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INITIATION OF EXPLOSIVES BY EXPLODING WIRES

VI, Further Effects of Wire Material on the Initiation
of PETN by Exploding Wires

By
Howard S, Leopold

ABSTRACTs Silver, copper, and iron wires were inves-
tigated as possible bridgewire materials., The wires

were exploded by a l-microfarad capacitor charged to
2,000 Volts, Wire materials that give high peak powers
are favorable for effecting detonation., Low boiling
point, low heat of vaporization metals such as ailver

and copper permit greater energy transfer to an explosive

than high boiling point, high heat of vaporization metals
such aes iron
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INITIATION OF EXPLOSIVES BY EXPLODING WIRES
VI. FURTHER EFFECTS OF WIRE MATERIAL ON THE INITIATION OF PETN
BY EXPLODING WIRES

This report is Part VI of an investigation concerning the initi-
ation of uxplosives by exploding wires, The work was performed
under Task RUME-4E000/212-1/F008-08-11 PA 019, Analysis of
Explosive Initiation.

The results should be of interest to personnel engaged in initi-
ation research and design of exploding bridgewire ordnance
systems,

The identification of commercial materials implies no criticism
or endorsement of these products by the Naval Ordnance Laboratory.

R, E. ODENING
Captain, USN
Commander
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INTRODUCTION

1. This report is the sixth in a series describing experi-
mental results obtained from an investigation of exploding
bridgewires, A previous investigation, reference 1% had indi-
cated that the detonation of high explosives could be effected
more readily by those wire materials capable of absorbing energy
from the power supply at a high rate and which were brought to
the vapor state by the lcast gquantitics of energy. Aluminum and
gold (Class I materials with low boiling point and low heat of
vaporization), reference 2, were found able to effect detonation
in PETN under more Jdifficult conditions than platinum and tung-
sten (Class II materials with high boiling point and high heat
of vaporization).

2. The present investigation was concerned with verifying
the extrapolations made from the study of the previous mate-
rials i.e,, aluminum, gold. platinum,and tungsten, Various
lengths of silver, copper, and iron wire were evaluated for
their ability to effect detonation in PETN and compared with each
other, On the basis of extrapolations nade from the first four
materials tested, silver (Class I) would ke expected to be the
best of the three materials, followed respectively by copper
(Class I) and iron (Class II). Very low melting point metals
were not considered for possible use in electroexplosive devices
because of their unfavorable mechanical properties,

ELECTRICAL CIRCUITRY
2., A typical exploding bridgewire circuit for ordnance

purposes uses a l-microfarad capacitor charged to 2,000 volts,
The actual test circuit used for this investigation is shown
in Figure 1., The transmission line was kept as short as pos-
sible consistent with the necessity for testing in an explosive
firing chamber., The parameters for the test circuit were:

C = 0,97 microfarad

L = 0.5 microhenry

R = 0,35 ohm

Vo- 2,000 volts

* oterc.oe and other reports in this series are listed on laye
7 L]
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TEST TROCEDURE

4., Various lengths of silver, ccpper, and iron bridgewires
were compared for their ability to effect detonation in PETN.
The test fixture and experimental methods described in refer-
~nce 3 were used for observing the growth of explosion. The
Aahility of the wire to effect detonation was gradually decreased
by increasing the density of the PETN in contact with the wire,
This method was used to determine the most advantageous wire
material and its optimum length, Current and voltage waveforms,
and the derived resistance, power, and energy values were examined
to help interpret the experimental results,

EXPERIMENTAL RESULTS

5. A test series was run with each bridgewire material,
A 2-mil diameter wire was used for each material and the wire
lengths ranged from 0,012% to 0.100 inch. An examination of
tables 1, 2, and 3 shows that silver and copner bridgewires
are almost equally effective in detonating PETN, with iron
bridgewires a poor third, Various electrical and physical
attributes of the three bridgewire materjials were then examined,.

6. Examination of the current waveforms shown in figures 2,
3, and 4 shows that the different materials explode on different
portions of the current pulse. (To aid in this one visualizes
the current burst to the wire as a portion of the sine wave
current which would be obtained if the wire were replaced by
an electrical short.,) Silver wires burat approximately two
thirds up the leading edge of the current pulse. Copper wires
burst somewhat nearer to the current pulse peak exhibiting less
of a resurge than the silver : ires, The various iron wires gave
a wide current hurst dispersion which seems to be typical of Class
1] materiale, The optimum length of iron wire for effecting
cetonation explodes approximately half way up the leading edge
of the cuxrenl pulaeé. The curront drop at burst is slower for
iron than for the Class I materials.

7. Examination of the voltage waveforms in figures 5, 6,
and 7 shows higher voltage peaks for the Class I materials than
for iron. FPFor all three materiale, the 0.100-inch length gave
the highest peak voltage., 1In general, the peak voltage spikes
of the Claras I materials tend to be ot higher value and shorter
duratior than those of the Class Il materials. Iron showed the
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vaporization plateau characteristic of Class II materials and
gava the lowest peak voltages of the seven materials evaluated
to date,

8. Eramination of the resistance curves in figures £ and
9 for silver and copper shows a smooth rapid rise for both
metals to the peak resistance value, Copper exhibited irreg-
vlar reasistance fluctuations just after the peak resistance,
whereas the other six elements evaluated tended to give smoot!.
resistance drops in this region, Copper had the lowest peal
rasistance of the seven elements evaluated, Iron, in fiqu. ¢
10, shows the definite resistance plateau typical of Class .I
materials before the peak resistance occurs.

9, Comparison of figure 11, 12, and 13 shows that the
delivery of power was higher for the Class I materials, silver
and copper. The highest peak power was observed with 0.100-
inch long copper wire, The wire length which gave the highest
power for each of the three materials was longer than the opti-
mum length for effecting detonation. Iron had the lowest power
rate of the seven materials evaluated,

10, All three materials show a small energy deposition during

the first 0.3 microsecond. See figure 14, 15, and 16. The

energy deposition remained low for the firat 0,6 microsecond

for the high conductivity metals, silver and copper. Silver

and copper give a sigmoidal type of energy-time curve similar

to the other metals previously tested, Iron shows a different
energy-time relation than the other metals, with the rate of
energy deposition tending to be more constant than sigmoidal.

DISCUSSION

1l1. Previous testing with aluminum, gold, platinum, and
tungsten wires had indicated that the more efficient wire mate-
rials for effecting detonation have lower energy requirements
for vaporization and ?igh rates of energy deposition in the
fixed firing circuit. The results with silver, copper, and
iron wires were found to conform closely to the results of these
previous tests. All the Class I materials tested (alumirnv .,
gold, silver, and copper) were found tc be better for effecting
detonation than any of the Class II materials (platinum, tung-
sten, iron). Trouton's rule that the heat of vaporization in
calories is approximately equal to 21 times the temperature of
vaporization (boiling point) indicates that no crousscver should
be expected between the two classifications.
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12, The electrical characteristics help explain the supn-
riority of the Class I materials in effecting detonation. The
series RLC circuit used for exploding the wires has for its
differential equation

o N

i
t

where L = inductance; i1 = current, R = resiatance, q = Sharge,
¢ = capacitance, and t = time. It was previously shown’ that
the initial rate of rise of current is governed by

+ RL + g = 0 (1

-
¥

Q

d Vo

dat L ts 0 ()

where V_ is the initial voltage. A= long as the Ri term in

(1) remf8ins negligible during the initial current rise, the
current rise will be mainly governed by (2) since q = <V _.
Class I materials such as silver, have an initial small ®resist-
ance value which remains low until a rapid reaistance rise
occurs at burst, Figure 17 shows the composite traces for the
0.050~inch length silver wire. The resistaace trace shows
roughly a ten fold increase from the original value of 0,022
ohm during the first 0,6 microsecond., This permits the current
rise to be governed mainly by equation (2) for a relatively long
pasriod of time, Class II materials such as iron tend to have
higher initial resistances and initially absorb energy at a
faster rate, Figure 18 shows the composite traces for the
0.050-inch lengtl iron wire. The resistance trace in figure

18 shows a fast rise until vaporization occurs, at which time
the resistance terds to remain constant at 1.05 ohms., At
approximataly the time the vaporization plateau commences, one
okservea an inflection in the current; further lowering the
rate of rise, Thie inflection is thought to show the increas-
ing influence of the Ri term., It can be seen that Class I
materirals tend to permit a higher current density, enhancing
the pinch effect. Peak power occurs at a time when the current
is decrsasing and the resistance is rapidly rising. The higher
Surrent levels in the Class I materials holp to give higher
voak power (1<R) since the current effect is squared.

13, Class II materials, show a greater resistance effect
with increaced length because their resistivity is higher.
There is a tuch greater dispersion of the current value at
burst over the expeximental length range for the Class II than
for the Class I materials, Compare figure 2, 3, and 4, Infor-
mation on the resistance o~ the lower melting elements in the
liquid phase is readily available.® Such information i= fairly
sparso for the higher melting metallic elements becauvuye of
experimental difficulties. In general, resistivity increases
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more slowly with temperature in metals in the liquid than in
the solid state.® The resistance of iron, platipum, and tung-
sten appears to be almost independent cf temperature in the
liquid state, indicating much smaller temperature coefficients
of resistlivity than those of the Class I materials. The marked
increase in electrical resistivity at tiie time of burst has
been explained by a vaporization wave proceeding inward from
the wére surface, vreducing the conducting cross secticn of the
wire, The wave velocity depends not only on the specific
energy, but also on the heat of vaporization.

14, If the wire materials evaluated are listed according
to increasing energy required for complete vaporization, the
following order is ohtazined;

Ag<Al-Au<Cu<Fe-Pt<w

The first four metals belong to <lass I; the last three metals
belong to Class II. If heat of vaporization of the wire mate-
rial was the predominent property in regard to effecting detona-
tion in PETN, silver should be the best material with the others
following in 1e order shown. However, actual tests reveal the
ordering to }:: a. foilows for effecting detonation with the
optimum length for each material:

Au>Ag® Cu>AL>PE>W>Fe

showing other factors are involved in determining the optimum
material. The ordearing in each classification for the wire
lengths of interest appears to be influenced strongly by the
peak power., Gold, which exhibits the highest peak power ouver
the lengths of interest in Class I, tends to be the best material
for effecting detonation except in the very short lengths
(<0.025-inch) where the peak power drops below those of some of
the other materials. Aluminum has the lowest peak powers in Class
X over the 0,025 to 0.100-inch length range. For the wire mate-
rials at their optimum length, the ordering corresponds closely
to the order of decrease in peak power, However, the correlation
between peak power and the ability to detonate does not exist in
general, For example, the peak power for silver and copper is
higher at lengtha of 0.075 inch and 0.100 inch than it is at
0.050 inch, the optimum length. In the length range from 0,025
to 0.100 inch for the Class II materials, the peak powers for
platinum are higher than those of tungsten which in turn are
higher than those of iron. 1Iron, which requires the least
energy for vaporization, is the poorest of the three Class II
materials for effecting detonation. This shows that for the
given conditions, peak paowar may be relatively more important
ghan the heat of vaporization,

Silver and counper were about equal in their ability to initiate

PETN,
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15. Gold exhibits the highest peak power since in addition
to having a high current density at burst, gold also has the
highest dwell resistance of the seven materials. Platinum has a
lower current density at burst, but a relatively high dwell resist-
ance making it one of the better Class II materials., 1Iron with
both a lower current density and a lower dwell resiastance had the
lowest peak power and was the poorest for effecting detonation
of PETH, It appearm as though the inherent resistivity and
character of the resistivity changes of the wire mataerial are
reiatively more important than the energy required for vaporization.

16, A low energy requirement for vaporization appears to be
a helpful adjunct to the higher peak powers typical of Class I
materials, A comparison of the total energy supplied up to
shortly after burst to comparative lengths of the different wire
materials of both classes shows only minor variations betwasen the
matals, Energy in excess of that required for vaporization can
be expected to further heat the plasma and/or vapor and also
strengthen the shock and kinetic energy transfer to the explosnive,

17, The necessity for initiating & critlcal volume of
explosive is again indicated by these experiments. Tungsten wires
in the ligquid state before burst would be expected to have a
greater temperature differential between the wire and the explosive
in contact with the wire than would gold wires. Temperature
differentials, however, at this time appear to be of no importance
because of the limited amount of explosive in contact with the
intact wire. Indications are that the wire length of the higher
resistivity materials (Class II) should be shortened to reduce
the resistance and permit a higher current density, thus giving
a higher peak power per unit length., However, the necessity for
initiating a critical volume of explosive appears to nullify any
further gains by this means once a certain minimum length is
reached, The experimental results do show that the optimum lengths
of Class IX metals for effecting detonation are shorter than those
of Class I metals,

CONCLUSIONS

l, Silver and Copper (Class I) are better than iron (Class
II) for effecting detonation in PETN,

2, Class I materials (compared to Class II materials) permit
a higher current denaity before burst, allowing a greater rate of
energy deposition. This coupled with the lower energy requirement
for complete vaporization should allow greater energy transfor to
the surrounding explosive,

3, Peak power was founu to correlate closely with the ability
to detonate PETN when the wire matcrials were at their optimum
length, although this correlation is shown not to be a gencral one.
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TABLE 1 Effect of Bridgewire Length {(iilver, 2-mil Diameter)

on Detonation of PETN at Various Loadinq Densities

Bridgewire Length Density of PETN (g/cm%)

1,15 1.2 1.225
(inch) D L D L D L
0,025 2 0 0 2
0.050 2 0 2 0 0 2
0.075 2 0 12 0 2
0.100 2 0 0 2

a Unsymmetrical growth to detonation
D = Detonation

L = Low order
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TABLE 2 Effect of Bridgewire Length (Copper, 2-mil Diamecter) on

Detonation of PETN at Various Loading Densities

Bridgewire Length Density of PETN (g/Cmé)
1,1 1,15 1,2 1,225
(inch) D L D L D L D L
0.025 2 0 2 0 0 2
0,050 2 0 2 0 2 0 0 2
0.075 2 0 2 0 12 0 2
c.10C 2 0 2 0 0 2

a Unsynmatrical growth to detonation
D = Detonation

L = Low ovder
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TABLE 3 Effect of Bridgewire Length (Iron, 2-mil Diametc¢r) on

Detonation of PETN at Various Loading Densities

. Bridgewire Length Density of PETN (q/cm%)
1.0 1.1 1.125

(inch) D L D L D L
0.0125 2 0 0 2
0,025 2 0 1 1 0 2
0.050 2 0 1 1 0 2
0.075 2 0 0 2
0.100 1 1 0o 2

D = Datonation

L = Low order

10
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