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NOTATION
cp Pressuré coefficient (F‘.quat.iiox{l,page \l;)
cﬂ,,in Minimum pressure coefficient
D Diameter
P Local static pressure

Pw Free-stream static pressure-
v Local velociﬁy‘in boundary layer‘

Vo Free~stream velocity

x Longitudinal coordinate in flow direction
y Coordinate perpendicular‘ ‘to boundary
) Boundary layer thickness

8% Displacement thickness (Fquation 2, vage L)
e Momentum thickness (Fquation 3, page L)

r Mass density
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ABSTRACT

Pressure distributions were measured on six models

in three different boundary layer conditions, Two hemi-
spheres, two semicylinders, and two half bodies of
revolution were used in the tests, The range of Reynolds
numbers gor the hemisgherea‘-?a.nd semicylinders was from
0.6 x 102 to 1.6 x 10- (based on diameter and free stream
velocity). The boundary layer thicknesses ranged from
about one-half to twice the characteristic model. dimension,
The effect of increasing boundary layer thickness (or
momentum thickness) was a reduction in the positive and
negative ordinates of the pressure distributions. The
pressures on three- cirensional models were approximately
the same at a given longitudinal station, although there
may have been a small reduction in pressures close to the

1 on which the object was mounted. No simple relation=-
ship could be found for relating the changes in pressure
distribution to changes in velocity profile or boundary
1aI:r thickness, however a data correlation was obtained
relating the minimum pressure coefficient for a perticular
boundary layer condition to the minimum pressure coefficient
measured in a unifrom flow,

g




INTRODUCTION

Information concerning pressure distributions on bodies
lays an important role in aerodynamics and hydrodynamics,
he magnitudes of local pressures and the locations of mine
imum pressure points provide data for estimating the conditions

" for cavitation in a liquid flow or the onset of compressibility

effects in a gas flow, Integration of the pressures. with respect
to a Farticulur direction provides information on the lift or
drag force acting on a body. Considerable effort has been de-
voted to the measurement of pressure distributions on bodies
and to the development of methods for calculating such pressure
distributions from potential flow patterns, Most of the results
from such studies are afplicable to the préssures experienced
by a body in an initially uniform flow field, Comparatively
little has been done toward measuring or developing methods

for calculating pressure distributions in an initially non-
uniform flow field.

One example of a body in a non-uniform flow is that of
an appendage on a ship or aircraft which is partially or fully
immersed in the boundary. layer of the vehicle, Weighardt (1)
and Tillman (2) describe the results from drag measurement
tests made on a variety of shapes immersed in various boundary
layers, The forces experienced by ground mines or other objects
(3¥ on the bottom or sides of a channel are another aspect of
such flows, Holl (4) gives results from a theoretical and exper=
mental study of the influence of boundary layer thickness and
velocity profile on the cavitation number for circular arcs

-and wedge-shaped profiles, The present tests were uvndertaken

to measure the influence of boundary layer thickness and veloc-
ity profile on the pressure distributions of several simple
two=- and three-dimensional shapes,

EXPERIMENTATION

Pressure distributions were measured on semicylinders,
hemispheres, and haif-models mounted on the wall of & wind
tunnel having an i8" x 18" test section. The models and pres-
sure tep locations are shown in Figures 1 and 2, Offsets for
the haif-models are given in Table 1, Pressures on the rear
of the semicylinders were obtained by reversing the models,
Pressure distributions on the surface of the hemispheres were
obtained by rotating the modesls about the axis of symmetry.,
The nominal tunnel ireeestream velocity for all of the tests
was 75 feet per second, Pressures were measured on a slanted,
multiple~-tube manometer board which was calibrated against a
micromanometer., The pressure readings have been converted to
conventional pressure coefficients based on free-stream static
and dynamic pressures : :

*Numbers in'parenthéses.rofq? tovthi'iilﬁ.pf,rbfbrences,
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Two sizes of semicylinders and hemispheres were used
to give some relative changes in model and boundary layer
proportions without requiring changes in boundary layer
properties, The hemispheres and half-mcdels were also tested
away from the wall to determine the pressure distributions
in a uniform flow. ‘

One natural and two simulated boundary layers were
used for the tests, The natural boundary layer profile was
that normally existing along the tunnel wall, Artificial
boundary or shear layers were created by stringing 0.0175"
diameter monofilament nylon fishing line in patterns up-
stream of the models, The lines were strung from wall to
wall three feet ahead of the models, The boundary layer
measurements were made at the location of the model without
the model in place, Figure 3 shows the boundary layer veloc-
ity profiles superimposed for comparative purposes, The
individual profiles are shown in IFigures 10, 11, and 12,
The string patterns for the artificial boundary layers are
also shown in Figures 11 and 12. Displacement thickness and
momentum thickness were calculated graphically from the
following definitions (5) o

5*,£f(‘_%€°\;y o (2)

3
=[ X { .
e[m“ﬁﬂy (3)
Boundary layer characteristics are given in Table 2,

Figure 3 and Table 2 show that the natural boundary
layer and first artificial boundary layer had approximately
the same ;.ofile with the latter having twice the thickness
of the former, The artificial layers were of about the same
thickness but with different velocity profiles,

The following data are believed to be reasonable esti-
m:tes of the precision of various parameters associated with
the tests:

Models - dimensions % 0.01 inch
angles 2 1,0 degree

Pressurs coefficients (std, deviations) -
spheres anc cylinders 3 0,03
half-models % 0,01
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DISCUSSION of RESULTS

Pressure distributions on the centerline of the large
hemisphere for the free-gitream and various boundary laier
conditions are shown in i 4, Figures 13, 14, and 15
are separate tabulations of pressure coeffic{ents over the
surface of the hemisphere for each of the three boundary
layer conditions. The various rings of readings have been
separated by equal distances on the chart in crder to pro-
vide room for recording the values, A true plan view would
crowd the rings for small angles as illustrated by the close~
ness of the orifice locations shown in the plan views of the
hemispheres in Figure 1.

Figure 5 shows centerline pressures for the small hemi-
sphere, Figures 16, 17, and 18 show the pressure coefficient
distributions over the surface of the small hemisphere,

A comparison of the centerline pressure distributions in
Figures 4 and 5 shows a difference in free-stream results for
the two hemispheres. The pressures agree up to about 60°; .
then the larger hemisphere reaches a lower negative valuve o
pressure coefficient. In addition, the pressures on most of
the after part of the large sphere are less negative than for
the small hemispherc, Both of these factors are characteristic
of preasure distributions above and below the transition point
from a laminar to a turbulent boundary layer. The Reynolds
numbers gor the large and small sphere were 1.6 x 102 and
0.8 x 107, respectively (based on diameter)., These values
are in the range near the critical region where the drag
coefficient changes markedly., The exact value of Reynolds
number for transition depends upon the amount of turbulence
in the wind tunnel st.:"eam and the roughness of the model.
Figure 202 in Goldstein shows a similar variation in pres-
sure distributions on a sphere over a range of Reynolds numbers
from 1.6 x 102 to 4.2 x 102, The differences shown in the pre-
sent results are atiributed to similar effects above and below
the transition Reynolds number., The numerical values of Rey-
nolds numbers corresponding to the present results and those
cited in Reference 6 for similar pressure distributions probe
ably differ because of differences in the free-stream turbu-
lence levels of the wind tunnels,

The pressure distributions shown in Figures 4 and 5 for
the various boundary layer conditions are typical of the
results for all models tested, In general, the positive pres-
sures are lower (i.c., less positive) and the negative pres-
sure coefficients are smaller (i.e., less negative) as the
boundary layer thicknz=ss increases, It would be more correct
to say, as the disnplacement or momentum thickness increases,
since these parameters are more appropriate measwss of the
combined effects of boundary layer thickness and the shape of
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the velocity profile. Hence, increasing the thickness of “
the friction layer reduces the ordinates of the free-stream
pressures distribution,

Figure 6 shows pressure distributions on the large and
small semicylinders where the ratios §/v0 and §*/O were ape-
proximately the same, One would normally expect these results

-to be in closer agrecment, It is believed that the additional
turbulence introdiuced by the simulated boundary layer on the
larger semicylinder stabilized the flow and enabled the flow
to reach a lower negative pressure coefficient and to achieve
better pressure racovery at the rear. The Reynolds numbers
for the large and small cylinders were 1,6 x 105 and 0.6 x 105,
respectively (based on diameter and free-stream velocity). In
a uniform flow these values of Reynolds number would be in the
range near transition for a cylinder (Reference 6, Figure 152),
similar to the case of the spheres already discussed. The
differences.in the two pressure distributions on the semi-
cylinders are believcd to he analagous to the effects of free-
stream turbulence and Reynolds number already discussed in
connection with the two hemispherical models, Pressure distri-
butions for the other boundary layer conditions on the semi-
cylinders are shown in Figures 19 and 20,

Results for the small half-model are given in Figures 7
and 21 through 23. The curves in these plots are faired with
emphasis on the pcints for the centerline pressure taps (i.e.,
90° away from the wall)., Figure 21 shows the free-stream pres-
sure distribution. A similar pressure distribution previously
measured in a smailer wind tunnel at a velocity of ;g feet per
second is shown for comparison, Figure 7 shows a crossplot for
all of the conditions tested. It can be seen that the effect
of increasing boundary layer thickness is the same as for the
hemisphere and semicylinder models (i.e., the positive and nege-
ative pressures become smaller as the boundary layer thickness
increases), Figurcs 22 and 23 show the preassures for the
separate boundary layer conditions, .

There appears to be a tendency for the pressures next to
the wall to be slightly lower than the centerline pressures,
The consistency of this effect is obscured by the scatter of
the data and the facw that the differences are about the same
order of magnitud: as the precision of the measurements, Dis-
regarding this small affect, one could say that the pressures
at a given longitudinal location are approximately the same.
A similar approxination can be made for the hemispherical
models by recording the pressures on a true plan view and
fairing in contours »f equal pressures,

Results for che large half-model are shown in Figures 8
and 24 through 26, These measurements show essentially the
same characteristics as those already discussed for the pre-
ceding cases,
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One of the objectives of the present series of tests
was to obtain results which would improve the understanding
of pressure distributions in a flow with a velocity gradient,
The qualitative similarities in the present results for both
the two- and three-dimensional models has already been
discussed, A more useful corollary would be to obtain a
quantitative method for modifying a pressure distribution
measured under one sct of conditions to estimate what that
pressure distribution would be like under different boundary
layer conditions. One might attempt to redefine the pressure
coefficient since increasing the boundary layer thickneas
reduces the ordinates of the pressure distribution plot, Howe
ever, it can be seen that a simple redefinition (such as using
a different characteristic velocity or dynamic pressure) would
not work since the ordinates are not reduced uniformly over
the length of the body. This can be seen from the shape of
the pressure distribution near the stagnation points of the
hemispheres and semicylinders and the shift in the locations
of zero pressure coefficient for all cases, Although a general
transformation was not found, it was noted that plots o cpmin
versus §* or 6 were approximately linear and had (about)
the same slope for all models, Figure 9 shows a plot which
combines results from all models, Points for the semicylinders
were included by estimating a C_nipn for the free stream
condition by extrapolating C tgme = QO on a plot of C
versus © . Table 3 summarizés values used in Figure § and
ozher characteristics for various model~boundary layer condi-
tions. '

SUMMARY

Pressure aistributions were measured on six models in
three different bouncary layer conditions. The effect of ine
creasing boundary layer thickness (or momentum thickness)
was a reduction in the positive and negative ordinates of the
free-stream pressure distribution., The pressures on three-
dimensional models were approximately the same at a given
longitudinal station. although there may have been a small
reduction in pressures close to the wall on which the object
was mounted. A data correlation was obtained relating C _min
for a given boundary layer condition and cpmin measuredtin
a uniform flow,

13




AN3I01 44300 3UNSS3IHd WNWININ Y04 NOIIVI3HHOO YAVO = 6 3HNDIs

el

‘0

20°0

T T T T - v
TEACOM sy QDY T 4
CAGOW - ST Y TURERAS
GA0=E IR FhoNg X
TAS (W3S ZOEYD W
FEFINIg ~IpaE TS - <
ILIHSS =t WIH 30UV T + -¢°0
-
o]
- ¥°0
i
y T o 9%
/l.l.l../ ..
~——t i -
//..I. R e ' w\l.\
~o o d
///////.o Foa NEWSn
PR ~ -~
! //é o - wdo “
LIRS )
- }//
» . — _
* /
v //
+ I/II. Oom




TABLE ] = Offsets for half-models
Sinall Half-.model

x/D, 0.28 0,42 0,65 1.12 1.60 2,10 2.59 3,22 3.83
D - in 0wl 0.55 0.78 1.10 1.36 1,51 1.57 1,57 1.57

Large Halfemodz2l

x/Dm 0,20 0.6h 1,11 1.58 2.06 2,54 3,03 3.48
D = 4n 0.32 0,90 1,33 1,68 1,89 1.96 1.9 1.96

TABLE 2 - Boundary lLayer Properties

BL & 8% © &/¢ o/ex ofs
in in in :
1 1.2 0.121 0,092 0.0¢9 0,760 00,0767
2 2.8 0,308 0,227 0,110 0.738 0,0810

3 2,4, 0,186 0 139 0,0775 0,748 0,0580

TABLE 3 - Miscellaneous Model-Boundary Layer Characteristics

: Covin
model BL C#nin */ D e/v ('.";_‘,F.':-)
small sphere FS  -0.85 0 0 1.0

(D = 2,22") 1l ~0,67 2.054 0,041 0.79
2 «0,51 D.139 0,102 0.60
3 -0,64 2,084, 0,063 0,75

large sphers FS =105 ) 0 1,0
3 0,94 J.044 0,033 0.90

small cyl, F3 ~1.32# G 0 1,0
(D = 1.88") 1 =1.10 0.6 0,049 0.83
2 -0.80 0.164 0,121 0.61
3 "11003 OCO99 000715 0078

# estimated

15




TABLE 3 = ctd.

i

model BL cpmin S*/D e/0 c'?'l;‘“‘s')
; large cyl. FS  ~1.60# 0 0 1.0
3 (D = 4.43") l «1.54 00027 0,021 O,
% 2 ‘1030 00070 00051 ) 0081
! ~1.42 0.042 0,031 0.89
small half-m FS  ~0.128 0 0 1,0
(D ‘. 1057") 1 "'00112 00077 0.059 0088
3 -0.085 0.118 0,089 0.66
large half-m FS =0.138 0 0 1.0
(D = 1096") 1 -0.11 00062 0001)7 008’0
3 ~0.106 0.095 0,071 0,77

# estimated

16
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