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. ABSTRACT

- - A non-linear theory for the calculation of the flow field of an oblique .
flat plate under blockage condition is given using the techniques of integral
equations. Numerical results are obtained with the aid of a high speed
digital computer for the plate situated mid-channel at values of the angle
of attack from 5° to 90° and the channel width-chord ratio from 3 to 20.
Also obtained are results for the plate situated at two different off-center

! positions for a channel width~-chord ratio 5 and angles of attack less than

30°,



NOMENCLATURE

leading edge of the plate; origin of the coordinate system.
trailing edge of the plate; x = 1.

scale factor.

drag coefficient.

lift coefficient.

stagnation point on the plate.

drag force.

complex potential.

normal distance from A to the upper channel wall.

widths of the flow above and below the dividing streamline at
upstream infinity.

widths of the flow above and below the cavity at downstream
infinity.

flow at upstream infinity.

flow at downstream infinity between the upper cavity and
channel wall.

flow at downstream infinity between the lower channel and
cavity wall.

parameters in the transformation.

free stream pressure.

cavity pressure.

uniform up- and downstream velocities respectively.
channel width = H1 + Hz .

complex velocity.

x + iy, the physical plane.

angle of attack.

(p, - pc)/% p U?, cavitation number.

density of the liquid.

direction of the flow.



Introduction

The two-dimensional cavity theory of an unbounded fluid, with the
recently published works(1 ) (2)on the non-linear solution of bodies of gen-
eral shape, can be considered a well established field. For an experi-
mentalist who has to perform the tests, however, the existing theories can-
not always be applied directly and have to be modified mainly because the
flow one creates for experiment is often bounded by different types of
boundaries. These boundaries can be free surfaces of constant pressure
if the equipment in use is a jet, rigid walls if it is a water tunnel, or both
if it is a free surface channel. The essential problem is to determine the
effect of the boundaries. In the past, many papers have been published
on this problem. A small portion of these are listed here as refer-

(3), (4), (5), (6)

ences We shall not repeat what they have done since
these references are available and well known. This paper also deals with
this problem, but the interest is focused only on the unsymmetric flow for
arbitrary angle of attack and the boundaries considered are rigid walls. In
a subsequent report, we shall treat the cases of the free jet and the free
surface channel.

It is a well known fact that the cavity length behind a body depends
essentially on 0, an important parameter known as the cavitation number

and defined as

o= (p - p)ipUZ. (1)
Here P, is the free stream pressure, U the free stream velocity, and
P. is the cavity pressure presumably nearly constant. In general, the
length would increase as 0 decreases and with the presence of free sur-
faces, e.g. in a jet, 0 would become zero when the length approaches
infinity. However, this phenomenon is not observed in a water tunnel
with rigid walls. In this case 0 would ~each a finite positive limit o. 3s
the cavity length increases indefinitely hence cavitation numbers below o,
are not attainable. Thus not all cavity flow conditions can be modeled in a
water tunnel. The phenomenon corresponding to 0 = o. in a water tunnel
is called blockage or choking and the determination of 0. is therefore one

of the central problems in water tunnel testing of cavity flows.



In this paper, the two-dimensional non-linear theory of a choked

unsymmetrical flow over a flat plate at an arbitrary angle of attack is
worked out using the techniques of integral equations. Numerical results

are obtained on a high speed digital computer (IBM 7094).

Formulation of the problem and preliminary calculations,

Consider the idealized cavity flow in a water tunnel with rigid walls,
depicted in Fig. 1. We assume a uniform upstream flow with velocity U,
and a uniform downstream velocity V as the cavity, which has a station-
ary interface, approaches its maximum cross-section. The flat plate, set
at an arbitrary angle of attack, can be located anywhere in the tunnel and
the stream after impinging on the frontal side of the plate separates smoothly
at both its leading and trailing edges. The plate is of length unity or one may
say all dimensions are normalized by the chord. The coordinate axes are set
normal and parallel to the plate with the origin at the leading edge.

If we call w, the velocity vector, with magnitude lwl and direction
6, w= |wj ei 9’ then in our coordinate system, the uniform velocities at up-
and downstream infinities are U eia and Vei(1 respectively.

The boundary conditions for the problem are:

[l

6 a, on the channel walls
6 = 0. on the plate from D to B
6 = m, on the plate from D to A

|w| = V, on the cavity walls.

The force coefficients at the choking condition can be obtained from
momentum consideration in terms of the channel width, the angle of attack
and the critical cavitation number;

pVi(h + hz)—pU2W=(p°°- P IW-Fp (2)
where FD is t?:e drag, by conservation of volume, V(hl + hz) = WU and
by definition ¢ = (p - p_)/3pU*?. Substituting

- p— 2 —
Fp= (p,—p,) W+ pUW—pVUW (3)

3

The subscript is dropped since the cavitation number we refer to from
now on is always the choked one.



and the drag coefficient is

2F
cD=p_U;..’;_+=zw[(1+‘2’-)-V1+'o]. (4)

A+, the area per unit span, is equal to one for a plate of unit length.

The lift coefficient is

C, =C, cota. (5)

L D
Theorz

Assuming the flow to be irrotational, there exists a complex poten-
tial f = ¢ + iy. The flow field in the f-plane is shown in Fig. 2. The two
channel walls are represented by the streamlines 411 and -xpz while the
dividing streamline coincides with the negative ¢ -axis. The stagnation
point D is chosen as the origin and the cut along the positive ¢-axis re-
presents the two branches of the streamline split at D. The leading and
trailing edges of the plate are located somewhere on the upper and lower
branches respectively. With reference to Fig. 1, the values of upl and
upz are given as

4 =UH = Vh

$ =UH = Vh . (6}
2 2 2

We proceed to solve the problem by introducing a new variable §,

defined by
az--log\%=7+ i6

T = log ——-‘V|, 6 = -arg w. (7)
w

The choice of using @ as the dependent variable for the problem s sug-
gested by the existing boundary conditions.
The flow fields in the f and the 2-planes are to be connected through

a parametric variable { =% + in. Consider the transformation

df _ C (8a)
€ (T-k NT-k T -k,




or

£g) = & [a+h)log (¢ -k)-h log(L-k)-h log(t-k). (8b)

The flow in the f-plane is mapped into the upper half {-plane with the
boundaries on the real { or §-axis as shown in Fig, 3. The upstream I
behaves like a source at £ = ko while the downstreams J and K be-
have like sinks at & = k1 and kz respectively. The net strength of
these singularities is certainly zero. The jump conditions on the f-plane
further furnish the relations;

h - -"C 1

(9)
1 v (kz =Kk =K

and

h = rC 1 (10)
AR N

Combining Eqs. (9) and (10) yields the ratio

h k -k
= 22 (11)

The constant C 1is a scale factor to be determined later in the theory.
{2 has the following values along the & -axis and n = 0
ImQ=m, £<-l
ImQ=0, £>1
Re Q= 0, -l<§<k1, kz<g<1
ImQ=a, k1<§<kz. (12)

4"

We further define
82=;20+ ;21, (13)

where szo is associated with the unbounded fluid. € is split up in this
way to make the solution readily obtainable. The term Qx , which re-
presents the effect of the walls, is added to the unbounded fluid trans-
cendentally to maintain the total exact solution. When the channel width-
chord ratio is very large, Ql then can be considered merely as a per-

turbation of the unbounded flow.
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With reference to Figures 4a and 4b, Qo has the form
-1
Q= cosh™ { = log ({ +E-1). (14)
Along the §-axis,
Im Qo= w, £< -1
Im ﬁ}o-—' 09 g >1
Re @ = 0, -1<g<1, (15)
For [§]<1, QO is given by
Imﬂo:' B(E) = arctan (Vl_-gzlg)- (16)
The remaining part, Ql which is caused by the presence of the
channel walls, then takes the boundary values;
Im Ql =0, £§< -1
Im 2 =0, £>1
Reﬂl =0, -1<§<k1’ kz<§<1
Imﬂl = a - B(£), kl<§<kz. (17)

The boundary condition for ﬂl on the §-axis is shown in Fig. 5. Three
branch cuts appear on the §-axis; these are from§ = =w to & = -1, from
£-1 to § =+« and from § = k to € = kz' The first two cuts repre-
sent the plate and the last one the channel walls in the z-plane.

We now have a boundary value problem involving the unknown
function, ﬂl (), which can be formulated and solved as a Hilbert problem.

By analytic continuation
2 ()= -2 (&) (18)
The region is extended to the lower half {-plane with the Re Qx odd and

the Im Ql even with respect to the §-axis. We now introduce the auxi-

liary function

1
H(Y) = . (19)
V& - k)@ -k NEE - 1)




which has the following properties;
i) H(t) has the proper branch cuts ({ = -1, kl , kz' and +1 are branch

points).
ii) On the Re { axis:

ImH=0, -0<§< -1
Re H= 0, -1<§<k
Re H= - 1 ., ImH=0, k<E<k
VE-k )k -E)(1 -8) oo
Re H= 0, k2<§<1
ImH-=0, 1<€<w

A new function

G(t) = 2 (t) H()

is then formed which has on the Re { axis;

ImG =0, ~o<§<k
ImG = - o - BE) , k<&E<k

V&K )i - E)(1-E) Lo
ImG=0, k2<§<+w

With the aid of Plemelj's formula(7), the solution of the Hilbert problem is
given immediately by
k

¢ - 1
2,(0) = - VLK N )EE1) S( Lo p(o dt (20)
i (=8) it - £)(1-¢%)

However, the constants kl and kz cannot be arbitrarily chosen for a fixed
a because of a physical condition that must be imposed on the solution.
Specifically, the solution & must behave locally like a stagnation flow

at the stagnation point. In the [-plane, the stagnation point corresponds
to { = w. The local stagnation flow can be shown to behave like log { as
{ approaches infinity; this behavior is already incorporated into the
function Qo. We require, therefore that ﬂl be finite at infinity. If Eq.
(20) is expanded in inverse powers of {, this condition is seen to be

given by the requirement that



k

2

a -B(Y dt=0. (21)
\ﬂt-kl )(kz- t)(1 -t ?)

1

Thus for a given value of a, Eq. (21) determines the relation between
k and k .
1 2 7
We are now able to determine ¢ from ﬂx in Eq. (20). At up-

stream infinity in the physical plane, |w| = U and L= o'

=7 = log % = #Wz- k k- kl)(l-koz)ikz la-peol dt - (22)
(t-ko)\ﬂt-kl)(kz-t)(l-t )

From our previous discussion, 0 = V2/U%-1, therefore Eq. (22) enables
us to calculate 0 when the integral on the right hand side is evaluated.

In order to complete the solution, we shall relate the geometry
of the flow to the undetermined constants. Utilizing the definition of the
complex velocity, we have the relation

_ 1 _ 1 df _ 1 Q) df
dZ-—‘;df——“-/az-dg—ve az-dg,. (23)

With the aid of Eqs. (8a), (13) and (14) and upon integration,

C ¢ L+ -1 ) g 24)

Jdz: € -k T - k)(é k)

When we apply Eq. (24) along the plate from A to B, the normalized

chord is obtained;

[S . g+|g -1 Q(t;) & _S-l g - Vg2 R I(G)dg]
5

-k )6 -k RIC -k, ) © (6 -k )G -k )('i -k )

Zp- 2
(25)
The first integral on the right hand side represents the distance from the

stagnation point to the trailing edge, we therefore find the location of the

stagnation point.
HA’ the height of A below the upper channel wall can be deter-
mined in a similar way. With reference again to Fig. 1,



_ -ia
HA = h1 + Im[e (zJ - zA)]

okl BE) ()
C -ia € e : |
=h +g Im[e S:l G-k )E -k )E -k ) d;]
or | z
kl
) c sin (6,:+p -a)
=h +g S:l (6 -k JE -k )E -k)) at. e

since Q is purely imaginary and equal to i6 in the interval -1<6g k .

The channel width W is expressed through continuity as

v (hl * hz)
W = (1’11 + hZ) ki = ——-—-——m . (27)

Final Results.

We have applied the theory to calculate the case of a flat plate
positioned mid-channel for various values of a and W. The range in
a is from 5° to 90° and in W from 3 chords to 20 chords. We also
obtained results for two off-center positions of the plate, HA =10
and 4.0 for W = 5 chords and values of a up to 30°.

The lift coefficient, drag coefficient and choking cavitation num-
ber are plotted versus a for W =5 chords and the plate in mid-
channel in Fig. 6. The dash-dot cur;rle) in Fig. 6 is the lift coefficient

In Fig. 7, we show the enlarged portion of Fig. 6 for a < 30°

(8)

given by Wu's unbounded fluid theory
with experimental values from Wade corresponding to the choking

6 determined by the preSer;t theory. Wade's experiment was performed
with W=5 and the experimental cavitation numbers were obtained from
measured cavity pressure. Since it is difficult to operate the tunnel near
choking condition, Wade was not able to obtain data at such low cavita-
tion numbers: Therefore, we show values extrapolated from his data
curves. One notices that all points are enveloped by the two theoretical

curves.



Cohen, Sutherland and Tu(s) have worked out a linearized theory

for a flat plate at small angles of attack and calculated 0 for mid-channel
position. However, their definition of mid-channel is different from ours
as we define mid-channel when the center of the plate lies on the center-
line while they locate the leading edge of the plate on the centerline. As a
result, it is not possible to make a direct comparison between the two
theories. For very small angles of attack, however, the discrepancy
caused by the difference in definition becomes small and for a = 6°, W =5,
the present theory gives o0 = 0.133, CL = 0.198 for HA/(W-HA) = 0.959
and their theory gives 0 x0.13 and C = 0.22 for HA/(W-HA) = 1. The
values of their calculations are read from Fig. 10 of Ref. 3, hence are
only approximate.

Figure 8 shows the effect of plate position for W = 5 chords. In

this figure CL’ C., and 0 are plotted versus a for a < 30° and two

D

values of HA' The dashed curves are HA = 1,0 and the solid ones are

HA = 4.0. As would be expected CL’ CD and O all increase as the
plate is lowered in the channel.
We show C., and 0 versus a for W = 8 with experimentalvalues

L
(9) in Fig. 9. Again the experimental cavitation numbers were

from Parkin
obtained from measured cavity pressure, however, in this case only the
data for a = 8° and 10° were obtained from extrapolated curves.

Figures 10a and b show drag coefficient, C and choking cavita-

tion number, 0, versus channel width, W, fora fla].i plate located mid-
channel. The range in angle of attack is 5° to 90° and in W from 3 to 20
chords. CL may easily be obtained from Fig. 10a and Eq. (5) and there-
fore is not presented here.

In order to show the effect of the channel walls, we have plotted
RCD, the ratio of CD bounded to CD unbounded (1), (RCN = RCL = RCD)
versus the channel width W in Fig. 11. The curves are for the same
values of a and W as Figs. 10a and b except that for a = 90° RCD is
shown for W as low as 1.224. As would be expected when W = 20 there
is very little wall effect and as the channel becomes smaller the ratio
drops until the walls approach the plate where the ratio increases. This

effect is shown for B = 90° where the ratio tends to infinity at W = 1.
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The curve of RCD for each a will have a similar asymptote at' W = sina.
In Fig. 12, we have shown the distance of the stagnation point from

the leading edge as a function of a. At a = 15°, it is already difficult to

tell the difference between the two points and at a = % the stagnation point

is at mid-plate as one would expect.
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APPENDIX

Procedures for numerical computations

In a direct problem one would specify the channel width, W, and the
location of the plate (of chord unity), Hy, for a given angle of attack, then
calculate o, hl , hZ and the force coefficients. However, in view of the
form of our solution it is necessary to do the inverse problem of choosing
the transformation parameters kz s k1 , and ko (the downstream conditions,
hl and hZ , when the flow is choked) and calculating W and HA. The
values of h1 and hz are related to the k's through the transformations
in Eqs. (8a), (8b) and the jump conditions in Eqs. (9) and (10). The
choice of kz defines the geometry so that the scaling factor, C, or more
precisely, the ratio V/C is determined from Eq. (25).

Given a value of k2 , kl is easily determined by iteration of the
integral condition of Eq. (21). The integral in this equation cannot be num-

erically integrated in its present form so we divide it into two integrals

k +k k
S'kz a-Blt) g (2 a-Bl) 4, gkz oo Bl g
F] 2 - - -
k. Witk )k - £)(1-t%) %k \Rt-kl)(kz-t)(l-t ) tk Vit k Wk - t)(1-t%)
’ (A-1)
make the transformations
p=x%+ k in the first integral,

1]
o
|
»
o~

s in the second integral,

and
2 _ 1l o
X, = z(kz kx)

and Eq. (21) becomes

*o 4 -B(p) "o a - B(s)
S ____.._dx+S —_—LE ax = 0. (A-2)
(o]

o szZXOZ- x? szVZxo"'- x?

This integral iteration presents no problem since all calculations are pre-
formed on a high speed digital computer (IBM 7094). We now can calcu-
late the remaining transformation parameter, k_, from the specified

ratio hz/hn and Eq. (11).
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To aid in the trial and error solution of this problem the behavior
of kz and kl for the plate in mid-channel are shown in Fig, A-1 and
for the off center positions in Fig. A-2. The remaining parameter to be
guessed is hz/hl which may be approximated by (W-HA-sina)/HA. For
the mid-channel case this quantity is roughly unity.

The choking cavitation number, 0, the channel width, W, the drag
coefficient, CD’ and the lift coefficient, CL’ are readily determined
from Eqs. (22), (27), (4) and (5) respectively. The integral in Eq. (22)
is treated in the same way as Eq. (21).

To determine HA we must first evaluate the ratio V/C. From

Eq. (25)

00 t
v S' § +g2 - 284 S_E+§+V§‘-1 2® g (ao3

= - e 1
C | & -kJ6 -k )(E k) kJE +k ) +k )

where 91 (§) is given in Eq. (20) and

k,
Q (é)— -—ﬁk)(hk)(&’--l) o -B(t) dt. (A-4)
(t+EW(t -k ik - )1 - t2)

For numerical integration, it is more convenient to introduce the new in-
. . ==l : . : .
tegration variable T =& . The first integral on the right hand side of

Eq. (A-3) now may be written

£ +E2- 1 Q (§) _
S(§~k )(s-k)(g &y dt =

_ z \'o
V1-7 e ar, (A-5)

S B0 1 B ‘dT+S(F-kTWkT)(1 K7)
° o) 1 2

and the second integral
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§+§" Q(g) _
S (§+k°)(§+k)(§+k) e, dé =

T . ' .
o -2 1+ _ 72 'l
1+\/1 T Q ar + 1+\/1 T Q &, (A-6)

€,
5 (1+ ko'r)(l + kl'r)(l + kzﬂ

0
where
ﬂl+ = 117\/(1 - k"r)(l - kz'r)(l - 72) [g1+ Tg,t ‘ng3+ S g7] ’ (A-7)
4 6
2 -117_\/(1+le)(1+sz)(1-1-2) [g1 -7g + Tig - 47T g7] , (A-8)
# 1 5 (% a_-B(t)
= —\(1- kT)(1 -k T)(1 -72) dt, (A-9)
% Jk1 (1 -trifie -k )< - )1 - )
kZ )
l;::_ 1 a - ﬁ(t
Q= - = (1+k-r)(1+k-r)(1-':Z)S< dt, (A-10)
! wr 1 2 ! +t'r)\/(t-kl)(kz - t)(1 - t?)
and X
’ =S'2 t%la -p(t)ldt (A-11)
T lE-K ) - )1 - )
Q" and @'t are obtained from the power series expansion of T and there-

fore are suitable for the calculation of small values of T or large values of
€. For a properly chosen T, 8ay T.= 0.1, a truncated series of seven
terms is sufficient to give Q )+ ('r ) 1dent1ca1 to ﬂ ('r ) to five significant

figures.

The remaining quantity to be evaluated is the integral in Eq. (26)
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k
S‘ s1n(6 +pf -a)

(& -k ﬂE -k - kT

Some analysis is needed before a straightforward numerical integration can
be performed. One notices that the denominator of the integrand has a
factor (§ - kl) which causes the integral to be logarithmically singular un-
less the numerator also vanishes at the upper limit. It is therefore neces-
sary to examine the behavior of the numerator as § approaches kl. Let us

study the behavior of

k

6=L ek -e,)(l-gz)gi2 o - B(t) at (A-12)
! : 2 k (t-§)\/(t-k‘)(kz - {1 - t%)

1

as & approaches k1 . We denote the regular part of the integrand in the

neighborhood of t =k as
1

Ft) = —2=B®) (A-13)

\/(kz-t)(l - t%)

F(t) has the Taylor expansion

Fll(k)
F(t)-F(k)+F(k)(t k)+—7—(t k) + ...

where the coefficients F(kl), F'(kl) etc. are finite numbers which can be
evaluated without any difficulty. If we now subtract from F(t) the first
terms of its Taylor expansion then add them on later, the integral in 6

3

can be written

k
SZ [a -B(t) dt i
o (EEWt=k Nk ~t)(1-t)

1

g F"(k)
5' (t_g)v—T [F(t) F(k) -F'(k )(t-k)-_z.__ (t- k) }

k k s k

ek ) Pk FUlk) £ (k)
+ F(k‘) -g dt + F (k ) TTE dt + 5 T dt. (A-14

1 [} )
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The integrand of the first integral of Eq. (A-14) is finite and tends to zero

as t 3a.pproa.ches kl because the terms in the bracket are of the order

(t-k ) . The remaining integrals of Eq. (A-14) are integrated in closed
Iy

form:
5
S‘ 1 dt 2 ! k -&
_.—\/‘T'_.— = z - < -k
kt SV 1 kl'g kz 1
1
k
2 V-k o (k=6
T dt =2k -k -2k -] 5 -tan” \[Pop
k 2 1
1
§ o g
(t_k)Z 2 3 3 k -
L = - 2 . - - JEV|T -1 1
g t—_g— dt 3 (kl kl) Z(kz k‘)\lk‘l £ + 2(k‘ g) 5 tan Ez—-_—-K-l-
k
1

From Eqs. (A-13) and (A-14) it can be shown that in the neighborhood of

€ = k;’ 61 has the asymptotic expression
91=0. -B +M\/k‘-§ +O(k1-§)

where

\/(k k)1 -k 2)§

Fu(k)
¥ [F(t)-F(k)-F'(k)(t-k)- (t- k)}
(t k)g 1 1 1

a-B(k) 2F'(k) F''(k ) ' 2
1 1 2
— + — V1 -kl" (k -k ) + T \/1-1<l (k -k) . (A-15)
2 1

]
A

In our final form for numerical computation, the range of integra-

tion of the integral in Eq. (26) is split into two intervals;
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k-¢€ K
s1n(9+ﬁ-a) t sm(6+ﬁ-o.) i (61+B-o.)d§
S‘ (€ -k )(§ k)(§ 'k) d = S‘ € -k, )(§-k )6 —k) & +S (§-ko)(§-k ME-k), (A-16)
-1 k -¢ 1 2

4

where €, small and positive, is chosen so that at £ = kl -¢, sin(6 +p -a)
1
can be safely approximated by 91 +P -a, If we replace 9‘ , in the second

integral of Eq. (A-16) by its asymptotic expression, Eq. (26) becomes

€
i} c[ (i sinlf +P-o) dg-zMS____d_"___] A-17
HA'*‘;"VH EER)EKIEK) €Nk -7 ) (@a-in)
-y 1 2 o 2
where
AN -k -§
1

The integrals in Eq. (A-17) can be easily evaluated since their integrands

are regular everywhere.
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PLATE IN MID-CHANNEL
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Fig. 11 The ratio of CD {bounded) to CD (unbounded) versus W for a flat plate located mid-channel.
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Fig. 12 Distance of stagnation point from the leading edge for W = 5 and the plate in mid-channel.
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