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ABSTRACT 

The question whether the measurement of radar cross-sections at 

different frequencies provides a useful diagnostic tool for ascertaining 

the electron density distribution of spherically symmetric plasma 

clouds is investigated.    This is accomplished by comparing the 

calculated radar cross-sections of characteristic plasmas with increas- 

ing and decreasing refractive index.    Exact analytical expressions for 

the radar cross-sections of several typical plasma    spheres with in- 

creasing and decreasing refractive index are calculated.    The calcu- 

lations are based on an exact wave treatment of the scattering problem. 

Part I of the present report contains the exact analytical results 

obtained,  while Part II will be devoted to the numerical evaluation of 

these results,   as well as to asymptotic expressions for the limiting 

cases of high and low  frequencies. 
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I. INTRODUCTION 

In many areas of practical importance,  it is of great interest to be able 

to ascertain the electron density distribution of inhomogeneous plasmas 

which are not accessible to direct measurement.    For example,   such 

plasmas or clouds of ionization might arise from artificial perturbations 

in the ionosphere or from nuclear detonations in the atmosphere.    An 

accurate knowledge of the electron density distribution in such plasmas 

would be of great aid in understanding the phenomena,  e.g. the nature 

of the reactions and their respective reaction rates, taking place inside 

the plasmas. 

The ultimate purpose of our present investigation is to determine to 

what extent information concerning the electron density distribution of 

plasmas can be obtained by means of ground-based radar cross-section 

measurements carried out at different frequencies.    To begin with, we 

shall be concerned only with inhomogeneous plasma spheres with a 

spherically symmetric electron density distribution.   Accordingly, we 



necessarily limit our considerations to non-turbulent plasmas.    More- 

over,  we shall assume that all electromagnetic quantities (e.g. dielectric 

constant,  conductivity,  refractive index) describing the plasma are 

likewise spherically symmetric scalars.    We are thus restricting our- 

selves to the case where the background magnetic field of the Earth 

with its attendant anisot.ropy is negligible.    From a practical point of 

view,  our results will then be valid for plasmas for which the electron 

collision frequency greatly exceeds the Larmor frequency within the 

plasma. 

Thus,  the general problem to which we address ourselves is the deter- 

mination of the radar cross-sections of inhomogeneous (albeit spherically 

symmetric) plasmas embedded in a medium of uniform electromagnetic 

properties.    This outside medium need not necessarily possess the 

electromagnetic properties of the vacuum; our treatment is equally 

applicable to a plasma cloud situated in the ionosphere,  as long as the 

electromagnetic properties of the surrounding ionosphere can be con- 

sidered as approximately uniform. 

Our approach to the problem will consist of an exact wave treatment 

of the scattering of a plane wave from the plasma under consideration, 

based on Maxwell's equations without the introduction of any approxima- 

tions. 



While the overall motivation of the present research is thus to ascertain 

whether the measurement of radar cross-sections can be considered a 

useful diagnostic tool for determining the electron density profile of 

spherically symmetric plasmas,  the present study does not attempt to 

answer this question in its most general form.    We shall be concerned 

here only with a preliminary investigation designed to yield a comparison 

cf the radar cross-sections of spherical plasmas with increasing and 

decreasing complex refractive index, as a function of radial distance from 

the origin.    The results of this investigation will show whether the two 

characteristic cases of increasing and decreasing refractive index give 

rise to distinctly different radar cross-sections as a function of fre- 

quency,  such that we may conclude that the measurement of radar cross- 

sections holds promise as a diagnostic tool and therefore warrants 

further investigation.    Future planned work includes the possibility of 

increasing the information obtained about the electron density profile of 

plasmas by means of measurements carried out by ground-based receivers 

at different locations.    This would involve a calculation of the full 

differential scattering cross-sections of the plasmas.    In the present 

preliminary work, however, we shall be concerned only with proper 

radar cross-sections. 



Toward this end, we shall here obtain exact analytical expressions for 

the radar cross-sections of the four special cases illustrated in Fig. 1 

below. 

n 

■I 

Case (a) 

n 

0 a b       r 

Case (b) 

Case (c) Case (d) 

FIGURE   .1 



In Figure 1, we have plotted schematically the refractive index   n   as 

a function of radial distance   r   for the four general cases we shall 

consider.    A few explanatory remarks may be called for.    To begin 

with, the plots in Fig.   1 are only schematic,  since   n   is in general a 

complex quantity (we include absorption in our analysis).    In all cases, 

the space outside the sphere   (r > b)   is considered to have uniform 

electromagnetic properties  (n = constant).    Cases (a) and (b) represent 

the extreme cases where the electrons are concentrated with constant 

density in the center and in the outside of the spherical plasma,  res- 

pectively.    Cases (c) and (d) represent a more continuous variation. 

In both cases (c) and (d), the presence of the discontinuity in   n   at 

r=a   represents the most general case considered.    The analysis carried 

out below includes the special cases of no discontinuity; thus,  we have 

also included the cases where in case (c), n(a) = n    , and in case (d), 
o 

n   decreases continuously to the constant value of the outside medium 

at   r=0 ,  as shown by the dotted curve.    Finally, while we have shown 

the refractive index as greater than unity in the schematic diagrams of 

Fig.   1,  our analysis applies equally well to refractive indices which 

are less than unity or negative. 

The subject matter of our investigation conveniently separates into two 

portions.    Parti,  constituting the present report,  is concerned with 
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the derivation of analytical expressions for the radar cross-sections 

of the various characteristic plasma spheres of interest.    While much 

of the work reported here leads to results in agreement with other 

authors (Wyatt,        Levine and Kerker     ), the work of these authors 

contains a considerable number of errors and serious ambiguities,  such 

that it was felt advisable to rederive the entire formalism in detail.   An 

adequate outline of the work and results contained in the present report 

is provided by the Table of Contents.    Part II will be concerned with 

the numerical reduction as well as with asymptotic approximations of 

the analytical results obtained in Part I. 



-? 

II. MAXWELL'S EQUATIONS FOR AN INHOMOGENEOUS 

MEDIUM 

We shall use MKS units throughout the present work.    The two basic 

Maxwell equations may then be written in the form 

VXE    =     -f ,1, 

V  X if   =   T + |r . (2) 

where the various electromagnetic vectors are related by the so-called 

constitutive relations 

B     =    nH (3) 

D    =     eE (4) 

and by Ohm's law: 

f    =     aE (5) 



We consider the case where the magnetic permittivity of the medium is 

that of the vacuum   (\x -  u ), while the dielectric constant   e   and the 

conductivity   a   may be functions of position within the medium.    We 

further assume that the time variation of all electromagnetic quantities 

has the form   e        .     Substituting this time variation,  as well as Eq. 

(5),  into Eqs.  (1) and {I), the two basic Maxwell equations may be written 

in the form 

'   x?   =    k2H (6) 

V   XH    =  -k E* (7) 

where   k     and   k     are given by 

k_     =     ip,   u) (8) 2 o 

("*) 
k

x     =     *«>(«+Tl (9) 

We further define the propagation constant   k   by means of 

i2 v v zf   x i<r\ k       =     ~k,ko     =     Uk tu   (e  + — 1 1   2 o     \        a) / 
(10) 

It is important to note that with the assumptions made in our case, 

k     is a constant,  while   k     and   k   are in general functions of position. 



It is customary to complete the set of Maxwell equations with two 

further equations which give expressions for the divergences of   B 

and   E .     The first of these is 

V -B*   =     0 
(or   equivalently) (11) 

V -H     =     0 

However,  we observe from Eqs.  (6) and (8) that Eq. (11) is not an in- 

dependent equation,  but follows automatically from Eq. (6),  since the 

divergence of any curl vanishes identically.    The case of the divergence 

-* 
of   D   is more subtle and has led to considerable confusion in the liter- 

ature.    In all cases, we may write 

V -fT    =     p (12) 

where    p is the charge density.    The confusion in much of the literature 

arises from the fact that while it is true that we consider a plasma of 

overall neutrality   ("p =   0,  i.e. the charge density of the free electrons 

is balanced by a uniform positive background charge,  for example),  the 

equation obtained from (12) by substituting     p= 0 ,  i.e. 

V • D     =     0 
or 

V • eE   =     0     , (13) 

which has been used by Wyait       and others,  is not correct for the case 



f 

of time-dependent fields.    The correct equation must be obtained on 

a more    igorous basis.    To do this, we proceed from the more funda- 

mental equation of charge conservation, which may be written in the 

form 

V -T+ ff    =     0 (14) 

If we now substitute Eqs.  (5) and (12) and recall that all quantities have 

the time variation   e        ,  Eq.  (14) becomes 

7 -(a - iu)e)E*    =     0 (15) 

This divergence equation is the correct equation,  replacing the 

incorrect equation,  (13), for the case of time-dependent fields.    We 

note from Eq.  (9), that Eq.  (15) can be rewritten in the form 

V-t-k^)     =     0 

Consequently,  we see that it follows automatically from Eq.  (7) and 

thus does not represent an independent equation. 

Our problem is thus completely defined by the two Maxwell equations, 

(6) and (7); the two divergence equations (11 and 15) are not independent 

equations,  and therefore are irrelevant. 

10 



III. REDUCTION OF MAXWELL'S EQUATIONS 

We now address ourselves to the problem of solving the Maxwell 

equations,  (6) and (7), for the special case of a spherically symmetric 

medium,  i.e.  one for which   e   and   cj    (and hence   k     and   k ) are 

functions only of the radial distance   r   from the origin.    We further 

assume that the spherically symmetric medium is finite in extent, 

with outer radius     r = b. 

1 

The derivation which follows parallels closely that of Born and Wolf (4) 

for the homogeneous case; we also make use of the notation of Wyatt 

Because of the spherical symmetry of the problem, it is most conven- 

ient to use spherical coordinates   (r,  9,  Cp).    Equations (6) and (7) may 

(1) 

then be written in component form as follows: 

k,H 2   r 2   . 
r   sin 9 

~ (rE sin 9) 
99 cp i<rE^] (16) 

kaHe 
1 -dE 

r sin 9 Bcp f <rVin 9> ] (17) 

11 



2   cp 5r K) r 
(18) 

•k,E 
1   r 2    ■       n r  sin 9 

-^- frH   sin 9^  - ~ frHA\ (19) 

•klE9 
1 

r sin 9 
^   . J. /rH   sin e\ (20) 

■k.E 
1    «P ar W 

8H 

B9 
(21) 

(In the equations which follow, we shall suppress the factor   e 

common to all field quantities). 

•iu)t 

We must now find the general solution of the system of partial differen- 

tial equations,  (16)-(21).    This general solution may be written as the 

superposition of two linearly independent field solutions:   the so-called 

e -*     e •"* 
transverse magnetic fields   (  E ,     H )   for which    H    s 0 , and the 

transverse electric fields   (    E ,      H ),  for which   Er = 0 . 

Turning our attention first to the case of the transverse magnetic fields 

(e£,   eiS ),  Eqs.  (16)-(21) take the form 

^-(reE  sine)   -T-frX) B6  V 9        /       dcp \ 9/ 
(22) 

12 



"z^e 
1 

r sin 9 

beE 

ÖCP 

r       _d_ /   e 
dr 

(r eE  sin Q\ 

\        *        ) 

k*H       =    I 
2       <p r 

JL / e 

dr 

öeE 

.k,eE 
1       r 

r  sin 9 
^ (r eH sin 9)   - -i (r CH ^ 

(23) 

(24) 

(25) 

k,  eE 
1       9 r ar  V.       IP/ (26) 

.k    eE       =    LJL(t*H) 
I       q> r  ör  \       9/ (27) 

Our problem now is to find expressions for     E ,     H    which satisfy all 

of the Eqs.  (22) through (27).    This set of equations may be modified 

by substituting Eqs.  (26) and (27) into (23) and (24), which may then be 

written in the form (aftermultiplication by   k    ): 

Cl or I k1   brj 

1 dr Ik     hvj 

+  k reH 
-k,     3eE 

1 r 

sin 9     öCß 

e 
r    H =     k. 

öeE 

99 

(28) 

(29) 

13 



6 e 
Equation (22) may be satisfied identically by choosing     E     and     E 

$ 9 
g 

to be given as the gradient of a scalar function     U : 

6E 
<P 

= 
1        Ö  U 

r sin 9    dtp 

eE 
9 

= 
i afu 
r   de 

(30) 

Moreover,  if we express     U   in terms of another scalar function      Q 

as follows: 

r^W   ■ <31> 
e e 

Eq.  (30) yields the following expressions for     E     and     E     in terms 
tp 9 

of   eQ: 

"E    =   v    '•  flr4-£cQ) <32> cp k r sin 9  dr dcp y     y v     ' 

iEe  =   ET älse (' e") <"> 

Substituting these into Eqs.  (26) and (27), the latter become 

Ä (r •»)   ■ £ (' \) <34> 

14 



sin 9  äräp  \      / 9r   \        9/ 
(35) 

e e 
These in turn may be satisfied identically if     H      and      H     are 

g 
expressed in terms of     Q   as follows: 

'H       =    -rrl 
9 

'H 

afn 
ae 

l aen 
sin 9 a«p 

(36) 

(37) 

Of the original system of equations, we have now satisfied Eqs.  (22), 

(26) and (27), in the course of which we have obtained expressions 

e~* 
(32),  (33),  (36) and (37) for the four angular field components of     E 

e ■♦ e 
and     H   in terms of a scalar function     Q .    We must yet satisfy Eqs. 

(25) and (28) through (29)(which are equivalent to 23 and 24).    To begin, 

we substitute expressions (36) and (37) into (25), obtaining 

1 
r sin 0 ae (v

sin e WJ 
1 a2en 

sin 9^2 
acp 

(38) 

If we now substitute Eq.  (38),  as well as (36) and (37), into Eqs.  (28) 

and (29), these take the form 

15 



ö   / 1     A    , . 2       e0  L        1 d   / .   n d n\ 
1 ör  \k    öri r sin 9  d9 V o9 / 

  d n 
2 2 

r sin 9   d$p 
(39) 

09 1 ör  lkx   hrj + k ren+     l 
r sin 9  89 I sin 9  1 

\ 09/ 

2e 

r sin 9   dtp 
(40) 

These equations state that the partial derivatives with respect to   cp 

and   9   of one and the Se.me expression vanish simultaneously.    Both 

equations may be satisfied simultaneously by assuming that the bracket 

itself vanishes,     i.e., 

±(±A "1 or \k     9W 
+ k 

r sin 9 

1     a2ea 
2 2 

r sin 9  8;p 
=   0 

(41) 

*    This is a sufficient but not a necessary condition.    The more general 
condition, both necessary and sufficient, allows the bracket to be an 
arbitrary function of   r.    This in turn  would entail a modification in 
expression (43) for   Er   given below.    Here we shall content our- 
selves with the narrower condition (41).    The additional degree of 
freedom provided by the more general condition is somewv at in the 
nature of a gage transformation. 

16 



Equation (41) represents an equation for the scalar function     Q.     It 

may be rewritten in the more concise form 

2e0 '     *1    8 

1      or £ (''°) 
2e + k   n  = (42) 

Finally,  by substituting Eq. (41) into Eq.  (38), the latter becomes an 

e e 
equation for     E     in terms of     Q,   to wit: 

r 

1 
.   c       k.     .      dr or 1    or 

ren (43) 

\ 

We have thus succeeded in satisfying all of the original equations 

(Eqs.  (22) through (27),  or equations derived from them), in the course 

of which we have obtained expressions for all field quantities in terms 

g 
of a single scalar function     0   which must satisfy Eq.  (42). 

We now turn our attention to the case of transverse electric fields 

(    E ,      H ),  characterized by the condition        E    =0.     The system 

of equations (16) through (21) then takes the form: 

k9
mH 

2        r 2  .    n r  sin 9 

d   f  m_ \ of m_  \ 
-- [r     E  sin 9)   - — (r     E   ] 
50 \      «p     )    a* \      y 

(44) 

17 



kzm»e 

*2
mH 

r  Or V cpy 

cp        r ör y      ey 

(45) 

(46) 

(' "V» •) - £ (' "«a) (47) 

■k   mE 
i      e 

l 
r sin 8 

amH 

dep 

r        d 
" 1 

i (   m„ \ -   r     H  sin 9 

1 mTT ■k,      E 
1 <p - (r S) 

9mH 

de 

(48) 

(49) 

We observe that this system of equations may be obtained from the previous 

system (Eqs.  (22) through (27)) for the transverse magnetic fields simply 

by the transformations: 

e -*        m-+     e~* 
E —*     H ,     H 

m-* 
•    E«  kl  -*h> k2~*kl (50) 

Inasmuch as the transformations in (50) convert the system of Equations 

(44) through (49) identically into our previous system of Eqs.  (22) 

through (27),  all of the results obtained above for the previous system 

may be transformed by means of Eq.  (50) to apply to the new system 

18 



of equations for the transverse electric xields.    Accordingly, we may 

m 
define a scalar function       0 , in terms of which the transverse electric 

field components are obtained by transforming Eqs.  (32),  (33),  (36), 

(37) and (43),  which yields 

m 
H       =    -- + k 

ör 
r     fi 

m 
H 

1    a
2 

k r  öröe (.»o) 

m 
H 

Vs 
1 i_ r m \ 
sine  ör d<p \        ) (51) 

m. 

m. 

1 amn 
sin e a<p 

ömQ 

<p 
99 

m. 
where the equation satisfied by      Q   is obtained by transforming Eq. 

(42) which becomes 

o2 m^       , 2 rei 
V       Q + k       0    =     0 (52) 

Note that in transforming Eqs.  (42) and (43), the term   Bk  /or   becomes 

ök_/ör , which vanishes since   k_   is constant. 

19 



e m 
Finally,  if we assume that     Q   and       Q   represent the most general 

solutions of Eqs.  (42) and (52),  respectively, the total electromagnetic 

_^      e —*      m -■♦     -*      e *♦      m-* 
fields   (E=     E +      E ,  H =    H+      H)in the medium may be obtained 

by combining Eqs.  (32),  (33),  (36),  (37),  (43) with (51) which yields 

E 
r 

l 

1 K y ki ^ **   . 
ren 

E 
e 

l 

■ v 
^2       *        .            ,       ^rn_ 

I r efA 1 or 09  \       /      sin 9     oCp 

(53) 

(54) 

tp k  r sin 9  or dcp (' e°) - 
a n 

09 
(55) 

H 7* + k2 
or 

r    n (56) 

H 
i    aen    _j_   a2   /  m \ 

sin 0    otp       k r   0r 90 \ / 
(57) 

H oeq L i_ 

«p o0        k  r sin 9  or 4('m") (58) 

e m 
The two scalar functions     Q   and      Q    entering into expressions (53) 

through (58) must be obtained by solving Eqs. (42) and (52). 
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Inasmuch as we have assumed that   k     depends only on   r ,  both 

equations may be separated in spherical coordinates according to 

standard methods,  and the general solutions may be written in the 

forms: 

ren   = t i fcb     m=0 
W(r) a    cosmcp  + b    sinmcp 

m m T 
m. 

Pt   (cos e)      (59) 

r   o    = 
i^O     m=0 

G.(r) 
I 

c    coamtp  +  d    sin mm 
m m 

JXi. 
P   (cos e)       (60) 
I 

where   P    (cos Q)   is the associated Leeendre polynomial,       a    , b    , 
I r m      m 

c    , and   d       are arbitrary constants,  and where   W(r)   and   G (r)   are 
mm ' it 

the general solutions of the ordinary differential equations 

dZW 1   dk    dW 
i, i     i 

dr 1   dr    dr 

*U+ 1) 
W (61) 

d2G 

dr 

1(1+ 1) 
(62) 

Recalling that    k k    = -k      and that   k     is constant,  Eq.  (62) may be 

rewritten in the form 
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d2W 

dr 

2 dk       I 
k dr 

dr 

jfcU + D 
w =     0 (63) 

We note that Eqs.  (42) and (52) (which lead to Eqs.  (61) and (62),  res. 

pectively) were obtained as a direct consequence of the two basic 

Maxwell equations,  (6) and (7);   they do not arise from the require- 

ments    V«H = 0 ,    V'D = 0 ,    as stated by Wyatt     );     for example, 

the latter equation is even incorrect,  as we have seen above. 

This completes the reduction of Maxwell's equations.    Given a specific 

dependence   k(r),  the only remaining problem is to find the general 

solutions   W    and   G„,  and then to determine the arbitrary constants in 

expressions (59) and (60) (including those implicit in   W    and   G   ) by 

imposing suitable boundary conditions. 
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IV. THE FIELD OF THE INCIDENT PLANE WAVE 

In the present report, we are interested in the problem of the scattering 

of a plane wave by spherically symmetric media such as described 

above.    We shall assume that the inhomogeneous medium is finite in 

extent, with outer radius     r = b.     Moreover, we shall assume that the 

incident plane wave is linearly polarized.    The coordinate system may 

then be chosen such that the incident wave propagates in the positive 

z-direction and has its alectric field in the x-direction.    The fields of 

the incident wave are then given by 

E i     s     gi(k z-utf) 
x 

E  l     =     E   l     =     0 
y z 

.1      .#1I        , ) (64) 
H l     _    _k_    i(k z-ut) ' 

y u-0^ 

H X     =     H  X     =     0 
x z 
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Here   k    is the constant propagation constant of the outside medium, 

and we have assumed the electric field to be of unit magnitude. 

Inasmuch as it will be necessary later to match boundary conditions at 

a spherical surface, we must reexpress these fields in spherical coor- 

dinates.    For our purposes, we shall only require the r-components of 

both fields, which are easily shown to be 

.,1 l lk r cos 0   . , 
E        -     e sin 0  cos cp (65) 

„ i k       lk r cos 6   .    .     . ,,, v H        =      e sin0  sin cp (66) 
r p. a) o 

Since it is much more convenient to apply boundary conditions to poten- 

tials than to the field components themselves, it behooves us to find the 

electric and magnetic potential functions     Q   ,      Q    from which the 

above fields may be derived.    To do this, we proceed from the well- 

known expansion 

I 
ik~r cos 0 \"*   .£,,,. ,   , ^ .   „I e =     2*   i*(2j + 1) j  (kr) P£(cos0) (67) 

1=1 

where 

4/3/ j'(kr) = ^ i JA(kIr) <68) 

24 



Inasmuch as 

and 

..1            .               1        ,  lkr cos 9 
eikrcos9     =    _     8e  ^ 

ik r ö(cos 0) 

dP(cos 9) t 

sine  ■      =    P (cose)     , (70) 
d(cos 9) 

Eq.  (67) may be rewritten in the form 

I -1    *2» 
ik r cos 0 (sin 0)        V"    •/-!,-,      ,» . /, I  » T-,

1
 , » *-,, k = I 2-   x       (2/ + 1) j,(k r) P (cos 0) (71) e 

k*r /=! 

If we further introduce the new functions 

w te(kXr)     =     k^j^r)     =     %j^JL    J^l/^r)     , (72) 

we find that Eqs.  (65) and (66) may be written in the expanded form 

00 

COS M     \ 
:        =   -5-    )    * 

/-1(2^+1) f (kXr) P (cos G) (73) 

k    r        jt=l 

00 

sin {p 

Hr
X    =     -^     )       i£-1(25£+l)t(kIr)P*(co8 e) (74) 

\x  tuk r 
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We also note that the so-called Ricatti-Bessel functions   *  (k r)    are 

solutions of the equation 

dr 

.2    m + i) 
(75) 

On the other hand, as shown in the preceding section for a general 

medium, the fields may also be derived from potentials of the form 

(59) and (60) by means of the relations (53) and (56).    For the case of 

constant    k = k   , Eqs.  (62) and (63) for   G    and   W    are both identical 

with Eq.  (75); consequently, we may write 

Gje(r)    =     W£(r)    =     tyk'r) (76) 

Moreover, we may note from Eqs.  (53) and (56) that only the    m=l 

terms in the general expansions (59) and (60) are required to obtain 

the incident fields (73) and (74).    Consequently, we may write the 

electric and magnetic potentials of the incident plane wave in the form 

r   n os tp     2_    a, <Mk r) p, (cos 9) 
1=1 

(77) 

m_i r    n sin -£ I        i 
b   I (k r) P  (cos 9) (78) 
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The coefficients   a     may be determined by substituting Eq. (77) into (53) 

which yields 

cos ep 

1 1= 

a/ P£ {r°S e) 
d2*< ♦ /* 
dr 

(79) 

In view of Eq.  (75), this may be rewritten in the form 

cos tp    \ 

k,  r r 1 Z=l 

(k r) P (cos 9) 
/, t 

(80) 

By comparing Eq.  (80) with (73), we then find that the coefficients   a 
i 

are given by 

I      1-1 kj      i       (2/+1) 

,I2        iU+1) 

i    ii-1(2je+i) 

k2 1(1+1) 
(81) 

such that the electric potential (77) becomes 

r   n 

00 

k.1   4-e    i(i+i: 

1 ^+i\      i     * 
'*^1J-   f (k r) P  (cos 9) (82) 
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In an exactly analogous manner, the magnetic potential of the incident 

wave is found to be 

OB 

i sincp    \ 'j8~1/2#+n T        i 
r^V    =       )      1 L£*±ü   A  (kr)P(cos 9) (83) 

k1 L-f       l(t + l) l l 
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V. SCATTERING COEFFICIENTS FOR A SPHERE 

A.       General Case of an Inhomogeneous Sphere 

We now turn to the general problem of the scattering of the plane wave 

described in Section IV by a spherically symmetric inhomogeneous 

medium of radius   i=b.     We shall call the region outside the sphere 

(r > b)   Region I, that inside the sphere Region II.    The problem is 

solved by finding the general solution for the fields everywhere and 

then imposing the required boundary conditions. 

The general field in Region I is composed of the field of the incident 

plane wave plus the scattered field.    The potentials of the former are 

given by Eqs.  (82) and (83).    The potentials of the scattered field are 

given by the general expression (59) and (60), where    W (r)   and   G (r) 
XJ XJ 

are both solutions of the equation (k = k     is constant in Region I) 

,2 d  u 

dr 

m+i) 
u (84) 
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Equation (84) has two linearly independent solutions (one of these is 

i|f (k r) ,  as we saw previously).    For the scattered wave, we must 

choose that linear combination which for large   r   behaves asymptoti- 

Ik   T 
cally as   e        /r .     This solution is easily seen to be 

Wi(r)    =    QtM    -    e^'Vr)    -    ^V^   »lX<^    ■       <85' 

where   a     are arbitr" *y constants. 
i 

Moreover, inasmuch as we must satisfy boundary conditions at   r=b 

for all values of   6   and   cp , and the potentials     Q   ,      Q    involve only 

cos cp   and   sin cp ,  respectively,  it is evident that the same must be 

true of the potentials of the scattered field as well as of the field trans- 

mitted into Region II. 

Accordingly, the potentials of the scattered field in Region I may be 

conveniently written in the form 

00 

:os cp   \ 

2    2=1 

a: 

i sin cp    \ . Z-l.-..   ,.     /n.    T 4 
r«v =       * ) »B L_<2£ti> ca)(kir) P;(cos 9)      (87) 

rv =. z_i ) «B iiWu c(D(kir, p'(cos e)     m 
k L—1     l      ttf.+ l) " l 

k       ^rf1 *(i+i) 
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e m 
where the arbitrary constants     B    and       B.   have been defined as 

above in order to facilitate the later matching of boundary conditions. 

Similarly, the potentials of the fields in Region II can be written in 

the form 

os e) (88) 

go 

isincp    \ 2 = -rL rmnII   =    i^.    )     «A    
i<"''2^1' Gir) PJcos 9)      .     (89) 

1=1 

where in this case   W (r)   and   G (r)   represent particular (rather than 
* Z 

general) solutions of Eqs.   (62) and (63),   specifically those solutions 

having no singularities at the origin. 

We now turn to the boundary conditions which must be satisfied at the 

boundary   r=b.    These are 

E l  -  E =     ,     E  1  =  E " 
e        e cp        «p 

;     r  = b    > (90) 
I II I II ' 

H      = H ,     H       = H 
9 9 cp «p 

We wish to express these boundary conditions in terms of the potential 

e m 
functions     fi   and       Q .     To do this, we observe from Eqs.  (54),  (55), 

(57) and (58),  that Eqs.  (90) are satisfied,  if we have 
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d   .    e_I. d  .    e II. , ,_,. (r    n)    =       __(r    Q   ) r  =  b (91) 
kj kx    (b) 

ml m_II , .-_, 
n     =       n ,     r = b (92) 

0     =        0 ,     r = b (93) 

d   .    m_I. ö  ,    mjl. , ,„.. 
— (r     0 )     =    ~ (r     0   ) ,      r  =  b (94) 
or or 

I I i        s 
where   Q    represents the total potential in Region I,    0   =  0  + Q 

Eqs.  (91) through (94) represent four simultaneous equations for the 

r , ,,.   . eA       m.        e_       m_ four unknown coefficients     A   ,      A   ,     B   ,      B   . 

At this point, it is convenient to introduce a new variable    p   defined 

by 

p     =     kXr (95) 

Since   k    is a constant,  the boundary conditions,  Eqs.  (91) through (94), 

can be rewritten in the form 

-TTn
{peQl)   =   -IT— S~(penII)   '    P = X (96> 

ml m _. II , „ „, 
0=0 ,      p = x (97) 
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V    =     eQn ,      p = x (98) 

a   ,    ml Ö m II 
~(p     0 )     =    T"(p     n)     ,      p = x (99) 
op *r ' Op 

where we have defined 

x     =     p(b)     =    kb (100) 

The Ricatti-Bessel functions entering into the potentials (82) and (83) 

of the incident field and into the potentials (86) and (87) of the scattered 

field already have the argument    p .     We may also consider the functions 

W    and   G     occurring in the potentials (88) and (89) as being functions 
JC Xt 

of   p ,   and write 

r 
e
n
n   = . Uli   )    eA H X(2i+1) w(p) p'tcos e) (loi) 

3   Cp      \ ^-1/-,* 
) % i—iSi 

00 

TT           i sintp    \ -4-1,.,. 
rmQH    =    "7l >     mA   i       (2m)G(p)P;(cos6) (102) 

The differential equations satisfied by   W(p)   and   G (p)   are obtained 

from Eqs.   (62) and (63) by substituting      p = k r ,   and we find 
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d2W 
I 2 dn       4 

dp 
2 n dp 

dp 

/U+i) 
n W (103) 

d2G JU+I) 
n (104) 

where the relative "refractive index"   n   corresponding to a medium 

with propagation constant   k   is given by 

II 
n    = e.g.       n. (105) 

We now substitute the potentials (82) through (83),  (86) through (87), 

and (101) through (102) into the boundary conditions (96) through (99), 

e m 
obtaining the following four equations for the coefficients     A    ,      A    , 

eB   , mB   : 

\*i{l)n- Viw ♦,(«) (106) 

mB    C U)(x)  - mA   G(x)    =   -  t(x) (107) 

CU>' 
eB   _i (x) 

1      k * kl 

eA   VI 
i.ki

n(b» 

V*> 
(108) 
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m»  „(I)' m 
B    r x  ' (x)   -      A  G  (x)    = 

♦iw (109) 

where primes denote differentiation with respect to the argument. 

Multiplying Eq.  (108) by   k      and noting that 

1 

k^V) 

k2kl 

k2 k^V) [kn(b)J n2
2(b) 

(110) 

Eq.  (108) may be rewritten in the form 

6B     CU)'(x) 
W (x) 

[n2(b)J 
= - t'(*) (108!) 

e m 
Only the scattering coefficients     B   ,      B    are required to calculate 

it 

all of the scattering quantities of interest.    The coefficient     B    is 

obtained by simultaneously solving Eqs.  (106) and (108), which yields 

B 

n2  (b)  ^'(x)   - 
*e(x) W^-(x) 

W(x) 

(i) w;(x) 

h     {X)  W (x) n2
2(b)   q(1)(x) 

(111) 

m 
Similarly,      B    is obtained by solving Eqs.  (107) and (108),  and is 

AJ 

found to be 
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m 
B. 

1    lv\    —.,     ..       ■             ill     f-w-\ 

*         G^ (x)          * 

1 

*                    *             G (x) 

(112) 

The above expressions may be written more compactly by introducing 

the notations 

Dj(x)    . 
♦x(x) 

rlW   ■ 
c,ll,,w 

H\       l*\ 

w'(x) 

VA/ ~ W (x) 

¥jw = 
G£'(x) 

G,<x> 

(113) 

(114) 

(115) 

(116) 

with which the scattering coefficients take the form 

'B 
y*> n2  (b) D (x)   -  a) (x) 

u)?(x)   -  n2
2(b) r£(x) 

(117) 
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J^    Vjx)   -  D(x, 

This completes the calculation of the scattering coefficients for the 

case of an inhomogeneous sphere.    (The result obtained for       B    by 

(1) e Wyatt       for the same case is incorrect.)   The coefficients     B    and 

B    may be found explicitly for any given variation  n(r)   by solving the 
X/ 

differential equations (103) and (104).    These were solved numerically 

by Wyatt       for a very particular variation of   n(r); they may be solved 

analytically for   n(r) ■= n_ = constant   and for the case where   n   obeys 

a power law.    The former is discussed in Section V-B, the latter in 

Section VT-D-2 of the present report. 

B.     Special Case of the Homogeneous Sphere 

We shall now specialize the solution found above to the case of a homo- 

geneous sphere with a constant propagation constant   k    ,  (k    4 k ). 

We thus also have   n~(r) = n_ = constant.    This corresponds to case 

(a) in Figure i.    In keeping with the notation of Fig.   1, the radius of 

the sphere is now   r = a; accordingly,  we define 

kXa (119) 
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and the scattering coefficients are given by Eqs. (Ill) through (112) 

with  x   replaced by   y . 

These may be simplified, however, by noting that   W (p) , G (p)   for a 
* ii 

homogeneous medium are given by 

W(p)    =    G(p)    =     4(n2p) ('20) 

where the function   ^    is defined by Eq.  (72).   If we further note that 
At 

W(p)     =     G^(p)     =     n2*£(n2p) (121) 

where primes denote differentiation with respect to the argument, we 

find from Eqs.  (113) through (116) that 

^y*   =   Yry)   =   n2 D^n2Y^ 
(122) 

Accordingly, the scattering coefficients given by Eqs.  (117) through 

(118) (with   x   replaced by   y ) then become 

B 

m 
B. 

t,(y) n2D(y)  - D^(n2y)' 

♦jj(y) 

W>  -n2r£<y) 

Cx
(",y» r (y) - n2D£(n2y) 

(123) 

(124) 
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These expressions represent a considerable simplification over the 

corresponding expressions (117) and (118), inasmuch as the only trans- 

cendental functions involved in epxressions (123) and (124) are the func- 

tions   i|r (x) i   C       (x)  ;  no numerical integration of differential equations 

is required.    The scattering coefficients given by Eqs.  (123) and (124) 

represent the complete solution of case (a) of Figure (1). 
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VI SCATTERING COEFFICIENTS FOR A SPHERE WITH A CENTRAL 
CORE 

A.       General Case 

We now turn to the more general case of a sphere with a central homo- 

geneous core,  which includes cases (b),  (c) and (d) of Figure (1).    The 

situation to be considered is illustrated in Fig.  (?.) below. 

Region I 

FIGURE 2 

Regions I and III are considered to be homogeneous with constant 

propagation constants   k    and   k     ,  respectively, while   k      may be 
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an arbitrary function of   r.    The purpose of this section is to find 

expressions for the scattering coefficients for this general case; in 

subsequent sections, we shall consider particular variations of   k 

(or   n    = k   /k   )   in Region II. 

As before, the problem consists of finding the potentials everywhere 

and then applying the boundary conditions (96) through (99) at both 

r-a   and   r=b.     The potentials of both the incident and scattered fields 

in Region I are again given by Eqs.  (82) - (83) and (86) - (87),  respec- 

tively.    Similarly,  since   k       is constant in Region III, the potentials 

in Region III may be v ritten in the form 

e III    _       COS *   \ i'-W) -I r     0 = —   /       c    S '-   *(n   p)P(cose) (1Z5) 

n        . ~,„w    . i^"x(2je+1) i sin tp    \ 
r     a        =    ;     /     d,    S=Liii   *(n  p)P(cose) (126) 

i„ ill«) 

Finally, the potentials in Region II may be obtained from the general 

expressions (59) through (60), where only the   m=l   terms can contri- 

bute because of the boundary conditions. 
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As in Section V-A, we shall consider the functions   W    and  G„    occur- 
l I 

I 
ing in Eqs.  (59) and (60) to be  functions of the argument     p = k r   ; 

W (p)   and   G (p)    then represent the general solution of Eqs.  (103) and 

(104).    Inasmuch as Region II does not contain the origin, Eqs.  (103) 

and (104) will both admit of two linearly independent solutions, so that 

the general solutions may be written in the form 

W(p)  =  vx7p) + h Vp) (127) 

G/p)     =    Y^o) +  ^ V£(p) (128) 

where      ■  ,   ß   ,   y ,   6    are arbitrary constants.    The potentials in 
% X* ib 1L 

Region II n.p.y then be written in the form 

00 

cos cp   Y~*   il-lUi+i)       i r n 
rf1    =   -—j-   /     - ^^^  P, (COB e)[« X (p) +  p,Y^p)]    (129) 

e 
r 

k2    ^j.   KHi: 

or 

i sin <p    \        . l-l/7      x     ± 
r Y .  -j-    >     i-J2ttll P (cos „[„   „ ,P, + , y(p)]   (.30) 

k A-r*      iU + 1) w     *U+1> 

We must now match the boundary conditions (96) through (99) at   r-b 

(p=x)   and   r=a(p=y).    Substituting expressions (82)-(83),  (86)-(b7) and 

(129)-(130) into the boundary conditions (96) through (99) for    p =x , 

we obtain the aquations 



Vx) + \ Qll){x) - aixtM ■ ß*Vx)   =   ° (131) 

Vx) +mB£ ^(1)(x)" yi ui{x)' \ Vx) = ü (132) 

i   ,     .   c.(1,,w     i 
rrVx) + \'±rr"rsz; h Vx) + ** Vx)] = °    (133) 
kx kj k}   (b) 

Vx) +mBi ci(1,,(x) ■ Yiui'(x) - 6x Vx) = ° (134) 

Similarly,  substituting Eqs. (129) - (130) and (125) - (126) into the 

same boundary conditions for    p=y , we are led to the four equations: 

»iV1*»,1!1"    =     CiW (135) 

Y
£ Vy) +  6i Yy)     =    di *«(n3y) (B6) 

-15—fo x>> + e, Y>>] =   %7TL *>3y> <137> 
kj   (a) k 

y*u*(y>+ 4i v«,y) = VsVV <138' 

Equations (131) through (138) represent eight simultaneous linear 

equations for the eight coefficients     B,       B    ,   c   ,   d    ,   a   ,   ß    , 
Jü Xi K/ XJ JC XJ 
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Y    ,   6   .     Fortunately, these separate into two independent sets of 

four equations each.    Thus,  the coefficient     B    may be found from 
A/ 

Eqs.(131),  (133),  (135) and (137),  which may be rewritten in the form 

*», e,u,w - «, v> -  w) ■ -♦,« (»9) 

: ..." X(x) Y'(X) 

eVi w-»«\r B«-^r    = ~**lx)       (14° n2 (b) n2  (b) 

°exi(y) + BiYy)- cx Vn3y) =   ° {141) 

*ix> !  ß, Y>> " cz V" ^   =   ° {H2) 

where Eqs. (140) and (142) were obtained by multiplying Eqs.  (133) and 

(137) by   k       and   k     (a)  ,  respectively,  and noting that 

1 2   1 k 

k,n0» kjk^tb) kn2 n2
2(b) 

2 

k1   (a)n3     I13k2k
1   (

a)      n3
k     <a)      n2  (a) 

.   Ill .   .   Ill        =       ZT~ =      n, 
k. k_k, . Ill 3 

1 2   1 k 

(143) 

(144) 
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Equations (139) through (142) may be solved by standard methods,  and 

e 
the solution for      B     may be written in the determinant form 

I 

ü. 

I       A- 

Vx) 

v*> 

^ 

c (D* 
t      (x) 

other terms as below 

-X,M 

~ Vx> n2 (b) 

-T.W 

~ V*> 

X£(y) 

X,(y) 

n2  (b) 

Y(y) 

Y/y) 

(145) 

yn3y) 

•n_  (a)     ' 
2      ^(n

3y) 
n„ 

The bottom determinant   A-,   may be evaluated by first multiplying the 
fit 

first row by   - £a     (x)/ £     '(x)    and adding it to the second row, which 
/ JC °l 

yields 
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>2 ■ c>> 

e,(1),w 
-TTj—xix) 

0 w 

X4(T) 

X.(x) 

n2   (b) 

X/(y) 

(1)' ' 
c:' (x)       Y {x) 
-i__Y(x). _^_ 

4  (x) n2 (b) 

Y(y) 

Y(y) 

■w> 
n2  ^ 

n„ Vn3y: 

(146) 

"n3    Vn3y) 
If in the determinant of Eq.  (146),  we now add    —-— —I  

n2  (a)  f.(n3/) 
the third row to the second row, we obtain 

times 

V 
"n2  (a)   (1)       i 

n. 

(1)' • 
C.1  '<*> X(x) 

-krxix) -T- C   '(*) n2(b) 

C,(1)(x) 
Y(x) 

Y   (x) 

n2(b) 

xx(y) 
n3Vn3y) 

2      ' n2 (aH,(n3y) 
X(y) Y,(y) 

Vin3y) 

n22(a)Vn3y) l 
Y.(y) 

(147) 

which may be easily expanded.    Thus, making use of the notations (113) 

and (114) introduced previously, we find 
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a2  = 2 
n3n2 ^b^D/n3y) 

[n2
2(b)rt(x)X(x) - x'(x)][n2

2(a)Y^y)Di(n3y)- », TJ(y)] 

" [n22(b) rix) Y/X) " Vx'][n22(a)Dir3y)X*(y) " n3 Xi(y)] f (148) 

The determinant in the numerator of Eq.  (145),   A- ,  is identical to   A. 
£ 1 

(1) (1)' * except that   £      (x)   and   £       (x)   are replaced by   -i|t(x)   and   -i|r (x), 

respectively.    Consequently,  the value of   A.   may be written down 

immediately from Eq.  (148), by making the substitutions    f      (x) ► 

(l)1 

~HX)'  H  {K) 

We then find, 

tjj (x)   ,     and accordingly also    T(x) —♦   D (x) . 

A,   = 
i(x)*#(n,y) I r     2 '    ir    2 1 1       X    - '[n2 (b)D^(x)X(x) -XÄ(x)][n2(a)Yi(y)Difn3y)-n3Y£(y)j 

n3n2 (b)IVn3y) 

[n2
2(b)D(x)Yi(x) - Y^(x)][n2

2(a)X(y)D^(n3y) - ^(y)]  .     (149) 

Thus, the desired scattering coefficient     B    becomes 
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B.     Special Case of a Spherical Shell 

We first consider the case of a spherical shell,  for which the electro- 

magnetic properties of Regions I and III are assumed to be identical 

(k    =  k    ) ,  and Region II is assumed to be homogeneous (n_ = k  /k   = 

constant).    We then have     n   = k     Ac   = 1 .     Eqs. (103) and (104) for 

W     and   G    are then identical and have the previously noted solutions 

X(p)    =    ^(p)    =     ^(n2p) (157) 

The linearly independent solutions are 

Yip)   r   Vp)   =   Vn2p) (158) 

where   x (z)   *s related to the Neumann function    N    L (z)    as follows: 

hM    -.     y^Ni+1/2(z) ,159) 

The ratios defined by (154) then become 

^(x)    =    §A(x)    =    n2
De(n2x) (16o) 

v£(x)    =     yx)    =    n2E(x) 

where \   . 

E     =   -i— (161) 
a        x„(x) 
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Equations (162) and (163) then become 

-^x)        6/x)e^y)^(n2x)x^(n2y) -   ö^yU^xJ^yJx^x) 

Vlff^ d £   (x)      Y£(x)e£(y)^(n2x)x£(n2y) -   y^b^^n^hj^x) 

( 

I      (1), . ^ d *.  .   *. 
Vx)sje(y^in2x)x/n2y) " VyH*x)*in2y))$n2x* 

e   *      * 
c£ (x)    Vx,ei(y)*in2xty?n2y)" Yje(

x)yy)^n2
y))JeICn2x) 

(172) 

(173) 

Equations (172) and (173) - alternatively, Eqs.  (162) and (163) - repre- 

sent the scattering coefficients for the sphercal shell (case b of Fig.   1). 

C.     Special Case of Decreasing Refractive Index 

We shall now consider the case where the refractive index in Region II 

decreases with   r ; in particular we consider the dependence 

n. 
A 

P 
(174) 

where   A   is an arbitrary complex constant.    This corresponds to case 

(c) oi Fig.  1. 

However, before proceeding to solve Eqs.  (103) and (104) for the specific 

case where   n?   is given by (174), we shall first derive some results of 
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more general extent concerning the analytic nature of Eqs.  (103) and 

(104).    Equation (104) is of the general form 

d2G 

dp 
2    + f(p)G£   =     0 (175) 

while Eq.  (103) has an additional term involving the first derivative 

dW /dp .     However,  Eq.  (103) may likewise be cast into the general 

form (175).    Thus, if in (103) we set 

W     =     u W (176) 

where   \x   is an unknown function of   p  ,   we find with 

W    = 
1 

W    = 
I 

u W* + u W 

__i» _ i 

u W   +2ii'W    + u" W 
it i 

that Eq.  (103) becomes (r.fter division by   \i ): 

II 

w + 2 "til. sl _ i 

W + 
I [v> n I . 

MLL_  2nlul>+ n2   _   l(i+l)lw 

M> n      |i J    * (177) 

_ i 
The term proportional to   W      may be eliminated if we chose 

AJ 

n 
or Mi    =     Cn (178) 
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i 
j 

where   C   is an arbitrary constant which may be taken equal to one 

without loss of generality.    Equation (177) then becomes 

W     + [T-*(T), + -! l{l+l) W (179) 

which is indeed of the form (175), with 

W,    =    n W (180) 

Moreover, for the special case where 

T  "   2(T) (181) 

Equation (179) for   W   is identical with Eq.  (104) for   G (p) .    The 
JO At 

functions   n   for which (181) is satisfied may be obtained by integrating 

Eq.  (181).    Rewriting (181) in the form 

£    =     2ül 
n' n 

(182) 

a   first integral is obtained as 

n'     =     C n C   arbitrary 

This in turn may be integrated to yield the general solution 
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n = (Js) (183) 

where   A   and   D   are arbitrary constants.    Thus, for any   n   of the 

form (183), we have 

W(p)     =     nG(p) (184) 

We now return to the specific form (174) for   n , which is a particular 

case of (183).    Accordingly, we may write 

z p  i 

(since the equation for   W    is linear, the constant  A   in Eq. (184) can 
At 

be taken as unity without any loss of generality), where   G (p)   must 

satisfy 

d2G^       [A2 - Ki+l)] 
G     =     0 (186) 

A 2 it dp p 

The general solution of Eq.  (186) may be found by setting 

G,    =    m (187) 

which leads to the characteristic equation 
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m(m-l) +  [A    - 4U+1)]    = (188) 

having the solutions 

m 
1 ±   Vl - 4 [A2 - 1(1+1)] 

1,2 (189) 

Writirg 

V^vf-A2' (190) 

we may write 

m    =    j + p 

m2  =    j " P 

(191) 

According to Eqs.  (127) and (128), and (185), we then find 

U(p) 

V(P) 

x<p> 

Y(P) 

p+V2 

(p-^2) 

,P- '2 

=     P 
-(P+V2) 

(192) 

(193) 

(194) 

(195) 

The ratios defined by Eq. (154) are then easily calculated to be 
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J 

+ v2 \ 

VP) ■ 

VP)   = 

,/p) 

v(p)    . 

V2 

'/2 

+ v2 

(196) 

y 
Substituting Eqs.  (192) through (196) into the general expressions (155) 

through (156), we find after some simplifications that the scattering 

coefficients may be written in the form 
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D.   Special Case of Increasing Refractive Index 

1.     Sphere with Central Core 

Here we consider the case where the refractive index   n?   in Region II 

has the form 

n2     =    AP 
m 

(199) 

where  A   and  m   are arbitrary complex constants, with the exception 

that the case   m = -1   is excluded (this case was treated separately in 

the preceding section).    We shall assume that  m   is real and positive 

and that  A   has both positive real and imaginary parts,  such that (199) 

describes an increasing refractive index (corresponding to curve (d) in 

Figure 1), although the analysis which follows applies equally well to 

the general case. 

Equations (103) and (104) in Region II then take the form 

d2W 

dp 

-       dW 
frn   L 

P     dP 

A 2 2m A   p 1(1+1) W (200) 

d2G 

dp 
+ A2 2m 

A   p 
2 

P 

W (201) 
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Both of these equations are particular forms of the more general 

equation 

2 r 
x y" + axy' + (bx    + c)y     =     0 (202 

(5) 
whose solution (for   r 4 0 ,    b 4 0 ) is given by Kamke       as 

U-a) 

y    =    x Z  I -    Vb ' x"   S (203) 0 ****) 
where 

v    =    -^Ml-a)    - 4c     4     0 (204) 

and where   Z    is any one of the Bessel functions. 
v 

Thus, Eq.  (200) is solved by making the identifications 

2 
x = p  ,     y = W  ,     a= -2m  ,     b = A     ,     r = 2m,     c = -je(j?-M)    (205) 

Substituting (205) into (203) and (204) we accordingly find that the two 

independent solutions of  W    are 

x(P, . p- y^\ (jL_r>) (206) 
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where 

V    =    m+ 

l—x    ViU+1) + (m+V2)2 (208) 

Similarly, i£ we make the identifications 

2 
x=p,     Y = ^ »     a=0,     b = A     ,     r = 2m,     c = -£(£+1)        (209) 

Eq.  (202) becomes   Eq.  (104) for   G,    and the two independent solutions 

of   G    are found to be 
i 

where 

U    =    27mTT) {212) 

The scattering coefficients are obtained by substituting expressions (206) 

through (211) into Eqs.  (155) and (156),  as well as into the expressions 

(154) which enter into the latter.    Inasmuch as the functions   X ,  Y   ,  U  , 
III* 

V as given by Eqs. (206) through (211) are exceedingly complicated, 

no significant simplifications are possible. We note also that for the 

first time we are faced with Bessel functions both whose argument and 
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1 

order may be complex.    Moreover,  inasmuch as the index   I    enters 

in a complicated manner into the orders   |i   and   v    of the Bessel 

functions,  it is impossible to write recursion formulas in   $,   for the 

Bessel functions involved. 

Finally,  we note that the solution presented in this section has already 

(2) 
been previously obtained by Levine and Kerker     (cf.  also Namura and 

Takaku     ),  although their expressions for the potentials and scattering 

coefficients contain some errors. 

2.     Sphere without a Central Core 

Finally we consider the case where the refractive index is given by 

(199) throughout   the entire sphere,  i.e. where the central core of 

constant refractive index is absent.    This corresponds to the dotted 

curve in case (d) of Fig.  1. 

Only those solutions having no singularities at the origin are then 

admissible,  and we have 

W(p)     -    X£(p) 

Gjtp)    =     U£(p) 

(213) 
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I 

where   X(p)   and   U (p)   are given by (206) and (210).    The scattering 
Xj AJ 

coefficients are then obtained by substituting (213) and (199) into the 

general expressions (117) and (118),  and we obtain 

where 

m. 

Vx) r  A 2„ .  .       -2m,     -, 
A D (x)  - x  ci^(x) 

c>> -2m,            2 
_ x <^(x) - A  r (x) 

\ - 
V"» " Vx) " D£(X) 

L r*(x) " Vx) J c>> 

'V'x> 
X^'(x) 

"    X(x) 

V> 
u'(x) 

"     U(x) 

(214) 

(215) 

(216) 

As in the preceding section, these expressions are intrinsically quite 

complicated and no further reduction is possible. 
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VII.       DERIVATION OF THE RADAR CROSS-SECTION 

In the preceding sections, we have obtained exact analytical expressions 

e m for the scattering coefficient«     B    and      B   for a variety of cases. 
I I 

Our ultimate interest is to determine the radar cross-sections of the 

various objects under study, and it is the aim of the present section to 

show that the radar cross-section can in general be expressed entirely 

e m 
in terms of the scattering coefficients     B    and       B  . 

II 

2 
The radar cross-section is defined as   4nr     times the ratio of the 

Poynting vector of the wave scattered in the negative z-direction (i. e., 

the radial component of the Poynting vector for  Q=TT ) to the Poynting 

vector of the incident wave traveling in the positive z-direction.   Accord- 

ingly, we may write the radar cross-section as 

°R 

A 2   nS 4nr    II 
 r 

n1 
z 

9=TT 
(217) 
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where the minus sign is introduced in order to make the cross-section 

a positive quantity.    The Poynting vectors entering into Eq.  (217) are 

n 
9=TT 

n 

(218) 

(219) 

where the superscripts i,  s, *   stand for incident,   scattered and complex 

conjugate,  respectively, and where the subscripts indicate the appropriate 

vector component. 

We first turn our attention to the Poynting vector of the scattered wave, 

which may be written in the expanded form 

„ s 1 „   /n s TI s* 
II =    TRe(Ert   H r 2       y e      cp 

s      s* 
E      Hö cp      9 ) 

(220) 

The field components required in Eq.  (220) are in general found from 

m. 
expressions (54),   (55),   (57) and (58) with     Q   and       Q   given by (86) 

and (87).    Thus, for example,  if we consider   E      , we obtain 
CD' 

CD 

sin 
kr 

CO 

Zi£"1(2^i) 

*=1       *U+1) 

e        (1)- P^(C0Se)     m        (1) dP)cos6)) 

sm 0 d9 

(221) 
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t f 

1 

where we have written   k* = k   and have  made use of the relation 

I 2 
k    k~ = -k     .      Similarly,   we obtain 

1    " 

00 

s  _  cos CD   \     i_ (21+1) 

1     kr   i=i   i{l+l) 

e        (1)'        dP,(cos6)        _ m        P(cose) 

de sin 9 

(222) 

H 
s      -cos 

9 
2 Vl^M j e      ,1)(kr) Sfc! . t -. e C.)^«- °> 1 

4-r«    tit+l) l dG * £ k-,r     , 
2     <--   *U+1) 

H 
s      -sin 

V 

CO 

gy>Wuje    mkr, ^ÜÜ',, 
^rf    *U+U   ( sine 

sin 9 

(223) 

m       (1)'       dP,(cos6) 

d9 

(224) 

We are generally interested in the radar cross-section for the case where 

the receiver is located at large distances from the scattering object 

(far-field); accordingly, we may replace the Ricatti-Hankel functions by 

their asymptotic forms: 

C,<V)    .    <-i><+1eikr 

C<V> ,   .si    ikr 
(-i)    e iC<V) 

(225) 

(226) 
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Furthermore,  we are interested in the field components for the parti- 

cular value   8=n ,      Thus,  by making use of the well-known relations 

dP (cos 0) 
JC 

de 

l 
p (cos e) 

9--TT sin 9 
(-D 

a jfcU+i) 
(227) 

9=TT 

expressions (221) through (224) for the required field components become 

.   ikr 
p s     -       le       sin (p 

* kr 

00 

i=l 

eB - mB i (228) 

i 

.   ikr 
le       c 

kr 

03 

H 
9 

2 1=1 

(229) 

(230) 

ikr    . 
-j  s e        smtt 
H9       =   "      k,r 

00 

E«-»'H)Cvmi0 
1=1 

(231) 

Substituting these expressions into Eq.  (220) for the Poynting vector, 

and making use of the usual rule for expressing a product of two infinite 
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series as a doubly-infinite series, we obtain 

00 00 

r   |e=TT 
iRe 

kk~,r 
(-D£( 

2        t- 1   m= 1 

1'm(4)(-4)(V^M-t) 

2k|k2|r' 
1=1 

•-»'KXY^) (232) 

where use has been made of the fact that    k? = i |k_ |   and where the bars 

denote absolute value. 

The incident Poynting vector   II       is easily found from Eqs.  (219) with z 

the incident fields given by (64),  and we obtain 

n 
2   Ik (233) 

Substituting expressions (232) and (233) into (217),  we finally obtain the 

desired expression for the radar cross-section: 

i  w 

°R (234) 
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H 

In cor elusion,  we also cite the corresponding results for the extinction, 

total scattering,  and absorption cross-sections (cf.,  for exarrple Wyatt      ): 

ext , 2 
k 

"scat 

00 

1=1 

TZH(N^N') 

(235) 

(236) 

a ,       =    a a abs ext scat (237) 
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VIII.      CONCLUSION 

As described more fully in the Introduction, the purpose of the present 

investigation is to determine whether the measurement of radar cross- 

section profiles is a potentially useful diagnostic tool for ascertaining 

the electron density distribution of inhomogeneous plasma spheres of 

practical interest.    Toward this end, we have obtained analytical expres- 

sions for the radar cross-sections (at arbitrary frequency) of some 

typical examples of spherically symmetric plasma spheres with increas- 

ing and decreasing refractive index, as a function of radial distance 

from the origin.    Specifically, we have considered the four different 

electron density distributions illustrated schematically in Figure 1. 

We have found that in each case,  the radar cross-section is completely 

e m 
defined by means of two sets of scattering coefficients     B    and      B   , 

in terms of which the radar cross-section can be calculated by Eq. (234) 

of Section VII.   Accordingly, we have obtained analytical expressions 

e m 
for the coefficients     B    and      B    for each of the four schematic cases 

I I 
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illustrated in Fig.   1.    These expressions which constitute the chief 

results of the present report,  are given by Eqs.  (123) and (124) for 

case (a),  by Eqs.  (172) and (173) for case (b),  by Eqs.  (197) and (198) 

for case (c),  and finally by Eqs.  (155),  (156) (together with (206)-(2ll)) 

and (214),  (215) for the discontinuous and continuous distributions of 

case (d),  respectively. 

We wish to emphasize that the expressions obtained for the scattering 

coefficients are exact and are based on a full wave treatment of the 

scattering problem, without recourse to any mathematical approxi- 

mations.    Moreover,  our final results are expressed entirely in terms 

of well-known analytical functions.   However, these expressions - while 

of varying complexity - are in general too cumbersome for hand cal- 

culation.    Thus,  it is likely that a considerable number of terms are 

required in the infinite series (234) defining the radar cross-section 

in order to achieve the desired numerical accuracy.    Moreover, the 

problem of numerical evaluation is complicated by the fact that not 

all of the required Bess el functions are readily available in tabulated 

form.   For these reasons, numerical evaluation of our results will 

require the use of a computer. 

This numerical reduction of our results,  as well as the derivation of 

asymptotic analytical expressions for the limiting cases of very high 
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and very low frequencies,  will constitute the subject matter of Part II 

of the present investigation. 
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