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ABSTRACT

The question whether the measurement of radar cross-sections at
different frequencies provides a useful diagnostic tool for ascertaining
the electron density distribution of spherically symmetric plasma
clouds is investigated. This is accomplished by comparing the
calculated radar cross-sections of characteristic plasmas with increas-
ing and decreasing refractive index. Exact analytical expressions for
the radar cross-sections of several typical plasma spheres with in-
creasing and decreasing refractive index are calculated. The calcu-
lations are based on an exact wave treatment of the scattering problem.
Part I of the present report contains the exact analytical results
obtained, while Part Il will be devoted to the numeérical evaluation of
these results, as well as to asymptotic expressions for the limiting

cases of high and low frequencies.
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e INTRODUCTION

In many areas of practical importance, it is of great interest to be able
to ascertain the electron density distribution of inhomogeneous plasmas
which are not accessible to direct measurement, For example, such
plasmas or clouds of ionization might arise from artificial perturbations
in the ionosphere or from nuclear detonations in the atmosphere. An
accurate knowledge of the electron density distribution in such plasmas
would be of great aid in understanding the phenomena, e.g. the nature
of the reactions and their respective reaction rates, taking place inside

the plasmas.

The ultimate purpose of our present investigation is to determine to
what extent information concerning the electron density distribution of
plasmas can be obtained by means of ground-based radar cross-section
measurements carried out at different frequencies. To begin with, we
shall be concerned only with inhomogeneous plasma spheres with a

spherically symmetric electron density distribution. Accordingly, we




necessarily limit our considerations to non-turbulent plasmas. More-
over, we shall assumc that all electromaguetic quantities (e.g. dielectric
constant, conductivity, refractive index) describing the plasma are
likewise spherically symmetric scalars, We are thus restricting our-
selves to the case where the background magnetic field of the Earth

with its attendant anisotropy is negligible. From a practical point of
view, our results will then be valid for plasmas for which the electron
collision frequency greatly exceeds the Larmor frequency within the

plasma,

Thus, the general problem to which we address ourselves is the deter-
mination of the radar cross-sections of inhomogeneous (albeit spherically
symmetric) plasmas embedded in a medium of uniform electromagnetic
properties. This outside medium need not necessarily possess the
electromagnetic properties of the vacuum; our treatment is equally
applicable to a plasma cloud situated in the ionosphere, as long as the
electromagnetic properties of the surrounding ionosphere can be con-

sidered as approximately uniform.

Our approach to the problem will consist of an exact wave treatment

of the scattering of a plane wave from the plasma under consideration,
based on Maxwell's equations without the introduction of any approxima-

tions.
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While the overall motivation of the present research is thus to ascertain
whether the measurement of radar cross-sections can be considered a
useful diagnostic tool for determining the electron density profile of
spherically symmetric plasmas, the present study does not attempt to
answer this question in its most general form. We shall be concerned
here only with a preliminary investigation designed to yield a comparison
cf the radar cross-sections of spherical plasmas with increasing and
decreasing complex refractive index, as a function of radial distance from
the origin. The results of this investigation will show whether the two
characteristic cases of increasing and decreasing refractive index give
rise to distinctly different radar cross-sections as a function of fre-
quency, such that we may conclude that the measurement of radar cross-
sections holds promise as a diagnostic tool and therefore warrants

further investigation. Future planned work includes the possibility of
increasing the information obtained about the electron density profile of
plasmas by means of measurements carried out by ground-based receivers
at different locations. This would involve a calculation of the full
differential scattering cross-sections of the plasmas., In the present
preliminary work, however, we shall be concerned only with proper

radar cross-sections.
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Toward this end, we shall here obtain exact analytical expressions for
the radar cross-sections of the four special cases illustrated in Fig, 1

below,

Case (a) Case (b)

U — e — — —
o

Case (c) Case (d)

FIGURE |
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In Figure 1, we have plotted schematically the refractive index n as

a function of radial distance r for the four general cases we shall
consider, A few explanatory remarks may be called for. To begin
with, the plots in F'ig. 1 are only schematic, since n 1is in general a
complex quantity (we include absorption in oar analysis)., In all cases,
the space outside the sphere (r >b) is considered to have uniform
electromagnetic properties (n = constant), Cases {a) and (b) represent
the extreme cases where the electrons are concentrated with constant
density in the center and in the outside of the spherical plasma, res-
pectively. Cases (c) and (d) represent a more continuous variation,

In both cases (c) and (d), the presence of the discontinuity in n at

r=a represents the most general case considered. The analysis carried
out below includes the special cases of no discontinuity; thus, we have
also included the cases where in case (c), n(a) = n_, and in case (d),

n decreases continuously to the constant value of the outside medium
at r=0, as shown by the dotted curve. Finally, while we have shown
the refractive index as greater than unity in the schematic diagrams of
Fig. 1, our analysis applies equally well to refractive indices which

are less than unity or negative.

The subject matter of our investigation conveniently separates into two

portions. Partl, constituting the present report, is concerned with

(6]




[PRESR—.

the derivation of analytical expressions for the radar cross-sections
of the various characteristic plasma spheres of interest. While much
of the work reported here leads to results in agrcement with other

(2)

authors {Wyaitt, (1) Levine and Kerker' ), the work of these authors
contains a considerable number of errors and serious ambiguities, such
that it was felt advisable to rederive the entire formalism in detail. An
adequate outlline of the work and results contained in the present report
is provided by the Table of Contents. Part II will be concerned with

the nmnerical reduction as well as with asymptotic approximations of

the analytical results obtained in Part I.
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II. MAXWELL'S EQUATIONS FOR AN INHOMOGENEOUS

MEDIUM

We shall use MKS units throughout the present work. The two basic

Maxwell equations may then be written in the form

3B

TXE = 2R

E = (1)
H )+ 3t , (2)

where the various electromagnetic vectors are related by the so-called

constitutive relations

- —»
B = uH (3)
D = ¢E (4)
and by Ohm's law:
— -~
j = oE (5)




We consider the case where the magnetic permittivity of the medium is
that of the vacuum (u = p.o), while the dielectric constant ¢ and the
conductivity ¢ may be functions of position within the medium. We
further assume that the time variation of all electromagnetic quantities
has the form e-iwt. Substituting this time variation, as well as Eq.

(5), into Eqs. (1) and (2), the two basic Maxwell equations may be written

in the form

T xE = K H (6)
- -

VxH = -klE (7)
where kZ and kl are given by

k2 = ip o (8)

. ig

kl = 1w(e + w) (9)

We further define the propagation constant k by means of
2 _ 2 ig
k" = kk, = po (e + w) (10)

It is important to note that with the assumptions made in our case,

k, is a constant, while k, and k are in general functions of position.

2 1




It is customary to complete the set of Maxwell equations with two
" 3 . . »
further equations which give expressions for the divergences of B

and f‘.’ The first of these is

—
V'B = 0

(or equivalently) - (11)
Vol = 0

However, we observe from Eqs. (6) and (8) that Eq. (11) is not an in-
dependent equation, but follows automatically from Eq. (6), since the
divergence of any curl vanishes identically. The case of the divergence
of D is more subtle and has led to considerable confusion in the liter-

ature. In all cases, we may write
vD = (12)

where p is the charge density. The confusion in much of the literature
arises from the fact that while it is true that we consider a plasma of

overall neutrality (p = 0, i.e. the charge density of the free electrons
is balanced by a uniform positive background charge, for example), the

equation obtained from (12) by substituting p= 0, i.e.

or

<
m
=
i
o

(13)

(1)

which has been used by Wyait'" " and others, is not correct for the case
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of time-dependent fields. The correct equation must be obtained on
a more igorous basis. To do this, we proceed from the more funda-
mental equation of charge conservation, which may he written in the

form

<
-
+
Io/
©
0
o

o/
P

(14)

If we now substitute Eqs. (5) and (12) and recall that all quantities have
. e -iwt
the time variation e , Eq. (14) becomes

V-(g-iwe)g = 0 (15)

This divergence equation is the correct equation, replacing the

incorrect equation, (13), for the case of time-dependent fields. We

note from Eq. (9), that Eq. (15) can be rewritten in the form

Vo(-k E) = o

Consequently, we see that it follows automatically from Eq. (7) and

thus does not represent an independent equation.

Our problem is thus completely defined by the two Maxwell equations,
(6) and (7); the two divergence equations {11 and 15) are not independent

equations, and therefore are irrelevant.

10
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III. REDUCTION OF MAXWELL'S EQUATIONS

We now address ourselves to the problem of solving the Maxwell
equations, (6) and (7), for the special case of a spherically symmetric

medium, i.e. one for which ¢ and ¢ (and hence k, and k) are

1
functions only of the radial distance r from the origin. We further

assume that the spherically symmetric medium is firite in extent,

with outer radius r = b.

The derivation which follows parallels closely that of Bornand Wolf(4)
for the homogeneous case; we also make use of the notation of Wyatt.(l)
Because of the spherical symmetry of the problem, it is most conven-
ient to use spherical coordinates (r, 8, ¢). Equations (6) and (7) may

then be written in component form as follows:

1 -
3 ’ 3
k,H = —-——— |=— (rE sin9§) - — (rE )] (16)
2 r rzsin ) 08 i o 8
1 ‘aEr o)
kZHe = e s Y " 3r (rE{psm 9)] (17)

11




I =R 5
kZH:p " r]|oar (rEB) Y (18)
1 -
k. E = |l rH sin 9) -1 (rH )] (19)
17r rzsin ol a6 ¢ o 8
' [ oH
1 r o) .
..klEe S ol e ersm e) (20)
3H
I - 3
*Ee T T3 (rHe) Y (21)
(In the equations which follow, we shall suppress the factor e-lwt,

common to all field quantities).

We must now find the general solution of the system of partial differen-
tial equations, (16)-(21). This general solution may be written as the

superposition of two linearly independent field solutions: the so-called

e e~*
transverse magnetic fields ( E, H ) for which Hr = 0, and the
transverse clectric fields (mﬁ s mf—f), for which E, = 0,

Turning our attention first to the case of the transverse magnetic fields

(°E, °H ), Eqs. (16)-(21) take the form

d e . o) e
2 o — E = 22
36 (r E‘PSIn e) 5 (r 6) 0 (22)

Pl AP ot

ki
Hhpwi-a

LIAE, 0~ 4t

12
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e 1 0 Er ) e
k2 By = Toms Y3 (r Fpoin 9) (23)
o
e
d E
e 1 o) e r
k. *H = 2 ——(r E) . (24)
2 ® r|or 3] 30 ]
e ! o) e o e
-k E = e——— | — (r H sin 9) - — (r H ) (25)
1 r rdsin 5 o6 07 oY )
e 1 o €
= =2 2
k1 Ee el (r H@) (26)
e 1 3 €
- A = == H A
kl F:p .oy (r 9) (%27)

. ) e=> e-» .
Our problem now is to find expressions for —E » H which satisfy all
of the Eqs. (22) through (27). This set of equations may be modified
by substituting Eqs. (26) and (27) into (23) and (24), which may then be

written in the form (aftermultiplication by k1 ):

r®H - T 25 (28)
Ky ar k ar 6 .
sin & 9d¢

e BBy
lar k ar) r ng = kl " (29)

i3




Equation (22) may be satisfied identically by choosing eEq} and °E .

. e
to be given as the gradient of a scalar function U:

ex . 13U
®  rsing 3¢
. (30)
ex . 13U
8 ~ r 98

. e . - m
Moreover, if we express U in terms of another scalar function =~ Q

as follows:
e 1 9
U = ——k o ( Q) (31)

Eq. (30) yields the following expressions for eE‘° and eE9 in terms

of eO:

82 e
Ecp - klr sin 6 dr o9 (r Q) (32)
e
Ee - r arae ( ) (R

Substituting these into Eqs. (26) and (27), the latter become

2
o) )
dr 36 (r eQ) Y (r eHw) (34)

14
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sin e araw ( ) ( eHe) L

These in turn may be satisfied identiczally if eH‘p and eHe are

. e
expressed in terms of O as follows:

e
e 3 N
= 2 3
H:p o0 (36)
e

e 1 3 N
H — - LI BL 37

2] sin 8 Q¢ (37)

Of the original system of equations, we have now satisfied Eqs. (22),

(26) and (27), in the course of which we have obtained expressions

(32), (33), (36) and (37) for the four angular field components of o4
eﬁ 3 " e .

and in terms of a scalar function . We must yet satisfy Egs,.

(25) and (28) through (29)(which are equivalent to 23 and 24). To begin,

we substitute expressions (36) and (37) into (25), obtaining

e 2e
e _ 1 o) d 0 1 3 QO
-kl Er " rsing {38 (sm < a8 * sin 8 awz (38)

If we now substitute Eq. .(38), as well as (36) and (37), into Eqs. (28)

and (29), these take the form

15




| TR

e —.

i

e
d e 1 9 d N
Y 1ar 0+ Tome e \O 8 ae)
1 2e
+ . 9 2“ - 0  (39)
r sin 8 3¢

<
3 s /1 3 2l e 1 a3 /. 3
56 1 X137 <‘1 ar) tkir Q4+ e 30 (800 "

2e
+ l : ? = 0 {40)

r sinze oY

These equations state that the partial derivatives with respect to ¢
and 6 of one and *he same expression vanish simultaneously. Both
equations may be satisfied simultaneously by assuming that the bracket

b
itself vanishes, i.e.,

+ k r + sme =0
1 ar <k a:) r s1n9 ae ae ¢ 8in 9 a.p

(41)

* This is a sufficient but not a necessary condition. The more general
condition, both necessary and sufficient, allows the bracket to be an
arbitrary function of r. This in turn would entail a modification in
expression (43) for E, given below. Here we shall content our-
selves with the narrower condition (41). The additional degree of
freedom provided by the more general condition is somew" at in the
nature of a gage transformation.

16
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Equation (41) represents an equation for the scalar function . It
may be rewritten in the more concise form
1 ok

v ea - L ;a_ (reﬂ) f k%% = . (42)
or
1 or

Finally, by substituting Eq. (41) into Eq. (38), the latter becomes an

. e ) e N
equation for Er in terms of 0, to wit:

1 2 1 3k
El‘ = i-(— iz- - 'i'(—" —-}‘ Sal-' + kz r eQ (43)
1} or 1 or

We have thus succeeded in satisfying all of the ariginal equations
(Eqs. (22) through (27), or equations derived from them), in the course
of which we have obtained expressions for all field quantities in terms

of a single scalar function ®q which must satisfy Eq. (42).

We now turn our attention to the case of transverse electric fields

mE, 1ml'--{.), characterized by the condition m]?.r =0, The system

(

of equations (16} through (21) then takes the form:

1
m ) m ) Pe) m
k H = — —(r E sin 9) -—G E) (44)
- i rzsin 8 o8 ® o% 6

17
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k. ™H =-l—a—(rmE (45)
r %

2 6 or
m 1 9 m
= - E
kZ Hcp r or (r 9) (46)
) m . ) m
—_— H - — H = 0 47
36 G o " 9) 2% (r e) (47)
o H
x. PE_ - : = i(r "H sin 9) (48)
1 6 r sin@ or ®
o%
m
e}

(49)

P l.@.(rmH)_
1 ® r| or 6

H
r
Lt}

We observe that this system of equations may be obtained from the previous

system (Eqgs. (22) through (27)) for the transverse magnetic fields simply

by the transformations:
— k (50)

Inasmuch as the transformations in (50) convert the system of Equations
(44) through (49) identically into our previous system of Egs. (22)
through (27), all of the results obtained above for the previous system

may be transformed by means of Eq. (50) to apply to the new system

18
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of equations for the transverse electric fields, Accordingly, we may

define a scalar function mﬁ , in terms of which the transverse electric
field components are obtained by transforming Eqs. (32), (33), (36),

(37) and (43), which yields

1 2
er " k. a2 u kz f mQ
2] dr
1 2
m o) m
H = —
8 er dr 36 ( Q)
m ! aZ m
Hy = k,r sing ar o9 (r Q) (1)
m
me _ .1 d 0
9 sin8 3¢
. .20
E_~ 7 3e
¢

where the equation satisfied by ™q is obtained by transforming Eq.

(42) which becomes

“Mar kMo = 0 (52)

Note that in transforming Eqs. (42) and (43), the term akl/ar becomes

akz/ar , which vanishes since k2 is constant.

19
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Finally, if we assume that °a and ™Mn represent the most general
solutions of Eqs. (42) and (52), respectively, the total electromagnetic
fields (ﬁ - °E + mg s H - °T + mI?I’) in the medium may be obtained

by combining Eqgs. (32), (33), (36), (37), (43) with (51) which yields

E = | ——e. — — —— % Kk r Q (53)
r k1 arZ k1 3r or
= 4
Ee r ar 00 (54)
2 m
1 3 e 3 0
E = . - — 55
© k T sing aro@ (r Q) 30 155)
1 &
H = —a—é- + k2 r mQ (56)
t 2| ar
e 2
_ 1 0 QO 1 o) m
H = - o T k¥ v o6 (r o) (57)
e 2
d 1 0 m
H = + :
® 08 kzr sin@ 3roy (r O) (56}

. e m 0 g . Py
The two scalar functions Q and (! entering into expressions (53)

through (58) must be obtained by solving Eqs. (42) and (52).

20
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Inasmuch as we have assumed that k

1 depends only on r , both

equations may be separated in spherical coordinates according to
standard methods, and the general solutions may be written in the

forms:

£ . .
e ) m
Tl = ; Z Wz(r) a cosmg + bmsmmcp Pz (cos 8) (59)

4 -

A -

- (
r Q = z; Z Gz(r) C_,C03 me¢ + dm
£= m=0 ]

where P},m(cos 6) is the associated Legendre polynomial, (4) a bm,

sinme E}lm(c os §)

(60)

L

¢ ,and d are arbitrary constants, and where W (r) and G(r) are
m m A J/

the general solutions of the ordinary differential equations

dz'W! 1 dk 4w i o Hat 1)
> - ——t|k - —=— W = 0 (61)
dr 1 dr dr L r 2
) -
d Gﬂ 5 o2+ 1)-1
2' +]l k - — G =0 (62)
dr r 2
Recalling that klkZ = --k2 and that kZ is constant, Eq. (62) may be

rewritten in the form

21



W oaa ™ 2 D )
2 k dr 2 L
dr dr r

We note that Eqs. (42) and (52) (which lead to Egs. (61) and (62), res-
pectively) were obtained as a direct consequence of the two basic
Maxwell equations, () and (7); they do not arise from the require-

(1)

ments V-H =0 ) v-D=0 , as stated by Wyatt ' ’); for example,

the latter equation is even incorrect, as we have seen above.

This completes the reduction of Maxwell's equations. Given a specific
dependence k(r), the only remaining problem is to find the general
solutions WJL and GJL’ and then to determine the arbitrary constants in
expressions (59) and (60) (including those implicit in Wz and GZ ) by

imposing suitable boundary conditions.

22



Iv. THE FIELD OF THE INCIDENT PLANE WAVE

In the present report, we are interested in the problem of the scattering
of a plane wave by spherically symmetric media such as described
above. We shall assume that the inhomogeneous medium is finite in
extent, with outer radius r = b. Moreover, we shall assume that the
incident plane wave is linearly polarized. The coordinate system may
then be chosen such that the incident wave propagates in the positive
z-direction and has its zlectric field in the x-direction. The fields of

the incident wave are then given by

. . 1
gl . el(k Z -wt)
X
E' = E' = 0
y z
. I .1 (64)
gt . k el(k Z -wt)
y WoW
H' = H' = 0
X z

23



Here kI is the constant propagation constant of the outside medium,

and we have assumed the electric field to be of unit magnitude,

Inasmuch as it will be necessary later to match boundary conditions at
a spherical surface, we must reexpress these fields in spherical coor-
dinates. For our purposes, we shall only require the r-components of

both fields, which are easily shown to be

. 1
Erl = e1k (STl F’sin § cos g (65)
: I .1
H' = X elk d cosesine sin ¢ (66)
r W

Since it is much more convenient to apply boundary conditions to poten-

tials than to the field components themselves, it behooves us to find the
- . . . ei m i .

electric and magnetic potential functions Q , 0 from which the

above fields may be derived. To do this, we proceed from the well-

known expansion

i K 5

elk r cosé o Z 12(22 +1) Jf(klr) PZ(COS 8) (67)

£=1 '
where
j " I
: .
‘i i fkr) = J L (Kr) (68)
2 ZkII' 2+ /2

24




Inasmuch as

and

Eq. (67) may be

ikIr cos @
e

If we further introduce the new functions

v ()

we find that Eqgs.

e
eikIr cos 6 - 1 aelk rcos® (69)
ik r d(cos 9)
dP}(cos 9) .
sin @ - = P!, (cosg) , (70)
d(cos 8§)
rewritten in the form
]
= (sm (sin )" Z “L2p+1) (k r) P (cos @) (71)
1 1 nkIr
= k i k = — k ’ 72
rj k) T,k (72)
(65) and (66) may be written in the expanded form
on
cos ¢ -1 1.1
= > i (2 2+1) wz(k r) I}) (cos 9) (73)
kI r2 =1
-1 I
= 17 T (2841) wz(k r) P;(cos 9) (74)

25




We also note that the so-called Ricatti-Bessel functions *I, (kIr) are

solutions of the equation

d wz 12 L2 +1)
> +l1k - — \“ = 0 (75)
dr r

On the other hand, as shown in the preceding section for a general
medium, the fields may also be derived from potentials of the form
(59) and (60) by means of the relations (53) and (56). For the case of
constant k = kI , Egs. (62) and (63) for G!. and WZ are both identical

with Eq. (75); consequently, we may write

G,lr) = Wr) = \yz(klr) (76)

Moreover, we may note from Eqgs. (53) and (56) that only the m=1
terms in the general expansions (59) and (60) are required to obtain
the incident fields (73) and (74). Consequently, we may write the

electric and magnetic potentials of the incident plane wave in the form

e i I .
r Q9 = cosg® a ¢y (kr)P (cos 8) (77)

= L2 2

m_i , I 1
r 0 = sin g b v (k r) P (cos §) (78)

AL 2

26



The coefficients a, may be determined by substituting Eq. (77) into (53)

which yields

2
| d ¥ 2

E = a P (cos 9g) L + kI ¥ (79)
. ) 4 2 ) )
r

o
n

In view of Eq. (75), this may te rewritten in the form

E = T3 a.}z £(2+1) sbz(klr) P;(cos 6) (80)
1 2=1

By comparing Eq. (80) with (73), we then find that the coefficients a,

are given by

kD i 241y 1 it

a = 2 = e (81)
I £(2+1) k 2(2+1)

such that the electric potential (77) becomes

2-1
i (2441
i +)‘k

(kIr) P;(cos 8) (82)
k — L(4+1)

L
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In an exactly analogous manner, the magnetic potential of the incident

wave is found to be

L4=1

i"l(zz.u)

LL+1)

28
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v, (kr)

1
P!(cos 9)

(83)




V. SCATTERING COEFFICIENTS FOR A SPHERE

A, General Case of an Inhomogeneous Sphere

We now turn to the general problem of the scattering of the plane wave
described in Section IV by a spherically symmetric inhomogeneous
medium of radius :1=b. We shall call the region outside the sphere
(r >b) Region I, that inside the sphere Region II. The problem is
solved by finding the general solution for the fields everywhere and

then imposing the required boundary conditions.

The general field in Region I is composed of the field of the incident

plane wave plus the scattered field, The potentials of the former are
given by Egs. (82) and (83). The potentials of the scattered field are
given by the general expression (59) and (60), where Wz(r) and Gz(r)

. . | S . .
are both solutions of the equation (k = k” 1is constant in Region I).

dzuz 2 ME+)
5 + B = —— |4, = 0 (84)
dr r
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Equation (84) has two linearly independent solutions (one of these is
wz(klr) , as we saw previously). For the scattered wave, we must

choose that linear comnbination which for large r behaves asymptoti-

cally as elk' “/r . This solation is easily seen to be
(1)1 nr (1)l
= = = e 5
wf,(r) Gz(r) Q’L QL (k 1‘) Q’L 5 H£+ /2 (k 1‘) ’ (8 )

where @, are arbitrr -y constants.

Moreover, inasmuch as we must satisfy boundary conditions at r=b

- el m_i .
for all values of @ and ¢, and the potentials Q , Q involve only
cos ¢ and sin ¢, respectively, it is evident that the same must be

true of the potentials of the scattered field as well as of the field trans-

mitted into Region II.

Accordingly, the potentials of the scattered field in Region I may be

conveniently written in the form

X
cos ¢ 4-1 1
reQS - - eBE _1_____5_2&’_*‘_1_)_ Cﬁl)(klr) PL (cos 8) (86)
k2 = 0( 2+1)
, o
isin g L2-1 oy
LMo mp L () Dol pYeos o) (87)
1 J2 . 4 2
k = 2{4+1)
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: e m )
where the arbitrary constants Bp and B!, have been defined as

above in order to facilitate the later matching of boundary conditions.

Similarly, the potentials of the fields in Region II can be written in

the form
o0
cos © A-1 1
- s, = (2, W(r) B, (cos o) (88)
kZ T L(L+1)
2]
i sing . 2-1 4
S A A L (2gtl) G(r) P (cos 0) , (89)
K = L(2+1)

where in this case Wz(r) and Gz(r) represent particular (rather than
general) solutions of Egs. (62) and (63), specifically those solutions

having no singularities at the origin.

We now turn to the boundary conditions which must be satisfied at the

boundary r=b. These are

I 11 1 11
E =E , E = E
0 0 Q ®
;. r=b (90)
HI=HH, HI:HH
6 6 ) 7

We wish to express these boundary conditions in terms of the potential
functions <0 and mQ. To do this, we observe from Eqs. (54), (55),

(57) and (58), that Eqs. (90) are satisfied, if we have
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I
1 Saf(r ) = —p 'aér'(r ah L or=n (91)
k k. " (b)
1 1
'mQI - InnII , r=b (92)
eOI - eQII e b (93)
d m _I ) m II
-a—r- (r Q) = g(r () », r=2D>0 (94)

where QI represents the total potential in Region I, OI =0 +0°

Egs. (91) through (94) represent four simultaneous equations for the

. e m e m
four unknown coefficients A A

A A A
At this point, it is convenient to introduce a new variable p defined
by

p = kr (95)

Since kI is a constant, the boundary conditions, Egs. (91) through (94),

can be rewritten in the form

1 1
I II
— 26 = —— 2%, = x (96)
Kk P k, (b) °°F
1 1
. L e o
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SaniiiG

Q = Q ) p'_'x (98)
o) m. I _ 9 m II _
(0 = ST L p=x (99)
where we have defined
1
x = pb) = kb (100)

The Ricatti-Bessel functions entering into the potentials (82) and (83)
of the incident field and into the potentials (86) and (87) of the scattered
field already have the argument p. We may also consider the functions

Wz and Gz occurring in the potentials (88) and (89) as being functions

of p, and write

cos ¢ . £2~1 1
e S ep L_(281) w () P (cos 6) (101)
s Loy P
S ¢
[>+]
i sing 2-1 .
L mp L @4 ()P (cos o) (102)
K ’ L)
ey 2(2+1)

The differential equations satisfied by W}(p) and G!(p) are obtained

from Eqgs. (62) and (63) by substituting o = kIr , and we find
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d Wz 5> dn sz 2 2(4+1)
_5_"533—+ n” - — w}z = 0 (103)
dp dp p
2
d Gz o 4(441)
+1ne . G = 0 (104)
2 2 )
dp p

where the relative ''refractive index'" n corresponding to a medium

with propagation constant k is given by

k 1t
no= -7 , e.g. n, = g (105)
k k

We now substitute the potentials (82) through (83), (86) through (87),

and (101) through (102) into the boundary conditions (96) through (99;,

obtaining the following four equations for the coefficients eA.z , mAJe ,

e m

B, B
L 4
°B, ¢ Mix) - °A Wix) = -y x) (106)
| ) [A) )
? My Wy - ™A Gx) = - g (x) (107)
“ [ARS) ) )
ff (l)l 1 1
e Gm e W v
B,=—1 - & Tm o TT (108)
| k1 .k1 (b) k1
|
34
\
I e




Wy

mBz g( )'(x) - Az Gzl(x) = - q;zl(x) (109)

where primes denote differentiation with respect to the argument.

Multiplying Eq. (108) by klI and noting that

2
kll k2 klI kI 1

(P SR S R EEE

k[ (b)  k, k(b) [k (b)] n,“(b)

Eq. (108) may be rewritten in the form
, W (x)
eBt C(l) (x) _ € z___i_____ - _ “/'(x) (108')
[nz(b)] |

. T = m .
Only the scattering coefficients BI, , B _are required to calculate

all of the scattering quantities of interest. The coefficient eBo is

obtained by simultaneously solving Eqs. (106) and (108), which yields

b (%) W(x)
n, (o) §,'x) -~
2
B = - (111)
! ) W (1)!
cz()w() RIOWARNES

Similarly, mBz is obtained by solving Eqs. (107) and (108), and is

found to be
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G, (x)

3, (%) - ¥, (x)
np Gz (x) 2
mB}z = . (112)
, G, (x)
M - M
G, (x)

The above expressions may be written more compactly by introducing

the notations

v, (%)
D!,(x) = =) (113)
b/
¢
T (x) = (114)
! o 0
W (x)
wz(xl = —W (115)
G, (x)
Yz(x) = -'q—('x-)- (116)
with which the scattering coefficients take the form
2
S b, x) n, (b) D (x) - u/(x) 1)
M| e e - e

36



s . wéx) YE(X)-Dz(X) (118)
2 gzm(x) I"L(X) - YE(X)

This completes the calculation of the scattering coefficients for the

case of an inhomogeneous sphere. (The result obtained for mB!’ by

(1)

. . e
Wyatt' " for the same case is incorrect.) The coefficients Bz and

mBE may be found explicitly for any given variation n(r) by solving the

differential equations (103) and (104), These were solved numerically

(),

by Wyatt or a very particular variation of n(r); they may be solved

analytically for n(r) = n, = constant and for the case where n obeys

2
a power law. The former is discussed in Section V-B, the latter in

Section VI-D-2 of the present report,

B. Special Case of the Homogeneous Sphere

We shall now specialize the solution found above to the case of a homo-
: : I 11 I

geneous sphere with a constant propagation constant k=, (kK # k).

We thus also have nz(r) =n, = constant. This corresponds to case

(a) in Figure i. In keeping with the notation of Fig. 1, the radius of

the sphere is now r=a; accordingly, we define

T AL

y = ka (119)

VSN U RS et Fod

37




and the scattering coefficients are given by Eqs, (111) through (112)

with x replaced by y .

These may be simplified, however, by noting that Wz( o), GI,( p) for a

homogeneous medium are given by
W = G = *20
(o) = Glo) = ¥n,0) ("20)
where the function WI, is defined by Eq. (72). If we further note that
' ' '
W) = G, (p) = m,yln,p) (121)

where primes denote differentiation with respect to the argument, we

find from Eqs. (113) througu (116) that
= G ( =]
‘%‘V’ \Z.Y) n, Dz(nzy) (122)

Accordingly, the scattering coefficients given by Egs, (117) through

(118) (with x replaced by y ) then become

ey 1bz(y) nZDz(Y) - Dz (n,y) 123)
L (1)
QZ (y) Dz(nzy) - n, FI,(Y)
r‘ -
¥ (y) n,D (n,y) - D (y)
mBZ 3 (f) 242 £ (124)
¢, (y) L TL(Y) - nZDl(nZY)
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These expressions represent a considerable simplification over the
corresponding expressions (117) and (118), inasmuch as the only trans-
cendental functions involved in epxressions (123) and (124) are the func-
tions wz(x) ; I;E(l)(X) ; no nunierical integration of differential equations
is required. The scattering coefficients given by Eqs. (123) and (124)

represent the complete solution of case (a) of Figure (1).
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Vi SCATTERING COEFFICIENTS FOR A SPHERE WITH A CENTRAL

CORE

A, General Case

We now turn to the more general case of a sphere with a central homo-

geneous core, which inciudes cases (b), {c) and (d) of Figure {(1). The

situation to be considered is illustrated in Fig. (2) below.

Region I
Region II

FIGURE 2

Regions I and IIl are considered to be homogeneous with constant

propagation constants kI and kHI, respectively, while kII may be
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an arbitrary function of r. The purpose of this section is to find
expressions for the scattering coefficients for this general case: in
I1

subsequent sections, we shall consider particular variations of k

(or n, = kH/kI ) in Region II.

2

As before, the problem consists of finding the potentials everywhere
and then applying the boundary conditions (96) through (99) at both

r=a and r=b, The potentials of both the incident and scattered fields
in Region I are again given by Eqs. (82) - (83) and (86) - (87), respec-
tively. Similarly, since kH'I is constant in Region III, the potentials

in Region III may be v ritten in the form

[+3]
cos ¢ LAL-1
111 1
Wl - — e, ——ZH) y n 0P (cos 8)  (125)
k2 701 2(2+1)
ising =1, 1
R e d) —\2krl) 4,050 B, (cos o) (126)
k P To(e+l1)

Finally, the potentials in Region II may be obtained from the gcneral
expressions (59) through (60), where only the m=1 terms can contri-

bute because of the boundary conditions.
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As in Section V-A, we shall consider the functions W and G;', occur=-
ing in Eqs. (59) and (60) to be functions of the argument p = kIr :
Wz(p) and Gz( p) then represent the general solution of Egs. (103) and
(104). Inasmuch as Region Il does not contain the origin, Eqs. (103)

and (104) will both admit of two linearly independent solutions, so that

the general solutions may be written in the form

11

Wz(p) @, Xz(p) + B, Y’l(p) (127)

G

G,(p) v, Ulo) +8 V(o) (128)

where ' 33 h YL' 61, are arbitrary constants. The potentials in

Regiomn II n.»y then be written in the form

w
cos @ 4-1 1
11 2
p S = o i ul) o 6)[a X (p) + B,Y(p)] (129)
Kk 2o+ b Atk
TS :
. - wﬂ z 1
isineg A= 1
m 1l 2
pingh o —~ i (2e41) P (cos e)[yz U (e + Sz\Q(p)] (130)
k = 22+1)

We must now match the boundary conditions ($6) through (99) at r=b
(p=x) and r=a (p=y). Substituting expressions (82)-(83), (86)-(57) and
(129)-(130) into the boundary conditions (96) through {99) for p=x,

we obtain the zquations



1;.:1in

Wi ¢

Sibihminiitiife

g

e (1) . _
’%(x) t B g (x) - o, XE(X) - B, YE(X) = 0 (131)
m (1) _
Bx) + 7B, ¢ ) -y, Ux) - B, V(x) = 0 (132)
1 1 e Cfl(l)l(x) 1 [ 1 1 ]
— ¢ (x) + B - o X (x) + B Y (x) = 0 (133)
K I "2 £ K 1 " H(b) L 4 L 2
1 1 1
1 m (l)l 1 rl _
b,x) +7B, 07 %) - v, U, %) - 8 V() = 0 (134)

Similarly, substituting Eqs. (129) - {130) and (125) - (126) into the

same boundary conditions for p=y, we are led to the four equations:

o, X!,(Y) G, Yz(Y) =S, ¢£(H3Y) (135)

0 Uz(y) + 62 VE(Y) = dz ¢Z(n3y) (136)

1 1 ! n3 1
kln(a) [Q’z Xf,(y) + BI, YE(Y)} = Cf, -l:-lﬁ— Q,rz(nsy) (137)
Y, Uz(Y) + 62 VQ’(Y) = dﬂ/n3 wz(n3y) (138)

Equations (131) through (138) represent eight simuitaneous linear

equations for the eight coefficients eBz , My , C
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Y. , & . Fortunately, these separate into two independent sets of

L

four equations eaclh. Thus, the coefficient eB)Z may be found from

Eqgs.(131), (133), (135) and (137), which may be rewritten in the form

e (1) _
Bz ¢, (x) - o, Xz(x) - B, Yz(x) = -wz(x) (139)
el (1) X, Y, () :
B ¢ '(x)-« - B~ = -y (%) (140
J ) znzz(b) ) nzz(b) L
o, Xz(y) t 8, YZ(Y) e} Wz(n3y) = 0 (141)
. . n%(a)
o, Xﬁ(y) § Bz YZ(Y) e ; Wz(n3y) = 0 (142)

vwhere Eqs. (140) and (142) were obtained by multiplying Egs. (133) and

(137) by klI and kln(a) , respectively, and noting that

k) kyk, L 1
o - T -z T2 (143)
SO R S O
I I 11 2
k. (a)n nk,k. " (a) n k (a) n, (a)
1 3 M13%0% 3 2
o I 2 - T n (144)
k) k,k, gt 3
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Equations (139) through (142) may be solved by standard methods, and

e . . . '
the solution for BL may be written in the determinant form

-4, (%)

‘QI;(X) other terms as below
| 0
i e Al .

By 508 (145)
ot N e ¥, ) 0
| ! .
D (1)! 1 1
' 5 - X (x) - Y (%) 0
| 2 (x) “zz(b) 2 nzz(b) 2
2
! 1 'nz ('d.) !
0 Xz (y) | YI,(Y) - v, (n,y)

! ‘ The bottom determinant A, may be evaluated by first multiplying the
: (1) (13 e .
{first row by -gﬂ (x) CE (x) and adding it to the second row, which

yields
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o x| Ve v
BTV S T ) 0
¢, (x) n, ()| | ¢, x) n,"(b)
x) Xz(y) Yz(y) -d!z(n3y)
. . i),
X,y Y, (n) "o, t,(n3y
(146)
'n3 ‘l’z(n3Y)
If in the determinant of Eq. (146), we now add > ' times
n,"(a) ¥, (nyy)
the third row to the second row, we obtain
¢Mix) X () ¢Mix) Y ' (x)
X A= | 2y 2
2 Wy 277 0 4m) Wiy 277 1 4w
s (a) (1) 1 L Cz 2 4L Cz 2 .
b,= T ¢, (X)d,:z(nsy) F . -
n,y,(n,y) ; n yny)
T L L | PN o ¥,(y)
_ np lylagy) © || np (M) © |
(147)

which rnay be easily expanded. Thus, making use of the notations (113)

and (114) introduced previously, we find
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¢ ey gy (-

2 ! 2 !
b, = - n, M) L)X (x) - X (x} |[n,12) Y(y) D y)- n, ¥ (y)
2 nzz(b)D(n v) l_ 2 L L L ][ 2 ) L3 312 ]
£ 3
2b N(x)Y Yl & D X Xl 14
- [m, B ) Y() - Y00 [0, (@) Dfe ;1) X () - my X ()] (148)

The determinant in the numerator of Eq. (145),

except that gz(l)(x) and gz(l)'(x) are replaced by -wz(x) and -\yzi(x),

AZ , 1s identical to Al

respectively. Consequently, the value of A, may be written down

1
immediately from Eq. (148), by making the substitutions C’Jl( )(x)—-)

"Wz(x) ’ ( )'

(x) ~—> -q; (x) , and accordingly also l']‘l(x)-—-’ DI(X) .
We then find,
1
!
b, (x4, (ngy)

2 ! 2 1
b = 2 [n, ®B)D X ) - X(x) [0, (2) ¥,(y) Dfny) - n ¥ (y) ]
nyn,"(b)D (n,y) .

A ' 2 '
- [ n, Wi ¥ - 7,0 ][n, (@ X MID,myy) - nX )]} (149)

. . - e
Thus, the desired scattering coefficient B! becomes
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B. Special Casc of a Spherical Shell

We first consider the case of a spherical shell, for which the electro-

magnetic properties of Regions I and III are assumed to be identical

1
(kI = k11 ) ,» and Region II is assumed to be homogeneous (:nZ = kH/{(I =

constant). We then have n, = kHI/} =1. Egs. (103) and (104) for

Wz and Gz are then identical and have the previously noted solutions

X(p) = Ulo) = gnge) (157)

The linearly independent solutions are

Yz(p) = Vz(p) = )Sz(nzp) (158)

where xz(z) is related to the Neumann function N£+1/Z(z) as follows:

mz
X2 = AN e (159)

The ratios defined by (154) then become

| wx) = glx) = n,Dn,x) (160)
| v = ) = nyE(x)

t

L where X;'(x) 6
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Equations (162) ind (1€3) then become

- -%x) f 64x) & fy ) XN (myY) = 8 f)e () gfn,y)xfnyx) -
) | Symrefydinxix n,y) - Oy (185 4fmyyIenyx)

my . =) | 8x)e, (V) yfn,xixin,y) - 8, (y)g(x)gm,y)n,x)
(1

E (173)

) | e, (ydynyxxn,y) - % 1018y yn,y)nin,x)

\

Fquations (172) and (173) - alternatively, Eqs. (162) and (163) - repre-

sent the scattering coefficients for the sphercal shell (case b of Fig, 1).

C. Special Case of Decreasing Refractive Index

We shall now consider the case where the refractive index in Region Il

decreases with r ; in particular we consider the dependence
A

where A is an arbitrary complex constant., This corresponds to case

(c) ot Fig. 1.

However, before proceeding to solve Eqs. (103) and (104) for the specific

case where n, is given by (174), we shall first derive some results of
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more general extent concerning the analytic nature of Eqs. (103) and
(104). Equation (104) is of the general form
2
d Gz
—_— f(p)GL = 0 (175)

2
dp

while Eq. (103) has an additional term involving the first derivative
E dWL/dp . However, Eq. (103) may likewise be cast into the general

form (175). Thus, if in (103) we set

w o= qu (176)

¢ where p is an unknown function of r , we find with

1 W = w + Y
g TR TR,
W W2l W o+ W
R AL T )
that Eq. (103) becomes (cfter division by u )
- ! [ I | i 1 1 2 —
A 2[“—- Pn—]wz +[&--£:—9_+ o AlG
W m m 5 J (177)

—_—
The term proportional to WI, may be eliminated if we chose

1
—“‘u— = —n;- or W = Cn (178)
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where C 1is an arbitrary constant which may be taken equal to one

without loss of generality. Equation (177) then becomes

2
- n'" . n! 2 Z(H’l) —_— _ /
Wz + [ = © 2 (n) +n - pz ]WL = 0 (179)

which is indeed of the form (175), with

W = n\Tﬁ (180)

Moreover, for the special case where

n” nl
S 2(—n—> (181)

Equation (179) for Wz is identical with Eq. (104) for Gz( p) . The
functions n for which (181) is satisfied may be obtained by integrating

Eq. (181). Rewriting (181) in the form

nll nl
on— = 2 —— 2
o - (182)
a first integral is obtained as
2 .
n' = Cn ; C arbitrary

This in turn may be integrated to yield the general solution
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A
= (Fﬁ ) (183)

where A and D are arbitrary constants. Thus, for any u of the

form (183), we have

W(p) = nGp) (184)

We now return to the specific form (174) for n, wbich is a particular

case of (183). Accordingly, we may write
W(p) = 2G(p) (185)
2P T P

(since the equation for Woc is linear, the constant A in Eq. (184) can
be taken as unity without any loss of generality), where CT?,( p) must
satisfy

dZGZ J [Az - z(z+1)] .

) 2 )
dp p

0 (186)

The general solution of Eq. (186) may be found by setting

G (187)

which leads to the characteristic equation
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A WY

el & [AZ - )] = o0

having the solutions

1x A1 - 4?0y

m =
1,2 2
Writirg
2 A}
2
p = V(ﬂ+l/2) -A
we may write
1
e ]
=
Mg = Z2°F

According to Egs, (127) and (128), and (185), we then find

l/.
_ p+72
Uz(p) = p
(oY
Vz(p) : p(p 2)
P-l/z
Xz(p)_ = p
|
Y (o) = p~(p+ f2)

The ratios defined by Eq. (154) are then easily calculated to be
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(189)

(190)

(191)

(192)

(193)

(194)

(195)
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p+1/2

glo) =
'ﬂz( p) = -
“z( p) =
vilp) = -

(196)

Substituting Eqs. (192) through (196) into the general expressions (155)

through {156), we find after some simplifications that the scattering

coefficients may be written in the form
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! (4 -afa - ($Fwya, v][x(Z +a) + 1y - [£(7 +a)fu + (e V[ -d) - 0o 1)y, vea:wu
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D. Special Case of Increasing Refractive Index

1. Sphere with Central Core

Here we consider the case where the refractive index n, in Region I

has the form

where A and m are arbitrary complex constants, with the exception
that the case m = -1 is excluded (this case was treated separately in
the preceding section). We shall assume that m is real and positive
and that A has both positive real and imaginary parts, such that (199)
describes an increasing refractive index (corresponding to curve (d) in
Figure 1), although the analysis which follows applies equally well to

the general case.

Equations (103) and (104) in Region II then take the form

2
a“w dw

Zz _2m dz n [Aszm ) M?l]wz = 0 (200)
dp p dp )

2
d4°G

2 2 (2
— +[A G “’“’é”]w = 0 (201)
[}

dp p
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Both of these equations are particuiar forms of the more general

equation

xzy” + axy' + (bxr +cly = O (202

y - (5)
whose solution (for r # 0, b # 0) is given by Kamke' ™' as
(1-a) r

y = x ° ZV<—i— w.?xz) (203)
where

v = %Q/(x-a)z -4c # 0 (204)

and where Z{) is any one of the Bessel functions,

Thus, Eq. (200) is solved by making the identifications

X=p, y:Wz, a=2m , b=A2, r=2m , c = -g(g+1) (205)

Substituting (205) into (203) and (204) we accordingly find that the two

independent solutions of WJZ are

_ m mp A m+1)

Xz(p) = f 2 J\J (m+1 o (206)
_ m Tp A m+l

Yz(p) = 9 > J—v <—m+1 p ) (207)
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where

w| = ;lﬁ W(Hl) + (m+72)° (208)

Similarly, if we make the identifications

’ c = "L(L"‘l) (209)

1]
v
3

X= 0D, y:GL, a=0, b=A", r

Eq. (202) becomes Eq. (104) for GI,’ and the two independent solutions

of G are found to be

" _ Tp A  m+l .
Ule) = ~ 2 Ju(m+l P \210)
a Tp A m+l
e = ¥ 3 J..p.(m+l s L
where
20+1
o e 2
. 2(m+1) (212)

The scattering coefficients are obtained by substituting expressions (206)
through (211) into Eqs. (155) and (156), as well as into the expressions
(154) which enter into the latter. Inasmuch as the functions XI,’ YI, , LL ,
V}, as given by Eqgs. (206) through (211) are exceedingly complicated,

no significant simplifications are possible. We note also that for the

first time we are faced with Bessel functions both whose argument and
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order may be complex, Moreover, inasmuch as the index ¢ .enters
in a complicated manner into the orders p and v of the Bessel
functions, it is impossible to write recursion formulas in ¢ for the

Bessel functions involved.

Finally, we note that the solution presented in this s2ction has already

(2)

been previously obtained by L.evine and Kerker' '(cf. also Namura and
Takaku(b)), although their expressions for the potentials and scattering

coefficients contain some errors.

2. Sphere without a Central Core

Finally we consider the case where the refractive index is given by
(199) throughout the entire sphere, i.e. where the central ccre of
constant refractive index is absent. This corresponds to the dotted

curve in case (d) of Fig. 1,

Only those solutions having no singularities at the origin are then

admissible, and we have

Wz( p) XL( p)

(213)

G, (p) Uz( o)
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where Xz(p) and UL( p) are given by (206) and (210)., The scattering
coefficients are then obtained by substituting (213) and (199) into the

general expressions (117) and (118), and we obtain

¢ () [ A%D (x) - o0 x)
S s £ L 4 (214)
Wy | 8 - A%r ()
¢ S A
- v, [ v - D x)

B} 215
B, ) T,0) - v, (215)

CZ (x)
where .

X (x)

5 = 37
2
' (216)
%(x)

vz(X) = U}(x)

As in the preceding section, these expressions are intrinsically quite

complicated and no further reduction is possible.
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VIIL. DERIVATION OF THE RADAR CROSS-SECTION

In tne preceding sections, we have obtained exact analytical expressions
. S e m .

for the scattering coefficients B!, and B for a variety of cases.

Our ultimate interest is to determine the radar cross-sections of the

various objects under study, and it is the aim of the present section to

show that the radar cross-section can in general be expressed entirely

in terms of the scattering coefficients eBz and mBz :

2
The radar cross-section is defined as 4nr times the ratio of the
Poynting vector of the wave scattered in the negative z-direction (i.e.,
the radial component of the Poynting vector for 8=m) to the Poynting

vector of the incident wave traveling in the positive z-direction. Accord-

ingly, we may write the radar cross-section as

R T - - (217)
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where the minus sign is introduced in order to make the cross-section

a positive quantity. The Poynting vectors entering into Eq. (217) are

s 1 -5 - g%
= = X 2
1 e ZRe(E H )r!’e:n (218)
-1 i
= lRe(E‘ xﬁ") (219)
z 2 z

where the superscripts i, s, * stand for incident, scattered and complex
conjugate, respectively, and where the subscripts indicate the appropriate

vector component.

We first turn our attention to the Poynting vector of the scattered wave,

which may be written in the expanded form
s 1 s s* s . S¥
1 = =Re(E H - E H 220
(e, 5, > 220)

The field components required in Eq. (220) are in general found from
expressions (54), (55), (57) and (58) with °Q and 'O given by (86)

and (87). Thus, for example, if we consider Ec: , We obtain

X
b 4
. ,4-1 P (cos 9) dP(cos g)
2 |
Ecps - slirrﬂ i (20+1) eBJZ Cz(l)(kr) L o mBEiCz(l)(kr) L
' i M(241) sin ¢ de
2=1
(221)
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I .
where we have written k = k and have made use of the relation

kllk2 = —k2 . Similarly, we obtain
= 1
s coso Y i 2e+1) eg (1) dp‘°°s 9 (1), . Fplcose
By = Sopr/ B, ) ——— 17 ¢ ) £
2 2+1) de sin @
2=1
(222)
.4-1 dP(cos 0) P (cos 6)
u s _ -;o::p 17 (24+1) Blzg(l)(k r) o m (1)(k )
\ 2 2(2+1) de sin 6
2=1
(223)
Z Pleosd apcos
cos § cos §
Hes v -smg (23+1) eBzg(l)( r) 2 ) (1)(k )
2(2+1) sin 6 de
(224)

We are generally interested in the radar cross-section for the case where
the receivar is located at large distances from the scattering object
(far-field); accordingly, we may replace the Ricatti-Hankel functions by

their asymptotic forms:

sz(kr) : (4)“1 kT (225)
A R (226)
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Furthermore, we are interested in the field components for the parti-

cular value 6=n. Thus, by making use of the well-known relations
dPi( ) Pi( )
cos § cos §
) U2 y (-1)‘ z(?l) (227)
de 6=m sin 0 f=m

expressions (221) through (224) for the required field components become

=
"

. ikr
S BgALS B P g (-1)* (z+ %—)(eBZ- mB) (228)
¥ kr =1 / b/

"

. ikr
Ees e oL E (-1)% (u%)(ep,z- mBZ) (229)
= =1

o
"

S eikr cos ¢ L 1\[fe m
== (-1)" {24+ > B- B (230)
¢ K1 2 J J
2 2=1

ikr
e

s sin 2 l e m
af o teme) L (e)(yoms) e
2=1

Substituting these expressions into Eq. (220) for the Poynting vector,

and making use of the usual rule for expressing a product of two infinite
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series as a doubly-infinite series, we obtain

-i

L Y™ () (4 2)(%B, -8 ) (G -8
N7 |gn= 3 Re — (-1Y%(-1) (l,+2)(m+2)(eBz “’Bﬂ)("’Bﬂ mBz)
2 =1 m=1
] } e
L 1\ /e m :
e (-1) (z+—)(B- B) (232)
73 2 A\ )
&k|k2|r =

where use has been made of the fact that k2 =1 |k2 | and where the bars

denote absolute value.

The incident Poynting vector IIZ1 is easily found from Eqs. (219) with

the incident fields given by (64), and we obtain

i

|k
n' o= E-F;[ (233)

Substituting expressions (232) and (233) into (217), we finally obtain the

desired expression for the radar cross-section:

| =

ino 4 1\ /e m
w07 () () e
L=1
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In corclusion, we also cite the corresponding results for the extinciion,

total scattering, and absorption cross-sections (cf., for exanple Wyatt(l)):

i 1 e m
%%t - T3 Re (z+7)< B+ .BZ) (235)
k =

an 1 . 2 m 2
%Scat © T2 (f‘ + E) ( B£ t l le ) (236)
k
2=1
cabs - c'ext - c,scat (237)
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VilIl, CONCLUSION

As described more fully in the Introduction, the purpose of the present
investigation is to determine whetheis the measurement of radar cross-
section profiles is a potentially useful diagnostic tool for ascertaining

the electron density distribution of inhomogeneous plasma spheres of
practical interest. Toward this end, we have obtained analytical expres-
sions for the radar cross-sections (at arbitrary frequency) of some
typical examples of spherically symmetric plasma spheres with increas-
ing and decreasing refractive index, as a function of radial distance
from the origin. Specifically, we have considered the four different

electron density distributions illustrated schematically in Figure 1.

We have found that in each case, the radar cross-section is completely
defined by means of two sets of scattering coefficients °B and mBz 5
in terms of which the radar cross-section can be calculated by Eq, (234)

of Section VII. Accordingly, we have obtained analytical expressions

for the coefficients eB)e and mB)e for each of the four schematic cases
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illustrated in Fig. 1. These expressions which constitute the chief

P wilii,

results of the present report, are given by Eqs. (123) and (124) for

‘ case (a), by Eqs. (172) and (173) for case (b), by Eqs. (197) and (198)

| for case (c), and finally by Eqs. (155}, (156) (together with (206)-(211))
! and (214), (215) for the discontinuous and continuous distributions of

"’l case (d), respectively.

We wish to emphasize that the expressions obtained for the scattering
coefficients are exact and are based on a full wave treatment of the
scattering problem, without recourse to any mathematical approxi-
mations, Moreover, our final results are expressed entirely in terms

of well-known analytical functions. However, these expressions - while

oy onimbu g i AR

of varying complexity - are in general too cumbersome for hand cal-
culation. Thus, it is likely that a considerable number of terms are
required in the infinite series (234) defining the radar cross-section
in order to achieve the desired numerical accuracy. Moreover, the

problem of numerical evaluation is complicated by the fact that not

all of the required Bessel functions are readily available in tabulated
form. For these reasons, numerical evaluation of our results will

require the use of a computer.

This numerical reduction of our results, as well as the derivation of

asymptotic analytical expressions for the limiting cases of very high
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and very low frequencies, will constitute the subject matter of Part 1I

| of the present investigation.
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