precession of the disk.
In the above discussicn, it has been assumed that the whirl velocity of the

shaft is o, the speed of shaft rotation. If it is not, and the rotor whirl

velocity is V, substituting
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x =71 cos Vt y = r sin Vt B = ¢ cos Vt y = ¢ gin vt (4.65)

gives
mx + allx + alzs = 0
2
[Ipmw - ITV ] g - 021x + .azzﬁ = 0 (4.66)

when V = o the previous result is obtained. If V = -w, the second equation

becomes

2
- - = : .6
[Ip + IT] wp a21x + a225 0 (4.67)
and the Syroscopic effect becomes positive and tends to increase the shaft
deflection. This negative precession does not occur naturally but may be
initiated by an external cyclic disturbance. The increased deflection lowers

the system critical speed.,'

Green (Ref.95) has given solutions in chart form for the cantilevered disk, the

simply supported disk (considered above),atwo-disk system, and multidisk systems.

Dimentberg(Ref. 1) has considered the two-bearing overhung disk with both balanced
and unbalanced operation. This treatment is then extended to include the effect

of internal friction and external friction — individually and then simultaneously.
It is shown in this work that the number of critical speeds for ;*éiven case
depends on the disk proportions. For a circular disk, in general, there are

three critical speeds as Ip = ZIT, one with forward precession, and two

with backward precession. Where Ip < IT there are four critical speeds, twn

forward and two backward prece'ssion, corresponding to the roots of the

quartic characteristic equation.
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Yauada (Ref.96) has investigated the case of an unsymmetrical cantilevered
plate, I1 > 12 > I3 both analytically and experimeptally. The results
 indicated that where the circular disk undergoes a circular whirl, the
asymmetrical plate gave elliptical whirl orbits. Two forward synchronous
premmional motions occurred in contyast with single forward precession with a

circular disk,and the speed range between these motions was unstable.
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(a) Rigid Body Translatory Mode

D)

(b) Rigid Body Conical

FE;;a - SN I,

Figure 4.01
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Fig. 4.03. 'Influence of Bearing Flexibility on Critical Speed for Flexible Rotor

A1
Reprinted from THE EFFECT OF FLEXIBILITY OF SUPPORT UPON THE CRITICAL
SPEEDS OF HIGH SPEED ROTORS, Figure 10, by Frank C. Linn and M. A.
Prohl for The Society of Naval Architects and Marine Engineers.
November 1951
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W= Lotor Weight (Ibs)  K° Spring Constant (4s)
y'= 2% = Static Deflection due ta Brg Flexibility (i)
N= 1% Critical Speed on Rigid Supports (rp.m)
W= Critical Speed with Bearing Flexibility (r.p.m )
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Fig. 4.04 TInfluence of Bearing Mass and Flexibility on Critical Speed

Reprinted from THE EFFECT OF FLEXIBILITY OF SUPPORT UPON THE CRITICAL
SPEEDS OF HIGH SPEED ROTCORS, Figure 9, by Frank C. Litnn and M. A.
Prohl for The Society of Naval Architects and Marine Engineers.
November 1951
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" N.B. Use above curves only when K is neqative.

Use Fiq.8 when K is positive.
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— N, = Ist Critical Speed on Riqid Supporta(rpm)
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Fig. 4.05 1Influence of Bearing Mass and Flexibility on Critical Spewd

30

Reprinted from THE EFFECT OF FLEXIBILITY OF SUPPORT UPON THE CRITICAL
SPEEDS OF HIGH SPEED ROTORS, Figure 11, by Frank C. Linn and M. A.
Prohl for The Society of Naval Architects and Marine Engineers.
Novembgr 1951
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Undamped Rotor

Amplitude f

Critical Damping
In Bearings

e ————

@
Speed p
c

Fig. 4.06 1Influence of Bearing Damping on Critical Speed

Fig. 4.07 Discrete Mass Representation of Massive Flexible Rotor

Fig. 4.08 Single Disk Rotor on Massive Flexible Shaft
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Fig. 4.09 Flexible Single Disk Rotor in Plexible Bearings
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Fig. 4.10 Symmetrical Two Mass Rotor in Rigid Bearings 3
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Fig. 4.11 Uniform Retor With Overhang in Rigid Supports
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Fig. 4.12 Additional Bending Moments Due to End -
Torque in Flexible Shaft {
158 B




{
: -4
. i
w n
o
3 : »
= f
, £
— pu—————— @
— H
" _— 2
g = E
Q — 5|
o oy £ B
by p—— -2
> — 20
K R =
-t . oy B3
o - t.m
[} — an
3 - o
g
- &
4
b | el
AT cc
-

y = - El]
Yo [1 cos 1

Fig. 4.13

ir2125124224111121111173122112222 311213223323 22 A AT AR AR R ARA A = o= T S T -~

159



0.5 in

Wall Thickness

PRI
H e
v

77777

3.25

'T—

.
ht— 12 —ale— 12 e 120 o1 12 12—
- : 144
- 168 >
- le ol -l
Region 1t Region 2 jiegionﬂ
Fig. 4.14 Uniform Rotor With Stiffened Central Section
it
Fig. 4.15 M/EI Diagram for Stiffened Shaft Based on Gravity Deflection

o v = = =

V.

 n

vz W

;,‘

160

i (S et LL.‘;,.,.‘.;

i

[Av— C] (v.-——.. : —nd ‘.W

[,

e T
SO

s — P ———
. {
—



v 4

; x -1
-/' x
. . E E
1
0 wt B pw
N

Fig. 4.16 Moments Acting on a Balanced Disk Mounted on a
Flexible Shaft

x4
e}
P g » o
® [} 5 A= 8
v
B[4, L i [ )
0 2 ad
- X _ \
-2 ~ 3
-y L

Fig. 4.17 Moment and Force Acting on Shaft due to Disk
Gyroscopic Action

161



v

STABILITY

The Nature of Whirl Motions

When the radius of the whirl orbit traced out by the c.g. of & rotor tends to
increase with time following a small displacement from the equilibrium position,
_the rotor motion is said to be unstable. A stable rotor will tend to return to
its original whirl orbit with a damped oscillatory motion following the removal
of the disturbance. If the disturbince persists, such as an additional unbalance
or cyclic force, a stable rotor willladopt a new whirl orbit in keeping'with the
new operating conditions; whereag, the whirl radius of a rotor in unstable
equilibrium will continue to grow with time until restrained by some other con-
straint. These conditions are illustrated in Figure 5.01. The form of the
whirl orbit is determined by the collective action of all forces acting on the
rotor. The simplest orbit is circular about the undisturbed rotor axis. This

arises from the action of an inwardly-directed radial force of constant magnitude

such as the rotor elastic force. The simultaneous presence of a constant negative

tangential force which rotates along with the radial force does not disturb the

form of the orbit and confers stability on the motion at the rotor critical speed.
Where the tangential force isg positive, such as in the case of hysteretic friction

above the rotor critical speed and with hydrodynamic bearings above twice the
system critical speéd, tangential equilibrium does not exist. The motion is
unstable and the rotor whirl path is a spiral whose radius increases with time.
This spiral whirl growth also occurs in the case of a simple rotor in rigid

bearings, when running at its critical speed.

Rotors which have dissimilar lateral moments of inertia have two critical speeds
corresponding to the two stiffnesses. Below the lower critical and above the
higher critical, the rotor unbalance whirl is stable, and the whirl orbit is
elliptical with the major and minor axes corresponding to the principal rotor
stiffness directions. At speeds between these criticals the rotor motion is
unstable and the whirl radius is again a growing spiral. This instability is
independent of rotor unbalance and cannot be eliminated by more refined

balancing. The unsymmetrical rotor stiffness also appears as a twice-per-
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revolution variation as shown in Pigure 5.02 which gives rise to a whirl at
twice shaft speed, even when the rotbf bals: .- is perfect. This whirl becomes
resonant when the rotor runs at half eachk crirical speed. For a rotor with
small stiffness dissymmetry, the proximity of these two whirls may cause a

noticable sub-harmonic resonant amplitude peak.

Simple elastficity of the rotor supports does not itself induce whirling, but it

may exert a strong inrluence upon the shape of the whirl orbit. If the &
stiffness is not symmetrical, the orbit will be elliptical rather thas ular.
In addition, fluid-film bearings 0ssess complex direct and cross-co., , atiff-

ness and damping properties which tdepend on the operating eccentricity of the
journal within the bearing. During operation, therefore, the bearing stiffness
and damping properties are not symmétrical about the journal axis. The fluid-
film damping diminishes the rotor whirl motions up to a certain threshold speed
which wecurs at approximately twice the system critical speed. Beyond this
threshold, the journal whirls within the clearance with a frequency equal to
half the whirl threstsld speed. The resonant nature of this motion may lead to
dangerously large whirl amplitude:. This is known as resonant whipping, and it
is sustained by the fluid-rilm forces themselves. Only in isolated instances
has it been possible to run through the resonant whipping condition because
once established, the large-amplitude whirl motions sustain themselves for all
higher speeds and machine cperation is hazardous. The accompanying changes
which take place in the bearing coefficients, and, hence, in the motion, due to

the large amplitudes, are not fully understood at present.

A number of minor whirl conditions associated with torque and speed fluctuations
exist. Gravity acting on an unbalanced rotor may be sufficient by initiating a
small whirl at twice rotational speed which may become resonant when the rotor
operates at half the system critical speed. A similar condition results from
externally imposed torque fluctuations — such as those from a reciprocating
engine or pump. When applied at integer multiples of the system critical speed,

these torques may develop further sub-harmonic resonant whirl motions.

In each of the above whirl instances, the presence of viscous friction in the

system acts to stabilize and limit any whiri motions which occur. It is the
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absence of effective frictional forces in the bearing which leads to resonant
whipping. Both hysteretic and viscous friction are frequently present simul-~
taneously in large built-up rotors with dissimtlar lateral stiffnesses. The
hysteretic damping accentuates the inherent whirl instability of these rotors
between the critical speeds, whereas. the viscous damping tends to suppress the
whirl at all speeds. A considerable ;mOu;, ~ viscous damping in the bearings
of such a rotor may be required to assurc :i.o.. . whirl amplitudes of moderate

proportions throughout the speed ran e.

Stability of a Simple Rotor in Rigid Bearings

Below the critical speed, w < W, it is well known that all practical rotor
motions are stable below the first critical speed. No major source of instability
becomes troublesome below this speed, and the inherent sources of rotor-bearing
damping are usually adequate to deal with any sub-harmonic whirls which occur.

At all speeds away from the critical, the synchronous unbalance whirl is
inherently stable, irrespective of friction damping. This may be as ia the
following demonstration. a

Consider the undamped, flexible, single-disk rotor shown in Figure J.o1. It
has been shown in Chapter 3. tihat the points OEG lie in the same radius for this

case. For w < w, a radial force balance gives:

ung [r 4+ a ]. = kr (51)

Now let a small disturbance be impressed on the equilibrium condition such that
the variables r and w become r + Ar and w + Aw. All other system properties

remain constant. This gives

m [a>+-£n$]2 [(r + Ar) + a ] = [k r +»Ar]
or

[ ] < el oo

The terms in square parentheses are constant. This means that if Aw = o, Ar must
also be zero for equilibrium, and so there can be neo radius increase without

a corresponding increase in speed. Each speed has a definite equilibrium whirl
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radius which the system will seek if displaced and, hence, the system is
stable. The above demonstration ignores Coriclis forces, but is a reasonable
illustration if the radius increase is caonpidsred jQ Take: pheiw s o, .

Above the Critical Speed w > @,

A similar demonstration indicates that the system is also stable above the
critical speed for small displacemsn:z. The points OGE lie along the same

radius as shown in Figure 3.04c. A force balance gives:

mwz[r-a] = kr

or '
2 ,
Ar[mz-wcz]+m>{2w(r-a)]--[‘r{m"-mcz]-amz] (5.3)
The terms in the square parentheses are constant and positive — except quite

close to @, . Therefore, when Aw = o, Ar must also equal zero. For Ar to be a
positive increase in radius, Ao must be negative, i.e., the speed must decrease.
Again, each speed has a definite equilibrium whirl radius, and the syatem con-
sidered is stable.

A rigorous investigation of stability above the critical speed for this system
has been made by Foppl (Ref. 97 ) and is quoted by Stodola (Ref.18).

Stability at the Critical Speed w = @,

The equations of motion for a simple undamped rotor given in Chapter 3.are:

mX + kx = mau.)2 cos wt
my + ky = maw2 sin wt (3.02)

If w= W the steady-state solutions are:

X = + % ant sin o t
¢ c

y = - % aw_t cos w.t (3.09)
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These expressions apply to a logarithmic spiral with radius increasing with

time. The undamped rotor is, therefore, inherently unstable at its critical
speed. The instability manifests itself as a steady growth in the whirl

radius, proportional to the degree of residual unbalance in the rotor. A

finite time is, therefore, required for the dangerous effects of this instability

to become manifest.

Stability of a Damped Rotor in Rigid Bearings

A rotor in which the damping is predominantly viscous iu nature may experience
large amplitude whirling, but the motions themselves will always be stsble.
This is explained by the nature of viscous friction, in which the force is
generated by the relative motion, and always acts in opposition to it. Thus,
the viscous friction force opposes the shaft rotation at all times; it never
tends to drive the rotor, radially or tangentially. The viscous friction “force

depends on velocity, and hence, it increases linearly with the whirl radius to

oppose any amplitude growth.

The rotor equationa for the gsimp'e unbslanced rotor with viscous damping are
Equations 3.10. Combining these using r = x + iy give the shaft center equation:

ot + bt + kr = meEiwt (5.4)

The solution to this equation is:

r = A exp —}-’2; t.up[ivwcz-Lz.t] +
- - 4m
] ] 2 dwt
B exp - t . exp -i\[wz-b— Lt o+ 8 e (5.5)
2m c 2
- bo (1-057 + (2)?
maéz

The whirl radius is stable if it possesses no positive-real time exponents to
cause eirher the transients or the steady-state solution to grow with the passage

of time. The exponents are reviewed in the following table.
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Stabilicy

Term Exponent Properties Comment
First Transient - 35— : Negative, Stable, Amplitude
real decays with time.
Independent of
speed.
2,2, , co 2
First Transient 1 (1-9%) +{-——§) Positive, Stable. Barmonic
L Imaginary variation of ampli-

tude with time.
Varies with speed.

Second .. - -GEE-) Negative, Stable. Amplitude

Transient real Jdecays with time.
Independent of
speed,

Second -1 (1-32)2+(-Eg%)2 Negative, Stable. Harmonic

Transient mo Imaginary variation of smpli-

° tude with tige.

Varies with speed.

Steady-State iw Poaitive, Stable, Harmonic

Imaginary variation of ampli-
tude with time.
Varies with speed.

Thus, the transients both decay with time, while the steady-state whirl remains
constant in amplitude for any given speed. If the speed is varied, the ampli-
tude also varies, passing through a zone of finite maximum amplitude at the
system bending critical speed,

influence of Internal Friction on Rotor Stability

The rotor dynamic aspects of intermal friction have been discussed in Section 3.
This part of Section - 5 concerns the stability of a simple, balanced rotor in
rigid bearing and indicates in greater detail the mechanism by which the whirl-
inducing tangential force, F, occurs. The stability of a simple rotor with
internal friction damping is then exémined from the solution to the equations

of motion.
The presence of a tangential force arising from elastic hysteresis of the
material during motion may be demonstrated by consldering a simple balanced

vertical rotor in rigid bearings, Figure 5.03a. For an elastic shaft of spring
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constant ¢y, & displacement, r, from the equilibrium position corresponds to a
displacing force, Pc, acting on the disk such that:

r = afF, _ (5.6)
Due to Fc, the gshaft i3 bent and the convex surface ABC is in tengion while the
concave surface CDA is in compression. The neutral axis is AC. 1If the shaft is
now rotated with speed w about E; while the plane of bending containing E does
not rotate, the shaft material will be subjected tdrcyclically varying stresses
due to its rotation in the displaced condition. As the material is not perfectly
elastic, the distribution of bending stresses over ths shaft cross section is
not independent of the rotation, but is influenced by the hysteretic lag in
strain between the loading and unloading portions of the hysteresis cycle,
shown in Figure 3.12. As a surface element rotates from A to C, its flexural
stresses change from tension to compression, along the lower portion of the
ABC. As the cycle is completed, the stress reverses along the upper portion of
- the loop CDA. Due to material hysteresis, the tensile stress falls to zero
where positive strain still acts at B'. The half-cycle is completed to full
compressive stress at C. A similar condition occurs during the remaining half-
cycle as the compressive stress falls to zero with a negative strain acting at
D'. This has the effect of shifting the angular position of the neutral axis
from-BD to B'D'. Observe that the same effect would be prciced with a per-
fectly elastic shaft if a small force, Q, acted ¢1 the ghaf{{ at point B as
shown — together with the deflecting force, P. To evaluate Q note that the
work done by this force per whirl revolution of the shaft is:

W = 2rnr.Q (5.7)

This is equal to the energy loss, E, per cycle due to hysteresis. Recalling that
this loss 1s proportional to the square cf the limiting cyclic amplitude and

independent of frequency gives
2
E = 2xDr (5.8)

where D is a constant which depends on the hysteresis characteristic of the

shaft material. Equating W and E gives



Q = Dr (5.9)

This is the value of the tangential force required to prevent whirling of the
shaft about O. It is proportional to the radial displacement and depends on
the properties of the shaft material in the case of elastic hysteresis and on
the stick-slip Coulomb friction characteristics of the joints in the case of =2
built-up rotor. If this restraining force is remcved, the rotor is free to
whirl about the undeflected shaft axis.

Consider the case where the rotor is whirling freely about O with angular
velocity, v, where v < @ — the shaft rotational speed. The whirl configuration
is shown in Figure 5.03b. The coordinates of E, coincident with G in a balanced

rotor, are

X = 1rcosd
y = rsind (5.10)

The equation of motion for the disk in stationary coordinates are

mx = ~kx - Q sin ¢
my = -ky + Q cos ¢ (5.11)

From the previous Q = Dr, substituting gives

wk + kx + Dy = 0
my + ky - Dx = 0 (5.12)

These equations are coupled and may be solved simultaneously by taking a

solution of the form

y = y el (5.13)

This leads to the characteristic equation

A s an?+ ol +phH = o (5.14)

-
(o))
D
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The solution to Equation 5.12 {ir therefore:
At —A\t
X = Ae  cos (alt + ¢1) - Be = cos (alt + 62)
At —At
y = Ae =~ sin (azt + 01) 4+ Be - sin (ait + #2) (5.15)

where A,B, ¢1 and ¢2 are constants to be detesrmined. Observing that force Q is
always small compared with P, it follows that (%) must also be small. This

leads to the approximations:

A =

H o, = k )
2¢§;; 1 m c
The second expression shows that the internal friction whirl takes place at =
constant speed which coincides with the critical speed of the rotor. As the
speed of rotation, w, must be greater than the whirl speed, v ( -mc), for the
force Q to drive the shaft around the whirl ccbit, this means that the shaft
will tend to whirl at speeds above the rotor critical speed. Also, the exponent
A, in the first exponential is positive, indicating growth of the whirl ampli-
tude with time,

The results of the above indicate that a perfectly balanced rotor will not whirl
at speeds below the critical sinve the damping force is constant and acts in
opposition to the whirl motion. Above the critical speed, the rotor whirls with

increaeing amplitude, unless restrained by some other effect such as viscous



friction. The whirl frequency is independent of speed of rotation and cccurs
at the bending critical speed of the rotor.

Internal friction whirl has been particularly troublesome in the case of built-
up rotors with inadequate interference fits between disks and shaft. It has
also occurred in electrical machinery with laminated cores. - This whirl motion
can be minimized by providing tight contact between the mating surfaces, the
length of -which should be kept to a minimum,(see Figure 5.04). Kimball and
Lovell (Ref. 23) and Newkirk (Ref. 54) have discussed this problem in detail.

In a given machine, internal damping is rarely the only source of damping, al-
though it may be the largest source for small amplitude motions. Both bearing
friction and viscous drag of the surrounding fluid are also present. Both these
effects are dissipative and uni-directional and depend on speed. Eventually,

an équilibrium whirl configuration maj form between all systen forces at a finite

-

radius.

Whirling of a Shaft with Unsymmetrical Stiffness

While the majority of rotors have avxisl symmetry in their stiffness nreoperties,
there are certain important types such as two~-pcle turbogenerator rotors where
the stiffness properties of the cross section are not symmetrical. This asym-
me:. .y affects the rotor whirl motion and gives rise to two critical speeds

5
v

corresponding to the individual stiffnesses, between which the motion ias unstable
unless the system possesses sufficient viscosity. This effect has been studied by
Stodola (Ref. 18), Robertson (Ref. 28), Taylor (Ref. 76), Foote, Poritsky and

Slade (Ref. 77) and others. These authors have observed the following character-

istic features in the rotor motion:

1. The rotor has two critical speeds corresponding to the two principal
stiffness values of the cross section. Where the rotor mass is dis-

tributed throughout its length, two critical speeds occur in the

vicinity of the symmetrical rotor eriticals.

2. Between the two critical speeds the motion is unstable, and whirl
amplitude tends to increase with time.

3. Rotor whirl stability between the critical speeds does not depend on
the degree of rotor unbalance, and stability cannot be conferred on the

system by more refined balancing.
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4. Whirl amplitude below the first critical and sbove the second critical
depends on the level of rotor unbalance.

5. The whirl frequency is constant between the two critical speeds.

6. Viscous friction damping reduces the whirl amplitude, and where
sufficient, viscous friction is present, the whirl motion between the
critical speeds becomes stable. Coulomb friction has the reverse
effect, and tends to promote instability.

7. Sub-harmonic critical speeds occur at E! and_®2 . For moderate
2
stiffness inequality, the proximity of these sub-harmonics, particular-

ly when influenced by friction, gives rise to a single sub-harmonic
critical amplitude peak.

The motions of a damped, unbalanced, single-disk rotor with dissimilar lateral
stiffnesnes have been considered in Section 3 and expressions for amplitude
response and phase angle have been obtained. The following stability anaiysis
considers the undamped, perfectly balanced, single-digk rotor in rigid bearings,
to determine the conditions of inherent instability. Designates the shaft
natural frequencies ®y and @, corresponding to vibratiuns in the tws latsrsl
principle directions, such that
02 - 4 02 o 2
1 m 2 m
Let the rotating axis be £, n, and let these directions correspond with the planes

of maximum and minimum stiffness, as shown in Figure 5.05. Writing the rotor

whirl radius as
r = £ + 7§ (5.16)

where 1, 3 are unit vectors in the £, n directions, gives the radial acceleration

of the disk c.g. as

t = ['g' -?m;,-wzg]I + [},’ + 20f -wzq]E

r—— —

r————

m——



The equations of motion, Figure 5.05h, for a simple undamped rotor become, o:
subhtituting'the above,

m[z"-'zwﬁ-wze] = ckE

m[ﬁ-l-Zmégmzn} - kzq- 5.17)

These equations have constant coefficients, but the variables §,n are not

separable. ' Selecting a solution of the form:

§ = § e s, on o= 0 € (5.18)

leads to the characteristic equation:
[Az - o + w12] [Az - of + )’ ] + Wi’ o= 0 (5.19)

This is a quadratic in A2, The motion of the disk will be stable when both
roots are negative., Writing Equation 5.19 as

Araa? + ¢ = 0 (5.20)
where @ 2 + o 2
2 1 - 72
b = o + 7
c = (wl2 - mz)(wl2 - wz)

gives the roots as

A2 a b+ Vp2oe (5.21)

Substituting leads to the conclusion that the radicand is always > o, and so
the roots are always real. If c is positive, then both roots are negative; if
¢ 1s negative, some roots of Equation 5.20 will also be positive, giving

unstable motions. This occurs when

2 2 - 2
wl < o< aﬁ
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This result leads to the conclusion that the speed range between the two
critical speeds correspondingﬁto the maximum and minimum transverse stiffnesses
is unstable for an undamped rotor. In this range, the rotor whirl amplitude
will grow steadily with time unless otherwise restrained. This instability hes
been shown to be independent of the residual unbalance of the rotor; but, as
this unbalance may promote synchronous rotor whirl amplitude growth =zt all speeds
below the upper critical, s the greater residual rotor unbalance, the more
rapidly will the unstable rotor amplitude grow. As in thL: case of a simple
rotor at its critical speed, the whirl amplitude growth path within the unstable
‘range is an increasing spiral, Figure 3.06. At speeds below the first critical,
the rotor motion is a stable synchronous whirl; and at speeds above the second
critical, the rotor is again stable with the c.g. between the whirl axis and

the elastic center.

These conditions apply to the undamped rotor. The presence of viscous friction
in the system tends to stabilize these motions and to limit the whirl amplitude
between the two critical speeds. If the rotor also has hysteretic damping, tgis
tends to promote instability above the critical speed as noted previously. The
combined effect of viscous and hysteretic damping on the motions of such a rotor

within the unstable range depends on the extent of each damping present.
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Hydrodynamic Instability

Rotors which operate in fluid-film bearings are susceptible to a particu. :r form ;

of instability in which the journals of the rotor whirl within the bearing
clearance. The severity of this whirl may range from a mild increase in rotor
amplitude to a vigorous and growing oscillation which is capable of destroying
the bearing if allowed to persist. In this latter case, further increase in
machine smneed is impossible, and so the speed at which this hydrodynamic whirl
sets in represents an upper limit for machine operation. This whirl is a pro-
perty of the rotor-bearing system alone, and occurs independently of the state

of balance of the rotor.

The hydrodynamic stability of a rotor 'in its.bearings at a given speed depends
on the operatihg eccentricity and the type of bearing used. In general, high
operating eccentricity ratics are conducive to stable operation; whereas iow
eccentricities, as in a vertical rotor, are not. High speeds decrease the
operating eccentricity of hydrodynamic bearings, and so a speed exis!%, known
as the threshold of instability, beyond which the rotor begins to whirl with a
frequency v which is usually somewhat less than half its speed of rotation. I£
is common for the threshold of instability to occur around twice the first

critical speed of the rotor-bearing system.

Hydrodynamic instability is a known operating hazard with both hydrodynamic and
hybrid gas bearings, althcugh external pressurization considerably extends the
speed range over which stable op-ration is possible. As the rotor is usually very
rigid compared with the gas film, it is the film stiffness which determines the
whirl threshold speed. Gas bearing hydrodynamic instability is commonly referred
to as 'half-frequency' whirl for hydrodynamic bearings, and 'fractional-frequency

whirl' for hybrid bearings.

Liquid-film hydrodynamic bearings may also become unstable, particularly where
the lubricant viscosity is low, as in the case of water and mercury. Hydrostatic
liquid bearings are stable throughout the operating range of all present-day
rotating machinery. For liquid-lubricated bearings, hydrodynamic instability is
usually referred to as resonant whipping, although other titles such as o0il whip,

resonant fluid-film whipping, are sometimes used.
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Circular cylindrical bearings have inherently poor hydrodynamic stability pro-
perties. Tilting-pad bearings have the best stability properties of all bear-
ing types, as the pad tilting allows the bearing to 'follow' the rotor
oscillations, and so preserve the rotor force: film force equilibrium re-
quired for stability. This type of bearing loses its stability when the pad
'flutters' and fails to follow, at extremely high speeds. Elliptical bear-
ings, offset bearings, two and three-lobe bearings are other types with good
stability properties.

Mechanics of Hydrodynamic Instabilitw &

In order to clarify the physical phenomena which underlie the problem of hydro-
dynamic stability, the forces which give rise to the motion will first be con~ {

sidered. -

Vertical rigid rotor

First consider the rigid rotor shown in Figure 5.06 which operates in
vertical, plain cylindrical bearings with the clearance space filled with

,.._..,

lubricant. Hydrodynamic action confers both stiffness and damping
properties on the bearings, and so the rotor is capable of two types of
whirl motion, translatory and conical, as shown in Figure 4.01. For

simplicity, the following remarks are confined to the translatory mode.

If a constant load, W, is applied to the rotor, it will adopt a steady-
state equilibrium position as shown in Figure 5,06a in thch the rotor is ; {
displaced a small distance 0G from the bearing center. Hydrodynamic action |
within the convergent portion of the fluid-film gives rise to a pressure
distribution. The force component F of this pressuré distribution acts
through G and is sufficient to support the applied load, W, without the L.
journal touching the bearing surface. The angle between the line of
centers and the load balance is ¢, the attitude angle. Consider now the
case wherc the vertical shaft is not loaded, but is displaced an identical i
distance 0G, for example, by a blow. Hydrodynamic action again generates L.
the force component F through G. But no steady-state equilibrium may result :
in this case, and so force F tends to drive the rotor into an orbit around |
the bearing center. As long as O and G are prot coincident with the rotor :

' [

176

ity Ll i

i vy
.

{ geemovzien
] ’
st



motionless, a driving force will continue to be generated by the ;elative
displacement, as shown in Figure 5.06b and the whirl will continue. Since
both the hydrodynamic action and the whirl motion generate friction forces
which oppose motion, bearing stability and whirl radius, both depend on the

damping characteristics of the system.

Horizontal rigid rotor

A situation similar to the vertical rotor case exists except that the static !

equilibrium condition is as shown in Figure 5.07a. Here, the rotor is

displaced a distance OG from the bearing center and the fluid-film pressures

support the rotor weight, W, through the ¢omponent F. If now the rotor
center is given a second displacement to G', the fluid-film Zforce F'
corresponding to the new film shape will no. longer exactly balance W.
The face balance may be thought of as shown in Figure 5.07b where F' =
F+ F'" and F = W as before. The component F' which cuts through G 1is
therefore, free to promote whirling of the rotor about G. The nature of
the motion which follows is again determined by the damping properties of
the fluid film,

Rigid Rotor in Fluid-Film Bearings

The influence of bearing stiffness and damping properties on the rot.. motions
is most significant where the rotor is rigid, as then these properties alone
determine the rotor amplitude and stability during operation. The possibility
of instability due to the fluid-film was recognized by Stodola (Ref.18 ) and
was investigated by his co-worker Hummel (Ref. 98). Thuir analysis is based
on the assumption that the eccentricity locus is a semi-circle. By examining
the nature of the geometry of an arbitrary displacement from the equilibrium
operating position expressions for the x,y coordinate stiffnesses of the fluid-
film were obtained. Substituting in the equations of motion then led to a
stability equation which was examined for real root, corresponding to unstable

(amplitude-increasing) operating conditions.
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The results indicated that for ahy operating eccentricity ratio € > 0.65, two
frequencies existed for which the motion would be unstable. For eccentricities
below 0.65, Humnel found the motion inherently unstable, and therefore did not
consider this region further. This region has since been investigated by
Cameron (Ref. 99 who found a single threshold frequency for instability rather
than the inherently unstable domain inferred by Hummel. Cameron and Solomon
(Ref.1M0) experimentally confirmed the existence of the predicted low-
eccentricity instability threshold for e€-values down to 0.18. The correlation
of this theory with half-frequency whirl is a deduction from practice and not

a consequence of the analysis which sheds little light on the mechanics of
fluid-£film whirl: Further extension of this approach to cover flexible rotors
has been made by Parzewski and Cameron (Ref. 10l).

This method is simple and direct andéihe results have been formulated as a
stability threshold chart. Experimental correlation is quite good as far as_
it goes. At both high and low eccentricities, grave inaccuracies are to be
anticipated due to the omission of damping from the analysis. At low
eccentriciti%B the results predict a high (or infinite) stability threshold
freéuency whéreas it is well knownthat in this condition most bearing types
have serious:instability problems. This condition is important in predicting the
performance ‘of vertical machines. At high eccentricities, the compiex inter-
action between bearing stiffness and damping catnot be neglected, and the
damping teém alone may become very large. Most large horizontal rotors
operate wiéh eccentricities within the Hummel limits 0.65 <e < 1.00 where this
shortcoming is manifest. The upper frequency threshold predicted by the theory
is of no practical significance. Once whirling has been initiated, operation
at higher speeds is rarely possible as the resulting large-amplitude motions
violate the assumptions upon which &all linear analyses rest, and furcher
analysis must therefore include the neglected non-linearizing terms. In
practice, only in rare instances has it been possible to pass thrpugh the range
of resonant whipping with liquid bearings, and never with gas bearings. The
approach used in these papers has since been superceded by more accurate and more
general methods, and their value lies in providing rapid approximate answers
within the range 0.2< € < 0.8, in cases where the cawvitation status of the
bearing is known and where the eccentricity locus is known to be approximately

semi-circular.
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Newkirk and Taylor (Ref.55) describe the first recorded practical encounter
with whirling which is significantly influenced by the bearing fluid-film
properties., In a series of experiments it was shown that the rotor whirled
within its bearings with a frequency somewhat less than half the speed of ro-
tation, and that the whirl became resonant above twice the system critical
speed. This latter is the resonant whipping condition, apd most subsequent
experimental investigations with liquid-film bearings have been concerned with
bearing developments which would suppress it, or extend the range of stabie
operation. These developments are discussed later under investigations of
the resonant whipping condition. Newkirk and Taylor detected the rigid-body
whirl motions, which they called oil-film resonance. These motions received
no further attention at that time as their amplitudes were small, due to

damping, compared with the resonaant whip ampliiudes.

The first ‘attempt to investigate the motion of a rigid journal within a -
beariné using hydrodynamic theory was made by Harrison (Ref.l02), who de-
rived expressions for the radial and tangential components of the fluid-film
force due to the journal displacement. These expressions are based on the
Reynolds' assumptions, and apply to an infinitely-long, full (no cavitation)

bearing using an incompressible lubricant, as follows:

12n p é3 €
Fg = 7 ) 7.1z (@ - 20)
¢ (2+€”) (1 -¢)
3
= - 127 L a ] 1 . de
F 3 7.3/2  dt (5.22)
c (1 -e7)"

where a is the journal radius, c¢ is the radial clearance, e is the radial
displacement of the journal center, and € is the eccentricity ratio (e/c).

For a stationary journal center Fr reduces to zero while:

p. o= Xmpa g 7 (5.23)
c @+eh a-ed

This constitutes a force on the journal which is perpendicular to the dis-
placement of the center, urging it to whirl in the direction of rotation. In
practice, both radial and tangential force components have been shown to exist
simultancously. The discrepancy arises from the Sommerfeld assumptions which

neglect the influence of cavitation. 1In the case of a full cylindrical verti-

cal bearing, the theoretical conditions are all present and the prediction of
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whirl instability from sero speed upwards is realizei in this case, ses

Boeker and Sternlicht (Ref.l03). Robertson (Ref. %2 reconsidered Barrison's case,
and indicsted the omission O! radial motion #ffects on the tangsntial component
of surface velocity. This is considered negligible by Poriteky (Ref. 104).
Robertson deduced that the journsal has an inherent tendency to whirl with s
frequency equal to half the spued of rotation. This work also containas the
shortcomings associated with infinitely-long full cylindrical bearing theory,

and 80 only applies to vertical bearings operatinj; at small eccentricities.

Hagg (Ref.7l) collated the then-existing knowledge of the problem, and pointed
out sevsral important features requiring incoxporation into the quest for a
meaningful stability criterion which would reconcile the axpsrimentzlly cbsarvaed
effects with the available simple theory and its unacceptable prcdiction'of in-
herent instability. Comsidering the continuity conditions for a journal whirling
with a full film, the amount of fluid pacsing scma point A, Figure 5.08, must
equal the volume passing point B plus the volume required tc £{1l1 the veid left
by the receding journal. For pero side leakage it follows that

M+ = B0+ ' (5.27)
and hence w = 3

This establishes that the whirl speed {e related to the speed of rotation as
shown correleting the result obtained by Robartson (Ref.52). Hagg further dis-
cussed the stability of a rigid rotor in fluid-film bearings, considaring the

system equations of motion.

m; + cx + klx - Dly = 0 lez ! x direction (5.25)
n
my + cy + kzy + sz = kle i y direction
where ¢ is the bearing damping constant, and k,, k,, Dl’ and D2 are the fluid-

film stiffness properties. Applying Routn's atability criterion this leads to
the result that the system will be stable when

2,2, 2 2
(ky, = k)  + 2% (% + 2% > DD, (5.26)

2

where 2. (kl/m) w, " - (kz/m).

~1
This expression defines the whirl threshocld speed in terms of the operating
eccentricity ratie €g This value corresponds to a particular Sommer feld Number
for the particu.ar bearing geometry. An experimental program verified the con-
ciusion w = /2, but was not extended to cover the stability criterion at that
stage, although it had been corroborated with field observations on actual rotors.
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Hagg gave a simple avalustion of the demping capacity of & tilting pad
besring, and later, Hagg (Ref.105), gave curves for syring and damyping con-
acents for 120 degres partial-arc bsarings, together with a simple stabilicy
chart., Later work by Hagg and Kankay (Ref.73 and 106) gave more complete

data on spring and damping constants for partisl-arc and tilting-ped bearings
for small-mmplitude whirl, determined sxperimentally. At both low and high
Sccmerfeld numbers these curves are in error, as in thase gones they have been

obtained by extrapolation., Accurata values for the cylindrical besring havs i';
been obtained by Sternlicht (Ref.74), for the 150 degres partial bearing by d
Warner (Ref.34), and for the tilting-pad bearing by Lund (Ref.8l). Each of

these analyses applies to incompressible lubricants, and may be applied to

compressible lubricants at low (2 < 1.0) compressibilicy numbers. Hagg end

Warner (Ref.72) extended the sarlier work on the stability threshold speed,

using an slectric anslog to study the astability limit. This work gavs good

qualitative correlation with both test results and with data obtainsd from

an industrial turbine set, but the adbsolute values were often considerabdly .

different to the test results, The criterion given IbOV‘; pquitidn 5,09,

was axtended to cover rotor flaribility mors completely than in Ref. 71, This

is .2 x e, x ]
2 2 1 2 ¥ ‘ .
(k) = k)" * 3 [1 YA, T TR, T (5.27)

where k. is the rotor spring constant mwcz, W, is the rigid-bsaring rotor

critical rad/sec, and <, and ¢, ure the bclring demping coefficients in ths

X and y directions respsctivaly. Plotting (CN"/g) versus Sommerfeld Numbar |

8 with parametar (chz/g) where C is the radial clearance of the tearing, N [_
i{s the journal rpm, and Nc {s the rotor rigid-bearing critical spesd rpu b
allows the analog stability results tc be presentea in chart form for 120- {
dagree partisl-arc bearings, for /D = 1.0 and U.67. Llower L/D ratios in-

crease the ntabie oparating regicn, and the effectiveness of a ceantral cir-

cunferential groove in.railsing the stability threshold is explained ou this

basis. Three bearing types were tested (a) full cylindrical bearing,

(b) full bearing with circumferential groove, and (c¢) 160 degree partial bear-

ing. The speeds at which resocnant whipping developed and at which it dis-

appeared differed by an everage of ten percent. Typical oscillograms ob-

ta‘ned are shown in Figure 5.10, with the rotor whirl freguency w = 0.4302,

The upper curve shows a well developed whirl; the lower curve shows transi-

tion from whirl to stable running, with decreasing speed. At the stability
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threshold the frequency of the resonant whipping corresponds to a natural
frequency of the system, Hagg and Warner concluded that this may be either the
system banding critical frequency, involving motion of the rotor, bearings and
supporting structure; or it may be & rigid-bndy motion of the rotor on the
alastic oil films; or it may correspond to the rigid-bepring rotor criticai
speed. The frequency in all cases was less than 0.50, 1.e. half rotational
fraquency. They alsoc conciuded that the final question of stability dapends

on all elements of the system thst sre involved in the motion, and that

factors such as machine alignment, oil supply pressurs, oil-film extent, oil-
film temperature, and loading may alter the theoretical conditions. It was
observed that unbalance vibration usually inhibits resonant whipping. This is
equivalent to an increass in bearing operating eccentricity, but may lead to
self-excited subharmonic elastic whirling st exactly 1/2, 1/3, 1/4, and so on,
of running spsed. PFriction in non-rotating parts may act to give a stable
system, whereas friction in rotating parts tends to promote instability. These
latter observations endorss the comments on friction and stability mada eariier
in the present sectiecn snd in Section 3, Shortcoemings in using the simple
sriterion developed in this work ars (a) incomplete formulation as the croms-
damping terms are reflected, (b) tha criteurion iz approximate, being based on
experimantal data. Inaccuracias in its ganeral application are to be expected,

and these are avident in the corrclation shown.

The basic conceots of the theory of hydrodynamic whirl were given by FPoritaky
(Ref. X4 who showed that the discrepancy between observed results and those
predicted by the Sommerfeld-Harrison infinitely-long full-bearing theory of
hydrodynamic lubrication arose from neglecting the cavitated region in the
bearing film. Poritsky showed that when a radial force component wan inciuded
in the equatione of motor for & rigid journal, stability was predicted at speeds
belcw the rotor critical speed, while at speeds above twice the critical speed
the rctor becomes unstable and whirls at the rotor critical frequency in

acccrdance with obsserved performance. This led tc the stability criterion

uuz ’-k—l - Yy < 4 (5.28)
L k.

where k' and k are the shaft stiffness and bearing stiffness respectively. Re-
calling that the criticul speed Wy of an elaati~ rotor on elastic bearings is

given by
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it is evident that the rotor whirl frequency {s given hy @uﬂn') <2 a
given by Hagg (Raf.71). The results ars also in agreement with the praecti-
cal obyervation that the whirl proceeds in the direction of rotor rotation,
Pociteky's analysis neglected tha influance of fluid-film demping, end no
attempt was made to determine the value of the fluid-film stiffnesses, except
to postulate that these would be linear with displacement for swmall amplitude
motions. Later investigations into the el:zstic and damping properties of the
cavitatcs fluid-film by Boeker and Sternlicht (Ref.l03 and by Sternlicht
(Ref.74) verified the existance of the vadisl force component, and also pro-
vided values for all four spring end damping-coefficients. When demping ia
ircluded, the predicted whirl ffaquéncy is alvays less than 0.5@, in agres-
ment with practical obssrvaticns. Tt is important to note at this stage that -

the linearization of the boaring forces is valid only whera the rotor whirl =~

smplitudes are srall within the bearing clearance., This assumption i jultiFr
fisd on the grounds that the rotor opsratas at a stable eccentricity'boiaw o
the whirl threshold speed, and chat at the inittation of instability the rotor
motions will indeed be small. Llarge-amplitucde non-linear modes have been con-
sidered by Huggine (Ref.10). Poritsky alcc considered briefly the {nflusnce
of gravity, and displacements due to puricdic forcas,

Translatory fluid-film whirl of a vertical rigid rotor was investigated ex-
perimantally by Boeker and Sternlicht (Reaf.l03) to define the occurrence of the
whirl threshold speed. Correlaticn of the results with Poritaky's theory was
also attempted. Two types of hearing were tested (a) plain cylindrical and
(b) grooved shaft in plain cylindrical. Both air and water wera used as lubri-
cants. In air, the plain bearing whirled at all speeds, i.a., the whirl
threshold speed was zero for this case. 7The ratio of whirl frequency to shaft
rotational freguency ranged from 0.41 to 0.50. Wwhen cperating with water

as the lubvicant, the whirl threshold was at 130 rom with one shaft, and at
220 rpm with another more flexible suaft., With the grooved-shaft plain-baar-
ing combinarion, whirl commenced at 2700 rpm, and disappeared at 2400 rpm with
water as the lubricent. This 'lagz' was also observed by Hagg and Warner, as

mentioned above, Using the experimental eccentricity locus, (Fig. 5.11),
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the stablizing radisl componsnt in the fluid film was observed to be zero for the
plain bearing at zero ecceantricity. This ‘s the Sommerfeld-Harrison full bearing
Gundiiiun isading To & cheorevicai zero ipsed whirl thieshold and continued
whirling at all speeds bayond, This condélusion is therefore confirmed, and so

the plain cylindrical bearing, operated vertically is sn inharsntly unstavle
bearing. With the modified besring locus, Figure 5.12, the radial force component
at gerc sccentricity has & finite value, und hence the rotor motion is stable

at merc speed and beyond, up to the whirl threshold. The thaoratical analysis
given agrecs with Poritsky's result, and predicts a whirl threshold speed

e 2VE

for the rigid rotor, the numerical value of which :ldged from 2260 rpm to 2910

s SR S e IR vt B e SR Sonun IR s Y e

rpm, and was between 2400 rpm and 2600 rpm £fon the slope of the eccentricity
locus at the origin.. Experimental whirl threshold speed was 2700 rpm. Whirl
frequency was slightly less than 1/2 Q. Thase experiments confirmed the

Poritlky hypo:hclii that i stabilising radial force axisted in the fluild film,

and _ndicaced that where this was absent, or vanished, the rotor became un~-
stable and whirled at approximately half rotational speed.

 attnie B st N vos |

The need for data on the dynamic properties of bsarings was met by Hagg end

e

Sankey as noted previously, and by Sternlicht (Ref.74) who applied the digital
computer to the calculation of the spring and damping coefficiants kxx k

K kR _,¢ e ¢ ¢
Yy YR KX Xy yy yx
incompressible lubricant, recognizing that the motion of the journal center was

Ry
of & plain cylindrical bearing for the case of an

T

governed by the equations:

" . |

mﬁ L W kyxy + cyxy + G cos (Wt + 9)

my = k x + € X + kK y +c ¥ +Gsin (@t +#) (5.29)
yX yR Yy Yy

where G i{s a rotating force applied to the rigid rotor. 1In previocus analyses

[N ST

the cross-coupled damping terms had been neglected. Sterrlicht solved the

Reyaolds' equation using a finite-diffarence procedure, for a finite-length

besring, and gave curves showing the variation of the dynamic coefficients as

functions of eccentricity € and L/D ratio., Both stiffness and damping incresse

———t

with increase in eccentricity end L/D. The direct damping coefficients were

chown to be of magnitude comparable to the bearing clastic forces, while the

cross-coupling camping terms were small.

The application of the computer to problems of rotor-beariug dynamics has since
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made possible the solution of many other cases of incompressible and compressi-
ble lubrication which are {nsoluble in closed f{orm. It has also led to the
davelopmant of several sophisticated analytical approaches such as the Galarkin
and linearized ph methods which are capadble of solving tha stability probleam

at high eccentricity ratios which would invclvi sn {ampractical amount of com-
puting time by standard finite-differance procedures. The incompressible
dynamic proparties of the cylindrical, 4-axial-groove, elliptical and thraee-
lobe besrings have been computed by Starnlicht (Ref.74); the 150 degree partial
arc bearing has Lesn computed by Warner; and the tilting pad bearing has been
analyzed and calculated by Lund (Ref.8l1). Properties of the cylindrical bearing
and the tilting pad bearing in the turbulent range have been obdtained by Orcute,

‘Ng and Arwas (Ref. 15and 16).

In the same period as the above development took place, a number of other
experimental studies wers carriad out in an attempt to clarify knowledge on
hydrodynsmic whirling of rigid and alastic rotors. The non-whirling bearing
developed bj Newkirk qhd Grobel (Ref. 56) suppressed rotor vibrations by
inducing pressure build-up within thecavitatsd zone of the bearing, thus
preloading the journal and forcing it to run at a higher eccentricity within
the bearing. This work provided a cure for a specific application, but
revealed little new informstion about the nature of the problem. A more
complete study of the parameters involved in rotor whirling was undertaken
by Newkirk and Lewis (Ref.108). With three rotors and five bearings tasts
ware run with oil at various viscosities to determine conditions defining

a ringe of stable operation with cylindrical bearings at speeds above twice
critical, It was concludad that short bearings, rather largs clearance
ratios and mcderate unit bearing loads favor a wide range of stable opera-
tion. In certain instances, this may extend up to more than five times
critical speed. Slight misalignment resulted in a remarkable increase in
the stable range. The stable range was never clearly defined with the
rotors and test conditions considered, since & jar would cause the severe
disturbance to build up at a lowsr speed in most instances. Tn a aubsequent
paper, Newkirk (Ref. 109) reviewed results obtained earlier with a flexible
rotor carrying a heavy central disk midway between {ts bearings, with a unit
bearing load of 42.5 pai, aud a lowest critical speed (presumably for the
syatem) of 121C RPM, Within the speed range 2300 to 5000 RPM the rotor whirl
with a frequency arcund 1250 RPM. The severity of the whirl increased with
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increasing speed., This result was comparad with results obtained with a vary
stiff rotor for which there was no discevnible (bending) critical speed up to
30,000 RPM, The unit bearing load was about 4 psi. This shaft whirled at low
speeads with & frequency slightly less than one-half the running speed. It was
also noted thst ths whirl died out et higher speeds, varying from 7000 RPM tc
18,000 RPM, Low viscosity oil gave the higher limic., Newkirk conciuded
corractly that rotor flexibility was the key factor in explaining why tho per-
formance of these two machines was so different. He observed that ths first
rotor whirling was a resonant condition., This was true resonant whipping.
However, the conclusion that the motion of the stiffer rotor is 'non-resonant’
is not precise. The low unit loading corresponds to a low eccentricity ratio
which would induce a rigid body whirl within tha bearings at low speed. This
is the rigid body instability corresponding to resonant whipping and is induced
by the rotor speed axceeding twice the critical spead of the rigid rotor 4in
elastic bearings. It may, therefors, bea compared with the investigation made
by Sternlicht (Ref,103) for a vertical rotor.

Pinkus (Refs.ll andll2) conducted an sxperimental study of two rotors having
relatively light bearing losds (23,4 psi and 8 psi respectively) and reasonably
high critical speeds (4000 and 5100 RPM respeactively), The cbjective was to
compare the relative stability of several bearings and included plain
cylindrical bearings, axial groove bearings, elliptical bearings, 'pressurs’
bearings, three-lobe bearings, tilting pad bearings, and hydraulically loaded
bearings. Hs cbaserved that the cylindrical bearings were least stable and the
hydraulically loadad besiings wers most stable and that with sufficiently high
hydraulic pressure, all whipping can be suppressed. Amplituda-spsed results
obtained in this investigazicn are shown {n Figure 5,13, With the more flexiblae
shafc, tha {nitial amplitude peak corresponds to the rotor unbalance whirl,.
Resonant whipping ssts in at approximately 1.6 times the system bending critical
speed, persists with a whirl frequency equal to the critical speed, and tends to
disappear around 3.5 times critical speed, The large amplitude build-up irn that
zore is tha second system bending critical speed. The stiffer shaft shows an
unbalance whirl peak followed by a sterdy build-up tc Zull whipping amplitude
around three times the system bending critical speed, with no tendency for the
whirl to diminish in this case, up te tour times the banding critical, The shaft

resonant whipping frequency was the syst~m bending critical speed throughout,
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Any sub-critical vhirling {s due to rotor unbalance, occurring at synchronous 5
speed. In this investigation the rotor flexibility is the predominant factor in
deilermining tile nuituie and pusition vi (he resvnant wioipping. Ao rigid powy
modes were detected, probably because the bearing stiffnsss was high compared
with rotor stiffness. Thus, thes bearings contribute little to determining the
location of the whirl threshold spaed, but the type of bearing used determines
whetheyr whipping will appear or not.- Pinkus also noted that higher viscosity
oils tended to eliminate whipping. Other investigators (notably Newkirk and
lewis), found the reverse. It seems that both results could be correct as the
Sommerfeld Number and the spring and damping properties are the real parameters
to be considered. It was confirmed that reduced oil flow eliminates whipping.
This induces long operating viscosity, as does a higher clearance bearing which
also diminishes the tendancy to whirl. Lawis and Pulton (Ref.112) considered
flexible rotors and confirmed the higher damping of s more viscous oil in this
case, but not the disappearance of whipping at 3.6 times critical speed.
Instability alvays occurred at approximately twice critical speed.” This is =~
probably due to near-constant bearing stiffness proparties in this instanca.
Newvkirk (Ref. 58) surveyed the available information on journli bnlfing in-
stability at that time, and compared the Pinkus and Lewis-Fulton results. The
conclusions drawn by him are valid, except that half-frequency whirl and resonant
whipping are both instability phenomena of which resonant whipping {3 sustained
at the system bending critical speed with flexible fotorn because of the inherent
tendency for the system to whirl at this speed. The doubtful suggestion regarding
half-frequency whirl being damped, and resonaut whipping being stimulated by
higher oil viscosity is opposed to Pinkus' result. Purther investigation would
be needed to clarify the situation regarding the effect of oil temperature on
rotor bearing stability.

The need for accurate data to predict the performance of higher speed gas bear-
ings led to a large number of investigations on the stability of rotors on com-
pressible fluid films. In this case, the lubricant film is continuous (no
cavitation), but the compressible Reynolds' equation is non-linear. Static
properties for the cylindrical bearing were obtained by Ausman (Refs.l13 andll4)
firat by a perturbation technique applicable to small eccentricities, and sec-
ondly by the 'linearized ph' method which allowed larger ‘eccentricities to be
considered. Elrod and Burgdorfer (Ref.ll5) refined the perturbation method by
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using an end-flow factor. Raimondi and Boyd (Ref.116) and Sternlicht (Ref.1l7)
used a numarical finite d{fferenra re’hod and cbtained an iterative solution.

e s~
aslam

PFECach has iis suveuisges cthat (1) cthe i1cerations can be continued to give
results of any desired accuracy, and (2) the {terative program is directly appli-
cable to bearing geometries other than plain cylindrical. On the other hand, the
computing time required to do this is considerabla, Each of these methods has

given results for load cipacity, eccentricity, attitude angle, and friction

force.

The limiting factor in the use of gas bearirgs in high speed applications is half-
frequency whirl stability of the journal with the bearing. In most applications
the whirl threshold speed represents an upper limit for speed at which the rotor
may be operated, as half-frequency whirl, once established, rapidly leads to
failure of the bearing by seizure, In order to predict the whirl threshold

spced, data on the dynamic bearing properties is rcquirad.A'Thii data is needed

to prepace specific bearing designs, and to compare the suitability of one bearin

typeé with another, for a given application. Sterulicht (Ref.1ll7) analysed the

¢ylindrical bearing using a '"quasi-static" method of solution which was an exten-
sion of the numerical fini<e-difference method employed in Ref. (117). The

compregsible Reynolds equation for dynamic locading and isothermsl conditions is:

Sl Rlen® H[w8]-0u s [§ Moo

The last term on the right-hand side of this equation comes from the continuity
equation and represents the non-steady flow term. Sternlicht's analysis neglects
this term on the grounds that it exerts little effect on the phase angle between
r:storing force and displacement, and its inclusion greatly complicates the
analysis by introducing another parameter for evaluation. The fluid-film force
is a function of five parameters: ¢, e¢', L/D, A and @', where ¢' is the time-
derivative of eccentricity, and Q' is the dimensionless tangential velocity
(&/w). Results were obtained for the dimensionless force derivatives

(Qfr/de), (dft/de¢), (Ofr/de') and (Jft/de') with respect ro displacement and
velocity for ranges of ¢, L/D and A
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The time-dependent term (dp/dt) requires that the rotor dynamic motion be con-
sidered in any rigorous solution to this equation. Sternlicht's quasi-static
analysis neglects this term thus uncoupling the lubrication equation from the
rotor equations. A method for uncoupling these equations without ignoring the
time-dependent effects has been given by Pan (Ref. 119 by assuming that the time-
dependence of p originates from the rotor motion. By supposing that the steady
state Reynolds"équation has already been solved such that for each L/D and

steady-state film thickness Ho:

Po = Po (&, 6, €, f¥x) £, 0: dimensionless rotating coordinates
The time-dependent effects may be considered by a linear perturbation upon Po

and H , thus:
o
P (8,7 = P (E,8) + P' (§ 0, 1) 7: dimensionless time
H( 0,7 = H (§ 8 + H' (§ 6,7

This formulation expresses the dynamic fluid-film pressure as a linear expansion
with respect to the radial squeeze-film velocity and the angular whirl accelera-
tion and their time derivatives. Charts of these forces vs /¥ accompany this
work suitable for calculation of dynamic bearing performance and rotor dynamic

analysis.

The general problem of stability of rotors in bearings was investigated by
Sternlicht, Poritsky and Arwas (Ref.120). Staréing from the assumption that the
hydrodynamic bearing forces are functions of the pusition and velocity vectors
of the shaft center, and by treating these forces as constant during a small
displacement, these authors obtained stability criteria in terms of the force
derivatives with respect to displacement and velocity for small amplitude
motions about an equilibrium operation position. The method developed applies
to both compressible and incompressible lubricants for any bearing type for
which the force derivatives are available. Both rigid and flexible rotors

were considered. For small motions, the radial and tangential forces and their
derivatives were obtained as functions of €, €' and L/D. The determinantal

equation of motion was obtained and examined for conditions under which the
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complex frequency v is & pure imaginary number. This indicates a change from

a negative (stable) exponent to posftive (unstable) exponent {n the rotor
amplitude, . This analysis is given in the followine section an Srahiliry

of Small Motions. Equating the real part and the {maginary part of the stability
deterainant {n turn to zer0 allows the threshold speed ratio § = uiq% to be
obtained, where w, is the critical speed of the simple-supported rotor. Tabu-
lated data for the incompressible case in terms of eccentricity ratio, plain
bearings and whirl speed ratio is given. This {s shown in Teble 5.0l . The
whirl speed ratio is shownalm in Tble $.01. A procedure for examining the shaft
center locus for large displacement motions of a massless rotor is also included,

together with experimental verification of the small motion stability theory,

Rentzepis and Sternlicht (Ref.121.) investigated the conditions under which the
center of a rigid rotor will remain undisplaced from the equilibrium position,
during shaft rotation, To determine the stability bounds, che variational
equations of motion were used, These equations are obtalned by subttituting
for the dependent variables radial displacement u and angular position & of the
shaft center the terms (50 + 8u) and (@o + 88), to obtain theiviriqtiénil '
equation of motion. If the motion of the shaft center in rotating coordinates
is governed by

oel? i [(E < BY) + 10260 + £ 9) ] et? (5.30)

vhere

¢ = ¢ [f, é, ¢, ;, w ]
The variational equations of motion are:
mdu - oy Bu - (9, +mé "By - (0, + 2064 )b
+ (°q + W cos Oh)bo = @Ew & (5.31)
(me, - 0 D8 + (&, - 0 )y + mE B + (2af - IRLY
- (o€ + w sin oo)bo - oﬂwbw (5.32)
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These equations are linear, and using data from the known ''equilibrium' case,
the equations may be solved for the variational displacements du and 5¢. The
stability regions bounded by families of load-carrying capacity and operating
eccentricity curves, as shown in Figure 5.14 , were obtained using the
Routh criterion for the quasi-static equilibrium case of a gas-lubricated
cylindrical bearing. They show that a minimum zone exists in the stability
curves corresponding amongst other things to the worst clearance ratio, at
which the stability is a minimum. This conclusion is supported by experimental
evidence; see Sternlicht and Winn (Refl22),. -

Castelli and Elrod (Ref.123) performed an analysis in which the equation of
motion for the rigid rotor and the compressible Reynolds' equation including
time-dependent effects were simultaneously integrated on a digital computer to
determine the rotor orbital path. The stability or instability of particular
cases were established from the growth, stabilization or decay of the _orbit.
With assumed initial conditions for both the rotor mction and the fluid-£film
pressure, the influence of incremental displacements on the rotor equations and
then on the fluid~film properties were calculated to provide data for the next
incremental change. The bearing considered was an infinitely long plain
cylindrical bearing, and the Elrod-Bergdorfer (Ref.115) data was used fcr the
equilibrium position about which the perturbations were initiated. This analy-
sis is the most complete solution yet attempted. It provides a basis against
which the efficacy of other methods may be evaluated, but for the infinite
bearing only. The monumental computational labor involved makes it unsuited
for general use. Comparison of this method with other theoretical results and

with experimental data is given by Pan and Sternlicht (Ref.124); see later.

Cheng and Trumpler (Ref.l125) employed Galerkin's method to solve the non-linear
Reynolds' equation with time-dependent effects included. This method reduces

the partial differential equation in [ph] to a set of first-order ordinary
differential equations which may be used quite readily with the dynamical
equations of rotor motion to examine the stability of the system. This was

done on an analog computer for the infinitely-long plain cylindrical bearing.
The results gave the threshold speed for instability for each equilibrium opefa-
tion position, and are presented in the form of a stability chart, Figure 5.15.
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In addition, approximate particular solutions for the non-linear dynamical
equations were obtained as trajectories of the journal center when it is
displaced arbitrarily from the equilibrium position. A significant advantage

of this technique lies in the generality of the results for the equilibrium
position which are formulated as a series with variable coefficients, particular
values of which may be obtained in many cases. By comparison, numerical results
give data for one case and set of conditions only in each calculation. This
technique was extended by Cheng and Pan (Ref. 126) to the case of finite plain
cylindrical bearings, but as indicated by Ng (Ref.127) the accuracy of approxi-
mation diminishes for certain combinations of A and L/D. Other bearing configura-
tions may also be investigated, for which a representative [ph] function can be
deduced. ‘A stability chart ' is given in Figure 5.16 and comparison with the

results of other theories is given in Figure 5.17.

Ausman (Ref.128) again used the linearized [ph] method to investigate the
stability of a rigid rotor in infinitely long plain cylindrical bearings. This
method has the advantage of simplicity without overlooking the ti-.c-dependent
effects of th2 fluid-film pressure, and so may also be used teo study other bearing
types, and more complex bearing-rotor systems. The analysis leads to a six
degree stability polynomial which may be solved for the complex eigenfrequency
0. The coupled linearized [ph] method was further applied by Ng (Ref.127) for
finite-length plain cylind.ical bearings. Due to the lengthwise pressure varia-
tion, the characteristic equation is transcendental in the eigenfrequency, and
the Routh-Hurwitzmethod may no longer be applied to determine the stability
threshold. The problem is to determine the whirl frequency ratio such that a
single mass parameter will satisfy both the real and imaginary parts of the
characteristic polynomial, for a given combination of compressibility number,
L/D ratio, and eccentricity ratio. An initial guess is made, and the approxima-
tion leads to a residual. The residual is then minimized. The results given
contain data on the stability threshold. Comparison with other analysis is
given in Figure 5.18, and with experimental results in Figure 5.19. A paper
devoted to comparison amongst analyses, and with experimental results was given

by Pan and Sternlicht (Ref.124).

An cxcellent set of experimental results for plain cylindrical bearings are

given in Sternlicht and Winn (Ref.122). These results confirmed the conclusion
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that a clearaﬂce exists for each bearing design which gives a minimum whirl
threshold speed.as predicted by Rentzepis and Sternlicht (Ref.121), and also
indicated that threshold speed increases with increase in rotor mass, and

almost lineariy with applied load. Another experimental investigation was mac-:
by Sternlicht and Winn (Ref.122) concernine the influence of bearing geometry

7.1 half-frequency whirl threshold and on load capacity and attitude angle,
Bearing types tested were: plain cylindrical with central orifice; axial groove
bearings; axial groove bearing with orifices. It is shown that both the nature
and angular position of the geometry change have a significant effect on the
whirl threshold. The paper mentions that the pressure of an orifice or groove
(correctly positioned) will raise the whirl threshold. This effect is then the
same as the non-whirling bearing of Newkirk and Grobel (Ref. 56). No comparison
between whirl threshold for plain bearings and for modified bearings is given.
Grooved bearings were also studied experimentally by Fisher, Cherubim and Fuller
(Ref.130) as part of a development for highly stable bearing types for turbo-
machinery systems. Static performance data, unbalance effects on rigid rotors,
whirl instability, bearing viscous damping, and pneumatic hammer, and orifice
effects were investigated for hydrostatic and hydrodynamic operation. Other
studies on grooved plain bearings by Whitley and Betts (Ref.131) also indicated
that whirl stability is improved by the pressures of a grbove, and that the
groove does not affect the load capacity. The effect of variation in transverse
inertia, L/D ratio, clearance and gas viscosity on conical whirl threshold was
determined éxperimentally. A basic experimental study of the whirling of a
plain unloaded cylindrical journal within the clearance of a vertical oil bearing
has been made by Bowman, Collingwood and Midgely (Refs.132 and134). Curves of
whirl threshold and growth are given in ﬁhe first report, and in the second the
stability characteristics of a full bearing which operates with Taylor vortex
flow were studied. It is claimed that the whirl threshold speed in the majority
of cases was many times the natural frequency of the shaft journal assembly.

In Ref. 132, this was determined experimentally, in air. Neglecting the contri-
bution of the fluid-film stiffness and damping at operating speed would readily
account for this difference. A considerable decrease in stability threshold
speed was found for operation with Taylor vortex flow. Static and dynamic
characteristics of plain cylindrical bearings in the turbulent range were
investigated by Arwas, Sternlicht and Wernick (Ref. 12). Load capacity,

attitude angle and fluid-film stiffness results are presented for the infinite
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bearing, co-rected for end leakage. Data on damping capacity are required
for accurate dynamic analyses of turbulent bearing systems. It was noted that
load-carrying capacity, radial stiffness, and power loss wcre higher with

turbulent flow than with laminar flow.

Synchronous Whirl

The unbalance response of a rigid rotor in gas bearings has received relatively
little attention. This problem is less important than the half-frequency whirl
problem as in most cases it can be eliminated by good balancing practice.
However, 'n applications such as certain centrifuges where machine operation
involves frequent reassembly after cleansing, good balance is difficult to
maintain, and synchronous whirling of the rotor in its bearings may then con-
stitute a problem. Sternlicht and Pan (Ref.134) considered the translatory
whirl of a vertical rotor in plain cylindrical bearings. Using the steady whirl
approximation and removing the time~dependence effect by coordinate transforma-
tion, the form of Reynolds' equation for this case ts then identical with the
static Reynolds' equation, when the compressibility member A is replaced by

_ . 2
mo= Aq-2

where ¢ is the angular speed of the whirl. Steady whirl analysis is then used
to deterriine the synchronous whirl motion. Both quasi-static and first-order
perturbation analyses lead to incorrect results in this application. For the

bearing geometry shown in Figure 5.20, the equations of dynamical equilibrium

are
2 oo s . 2
Fr = -m|® w cos(Pf-q) +wsin (B +e-e (&)
2
Ft = m [8 o sin(f-a) - & cos (B-q) + ey + 284 ] (5.33)
The fluid film forces in the radial and tangential directions are given by
L/2 2n
Fr = -f dz f Rp cos 6 d@
-L/2 o
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L/2 2n

Ft = [ dz f Rp sin 6 4@ e
-L/2 )

where p is determined by the generalized Reynolds' equation. Results indicating
the variation of attitude angle between fluid-film force and maximum film thickness
with A are given and are correlated with experimeatal results. The results

also show that the radial film force decreases to zero when the whirl frequency
is half-:ctational speed, even for a well balanced rotor. Half-frequency whirl,
being thus independent of rotor balance, may not be eliminated by good balancing
practice. This analysis neglects the damping properties of the gas film, and

so whirl orbit amplitude is not considered. This hus been done by Sterniicht
and Elwell (Ref.135). Steady whirl analysis is again employed, solving for the
case of dimcnsionless whirl velocity a' = (&/w) = 1.0 by a numerical iterative
procedure, with Reynolds' equation expr&ssed in finite difference form. Using
the curves of Figure 5.21 the amplitude an phase angle of a given rotating
unbalance may be calculated. A comparison between theoretical and experimental
results is given in Figure 5.22., The results confirm that plain cylindrical
bearings with good alignment are able to carry significant dynamic loads, and
that unbalance in a rotor leading to synchronous whirl tends to suppress half-

frequency whirl.

Hydrostatic Bearings

Rotating shafts are frequently supported in hydrostatic gas journal bearings

and where high spceds are involvad, the contribution of the hydrodynamic
pressures thus genercted must be evaluated where bearing stability is important.
The static properties of hydrostatic bearings have been studiéd by Heinrich
(Ref. 136), while Lund (Ref. 7 ), has considered both static and dynamic
performance of a hybrid bearing. The bearing considered is shown in Figure 2.13.
Additional load-carrying capacity is generated by harmonic vibrations of the
journal, i.e., by the squeeze-film effect. This is important in determining

the dynamiz stiffness for use in critical-speed and unbalance response calcula-
tions, and also for resonant frequency analyses of stationary machines. The
vibratory motions considered are around the concentric journal position, and is

either a pure translation or a pure rotation around the transverse axis. The
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Reynolds' equation is linearized by a first-order perturbation around ¢ = o,

and the resulting equations are solved numerically. Values of dimensicnless
load WD/P.(L + Ll) D¢ and dimensionless moment HD/PR(L + LI)DZ(R/C)Q are given
from which the correspording dynamic translatory and rotational stiffress may be

obtained., Sample curves are given in Figure 5,23 and 5, 24.

larson and Richardson (Ref. 13?) presented experimental data for the threshold
of whirl stability for a short unloaded rigid rotor in hydrostatic compensated
gas bearings. The effect of gupply pressure and radial clearance on stability
werce examined, An anelysis of rotor motions is given which leads to simple
stability criterion for the type of bearing studied. Whirl instabllity was
observed vhere the frequency of rotation of the shaft lay between two and six
times the lowest natural frequency of the rotor-bearing system. Gross (Ref.l38)
examined whirl in externally pressurized besrings, and gave some experimentsl
data for dynamic characteristic3 such as film stiffness and damping. Rotor
taplttudn opeed response up to the otcbility thrclhold are given. The form of
thele curvel differl from that obtained by Larnon and Richardson (Ref.137), as

- ~here no critical speed  eak is apparent. This may be due to bettar balancing

or to the onget of whirl occurring below the rotor-bearing critical speed.

A simple analysis for stability threshold speed is presented, and correlated
quite well with the experimentally-obtained threahold data. It was found that
the whirl path was usually stable, but the whirl amplitude incressed rapidly
with speed. The threshold for any given supply pressure occurred at about twice
the lowcst critical speed of the non-rbtctins system, for £ilm stiffness ¢t = o,
Factors which raised the threshold speed were increased pressurization, reduced
rotor mass, and to some extent, rotor unbalance., This latter effect has been
noted with hydrodynamic Learings, by Sternlicht (Ref.)134).

An extensive analytical and experimental study of hydrostatic gas bearing
stability has been made by Licht and Elrod (Ref.l140). Pressure variation with

time during the motion is assumed on a '"continuous"

rather than & 'lumped”
basis in an attempt to evaluate the squeeze-film effect arising from vibration
more accurately. Attention is giver to the bearing proportions which should be

optimized as follows for stability:
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Minimize: Pocket depth; difference between supply and recess pressure
Effective mass of bearing.
Maximize: Supply nozzle diameter; length of annulus; area ratio of

annular and pocket regions.

These results are in agreement with those of the analysis given in Section 8.
Other studies of stability in both rotating and non-rotating bearings have been
given by Roudebush (Ref.140), Licht, Fuller and Sternlicht (Ref.l42), and on
pneumatic hammer by Licht (Ref.l42) and by Fisher, Cherubim and Fuller (Ref.130).

Whirling of a Flexible Rotor in Fluid-Film Bearings

Much of the work described in the previous section contains commentary on
whirling of flexible rotors in fluid-film bearings, particularly where the
results are directed towards the condition known as resonant.whipping. “In
general, flexible rotors become unstable by resonant whipping above twice the
system critical speed in bending, whereas rigid rotors in flexib'le beariﬁg§~
become unstable in half-frequency whirl. 'The whirl frequency in resonant
whipping is constant and occurs at the é?;tem bending critical speed, whereas
half-frequency whirl occurs at somewhat less than half the rotational speed.
This may be observed in the experimental results given by Pinkus (Ref.l1ll)
and by Newkirk (Ref.109).

Hagg (Ref. 71) extended his simple criterion of rigid rotor whirl motiomns to
cover the influence of rotor flexibility. The analog results of Hagg and Warner
(Ref. 72) refer to the stability of fle#ible rotors. Poritsky (Ref.l104) con-
sidered the rotor flexibility in deriving his criterion for whirl threshold

speed

1+ k/Kl(aﬂ

1+ k/Kl(uB) (5.35)

w < 2&6
where k is the shaft stiffness {constant) and Kl(aD is the bearing radial
stiffness (speed dependent). Pinkus (Ref.1lll) considered two rotors in which
shaft flexibility significantly influenced rotor motions, and Newkirk (Ref.109)
concluded that rotor flexibility was the key factor in determining whether a

rotor would become unstable by resonant whipping or by half-frequency whirl.
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These papers have been discussed in detail in the previous section.

In gas bearings the rotor is customarily so rigid that the bearing stiffness
agsociated with the operating eccentricity determines the whirl threshold speed,
and leads to some type of fractional frequency whirl, depending on whether the
bearing is hyérostatic or hydrodynamic. In this instability, the amplitude
readily becomes dangerbusly large and safe operation beyond this threshold
speed is usually impossible. With liquid bearings half-frequency whirl may be
encountere< in lightly loaded bearings even where the shaft flexibitity is
comparable to the bearing flexibility. This effect was observed by Newkirk
(Ref.109). It does not necessarily coustitute a limiting condition for rotor
operation although failures of rotors in liquid film bearings due to half-
frequency whirl are not uncommon. The resonant whipping condition sets in at
speeds around twice the rotor critical speed. In certain instances speed
effects stiffen the bearings between critical speed and twice critical speed:
The resonant whip threshold speed will then be higher than twice critical speed.

Poritsky's work emphasizeé the need for data on the dynamié fluid-film forces
instability calculations. This data was first obtained for the plain
cylindrical bearing and then for other bearing types, as discussed previously.
With this data, and with the concurrent developments in computer applications
to rotor and bearing problems plus increased understanding of the overéll
\bfbblgm, it became possible to investigate the stability of much more complex
rotor-bégfingﬂsystems. The stability analysis of Sternlicht, Poritsky and
Arwae (Ref.120) applies to flexible-rotor, flexible-bearing systems,lbut for
a simple single-mass rotor. The results obtained are reproduced in Table 5.01.
No stability charts accompany this paper. Moreover, the formulation of the
stability equation in terms of force derivatives of velecity and displacement
is inconvenient for direct application to engineering calculégfbhhz-»quognizing
this, Lund (Ref. 35) elegantly reformulated the basic stability equations for
a two-mass rotor, following the analysis of Warner and Thoman (Ref. 33 ), in
terms of the bearing spring and damping coefficients. Later, Lund (Ref. 75 )
extended the two-mass rotor analysis to include the effect of pedestal mass,
stiffness, and damping. An extensive range of results and stability charts
are included with this work for gas bearing applications, although the analysis
itself is perfectly general and applies to both liquid and gas bearing systems.
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The analyses given in the -: parts of this section which follow are derived

from the above four papers.

Warner and Thoman (Ref. 33 ) included a stability chart with their analysis

of the rotor dynamic properties of a two-mass rotor in partial-arc bearings.
This was obtained by direct application of the Routh-Hurwitz criterion to the
basic equations of motion. This approach is equally applicable in any of the
other cases quoted above, but becomes extremely complex when the number of
variables in the system is large, or when the characteristic equation, resulting
from the solution to the equations of motion,1is of high order. In such
instances, it is usually more convenient to apply Poritsky's approach of
examining the nature of the time-exponent in the. solution to the equations of

motion. The application of this technique has been further discussed in the

section on Whirling of a Rigid Rotor, and is given in detail in the following

section.

The above analyses have led to a solution of the stability program in flexible
rotors which is direct and readily applied. The limitations of .this solution
are that it applies to small amplitude motions about an equilibrium position,
and not to large amplitude motions where the velocity and damping coefficients
are no longer constant and the motions are non-linear. In additiou, although
the analysis indicates when rotor whirl may be anticipated and the frequency

at which it will take place as yet it is not possible to determine whether the
whirl orbit of a rotor operating its stability threshold is either stable or
unstable. It is well known that rotors in liquid film bearings can be operated
at many times the system bending critical speed, under resonant whip conditions,
without failing the bearings. But at present, it is not possible to design

for safe operation in this condition, because data on the stability of the
whirl orbit is lacking. Castelli and Elrod (Ref. 123) studied the conditions
surrounding the growth or decay of a whirl orbit for a rigid rotor in gas
bearings, by a point-by-point amplitude solution for the coupled rotor and
bearing equations. As noted, the labor involved was enormous, and this method

is unsuited to general design practice. The equations of motion for large

amplitude whirl have been formulated by several investigators, Poritsky (Ref. 104)

Sternlicht, Poritsky and Arwas (Ref. 120) and others. More recently, the
st:ability of a-balanced flexible shaft in cylindrical journal bearings was
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studied by Someya (Ref.143) in which the non-linear terms were retained in the
equations of motion, The equations were then integrated numerically by the
Runge-Kutta method, for rotor amplitude whirl. The rotor was given an initial
displacement and the subsequent orbital motion of both rotor and journal were
obtained. The results showed that at speeda above twice critical some form of
'external' damping (assumed proportional to the velocity of the rotor center,
squaf;d) must exist. The practical source of this damping is not stated.
Results are given for the amplitude-speed growth of the whirl orbit below and
above the threshold of resonant whipping for a number of cases. The non-linear
calculation indicated that instability could exist above twice critical speed
even though the linear analysis predicted stable operation. The results
obtained by Huggins (Ref.107) for a rigid rotor in short bearings also included
the non-linear influences of the fluid-film. This analysis follows the work

of Jennings and Ocvirk (Ref.144) who employed an analog computer to study the
transient and steady-state whirl paths. This work revealed that where (a) a
stable whirl path was achieved the orbit ultimately obtained was independent of
the initial disturbance, (b) orbit size is not determined by the static
equilibrium positior, and (c) orbit size is significantly greater as the mass
of the rigid rotor is increased. Reddi and Trumpler (Réf.l&S also studied the
conditions surrounding orbit fdrmation and growth using a digital computer to
solve the equations. The Routh-Hurwitz criterion was used to investigate

stability.
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When a simple elastic rotor consisting of a singls balanced disk mounted cn @
shaft i{» operated in elastic, damped, fluid-film bearings, the rotor vhiril
motions are small until the threshold of stability of the rotor-bearing system
is exceeded, Let the rotor be operating initially with a jourmal ccceatricity
ratio, LI under a steady external load, such as gravity. This condition is
shown in Pigura 5.07. Por the steady load, the rad‘sl and tangantial fluid-
film forces on the journal are:

Fl' - - mfr (‘O’o)
rt - Mnft (co,o) ’ oo £5.38)
wvhere

2
A o= Eﬁ* (E)

Now let the journal be displaced a small distance d¢, da. The edditional forcas
which result from this displacement are d‘l’r and dF

e Since @ is constant,
ax, A, " ] B
dF, = ).Zdafr-m(-&-dc-#v&-rdc)
3, 2, ] :
dF, = A -2d4 £ +o (g- de + 5T de') (5.37)

where Do -
o' o, 3. 2,

i fe W W W
are avaluated at ¢ = € ¢ = 0.
In the x,y coordinates, X and Y are the additional forces resulting from the
displacement. Thesa forces are made up of the above force components in the

radial and tangential directions together with contributions from the directional
changes dg, given by
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F_da = af da
r T

!t Q- Au!t a«

The fr‘ tt are again evaluated at ‘o’ ¢ for the small displacement, Hence,

[ 2w, 3
X o= A |-of .28 & + oG de+oF )

-

. f of
- - - r J
Y N |eaf, 40 42 £ w&—ds+§$de) (5.38)

-

Writing the components of the small displacement in the x, y directions as ¢,
N, and msaguring @ from the y-axis, for small §, n there results

“'% &-—i—

dc' = ﬁé - e& & - L

The coordinate force expressions may therefora be written:

wf 2¢, of Jf,
- . - ta t 3
R R T S F I

(5.39)

wf 28 df df
- =t £ . £ . R 3
b A ‘o c + ‘o c Q)EEI ¢ -

[ <0

—

The equations of motion for the rotor-bearing system about the stable equilibrium
position may now be formed., From Pigure 5.25 these are

.

B X+5 =2 -kx
BT - ok
kx = =2X

ky = -2¢ (5.40)

where k is the shaft stiffness and m 1is the mass of the digk, The functions fr'
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fc sand their derivatives, with respect to ¢ snd ¢', are sll evalusted at
the equilibrium accentricity ratio, €, in keeping with the small oscillation
theory considered. The stability of any rotor-bsaring system may be deter-

mined from a knowledge of the steady-state operating eccentricity as follows:

Equations 5.40 are linear in the variables x, y, §, 0. PFor harmonic motions
the solution is of the form:

uT
e

in which v is a complex, and T = o t; @ k/a is the critical speed of
the rotor in rigid, undamped bearings. From the first two equations

X = - 3 ¢ y = 3 1 . (5.6‘;)

Substituting these values into the second pair of equations and introducing
the dimansionless ratio 8 = (deE), where @ is the rotor angular velocity at
the threshold of instability, leads to the stability determinant

3, ¢, ]
[Sfr +2vE + eo€] 8% *t Iy
2
mc af df = 0 (5.42)
[-stt + ZVEr] [s 521 + v 5;% + ¢
ia which
A = nk . (9.)3 = ...A.v_.z_
2ulo R 1+ v2

As @, % o for practical systems, this may now be divided out of Equation 5.42.

1f the system is to be stable, the real part of ¥ must be negative; con-
versally, for dynamic instability, the real part of q is positive. Thus, the
threshold of stability occurs whare V i{s & purs imaginary number. Taking

the imaginary part of Bquation 5.42, since V ¢ o, we have
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During the trivial sc ution § = o, for 8 ¢ o this gives:

\_.._J

[afr Bft] |’ £ o,
AR S R I
ot

(5.43)

7£t +

Similarly, taking the real part of Equation 5,42 snd considering non-trivial
solutions for S yields

. : 2 , of of
2 c(5)+[f+c ](5)+[:'+£'] -
Qg) - - $ : 3;1 ! IQEEE, ~£:§EE 7 (5.44)
of 3¢
2\t E;; - £ ]

But from Equation 5.43,
(vz-Av + § = o

Thus, for 8 ¥ o,

2 2 : '
2&HS - @ + 5 -0 (5.43)

The threshold of instability is defined through this quadratic since @, ® Bmc.
In order to calculate @p for any given system, the steady-state operating
sccentricity ratio € is firat obtained from static bearing design consideration,
and then the radial and tangential force components and their derivatives corres-
ponding to this eccentricity are determined for the particular bearing type
used. The curves given in Table 2.0l and Ref. (32) may be used for the cylin-
drical journal bearing. Data for the incompressible, partial-arc bearing has
been determined by Warner (Ref. 34). Tilting-pad journal bearing values have
been given by Hagg and Sankey (Ref. 73) (incompressible) and Lund (Ref. 81),
while the elliptical and four axial groove bearing coefficients have been ob-
tained by Lund and Sternlicht (Ref.32 )., Substitution of the appropriate
coefficients into Equation 5.45 then allows the instability threshold ratio, 8,
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to be determined,

The influence of fluid-film bearing stiffness on the critical speed of tha
simpie roCOr-Dearing system CONSLASIEd SDOVE MAY NOW DE GELErNMIREG, AS
bearing stiffness is a function of eccentricity ratio, it is tharefore also
speed-dependent for any given arrangement. The fluid-film stiffness ‘2 is
given by
< e B
‘2 d¢ (c (dt)

n

*

el

where ‘1 is the shaft stiffness. Recalling that for a flaxible rotor in
flexible bearings '

PPN e

< ° 1+K

where w iz the rigid-bearing critical lboﬁd [l.lll]

and X is the shaft. Bearing stiffness ratio [‘1/‘2]

Substitution leads to the expression

2 2 1

w = A ﬂ (5-‘06)
s ° 1 S/ds

or .
df

o, 2 G

(w ) = T Subscript r: radial stiffness
4] r A

& * 9

The dimensionless system number A is a function of bearing geometry, shaft
stiffness and fluid viscosity. Stability properties have beap examined for
rotor-bearing systems with values of A within the range 0.1 to fOO‘ at operating
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eccentricities betvean 0.1 and 0.8, for zylindrical bearing Qg) rations 0.3

and 1.0. The results are given i{n Table 5.01. The results ﬁ}'indtcatc that
c
for low eccentricities instability sats in at spproximately twice the critical

speed, but that the threshcld of instability occurs at higher values for higher
eccentricity ratics. This conclusion is supported by date obtained on setual
machines and by experiments, and discussed {n the literature review of the
previous section. The whirl fragquency ratio cg) is also listed in Table 5.01.
This is the frequency with which the rotor whirls about ths static equilibrium
position at the thrashold of instability, expressed as a fraction of the thres-
hold speed, ratio: 8§, vhich 1« related to the rigid bearing critical speed @

system

o,
This value is always below 0.5, and {s independent of A. The ratio ;S \

St

critical speed: riygid bLeasing critical speed , has also besn calculated for the :

above casas, illustrating the significance of Bulring tllxibiii:y in system
motions, .

When the instability threshold has been passed, ths whirl amplitudas of the
rotor incresss rapidly until the whirl :rdqucncy coincides with ;ho,nl:&rll 7\

' frcquoncy of the system, This resonance usually gives rise to whirl aaplitudés \

which are of such violence that continued oparation at or bayond this resonant
speed is impossible without demaging the bearings, or even the rotor itself.
With liquid-bearing machines, this condition is referred to as resonsnt whipping
and the rotor flexibility contributes to the overall motion. . In the éllc of
gas-bearings, the term critical half-frequency whirl is used although the whirl
frequency is more frequently some fraction less than one-half the spscd of ro-

tation, "\

The equations developed above to determine tha threshold of stability no longer
apply when the amplitude of motion becomes large. The analysis of motions which
are not restricted to small displacements from the steady-stete equilibrium
position has been discussed for the simple balanced flexible rotor by Poritsky
(Raf, 104), Sternlicht, Poritsky and Arwas (Ref.120), Huggins (Ref.107), Someya
(Ref. 143), and othars.
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" The influence of unbalance on tha atabilitv threshold is a quastion of considarable

with masses a distance £L apart as shown. In this imvestigation), the baaring

Btability of & Two-Mags Rotor with Upbalagce

practical importance, as all practical retors operate with some degres of un-
balance, and «ll are subjected to transient-initlietsd displacémeuts awdy from
their opsrating equilibrium positions. Also, whera the normal operatin~ speed
is beyond the first system critical speed, some knowledge of ths influence of
higher harmonic motions on the stability threshold is desirable,

Both questions may be examined by considering the flexible, unbalanced two-mass
rotor shown in Pigure 3.29, which operates in damped, alastic fluid-f1{lm bearings

properties are represented by esight spring and danping ooofftchnto. Iﬁrﬁid-ln s
similar manner to the bearing properties of the previous ssction such that: .

P,om KXo Ky-Cok-Co¥. T

- = - - . S 7 7 ”‘_; . 5.7 :
!y xyxx xyrv cyx* cyy’ T é:t;’_?ttr:

Values of the coefficients are given in Table 2,01 for the .
cylindrical bearing, elliptical bearing, and four-axial groove bearing.

Curves for tilting-pad bearings have bean given by Hagg an;d 'Slﬁhﬁ: (Ref.73)

and by Lund (Ref.81 ). The displacemsnt geometry disgram for this system, _
which makes use of this formulation is shown in Pigure 3.29. The following
analysis is general and applies to both liquid and gas bearings. Tha equations
of motion are:

2
%, d1+x1-5x2 = ), s sinwt

KXy + Rug¥a * Coky + C 9y = 511 [x1 . gxz]

¢

() z
Gy ™y Y-8y = @) waw coswt

5 -
nyxz + Kyyyz + nyﬁz + CW92 - all [yi &yz]

207




In these esquations the shaft influence coefficients are wrilten:
j(a“ + %) \ 1st mode
a -

il
l(a.. - a.b) l 2nd mode (5.48)

vhare G‘. is the deflection at a due to a unit force at a, for simple supports and
anb 1s the deflection at & dus to a unit force at b, for simple supports. Also,

1 1st mode
£ 2nd mode

Let X)r X3 ¥y and Y, be complex displacementa, From the general solution to
Bguations 5.47(s) and 5.4 7(0):

X w2
§GH -1

5.
2

1-(‘-3:)
Y 2

. EGH - 1@

2 . —t (5.49)
1- &)

where
2 . L
wc - X

Substitute these expraessions into Bquations 5.47(b) and 5.47(d) to make 32 and Y,
the unknown variables. Make the resulting equations dimensionless by intro-
ducing the parametor groupings:

CKxx Qut
Kx - W wa - v
CK Qe

-K- » ——n U-;é - —xJ
b3 w x W
CK Cuwe

X = C X
Ky ’sz amy - W
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oy

k
\
3

¢
b
K = o_ =
y W y
@ 2
and 2 (mc)
"Wy 2
1- &
c
Thus:
- - X, ( 45
[xx SR+ chx] [—xx + wcx] 2 ] -1 | |
- & , L (5.51) b
10C 10C Y2 '1 REEEE SRS I
X+ K -x + . : o -
y v |y y |) & S SRS
The solution &' corresponds to small harmonic motions of the rotor whers v
is the conplex eigenvalue and t = w.t, cncz = # . Substituting and R
writing V 11 »
Lo R
P e b L (5.52)
11 1+(s7) '
vhere y = (¥/w) and & = (cn/wc) leads to the following stability determinant.
[Xx+n+7wcx] [-xx+7mcx] _
X+ K, +7%+ 3
[v "”Cr] [y " ’"’CY]
As in the case of the simple rotor, the motion is stable when the roota of ,
the determinant are negative, and unstable for positive roots. The thras-. E;';‘l
hold of stability is defined where the roots, Vv, are purcly imaginary. This :",
leaves x real., For non-trivial solutions, equating both the real parts &nd *x’
the imaginery perts to zero yields ‘
+xc| - [RoS +F 0t | 5
. kR wc +& . c] [xx 0T +% o cx] (5.5 4
wl + wC ) .
x y 3
N
209 =




. . [&¢?] ['..!+T:1 -S_i!

' ’ - -
of_oC_-of_ o C_
~ J ~ J

(5.55)

Substitveing 5. %4 into $.5% gives 7, thus definizg ths sigeniregusncy, ¥, 15 2
fractiocn of the rotor speed. Introducing y and ® int> Bquation 5.32 then gives

s, the rotor spesd at the onset of stabilit expressad as a fraction of the mtd'

body critical spaed.

Warner and Thoman (Ref. 33 ) give a curve vhereby the atability threshold may be

determined from the oparating e¢ccentricity ratio, and the rotor n:i.ffpcn para-

aster [f_u.] , where £ = 1 (fundamental mode), | o T
[+

Lund (Ref, 75) has further extended the above analysis by investigating stability

of an elastic rotor carried in demped, elastic, massive pedestals. The stahility

of & rotor in gas bearings hac been examined in detail. A D
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(1)
Y/

Highly stable unbalance -
whirl

Unstable whirl with
growing radius.
Coulomb friction
whirl o > W, -

Fig. 5.01

(z
N

' Stable with decaying

transient arising ‘from
blow... Unbalance.whirl
or stable bearing.-

V.

Stable orbit, small
whirl radius. Unstable
whirl, large radius.
Horizontal journal
bearing.

Rotation. Stable whirling
with sustained transient.
Gyroscopic whirl with
friction.

Unstable orbit with
growing radius and
steady backward whirl,
Gyroscopic whirl with
unbalance at @ = w, -

Stable and Unstable Rotor Whirl Orbits
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(b) Rotating shaft with .tangential whirl-suppressing force

Figure 5.03
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(a) Non-uniform contact pressure along length
of joint leads to slip at ends. Sharp
rise in contact pressure at edge promotes
fretting corrosion and fatigue cracking.

(b) Short contact areas give uniform mounting
pressure. Fretting corrosion and fatigue
still significant; contact pressures may
_be higher than Case (a). "

(c) Short contact areas and decreased edge

stress concentration. Minimum coulomb

~ -

Fig. 5.04

777777

slippage and fatigue hazard.

Methods of Mounting Rotor Components and Associated Problems
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(a) Shaft Cross Section With Differing Principal Moments of Inertia

(b) Geometry of Shaft Displacement in £, 7 Rotating Axes

Fig. 5.05

Section of Rotor with Unsymmetrical Stiffness
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(aijbtating<unloaded vertical (b) Rotating unloaded vertical shaft
shaft in undisplaced position in displaced position with whirl-
inducing force
\
Fig. 5.06 Forces Acting on Vertical Rotor .
in Hydrodynamic Whirl o
*
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yasl Vg \ /
/
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(a) Rotating loaded horizontal oo \-_(b) Rotating loaded horizontal
shaft. Equalibrium position. ..., = . shaft in displaced position
. with additional force com-

ponents.

Fig. 5.07 Force on Horizontal Rotor
in Hydrodynamic Whirl
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Fig. 5.08 Whirling Journal in Full Bearing
Continuity Condition
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Fig. 5.09

Stability Chart.

Flexible Rotor in Fluid-Film Bearing

Reprinted from OIL WIDTH OF FLEXIBLE ROTORS, Figure 1,
by A.C. Haag and P.C. Warner for the ASME, Vol. 75,
October 1953, pp. 1339-1344.
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"Fig. 5.10 Whirl Oscillogram Showing (a) Well-Developed.Whirl and
(b) Transition from Whirl to Steble Running with De-
creaaing Speed

Reprinted from OIL WIDTH Ol? FLEXIBLE ROTORS, Figure 4,

by A.C. Haag and P.C. Warner for the ASME, Vol. 75,
October 1953, pp. 1339-1344, )
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Fig. 5.11 Modified Bearing Force Eccentricity Curve
Reprinted frorm INVESTIGATION OF TRANSLATORY FLUID WHIRL

IN VERTICAL MACHINES, Figure 12, by G.F. Boeker and
B. Sternlicht for the ASME, Vol. 78, No. 1, January 1956.
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Fig. 5.12

LATORY FLUID WHIRL

Reprinted from INVESTIGATION OF TRANS

IN VERTICAL MACHINES, Figure 14, by G.F. Boeker and -’

B. Sternlicht for the ASME, Vol. 78, No. 1, January 1956.
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Reprinted from ON THE STABILITY OF ROTORS IN CYLINDRICAL

JOURNAL BRARINGS, Figure 12, by G.M. Rentsepis and
B. Sternlicht for the Journal of Basic Engineering,

December 1962,
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Reprinted from STABILITY ANALYSIS OF GAS-LUBRICAIED,
SELP-ACTING, PLAIN, CYLINDRICAL, JOUBRNAL BEARINGS

OF FINITE LENGTH, USING GALERKIN'S METHOD, Figure 7,
by H.,S. Cheng and C,H.T, Pan, ASME Paper No. 64-LubS-5.
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E\;{erimnnl Results.

Reprinted from STABILITY ANALYSIS OF GAS-LUBRICATED,
SELF-ACTING, PLAIN, CYLINDRICAL, JOURNAL BRARINGS

OF FINITE LENGTH, USING GALERKIN'S METHOD, Figure 12,
by H.S. Cheng and C,H.T, Pan, ASME Paper No, 64-LubS-5.
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Finite Bearing.

Reprinted from LINEARIZED PH STABILITY THEORY FOR FINITE
LENGTH, SELF-ACTING, GAS-LUBRICATRD, PLAIN JOURNAL
BEARINGS, Figure 12, by Chung-Wah Ng, ASME Paper

No. 64-LubS-28.
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Reprinted from LINEARIZED PH STABILITY THEORY FOR FINITX
LENGTH, SELF-ACTING, GAS-LUBRICATED, PLAIN JOURNAL BEARINGS,

Figure 13, by Chung-Wah Ng,
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Threshold of 139}

Rotor 8u d
v/8 s
3756 2.6096
3538 2.8104
2354 4,238
3756 0.06678
3538 0.2533
2354 1.9267
37 2.6763
37 2.7224
29 3.4179
23 4.5169
.37 0.1951
.37 0.3198
.29 1,6553
.22 3.1199

Beacing eccentricity

Theecian

(ﬁc)r/cuc

0.9452

0.9974
0.9998

0.02910
0.1315
0.7751

0.9948
0.9971
0.9998
0.9999

0.0834
0.1390
0.7000
0.899¢8

Rotor parameter (ka3/2uLR3u%)

whirl frequency

Whirl threshold speed
Rigid bearing critical speed [i/n] 1/2

Rotor-bearing critical speed

nV(a%)'

2.6488

2.17
4,246

2.2948
1.9262
2.4857

2.6903
2.7303
3.41%6
“.5173

2.3420
2.300

2.3647
3.4673

Resonant whip speed ratio, rigid bearings w/u%
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Introduction

It is common for modera high-speed machines to operate beyond their fundsmentsl
#lexural critical apeed. Prequently, the cperating speed range contains several
critical speeds, each of which must be passed through on run-up and run-dowm.
The increased rotor amplitude and transmitted bearing force associsted with

each critical speed raise the question: What are the conditions which make it

safe for a rotor to pass through the critical speeds?

It has been shown in Section 3 that the motion which follows start-up in a simple
rotor-bearing system consists of a steady-state, synchronous, unbalance whirl
together with two transient whirls whose value depends on the {nitial conditicns
of the motion. In practical systems these transients are damped out by the
rotor friction within relatively few cycles. In Section 3, the important fea-
tures of the steady whirl motion are discussed. This chapter considers the
state of motion which develops when the rotor speed is not constant, but is
accelerating. In this condition, the transient whirls are sustained by the
changing speed, and so form part of the solution which has practical interest.
Of primary concern is how the rotor performance is influenced by the interactionm
between the accelerated motion, the sustained transient whirls, and the critical

speed amplitude buildup.

Flexible Undamped Rotor in Rigid Bearings

For simplicity, the simple, single-disk rotor without damping, mounted in rigid

bearings, will be considered initially to dctermine the basic properties of the
motion. The rotor whirl configuration is shown in Figure 6.01. The angle
swept out by the rotor as its speed changes 1is given by

o=t ar’ (6.01)

where Wy is the initial angular velocZty, and 2G is the angular acceleration,

assumed constant. Differentiating gives the instantaneous angular velocity

o= w + 20t
o 1
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Considering ths motion of tha disk, the coordinate equations for thé c.g. sre

X, =X+ acos ¢ =x + acos [mot_-l_'cxtz]

G
y'c-’y+¢|1n ¢=y + asin [mcc-_hatzl (6.03)
The equations of motion for the accslerated system are therefore:
ux . + kxc = k. cos [mot + Clt:Z]
m'yc + kyc - k. sin [u)ot + a:z]

2a1 + ka [x sin (at + at?) - y cos (wt # Gtz)] =T (6.03)

The solution to these equations is influenced by the initial conditions which
exist prior to the application of the accelerating torqus. The first two equa-
tions may be solved separately as the rotational motion of the disk is specified,
and the third equation gives the acceleration torque once the coordinate values

are known..

Por the case vhere the disk is whirling steadily at constant angular velocity,

f w, prior to the application ¢f accelerating torque at time t = 0, the initial
i conditions are:
' For t <0,
| X, = L cos wt y -——L—z sin wt
\ ¢ e G 1—(5&-)
; w w
‘ o ()
!
; PR | sin wt C A cos wt

hEt EE

w w
o o
‘ For t = 0
i - a -
; xG(O) e yG(O) 0
| %o

[d - : - N ‘.
: %g(0) = 0 RO 1-(‘”— (6.04)
: W

o
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With these initial conditions, the gensral solution to Rquaticons (6.03) has the
form

’

X, = an, j‘g ein @, (t=7) cos (uwr + Qtz) dt + —-‘—1 cos w t

l.!%) - €6.05)

= t - 2' ("'
Yo * &, fo sin @, (t-7) oin (wr +0¢7) 47 +m° :-(i—)-z sin ot
w
[+]

Bquations (6.05) may be integrated to give the amplitudes x of the c.g. a8

¢' V¢
the rotor responds to the accelerating torque, T. However, for stress calcula-
tions it is convenient to obtain the sclution directly in terms of coordinates

EG’ g vhich rotate along with the shaft at speed ¢, The transformation formulas

are:
fG = x, cos ¢ +y, sin ¢

nG""xG sin ¢ + g cos ¢ (6.06)

Substituting Equations (6.05) into (6.06) simplifying, and integrating gives

the following expressions for EG’ g after considerable manipulation:

fG - an [—g—a]* + sin z [C(z) - C(:o)] + cos z [8(!) - 3(20)]

o

+ sin gt [C(:l) - C(zol)'] ¥ cos x! [8('11) - 'S(lol)]

+—2 2 [;cos wt . cos (ut * ac?) +% sin w t . sin (at % atz)]
Mo °
CL)O

e = W, [E;—]é {- cos & [C(z)'- C(zo)] - sinzt [S(z) - S(zo)]

+ cos z' [C(z') - C(:o')] + sing' [S(!') - 3(20')]

iaa

il Bl e Bl




NN P = N VY %F am 1~ T WGP

LSBT 1 Y K W Sl g

PETAIER T SRR PN

+—2-2 [Jeosapt - otn (e 4 at?) + & gtn gt - con (@ 3 mD)

1 . o .
wo (‘.07)
woners
r ow 32 o> ® 2
z a5 .‘ ¢ [z a }
L J
i ww T2 b 2
g Lc;-r * 35 ] o' [a-r * 715 ]
g akw_ ]2 arho 2
LI ——-—O- - -—-—2
Z Lc:n: + 7S ] z°‘ [ 73 ] (6.08)

and

[¢]

8(z) - 8(z) = f: 'f:O

c) ot = Jy SRS - gl sl L gl
!"axago ) ade zolﬁé‘_’

(6.09)
are the Fresnel integrals of the above variable groups which arise in tha
derivation of the expressions for €G and g

Equations (6.09) allow the deflections of single-disk rotor in rigid baarings
to be calculated during any stage of its motion: with velocity below, at, or
above the critical speed, W, and either accelerating or decelarating. The
£ axis is in the plane of the unbalance; but even though the system ia
frictionless, the whirl radius is no longer a straight line due to the

acceleration. Its maximum value may be found from the coordinates of G:

r, = [§G2+ QGZ]J’ = [x62+ycz] ¥ (6.10)

For a specified acceleration, Q, it {s thus possible to examine the
characteristics of the amplitude build-up, and to determine the vilue of

-“L, at which it occurs, A
c
minimum &, corresponding to a maximum permissible amplitude build-up and

the maximum amplitude, rG, and the speed ratio,

associated bending stress, may then be specified for rotor operation,
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An exsmple of this calculation is given in Figure 6.02. Tha rotor has a
crizical speed, g , of 1000 Rv¥a, ile., @, - 105 rad/sec. The accelarstion
ia 20 rud/nac.Z: i.a.. =10 rnd_/gm-.z and Aissinative farcas avs shasetr

from the motion.

£ s ‘Frict ) on

¥hen external friction forces act on the rotor during its accelarated motion,
energy is dissipated and the amplitude build-up becomes less severe than for
the frictionless rotor considered previously. In this cese, tae equations of

motion for the c.g. of the single-disk rotor in rigid bearings are
mf, 4 cx + kx= ka cos [m:-o-acz]
W+ ) + ky = u.m[u+a;2]

207 + ka [x sin (ot + k%) - y cos (u)t+a;2)] -y (6.11)

Again, considerirg the case vhere the rotor i{s in a state of steady unbalance
whirl prdior to the application of T at t = o, the general formulae for the x, y
displacement are

X = A /- exp [- -%; (t-T)] sin w, (t-7) cos (ur + acz)dT + -
1= (%)
()

y = & ft exp[- -ﬁi(t-f)] sin W, (t-T) sin (wt + Qtz)df b= A 2 sin wt

w - (R
o 1 (‘“o)
When these expressions are transformed into rcotating ccordinates, £ and n and the

expressions

S N AT ier™) R Tl WY it /Lt
a 2a a 2a a yle [0 plod

are substituted for the time-arguments, the expressions for the rotor dis-

placements become

€'aw'—“-expr-—c—'t] - sinz [E eXp—c—[ E_.w_%]cosado
o' 8a | 2o z, wm|Va~ 2a | \fivo
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+ sin s’ f;
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e
- h _E_\/P_’__.._e g go!
co-:f.l.uph[a w]%‘_ +

-——‘—3 cos w_t cos (wt+crt2)+"9- sinwt gin (aj.‘.+c:2)]
1 - (4 () W, °

w
o

n= w—aup[

wl
£
e

§
wb
o)
8.

sl

' whw ' '
cos ¢! f: . exp —= [\/-g - 2;].3#_._"» :o dg
o]

' ok
sotn ot g5 e B2
Q

—__ | 2 - 2
2 cos w t sin (wt + at”) + © sin @ t . cos. (wt + axt) | (6.12)
1-(w ) o

[=)

—
%“.
o
Q
+

The integrals in the above expressions cannot be found directly from tables;
but as the value of the exponential index is reasonably small, the integrals
may be obtained approximately by a combination of known functions. In this
case, & linear approximation may be used for the exponential index, and the
equations may be solved for a number of separate time-periods. This has beean
done for the example given in the previous section considering that the fric-
tion coefficient (¢/2m) = 1,00. The results are shown in Pigure 6.03. Com-
paring Figures 6.02 and 6.03, the influence of external friction on the lume‘
rotor with the seme rate of acceleration may be seen. Friction reduces the
maximum amplitude build-up from 34.0 to 21.0. The transmitted bearing force
is reduced in the same proportion. The speed at which this maximum amplitude

occurs is virtually identical in both cases.
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Lewis (Ref. 78) for the case of l.lilplt rotor in rigid bearings {n both
undamped and damped motion. COnaidcring,knd;nped rotor motions, the in-
fluence of several different rates of acceleration q on a rotor are shown

in FPigure 6.04, Curve B shows the individual cyclic oscillations, and the
other curves show the envelopes of the amplitude maximm values. Low q
values denote rapid acceleration; high values correspond to slower rates.
The periodic force variation for q = 10 is given in Curve A starting at

t = 0. Allowing the rotor to start from a steady whirl coadition as in the
previous léction, the resultant motion builds up as shown in Curve B, for

q = 10, and in the remaining curves for the higher q values indicated. The
full curves correspond to accelerations; whereas the dotted curves apply to
decelerations. These results clearly indicate how any machine may be driven
through its critical speed even where the rotor-bearing system has little
friction damping. The maximum amplitude which develops is seen to be a
function of the applied acceleration, and a finite time is required for the
build-up of large amplitude whirl motions. The faster the accelearation rate,
the later the maximum amplitude occurs after the critical speed. The asmpli-
tude build-up occurs in the same speed location for the deceleration
characteristics, being slightly larger in each case. This indicates also
the advantage of keeping those rotor critical speeds, which must occur
within the speed range, well below the machine operating speed. A.C.

torque characteristics depend on the amount of electrical slip present.

As this is nearly zero at rated speed, the drive torque and, hence,
acceleration are smaller than at lower speeds; hence, the time taken to

pass through the critical speed is greater. This results in the build-up

of larger amp itudes as indicated in Figure 6.04.

After the maximum amplitude has been passed, the undamped system continues
to oscillate with an amplitude close to the maximum attained. Thic {s little
diminished by the higher exciting frequency which, though this superposes a

further vibration with & stronger force, it does so at frequencies to which

the system has less inherent susceptibility, and so the vibration is sustained.
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The influence of friction on amplitude build-up is shown in Mgure 6.03, for
four values of dimensionless damping 7, with both accelerated sad decslsrated
motion. The general nature of rotor response is the same as in the undamped

ot B cume B oo

cese, with the difference that amplitudes are reduced by the presence oI
friction. This reduction is most significant in the cases of slower accelera-
tion. The greater the value of 7, the greater is the overall amplitude re-
duction. This applies to both the stealy-stu.e motion, and to the transients
in the motion which tend to die ‘out more rapidly, as indicated by the smooth
amplitude envelopes for higher 7.

o an

{ ! [1

When the damping Ls small, the envelope curves are oscillating in character
wnen the maximum has been passed; but eventually they become asymptotic to the

resonance curves for constant frequency.

— -

Bffect of Plexible Bear on ngit

—
i .
e e

Support flexibility may arise from either the bearing or the pedestal, or
both, as discussed in Chapter 3. The inclusion of support flexibility greatly

i

complicates the already lengthy analysis, and so this section contains but an

—
_d

indication of the| procedure. Referring to Figure 6.06, the equations of motion

r

for the undamped single-disk, flexible rotor shown are

(. mX + k (x - xo) = ka cos &
; oy + k (y - yo) = ka gin @
' 2 - - [ s

[u ‘kl X, k (x xo) ka cos ¢

2k2 Y, - k (y - yo) = -ka sin ¢

—
- i

2al + ka (x - xo) 8in & - ka (y - yo) coa ® =T (6.13)

where k is the shaft stiffness, kl and k2 are the vertical and horigontal

elastic stiffnesses of the supports respectively, and again

® -[wt+at2]

p—— p—
v + i N ,
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On writing

. Zkkl L - 2kkz

1 2k, 4k 3 2k, +k

The equations of motion become: * '

(13 - 2

ox + klx = K1| cos [at + ac ]

my + kzy - Kzn ain Lnt + atz]

2 £2°%
201 + aK, x sin & - aK2 y cos ® + a 3 8in 2 ¢ =T (6.14)

As in the case of a shaft on rigid supports, the coordinate displacements are

obtainea from

- t - 2
X = fo sin o  (t-T) cos (ur + Qt ) dr + 1_(9L)2 . cos @t
w
o
- t el 2 @D a
y = e fo sin wy (t-7) sin oz + Q) dr + =L . o2 sin wt
o 1-(%)
“
in which
lj.k 32%
w"-[m] wy-[m]

After performing the above integrations, the displacement formulae resemble
Equations (6.12) taking into account the differing stiffness effects. As an
example, congider the case kl = 2K, Kz = 0,89 K, [k/m] ¥, 105 rad/sec., and
a = 10 rud/lec.2 The response curves are ghown in Figure 6,07, These indi-
cate the differing reaponse in the coordinate directions. The whirl crbit is
elliptical in the early stages of the motion, but the ellipse changes in size
and proportion as the speed increases because the stiffness difference makes
the dynamic response different in the x and y directions. The rotor response
in rotating coordinates & and n is also given. These results show the same
phase difference between maximum coordinate responses. Also, the transient

motion is more strikingly depicted by allowing the coordinates to rotate, and

so emphasiges transient translatory motions. In addition to the above effects,
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it can be seen from the third of Bquatioms '(6.14) that a component with twice
rotational frequsncy exists in the motion. This tends to cresate a sub-harmonic

peak at approximately one-half the major response peaks shown in Pigure 6. 07 .

Experimental Obaervation of Transjtiop FPhenopens

The simple flexible rotor discussed previously with w, = 105 rad/cec.z was
driven through its critical speed using a 3 KW, D.C. motor, over a spead range
0 < w< 125 rad/sac. Shaft stresses were recorded using resistance strain
gages mounted near the disk. These stiesses rotated with the shaft, and hence
allowed the calculated streas and displacement values in the §, n direction to
be checked for a shaft with friction, These results are showr in Figure 6,08.
These coordinates show reasonably good qualitative mgreemsnt with the curves of
Figure 6,02,

The shaftmotions discussed in this chapter apply in all cases to a simple,
single-disk, flexible-shaft rotor. This simplifies the resulting analysis and
makes identification of the major rotor dynamic features more straightforward.
The same features apply to the rotors of all machines which operata at speeds
beyond their first system critical and, therefore, may be used s design guides.

It will be noted that no mention has been mads of rotors which are mounted in
fluid-film gas bearings. Where no fluid-film instabilities exist, the rotor
performance would be similar to the flexible bearing case. No design informa-
tion is at present available on the transition of a rotor through a critical
speed when the rotor experiences a fluid-film whirl at a speed below its

critical speed. Data is also lacking on the transition of rotors in gas

bearings through critical apeeds.
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Fig. 6.01 Rotor Whirl Geometry fcr Flexible Undamped Rotor ~
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Amplitude Response of Undamped Rotor

Reprinted from FLEXURAL VIBRATIONS OF
ROTATING SHAFTS, Figure '9, by F. M.
Dimentberg. 1961 Butterworth's
London
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Time-Response of Damped Flexible Rotor

Reprinted from FLEXURAL VIBRATIONS OF ROTATING SHAFTS,
Figure 23a, b, by F. M. Dimentberg. 1961 Butterworth's
London
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Vii

BALANEING QF ROTATING MACHINERY

Need for Balancing

No rotor is capable of smooth operation without adequate balance. The owost
sophisticated rotor and bearing design efforts cannot assure good bnlénce,

although the unbalance remaining after construction may be minimized by

assigning meaningful working tolerances to each rotor component and by effective

inspection procedures. All high-speed rotors must be machine balanced after

manufacture, and the more refined the balancing technique, the less residual

unbalance will ultimately remain. A well-balanced rotor will give rise to nominai

transmitted forces, structural vibration, noise, and long-term rotordynamic
problems. But, no amount of balancing can eliminate resonant whipping or
half-frequency whirl, or dissimilar stiffness instability. These disturbances
require adequate system design and damping to minimize their effects.

Rotor unbalance varies in magnitude, position and angle along the length of
the rotor. During cperation, the unbalance causes centrifugal forces and
couples which bend the rotor causing it te whirl around its static equilibrium
position. Excessive unbalance may endanger the safe operation of the machine.
Rotor balancing consists of determining the magnitude and location of the
residual unbalance followed by the insertion of correction weights in the
selected balancing planes to nullify the unbalance effects. Actual rotors

are never perfectly balanced since this would require a large number of
measurements to determine the quite random <¥stribution of unbalance along the
rotor length, followed by the application of correction weights wherever
needed. Both requirements are impractical, and so it becomes necessary to

select a level of untalance which, in a given application, will assure

minimum whirl amplitudes throughout the operating speed.-range.
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Concept of Unbalance

Rotor unbalance is usually specified in ounce~-inches (oz.in) since unbalance is
conceived as the product of the unbalance weight times its distance from the
rotor geometric axis in .‘he unbalance plane. The centrifugal force generated

by the unbalance is then

2:t2

(16) (386.4)

[Centrifugual Force, 1b.]= {Constant, }' {Unbalance(oz.ih)

. [Speed (r.p.s.)} 2

Unbalance may also be designated by considering the rotor weight to be concen-
Lrated at its c.g., and eccentric from the geometric axis by a certain distance,

a inches. The centrifugal force is then related to this distance by

1 2
[Centrifugal Force, 1b.j = [Constant, (3%%2%)} {Rotor weight, lb.I

' [Eccentricity of c.g., in.] . [Speed(rps)}2

These concepts of unbalance are valid in the case of rigid rotors such as a
wheel mounted on a short sghaft between rigid bearings or in a longer rotor at
slow speeds. 1t fails, however, to describe the general unbalance condition of

a flexible high-speed rotor.

Rigid Rotor Balancing

It is well known that a rigid rotor may be brought into a state of balance by
the appropriate addition of correction weights in any two normal planes along
the rotor length. The complete rotor motion may be described through the dis-
placement of the c.g. and by the rotor inclination. The rigid rotor is effectively

a particle, and all forces and moments which determine its motion, including

unbalance, may be concentrated into a single force and a single moment acting
at the rotor c.g. It follows that by reducing the distributed unbalance to
such an equivalent force and equivalent moment located at the c.g., it is

possible to specify the total unbalance by twoc quantities known as static unbalance



and dynamic unbalance respectively. Static unbalance may be detected and

corrected, without rotation, by placing the rotor on knife edges and allowing

it to find its equilibrium position with the heavy side downwards (Figure 7.01).

The rotor may then be statically balanced by the addition of a correction

weight or weights, the total effect of which balances the resultant static
unbalance of the rotor, without regard to the axial position of the weights.
Dynamic balance, however, may only be detected by running the rotor, and in this
case the axial distribution of the added correction weights is important, as the
unbalance couple must also be balanced. It is clear from the above that the
addition of a maximum of two correctly sized and positioned balance weights will
completely compensate for the initial unbalance of a rigid rotor. Furthermore,
the size, position and angular orientation of the two correctionweights is
completely optional as long as their equivalent force and moment cancels the

rotor unbalance force and moment. -

Flexible Rotor Balancing

The flexible rotor poses a more difficult problem because the distribution and
variation of the unbalance causes the rotor to deflect in accordance with the
resulting centrifugal force. This deflection profile may be a complicated
shape. In any case, it is not possible to reproduce or annul the same shape by
applying a single force and a single moment at the center of gravity as in

the case of a rigid rotor. Hence, if a flexible rotor is balanced as if it were
rigid, and correction weights have been added in two planes which cancel the
unbalance siatic and dynamic effects, the rotor will nevertheless bend locally.
When the speed is sufficiently high, the centrifugal forces resulting from these
local deformations may generate large rotor amplitudes capable of making the
original balance meaningless. 1In addition, when the rotor approaches one of

its critical speeds, it tends to assume the mode shape of that critical speed in
proportion to the residual unbalance. Rotor amplitudes may be minimized by an
optimum selection of damping planes. At higher rotor speeds, more balancing
planes are required to distribute the balance weights more uniformly throughout
the rotor to attain the same minimum amplitude level. 1If the rotor is

sufficiently tlexible, and if the speed is sufficiently high, twe balancing

r-—ms.
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planes alone are not enough. Theoretically it is necessary to have, as a minimum,
as many balance planes as the number of the next bending critical speed beyond

the operating speed range. Figure 7.02 shows the relationship between balancing
planes and critical speed for a uniform rotor in rigid bearings. A flexible
rotor in flexible bearings should be balanced as a rigid body for low-speed
operation, selecting the balance planes and their disposition so that the low-
speed balance is also effective at high speeds. Figure 7.03 illustrates this

principle. This will be discussed in further detail later in this section.

Practical Rotor Balancing

In practice, two basic approaches exist: (1) machine balancing in the shop

following rotor assembly, and (2) field balancing following installation at the

site. All conventional balancing machines operate through the addition of correction

weights in two balancing planes. In view of the previous comments, it is clear
that, strictly speaking, balancing machines are only of use with rotors which
behave as if they were rigid throughout their operating speed range. Balancing
machine speeds are low, and the rotor is supported-in bearings and pedestals
which are not the same as those in the actual machine arrangement. The machine
rotor-bea: ing system is never machine-balanced. Since the rotor motion and the
rotor amplitude are greatly influenced by the actual bearing stiffness and the
actual pedestal stiffness, it is usually not possible to achieve a sufficiently

fine level of balance using the balancing machine alone. The resonances governed

by the pedestals aad the bearings in the actual machine tend to amplify the effect

of the rotor unbalance above the level achieved in the balancing machine. It
is, therefore, almust always necessary to refine the rotor balance by further
operation on the rotor in its own bearings and pedestals. Such an operation is

known as field balancing.

Field Balancing

Instrumentation is provided with which the whirl amplitude of the rotor may be
measured to a high degree of accuracy, especially in high-speed applications.
The measurement may normally be taken using distance-measuring probes such as
capacitance probes,; inductance probes, or photo-cells which are located within

or just outside the bearing., 1t is common to provide such probes to monitor tne
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whirl orbit of the journal in any case. 1In this manner, the rotor amplitude is
measured st the bearings and, {f required, at other points slong the lergth of
the rotor. The rotor is brought up to speed, and as the smplitude grows, a
speed is ultimately reached beyond which the smplitude is too large tou safely
permit any further increase in speed. At this point, it is necessary to deter-
mine what additional correction weights should be added in the balancing planes
to restore the original balance. Known correction weights are added, one at a
time, in known locations, and the individual effect on the rotor amplitnde is
measured. From these measuremencs, a calculation procedure is used to evaluate
the effective unbalance of the rotor. This allows the required correction weight
details to be established.

Balancing Machines

A number of balancing techniques are described by Stodola (Ref.18). Of these,

the method due to Akimoff (Ref.146) is of importance since it forms the basis

of modern balancing machines. Akimoff's machine is shown diagrammatically in

Figure 7.04 . On this machine, the rotor may be balanced without changing the

supports. The actual values and angular posiiions of the balance weights may

be determined by trial and error, by graphi:alhconstruction, or by using a
balancing head, such as that due to Thearle, as described by Den Hartog (Ref. |7 ).
Methods for doing this are described in the following sections. The machine
consists of frame A, supported in bearings Bl and B, which allow the machine

2
to rock in the vertical plane. The rotor is supportedinarigid bearing D1 and

in a bearing D, which is guided to move vertically between the supporting

2

springs, S. When bearing D, is clamped and the rotor is driven through a

2
flexible coupling, the effect of the moment of the rotor centrifugal unbalance

force is neutralized by tne fixed axis, B1 Bz. The rotor may then be

statically balanced by adding trial weights, G in the balance plane, I,

1’

until the rocking motion about axis Bl Bz has reached a minimum. Then frame

A is clamped tco the base, B, and bearing D2 is freed. During subsequent
rotation, tha resultant unbalance moment which arises from rotor unbalance and

the added static balance weight, Gl’ acts on the rotor. Dynamic halance is
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then obtained by the additiun of a second balance weight, Gz. in balance plane 1,
adjusied in magnitude and position until the rotor vibration i{s minimized.

Final balance is then obtained by applying G, in the balance plane close to

2

D1 (as shown dotted) with the same unbalance radius and size as Gi but 180

degrees out-of-phase with G This gives an applied balancing couple, +G, -Gz,

2°
and allows the rotor to operate without the restraint previously provided by
tne rigid bearing Dl' The static balancing portion of this operation may be
carried out on horizontal knife-edges if desired. Variants of the above machine

exist in which the axis B,, B, is replaced by springs, and the rotor %s

17 72
supported in rigid bearings and pedestals on a rigid table. In this arrangement,

the taoi. is provided with frictionless pivots at P. and Pz, which may be

1
locked when necessary during balancing as shown in Figure 7.05 . The balancing

technique is the same as for the Akimoff machine.

Determination of Required Correction Weights

Alitough the angular position of the unbalance may be found directly by marking
the run-out side of the rotor as it rotates, this method lacks the refinement
necissary for sensitive balancing of high-speed rotors. Where a balancing
machine or bearing is fitted wiih electrical displacement probes capable of
detec.ing spring-supported rigid bearing displacements or journal displacements
during field balancing, the required correction weights may be found by the
following technique. The rotor is operated: (1) unbalanced; (2) with a trial
balence weight in a selected position; (3) with the same balance weight placed
diametrically opposite the position used in (2). With displacement readings

from these three conditions, the required balance weight and it angular positions
may be determined for both static and dynamic balance. The graphical construction

for doing "h¥< = snown i1n kiguve /. Qb6 . lie steps aie:

1. Let OA represent, to scale, the original unbalance of the rotor. Let
is also represent, to a different scaie, the vibrational amplitude
observed as a result of this unbalance weasured at the balancing speed

during Test 1.

2. Let OB be the unbalance vector of the rotor measured in Test 2, after

the trial unbalanze hac been added in the first hole., By the laws of

-
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vector addition

OB = OA + AB
where AB is the displacement due to the added trail unbalaace

3. Similarly oc represents the total unbalance displacement determined
during Test 3. As in (2) above, OC = OA + AC ana as the unbalance
in this case is 180 degrees ocut-of-phase with the unbglance position
in Test 2, it follows that AC is equal and opposite to AB as shown in

the figure.

The amplitude measurements provide information on the relative lengths of the
unbalance forces OA, OB and 0OC; but their absolute magnitudes and phase
relationships remain unknown. These facts may be obtained geometrically.
Noting that OA is the median of the triangle OBC, of which the two relative
lengths 0B, OC are known, and the magnitude of BC (= 2: x unbalance) is double
the length of OA to form OD. Then in the triangle ODC, the side DC is equal to
OB. Thus, in ODC all three sides are known. Thus, the relative lengths of AB
and OA are known, and since AB represents a krnown unbalance weight artificially
introduced, the magnitude of the original unbalance OA may be deduced. In
addition, through the construction the angular locatlon (&), of the original

unbalance OA with respect to the known angular location AB is determined.

However, an ambiguity exists with the above construction. In finding the ori-
ginal triangle, OCD, from the unbalance —ectors, the triangle OC'D might have !
been obtained instead by construction. This would have led to obtaining the

direction C'B' instead of direction CB for the unbalance weights. This ambiguity !

may be overcome by a fourth run.

This method assumes only that the displacem=nt response of the rotor is pro-
portional tu the unbalance mass. This has been found to be a reliable premise i
in practice. The above steps may be repeated until the desired degree of

balance is attained. |

260



e

—t ey by O

a4 %=y

-

o>

1

4

-

et

A method sttributed to Ribary (Ref.147) -nd Hopkirk (Ref.l48) makes use of ar
original unbalance test plus three trial unbslance measurcwants situated 120
degrees spart. A similar procedure to that described sbove is needed to
determine the magnitude of the original rotor unbalance. A s‘mple graphical
construction for doing this has been proposed by Somervaille (Ref.49). This

method has been applied to checking the accuracy of balancing mrchines of the
Akimoff type by MclInante (Ref.150).

A balancing head is a device consisting of a well-balanced, disk-like container
which is attached concentrically to the rotor and within which there are two
weights on rotatable arms. The arms may be clamped or free, as required. A
self-balancing type of diagram due to Thearle operates by replacing the arms
with balls which are free to roll and to assume any preferred circumferential
postion when released. 1Initially, the balls are clamped 180 degrees apart, so
that the balancing head i{s in perfect balance. The only unbalance in the rotor-
head system is, therefore, that due to the machine. The rotor is then rotated
above its critical speed and the balls are released. The balls then assume an
angular position which tends to provide the optimum balance for the rotor due

to the self-balancing action of an eccentric mass at speeds above the critical.
All vibration then ceases. The balls are then clamped once more, in the optimum
balance position. This principle, attributed to Leblanc, is discussed by
Stodola (Ref.18) using mercury instead of twe balls as the self-balancing medium.
Den Hartog (Ref.17) has questioned the validity of this device. Two devices of
this t:pe situated in the balancing planes must be installed to obtasin complete
static and dynamic balance of a rigid rotor. A disadvantage {s that the rotor
must be run above its critical speéd for this method to be used. Not all

cutors *re degigned to uperate at such speeds — whilh may ceuse cvorstressing
or even bursting. As remarked earlier, two-plane balancing is inadequate for
the delicate balance required in high-speed rotors operating beyond their funda-
mental critical speed and in these cases, the iafluence coefficient method

described in the following section must be used.
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Influence Coefficient Methoc

This wethod is bssed on the assumption that the rotor-bearing system has
8 linear response in that the rotor whirl amplitude is directly proportional

to rotor unbalance. 1In built-up rotors, frictional and hysteretic effects

- -~ r~—

occur due to the deflected whirling shape of the rotor at a given speed.
This introduces a degree of non-linesrity into the system, but the effect
is usually small, and the influence coefficient method is capabie of providing

a high degree of balance in practice. This method may be applied at any [5

——

speed and is not dependent on the critical speeds of the rotor. The rotor
may be balanced to any desired level, if an adequate number of planes

are provided.

Assume that the rotor displacements are to be measured with a displacement
probe at each bearing, and let rotor amplitudes at these probesg be x{and x,
respectively. Also, let there be [vur balancing planes in Lhe rotor, and
let the total rotor unbalance be represented by four discrete unbalances, ups i

located at the balancing planes. Then at a particular speed,

uz, u3, and ua,
the rotor amplitudes may be expressed by the linear equations E
= O a Q {
Xy Ut %2t %ty T %Y (

a a
T S U T TR TR £ T W TRRA [

The Q-terms are the influence coafficients, the numerical value of which 5
depends on the speed of rotation. They are complex in nature, with components
in the x- and y- directions, to account for both the magnitude of the displace- t

ment and the local phase angle. Similarly, both x and u are complex.

With four balancing planes and only twoe probes, it is necessary to perform ,

ten separate tests at two different speeds. The procedure is as follows: ‘

1. Select a suitable rotor speed at which the balancing may be perforined. ‘
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Select an angular reference plane in the rotor from which the angular

position of the unbslances may be measured. This reference plans

defines the real axis for the corplex unbalauce.

Measure the magnitude of the two amplitudes and the phase angle with
the uncorrected rotor running at the selected test speed and denote

the resulting values X0 and X0

Insert a trial weight, T, on the reference line in balancing plane I,

and again bring the rotor up to test speed.

Measure the two amplitudes as in (3). Denote these values X1 and.x21
Calculate the values of the influence coefficients from
x - x
11 10
%y ® T
[+ - Q
a - 21 20

21 T
Proceed in this manner, inserting trial weights in the remaining

three balance planes until the full set of eight influence coeffi-

cients is obtained.
Select a second balancing speed.

Repeat the above test sequence, steps (3) through (7), and obtain
a second se2t of eight coefficients. The total number of coefficients

is now 16.

Using the four amplitude measuremencs for the uncorrected rotor,
obtain a set of four equations with the four unbalance components as

follows:

%0 * %y Y T v YOy Ny T oY,

o
Q
)
ey
[
(5
»
[o¥)
(¥
(%]
"~
ol
&

16 31

26 41 1 42 "2 43 73 3 4
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The unbalances ul, Uy "3’ and u, may be calculated from the above. These
calculations are quite extensive, and sre most conveniently performed >n a

computer.

A numerical example will illustrate the higher accuracy of the influence
coefficient method over the rigid rotor methods. For this purpose, a gas-

bearing-supported rotor is considered which is dynamically rigid on passing

through its two lowest critical speeds. These criticals oc .ur a: 13,500 RPM and '

at 17,000 RPM. The third critical speed occurs at 85,000 RPM. The rotor has

an overhung turbine wheel at one end and an overhung thrust collar at the {

other end. During machine operation, there is access to only two balance

planes — one at each end. On the test stand, however, there is also access l

to two balance planes located between the bearings called the midplanes in

contrast to the two endplanes. 1 {
|

The comparison between the two balancing methods is based stiic;ly on computer \

calculations = no actual tests have been performed. Firsc,!the rotor is given

a random distribution of unbalance and the corresponding rOCft amplitude is ]

shown by the curve labelled "Uncorrected Rotor" in Figure 7.007 . This figure

shows the amplitude at one bearing only, the amplitude at tﬁe thct beafing is f

completely analagous. Note that only tue second critical spfed appears, whereas

the other bearing shows only the first critical speed. Thi? is due to the ‘

particular geometry of the system. Next, let the rotor befbalanced as if it

was rigid and insert the correction weights in either the {wo endplanes or in ‘

the two midplanes. The two corresponding amplitude curves;show that although

the rotor balance is improved, local deflections of the ro&or prevent the ' i
halance from being perfect. Also, note that it is advantaﬁeous to apply the

correction weights in the m7!oiares ciose~ r the cent.r %E gravity thea in z
the endplanes. Then, balance the rotor by the influence cyefficient method.

First, use only the two endplanes and balence at 40,000 RPM. The resulting l
amplitude curve shows improvement in the rotor balance; but overall the .
improvement is not quite as good as the results attained by the rigid rotor §

method. Secondly, use all four balance planes simultaneocusly and balance at
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20,000 RPX and at 50,000 RPM. The rotor is now perfectly balanced for all
practical purposes. It is evident that the higher the number of balance
planes, the closer {t is possible to mscch the residual unbslance in the rotor
and the better the rotor balance will be. On the other hand, a large number
of balance planes do require a large number of measurements and it does not
seem too practical to go beyond 4 or 5 balance planes. However, since most
rotovs operate below their third critical speed 3 or & planes a2re completely

adequate,

Acceptubi: Tavel of Unbalance

The degrev ~% resicual unbalance which will allow a machine to give safe,
efficient, and trouble-free operation over a sustained period of time is
difficult to specify because of the many factors and criteria involved. A
machine may cperate safely and yet its noise level may be irritating to human
beings. Unbalance, which is feasible for a rotor at one speed, may be both
unnecessary and beyond the range of capability of conventional balancing
machinery at higher speeds. Two-plane, field balancing may be the only practical
possibility due to constructional inconvenience; but multiplane balancing may

be needed to attain the balance level required by government specification.

A number of unbalance force formulae are shown in Figure 7.08 , together with

the basic formulaer. PFormula 1, v = 5630(W/N2) is effective up to around

3600 RPM, but beyond this, it is too severe and {ts requirements are beyond the
capability of conventional balancing machines at high speeds. To overcome this,
Formula 2, v = 5630(W/N2) [1 + 65 '10.9 Nz] , was developed. Rotors may readily
be balanced to this specification at all speeds. Both formulae are based on
pormitting a certain p vcentsge of the rotor weight (one percent below 3600 RPM,
to 7.5 percent at 10,000 RPM) to be the maximum traasmitted force on a rigid
bearing, simply-supported rotor. At speeds above 1000 RPM, Formula 2 approximates
Formula 3, v = 4(W/N),the simple criterion used by some turbine manufacturers. These
formulae give safe transmitted force values by prescribing realistic residual

unbalance levels,
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Unfortunately, spacification of a safe level of “ransmitted force does not also
mean that the rotor whirl smplitude will be acceptable. Many experimenters
such as Yates (Ref.l151), Rathbone (Ref.1532), and Reiher & Meister (Ref.l33)

have given results for various qualitative evaluations of the vibrstion from
residual unbalance based on amplitude measurements. Figure 7.09 {8 a composite
of several investigations covering a wide variety of machinery. Figure 7.10

is a chart of human perception of vibration level — ggain drawn from several

investigators.

Table 7.01 is due to Federn (Ref.l54) in which meny.types of rotating machinery
have been classified intoc types. The eccentricity of the c.g. has been taken

as the unbalance variable, as discussed previously under "Concept of Unbalance."
Ranges of eccentricity which give safe operation and small rotor amplitude for
each type of machine are specified. Feldman (Ref.155) has assigned the speed
ranges listed for the machinery groups. These data agree quite well with the
results given by the formulae listed previously,giving the overall vibration

levelsbelow the results obtained using Formula 1.

The above results were, in general, obtained using relatively amall machinery
m.ch of which would have been dynamically rigid during operation. Although

perfectly valid for these cases,the application of this data to large, flexible,

high-speed machinery swuld be considered more in the mek.ug of a guide to suitable

balance levels rather than as a specification in view of (e diffe-ences

between rigid and flexible rotors discussed previously.
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Table 7.01 Guide

to the Pequired Quality of Belan ‘ng (Federn)

iy

1000

1000

Operating

13

Speed RPM

40000

40000

7660

1000

267

Rotor Typs

Small higzh speed de- +

vices. Gyros, grinders.

Very high speed motors, +

small gas turbines,
gas turbines, blowers,
grinders.

Rigid, small motor +

armaturesg, turbo-
generators, superchargers

Commercial electric +

motors, fans, gears,
crankshafts,

Propeller shafts, +

reciprocating engines,
slow speed rotating
machinery.

4.008

0.020

0.078

0.197

0.780

Displacement of c.g.

to 0.039
to 0.073
to 0.390
ta 0.985

to 3.900

il




Knife Edges

Fig. 7.01 Static Balance of a Rigid Rotor, on Knife Edges

- ——
< — First Critical

Second Critical

i W Third Critical

Fig. 7.02 Location of Balancing Planes Relative to Critical Modes
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Balance Plane 1

Balance Plane 2

Unbslance

Fig. 7.03 Location »f Balance Planes in Typical Roﬁot

Balance Balance
Plane 1 Plane 2

Bearing D

Bearing D

- %’1i:.“.,__
Base B J

Fig. 7.04  Akimoff-Type Balancing Machine

1

2
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Fig. 7.05 Spring-Supported ﬁalsncing Machine

Fig. 7.06  Graphical Construction for Determining
Position of Required Bzlance Weight
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Comparative Multiplane Bslancing of a& Simple Rotor

in Flexible Bearings

Fig. 7.07
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"Unbalance Tolerances and Criteria"

Speed (rpm)
by S. Feldwan (BuShips, USN), April 17, 1958, Figure 1.
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Reprinted from General Electric Report No. 58GL122, "Proceedings -

Unbalance Tolerance Curves
Balancing Seminar, Vol. 1IV:

Fig. 7.08
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Machinery Vibration Tolerance Curves

7.09

Fig

Reprinted from General Electric Report No. 58GL122,

Balaocing Seminar, Vol. IV:

"Proceedings -

"Pobalance Tolerances and Critaria

by S. Feldman (BuShips, USN), April 17, 1958, Pigure 5.
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Reprinted from General Electric Report No. 58GL122, "Proceedings -
Ralaneing Seminar, Vol. IV: "Unbalance Tolerances and Criteria”
by 8. Feldman (BuShips, USN), April 17, 1958, Figure 4.
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TORSIONAL AND AXIAL EFFECTS

Nature of Influence on System

In addition to the lateral rotor motions discussed previously, most rotors
are subjected to both torsional and axial effects. These may take the form
of a constant-valued applied torque or force which influences other motions
without determining them, or they may be time-dependent, and capable of
generating motions in their own plane of action. A combination of both

types is also possible.

Drive torque will not influence the rotor motions unless it is s significant
proportion of the rotor buckling torque cx unless the rotor is very flexible
and the working deflections are large. Axial thrust acting on the rotor
from unbalanced gas or liquid pressure in a pump, compressor, or turbine
affects the motions similarly. However, in any machine where either torque
or force are applied during operation, the effects are rarely static even
though the harmonic component may be very small in proportion. Thus the
possibility exists for heavy vibrations to occur at the torsionsl and axial
critical speeds of the machine, in addition to the bending-torsicnal-axial -
critical speed. This latter mode may therefore be excited by a cyclic

component associated with any one of itas steady-state components.

The present chapter discusses the sources of torsional! and axial vibration,
the calculations of torsional and axial systems, and methods used in practice
to limit the motions within acceptable 1imits. The basic properties of
bending-torsion-axisl interaction are then presented, together with several
resuits obtained. An important distinction to note is that bending effects
excited by synchronous unbalance promote whirling of the deflccted rotor
shape about the static deflection line, whereas torsional and axial harmonic
excitations promote vibrations of the rotor in those directions. Where

these effects influence bending of the rotor, the result is again whirling,

and not vibration.
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Sources of Torsional Excitation -
Torsional vibrations arise directly from all sources listed in Table 8.01. [
These may be classified into primary sources such as internal combustion
engines and propellers, and secondary sources such as machine misalignment, (:
unbalance, impulsive loads and so on. Any machine which i3 driven by a
reciprocating prime mover is a potential torsional vibration hazard. {-
Power conversion from reciprocating motion to rotary motion introduces a range ’!
of harmonic components of which only the lowest orders can be balanced out -
with crankshaft weights, a flywheel, and by the number and arrangment of -
cylinders. Higher harmonics and the angular non-uniformity of the crank- lj
effort diagram cause drive torque fluctuations in the most sophisticated -
engine output. Reciprocating pumps and compressors require similiar attention [f
to engine design. Propellers are a strong source of torsional ercitation {‘

in propulsion systems. An aircraft propeller, or a turbine or compressor

blade frequently vibrates while it is operating in a turbulent wake or slip-

stream of varying velocity. Ship propellers are influenced by cavitation.

Both high- and low-frequency oscillations may occur in the power transmission

!

system, which may be long and massive. This may give rise to system vibrations,

and so to gearbox noise and wear. A combination of a reciprocating-engine

e

L

driving a propeller or fan is a particularly dangerous arrangement.
Fans, pumps, and turbines are each capable of exciting troublesome moderate-

to-high frequency oscillations in a system. 1In a fan or turbine, these may E
be associated with incorrect setting of the diffuser or vane angles. Pump
system troubles may begin with cavitation in the vane passages, causing l

rotating unbalance and alsoc drive speed fluctuations. -

A non-constant drive resulting from eccentric meshing of the teeth of a gear s
pair may arise through radially-eccentric mounting of the gears, or by }
angular misalignment of the meshing. 1In both cases, this leads to a syrchronous -
disturbance as the tooth contact point varies in radius throughout each cycle, l
giving rise to a small cyclic torque component in the drive. A similiar

condition may result from indexing errors in relative tooth uniformity,
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caused during manufacture. Here, the frequency of the error depends upon the

L%

original gear-cutting machine, and on the number of teeth on the cut gear.
Gear tooth contact effects can be minimized {n high-speed gearboxes by

providiﬂg helical teeth rather than spur, or spiral-bevel rather than straight
bevel. *

r“""t‘"‘"‘\

[“ Rotating unbalance from a gear or shaft can give rise to torsional oscillations
which are synchronous with operating speed by rocking a gear in and out of mesh

once per revolution, in the manner described above, empecially if the gear

mesh (8 at the end of overhung shafts. Good shaft balancing, short spans,

and rigid bearings can do much to minimize these oscillations. Couplings

- can give rise to a cyclic disturbance at some multiple of running speed if
either the radial or angular misalignment is sufficiently in error. Misaligned

universal joints create a twice-per-cycle disturbance. This problem has been

overcome with the con-vel joint in which uniform torque is transmitted by the

constant rolling action of arolling element surface.

Electrical umbalance results from non-uniformities in the magnetic field of
the machine, or due to worn bearings which allow a gravity deilection of

the rotor.

Shock loads and starting transients give rise to vibrations which decay rapidly,
but may be of such severity while they last that permanent damesge is done to

a gear mesh, a key way, or to a shaft. Abrupt accelerations and decelerations
fall into this category. In systems operating with substantial torsional
fatigue hazard, the shock loading may be sufficient to precipitate final

component failure.

Critical Speeds of Torsional Systems

. . . ‘. : N N ‘ .

Torsional critical speeds depend on the inertia-stiffness. properties of the

machine system, and on its size. Commonly, at least one torsional critical

™

speed will lie withinithe operating speed range. Torsional systems are usually

readily represented by a number of inertias connected by flexible shafts,
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Figure 8.01.

mass cases are given in Table 8.02.

The frequency equations for a number of standard discrete-
In each case, the shaft is considered
perfectly elastic, massless, and without damping. The speed change across
the gear mesh results in a higher effective irertia on the high-speed side
of the mesh. The frequency of the four-inertia system, case 8, 1s expressed in
determinant form due to the growing size of the frequency equation, for

convenience.

Practical systems frequently require 10 or 20 inertias to represent them with
sufficient accuracy. The laboricusness of obtaining the roots of the frequency
equation in these cases is readily apparent. Frequently the first or second
torsional critiéal speeds alone are required. These results may be conveniently
obtained using the Holzer tabular method, described in Den Hartog (Ref.17 ).

and Nestorides (Ref. 4 ), although any of the iterative methods for taking the
roots of a matrix desctibed}in Chapter 4 would be as effective. The Holzer
table is well suited to the digital computer, and this combination allows
any machine to be accurately represented in terms of stiffness and inertia,
and so calculated with excellent accuracy (Rieger, Ref.156). In many applications,
the only torsional damping available ig shaft hysteretic damping and any

residual Coulomb slippage. Both sources are very small, and so even the
secondary scurces of torsional excitation are capable of producing considerable
vibration amplitudes in the vicinily of a system critical speed. This fact

has been demonstrated in the failure of gears and shafts many times.

Methods of Suppressing Torsional Vibrations

In common with other motions, torsional vibrations are most effectively reduced
by eliminating the source of torsional excitation. Without stimulus there
can be no vibration. Table 8.01 indicates a number of remedies which have
been shown to be effective in dealing with torsional vibrations. Effectiveness
in esach case arises from modifying the source of vibration in some manner.

Where possible, the source is eliminated entirely, for example, by using
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sccurately-cut gears and by mounting them concentrically on shefts and in

tesrings which have sufficient radial stiffness. 1In other cases, considerable
improvement can be made by reducing the size of the torsionsl excitation.

In an internal combustion engine, this may be done by proper design of cylinder
firing order, and by selection of suitable crank sngles for the number of cylinders
required. Furthermore, the design and fitting of the most effectivs balance
weights to minimize or eliminate completely the primary snd secondary unbalance
forces and couples on the crankshaft makes a significant contribution to the

smoothness of the crankshaft drive torque produced.

All rotating components in a power transmission system should be statically

and dynsmically balanced for flexural motions, as rotating unbalance frequently
leads to the generation of toraional oscillations through the flexibility of
the system, the gearing and the degree to which there is coupling between the

bending and torsional defo-mations of the system.

In certain instances, it is possible to de-tune the system, using a vibration
absorber as shown in Figure 8.02, which has its natural frequency tuned to the
operating speed of the machine. Hence, during operation, the tuner vibrates
heavily, leaving the machine substantially vibration-tree. These devices

are difficult to tune precisely, as the resonant peak of maximum effectiveness

is very sharp and requires constant speed. Several detuners may be used together,
or the detuner may be damped. Additional damping increases the range of effece

tiveness, but decreases the maximum effectiveness at resonance.

By far the most common vibration suppression device is the torsional vibration
damper with which the troubiesome oscillations asre minimized by attenuation,

and through dissipation of the vibrational energy. Many types of tor-ional
vibratToi® dimpers are available commercially. The Coulomb frictiom

damper Figure 8.03, operates by dissipating energy at the friction interface
through relative slippage between the inertia ring and the oscillating hub.
Frequent adjustment of the interface contact pressure may be required due to
wear., The viscous friction damper (Figure 8.04) consists of an inertis ring

and an oscillating housing which are unattached mechanically. Between these
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cgnponents ia a thin fluid film, usually of a highly viscous material, such

a9 & silicone o0il. Slip between the components during operation shears the fluid
film and dissipates the energy. Pumping chamber dampers (Fi{gure 8.05) also

use an inertia ring. Relative motions of the hub tend to pump the working

fluid through small orifices and through confined spaces, to iissipate energy.
Torsional dampers may be designed to give very effective vibration suppression
over wide ranges of operating conditions. However, the design must be based

on the dynamical characteristics of the entire system to achieve maximum

effectiveness in operation.

Sourcea of Axial Vibration

Pressure fluctuations in process fluid machinery often contain a cyclic
component generated by some rotating mechanical asymmetry. The forces

involved can be quite large, and so operation in the vicinity of an axial
critical speed has been known to give rise to sizeable vibrations in that
direction. Other systems which drive propellers or fans are well-known to

be susceptible to axial modes due to the aerodynamic forces involved in the
motion. Vertical rotating machinery supported on a lightly-losded thrust l
bearing may experience vertical vibrations of the rotor if thé’machine operating
speed lies near the axial natural frequency of the rotor-thrust bearing
combination. Motions of this type have been discussed by Den Hartog (Ref 17)
with regard to self-excited oscillations in steam turbines, and in vertical
Francis water turbines. These motions may occur with both rolling-element
thrust bearings, and with fluid-film thrust bearings. Sizeable vibrations are
less liksly to occur with liquid-film thrust bearings because of the squeeze-
film damping present; but with gas-bearing machinery, the hydrodynamic film
stiffness and damping are considerably smaller, apa the possibility of

dangerous vibrations is much greater, particularfy as the operating film thick-
ness is smaller, and a touch at the high operatiqgvsgeed usually employed could
be catastrophic. Where a hydrostatic thrust bearing is.used, the film stiffness
is larger, but damping is still small, and this leads é; similiar motions as

in the case of hydrodynamic bearings, but at higher operational speeds. It is
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important to note that the stiffness of fluid-film thrust besrings is

highly non-linear with displacement, and so the calculated natural frequency
based on a specified operating film thickress is only valid for small
amplitude motions. An example of such a calculation i{s given in the following
section. Alternatively, where the besring is supported by a thin disphraga

a8 in certain totally enclosed process gas systems, axial vibrations of the
bearing shell and rotor may occur due to the disphragm flexibility as a plate.
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The vibrations in this case are linear up to quits large amplitudes.

-

The above comments apply to axial systems, in which the rotor moves as a rigid
body against the flexipility of s bearing or pedestal. Where long connecting
drive shafts are used, or with systems having heavy end masses and relatively
small diameter connepciog shafts, elastic axial vibrations of the rotor itself
may occur. However, bhr> _lgtive stiffness in this direction éenernlly causes

these vibrations to occur at fairly high frequencies.

Critical Speeds of Axial Vibration : N

The speed at which an axial system becomes rescnant is f{dentical with its
natural axial vibration frequency. The system may respond to any of the stimuli
discussed above, either at rotational speed for a smdronaus excitation, or to

a higher or lower frequency, depending on the non-synchronous source; or it

may experience self-excited o;cillations at its natural frequency, at any speed
inéludins zero rpm. Natural frequencies of several simple axial systems are
given in Table 8.03. The system flexibility may be the bearing, Cases 1 and

2; or the rotor shaft, Case 3 and 4, 6 and 7; or either shaft and bearing, or

bearing and pedestal or ‘diaphrsgm, Case 5. The mass in all cases consists of
the totor, the end disks, or the bearing shell, or a combination of these

masses. Case 2 shows the damped natural frequency which may differ from the

undamped natural frequency for cases where the bearing fluid-film damping

is considerable.
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Suppression of 4x*:] Vibrations

Axiel vibrations ~ausge trouble luss frequently than either bending or torsional
vibrations and s¢ lisz specific information is aveilable on their suppression.
However, the e_tablished principles of vibration suppression may be applied as

follows in any troublesome case:

1. Remove the axial natural frequency from the troublesome frequency range,
preferably by stiffening the bearing, or by reducing the weight of
the rotor. Both effects raise the critical speed. Where this is not
effective, decrease the bearing stiffness by using a greater film
thickness, or by using a floating ring bearing, and operate the ma-
chine beyond the axial critical, providing good bearing damping capa-
city to limit motions on passing through the critical speed.

2. Change the lubricant to increase the fluid-film damping available.
Adequately designed squeeze-film damping 18 amongst the most effective
damping available, and thrust bearings provide a conveniently available

source.

3. Design a simple pendulum detuner for the rotor to absorb the critical

vibrations.

4, Design a Coulomb damper to absorb the energy of the axial vibration,
Figure 8.03.

Axial Vibrations of a Hydrostatic Thrust Bearing

Thrust bearings are often the most flexible components in an axial system, and
so the possibility of vibrations due to this source is considerable. With
rolling element bearings the stiffness is usually fairly large, and so the

axial natural frequency i{s likely to be high in, or beyond, the operating speed
range. Liquid-lubricated bearings may have lower stiffnesses, particularly
hydrodynamic thrust bearings but the damping due to squeeze-film action is high,
and so failure by surface touching is uncommen in a bearing whose static load-
carrying capacity is adequately designed. 1In a hydrostatic liquid thrust

bearing, the stiffness is determined by the bearing inlet pressure and the
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operating film thickness. Large squeese-film daspiag is again available.

Annular and spherical hydrostatic thrust besrings have been investigsted by
Sternlicht (Ref. 157), Raimondi (Ref. 158) and Rieger (Ref. 159).

The operating stiffness of a hydrodynamic thrust bearing is usually extremely
low, and this combined with the swall inherent damping makes this bearing type

a §otential hazard in most machines. However, the hydrostatic gas bearing
combines practical load-carTying capacity with low friction, thus overcoming the
above problem. Althought he overall stiffness increase between the two bearing
types may not be great (due to a considersble incresse in the designed gas film
thickneas for the same applied thrust load), the smplitude-~of-motion tolerance is
much larger due to the thickened f£ilm, non-linear stiffening of the film accom-
panies the smaller thicknesses and the damping capacity is larger. These
bearings are susceptible to a self-excited instability known asr'pneuma:ic hammer ',
as are all hydrostatic bearings, in which the large-amplitude oscillations which

develop may cause bearing failure.

The bearing considered in this section is shown in Figure 8.06, and consists of
two circular plates. The upper load-carrying plate has a circular recess, the
depth of which can be varied. The pressurized gas enters through the restrictor
in the lower plate, and flows through the recess radially out to atmosphere.
The pressure distribution between the plates is shown in Figure 8.06 , and

is known to be in the form of a frustum of height (po-Pa)' where P, is the
recess pressure and P, is the external pressure. The operating film thickness
is ﬂc. Any small incremental change h in film thickness corresponds to a
pressure increment p. Linear relationships are assumed to exist throughout,
based on small deviations from equilibrium values. Changes in gas density p
are due to pressure variations, and so the basic gas law p/p =RT may be

used, where the svmbols have their usual meanings.
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The pressure af any point in the annulus, between radii Er
r =K

P‘ - Pr

In practice, good loed capacity with low gas lesakage is achieved with Rr = 1/3 R,

b {Pr N ?a} E - Er

gnd B is given by

(8-1)

Adopting these proportions, snd writing the equation of motion for the system

mass m gives:

. R R r - R
mh = 2x {i prdr - [ p L.
R - R J
R T
T
s 2RB+33~3RZR
- om R% - T T
P { 3R - R
- PAe
where
A = 7R z
e e ®3+r - R
R2= ]'RZ I r}
e . L 3(R -~ Rr)

For a given supply pressure, gas flow into the bearing depends on recess

pressure only, as this determines the orifice flow.

Bearing outflow i3 a

(8-2)

function of recess pressure and the film thickness in the annular clearance.

For small deviations from the equilibrium point shown in Figure 8.07 (p and h)

there gre corresponding variations in inflow and outflow which may be repre-

sented approximately by:

Inflow w =

[

Cutflow w

fdwi .
et B R
4Py
;aw?_ {aw? i
= T + = h = f + 6h
284
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The time rata of change ‘of the bearing gas mess comtent is than:

v ey = - (a+8)p - &b (8-4)

wvhere G, B, and 8 are all positive coefficients. The baaring gas maes is then:
R, R
H-Za[ A+ Rp rdr+ /] ®op rdt)
r R a

Using Equations 8.01 and 8.02 this reduces to: ‘

2

RT

M = i [HPrAe + oP mR

2
+ WP, (- A.)] (8-3)
The time rate of change nf the beasring gas constant (H) is equivalent to the
difference betweer the inflow and the outflow (w), and corresponds to the

time-rates of small deviations from the equilibrium point (p and R), i.e.,

u-g-(%‘goa+(gg)oﬁ-q§+.& (8-6)

where, by partial differentiation of Equation 8.05

2
Aeﬂo + On Rr

@ " (%g}o' R T

(o] .‘

. 2
S = it _‘Ae(l,o-,?a)'.'“R Pa
Sﬁ) 8 T

Combining Equations 8. 05 and 8.06 to eliminate w gives

@b + sh + (@ + B) p+6h =0 (8-7)
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As p = (n/A.)h, and p = (m/A.) %', substituting leads to the following basic
differential equation of the system: '

SA 0A
. a+ . e o .
'ﬁ+|——ﬁq}h+—“h+—-—ma -0 (D)
The inherent stability of the system for axial motions may now be exsmined

by applying the Routh criterion to this expression, which has the form:
R +c,i + ¢, + ch = 0
2 1 o

vwhuare ¢ € and c, are all positive coefficients.
»
The system is stable where the inequality €r €5 > <, is satisfied. In terms

of the system parameters this requires

a+ ' -
-_3.2 > g (8-8)

for stable operations of the system. Considering Figure 8.07 , large values

of the ratio QJ§J1 correspond to large values of recess pressure Py and
a
] 9
lpnd is supported with the minimum possible Ho. However this also leads to

small values of annulus height Ho. The ratio = is large where the maximum
sﬁhll % values. The value % is proportional to the recess depth A, the
annulus height Ho, snd inversely as the recess pvessure Py Thus P, and H
have an opposite effect on the magnitudes of the ratios forming the two
sides of the above inequality. 1t is also clear the A should be minimum for
stability. The value of . is also influenced by the manner in which the
pressurized gas is supplied to the bearing. Results indicate that a large
dismeter nozzle gives a larger @-value than both a small diameter nozzle, and

a cepillary.

The above analysis indicates that where stability considerations are important
in the design of pressurized zas thrust bearings, the gas storage capacity
of the bearing should be minimized, requiring a small recess depth. A small

pressure difference (ps- pr) tends to promote stable operation, and this is

286

o=

(ns [

3 o O

U

)

—

l



L

A G

W W e

T RV R )

[

W |

providad by having a large dilmnterliaict nozzle, rather than sz emsll nozzle

or a capillary., Choked flow or inherently-compensated besrings promota unstable
operstion. Good design requires that, where possible, the bearing amnular
claarance should becomne the flow restrictor, rather than the inlet nozszle.

The above theoretical rssults have been substantiated by experiments conducted
by Licht, Puller and Sternlicht (Ref.141) who, for s besring with 3.00 in 0.D.
pressure,p = 73.5 psig, nozzle dismeter 0.032 - 0.078, and recess depth

0.003 - 0.500,found large amplitude self-excited cscillations in the range

25-30 cps. This work has been further extended by Licht (Ref.142).

Effect of Axial Force and Drive Torque on Bending Motions

In many turbomachines, the operating conditions are such that the bending
motions of the rotor are influenced by the drive torque, and by the axial
thrust., These effects may alter the position of the bending critical speed in
relation to the operating speed, and sc affect the dynamic performance of the
machine. The present section describes the extent of these effects on several

common machine configurations.

The operation of turbomachines such as pumps, compressors, turbines, and
expanders involves a pressure difference to promote flow. In'many instances,
this pressure di{fference is not inherently balanced in the machine layout, and
the resulting axial thrust must then be accommodated with a large thrust
bearing. This is a common feature of axial flow machinery, includiag steam
turbineas, unless a central inlet divided-flow design is used. Centrifugal
pumps and blowers are sometimes designed with double-acting impellers to avoid
large thrust loads. From 3 rotordynamic standpoint, the most undesirable condition
occurs where a large thrust 1is generated near one end of a slender, high-speed
rotor, and this thrusc is absorbed by a thrust bearing located near the other
end of the rotor. The rotor then acts as a élende: column, and if the axial
compressive load is a significant proportion of the buckling lbad, the bending
critical speed may be reduced considerably. A similar condition occurs with
long slender rotors which cperate with high drive torque, either steady-state
or during transient run-up. As the machine torque approaches the torsional

buckling load of the rotor shaft, the bending critical speed is again depressed.
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Both sxial and torsional effects may be present together in s particular
machine, and their overall effect on critical speed performance for that

configuration must then te considered. RN

Several cases of single-disk rotors supported in rigid bearings have been
studied in de.ail by Grammel (Ref.lg0). For a shaft having symmetrical latersl
stiffness subjected to an end thrust P, the relationship between the simple

natural frequency w, and the thrust-load natural frequency w is given by:

) .
® PL
o, - 1T “1(&'1‘) - (8-9)

where k1 is a numerical coefficient given in Table 8.04 by Ziegler (Ref. 20).
The value of k1 is influenced by the type of bearings (system end constraints)

used. Where the shaft i{s acted on by an applied torque, T, the effect on:the

natural frequency w of the asystem is given by:

o .y ()
o, - 2 |EIX (8-10)
where k2 is a numerical coefficient, given in Table 8.04, for instances where

the applied torque is only a small proportion of the buckling torque. The
value of k2 is again influenced by the shaft end-support conditions. The drive
torque may be applied in a number of ways, and over any shaft length. If the
drive torque is applied semi-tangentially, as shown in Table 8.04, Wehrli

(Ref.162) has shown that a critical interval exists

TL

1-k 3BT (8-11)

ml»—l
ped e

< 2. < 14k
3 - o -

c
above and below which the motion is stable. The numerical cocefficient k3
is given in Table 8.04 and this result also applies for relatively small
values of applied torque. In case 7, k3 depends on the angle O adopted by
the universal joints with respect to one another, in the unloaded state.

For 8§ = 0, the limits of the critical interval are more accurately given by:
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Case 7, 0= 0
D,2 SR R m |2
‘1;:- - 1 - 1975 [51 + 45(1 + ZV)]' i ) (’312)

where v is Poisson's ratio for the shaft msterial.

For a quasi-tangential couple acting on the disk, as in the case of a turbine
having two diammetrically-opposite sets of inlet bslades, two critical angular

velocities exist. For small values of T these are given by:

o, TL ) ‘ -
e 14k, 23 ,_ . (8-13).

where kl. is a numerical coefficient given in Table 8.04. In cases 2 and 3
these two critical speed values coincide when T is small. For cases 6 and

8, the critical interval is again given by:

TL w TL ‘ .
- 22 < 2@ < e ) -
1 k3 B S o, = 1+ k3 1 ) - (8-14)

in terms of the corresponding values in the Table.

Where axial thrust and drive torque are present simultaneously in a given

system, the combined effect may be determined from the expression

2 2 ‘
= O R T © R L 8-15
@, 1 kl EI kS {EI ) ( )
in which kl and ks are numerical coefficients, given in Table 8. 04.

In the case of a uniform shaft which has its mass and elasticity t_miformly
distributed along its length, the basic differential equation of motion for

free vibrations in the x, z plane including axial force effects is:
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4 2
31§—§+?§—§-+%5—5=9 (8-16)
z £ H .

A similar expression exists for free vibrations in the ¥, z plane. For
harmonic motions in a natursl mode, the golution for transverse displacements

of the rotor is:
X = x(z) cos @t (8-17)

wvhere

x(z) = A cos az + B sin Q,z + C cosh a,z + D airh Q,yz

o - _?;_+\[(.2_ T
1 2L 221} gEI

r 7 2 1 1/2 '
a, = {?—’3- +\/(-f—) + A (8-18)

In the case where the uniform shaft is supported at either end in rigid bearings
which permit shaft angular deflection but nodisplacement, the frequency

equation may bs determined by substituting the end conditions of zero displace-
ment and zern bending moment #f z = {0 and z = L, and rejecting trivial solutions

to obtain:

sin alL ginh azL = 0

The frequency parameters (., snd Q. are always real, positive and az = na, .
Py

Z
The frequency equation may be solved by writing

sin a1lsinh m:lL = 0

and substituting trial QZL values. As n approaches 1.0, o, approaches ¢

1 2
and the condition i P = {, i.e. 2 whirling uniform rotor, for which the lowest

eigenvalue I8 o L = @ L = 1. As n variea, sc the alL solution departs from =n.
&

1
Uniform rotors supported in gther types of end conditions may alsoc be analyzed

by the above method.
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In general, the effeé:t of end thrust is to lower the eigenvalue asnd so to
depress the critical speed below thet of a simple rotor, aL = x.

If the shaft in the above problem is subjected to spplied torque the snalysis
becomes far more complicated, but the results are comperstively simple.
Greenhill (Ref.39) has examined the influence of both axisl torque and rotation

on the buckling of a long uniform shaft. Formulse were obtsined for maximum
shaft-lengths consistent with‘stabilify against buckling, for relatively

low-speed cperation. Southwell and Gough(Ref.91) hsave considered the other

aspect of the problem, i.e, where the speed is the mejor factor, and the influence

of moderate applied torque and end thrust on the critical speed is required.
The basic equations derived by Greenhill again apply. The applied torque gives

rise to the following bending moments in the shaft:

dx
-T dz about the y-axis
T %% about the x-axis

a8 shown in Figure 4.12 . Considering motions in the x, z plane, the equation

of motion is:

4 3 2 2
pr 2% . X, 2% +-‘§-A-§iz‘-04 (8.19)
dz dz dz ot -
and in the y,z plane
4 3 2
zx-a-—z-+T§-§ +pa—§ +ﬂ-a-2% - 0 (8.20)
Oz dz dz LI T
Putting R = x + iY and combining gives
4~ 3 2
31}»§-\—§+ 1r§-—% +p§-§-+35-a-352- = 0 (8.21)
9z, — Oz dz 8 ¢
The solution to this eauation is:
R = r(z) cos wt o . (8.22)
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where Al’ Xz, AB and A& ars the roots of ‘ ;

2 _ ,
EIAA + Ika - PLZ . ¥Ao, 0 (8-23)

For long end bearings, the boundary conditions are:

X =y = (; at z = Q and z = L
gf - %% = 0; at z =0 and z =L (8-24)

Substituting gives

A, + A+ A3 + 4, =0

1 2 4

)‘lAl + }“ZAZ + >~3A3 + }“4“4 =

alA1 + azAz <+ 335 + a, A, =0

3 474
‘1}‘1“1 o azszz + 33?\34&3 + aaxaAl‘ = 0 (8-25)
where a, = eikiz. The critical speed condition is obtained from the condition

where the determinant of the coefficients Ai equals zeroc. Expanding this

leads to

2(3133 + azaa)(K1 - kz)(hz - LA) a 3

Dividing through by yklaza3a& and noticing that

3. a .3,

172 374
\/a a, + a.a = Zcos (Xl * h2 il k3 i k4)

374 172

(ST
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leads to the critical pb‘cd condition for fixed direction bearings: ‘
[ -
L
L (AA)(Ag-N) cos (M 4A,-A, Ay 2 = @ (8.26)

Similarly, for short bearings, the boundary conditions sre at both z = 0

and 3 = L

X®sym=(;
2
prdx .o 9 L :
2 ds
ds
) since moment sod displacement bnth vanish
dZ i 4 at the ends
1L +: 18X . o
dzz dz

These expressions lead to the critical speed equation:
2.-2,,, 2, 2 L
0N _Kz )()\.3 -A4 ) cos ()\IMZ k3 )\4) 7 =0 (8.27)
Southwell and Gough give two diagrams for the abowe bearing conditions which

allow the value of the critical speed parameter  to be determined directly

as a function of the torque and thrust parameters, A and B, where:

R s o R ¢ o wAolL
2E1 4E1 16 Elg

These diagrams are reproduced as Figures 8.08 sad 8.09 in this report.

The effect of axial torque alone on bending criticsl speeds has recently been
considered by Rosenberg(Ref.161l), for a uniform rotor. Results up to the
sixth bending mode sre given.
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Propellers.
Fans, pumps, turbines

Bevel and Spur Gearing
Non-constant drive.
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Coupling

Electrical Unbalance

Stasrting Trsnsient,
Shock Leoad.

Causs

Gss pressure fluctuations.

Insdequate engine compo~
nent design.

Pressure fluctuations
during rotation. Vibras-
tien of blades.

Eccentric mounting of
gears. Oblique mounting
of gears.

Index error in teeth. Mia-
aligned assembly. Exces-
sive backlash.

Shaft eccentricity.
Shaft flexibility.

Shaft ssymmetry

Improper alignment.

Universal joint with large
sngle.

Drive motor

RBapid start-vp. Load
sppiication. Lload ve-
duction.

2%4

Bemedy

Hodify firing ovder,
crank angles and timing
{Gesoline}. Esiptein
slectrical system. Use
lerger flywheszl. Re-
select bslance weights.
Use fluid coupling.

Use ducted propeller.
Incresse ship-propeller
clesrsnce. Eliminate
struts. Use higher in-
ternal damping material.
Incresse number of blades.
Reduce csvitation effects.
Modify guild vane inlet
angle. Add fluw streight-
eners on honeycowb.

Remount concentrically.
locate gears accurstely
on shafr. Recutr teeth
or replace geayr. Re-
align in besrings.
Helical tooth required.

Reassemble concentrical-
1y or rebslance.
Multiplane belance
through speed range.

Salance or cut for
symmetrical stiffness in
both flexure planes.

Realizn. Incresse
coupling flexibility.
Reduce angle. Use con-
stant velocity joint.
Use bevel gears.

Modify: magnetic design
of ooles; number, or
edges. Increase number
of poies.

Gentler electricel
starter. Gentler cluteh,
automatic operation.
Fluid coupling. Mag-
netic coupling.
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Fig. 8.08 Critical Speed Diagram for Simply Supported
Shaft Subjected to End Thrust and Twist

Reprinted from British Association for the
Advancement of Science. Report of the
Eighty-Minth Meeting. Figure 17 Edinburgh,
1921. 1922 John Murray, Albemarle Streest
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APPENDIX A - FUHDAMENTALS OF HYDRODYHMAMIC LUBRICATION THEORY

The theory of hydrodynaemic lubrication iz bssed op 2 psrticulsr formulstion of
the Bavier-Stokez equsacions, known ss Zeynolds' equation. The underlying

sssumptious ars:

1. The thickness of the fluid film y is very small compsred with the
length x and breadth z.
2. No varistion of pressure occurs across the film thickness, dp/dy = O.
3. The flow is leaminsr. Ho vortex flow and no turbulence exists within
the £iim.
. HNo externs! forcez sct on the fluid film. Thus, X = Y = Z = Q.

4
5. PFluild inertis is small compared with the viscous shesr.
6. No slip cccurs at the besring surfaces,.

?

. Velocity gradients io the direction of film thickness are negligible,

With these assumptions, the generszlized Reynolds’' equation becomes:

3 . 3 .
3 ph’ 3p, 3. @b ) 3oh
5 B P o EE D - s oy P v
3
+12n 2 4D
I's

This expresaion aspplies to both compresaible and incowpressible lubricants. The

left-hsnd side describes the pressure distribution throughout the besring. The
first right-hand term is due to the bearing velocities along the ocil film. The
term 120V is due ro the bearing surfaces in s direction normal to the oil film.
The lsst term z2ccounts for time-dependent pressure vsristions in the film. For

A-), the ghaft alone rotates, U2 = 0, and Reynolids'

a journsl besaring, Figur
3

e
equation for a com sible lubricaat becomes:

S
el
-
o

- .3 N 3 . N

3 3 5 An.

S.oBR. 2By 4, 2. Bhl 22y L g -49—2-"_"‘ + 12V + 12h L (a-2)
% v 624 Jz 113 3z DX at
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.

With 8 compressible lubricant p = constant, and for s journsl bsaring Reymolds'
squation becomes:

%(§§)+%(§i-§)-w§¢-m B/ )
These equations may cont-uin viscosity, density, film thickness and tioe es
parameters. These parameters both determine snd depend on the temperature and
pressure fields, and on the elastic behavior of the besring surfaces under
pressure and temperature. Thus, to obtain a complete and sccurate represents-
tion of the hydrodynemics of the lubricating film, it may be necessary to con~
sider simultanecusly the Reynolds' equation, the energy equation, the elasticity
equation and the equation of state. Both energy and elasticity considerations
sre discussed at length in the book by Pinkus and Sternlicht (Ref. 2). The
equation of state applies to compressible lubricsats, and is

p/ep = T -
as given by the perfect gas law. In general, it is sufficiently accurate to
ignore variations of p and p with T, and to substitute the equation of state
into Reynolds’ equation. Where this approximation is impossible, the equations

must be solved simultaneously.

Incompressible Lubricants

For an incompressible fluid, the dynamic Reynolds' equation for journal
bearings of finite length may be written

3 3 - .
'%;(5" %E)‘*"%z‘(&"§§=6&o [1-25]%+12pco39 (A-4)

Introducing the dimensionless parsmeters

X = x/D; z = z/L; h = h/2C; € =p/C
3

- e Cc

p = (um) @ °
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T e

R

and assuming comstsnt viscosity, Reynolds' equation im dimensionless fors

becomes:

~3 3% 2 -3 o )
2 @y ., S L @y . ox B, 12:-—5-:;--‘“.9

= E i* 3 1-2®

B = 1/2 (L+¢€cos® .

whers

The resulting fluid-film forces in the radial and tangential directions acting

on the rotor are

2%_”;«:0: 9 dx dz

P,o= (1 -
cea-zhef et
12(2’)) .
P, = m(l-zc%)ff;sined;d;
€/ L
- mu-z%‘) £, e—L—- > (A-6)
12(m)
where
BRL 32
e

For rotor-bearing dynamic analysis, these forces are linearized with respect to

displacement and velocity to give

of ¢ : c
dF-Am(lZa) :——de+———-.d—)+-—~.—-—-da) ..d(—)]
o¢ 3(e/w) @ d(a/w) % 128 w ]

Expanding the above expression in a Taylor series above the steady-state

equilibrium position, it fellows that ¢ = @ = 0 and so[Bf/B@ } 0
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This gives

"
4
N

; 2f 1
@ = o [Lde +-A- 4§ ML

Changing from polar to rectangular coordinates as showm in Figure A-1

*

x = Cs cos O y=Cs sin &

the force coordinates in the x and y directions are

1 ofr 2 fr 2 ft . aft
d!‘x-'cm {- a—cosa + < sin" @ + (T+;-) cucsmc]dx

- Bf:" colzc - _ZLC_ sinzd + (2? oft )ccl Q@ sin. 0]
L9 (e/w) 3(e/w)
L

gt 2, oft 2 fr _ oft
+[e cona-g—si‘nuf(e -;—}conasmé]dy

+ [2_£§_ cosla - £t sina + (2£t Bfr == ) cos @ sin G] “l‘ (dy)

€ d(E/w . € 3(c/m)
dFy-%ND [géf'g cos’a + ?:-ai 2mu-(--- oft, caasina]“*
4{8&‘: cos?a - L g15% 4 (22 ofr ) cos @ sin a] 2 (a0
e fo) : 3(/m)
£ osla 4+ ofr sin’a - (- fe aft) cos @sin @ | d
ST eos e g ee - (G EE ’
) [_z_f_c_;_ cosa + Bf*.:, sin’qa - (.255. + é-f--E--- ) cos @ sin c] :1'; dy) (&-7)
€ 3E/w) € 3

This is expressed in the form of displacement and velocity coefficients, common-

1y called spring and damping coefficients for rotor dynsmic analysis as follows:
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S S T

.

o v o w  w  w a a  _ _m—

i?z = sz iz % czx {éz; + ZE? gy + cg? {€¥}
dF = K dz+C (s} + E dy + € (d " (a-8)

-

¥umerical valves of thess spring end damping coefficients for incompressible
bearings are given in Tsbls A-1.

Compressible Lubricants

4 number of technigquea have bees used to obtain sclutions for the case of s
finite-length gas béaring such 22 the perturbation method, Ausmen {(Ref.1l3),
the Galerkin mwethod, Cheng (Rsf.:26), the ph method Ausman (Ref.128), and the
iinearized ph methed, Ng (Baef.127). Of these, the linearized ph method leads
to ao improved analyticsl sclution which lsrgely esliminates the defects of
first-order perturbstion. Thia method linserizes the compressible Reyﬁoids'
equation by setting the product ph of the pressure gnd film thickness as the
dependent varisble. The ateady-state pressure distribution is given by

b <]
8

Py 1 A
[m}[l+em{31§51n0+32§c050}] (A-9)

where
glc = 1 ~AsinhOf sin B Y + B cos h@{ cos B

%, { = 1/A+Acoe hOF L cospg + Bainha{ sinp

Accg n @ (L/D) cos £ (L/D) + sin h @ (L/D) sin B8 (L/D)
sin h2 ¢ (L/D) + cosz B (L/D)

Acos b QO (L/D) 3in B (L/D) - cos h & (L/D) cos 3 (L/D)
sin h2 (L/» - CC’IZ 8 (L/D)

o ]

o = 1/2 [1+ Vi+ A 1

7= 1/2 [-1+ V;‘.TZ‘?]

L8]

N
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and C :
L P;;) +p, S cos @
L A 174f;‘co: 9

- ¥ -

whars pzl}»il the first-order p-iturbaticn §§1u:ian fer prcssufe.

'The radial and tangential components of load capacity sre:

R

(55

. (1)
W, = W
"» N

‘- g

2 V). <2
H,r = HT 3 {1 - 1 ~-¢ ]

€

it

vhere'ﬂi(l) and ¥, m are the first-order perturbation results. The total load

T
capacity and attitude angle are given by

EIR WA ¢’ V1 - sl ®
52 il-e

Tan § = 1 - e2 tan 8(1)

v = @

M g oM

ey

where W
e

are the first-order perturbation results. Figure A-2 shows
and as function of the bearing number A for various (L/D) ratios.

The Reynolds' equation for dynamic loading with a compressible lubricant may be
solved by s number of methods, including the finite-difference technique, Stermlicht

(Ref.118), The force derivations with respect to displacement and velocity are

W v AW
R = -—-3——— oL = T
S (1-2a*> (5-; )D 2 (5? )S
W T oW ) )
R 2 R R
v -(1_20,) (dé )D = -2 (ge--—)S (A-10)
where ¢' = w:i and at = —gg?
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Reprinted from MECHANICAL DESIGN AND SYSTEMS HANDBOOK,
Figures 12.16a and 12.18b, Harocld A. Rothbart, Editor,
McGraw-Hill Book Company, 1964,

-314-

|
|
!
!mmmmmmmmmmmmmmmm

!
I
{
'
3
!
'
t
3
1




7961
‘Auwdwo) yoog [1TH-AYIHON ‘1031pH ‘1awquioy °v pYoxeH ‘gr°Il
»an811 ‘UOOUANVH SWHISAS ANV NOIS3Q ‘IVDINVHOEM woay pajuyaday

aaquny Buypawad ‘eA IyBuy ovsu:u?ﬁ * 1aquny

Sujaway °sa ei8uay apniyiav (8) -aaquny Buyxiwog ‘ea oyfuy

opn3133Y¥ (3) ‘aequny 3utawag ‘e @[8uy opniyrav (@) " aaquny

Sujaweqg *sA 23107 ssojuojsuanmiq (p) "asquny Bujarag *sA 323104

ssojuorsuamyq (o) ‘iaqunu Bujavaq ‘sA 9D10] SEA[UOISUIMIQ

" {q) *Yaquny Sujawag ‘sA 90107 ssafuoisusmiq (®) °sojIwy as
1vasAeg 103 @1Buy 9pniyIaV pus pwoy ssejuoysuswy] Ju SUOTINTOS c-v "311

(% . 1} {9)

-ee—e-¥ Ve - LS TR | Vi e
¢ tY fP L0 O O Y QLAY 0 0O 0 0 801 G0 D O O O B0 B0 PO O
g — 0 & 17 0 — 0
. 1 —r , ~ = N < f - — — ﬁuic_ ‘ — A0 iy g — 1_‘ ~ 01
, TR 20/ b e
* + NM 4 oz . GARLLAN MY 111 02 LALRAN =
N B SN RO e - 3
_ <3 A o¢ ] of /[Z 0f ~ 0 3
+-N ~i- {—{or el b e INLort v or &
' N I P = IM/ N , »0
s Nos e S N DS Z os ol 05 g
ve- A4 /;,%83\ RN o SRR oY E
vo 1AL VRN 01 50 /L//;V 0l NN el 0L \Fl/fﬁ t-Ndos e
vo ) vo— | N 1 A R -
) > - o0gjso—4— 08 {5011 N AW ™~ [/: 08
20:» : o 1022 4 06 06 06
oy - B (a) {0)
<:|3140|13.. <\.III'.,~¥I,.< yn L!et.T\:E.:_« V- -V*Q:i ........ v
O #0 80180 ¢0O oo 0 b0 801 B0 0 Qo 0 0 801 80 ¢0 cc 0 F0 801 80 #0 oo
St - N 20 WL..[ 4 i % v
% N ro”
0 a S 01w - ¥ 01 a»“.r 0 01— - '.e\o.a\« 04
0N - (X M ) W\ 'Y) TN
_..r/ 9 0zl 153 0z}-\ ) oz}— 2N 0N 0z &
10 ] Bl Rk
]
9 s . 0t y 0t o 0t 1 z.“..o“? 0%
71,’ <h¢ .u.w ]
2:0/ o O —mian| 1%’ ot 1= 001 , ov Or
i1 | (1] [ 1
0§ 0s 0¢




Ty

s = - T meegmarew 0 onccwews o A ] t. s A g e W ey q—-ﬁ??"?s?-ﬁg??’sa
~

——

APPENDIX B - TRANSFORMATION FORMULAE FOR STATIONARY AND ROTATING COORDINATES

The required transformations for cartesian coordinates to either stationary or

rotating polar coordinates are cbtained as follows:

v
P
4
o i
x
Stationary: r = x+ iy
X = r cosb
y = r siné
¥ = (F - réz) cos@ - (r@ + 2£0) sind
§ = (F - ré) sine + (0 + 2£Q) cos®

Radial Acceleration: a = X cos@ + § sin@

= (f - réz)

Tangential Acceleration: a = -x sin® + ¥ cos®

t
= (r@ + 2rQ).
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Let the rotating coordinates be £, n snd let the corresponding unit vectors be
- ¢, 8, as shown in Figure B-2. Let r be the modulus of OP = ¥ such that ¥ = % r.

[ The unit vectors vary in direction and so:
(d%/dt) = ad (d8/dt) = - o
and so

Pr—

¥ = (dr/dt) = d/dt (£ x)

Differentiating again gives

r+ § ar

>

pre—

{ T = (dV/dt)

- $(F - 16%) + 5(x + 289)

[Ep—

More generally, by not placing the rotating coordinate { along the radius OP the
j vector expression for the rotating radius is:

n y |

n

)

T o= Ig+0n
where 1, 5 are unit vectors in the £,n axes respectively, and

di/de) = Ju; (d§/de) = -fm as before.

T = (df/dt) = fE + In + E@lzdr) + ndf/dr)
= ¢ - o) + 30 + @f)
2 - 200 - @) + [ + 20f - oPn)
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: In addition, if the radius ¥ reletes to stationary x,y coordinates, and the radius
3 relates to the rotecing coordinates §,n, the relationship between them is
r = aem
t = (z + ims) ol2€
Fom (24 2imé - @'z)
| l
| To convert from rotating coordinstes back to stationary coordinates, the trans-
I _ formation expressions are AN -
- imot

l 2 = Te L
i o= (f - iax) e @

F o= (f - 2@ - oir) e I

N =
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