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SUMMARY 

During the tenure of this contract, 31 July I960 to 30 July 1961, an 

extensive study was made of the feasibility of applying analogue computer tech¬ 

niques to the "Quantitative Analysis of Metabolic Systems", work which has already 

been extensively reported on in this series of contracts and been the basis of a 

series of papers by Dr. F. Helmets of the QME&E Command and Dr. A. Herschman 

of the Worcester Polytechnic Institute. 

In the first phase of the work, use of an Analogue computer was made to 

rework most of a paper which had been based on earlier reports. This is presented 

in the first part of this report and will be published shortly as "Quantitative 

Analysis of Metabolic Processes, II" by F. Helmets and A. Herschman in a forth¬ 

coming issue of "Mathematical Biophysics". It was the purpose of this phase to 

obtain numerical data from a given metabolic scheme and compare it directly with 

experimental results, in this case the work of M. R. Pollock (Brit. J. Bxptl. 

Pathol., 1930 and 1952). 

In the second phase, an investigation was made of the combined effect 

of non-linearity and feedback in a number of simplified systems, by means of the 

computer, to gain fluency in the behavior of such systems. This was in keeping 

with the spirit of the present contract which was designed to circumvent the 

impasse reported in the last contract report. The results of this phase are pre¬ 

sented in the second part of this report. 

The final phase was devoted to coding several more complex systems for a 

much larger computer than that available at this Institute, so that this work will 

have to be completed by another contractor. 



I. Application of Machine Computation 

The purpose of this part of the contract was to obtain specific numerical 

results from general schemes of metabolic processes which did not lend themselves 

to tractable mathematical analysis. These results were ultimately compared with 

experimental data obtained by M. R. Pollock (Brit. J. Exptl. Pathol., 1950, ¿1, 

739 and 1952, 33, 587), and found to agree quite well. 

The model which was pursued was one in which the Template was made 

specific by an inducer; the specific Template then combined with elements of the 

pool to produce the enzyme. In this simple form, there is only a short lag in 

the synthesis process which was found inadequate to explain the experimental data, 

so that it was necessary to modify the system to include an intermediate receptor 

stage making the process one with an extended lag. This latter scheme was found 

to account for the experimental data quite adequately. 

The first scheme considered was: 

Scheme 1-1 

T + S (TS) T - -kiST + KjB 

(TS) + p -» (TSF) B - kxST - icjB - kaBP ■ k3C 

(TSP) --> (TS) + E 0 • kaBP - k3C 

É « k3C 

where: T * Template concentration 

S ■ Inducer concentration 

B - Specific template concentration (TS) 

G » Complex concentration (TSP) 

E =* Enzyme concentration 

and the dot over a concentration means a time derivative, and the bar over a rate 

constant gives the value for the reversed process. In the first model, both the 

inducer and pool supply was assumed constant either because they were veiy large 
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or replenished during synthesis. Thus one has the first integrals of the equations 

as: 

S * const., P ■ const., T + B + C- T * const. o 

Introducing the following constants, for simplicity: 

a - kxS, K - ka + k2P, k - kakaP/K, ß « a - K, y • 

one obtains directly: 

i. K(g - rl e-at + SÍLzjd e~Kt 
yP yP T T e o 

•at 
B (yr0A) 

C - (kaPTo/K) (K/ß) e‘at - (a/P) 

E - kTo (t - 1/a - 1/K) + (kTo/ß) (a/K) e"Kt - (K/a) e 

Since for most cases of interest a is by far the largest of the rate constants, 

one may consider that after a reasonable time large compared with i/o, all terms 

in e" become negligible, giving as a long time behavior: 

T 

C 

0, B - (yT0/K) 

(K-y/y)T0 [l - e"KtJ , 

1 + (K -y/y) e"Kt] 

E - kTQ ft - 1/K + e"Kt/K 

So that at large times the enzyme is produced at a linear rate with a lag given by 

the total intermediate time constant and a rate given by the relative intermediate 

time constant. (Note that in the foregoing one assumed that kx « a.) The 

enzyme production curve is sketched in Fig. 1. The central characteristic of 

such a linear system as this, is, as has been noted, the ultimate linear increase 

of the enzyme production after a time lag. 

A somewhat more complex system is Scheme 1-2, wherein the amount of pool 

available is depleteable. In this case we must append the equation: 

P - -k3BP 
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to the equations of Scheme 1-1, and also change the first integrals tot 

S * const., p + E + C“Po" const., T + B + C ■ • const. 

If we limit outselves to long time solutions after which, T ■ 0 for all practical 

purposes, one hast 

B - - P/k2Pj C « E/kai and B + C - To 

giving: 

P - PQexp (k2E/k3 - k2TQt) 

So that the equation for E becomes: 

Ê + kaE * k3P0 (1 - exp (k2E/k3 - kaTot) ) 

For small values of the time, this has the solution: 

E = k2k3P0To t2/2 - k2kl To(Tq + 2Po) t3/6 + ... 

which may be compared with the result for constant pool, viz.:. 

E - k2k3PoTo t2/2 - k2k! Po(Po + To) t3/6 + . . . 

and is seen to be substantially the same — i.e., there is very little difference 

in the lag properties of the two systems. For somewhat larger values of the time 
• a* 

C and consequently E become zero — i.e., C has a maximum and E becomes a straight 

line and since C is always rather small after that, E has a quasi-linear appearance. 

To obtain values of E over this range, one sets C to zero in the basic equations and 

solves the resultant algebraic equation for P to obtain: 

•A. 
2P = [(To + E - Po + k3/ka)2 + i|k3(P0 - EVka) - (Tq + E - Pq + kaAa) 

and tabulate P as a function of E from this equation, substituting these values 

into the equation giving P and E as a function of the time, one obtains t as a 

function of E, the inversion of which is the desired result. Although strictly 
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only valid for a single set of values of P, E and t, it is quite accurate over 

a whole range. 

The results of such an analysis will also be found in Fig. 1 and it is 

quite apparent that there is a fundamental difference between this result and 

that found earlier, viz., the fact that although the linear region in 1-2 is 

rather long, ultimately the value of E saturates, and as can be seen from the 

first integrals in this scheme, eventually approaches the constant value P . Thus 
o 

for small and intermediate values of the time the constancy of the pool is 

immaterial as long as the pool is rather large and one cannot distinguish between 

1-1 and 1-2 readily^ however, for large values of the time, the depletion of the 

pool is of great importance in that it ultimately causes the saturation of E. 

Note that this particular scheme was used in a somewhat different form 

as an example for a proposed application of the analogue computer to this sort 

of problem in the previous year's report for this project (DA 19-129-QM-lii!?7, 

30 July I960) where it is referred to as Scheme B of part II of that report, and 

in which a proposed computer circuit is presented for its analysis. This circuit 

was, however, never set up, since it was obvious from the foregoing that allowing 

the pool to be depleted would in no way extend the lag period in the enzyme 

synthesis, and the experimental evidence was for a longer lag. Hence it was felt 

necessary to introduce another intermediate step and instead, consider Scheme 1-3. 

Scheme 1-3 

T + S 4—* (TS)# 

(TS)* -> (TS) 

(TS) + P —» (TSP) 

(TSP) -» (TS) + E 

-kxTS + kxB* 

k2B* 

B - kgB^ - ksB + kj^C 

C * kaB - k^C 

É - k^C 
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where we consider the base for constant P and have absorbed P into the constant 

ka. The equations have two immediate first integrals} 

S -S-T-T«B* + B + C o o 

where SQ and Tq represent the initial values of S and T respectively, the other 

concentrations are assumed to be zero initially. 

The long time behavior of the system can be found by setting all the rates 

but that of E, equal to zero, giving three cases: 

a) S < T , S->0, T-*T - S, É—He'S oooo o 

b) S > T , T—>0, S-*S - T , Ê->k'T 
0 0 0 0 0 

c) SQ ■ Tq, S—>T—?0, E does not quite become constant. 

♦ 

The quantity k* introduced above is: k> « + k^) and the behavior of E 

in case (c) is not apparent from the procedure just outlined. 

To gain a better insight into the general behavior of the system when the 

(TS) formation is rapid compared with the intermediate steps, it is convenient to 

use the integrals of the equations to define a quantity U as: 

U - U- T - T«S - S-B* + B + C 
0 0 0 

so that we have: 

TS » (T + S )U + (U - U)2 o o ' o ' 

and we have put: U ■ T S /(T + S„). Now if we neglect the term in (U - U)2 ooo oo 0 o 

as being small, a procedure valid where U is not itself small, we obtain a linear 

equation for U, viz., 

U + (K« + k2)U + k2K U » 0 
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where we have Introducedî K ■ ki(SQ + TQ) and K' ■ K +^. This equation can 

be integrated in closed form to give: 

U - Uxe"^ + Uae"**1 

where Xx and \a are the two roots ofs X2 + (K1 + ka)X + Kka ■ 0, and 

Ux - (K - Xa)Uo/(Xx - Xa), Ua ■ (Xx - K)Uo/(Xx - Xa). 

In the limit where K is very large compared with ka, the usual case, we 

have: 

Xx - K» ♦ kka/K», Xa - Kka/K‘ + Hck^/K»3 

Ux ” K(1 - 2kk2/K»2)Uo, Ua - k (1 + 2Kk2/K»2) Uq/K» 

so that we see that U consists of a rapidly decaying part and a slowly decaying 

one, the latter existing only because of the reversibility of the first step in 

the process. Once U is found the remainder of the terms may be obtained by direct 

integration, f.c ., B is given by: 

B* - KUo (e'X2t - e"Xxt)/(Xx - Xa) 

Since B + C may be obtained directly from B* and U, one may easily obtain an 

equation for C and integrate it and from that obtain an equation for B and also 

for É, this latter is, in teme of K - k^ + k^ and the k' defined earlier: 

in "kt Kkae 
1 + - 

(k-Xa) (Xx~k) 

Xxke"Xat Xake-Xxt 

(Xi-Xa) (k-Xa) (Xx«Xa) (Xx-k) 

The integral of this is readily found and is seen to contain a linear tern and 

three transients. On the assumption that K is large whereas ka and k are small 

and about equal in magnitude, one obtains: 

E - k»U o 
t - to + (k2 e“X2t - X2 e‘kt)AX2(k - Xg) 
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with tQ ■ 1/k + l/\a • l/k + (1 + k/K)/ka. We have completely neglected the short 

term transient and the terms in tQ contributed by it (exactly 1/¾). Note that the 

reversibility of the first step makes itself felt only in the lag time tQ and not 

in the slope of the enzyme production curve. In Fig. 2 this slope obtained from 

k»Uo and from the infinite time limits considered earlier, as well as those obtained 

from reading curves obtained from the computer programmed for the exact non-linear 

equations (see below), are displayed. 

In obtaining the curves of Fig. 2 and also Fig. 3, the enzyme production 

curve for a specific set of values (machine curve), an effort was made, by means 

of the theory outlined so far, to obtain a consistent set of units with which to 

describe Pollock's (19f>2) work. Fig. 3 of Pollock's paper can be considered to 

give the asymptotic enzyme rate for very small SQ and hence the slope of this rate as 

a function of SQ should give k' directly. This is found to be 23,200 p-l-COg/unit/hr8. 

Where »unit» refers to units of penicillin and |xl-C02/hr, was Pollock's unit for 

enzyme production (related to the method of measurement). Presumably the slopes 

of the E vs t curves are too small since not enough time has elapsed after only 

one hour to adequately estimate, but Fig. 2 of this paper shows that in the very 

small SQ limit, very little error is introduced by inadequate waiting as the two 

limiting curves are almost coincident. Fig. 6A of Pollock's paper again gives the 

rate but now for very small Tq which gives us k'To as 660 nl-CO^ml/hr8 when 

0.05 mg of cells were used. This implies that there are 0.57 units of Tq in every 

mg of cellular material. The values of the rate constants are not so easily 

obtained. One may estimate tQ from many of the curves given by Pollock and find 

it between 0.20 and 0.25 hrj however, the analytic expression obtained for t in 
o 

terms of the rate constants is probably valid only for the case of his Fig. 3 

" 0*21 hr) and in this case, one does not know enough about the relative values 

of kj, k^, etc., to obtain each of them from a single expression. Extrapolating 
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the validity of our linear approximation to higher valuea of So, we may uae hia 

Fig. 6a and the assumption (of a heurisitio nature) that: kg - ■ ki, so that 

we obtain: kg ■ 7*2/hr, k* * 3.6/hr. This yields the conversion factor of 

1.55 X 10 units of E producing 1 pJL-C0?/hr. In the machine calculation T was 

taken to be 5V. which for 0.5 mg of cellular material implies that one unit will 

be represented by 17.5 V. Also the constants kg, etc., were taken as l/sec, so 

that 1 sec of machine time represents 8.t min of laboratory time, alternatively, 

1 hour of laboratory time is 7.2 sec of machine time. 

Thus for example, Fig. 6B of Pollock's paper gives a rate which in 

Pollock's units is 5650. We may convert this to our standard base as 0.875 units/hr 

and for the purpose of comparison with the machine's calculations as 2.12 V/sec. 

This point is indicated in Fig. 2 of this paper along with similar points taken 

from Pollock's Fig. 3 (his 1950 paper cited above). Unfortunately, Pollock did 

not use any values of S intermediate between 0.1 and 1.0, so that we cannot show 

any points in this region. 

In Fig. 3 we show one of the machine curves obtained with the constants: 

k2 = k3 = k^ = l/sec; ^ - 5/sec; ^ - 5/sec~V 

T » 5 V and S - 16 V 
0 o 

On the curve are indicated, as experimental points, Pollock's Fig. 6B points, 

which, as we have seen, would represent 17.5 V for Sq, but the difference is not 

considered significant since there is little change of shape with SQ in this 

region. The very good fit of this data is the best confirmation of this approach 

since the scale factors et al which were used were obtained exclusively from 

Pollock's other curves and independently of this one. Modification of the machine 

values of kx and kx would also have improved the fit at the lower points, but 
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this is not considered worthwhile since more accurate experimental measurement* 

would also be necessary. 

We would now like to investigate in more detail, the manner in which such 

a system is set up on the computer to obtain the sort of results which we have 

used to fit Pollock's data. This will also serve as an introduction to the next 

part of this report where the computer is used as a more active tool. 

Briefly, the computer consi ts of a circuit whose elements add, subtract, 

multiply, integrate and change the sign of voltages which are applied to them. 

Thus each such element has an input and an output voltage (designated by ex, ®a> 

respectively, or with additional subscripts as needed, in the following table), 

and one distinguishes the nature of the operation on the input voltage to obtain 

the output, by means of the shape of the element in the diagram. The following 

is then a "dictionary" of computer elements (see report on DA 19-129-QM-llj.5>7, 

30 July I960 for a similar table and reference): 

O-—.O Sign changer: e2 ■ 

ei 

63 8=i>—0 63 Adder: 03 ■ - (ex + ®a) 

ex 0-®-O 03 Scale factor: e2 “ yex 

Integrator: 

Ü 

/ 03 * ®0 - / el dt 

e 

03 

Multiplier (positive): 83 - + ex e2 



In all of the following analysis, we shall inscribe within the appropriate symbol, 

the value of its output, in the case of integrators and multipliers) scale factors 

will simply be denoted by the factor they represent and sign changers and adders 

will not be marked. 

Using this dictionary, it is then a slight step to the following circuit 

diagram for Scheme 1-3: 

To see this, we compare the circuit with the equations for the scheme as given 

earlier, one need merely note that the output of the integrator is indicated on 

it, so that the multiplier has T and S going into it, and (being a positive 

multiplier ) will put out the product TS, and because of the scale factor, 



’H1 
klTS and also -JclB are fed into the adderj therefore, with 

input on both T and S integrators is kxTS - kxB* which is found to 

negative of t as it should be. Similarly, one sees that the chain of Integrators 

are labeled as they should be, with the final output the enzyme. 

The circuit diagram is then, itself, the analogue of the (chemical) 

kinetic equations for the system, with each integrator playing the role of the 

appropriate unit in the system so that with a little practice one may set up the 

analogue circuit directly from the schematic equations. The advantages of using 

the analogue computer for this sort of work are thus seen to be many-fold, not 

only is the accuracy of such a computer more than enough for the data available, 

but the circuits lend themselves readily to direct interpretation, making it 

possible to "read out" the biological process involved directly. 
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Fig. 1: Comparison between Enzyme synthesis with depletable and replenished 

pools. The units are taken arbitrarily as ^ - k2 - - 1. 
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Fig. 3s An actual machine computation (full curve) with Tq » 5 V, SQ ■ 16 V, 

on which are placed the experimental points of Pollock's Fig. 6B in 

circles. The scale factors were obtained from Pollock's other data. 
See explanation in text. 
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XI. Studie a in Non-linear Synthesis 

In this section variations on a non-linear scheme were tried, with the 

view toward obtaining an intuitive feeling for the behavior of such a system. In 

the variations, not only were the initial conditions changed, but also intermediate 

rate constants and the number of Intermediate steps taken were also changed. The 

computer was an invaluable tool in this study, since it was non-linearity of 

just this sort which caused the bog-down of the previous contract, due to the 

intractability of the equations, a factor which is completely irrelevant to the 

machine. 

The first system considered was II-l, viz.: 

• » 

Sj, + E ► S2 + E Sx ■ P ■ 0 

Tx + P —► Tx + E S2 - kxSxE ■ kaSaTx 

S1 + T2 —► T2 ^ - k^S1T2 - * - T2 

« 

Sx + T2 —*■ Tx E - kaPTx 

Since an obvious first integral is Tx + Ta ■ T0 * const., and one may choose as 

a time unit the rate of the first reaction, viz., assume: kxSx » k^S^ ■ 1, giving 

only the intermediate and final reaction times as parameters, 

kaP * ß and ka ■ y 

one obtains the following simplified form of the equations, 

Tx = T0 - Tx - yS2Tx 

S3 - E - rSaTx 

E ■ ßTx 

which set may be readily coded for the computer as in Fig. l^A (Fig. UB shows the 
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same circuit as it might be used with all the resistors and capacitors needed 

to produce the requisite rate constants and scale factors, in place. In practice 

somewhat different values might be found more convenient.) In the computer 

circuit, we have dropped the subscripts on 1¾ and Sa, since in the final equations 

these are the only quantities of this form involved. This convention is also 

adhered to in the output curves shown in Fig. JÍA and Fig. $B, 

In Fig. 5A, the machine computation for E is plotted for values of S0 

(the initial value of Sa) of: 0, i¿, 10, 20 volts. In this scheme T0 was 

arbitrarily taken as 10 volts and ß was fixed at 0.1 whereas y was taken as 1.0. 

In Fig. 5B, T is plotted for the same conditions. Also indicated on this plot, 

as dotted lines, are two representative S curves. Vfe first note that since E is 

essentially the integral of T, the extreme fluctuations in T for small times 

give rise only to a slight displacement of the various E curves, one from another. 

What is more significant, however, is that the various T curves, which begin in 

such a widely different manner, all approach the same general form, except for 

a slight relative displacement. This, one of the most important properties of 

the non-linear system, will show itself in all the future variations as well. 

Briefly it can be stated as: even though the initial conditions play a large 

role in the initial behavior of the systems, ultimately the behavior becomes 

substantially independent of them, being a function, primarily of the form of 

the equations. Mathematically this can be seen from the following formal integral 

of the equations: 

* «i 

S - exp(-yE/ß) [so + J E exp(+yE/ß) dtj 

o 

So that since E is an apparently increasing function of the time, the first 

term in the brackets ultimately damps out to zero, leaving the asymptotic behavior 

-16- 



Independent of the initial condition in S0. 

Attempts to solve the equations by sucoessive approximation 

an asymptotic series for this integral, are not wholly consistent, since the 

has almost no radius of convergence. E.g., one may obtain the following formal 

series for S: 

S - (ßE/yE) - ß8(E/E)/YaE + 

so thats 

yST - E - P(E/Ê)/y + . . . 

implying that S ultimately saturates as does E (to the value T0/ß, l.e., in 

this case, about 100 volts). The difficulty of this line of approach, however, 

is that the perturbation term in the series is not really small and in fact 

diverges (the presence of a time derivative of a constant in the denominator). 

The saturation properties in the solution become much more accentuated 

when intermediates are placed into the circuit. This becomes apparent in 

Schemes II-2 in which an additional S is placed in an intermediate position, 

S! + E -* S2 + E S2 - KjSxE - kaSa 

Sa —* S3 S3 * kaSa - kaSaTx 

S3 + Tx Ta 

Sx + Tg —V Tx E « kijPT-j. 

Tx + P —* Tx + E 

Again we choose as our time unit, the time of the first process "and sets 

^1¾- k^Si«!, taking for the other rate constants: 



bo that with the first integral: Tx + Ta • TG, we 1 

S3 - «Sa - ySaTi 

Sa ■ E - aSg 

kg ■ o, k^P - ß, and k^ • y 

Tx • T0 - Tx - YSaTx 

E - ßTx 

In Fig. 6A, the computer circuit for this set of equations is indicated. And 

Fig. 7A gives the resultant value of E for the choice a - y * 1*0, ß • 0.1, 

To “ 10’ So “ 01 10» 16 (the Initial value of Sa). Fig. 7B gives Tx for the 

same parameters, and Sa and S2 are given hy Fig. 8A and Fig. 8B, respectively. 

One readily sees that the presence of the additional intermediate step 

merely modifies the sharpness of the initial Tx response and has little effect 

on the long time behavior; however, in this case one does see a much more 

pronounced saturation effect in E than in the first case considered. Both E and 

Sa apparently saturate to the value Tq. A perturbation expansion similar to 

II-l can also be made in this case, but would be on just as shaky grounds. 

Another conspicuous point of structure in these results is the sharpness of the 

focus of the Tx and S2 families of curves. In Scheme II-l, the diffuse region 

in which the T curves apparently crossedUs given way, in II-2, to a very sharp 

crossing point at t * it.8 sec and Tx ■ 7.5 volts. Also the Sa curves exhibit 

a similar structure at t - 3.0 sec and S2 - 1.9 volts, as does the S3 curves at 

t » 1*.0 sec, S3 - 0.3 volts. This "focusing" property is not an unusual property 

of non-linear systems. 

In the final version of this scheme, II-3, we make the final step in the 
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enzyme eyntheele non-soluble, so that the amount of active template 

i.e., Tx, is steadily depleted by the production of enzyme. This 

form* 

1¾ + E 

Sa 

S3 + Tx 

Si + Ta 

Tx + P 

S8 + 

S3 

Ta 

Ti 

■ E 

sa ■ kxSxE - k8Sa 

S3 - kaSa - kaSaT], 

Tx • VlVWl 
t2 - - Vit2 

É « ^T^P 

k-T.P 
P' & 

And again we choosej k^ - k^ “ 1 and define a, ß and y ae before. In 

this case, however, there are no simple first integrals, but the computer circuit 

is straightforward and will be found in Fig. 6B. We expect the results of 

Scheme II-3 to be essentially the same as those for II-2 except for a tendency 

of Tx to fall off to zero more rapidly and, therefore, for E to saturate more 

rapidly (since it is essentially the integral of Tx). This is born out by Fig, 9A 

and Fig. 9B which give the values of E and Tx, respectively, for the same parameters 

used in II-2. In Fig. 1QA and Fig. 10B are plotted the values of S3 and Sa, 

respectively, for the same conditions. Investigation of these curves shows that 

the same structure points are maintained except that the crossover point in Tx 

of II-2 has given way to a region declining in a manner similar to Tx itself. We 

see that our qualitative conclusion, arrived at earlier, of the asymptotic weak 

dependence on parameters appears to be upheld in this case as well. 

As a final investigation of this conclusion, we have obtained results for 

the cases SQ ■ Tq - 10 volts in which a and y were varied independently, keeping 

ß fixed at 0.1. In Fig. 11A, we see that the effect on E is completely 

unimportant — i.e., the final output 3s virtually uneffected by the intermediate 



rate constants. We also see that the asymptotic values of Tx (Fig. 11B) are 

also uneffected and that there is only some short time fluctuations from the 

standard value. In the case of the inducers, however, there is a rather pro¬ 

nounced effect. Variation of the rate constant which governs the feedback to 

a specific inducer (see Fig. 6B) has a large and inverse effect on that inducer 

as can be seen from Figs. 12A and 12B, but variation of the other rate constant 

has substantially no effect. Thus we see that the output of the circuit is 

substantially stable against variation in its parameters, at least as far as 

its asymptotic behavior is concerned. 



-.-/.__L. ■ 

Fig. ijA; Schematic computer diagram for system II-l, as explained in text, 

Initial conditions with switches closed. 

Open switches to start solution. 
Represents 
Amplifier 

Fig. JiB: Realistic computer diagram for system II-l, with a possible set of 
capacitors and resistors although not necessarily the most efficient 
set for practical operation. 
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Fig. SA: Enzyme curves for system II-l, for various values of S0 as indicated. 

Fig. SB: Template curves for system II-l, for various values of S as indicated. 
o 

The dotted curves give the inducer (s) for two representative values of 
Sq. 
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Fig. 6Aî Schematic computer circuit for system II-2, as explained in text. 

Fig. 6B: Schematic computer circuit for system II-3, as explained in text. 



Fig. 7A: Enzyme curves for system II-2, for various So values as indicated. 
T 



T T 'io '!€ s 
Fig. ÖA: The inducer S, in system II-2 for various S values as indicated. 

3 0 

Fig. 8B: The inducer in system II-2 for various S values as indicated. 
¿ o 
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Fig. 9A: Enzyme curves for system II-3, for various SQ values as indicated. 

Fig. 9B: Template curves for system II-3, for various S0 values as indicated. 
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Fig. llAi Enzyme curves for system II-3 with S0 ■ T0 - 10 volts, ß - 0.1 and 



■; . . 

¡i 

T»o*f 

Io * '/o ’<r ir 
Fig. 12A: Inducer, S^, curves for system II-3 with Sq - T0 - volts, ß ■ 0.1 and 

a and y varied as indicated. 

•¿s otjT 

V»l.o 

Fig. 12B: Inducer, 82* curves for system II-3 with S0 ■ T0 
a and y varied as indicated. 

/r r 

- 10 volts, ß » 0.1 and 
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III. Circuita For More Complex Systeme 

In this phase of the work, the differential equations for three more 

complex systems were obtained and these were turned into machine circuit diagrams, 

which because of the large number of components needed in each, would have to be 

run off on much more elaborate equipment than that available here. 

The first of these systems, III-l, is given by the following kinetic 

equations with their associated differential equations; the machine circuit 

corresponding will be found in Fig. 13: 

T + S X r 

Tx +i 

0_ t P 
r r Tx*r 

'’r-Wr -Vr ‘ V^r 

" Vx1 " kiCl 
• • • 
T - -C - C, X r i 

T + r 

T + P 

C 

R 

R + M 

N + P* 

N* 

X 

Tr 

C 

T + R 

Y 

N 

N* 

E + N 

T -kTr-kT r r 

C - k»T P - k C c 

r “h CP - k r - T p r r X r 
* • ♦ 

T - -T - C r 

M - -k R M m 

R - koC - k R + k R M c y m 

E - k N e 
*44 Jt • 

N - knN P - E 

Ñ - k R M - Ñ* m 

The biological meaning of the symbols are given as follows (the abbrevia¬ 

tion, const., in the following chart means that the concentration of the indicated 
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quantity le assumed constant during the process.)t 

Tx • unknown template 

I ■ functioning template (ENA) 

T„ » repressed template 
* 

r « repressor 

1 « inducer (const.) 

C. ■ (T i) complex 

Cr ■ (Txsr) complex 

R - active (RNA) 

0 * (TP) complex 

M - microsomes 

N - (RM) complex 

P*« enzyme synthesis pool (const.) 

N*« (BMP*) complex 

M'- related microsome 

Sr ■ precurssor for repressor (const.) N*- related (RM) complex 

Pr ■ repressor formation pool (const.) E ■ enzyme 

P ■ active formation pool (const.) X, Y, Z - inactive products 

The system breaks down into four units, as can be seen from Fig. 13. The upper 

line synthesizes the repressor; the middle right, the active RNAj the middle 

left, the enzyme precurssor; and the lower line synthesizes the enzyme itself. 

In the next system, III-2, we utilize the same symbols, but introduce a 

somewhat more complex feedback unit in the last stage, these leave everything 

but the last stage of III-l unchanged, and make it: 

N* —► E + ni 

N» —► Z + M' 

M» + T N' 

Ni + p + T 

All of the differential equations in III-l remain valid except for the following: 
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M 
* 

M« 

T 

Ñ» 

Ñ 

-y M - k'nN»P‘ 

k N* - k' M'T z zn 

- Tr - C + M' 

» • 
N - M' 

k R M - k N P m n 

. 

- 

The machine circuit for this system will be found in Fig. lit, and it will be 

noted to possess one additional final loop linked into the original system. 

In the final case, we consider an example of chain synthesis with re¬ 

pression. Here, since we are only interested in the qualitative effects of 

repression on the chain, we limit ourselves to direct repression as opposed 

to the indirect variety considered in the preceding two examples. Thus we 

consider the system, III-3: 

P + Tx 

P + t2 

Ex + Sx 

E2 + Sg 

Tx + S3 

T2 + S3 

•ft 
TX + Sx 

T* + Sa 

Ex 

Ea 

Ex + Sa 

Eg + S3 

t* 

Ta 

Tx 

Ta 

Ex 

Éa 

Tx 

Ta 

è2 

á3 

Sx 

kPTx 

kPTa 

■ft 
■ kxSxTx 

kaSaTa 

kkSlEl 

- kuS2E2 

- 0 

a 0 

kaSaTx m* •Tx 

k3S3Tg - -¾ 

- k^S2E2 - k2S2T2 

- k3S3(T1 + T2) - kPS3 

S3 + P 

-32- 



We see in this case that the S3 itself acts as the repressor, producing the 

inactive T* forms of the template, which are only reactivated by the other 

substrates. The rate constant in the spontaneous decay of the Sa is arbitrary 

and may be varied from the value given. The computer circuit corresponding to 

this system is given in Fig. 15. 



S
ca

le
 F

ac
to

rs
 

«MMMI 

«llJtli'!»»'1“11'1 K1“ " 

C
cH

np
ut

er
 
c
ir

c
u

it
 f

o
r 

sy
st

em
 T

TT
-1

. 
In

te
g
ra

to
rs
 a

nd
 m

u
lt

ip
li

e
ra

 a
re
 
la

b
el

ed
 b

y 
th

e
ir

 
o

u
tp

u
ts

. 
M

u
lt

ip
li

e
rs

-a
re
 p

o
si

ti
v
e
 w

it
h
 s

c
a
le
 a

s 
in

d
ic

at
ed

 a
nd

 t
h

e
 
c
ir

c
u

it
 

sc
al

e 

fa
c
to

rs
 a

re
 

g
iv

en
 i

n
 n

u
m

er
ic

al
 o

rd
er

 o
n 

th
e
 
ri

g
h

t.
 





Fig. 15: Computer circuit for system III-3 as explained in text. 
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Conoluflion 

On the basis of the work done during the tenure of this oontraot, we 

conclude that the use of analogue computers for the analysis of mathematical 

schemes for biological processes, is not only feasible but both practical and 

desirable. The matter of obtaining the differential equations for the various 

biological schemes envisaged, is straightforward and has been amply analyzed in 

previous reports in this series; it then becomes a matter of transferring these 

equations into computer circuitry — a process which we have shown at length 

in this report, to be straightforward as well. Once the circuits have been 

established, the computer may be programmed according to recipes which can be 

found in most manuals — one such program is given in Fig. iiB. The results of 

the computation are as accurate as the experimental evidence warrants and can 

be used to verify the mathematical schemes by direct comparison with such 

evidence, as we have seen in the first section. These results may also be 

used to analyze systems which do not lend themselves to direct intuition, 

showing, for example, that a given non-linear system is relatively insensitive 

to variation of its parameters, a result which had been assumed for purely 

heuristic reasons in the first part of the report and justified more extensively 

in the second. Finally, we would conclude that the use of these computers 

warrants an extension of this phase of the research to set up more complex 

systems such as those considered in the last part of the report on a computer 

of greater capacity, perhaps one available commercially. 
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