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ABSTRACT

A non-linear theory for the calculation of the flow field of an oblique

flat plate under blockage condition is given using the techniques of integral

equations. Numerical results are obtained with the aid of a high speed

digital computer for the plate situated mid-channel at values of the angle

of attack from 50 to 900 and the channel width-chord ratio from 3 to 20.

Also obtained are results for the plate situated at two different off-center

positions for a channel width-chord ratio 5 and angles of attack less than

030



NOMENC LATURE

A = leading edge of the plate; origin of the coordinate system.

B = trailing edge of the plate; x = 1.

C = scale factor.

C = drag coefficient.
D

CL = lift coefficient.

D = stagnation point on the plate.

FD = drag force.

f = complex potential.

H A = normal distance from A to the upper channel wall.

H , H = widths of the flow above and below the dividing streamline at
1 2 upstream infinity.

h , h = widths of the flow above and below the cavity at downstream
1 2 infinity.

I = flow at upstream infinity.

J = flow at downstream infinity between the upper cavity and
channel wall.

K = flow at downstream infinity between the lower channel and
cavity wall.

k k k = parameters in the transformation.
0 1 2

p14 = free stream pressure.

PC = cavity pressure.

U, V = uniform up- and downstream velocities respectively.

W = channel width = H + H .1 2

w = complex velocity.

z = x + iy, the physical plane.

a = angle of attack.

a = (p - PC)/' p U? , cavitation number.

p = density of the liquid.

e = direction of the flow.



Introduction

The two-dimensional cavity theory of an unbounded fluid, with the

recently published works(I)' W2 on the non-linear solution of bodies of gen-

eral shape, can be considered a well established field. For an experi-

mentalist who has to perform the tests, however, the existing theories can-

not always be applied directly and have to be modified mainly because the

flow one creates for experiment is often bounded by different types of

boundaries. These boundaries can be free surfaces of constant pressure

if the equipment in use is a jet, rigid walls if it is a water tunnel, or both

if it is a free surface channel. The essential problem is to determine the

effect of the boundaries. In the past, many papers have been published

on this problem. A small portion of these are listed here as refer-

ences (3), (4), (5), (6). We shall not repeat what they have done since

these references are available and well known. This paper also deals with

this problem, but the interest is focused only on the unsymmetric flow for

arbitrary angle of attack and the boundaries considered are rigid walls. In

a subsequent report, we shall treat the cases of the free jet and the free

surface channel.

It is a well known fact that the cavity length behind a body depends

essentially on a, an important parameter known as the cavitation number

and defined as

a = (P.,- Pc)/½PUI" (1)

Here p c is the free stream pressure, U the free stream velocity, and

PC is the cavity pressure presumably nearly constant. In general, the
length would increase as a decreases and with the presence of free sur-

faces, e.g. in a jet, a would become zero when the length approaches

infinity. However, this phenomenon is not observed in a water tunnel

with rigid walls. In this case a would -each a finite positive limit a asc

the cavity length increases indefinitely hence cavitation numbers below a c

are not attainable. Thus not all cavity flow conditions can be modeled in a

water tunnel. The phenomenon corresponding to a = a in a water tunnelc
is called blockage or choking and the determination of a is therefore one

cof the central problems in water tunnel testing of cavity flows.
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In this paper, the two-dimensional non-linear theory of a choked

unsymmetrical flow over a flat plate at an arbitrary angle of attack is

worked out using the techniques of integral equations. Numerical results

are obtained on a high speed digital computer (IBM 7094).

Formulation of the problem and preliminary calculations.

Consider the idealized cavity flow in a water tunnel with rigid walls,

depicted in Fig. 1. We assume a uniform upstream flow with velocity U,

and a uniform downstream velocity V as the cavity, which has a station-

ary interface, approaches its maximum cross-section. The flat plate, set

at an arbitrary angle of attack, can be located anywhere in the tunnel and

the stream after impinging on the frontal side of the plate separates smoothly

at both its leading and trailing edges. The plate is of length unity or one may

say all dimensions are normalized by the chord. The coordinate axes are set

normal and parallel to the plate with the origin at the leading edge.

If we call w, the velocity vector, with magnitude I wI and direction
ie6w= w i e , then in our coordinate system, the uniform velocities at up-

and downstream infinities are U eia and V eia respectively.

The boundary conditions for the problem are:

6 = a, on the channel walls

6 = 0. on the plate from D to B

S= it, on the plate from D to A

Iwi = V, on the cavity walls.

The force coefficients at the choking condition can be obtained from

momentum consideration in terms of the channel width, the angle of attack

and the critical cavitation number;

pV 2 (h + h )- p U? W = (POO- Pc)W-FD (2)
1 2

where FD is the drag, by conservation of volume, V(h + h ) = WU and

by definition = (" pc)/ U 2.* Substituting

FD = (p - W W + pU 2 W-pVUW (3)

The subscript is dropped since the cavitation number we refer to from
now on is always the choked one.
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and the drag coefficient is

CD = D ,w [ + + (4)P U2 A+ [+)

A+, the area per unit span, is equal to one for a plate of unit length.

The lift coefficient is

CL= CD cota. (5)

Theory

Assuming the flow to be irrotational, there exists a complex poten-

tial f = q + i i. The flow field in the f-plane is shown in Fig. 2. The two

channel walls are represented by the streamlines ý and -"z while the

dividing streamline coincides with the negative q'-axis. The stagnation

point D is chosen as the origin and the cut along the positive V-axis re-

presents the two branches of the streamline split at D. The leading and

trailing edges of the plate are located somewhere on the upper and lower

branches respectively. With reference to Fig. 1, the values of yj and

, are given as
z

4'= UH = Vh•lI I

41 z UH = Vh. (6%
z 2 2

We proceed to solve the problem by introducing a new variable 9,
defined by

J log V = T + iJW

V

= log V, 0 = -arg w. (7)
Iwi

The choice of using 02 as the dependent variable for the problem "s Fug-

gested by the existing boundary conditions.

The flow fields in the f and the 0-planes are to be connectcd through
a parametric variable • = • + i q. Consider the transformation

df C
" -k)( -k )( -k (8a)
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or

f(•) = •- [(h +h) log (1- k0 ) - h log (l -k) - h log (,-k )a. (8b)

The flow in the f-plane is mapped into the upper half s-plane with the

boundaries on the real , or 9-axis as shown in Fig. 3. The upstream I

behaves like a source at t = k while the downstreams J and K be-0

have like sinks at ý = k and k respectively. The net strength of1 2
these singularities is certainly zero. The jump conditions on the f-plane

further furnish the relations;

-=•C 1(9
1(k k kV (9)

2 k1 ) o-and

h -11 (10)
? V (k k)(k2-k

Combining Eqs. (9) and (10) yields the ratio

h k -k
1 2 0 (11)

KFK-k-k
2 0 1

The constant C is a scale factor to be determined later in the theory.

Q has the following values along the -axis and rj 0.

Im 0 = -I, < -I

Im Q= 0, > I
Re Q = 0, -1l< 9< k 2 k<9<1

! Z

Im = a, k <•<k . (12)

We further define

S 2= 2 + 42 , (13)
0

where S2 is associated with the unbounded fluid. 02 is split up in this
0

way to make the solution readily obtainable. The term 12, , which re-
presents the effect of the walls, is added to the unbounded fluid trans-

cendentally to maintain the total exact solution. When the channel width-

chord ratio is very large, QI2 then can be considered merely as a per-

turbation of the unbounded flow.
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With reference to Figures 4a and 4b, 0 has the form0

00= cosh = log (1+ / 'T). (14)

Along the g-axis,
Im 0 = 1,T. -

0
Im il= 0, > 1

Re 0 = 0, -I<t< 1. (15)

For I < 1, 00 is given by

Im Q = f(P)= arctan (01-/A). (16)0

The remaining part, 0 which is caused by the presence of the

channel walls, then takes the boundary values;

Im a = 0, ý<-I

Im = 0, >11

R~e iý = 0, -1<ý<k ,k<<I

Im _2 = a - P(ý), k <4<k .(17)1 1 Z

The boundary condition for il on the ;-axis is shown in Fig. 5. Three

branch cuts appear on the i-axis; these are from g = -xo to 4 = - 1, from

S= 1 to ; = +. and from ý = k to 9 = k . The first two cuts repre-1 Z

sent the plate and the last one the channel walls in the z-plane.

We now have a boundary value problem involving the unknown

function, U (c), which can be formulated and solved as a Hilbert problem.

By analytic continuation

1(8

The region is extended to the lower half ,-plane with the Re Q2 odd and
1

the Im Q I even with respect to the 9-axis. We now introduce the auxi-
liary function

1 1 (19)

k - 2 I
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which has the following properties;

i) H(Q) has the proper branch cuts (• = -1, k , k , and +1 are branch1 Z

points).

ii) On the Re ý axis:

Im H = 0, -Xo4< -1

Re H = 0, -l<4<k

Re H= 1 Im H =0, k< < k
V9 -k, )(k1

Re H = 0, k <4<1
2

Im H = 0, 1< <

A new function

G( Q M HM

is then formed which has on the Re ý axis;

Im G = 0, -•< <k
linG = - -I k <

\(g-k )(k- ;)(1- ) 1 1 2

Im G = 0, k2

(7)
With the aid of Plemelj's formula7, the solution of the Hilbert problem is

given immediately by

k
1La - (01td ta] (•) = -LV(,-k )(t-k )(-2-1 _ (20)

1 (t- ) V(t-k1)(k- t)(l -tz)

However, the constants k and k cannot be arbitrarily chosen for a fixed1 2

a because of a physical condition that must be imposed on the solution.

Specifically, the solution Q must behave locally like a stagnation flow

at the stagnation point. In the k-plane, the stagnation point corresponds

to 4 = z. The local stagnation flow can be shown to behave like log ý as

rapproaches infinity; this behavior is already incorporated into the

function 12 . We require, therefore that QI2 be finite at infinity. If Eq.0 1

(20) is expanded in inverse powers of ,, this condition is seen to be

given by the requirement that
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k2

S a-(t) dt=0 (21)
L 2o

Thus for a given value of a, Eq. (21) determines the relation between
k and k.

I 2

We are now able to determine a from 1 in Eq. (20). At up-
stream infinity in the physical plane, IwI = U and r = k 0

o

S=• log V 1- k ) k) [aa-P(t)] dt (22)a l o Tj = F (k z - k o ) (k o - k 1)( 1 - k o ()-
I (t-ko)d(t-kI)(k - t)(l -tz)

From our previous discussion, a = V2 /uTJ-l, therefore Eq. (22) enables
us to calculate a when the integral on the right hand side is evaluated.

In order to complete the solution, we shall relate the geometry
of the flow to the undetermined constants. Utilizing the definition of the
complex velocity, we have the relation

1 1f=_ 1 Qýdz f I e1 T ()df (23)

With the aid of Eqs. (8a), (13) and (14) and upon integration,

- = C A e . (24)

When we apply Eq. (24) along the plate from A to B, the normalized

chord is obtained;

- 1 c[ +ý? -- I de Q 1 (4 V -- A OdB_ A ~VL0 (t -k 0)(s-k (-k) TW (;-k 0)(ý -k (-k) d2

0 -

(25)
The first integral on the right hand side represents the distance from the
stagnation point to the trailing edge, we therefore find the location of the

stagnation point.

HA, the height of A below the upper channel wall can be deter-
mined in a similar way. With reference again to Fig. 1,
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HA = h + Im[e-iz ZA)]

= h + CV Im " ki ei k ()(A ) "

or -ko)( - 1 -k 2

k

=h It+v S -ko(-k )(t-k (26)

since a2 is purely imaginary and equal to iO in the interval -1-5 k .
1 1 1

The channel width W is expressed through continuity as

V=(h + (h h)W =(hI + hz)V• z (27)

Final Results.

We have applied the theory to calculate the case of a flat plate

positioned mid-channel for various values of a and W. The range in

a is from 50 to 900 and in W from 3 chords to 20 chords. We also

obtained results for two off-center positions of the plate, HA = 1. 0

and 4.0 for W = 5 chords and values of a up to 300.

The lift coefficient, drag coefficient and choking cavitation num-

ber are plotted versus a for W = 5 chords and the plate in mid-

channel in Fig. 6. The dash-dot curve in Fig. 6 is the lift coefficient

given by Wu's unbounded fluid theory(1 ).

In Fig. 7, we show the enlarged portion of Fig. 6 for a 5 300

with experimental values from Wade(8) corresponding to the choking

o determined by the present theory. Wade's experiment was performed

with W;5 and the experimental cavitation numbers were obtained from

measured cavity pressure. Since it is difficult to operate the tunnel near

choking condition, Wade was not able to obtain data at such low cavita-

tion numbers: Therefore, we show values extrapolated from his data

curves. One notices that all points are enveloped by the two theoretical

curves.
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Cohen, Sutherland and Tu( 5 ) have worked out a linearized theory

for a flat plate at small angles of attack and calculated a for mid-channel

position. However, their definition of mid-channel is different from ours

as we define mid-channel when the center of the plate lies on the center-

line while they locate the leading edge of the plate on the centerline. As a

result, it is not possible to make a direct comparison between the two

theories. For very small angles of attack, however, the discrepancy

caused by the difference in definition becomes small and for a = 60, W = 5,

the present theory gives a = 0. 133, CL = 0. 198 for HA/(W-HA) = 0. 959

and their theory gives a z 0. 13 and C L 0. ZZ for HA/(W-HA) = 1. The

values of their calculations are read from Fig. 10 of Ref. 3, hence are

only approximate.

Figure 8 shows the effect of plate position for W = 5 chords. In

this figure CL, CD and a are plotted versus a for a < 300 and two

values of HA. The dashed curves are HA = 1. 0 and the solid ones are

HA = 4.0. As would be expected CL, CD and a all increase as the

plate is lowered in the channel.

We show CL and a versus a for W = 8 with experimentalvalues

from Parkin(9) in Fig. 9. Again the experimental cavitation numbers were

obtained from measured cavity pressure, however, in this case only the

data for a = 80 and 100 were obtained from extrapolated curves.

Figures 1Oa and b show drag coefficient, CD' and choking cavita-

tion number, a, versus channel width, W, for a flat plate located mid-

channel. The range in angle of attack is 50 to 900 and in W from 3 to 20

chords. CL may easily be obtained from Fig. 10a and Eq. (5) and there-

fore is not presented here.

In order to show the effect of the channel walls, we have plotted

RCD, the ratio of CD bounded to CD unbounded (1), (RCN = RC = RCD)

versus the channel width W in Fig. 11. The curves are for the same

values of a and W as Figs. 10a and b except that for a = 900 RC D is

shown for W as low as 1. 224. As would be expected when W = 20 there

is very little wall effect and as the channel becomes smaller the ratio

drops until the walls approach the plate where the ratio increases. This

effect is shown for • =900 where the ratio tends to infinity at W = 1.
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The curve of RCD for each a will have a similar asymptote at' W = sin a.

In Fig. 12, we have shown the distance of the stagnation point from

the leading edge as a function of a. At a = 150, it is already difficult to

tell the difference between the two points and at a the stagnation point

is at mid-plate as one would expect.
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APPENDIX

Procedures for numerical computations

In a direct problem one would specify the channel width, W, and the

location of the plate (of chord unity), HA, for a given angle of attack, then

calculate a, h , h and the force coefficients. However, in view of the
1 2

form of our solution it is necessary to do the inverse problem of choosing

the transformation parameters k , k , and k0 (the downstream conditions,2 1O

h and h , when the flow is choked) and calculating W and HA. The
1 2

values of h and h are related to the k's through the transformations
I z

in Eqs. (8a), (8b) and the jump conditions in Eqs. (9) and (10). The

choice of k defines the geometry so that the scaling factor, C, or more
2

precisely, the ratio V/C is determined from Eq. (Z5).

Given a value of k , k is easily determined by iteration of the
2 1

integral condition of Eq. (21). The integral in this equation cannot be num-

erically integrated in its present form so we divide it into two integrals

_ __ • k +k k
k a-(t) dt dt + .... dt;
ýk lt-k I)(k -t)(1- t2- Jk J(t-k I)(k 2 t)(1 -t' ) k I+ k z Vt-k I)(kz- t)(1 -t')

1 1 2 __ _

2
(A-l)

make the transformations

p = x2 + k in the first integral,
1

s = k - xz in the second integral,

and

x =2 (k- k
0 2 1

and Eq. (21) becomes

x0 + Px = 0. (A-2)

p2 F; 7 x2 s 2 Z--x

This integral iteration presents no problem since all calculations are pre-

formed on a high speed digital computer (IBM 7094). We now can calcu-

late the remaining transformation parameter, ko, from the specified

ratio h /h and Eq. (11).
2 1
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To aid in the trial and error solution of this problem the behavior

of k and k for the plate in mid-channel are shown in Fig. A-1 andz

for the off center positions in Fig. A-2. The remaining parameter to be

guessed is h /h which may be approximated by (W-HA-sina)/H A. For2 1

the mid-channel case this quantity is roughly unity.

The choking cavitation number, a, the channel width, W, the drag

coefficient, CDo and the lift coefficient, CLV are readily determined

from Eqs. (22), (27), (4) and (5) respectively. The integral in Eq. (22)

is treated in the same way as Eq. (21).

To determine HA we must first evaluate the ratio V/C. From

Eq. (25)
o00

(---o)(&- k)(•-k) e ± (d +k)( +k )( +k ) e 4 , (A-3)

where 0 (•) is given in Eq. (20) and

0 () =- L ( +k)+k) 2 _ 1) C- -- PtM dt. (A-4)
1T l z (t + 9)V(t -k I)(k - t)(10 - tz)

For numerical integration, it is more convenient to introduce the new in-

tegration variable T = _ The first integral on the right hand side of

Eq. (A-3) now may be written

+o Ft_- I W (d)
S(•-ko)(•-k)(t-k) e j d

(I -lk T)(l -kT)( -k T) e k ,r (lk)lkT)( I k T)e ' ,(AS

10 u 2

0 0 1Titr
0

and the second integral
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e
(9 + kd(4 + k)(9 + k)

'% 1 + \l- T'a'
-+ I e + V1+ e dr, (A -6)

s(l+koT)(l+k.(l+k)e ,d +S(l+kolT)(l+kT)(1 + k ,)A
0 2 0 A a

0

where

a I -- V(l - kT)(I - k 7)(1 - T2) [g + -g +2 g + ".. .+T g,] , (A-7)

' 1 VJ(l+kT)(l+k7)(1 -T9) g - Tg2 + T2g3 ... +T6g] (A-8)
W,

__ __ __ _ __ __ __ _ - •3(t) dt,( -9

iTT -J~ kT)(1~ - k T)( -T2) k (1 )(k -PM (A-9)Qx'' •JI•(1-k )( z)( 2 Jk 1 (1 - tT)V(t -k I)(k 2- t)(1 - dt ,

k

Q =-.(1 + k T)(I + k r)(1 .1) a dt, (A-10)(1 +r , l tT) /(t -k )(k -t)(1 - t)

and k
gn k2 tnla - P(t)] dt (A-li)

k V(t-k )(k t)(l - t2 )
A

and Q'+ are obtained from the power series expansion of 7 and there-

fore are suitable for the calculation of small values of T or large values of

t. For a properly chosen To say To= 0. 1 , a truncated series of seven

terms is sufficient to give 12 + (T ) identical to 0'*(To) to five significant
10 (T

figures.

The remaining quantity to be evaluated is the integral in Eq. (Z6)
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k

sin(0+ -a)
I -gko )(t-k2 )dg.

Some analysis is needed before a straightforward numerical integration can

be performed. One notices that the denominator of the integrand has a

factor (ý - k ) which causes the integral to be logarithmically singular un-

less the numerator also vanishes at the upper limit. It is therefore neces-

sary to examine the behavior of the numerator as 4 approaches k . Let us

study the behavior of

1 I(k- .)(k -)(-z) a -d(t) dt (A-1)
IT' ± 2~V~ k (-) I~tk;)(k_ - t)ý It 2

1 2I

as • approaches k . We denote the regular part of the integrand in the

neighborhood of t = k as
I

F(t) = a - 3(t) (A-13)
•/(k -t)(1 t2)

2

F(t) has the Taylor expansion

F(t) = F(k ) + F (k )(t-k ) + F" (tk - k 2 +
- I -... -*(-k + .

where the coefficients F(k ), F'(k ) etc. are finite numbers which can be
I I

evaluated without any difficulty. If we now subtract from F(t) the first

terms of its Taylor expansion then add them on later, the integral in 0

can be written 
I

k
S2  [a - P(t)] dt

k (t-' /-•t-" I )(k 2 t)(l t)

I

z dt F1(k2

F(t),-F(k,-F(k,)(t-k, (t-k

I

k t k k _2: (t-k,)" 2 (t-k.)2  F"(k) V2 (t-k )Z

+ F(k) t- dt + FI(k -k-i dt + 1 k )2 dt. (A-14
I I t
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The integrand of the first integral of Eq. (A-14) is finite and tends to zero
as t approaches k because the terms in the bracket are of the order

3 1

(t-k) • The remaining integrals of Eq. (A-14) are integrated in closed
A

form:

k

k F
11-.

k 1.-r dt= - IT -tan

kt -9k 1
I

k ___

S dt = •-(z ,i- Z (kz-k,[•. S= 3 l,•z ak
I Wd tk )2 k__ Fa

k 
k 2 -I Ii

k 3

/(kt-k ) (l k -3 [T"(r)z
Mt = (k k t 2 (k- F~k__ ) - F'k) t-ka n (tk

k 1

From Eqs. (A- 3) and (A-14) it can be shown that in the neighborhood of

F,=k 6 1 has the asymptotic expression

+ C k• M + O(k-k -))

where

M= Tr 1t 1 - -I(t) - F (k )F'(k )(t-) -k1 (t -k)
2 kIF

v--z1
Tr VT -- 3k) + IZF'(F) (k - k I + 3 J~~~ 72 (A-15)

In our final form for numerical computation, the range of integra-

tion of the integral in Eq. (26) is split into two intervals;
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k-e

k I(+ k-In + sin((++ -a)) 1 (8 + a))d9
A

-- z 1 zk -E z z

where e, small and positive, is chosen so that at 9 = k -e, sin(e + 3 -a)
I I

can be safely approximated by 0 +P -a. If we replace 0 , in the second
I I

integral of Eq. (A-16) by its asymptotic expression, Eq. (26) becomes

H .= h + CFC sin(I +1P-a) dý - ZM dX (A-17)

where

S= k-

The integrals in Eq. (A-17) can be easily evaluated since their integrands

are regular everywhere.
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Fig. 11 The ratio of CD (bounded) to CD (unbounded) versus W for a flat plate located mid-channel.
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