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ABSTRACT 

\ 
This report covers work performed under Contract 

AP23(601)-U009 with £he Aeronautical Chart and Information 

Center, St. Louis, MissourN^v the Hawaii Institute of Geophysics 

of the University of Hawaii. I represents the results of theor- 

etical studies Aprrirri rrrt ia^M?der to determine the combined 

geodetic and geophysical significance of current gravity re- 

duction techniques. Special emphasis was given to the problem 

of interpolation of deflections of the vertical by gravimetric 

means. 

An examination of the mathematical theory of physical 

geodesy revealed that the accuracy of the mathematical equations 

relating deflections of the vertical and gravity anomalies could 

not be improved by choice of gravity anomaly. The choice of a 

gravity anomaly for use in the deflection interpolation equations 

was found to depend upon the accuracy with which the anomaly 

could be interpolated between observation points and the 

relative amount of labor required to carry out numerical 

computations. 

The complete Bouguer anomaly with geologic corrections was 

found to be the best anomaly to use for interpolation of gravity 

with a reversion to the normal complete Bouguer anomaly without 

geologic corrections for use in the mathematical equations. 
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SECTION 1 

INTRODUCTION 

This report covers the results of the Investigation and Selection 

Phases of the Alpine Gravity Reduction Project. As stated in the technical 

specifications, the work to be carried out in the Investigation and Selection 

Phases was to:  l) " evaluate current gravity reduction techniques for their 

combined geodetic and geophysical significance" and 2) " select that gravity 

reduction method which will most accurately reproduce the external gravity field." 

The over-all aim of this project was to find the best method of utilizing geologic 

and geophysical information in determining gravity anomalies to be used in the 

interpolation of deflections of the vertical in areas of rugged topography. 

In order to determine what type of gravity anomaly would be the best 

to use for interpolation of deflections of the vertical in practical problems, 

two distinct investigations were necessary. First, the mathematical theory lead- 

ing to the equations relating gravity anomalies and deflections of the vertical 

was examined. In this way it was possible to determine if the mathematical theory 

itself led to any special preference for a particular type of gravity anomaly and 

if controls were placed upon the type of anomaly which could be used by the nature 

of the mathematical formulation. Second, since gravity is actually known only at 

a limited number of points, the various types of gravity anomalies were studied 

to determine their relative value in terms of accuracy of interpolation between 

points of observation. 

Since the equations relating gravity anomalies and deflections of the 

vertical are obtained by solving a boundary value problem, a study of the mathe- 

matical theory is a study of this boundary value problem. The boundary value 
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problem can be stated in words as follows:  "Given the gravitational potential 

and the magnitude of the force of gravity everywhere on the bounding surface of 

a gravitating body, determine the shape of the bounding surface and the direction 

of the force of gravity on it." For a body such as the earth, whose bounding 

surface is highly irregular, some approximations must be made in order to make 

the problem tractable. There have been two modes of approach to simplification 

of the problem. In the sections which follow, these have bo=»en labeled "The 

Classical Geodetic Theory" and "The New Geodetic Theory". These labels were not 

chosen to have any connotation as to accuracy but were chosen simply because the 

approach labeled "The Classical Geodetic Theory" was the original approach used 

in solving the problem while the approach labeled "The New Geodetic Theory" has 

been developed only recently. 

The "Classical Theory" is developed in Section 3«  Section k  gives the 

development of the "New Theory". Section 2 contains background material which 

gives the development of certain relations used in Sections 3 and k  and is primarily 

to be used for reference when reading these sections. 

In the "classical" approach, as developed in Section 3, a solution is 

obtained for the boundary value problem under the simplifying assumption that 

the bounding surface is an equipotential surface.  In this case, the type of 

gravity anomaly used is controlled by the necessity for computing the effect of 

the theoretical transfer of all masses of the actual earth which lie outside the 

geoid to some point within the geoid. In Section 5, the various types of anomalies 

which will accomplish such a mass transfer are examined. 

In the "new" approach, as developed in Section k,  the free-air anomaly 

arises naturally in the development. However, as shown in Section 5, this natural 

appearance of the free-air anomaly is simply a result of the theoretical model 

chosen. With other choices of theoretical models, other types of gravity anomalies 
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can be used.  The conclusions reached in Sections 3, h  and 5 are:  l) the "New 

Theory" is capable of extensions to greater accuracy than is the "Classical Theory". 

The increased accuracy is of limited importance for computation of height dif- 

ferences but becomes significant for deflection computations in rugged terrain. 

2) In using the "Classical Theory" it is difficult to determine which type of 

anomaly gives the most accurate result since the answer appears to depend in a 

complex way upon the difference between the actual density distributions above 

sea level and the actual gravity gradients and the values assumed for these 

quantities when carrying out the calculations.  3) In using the "New Theory", it is 

found that gravity anomalies computed using any number of density models will give 

equally accurate results so long as all of the mass of each model is assumed to 

lie within the earth's surface. 

Since, in the "New Theory" the accuracy of the results is theoretically 

independent of the type of gravity anomaly used, the choice of anomaly depends, in 

the case of practical computations, upon:  l) the relative accuracy with which the 

various types of anomalies can be interpolated, and 2) the amount of work required 

to compute a particular type of anomaly and carry out computations using it.  In 

Section 6 the various types of anomalies are examined to determine which can best 

satisfy these two criterias.  It is here in connection with the accuracy of inter- 

polation that the question of the degree to which the model densities represent 

the actual densities of the earth becomes important when using the "New Theory". 

From the point of view of interpolation accuracy, one would like to use a density 

model which approaches as nearly as possible to the actual density distribution 

of the earth above some fixed depth, this depth being dependent upon the distance 

between points at which gravity has been observed. In the case of deflection 

interpolation computations which would not normally be attempted without a reason- 

ably close-spaced net of observations, this leads to some type of Bouguer anomaly 
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vith geologic corrections applied down to whatever depth is necessary to cause 

the resultant anomaly to vary smoothly between observation points. 

Using such geologically corrected gravity anomalies directly in the 

deflection formulae was found to lead to complicated computation procedures. 

The compromise finally adopted was, therefore, to use the geologic control for 

gravity interpolation but to revert to normal complete Bouguer anomalies for 

computation. 

The method of solution chosen was one developed by Pellinen (1962), 

which utilizes terrain corrected free-air anomalies.  The theory leading to the 

final deflection formula using this method is given in Section 7. The theory is 

presented in a form which allows two contour maps—one of complete Bouguer anom- 

aly and one of elevation—to be used rather than a single map of terrain corrected 

free-air anomalies. This method of procedure has the advantage that the anomaly 

used, the Complete Bouguer Anomaly, is a smoothly varying function while the 

terrain corrected free-air anomaly is nearly linearly related to local elevation 

changes and therefore changes in a complex manner in regions of rugged terrain. 

Detailed computational procedures using the theory of Section 7 are 

given in Part II of the final report on this contract in conjunction with the re- 

sults obtained from applying this theory to actual problems in the Test and 

Application Phases of the contract. 
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3ECTI0N 2 

Basic Potential Theory 

The purpose of this section is to summarize those developments in 

potential theory which are utilized in the development of the various theories of 

physical geodesy. Only the basic outlines will be given here with the aim of 

providing an easily accessable source of reference for some of the basic formulae. 

For a more detailed and mathematically rigorous development one may refer to 

MacMillan (1958). The  results here are largely a summary of the results presented 

there. 

2.1 The Boundary Value Problem 

We shall begin with the well known Green's equation which states: If <p 

and ♦ are any two functions of the Cartesian coordinates x,y, and z, and if their 

first derivatives are continuous and the functions possess second derivatives 

within a volume V and on its surface S, then the following integral relation holds 

between 9 and t • 

;v (t A
2 <p . , A2 ♦)dV - lm   (» *f - «p |l)d8 

where A  = the Laplacian operator  2 T —J T —2 
dX    dY    dZ 

— = the derivative in the direction of the outward normal 
to the surface S, and 

J  and J m  integrals over the volume and surface respectively. 
V        B 

For the development of this theory the reader is referred to MacMillan sections 53, 

5k,  and 55. 

For use in potential theory, Green's formula is utilized as follows. If 

the functions9 and t of (2-l) satisfy Laplace»s equation A2 ^ . o and A2 * ■ 0 

within the volume V bounded by the surface S then (2-1) becomes 

J. <♦ Ü - * §J> - ■ o (a-2) 
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It is noted that if 5, TU C  are the coordinates of a variable point in V and if 

x,y, and z are the coordinates of any point P then the function 

P -  [(« -  X)2 + (H .  y)2 + (C .  E)
2J-1/2 (2-3) 

satisfies the conditions necessary for use as one of the functions in (2-2) 

everywhere in the volume V provided P lies outside the volume. If P lay within 

the volume V itself problems would arise where the variable point approached the 

1 
P 

point P. Thus for P outside V we can use t = T in (2-2) and have the following 

equation 

J. ? a -*A <?> * - • 
(2-10 

For our purposes we will let the volume V of equation (2-l) be all of the 

space lying outside the gravitating body which we are studying except for a small 

sphere around the point P which is assumed to lie outside the gravitating body. 

Then the surface of the volume V is the surface of the body S' and the surface of 

the small sphere around P which we shall call S". We pause here to re-emphasize 

that the volume V is all the area outside the gravitating body and the small sphere 

enclosing P. Then since P lies outside V, we can write (2-10 as 

J.. [i8-*H^ «■♦x.-ßa-^4j ds" 
(2-5) 

However, it can be shown (See MacMillan, 1958) that 

where the subscript P indicates the function «p is to be evaluated at the 

point P. 

Then (2-5) becomes 

%■«/.. pa- *,i<i)] as       (2.7) 
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Stated in words (2-7) says that if a function t satisfies the conditions: 

1. » and its first derivatives are single valued and continuous within 
the volume V and on its boundary S. 

2. the second derivatives of <p exist 

3. «p satisfies the equation of Laplace 

within a volume which is bound by a closed surface S* then the value of 9 at any 

interior point of the volume can be computed from the values of 9 and its first 

spatial derivatives on S'. 

In geodetic theory, the function a will be the potential of some mass 

distribution lying entirely outside the volume V (i.e., within the gravitating 

body bounded by S •) or on the surface S■. Such a potential function may be used 

2 
since it satisfies A 9 - 0 outside the gravitating body. The potential related 

to centrifugal force does not satisfy the Laplace equation and thus is not a 

function which will satisfy (2-7). It is for this reason that in the development 

of the theory of Section 3 the potential T must be considered as purely a gravita- 

tion potential. In this case T satisfies (2-7) and we can write 

% nJ.- |FH-*«S«}J <»• («) 
2.2 Development in Spherical Harmonics 

Since development in spherical harmonics is fundamental in physical 

geodesy, two ways of arriving at a spherical harmonic representation of gravitation- 

al potential are outlined below. It is believed that taken together, the two give 

a clear understanding of what spherical harmonics imply. 

Let us begin the first development by considering the gravitational 

potential,at a point P lying outside a given mass distribution,due to a small 

incremental volume V, whose mass is dM and which is located at a point Q. Using 

the symbol U to represent potential we have 

kdM  kodV 
dU p  ~r     r (2-9) 
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where: k ■ gravitational constant 

dV = incremental volume element 

o = density 

r = distance from P to Q 

Thus the gravitational potential at the point P due to the entire mass distribu- 

tion is given by 

V k Jv tirf.v\v;7;m d (2-10) 

where the coordinates have the meaning illustrated in Figure (2-1) 

From Figure (2-1) we see by the law of cosines that 

r - (P2 ♦ r'2 . 2pr. cos *)1/2 . p(1 + £,1 . ,£, _ „1/t 

Thus 

i . 1   /i J. ,r\2   ,   ,r\     ,.-1/2 
(2-12) 

- -2 (1 + (I-)2  2 (II) cos ♦>■ 

The binomial series expansion is given by 

(i + «>■. i + nx + ^n x2 + !iinJ^n x3 +  
2. 3. (2-13) 

provided X<1   . Thus, if in equation (2-12) p>r' we can use (2-13) to expand 

r' 2 r1 

the quantity in parenthesis in (2-12) with n = - l/2 and x=[(^)     -   2(-)   cos   f] 
ri 

If we can carry out such an expansion and collect terms with common powers of (-») 

we get      1  « 1 (l  +   (ll)   cos   t   +   (I-)2   (3/2  cos2   ♦  -    1/2)   -I-   (I-)3 

(5/2   cos   t   -   3/2   cos   t)+ \ 

It can be shown that the function of cos t   appearing in the nth term of the ex- 

pansion can be written 

~L_      ""(CO.   f*  .    l)n 

2V a co. ♦" (2"15) 
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9.  *'   - 
X.   X'   - 

LATITUDE 
LONGITUDE 

P(* f. x) 

FIGURE 2.1 
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The functions generated by this formula are called Legendre polynomials or zonal 

harmonics and are represented by the symbol Pn (cos ♦ ). Using the PR symbology 

we can therefore write f n 

r  "JofnTI   P„<cos  ♦> 
(2-lfi) 

Thus taking note of (2-lU) and (2-l6) we can write (2-10) as 

»p = * Iv <a fSiPn <cos ♦)dv= 5 Jv• dv + 7 Jv »' — *dv 

+ iLj J a   r,2(3/2 cog f - 1/ 2)dV+-(2-17) 
P 

It is instructive to evaluate the first few integrals of the right hand 

side of equation (2-17). 

The first integral is simply 

jv adV - Me  = total mass of the earth (2-18) 

The second integral can be written 

Jv   a   r'   cos   fdV   «   cos   ©Jo   s'dV   +   sin   9 

cos   X  J     ax'dV   +  sin   0   sin   X   Jv  Oy'dV     (2-19) 

But the coordinates (x, y,  z) of the center of mass of a body are by 

definition J     ax,dy J^oy'dV Jv
a*'<lV 

B B B (2-20) 

where MB is the mass of the body.    Thus if we choose the origin of our coordinate 

system to be the center of mass of the body,  then x = y = z = 0 which leads to the 

reSult J    ax'dV  - J    ay'dV  -  T    C.'dV  -  0 

(2-21) 

The third integral on the right hand side of (2-17)  can be written 

Jv  crr
,2(3/2   cos2  *  -    1/2)   «   (3/2   cos2   6  .    1/2)  Jy  a     m'2 

-    l/2(x'2   + y'2)   dV    +  3/2   sin   29   cos   X  J^x'i'dV*  3/2   sin   20   sin   X 

Jv  Oy'z'dV  +   3/2   sin2   9   sin   2X  J     ax
,y,dv+  3/2   sin2   9   cos   2X 

J   al/2(x'2    -   y'
2)dV   (2-22) 
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If the z1 axis of the coordinate system coincides with one of the 

principal axes of inertia of the gravitating body 

f  ax'z fdV * r  ay'8'dV - 0 
V V (2-23) 

In the case of the earth we chose the z* axis to coincide with the 

rotational axis of the earth, which we know is to a very close approximation a 

principal axis of inertia, so that we can assume (2-23) holds. 

Thus, taking all of the above results into account we can write (2-17) as 

up „ k{-5 + 13  r(3/2 cos
2 0 - 1/2) JvO |z'2 - l/2(x'2 + y'2)j  dV + 

3/2 ain2e sin 2\  J  ox'y'dV + 3/2 sip2 9 cos 2X J  al/2(x'2 - y'2)<*v] 
V      ^v%!3^-(co8t)dv} (**> 

The above development shows that tne constants in spherical harmonic 

development of the gravitational field are various moments and demonstrates the 

reason for certain terms being zero. However, the above method does not demon- 

strate how to get the general expansion in terms of 9 and \ . Briefly this is 

arrived at by seeking a general solution to Laplaces equation in spherical 

coordinates (P, 8, X) i.e. 

1  / o ,P2dlK     1    d , .  ö olK     1   d2ü\ m  0 
"7 loT (_oT") + -i-nr-e &s <8in e ^> + ^- p^J " °    (2-25) 

The general solution is found to be 

»       n       m Y. 

nSo Än 
¥      ln   ^«0 Bn TnTI (2-26) U -.?n A. P  Y_ + ?Q Bn 

P 

where the A^  and B are constants and 

Ä^n      *     <      pl      (COS      Q)      COS      i      X     +4^Ab      4      pl      <COS      9)      8ln     1     X tr,   ~r,\ ni»0ninv ' i«0   ni      n   N (2-27) 

where ani and b^ are also constants and 

P°    (cos   6)   « _JL *—_   (cos2   6  -    l)n 

n 2nn!   dcose11 

P*   (cos   9)   -   (cos2   9.1)i/2  --J2?!—   (cos2   9-l)n       , (2-2Ö) 
dco«9 * 
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Since the potential function must vanish at infinity, ß^ must be zero 

and it is conventional procedure to set all Bn equal to the gravitational 

constant k,then (2-26) becomes 

u. k t 2« 

Equation (2-29) is a general equation expressing the potential of a mass 

distribution in spherical harmonics. In the practical case in physical geodesy 

we wish to express the attraction potentials of the actual earth and of the 

ellipsoidal normal field in spherical harmonics and then to take the difference 

to get a spherical harmonic representation of the anomalous potential T. In 

normal practice the center of gravity of the actual earth is chosen as the center 

of the coordinate system to be used and the center of gravity of the normal field 

is chosen to coincide with the e.g. of the actual earth. In this case, as has 

been shown, the Y, term will be zero for both potentials and thus for their dif- 

ference T. It is also normal to choose the mass of the normal model to equal the 

mass of the actual earth. In this case, the Y0 terms will be identical and will 

cancel when computing T. Thus it is permissable to write T as 

T = 1c V n 

RnS2 -n+I (2-30) 

The symbol Y is used to represent the spherical harmonic of degree n 

when referring to a number of different bodies throughout this report.  To avoid 

confusion, one should point out that the symbol Yn does not refer to the same 

quantity for all bodies. For any particular body the constants of (2-27) have 

particular values characteristic of that body and related to the moments of 

the body. 
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SECTION 3 

Classical Geodetic Theory 

The present section discusses the determination of the shape of the 

bounding equipotential surface of body B according to the theory usually em- 

ployed in classical geodesy. 

Let Y be a reference gravitational plus rotational field whose 

corresponding potential field is represented by U.  In practice, for computation 

of gravity anomalies, the reference field is taken to be that given by the 

International Gravity formula with the gravity gradient taken to be a constant 

.O9U06 mgls/ft. A number of papers have been written on more exact expi'essions 

for the normal field. These have been examined by Daugherty and Define (1963) 

who found that for geodetic purposes all are sufficiently accurate. 

If the gravitational plus rotational potential of the body B is 

represented by the symbol W, the potential at any point is given by 

W = U + T (3-1) 

where T is by definition the difference between W and U. 

Consider the figure below: 

n = normal 

V = normal Figure 3-1 
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The equipotential surface W = Wp is taken to be the bounding 

equipotential surface, S, of the body B. P is a point on this surface S. Up is 

the equipotential of the normal field passing through the point. U is the equi- 
ps 

potential surface of the reference field such that 

UQ = Wp (3-2) 

The point Q is the point on the equipotential surface UQ intersected by the 

normal to the potential field U which passes through P. N is the distance PQ. 

Two points should be mentioned here. First, there are other methodB 

of establishing the point Q on UQ to be related to the point P on Wp. These 

lead to slightly different forms of development leading to equation (3-5) below, 

but the final results are essentially the same (See, for example, Jung, 1956). 

Second, the use of (3-2) implies that the value of Wp is known so that one can 

establish which equipotential surface of the normal field UQ is equal to it. 

In fact, for problems concerned with the earth, Wp is not known. For a dis- 

cussion of the errors which result, see Molodenski et al (i960). We shall pro- 

ceed under the assumption that Wp is known. 

From definition (3-l) we have 

Wp = Up + Tp (3-3) 

Now assume that if the potential function U is expanded about the point 

Q in a Taylor series, the value of U at P can be accurately enough represented by 

the first two terms of the expansion. Then we have 

«p - % - <§$>,■ = \ - v (3J0 

where the negative sign results from the fact that the direction of y is toward 

Q from P. The accuracy of the assumption that the first two terms are sufficient 

depends upon the magnitude of the distance N. If we consider that geoidal heights 
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seldom exceed 100 feet, we can get an idea of the magnitude of the error 

N = 100 feet N2 = 10,000 

y m 980,000 mgl.. ' |Y m    1  Bgl../£t. 

Then YQN = 90 X 106 « 108 

|^5   N2   «   .1   x   10,000   -   1000   «   103 

Thus for reasonable N values,  the neglected terms are negligible (i.e.,  of the 

order 10"5 of the second term). 

Then substituting (3-*0  into (3-3)  gives 

or making use of (3-2) 

Wp - UQ - YQH + Tp 

» -IE 
Q 

(3-5) 

In classical geodetic theory the bounding equipotential Wp is the co- 

geoid differing from the geoid or sea level equipotential of the earth by an 

amount which depends upon the method used to reduce the surface anomalies of the 

earth to geoid level anomalies and the equipotential surface UQ is the inter- 

national ellipsoid. Then N is the distance between ellipsoid and co-geoid. The 

implications of the reduction methods used in classical geodesy will be discussed 

in Section 5« For the present assume gravity is known on Wp. 

Since YQ is known,only Tp must be determined in order to compute N.  To 

Jo this we will establish a differential equation relating gravity on the equi- 

potential surface W = Wp to Tp and then solve this equation. 

Referring to (3-l) we see that it is possible to write the identity 

,dW,    ,ou\  A ,öTx (3-6) 

Wp   Wp + WP 

• : 
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vhere the subscripted P indicates the derivatives are to be evaluated at the 

point P. 

(3-7) 

the "observed" gravity at P and 

/äUv .du. 
Grr)   -   U-rj)   cos   I  ■  y     cos   e 
dn dv P (3.8) 

where t is the angle between the normals at P to the equipotentials Wp and Up, 

i.e., it is the "deflection of the vertical" at P. Since e seldom exceeds l1, 

the approximation cos I = 1 is permissable. Using this approximation and 

substituting (3-7) and (3-8) into (3-6) gives 

8P " YP + %l>p (3.9) 

Expanding the function y  about the point Q in a Taylor series and 

keeping only two terms in the expansion yields 

V Yn "  £()„* P   Q ' ^'Q* (3-10) 

Again note that the error here is of the same order as discussed after equation 

(3-4). 

Substituting for N from (3-5) gives 

P      TQ "   (3V>Q 7^ (3-11) 

Substituting this into (3-9)  gives 

,öYv     Tp        ,oT, 
8P  "  \ "    (Sv>Q T^ +  <Si}p 

or 

(8P '   V   "   %n}p -  7"   %v>Q (3_12) 
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This formula is called the boundary value problem of classical geodesy. 

It describes the relation between gravity anomalies and T at points on the boundary 

of the body. For the case of the earth both U and W are potentials of attraction 

plus a rotational potential. It is usually assumed that the two rotational poten- 

tials are equal. 

Thus, T = W - U is a pure gravitational potential and is an harmonic 

function outside the body B. The assumption that the rotational potential of W 

and U are equal may not be strictly accurate. The problems connected with this 

possibility are discussed for example by Molodenski, et al (i960). Normally, 

this problem is ignored. 

If the reference gravitational field were spherical rather than the 

Y  . *M 
ellipsoidal normal field usually employed we would have     Q  ~~J and 

RQ 

<sv>    -  <OVQ       -r (3-13) 

where k = universal gravitational constant 

M = mass of xuodel usually assumed to be equal to mass of earth 

RQ= distance from center of spherical field to Q 

Substituting equations (3-13) into equation (3-12) gives 

<*p - v - <H>p -! T" 

Now if it is also sufficiently accurate to use the approximation 

(3-14) 

Wp       "    Wp P (3-15) 

we get 

2   _        ,dT 
<*P - V ■ 1 » - <SI>P (3.16) 
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In the derivation of Stokes and Venlng Meinesz equations the boundary 

condition (3-l6) is used. Note that in deriving (3-l£) the approximations 

(3-13) and (3-15) are applied to the right hand side of equation (3-12) but the 

values of yQ  used on the left hand side of equation (3-l6) in deriving the gravity 

anomalies remain the International Formula values, i.e., the ellipsoidal approxi- 

mation is retained on the left hand side of the equation. 

The  error involved in using equation (3-l6) rather than (3-12) would be 

expected to be of the order of the flattening of the earth. The result of 

proceeding from (3-12) retaining the assumption of an ellipsoidal normal field and 

obtaining a result correct to the order of the square of the flattening has been 

studied most intensively by Zagrebin (1956) and by Bjerhammar (1962) who cor- 

rected some errors in Zagrebin's final formulae. The results for computing N are 

very complicated and have received little usage. Molodenski et al (i960) outline 

earlier work of Molodenski and arrive at a somewhat simpler formulation which he 

extends to deflection of the vertical computations in the classical theory. We 

shall not at present pursue this refinement further insofar as it should not have 

any significant effect on deflection interpolation problems. 

The next step in the normal procedure is to determine a formula for T 

which will be correct everywhere outside of and on the surface, S, of the body B. 

The value of T anywhere on or outside a gravitating body can be expressed by the 

use of Green's formula (See Section 2). Letting P be any point on or outside the 

surface S, we have 

Tp - 1/4. JJ, l\  g - T^ (i)]d8 
(3-17) 

where r = distance from P to variable point on surface S and n is the normal to 

the surface S directed inward. 
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Consider the situation below. 

r'= distance between 0 and incremental surface element dS 

r = distance from P to incremental surface element dS 

p = distance from P to 0 

♦ = angle between r' and P 

Assume that the point P lies sufficiently far from the origin thatf 

for all elements dS of the surfacet p > r\ Then, as shown in Section 2, 

it-.}u*^-«i,-»ii/i-jo^a'-<-»(wB) 

For p^r'as will occur in the case of points lying on the co-geoid of 

the earth,it is not clear that the development which follows is valid. It has 

usually been assumed that any error would be of the order of the flattening of 

the earth, but recently Molodenski et al (1962) have shown the error may be much 

greater. 

In Section 2 it is shown that the perturbing potential at P can be 

written as a series of spherical harmonics to give 

p (3-19) 

where k = universal gravitational constant and 

Yj - spherical harmonic of degree i . 

Going to the spherical approximation in (3-17) i.e., assuming that we 

can replace £- by «rr , with sufficient accuracy gives 

k   <-r>   - ST*   <^>   - &   [Jo TOT  *«  <•" ♦>» 

o     ,U ft     nr'11-1  _     , 
°r oH   (r}  " *   nSo       nil     Pn   <cos  ♦> 

P 
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Let the value of T at any point P on S be given by 

•    Yl 

r 

Again using ^ ng^- gives 

,öl\     ,oT .   .  2  (i+l)Yl 
w   ■ (ö7T)    k iS2 —TUT" 

(3-20b) 

(3-20c) 

If ve now substitute equations (Z-lB),  (3-19),  (3-20a), and (3-20c) 

k     P S     r,n , xv      S      (i+l)Tl into (3-17) ve getTp   . £  Jg   [^ I—j   Pn   (cos   f)   ^  ---r^-   + 

If the surface S were a sphere (r' = R),   it could be shown that 

J7     Pn Yi   dS   ■   O   if   n  M 
(3-22) 

Thus, again assuming that S may be considered a sphere with sufficient 

accuracy that (3-22) is satisfied, yields the following result.  In (3-21) only 

those terms where n = i will be different from zero after carrying out the indi- 

cated multiplications and integrations. This result leads to the conclusions 

that: 

A. Since there are no Y0 or Y\  terms the P0 and P]_ terms in the sum- 

mations with respect to n will contribute nothing to the final answer. Thus we 

will drop the P0 and P^ terms and begin the summation at n = 2; 

B. The following identity may be used 

J  Pn  fi  (i + 1) Tl - J2 (n ♦ 1) P„  2  Yi 
(3-23) 

Using the results (A) and (B) above and the approximation r' * R we 

can write (3-2l) in the form 

P R p R 

(3-21*) 



-21- 

1     Pf     r   f        (2n-H)RIUlPn1    r.      »       Yl   1<u T
P - ** JJ. ln£2 in—i [k iS2 jm

]ds     (3.25) 

Substituting (3-20b) and (3-20c) into (3-l6) after allowing the approxi- 

mation r1 = R gives for every point on S 

or R R 

p Q i-Z      Rl+Z (3_26) 

Now returning to the integral of (3-25) and altering its form slightly, we get 

*  • Zk HB ijj,   (2-  +  1)   Pn   (|)-+1,tk   J,   c^t, _j^Jds    (327) 

Or making use of (3-23) 

R (3-28) 

SubstltutinR from (3-26) irto (3-28) gives 

T?  " ™ XX.   IA   <TTI>   Pn   <!>n+l^   A*dS   - Wl n^2 TTJ   (|)n+1Is^PndS 

(3-29) 

Substituting (3-29) into (3-5) after letting the point P lie on S so 

that p«R gives for the undulation of the co-geoid at the point P. 

Q     Q (3-30) 

Equation (3-30) is Stokes' equation relating the co-geoidal height at 

P to the integral of the gravity anomalies and a function of position over the 

co-geoidal surface in its spherical approximation. 

There are of course many ways of arriving at equation (3-30) (See for 

example Keiskanen and Vening-Meinesz, 195Ö). The method chosen here is meant 
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to show as clearly as possible what approximations are made and where they enter 

the calculations. To allow for numerical calculations it is desirable to have 

the summations of (3-29) or (3-30) in closed form. In the following development, 

which follows closely that given by Nagy (1962), the closed form of (3-29) will 

be obtained. The closed form of (3-30) would immediately follow by letting P = R 

in (3-29) and substituting into (3-5). 

To begin let us do the following to (3-29) 

a. Factor out     from beneath the integral sign 
R B 

b. Use the abbreviated notation X =   beneath the integral 

Pn + i ^ 3 
c. Use the identity   n I 1   = 2 +  ri - 1 

Then the equation (3-29) becomes 

T? " STR* SS.  A« J2 <2 + A) P» xn+2ds n- 
(3-31) 

But from formula (3-18) using the approximation r' = R 

1 1 

r   P(l + X - 2X cos t) '    P n"° (3-32) 

or 

r   * i   (P0  +  P1X  +  Jz**  Pn)   " ?   <X  + X  c°8   ♦  + nil  xllpn) 

(3-33) 

Then from (3-32)  and (3-33) we get 

Using (3-34) 

IP  - -2-7 SI Ag   t2X2   ( 1 _ -   1 -   X  cos   ♦) 
4*R       * (1  + X -   2X  cos  t)1/Z 

-       3 „+» (3'35) 

+ nB2 sn Pn*    i" 
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If both *ides of (3-3^)  are divided by X2 and then integrated with re- 

spect to X we get 

££f_l dx 
X   (1   +  X     -   2X  cos   ♦) 

(3-36) 

f    2, Xn" 2  P- dX  = J- 2 l- _-—* « -  J -\ « -   J    -T J    n-2 Y^I   +  x     _    2X   cos   ♦) X 

Carrying out the indicated integrations using standard integral tables yields 

j-^X-'pudX-J^X^Pn 
P dX_ _ (1  -   2X   cos   j   +  X2)X/ 

XZ(1  -    2X  cos   t   +  X2)1/Z 

2V 1/2 
2 r i    _    v K    COR   t    <    > 

-   cos ♦In   (2(1  -   2X   co.   ♦   + X   )     + 2  _   _   co,   f , 

J ££•_♦  - co.  *   In X J" T " "  ; (3-37) 

X 

« -      i 
—-   -   co.   f   xu  A "   P        "    X 

Since the above are  indefinite  integrals,   there are undefined constants of 

integration which have not been indicated.     Substituting from equations (3-37) 

into (3-36)  and using the  symbol C^ to represent the  combined integration con- 

stant yields 

£     _J_  x11- l   Pn   «   -   j  -    cos   *   ln   <X  + I "   2   co8   ♦>   + 5  -   cos   *   In  X  +  C] 

(3-38) 

where to shorten notation we  have defined  v =  (l - 2X cos f  + fr)2 = _r P 

Collecting terms and remembering that log a + log b = log ab gives 

and 

J2 tri x<u l Pö - nr - co" * ln 2 (v + * - x co» t) + ct 
(3-39) 

To evaluate C1 set X = 0 in (3-39)-    Then, 

[cos   ♦   In   2   (1   +   v  .   X  cos   t)J -   cos   f   ln 4 

(3-fcl) 
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To evaluate the function )-—  ,  take the limit as X approaches zero. 

Making use of the fact that :   lij j^~j  -  ]fo IJffl 

and noting that .    . _  . 

|Z   - ^   (1  -   2X   cos   t   +  X2)1/2   -   1/2(1  -   2X   co.   *   +  X2)"1/2 

(-2   cos   t   +  2X) 
and that 11m   v   *   1 

we get 

Urn 2^ -  u» -  ^.-£££_! . co,  t 
»-0 **0 (3-42) 

Evaluating (3-29) at X = 0 yields 

0  -  cos   i   -   cos   t   In  4  + Cj 

or 

Cl « cos  f   In 4 -   cos  f (3-43) 

Using (3-^-3)  and again remembering the laws for combining log terms, we get 

for (3-39)      •       x       n  ! Uv 

n£2   nTI  X Pn  * T "   C°8   ♦   ln   2(1  +  v .   X  cos   f)  - 
cos   t +   cos   t    In  4 

or 

Ji Ü '• ■ V - ••- t a * i. (1 + * - fcos ♦>)  (3-w 
Using (3-44) and noting that     S  Xn+2 _     3     B     Yn~ l 

equation (3-35) becomes 

TP~ " Z? M»4g [2x2 (* " x" x cos ♦> + 3*3 «V - cos ♦<» + 

or collecting terms 

p     rr   „2 ,2 

ln(l+v.   Xco.  t)))]ds 
(3-^5) 

TP - -^-z JJ.  X     [i  +  1 .   3v .   5X  cos   *  . 
4nR" 

3X  cos   ♦   1„   (1  +  l^JL££J_t)1Agds 
(>46) 

Again note that 

v  -   (1  + X2 -   2X  co.   *)1/2  - I ,    ,   , 
" P (3-47) 
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By substituting this into (3-^+6) and remembering that X ■ 2. we get 

P P 

-   2* co.  ♦   l„   <L±JLf   I co.  m   Agds 
P (3rW) 

If we now assume that point P is also on the surface S which can be 

treated with sufficient accuracy as a sphere then p ~  R. Making the spherical 

assumption we can relate the distance r which is now simply the chord between 

two points on the sphere to R and t by "the well Known formula 

r = 2R sin £ * (3-^9) 

Usin£ the two relations p ■ R and r = 2R sin £ )  equation (3-**8) becomes 

T* ■ tnt //. t.tn 1/2 ♦ + 1 - • •!■ "*♦ - 5 cos * - 3 co. ♦ In 

(.in 1/2* + aln 2 l/2*>> A8dS (3-50) 

Or in shortened form 

T
P ■ m J'J>. s(*> *8ds (3-51) 

where the symbol S( t) represents the quantity in brackets in equation (3-50). 

Then substituting (3-51) into (3-5) gives 

* - S - nrc; tf. s<*> *8ds 
Q
     Q (3-52) 

This is the normal Stokes' equation for co-geoidal undulations. Writing equa- 

tion (3-I+Ö) in shortened forn) gives for a point not on S 

**RYQ (3-53) 

where S (p, ♦ ) is used to represent the quantity in brackets in equation (3-^8). 

In classical theory one carries out numerical integration of (3-52) 

over the surface of the earth treated as a sphere. The solutions are set up to 
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give the geometrical quantities represented by S (f) in predetermined form for 

multiplication by the Ag values. 

Deflections of the Vertical in Classical Theory 

The deflection of the vertical in a particular direction at a point P 

on the bounding äquipotential surface is the angle between the normal to the 

bounding equipotential at the point and the normal to the potential field U at 

the point.  This will, of course, be the angle between the two equipotential sur- 

faces at the point.  It is usual to express the deflection of the vertical in 

two components, an east-west component and a north-south component. It is con- 

ventional to call the north-south component 5, and the east-west component % 

If N is computed from Stokes' formula, then the deflection which is the 

rate of change of N in a direction say 1 (angular direction ^p) is 

d.fUction - $   <L „ - .^ £ (T1, m _^_ 4 (Tp)     ^ 

Some confusion can arise as to the sign of the deflections. The sign 

is, of course, a convention since the deflection is simply a difference. The normal 

convention is to define the meridional deflection 5 as the astronomic latitude 

minus the gravimetric latitude and the parallel deflection T\ as the astronomic 

longitude minus the gravimetric longitude, 

i.e. 5 * w aat - 9 grav. 

T| ■ X ast - X grav. 

Let us consider the meridional deflection g and the picture below 

o,»ro.. *flf0v- 
N 



dlf 
The geoidal height change  is positive thus we have TT positive but 

9 ast < 9 grav.   so 9ast  - 9 grav.   is negative and thus 

5-9   ast   -    9   grav.   -  -   ^ 

or 

1  dN 
R o~9 

1   ä** in a similar manner   \\ =  - jr ^r 

Then the components of deflection in the north and east direction arefusing Tp 

*m (3-52)       5  --1 £   (N)  . -I    |TP  .     -1        Js «jti AgdS 
TQ 4*yQR 

-1    &      /MN        -1     ÖTP ~l P     ös<*>   AedS 
n - i n (-> - -R-Q IT- - ^ '. -it- Agds      (3.55) 

but |B   S(t)   . ^   S(f)  || 

^S(t)  -^  S(t)|* (3-56) 

If we let a be the angle "between the north direction and the if direction 

fchen                                           ||   =  -   cos   or   and  |1   =  -    sin  a (3_57) 

To see the reason for the negative signs  in equation (3-57),   consider 

the figure below. 

N, 

rd*        df cos   or   - -j,   - ^ 

If d9 is positive,   i.e. ,   it is  in the direction of positive  change of  9,  then  if 

is  decreasing for a point with cos Of positive and dijr  is negative.     Thus to get 

a. 
ae 

Thus we  get |   = i—^  J"      °_   S(*)   Ag        cos  eidS 

4«YQR 

fl  = ^-5  I    IT   S(t)   Ag        sin adS 
*«V f (3-58) 
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2 
but dS = R    sin fd t dA 

■^^^H4 ■  co»   Of   «in   t   dAdt 

(3-59) 

11 " *^q J"! JT[^ "H4' ,ln * ,ln * dA<!* (3-60) 
where dA is an incremental angle corresponding to a longitude angle using the 

computation point as a pole. 

Let us evaluate jk   s^^ 

JL   8(t)   - -   C0!   1/2*   -   3   cos   1/2*   +   5   sin   ♦   +  3   sin  ♦   In   (sin   1/2*   + 
™ sinZ   1/2* 

2   4Mn      3   COB   t   co»   1/2»   (1/2   +  sin   1/2») 
rinZ   1/2») TTn~T77f-TrT"Tn-T7TfT U 

If we now multiply through by sin t and use the identities sin » =2 sin ■£ t 

cos \ t and cos ♦ ■ 1 - 2 sin t/2 we get 

iln t a s<t) - -<*- 'ln* 1/2t> _ s .m | <i - .m2 J> ♦ 
" sin   1/21 2 2 

20   sin2 \   (1 -   sin2 ^)+  3   ,in2   »   In   (sin   1/2»   +  sin2   1/2*)  - 

6(1 -   2sin2 \)(l -   tin2 |)(l/2  + sin   1/2») 

sin  * |f  3   (♦)   -  - etc    I  -   3+3   sin2  *   In   (sin   1/2»   + tin2   1/2*) 

-   8   sin \ +  32   sin2 \  +  12   sin3 J -   32   .in4  ♦ (3-6D 

Then if we let F*(*) » £ sin^S(t) we get 

5   -      *      f  J2*  F»(*)   AB  co.  or dAdt 
2*YQ     0     0 

1     2^ JQ J0 (3-62) 

We might note here that for small values of fcos*ml, sin *«0 and thus 

we can use the approximation  *'<♦> * - l/2<cc J + 3) 

,i„t^s(t) ..«.«j.i (3_63) 

Numerical methods, of carrying out the integrations of equation. (3-62) 

have been developed by a number of workers. These numerical method, can be, to 

some extent, carried over to the method of solution adopted for use in the Test 
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and Application Phases of this contract. The overall numerical method finally 

adopted is discussed in Section 7- 
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SECTION k 

The New Geodetic Theory 

From the classical viewpoint described in the previous section, the 

necessary steps in surface level deflection computations are (l) correct transfer 

of material from above to below sea level, (2) "reduction" of surface gravity 

anomalies to geoid and then co-geoid level anomalies, (3) computation of deflec- 

tions at co-geoid level, and (k)  computation of surface level deflections from 

the co-geoid level deflections. 

The above procedure appears to result in considerable inaccuracy 

because of lack of knowledge concerning internal densities and vertical gravity 

gradients. Because of these inaccuracies and the difficulty involved in assessing 

the errors introduced from approximations made in the mathematical development of 

the theory, considerable argument exists as to the "correct" reduction to be used 

and the type of anomaly which is theoretically more accurate. It has not been 

possible until recently, because of the way in which the theory was developed, 

to judge accurately which reduction method is best. 

The so-called new theory of gravimetric geodesy developed below is 

therefore important for two reasons. 

1.) It makes possible an evaluation of the accuracy of the results 
obtained using different types of gravity anomalies with the 
classical theory. 

2.) It provides a mathematical theory capable of extension to any 
order of accuracy desired. 

The following development of the new theory follows very closely that 

of Molodenski et al (196O). First we will develop an equation analogous to Brun's 

equation for the co-geoidal height in classical theory. 
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Let W (8, X, r) ■ potential field of the actual earth including the 
the rotation potential 

U (9, X,  r) • reference potential field having the same rotational 
potential as the earth's field 

W = value of sea level equipotential of the actual earth. 

Now assume we pair the equipotential surfaces of the actual earth and 

the reference field in some way so that 

U0 = the equipotential surface of the reference potential 
field which is paired with equipotential W0 of the 
actual earth. 

The most advantageous way to pair the surfaces, is to pair the equipotentials 

which have the same value of potential.  If this is done we have 

U0 = W0 (U-l) 

We cannot do this though, without knowing W0. As is the case with the classical 

theory, the assumption is made that W0 is known although it, is not in fact known 

exactly. 

Consider some point P (&*, X*, H) on the earth's surface where H is the 

height of the point P above the surface U = U0 whose shape is known. Let us de- 

fine the perturbing potential, T, at any point to be the difference between the 

actual earth's potential at the point and the reference potential at the point. 

Thus 

T (0*,X*,H) - Wn <6*,X*,H) - U <9*,H) (lf-2) 
p P F 

Note that this equation assumes that U has been chosen so as not to be a function 

of the coordinate X . This is the case for the international formula potential. 

Then 

wp<e*,x*,H) - w0 - Jgdh 
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vhere g iß the actual value of gravity along the path of integration, and 

integration takes place along the earth's surface. 

Let us now define the equipotential surface UQ (9,h) which is paired 

to W by the requirement that 

Then we have 

where J'ydh is defined "by 

Wo - Uo - wp - UQ (MO 

UQ  "   Ü.  -   J\<ih (l*-5) 

J* gdh   -  J ydh  - hy (U-6) 

Y = mean value of Y along line of integration. 

In principal h can be rigorously determined by gravity and leveling on 

the earth's surface. In practice h is not so rigorously determined due to the 

lack of gravity information along the survey lines. However, the difference be- 

tween normal map elevations and the precise quantities is so negligible as to be 

unlikely to cause any significant error. From this point on the symbol h will 

be understood to represent normal orthometric heights as read from maps. 

Now by substituting for W from (k-k)  we can write (^-2) in the form 

Tp(e*,X*,H) - W. - U. + U (6,h) - U (8*,H) 

(M) 
As the differences 

e* . e - A8 
x* - x - AX 
H -h •H (u) 

are small quantities, their squares and derivatives can be ignored. If we 
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expand U about the point Q in a Taylor series keeping only the first terms, we 

obtain 

Ve*.H> " V',h) + (^}Q " + 0>q *9 

(U-9) 

Now the error in AÖ is normally less than 1! so that the last term in (4-9) naay 

be ignored. Substituting (4-9) into (4-7) and ignoring the last term in (4-9) 

we get h 

Tp - W. . 0. + UQ - ÜQ . (|°)QK 

or 

Tp - W. . U. - (||)QH 

(4-10) 

But to a very close approximation (|T~)Q=-VQ   -  gravity due to 

normal potential field at Q. This gives, after rearranging terms and substituting 

into (4-10), 

N - 12   WQ - U» 

If we have WQ = UQ, we obtain 

which is completely analgous to Brun's equation. Here, however, T is the de- 

viation potential at the earth's surface, y    is normal gravity at a point distance 

N above or below the earth's surface. N is thus a correction term to be added 

(with correct sign) to h to give true location above the equipotential U * U of 

the surface point P. N is usually called the height anomaly in this case. 

The assumption that WQ =U0 made in deriving (4-12) from (4-11) has been 

examined in detail by Molodenski et al (i960). 
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The solution of equation (k-12)  requires knowledge of T = W - U .  To 
P   P   P 

obtain Tp let us first establish the boundary condition which T must satisfy at 

the earth's surface.  Since W = U + T we can write 

,dW.     ,dlK    ,dT. 

v= direction normal to reference equipotential 

Now with an error of the order of the deflection of the vertical, we have 

(^Jp^Cp3 observed gravity at point P. Expanding iu  about Q in a Taylor series 

and keeping only the first term we get 

Wp WQ   -    N(Sv}Q        YQ  -    M(3Tv}Q 

Substituting this gives a       -vT 

■, " V »&Q  + Wp 

or,using Brun's formula, we get 

Thus the determination of T has been reduced to the solution of the third 

boundary value problem of potential theory at the earth's surface. This problem 

can be stated: 

Find the function T which: 

1.) At every point on the physical surface of the earth S satisfies 
the condition (U-13) 

2.) Is a harmonic function outside S 

3.) At infinity is regular or satisfies the stronger condition 

piÜ-(*,*), o 

To find the function T it is possible to proceed in a number of ways. 

Some authors, e.g. Hirvonen (i960), have proceeded much along classical lines by 

using spherical harmonics and arriving at the generalised Stokes and Vening Meinesz 

theorems. Molodenski et al (1962) have examined these methods and point out that 
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the error is greater than the order of the flattening of the earth as has often 

been supposed. They also stress that the error in deflection computation is 

much greater than in geoid undulation computation. 

Another method of procedure and the one favored by Molodenski involves 

the introduction of a surface density coating. The use of density coatings dates 

back to Helmert and is based on that part of potential theory which permits the 

potential of a volume mass to be represented external to it by the potential of a 

surface mass distribution on the surface of the volume mass. 

Thus to Bolve equation (4-13) ve introduce the auxiliary density function <p 

representing this surface density and defined by 

T~ - J. 5- di p   Ji rP (4-110 

where rp is the distance from the point P where T is being computed to the variable 

point on the surface S. 

To substitute into (4-13) we also need (c^)«. As the point P lies on 

the surface S, the derivative contains an extra term due to the density layer 

causing a discontinuity of the derivative at the surface. Thus we arrive at 

+«K>P - + 2"»p ••« * * iUJ d"]
P 

where:    +^9« cos or is the term appearing due to the discontinuity of the 
derivative at the density layer S 

and or is the angle between the normal to the direction in which the 
derivative is taken (Xto the reference field) and the normal 
to the surface S. 

If we can derive a tp  and satisfy equation (U-13) by the T determined 

from it using (4-14) then this T will obviously satisfy boundary conditions 2.) 

and 3.) i.e., T will be harmonic outside S and regular at infinity. This results 

from the fact that a T so obtained will be the potential of an actual density 

distribution and must therefore behave as desired outside S. 
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To do this we can substitute (4-1*0 and (4-15) into equation (4-13) 

which allows us to write this equation in terms of *P . Substituting we get 

2„„p co. « + t§Jg |_ dslp - 1^)QI. S_ a. - (gp - YQ, ^ 

where r is the distance from the point P to the variable point on S. 

Since the surface S is unknown the equation (4-i6) is unsolvable in 

the form given. However, a sufficiently reliable approximate solution can be 

obtained by carrying out the operations indicated on the l.h.s. of (4-16) on 

the surface S which is the first approximation to the earth obtained by adding 

the measured heights h to the international ellipsoid.  Then we get 

V r; "    -   -r  C^)()j- ,- ds= (gD - Yo) 

(^-17) 
""*, "- + hihq « - Tq&,k \ «- CF - vQ) 

and the approximation of T is given by 

Tp - L S- ds 
Q (4-18) 

If we designate the radius vector of the point Q by fL ,  the radius vector of 

the element ds by p, and the angle between the two radius vectors by f,we have 

2    2    2       2 
rn - Pn + P  - 2PPn COS ♦ Q   Q        Q (4.19) 

If we assume that the reference potential is spherical we have 

(v ^v}Q ■" (Y cT?) Y TV'Q  " CY Sp'Q    ?O 

or5p-   [(p2  +  pQ
2 .    2ppQ  co.   irU2)   - -    1/2   (p2   +  P2Q -   2pp0  co.   f)-3/« 

' 2 2 2 
2p        -    2p      p   co.   t P      -    p* . 

(2Pft -   2p   cos   ♦)   -  -    1/2   [ 2 Q J ^ L_ 
Q PQr   Q 2V  Q 2pQrQ 

(^-21) 
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Then substituting (U-20) and (4-21) into (4-17) we get 

.. «, ... -■<.,   V ♦ J; J^ « ♦ J; f, ^^^ (Mrt 

What we have assumed here has nothing to do with the surface of 

integration. We have merely assumed that the equipotentials of U are sufficiently 

near spherical that equations (4-20) and (4-2l) have sufficient accuracy for 

practical purposes. 

Equation (1+-22) is a linear integral equation in 9. The method of 

obtaining a solution to the problem is as follows. 

1.) Solve (4-22) for ep. 

2.) Use 9 to obtain T from (4-l8) 

3.) Use T to obtain height differences (N) from (4-12) 

4.) To obtain deflections of the vertical we would need the formula 

Si " h J ! ds - u* cos (B,n) 
where m is a direction perpendicular to the radius vector of a point. 

As we have made the spherical assumption for the reference potential, let 

us denote the spherical reference surface as having a radius R then we have 

PQ - R + hq P - R + h e>-23) 

with an error of the order of the flattening of the earth. 

Then with only an error of the order £ which is permissible since we 

are retaining only accuracies of the order of the flattening we have 

p2 . p2Q - 2hR - 2hQR + h
2 - h2 

(4-24) 
p2 . p2  « 2R (h - h ) 

or Q Q 

and PQ * R C*-2^ 
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This gives 
2**Q cos , - (8p . Y ) +  3. Js i ds + j9  h^hfl ,d8 

Q r Q (U-26) 

From this point one could proceed directly to the iterative solution of 

Molodenski, but it is perhaps instructive to see how the first approximation 

which is the one most often used arises. The following development is modoled 

after Arnold (i960). 

If we examine the method of solution of the differential equation (4-J 5) 

to arrive at Stokes' equation,we see that what is assumed is that the integra- 

tion is carried out over a sphere and that both the computation point and the 

variable points lie on this sphere ( h = hg = 0).  Thus the Stokes equation 

approximation amounts to solving (4-26) in the simplified form 

Q ™ x rQ (k-21) 

where X denotes integration over the spherical surface and 

dX - R2 sin tdfdA . 

We have already shown that starting with the differential equation form 

of (4-27) we arrive at the solution 

k  Jv <8D - Y0> S (cos t) dX **R Jx V8p " yQ 

Thus we get from (4-14) 

(4-28) 

r -i ds - *  r d SIFR JX (8p - YQ) S (cos t) dX 

where     S (cos f) is the Stokes function. 

Then from (4-27) we have as a first approximation to <p 

»1 - -  Zn  S + ~7;7 JX <«p " V S (C°8 *> dX 

(4-29) 

(4-30) 
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Nov to arrive at a secondary approximation we go back to equation (4-26). 

The spherical assumption is retained for integration of the first integral on 

the r.h.s. of (4-26). In the second integral, the approximation h = hg ■ 0 is not 

made but it is assumed to be accurate enough to replace (p in the integral by 9« 

from (4-30). This gives the equation 

2«<p - <gp - Y ) + ?-  4 -A-   »1 dX + TR L   r" dX 
r
0 (4-31a) 

,Ji-hQ 
If we assume that within the integral I  g3 9i dXit is accurate enough r QJ     l 

to replace 9-by ( prr ^)  rather than the more accurate expression from (4-30), 

we get 

2«* - S - V + A /, ;:3-Q <*P - V dx + n L fdx 
r
Q (U-31b) 

By analogy with the solution of (4-27) we see that if we consider our 

"anomaly"  to be <Sp  "   YQ)   + 3-  J^ %   (gp  -   YQ)dX ln (4.-31) 

as compared to simply (g-y) in (4-27) ve should arrive at the same type of 

solution as (4-28) i.e., 

~S  L   [<g„   -   Yn)   + ^8*]S    (cos   ♦)   dX SIR Jx   lvsp   "    V 

(t-32) 

where . h-h 
A8*  - ^ lx --T8   % -   V  dx 

'Q C*-33) 

Equation (4-32) is the equation for T from the new theory most commonly 

used in arriving at corrected formulae for deflections of the vertical. The 

method of arriving at equation (4-32) as a second approximation may not seem as 

rigorous as desirable. However, one can arrive at this same result in a more 

rigorous manner by proceeding as Molodenski et al (i960) have done. The para- 

graphs below outline their procedure. 
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We shall start from equation (U-22) which we repeat here as 

P2-P 2 

2*«p co. or - (g - YQ> + ,f- !9  f dS + jL-  J j2- ,dS 

where we have removed the bars to denote another surface. Therefore, we must 

remember that in what follows the surface S in (^-3*0 is the first approximation 

to the actual earth's surface which is obtained by adding the normal height to 

the international ellipsoid. 

Let S of equation (^-3*0 be the first approximation to the physical surface 

of the earth. Suppose we have another surface S which is related to S by the 

following transformation. The angular coordinates of the corresponding point on 

S are the same as the angular coordinates of a point on S. The radius vectors 

of corresponding points are connected by the equation 

p . R + k (p - R) - R + kH 
(U-35) 

where:  P ■ radius vector to transformed surface S 
k = some constant coefficient 
p = radius vector to surface S 
R ■ radius of mean sphere of earth 
H = normal height 

If we let k ■ 1 this would correspond to transforming S into itself. If 

k = 0 the surface S is a spherical surface of radius R. 

Now let us go back to equation (U-3M which gives us an equation at the 

earth's surface 
«2 « 2 

P -P. 
2*f0 co. or - (g - YQ> + yf- I,  | dS' ♦ ,}- J, -^ » «' 

° or    (kmj6) 

Let us define a new surface density function by the relation 

2 t2 
X . L f sic 9 or f ■ X -j coi B (j^37) 

R P 
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2 2 

Substituting into (4-34) we get  2« — 7  X  cos       tf -   (g -   Y)  + 7*-  J8 -7   , 
p o    p 
o 

2   2    9 
P -P. 

cos cr dS + 2«- /g  T"~~ X ~7 coso/dS 
o  '   r       p 

If we now revert to the incremental solid angle by the relation 

dw = COBpg  assuming S is near enough a sphere to eliminate integration with 

2 
respect to p and divide both sides by R we get 

2        2 

2* JE,  cos2  or -       *       (g .   v)  + ^- / I  dw  + ^- J Ll^-  Xdw 
p R o ro r 

o 2 
If we now multiply both Rides by pQ     we get 

2 P? 3p«    P   Y P       .   ?2-P    2 

2«  X  cos'  or - --J- (g -   v)  + -7° I f dw  +    • j    °     xdw 
R 2 ^ r3 (4-38) 

In this expression remember that dw is the element of solid angle subtended at 

the origin by a surface element dS. 

Now let us consider a surface S related to the surface S by equation 

(4-35) with l^k^O. If the anomalies (g -y) had been observed on this surface 

we could write an equation analogous to (4-38) in terms of "barred" quantities 

related to this surface. Thus we would have 

2 _ p2 p 2 

2*X cos2 « " ^ (8 - Y) + 7 Pi - dw + 4 pf —^£- Xdw 
R r      2  o     -3      (u_39) 

Equation (4-38) will have a solution provided (g - y) satisfies the 

condition J (g-Y)Yidw=0. When going from S to S the element dw does not 

change and the anomalies (g - Y) are the same. So if (4-38) has a solution so 

does (4-39)» The perturbing potential at the surface S for the situation 

given by (4-39) becomes        f - R2 f - dw 
J - (4-4o) 

To recapitulate what we have shown is that if the gravity anomalies (g - y) 

belonged to the surface S related to S^'by (4-35) rather than to S, the external 
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perturbing potential would be given by (4-40) where X was a solution of (4-39) 

We can show by geometric reasoning that 

r
2   -   rQ

2   (1  + k  ™°   + k2  HH£)   + ,2 I 

R (4-4l) 

where r, is the distance between the point under consideration on S and the 

moving point on S, and 

r0 ■ 2R sin ^ (t = angle between p and p ) 

We note that by geometric reasoning it can also be shown that 

tan2 ^ .   (|£)2   +   (g^   .  ,2   tan2  tf 

(4-42) 

Now if we expand X in powers of k i.e.,  replace X by a series,  then 

* -  1 xk0 

(W3) 

where the functions X are independent of k. 

Since the dependence on k of the functions p,  r, cos a are given by (4-35) 

and (4-42), we may now substitute into (4-39) and expand both sides of the 

resultant equation in powers of k. The resulting series appearing on the two sides 

of the equation must then be identical regardless of the value of k (l>te>0)j thus 

the coefficients of each k term in the left and right hand sides of the equation 

must be equal. We thus obtain an infinite system of integral equations for which 

one obtains the functions XQ, X-^, X^, etc. successively for as many terms as are 

desired. The results then hold for any surface S where l>kX) . In particular 

the results will hold for bvl, i.e., for the first approximation to the physical 

surface of the earth. 

Now we will solve (4-39) after making the expansions. First note that 

(4-39) has a relative error of the order of the flattening of the earth since we 

have taken the reference figure to be a sphere rather than an ellipse of revolution 



in developing the formula. Thus we will simplify the calculations by allowing 

errors of equal magnitude, i.e., errors of the order ^ .  This will allow us to make 

H 
the approximations PQ  * R -g w 0 

Then we get 

-2 2 2 •) 
r     -   r     +  k      (H-Hor (k-kk) 

2 _ 
cog     5  ■   fi   x L^   .       2        , 1 

and 

co.     5  -   (g  .   Y)   + |   R JJL  dw  +  RZJMH^)  ldw _4 
r T3 

Now expanding in series we get 

2«   (Xo   +  kX,   +  k2X2   + )(1   -   k2   tan2   Of   +  k4   tan4   a )   -   (g  -   y) 

3        r*    1 122344 9 
+ |   t J ±   (1   -   \  kV   +  8   k   h     — -><X*   +  k*l   +  k2X2   +....)dv 

+   R2   J  -i3    (H-H0)(l   .   \   k2h2   +Jj5   kV   +  ---)(X0   +  kX;   +  k2X2   +  ----)dw 

where h = (H-Ho)/r0 

Equating the coefficients of each power of k we get 

1*XX   - |   R J |i   dw   +   R2  j" &iH-Hoi   dw 
r T 

; . r Sa'd» (W8) 2nXo - (g - Y) + ^ R J" i£ dw 
o 

etc. with similar equations for higher order terms. We note that all of these 

equations have a solution exactly analogous to the solution of (4-27) with the 

"anomaly" having different forms. Thus in an analogous manner we are lead to 

solutions l¥0   
dW * «SI !<•-*> •<•" ♦> d* 

Civ) 3      r (M9) 
x
     - ^T2   + — ~7   J    <«  -   Y)[S(cos   t)ldw 

(U-49) 
TOen U8lng tMS We ■"     J f*  --   - & I   [R2   J  S^   x0   dwHS(co.   »»dw 

[R2 J ^ *0  dwl 
x   - k Is -i + —---j J U2 J ^ x dw]  [s(co. t)]dw 

(U-50) 
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Molodenski et al (i960) write the general equation as 

«*■ - I* J ? dw * * 
r  X n 1      p 

whose solution is J   r " 5*R J   °n   S(cos   f)   dw 

«t 
xn        *   + „I-     J   G„   S(co8   ♦) 

7"       (4*)Z 

dw 

with 

«.-(•-   Y) Gl  '  R2  J T^  Xod" 

Then to get values of T we return to 

T   =   R2   J  I      «• 
and carry out the series expansions we arrive at 

m »2      T !      /I l     I2*2 3    l4     *4 X 

where again remember that h = sLZ-SQ 
r0 

(*-5l) 

(fc-52) 

(M3) 

(xo + kXj + k
2x2 + )dw (k-5h) 

On collecting powers of k 

T   -   R2   J" I«   dw   +  kR2   Jjid«,  kV   [J  *&   -   \  t   <SZ**12   Xo   dw] 
00 or 

+ S knT (1"55) 
o n 

where 
T     . £  ;   Go   S(cos   ♦)   dw Go   "   <«  "   Y> 

*!-£/•[■<...»«. °i-«2/a^sv 
etc. ° 

To get the value on the first approximation surface we would of course 

set kwl.    If we set k = 0 we have the result which would have been obtained by 

letting all the anomalies be referenced to a sphere. 

We have in the development assumed that UQ = WQ and thus do not have the 

constant term l/2 in the integrals as Molodenski et al (i960) do. 
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Molodenski et al (1962) point out that the equations for the potential 

give only the potential at the earth's surface. Thus we know only the quantity 

Ts = potential at the earth's surface. In determining the deflections we wish to 

compute the rate of change of T in a circular direction 1. The deflection in this 

direction can be expressed as 

ö  -1 ÖT   -1  ÖT 

where dl = Rd«p 

rVT 
To get srr at a point in terms of Ts we note that 

dTo        dT    .   dT  dH 
09 X*      3! *9 

ThUS oT        dT^       dT  ÖH 

To evaluate TT we use equation (U-13) which we approximate by 
an 

u   . V ) .  lip  ai 

dT  dT 
Using the further approximation CJJT nr rg" this gives 

-   1^   -   (8     -   V   )   +   2TP oü      <8P      V + -IT 

Substituting into (4-5Ö) this gives 

ÖT   _ dT, .- .        2Tp,   dR 
oV + ((8p - V +nrJ 5* 

This gives 

9,v;W + t(8p- V +-^r1 5»i 
'Q< 

(4-56) 

(u-57) 

(u-58) 

(H-59) 

(U-60) 

(4-61) 

(W8) 
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Or substituting for T3 from (1+-32) 

9   " 'fQ |iUx   l<S  -   V   + Ag*,   || |i  dX   ♦   [(gp  .   YQ)   + »t,   t |Hj 
(4-63) 

This is the basic deflection formula as developed in the new theory. It 

consists of the Vening Meinesz formula plus two correction terms. The first cor- 

rection consists of the Ag* term,which is a correction for the fact that during 

integration a sphere is used instead of the correct surface of the earth in 

dH 
determining T.  The gj term takes into account the fact that in deflection compu- 

tation we need to get derivatives in directions other than along the earth's 

surface. 
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SECTION 3 

Theoretical Aspects of Anomaly Selection 

In this section we shall examine the theoretical aspects of anomaly 

selection. That is, we shall determine which types of gravity anomalies may 

theoretically be used in making geoidal height or deflection computations both 

in the classical and in the new geodetic theory. We shall not go into great 

detail on the mechanics of computation of anomalies since this has been covered 

in many places but shall be primarily concerned with the logic related in the use 

of the different types of anomalies. 

CLASSICAL THEORY 

From the classical geodetic viewpoint the problem is to use gravity 

observed on the physical surface of the earth which is not an equipotential sur- 

face in conjunction with a theory which relates gravity on a bounding equipoten- 

tial surface with its shape and the direction of the force of gravity on it. In 

this case, the four distinct steps mentioned at the beginning of Section k  are 

necessary. We shall first consider the types of anomalies which result from 

carrying out the first two steps. 

The most common types of gravity reduction methods are: 

1. Simple free-air 

2. Free-air anomaly with condensation 

3. Rudzki inversion 

k.    Isostatic based on hypothesis of 

a. Pratt-Hayford 

b. Airy-Heiskanen 

c. Vening Meinesz 
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We shall begin with the Isostatlc reduction method since it has been 

so often used and is a clear example of what is done. Physically any type of 

isostatlc anomaly envisions a number of processes. 

From the value of gravity measured at P on the earth's surface, pro- 

ceed as follows: 

1. Compute the effect, on gravity at P, of removing all mass above the 

geoid. This is the complete correction for topography around the world extending 

above sea level. 

2. Compute the effect, at P, of placing this mass below the geoid at 

some point say between 30 and 50 km. below sea level. The  above corresponds to 

the reduction for topography and compensation in isostatlc theory. However, in 

the isostatlc reduction procedure, mass is also moved from below the ocean so 

as to fill the ocean with matter having the density of rock. Note that this mass 

transfer is not required in order to use the theory of Section 3 since the oceans 

are already bounded by the desired equipotential surface. As long as the proper 

computations are made as to the effect of such an internal mass transfer, it is 

of course permissible. The  same may be said for geologic corrections below sea 

level. 

If a normal isostatlc correction is used, the effect of the mass transfer 

on gravity at the earth's surface is given by 

-B.C. + L.I.C, + D.T.A.C. 

where: 

B.C. is the complete Bouguer correction as modified by Bullard to 

extend only through zone 0 and is considered a positive number. 

L.I.C. is the local isostatic reduction out through zone 0. 

D.T.A.C. is the combined topographic-isostatic correction for material 



beyond zone 0 as this zone is defined by the U.S. Coast and Geodetic Survey 

and may be either positive or negative. 

Then for a land station if g is the observed gravity at a point P 

on the earth's surface and g is the modified value of gravity at P, we have 

for an inland station 

g = g - B.C. - L.I.C. + D.T.A.C. 

where for the station the effect of taking away the above sea level near mass 

is negative, the effect of putting in a "compensating" mass below sea level is 

positive and the effect of r,he distant changes may be either positive or negative 

depending upon the location of the station with respect to the totality of the 

changes. 

3.  Compute the value of gravity at the point Pf on the surface of the 

dg 
geoid.  This means starting with g at the point P and ufing TT along the normal 

between P and P' to compute the value of gravity at P'.  The actual gradient is 

not known so the average ellipsoidal gradient is normally used, i.e., we apply 

the "free-air" correction to yield 

g' = g + F.A.C. 

k.     Note the effect of the mass transfer on the equipotential surface 

which, prior to the mass transfers, coincided with the geoid.  This equipoten- 

tial surface has been moved slightly and we call its present position the co-geoid. 

5. Move all matter lying between the geoid and co-geoid vertically to 

the surface of the co-geoid. We assume that the effect on gravity at P' of this 

move is negligible. 

6. Use the gravity gradient to compute the gravity at P" on the co- 

geoid which we shall call g'' from the value of gravity at P' by making the cor- 

^ ß dg 
rection h' (r0-) where h' is the distance between the geoid and co-geoid and ^h 
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is the gravity gradient. This is the so-called indirect effect so we have 

g" = g' + I.E. 

where I.E. = indirect effect - "'(^f) 

7.  We can now get the gravity anomalies needed for Stokes or 

Vening-Meinesz Theorem by computing Ag = g" - YQ where y„  is the theoretical 

gravity according to the international formula. 

One should note at this point that Vening Meinesz at step 5 rather 

than transferring the mass between the co-geoid to the co-geoid surface assumes 

that it is moved to infinity.  In this case the effect of the mass transfer on 

gravity is not negligible but must be computed.  The remainder of the steps are 

as outlined above in 6 and J. 

The details of carrying out isostatic reductions have been covered in 

a number of places (See for example Heiskanen and Vening Meinesz, 1958) and will 

not be repeated here.  Following the seven steps given above, the formula for 

any type of isostatic anomaly can be written 

Agl = (Ob - B.C. + T.C. + R.C. + L.I.C. + D.T.C. +^fh + |f" h' ) -Th 

where: 

B.C.  = simple Bouguer slab correction 

T.C.  = terrain correction through zone 0 

R.C.  = Bullard correction to remove effect of material beyond zone 0 
and curvature correction 

L.I.C. = correction for compensation of material through zone 0 

D.T.C. = correction for topography plus compensation beyond zone 0 

-£ h  = free-air correction to geoid level from surface level using 
measured heights 

2S. h'  = free-air correction from geoid level to co-geoid level 
ah 
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There are of course a number of types of isostatic anomalies. From the 

geodetic point of view these simply mean that the mass is transferred to different 

points inside the geoid in different systems. As long as the effect of these 

transfers is accurately computed it does not matter much which one is employed 

except possibly, as will be discussed later, in relation to prediction of the 

anomalies. 

Another type of mass transfer which is permissible and can be used is to 

transfer all mass above geoid level to the geoid surface itself. It can be consid- 

ered a surface density on the geoid.  This is the condensation reduction.  It 

can be shown that such a mass transfer has a negligible effect on the shape of 

the geoid.  The steps in using this method are then reduced to 

1. Calculate the effect, on gravity at P, of moving all external 
mass on to the surface of the geoid. 

2. Use £& h i.e., a free-air reduction to compute gravity on 
the geoid. 

The development of this theory can also be stated in the following 

slightly different form:  Consider a point on the earth's surface P and a cor- 

responding point on the geoid P' a distance h below P. Assume the earth's 

masses above sea level are in place. Now we wish to arrive at a formula for jj£ 

at points between P and P'. 

We begin with Poissons' equation for a rotating body of density p 

*lw + if* + if* . . 4*kp + 2«,2 

dx    *y    ds (5-1) 

If we have the z axis in the direction of the outward normal to the 

equipotential surface 

d2w m ±_  (aw) m     Sg 
dz    dz (dz)     oa 

(5-2) 
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Then equation (5-1) becomes 

ox    dy 
(5-3) 

But It  can be  shown that 

d2W   t d2W ,1 1   x   m —2  + —j  « -    (-     + -   )   8 
öx"       dy~ rx       ry (5.U) 

where rY and rv are the radii of curvature of the equipotertial surfaces in the 

xz and yz planes. 

Then equation (5-3) becomes 

Sf ■ -   8   (^    + i  )  + 4nkp  . 2J 
*     y (5-5) 

Thus,   if ff    is the value  of gravity at the point.  P on the earth's surface,  the 

value gp'  at the point P1   on the geoid with the mass above sea level still 

in place is 

V   =   gp  -   I?1   t-   8   <-J     + ^   )   +  Ankp  -   2u,2]dz 
P        X   y (5-6) 

where the minus in front of the integral comes from fact we are integrating 

in negative z direction. Thus 

gp,   -   8p-   4„kM+ JP1   (g   (i     +   1   ,.   2w2j   dz 
p x     y (5-7) 

The integral on the R.H.S,  of equation (5-7) is a free-air correction 

in the strict sense.     It is usual to assume that the simple free-air correction is 

sufficiently accurate and write    g   ,   -   g     -   4«kM   +   .09406h 

or, if we write g     .   g     +   #09406h 
o   °p 

V " 8o - 4*kM 
Thus according to Green's equivalent layer theorem the gravity field 

outside the geoid can be taken as equal to the attraction of a layer of density 

gfe - M on the geoid plus the attraction of material outside the geoid. We 
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will now remove the material outside the geoid and the surface density of -M 

and compute their effects on g^,.  The effects on the shape of the equipotential 

surface passing through P' will be negligible. We now have a gravity value, 

g. that can be used to obtain an anomaly Ag = g. - yQ which may be substituted 

into Stokes' or Vening Meinesz' formulae.  If the effect of removing the M layer 

on the geoid and the material above the geoid is the same and each equal to +2nkM 

then gi = g = g. + ,09^06h and the simple free-air anomaly could be used.  The 

assumption that the removal of the -M layer and the material above sea level is 

equal to UrrkM is fairly accurate in level areas since it simply amounts to the 

assumption that both can be treated as infinite horizontal sheets. 

It is not very accurate in areas of considerable relief since the 

effect, at F', of condensing the actual topography onto the geoid is considerably 

different from i+TTkM and a condensation reduction must be applied. We can return 

to this point later in connection with use of the free air anomaly in the modern 

theory and the reduction of deflections of the vertical to sea level or the sea 

level deflections to surface level. 

From the point of view of this section the Model Earth anomaly is an 

offshoot of the condensation reduction.  One first carries out a lateral transfer 

of material at the earth's surface so as to smooth out the earth's topography. 

The assumption that the M layer on the geoid and the material above the geoid 

have an effect UnkM when carrying out a condensation for the smoothed earth can 

then be made everywhere with sufficient accuracy.  Since the primary purpose of 

the Model Earth method is to produce an anomaly which is slowly varying for 

interpolation and extrapolation purposes we shall defer additional discussion 

of it until Section 6.  For present purposes it simply amounts to another way of 

transferring material from above to below the geoid. 
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The other type of gravity anomalies sometimes used are the inversion 

anomalies commonly known as the Rudzki anomalies after the Polish scientist who 

proposed the method. The reason for this reduction was the desire to avoid any 

deformation whatsoever of the sea level equipotential (geoid) while carrying out 

the mass transfers. The Rudzki method has been little used. The equations for 

its computation can be found in Tengstrom (1962). Strictly from the point of 

view of the classical theory, the Rudzki reduction leaves something to be desired 

as it does not actually produce a model where all matter is within the bounding 

equipotential but leaves a small amount of matter outside this surface. 

There are other types of anomalies which could be used in the classi- 

cal theory relating to different kinds of mass transfer but in fact none have been 

used and would in any case differ only in computational detail. 

The choice of the anomaly which is best to use in the classical 

theory is beset by many difficulties. Primarily this results from the fact that 

knowledge of density distributions above sea level, vertical gradients above sea 

level, and the geometric relation between points on the earth's surface and on 

the geoid are assumed known.  In fact, they are not exactly known and consider- 

ations of minimizing errors due to lack of knowledge must be taken into account. 

The important points to be remembered from the above discussion are 

that the necessary requisites for an anomaly for use in the classical theory 

(considering only the point that they must be theoretically capable of being in- 

serted in the classical equations) is that they envision transfer of all mass so 

that it lies inside a bounding equipotential surface and then computation of the 

force of gravity on this surface, using observed gravity on the earth's surface. 

To do this requires knowledge of densities above sea level to insure 

proper mass transfer and of densities below sea level to obtain the proper gravity 

gradient. Strictly from this viewpoint one needs to have a "geologic correction" 

above sea level but not below sea level. Again from the viewpoint of satisfying 



-55- 

the conditions for using the equations of Section 3 it should be pointed out that 

the fact that isostatic equilibrium does not or does exist is entirely irrelevent. 

It is important only from the point of view of interpolation and extrapolation 

of anomalies. 

THE NEW THEORY 

Whereas the theoretical development of the Classical Geodetic Theory 

does not imply the use of any particular type of anomaly, the New Theory (see 

Section h)  naturally leads to the free-air anomaly. The question arises as to 

whether or not some other type of anomaly might be used.  The following develop- 

ment, based on the works of Arnold (1961), shows that all of the types of 

anomalies used in the classical theory can be used in the new theory.  It also 

shows that, considered from the point of view of the new theory, one kind of 

anomaly gives as accurate a result as another regardless of the extent of know- 

ledge of internal density distributions.  This leads to the result that the choice 

of anomaly is dependent on ease of practical computation and utility in extrapol- 

ation and interpolation from known values. 

Perhaps one should point out that in the new theory the equality of all 

types of anomalies should be expected.  The development after all is based on 

small deviations from a known model. The exact form of the model could not be 

expected to control the accuracy of the method. 

Consider a model of the earth consisting of the international ellipsoid 

model plus some other assumed mass distribution, the only limitation being placed 

on this mass distribution being that it must lie completely within the physical 

surface of the earth. Let the potential due to this mass distribution be desig- 

nated by A. 

Then 

W = potential due to actual earth 
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U = potential due to international ellipsoid model 

A = potential due to assumed densities in theoretical model other 
than those of international ellipsoid model. 

T'=W - (U +A) = difference between earth's potential and model 
potential 

N = distance from P to Q 

Now we will proceed in an exactly analogous way to the procedure in 

Section k.    Let P be a point on the earth's surface and Q the corresponding 

point on the equipotential of U such that UQ - VL. 

Now by definition 

Wp = "P + *V  f T'p (5-8) 

Again using a Taylor expansion of U about Q and assuming N is small 

enough to use only the first term we get 

UP ■ UQ + 4% N ■ UQ " V 
(5-9) 

Or substituting into (5-8) we get 

W
P 

=  UQ •   YQ N + AP + T'P 

but by definition U„ - W    so we get from (5-10) 

(5-10) 

H - I '-£-  + *£_ (5-11) 

This equation is analogous to equation if-12 of Section k.    The term 

-*■ was, in the older theory where P was on the geoid rather than the earth's 
YQ 
surface, the separation between the geoid and the co-geoid. In equation (5-ll), 

since we supposedly know the density distribution used in our model, we can com- 

pute Ap and thus in (5-H) "the only term remaining continues to be the potential 
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Now let us get the relation between gravity anomalies and the potential 

T'.  From the definition of W, 1.e., W = U + A + T we have 

(Sn}p   %i>p + <^>p + <51>p (5i2) 

where the derivative is in the direction of the normal to W and the subscript P 

indicates that the derivatives are to be evaluated at thi point P .  Now 

p    P (5-13) 
du du 

the negative of the observed gravity.  Also ^  differs from   , the derivative 
dn ^v 

in the direction of the normal to equal U surfaces, only by a quantity which is 

proportional to the deflection of the vertical 30 we shall assume that it is 

accurate enough to write 

(^}p = (
FN5>P - " Yp • 

(5-U) 

Then again assuming that we can expand y around the point Q and that N is small 

enough to keep only the first term we get 

Taking note of (5-13), (5-1*0 and (5-15) we get for (5-12) 

Or rearranging terms        öp     TQ   v3v Q   T vdn p    cTn^o 

(8P - V ■ «*>, ■ - <!£>„ - «>, 

Substituting (5-ll) into (5-l6) gives 

(5-15) 

(5-16) 

(g   - V ) - (ll)    (111 + *P)      /9*N        ,ar'x %     V      «»»'q SQ 
+ YJ» "  WP "   W, (51?) 

or rearranging terms 
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The expression on the left hand side of equation (5-l8) represents Borne 

type of anomaly such as an isostatic anomaly. The quantity (~)T> would in the 
on y 

case of the isostatic anomaly be the attraction at the earth'B surface of topo- 

graphy plus compensation.  The quantity (^)Q r£j is analogous to the indirect 

effect in classical theory.  However, the term (^■)r~ must "be evaluated at the 

earth's surface rather than at geoid level. The difference is probably not very 

great.  The above considerations show that if proper computations are carried out 

all types of anomalies will yield the same result. 

One should note the difference in the viewpoint adopted in arriving 

at equation (5-l8) which holds at the earth's surface and that adopted in arriv- 

ing a+. an analogous equation in classical theory which holds at co-geoid level. 

In the cabe of the classical theory we have thought in terms of transfer of 

actual masseB of the earth from one point to another, whi ch implied knowledge of 

these masses, and use of gravity observed at one level to compute gravity on 

another level which implied knowledge of actual vertical gradients.  In the 

viewpoint used in arriving at (5-l8) we think in terms of the density distribu- 

tion of a model which we may hope approximates the actual density distribution 

of the earth from the viewpoint of ease of interpolation. However, any density 

deviations between the actual earth and the model do not introduce errors into 

the result. Also, in arriving at (5-I8) we need only vertical gradients of the 

gravity field of the models which can be computed to any desired degree of 

accuracy rather than the unknown vertical gradients of the actual earth. Thus 

even if we are using, for example, an isostatic anomaly, the new theory pro- 

vides a much sounder basis for assessing the accuracy to be expected and for 

determining the direction to be taken to improve accuracy. 

In the next section we will consider the questions which arise when 

interpolation and extrapolation of anomalies become important. 
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It is in connection with this problem of anomaly interpolation that 

the application of geology and geophysics becomes important. 
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3ECTIQN 6 

Problems of Interpolation of Anomalies 

In Sections 2 through 5 we examined the mathematical derivation of 

the formulae relating gravity and deflections of the vertical. Through the 

developments given in Section 5 we see that in the "New Geodetic Theory" the 

accuracy with which one may obtain deflections is entirely independent of any 

knowledge of the internal density distributions of the earth provided there is 

a complete knowledge of the gravity field. Thus one can never hope to improve 

the accuracy of the theory by shifting from one type of anomaly to another or 

by using any increased knowledge of internal density distributions. 

The choice of an anomaly to use in deflection computations will there- 

fore be controlled by two considerations which arise in applying the theory to 

actual deflection computations. The first consideration is ease of computation. 

If it is possible to decrease the computational labor by choosing one type of 

anomaly over another, the anomaly requiring the least labor should, of course, 

be chosen provided both yield answers of sufficient accuracy. The second con- 

sideration is accuracy of gravity interpolation.  In practice, gravity is not 

known everywhere on the earth's surface but at a finite number of points. At 

intermediate points gravity must be determined by some form of interpolation. 

If one type of gravity anomaly can be more accurately interpolated than others 

it should improve the computed deflections by providing a more accurate esti- 

mate of gravity between observation points. 

In arriving at a final choice of anomaly an attempt must be made to 

reconcile the two considerations so that the anomaly chosen for substitution in 

the deflection formulae yields acceptable accuracy with a minimum of labor. 

This means that one must determine at what point an increase in accuracy no 
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longer justifies the increase in labor. Another point to be kept in mind in 

investigating the practical utility of various types of gravity anomalies is 

the fact that one type of anomaly can be converted to another. Thus it might 

be possible to use one type of anomaly for interpolation and convert to another 

type of anomaly for substitution into the deflection formulae. We shall first 

investigate the relative accuracy with which the various types of gravity anom- 

alies can be interpolated. 

Before discussing the individual types of anomalies it will be best 

to examine some general considerations connected with interpolation of gravity 

anomalies. The ultimate aim in-so-far as interpolation is concerned is to ob- 

tain a type of gravity anomaly which varies as nearly as possible linearly be- 

tween points of observation. Using this type of anomaly a contour map prepared 

in the usual way would have maximum accuracy. An alternative would be to use 

an anomaly which might deviate from linear variation between observation points 

but in such a way that the deviations could be predicted. Such a procedure might 

be possible for example by use of geologic and geophysical knowledge to predict 

non-linear variations. 

In order for a gravity anomaly field to vary nearly linearly between 

observation points it must contain only components whose wavelengths are much 

greater than the distances between observation points. Any gravity anomaly is 

difference between observed gravity and the gravity field of a density model. 

Thus to produce an anomaly field which contains only long wavelength components, 

the density model used in anomaly computation must correspond as nearly as possi- 

ble to the actual earth with respect to those density distributions which produce 

short wavelength gravity components. Long-wavelength and short-wavelength are 

of course only relative as used here. A particular wavelength might be con- 

sidered "long" or "short" depending upon the distance between observation points. 
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It is clear that two factors control the width of the gravity effect of an 

anomalous density distribution. These are the horizontal dimensions of the 

anomalous density distribution and its proximity to the surface. ThMB  the * 

density model used in computing a gravity anomaly for interpolation must corres- 

pond to the density of the actual earth in so far as density variations of less 

than a given horizontal dimension and given depth are concerned. The magnitudes 

of the limiting values depend upon the distance between observational points. 

The remarks of the last few paragraphs may seem to be simply a statement of the 

obvious but overlooking this obvious can lead to considerable extraneous dis- 

cussion. 

Let us now turn to the problem at hand—the use of gravity in inter- 

polation of deflections of the vertical. The accuracy of the computed deflec- 

tions is critically dependent upon accurate knowledge of the gravity field in 

the near vicinity of the deflection station, i.e. within 100 kms. Therefore, 

one would hardly attempt deflection interpolation without a fairly dense set of 

observations. As a maximum for the distance between stations 30 km is a reason- 

able value.  Thus the problem to be investigated is:  What density distributions 

of the actual earth must be incorporated into a density model in order to pro- 

duce an anomaly which varies smoothly over distances of 30 km or less? 

By far the most important near surface horizontal density variation 

producing short wavelength gravity effects is topography. One of the basic re- 

quirements for any smoothly varying gravity anomaly field is that the density 

model used in its computation accurately take into account those topographic 

masses of the actual earth which are near the computation stations. 

The common types of gravity anomalies which result in a smoothly varying 

gravity field are: 

1.) Bouguer anomalies 
2.) Isostatic anomalies 
3.) Model earth anomaly 
U.) Rudzki inversion anomalies 
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In all of these types of anomalies an attempt is made to account for the actual 

topography of the earth near the computation point in the density model used. 

In the following discussion we shall examine the ways in which geologic and 

geophysical information might be used to alter the density models so as to pro- 

duce an even more smoothly varying gravity anomaly field. 

The Eouguer Anomaly 

If the Bouguer Anomaly is to be used for interpolation a clear under- 

standing of what the Bouguer anomaly implies must exist. 

The normal manner of writing the theoretical model attraction for the 

complete Bouguer anomaly model is: 

Theoretical Gravity of Complete Bouguer Model = International 
Gravity Formula + Attraction of Infinite Slab of thickness 
equal to Height of station - Terrain correction. 

In abbreviated form this becomes 

TÜQm  = I.F. + 2rkph - T.C. 

where 2*kph is the well known infinite slab attratction. 

The theoretical model attraction for the normal Bouguer anomaly models seem 

irrational in terms of the actual earth. A closer examination shows that they 

are not quite so irrational as they first appear. 

First, although the term 2xkph theoretically applies to an infinite 

slab, more than 99$ of this attraction results from the part of the slab material 

lying within 100 miles (l66 km) of the station.  Thus to a close approximation 

the Complete Bouguer anomaly represents a model in which the actual earth's 

topography out to 166 km has been superimposed on the International Ellipsoid 

model. Bullard has suggested a slightly modified complete Bouguer model to 

correct for the minor differences. It is given by 

ThCMB " I.F.+2irkph - T.C. + b 
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where the email term b (only 3 to k  mgls at most) takes care of the difference 

between the inflate slab and a cylinder of radius l66 km and also corrects for 

curvature effects.  This model then represents exactly the International ellip- 

soid with the earth's topography from the station to 166 km superimposed. 

When stated as above it becomes apparent that the density model used 

in computing a Bouguer anomaly at one point is not the .^ame as the model used 

at another point.  Perhaps the best way to visualize what is actually indicated 

by the normal Complete Bouguer Anomaly is as follows.  Consider a density model, 

M, which takes into account the actual topography above sea level around the 

world and the mass deficiencies of ocean water. We might write the attraction, 

er , for such a model as: 

where 

gM = IF + N.C. + D.C. 

IF = attraction of International ellipsoid model 
NC = gravitational effect of topography within 166 km 

of a point 
DC = gravitational effect of topography beyond 166 km 

of a point 

Both of the functions NC and DC are functions of position on the 

earth, i.e. of the coordinates 0,A .  Thus we can think of the complete Bouguer 

anomaly ns being written 

C.B.A. « gjj - D.C.   ( $ , X). 

The I'unction D.C. ( B }  X) can be thought of here as simply a slowly 

varying function of position on the earth's surface.  The Complete Bouguer 

Anomaly can then be considered as simply an anomaly computed using the density 

model M plus a slowly varying function of position. For the purposes of inter- 

polation over  distances of 30 km or less the function D.C. ( 9 , X ) will be 

smoothly varying enough to cause little error in interpolation.  Of much greater 

importance are the differences between the model density and the actual density 
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of the earth within l66 km of a computation point. The more accurately the 

model densities approach the actual densities of the earth within l66 km of a 

point the more smoothly varying will be the resultant anomaly. The alteration 

of the model to more nearly fit the actual density distribution of the earth as 

indicated by geologic and geophysical information will be termed a geologic 

correction. 

The question of the correct density assumption often arises in using 

the Bouguer anomaly. The answer depends upon the reason for computing the 

Bouguer anomaly. 

The question to be answered in the present investigation is: What 

density should be used for the Bouguer correction down to sea level and for the 

geologic correction below sea level to produce the most easily interpolated 

anomaly when observation points are 30 km or less apart? 

Consider first the suposition that one computes a "geologically cor- 

rected" complete Bouguer anomaly using the exact densities of all material 

above the depth of the deepest sedimentary basin. The horizontal changes in 

this anomaly will reflect density changes at depths greater than the depth used 

in computation of the anomaly plus the changes in the effects of density distri- 

butions at horizontal distances greater than l66 km. Now, if the surface eleva- 

tion is 5,000 ft. and the bottom of the deepest basin is at -25,000 ft., one 

will be at least 30,000 ft. above any remaining density variations. This dis- 

tance factor in addition to the fact that any density differences at this depth 

will normally be small and features broad would be expected to result in a gravity 

effect that is slowly varying in a horizontal direction. From this reasoning 

one would expect this type of anomaly to be easily interpolated. 

Now consider an anomaly computed using a density of 2.88gm/cc above 

sea level and contrasting density below sea level with a density of 2.88gm/cc. 
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First we note that the density 2.88gm/cc arose because it is an average value 

for the mean density of a crustal column. In the first part of section IV of 

the final report of contract AF 23(601)-3*4-55 it was shown that, regardless of 

the density of the part of the crustal column above sea level, if one assumes 

the mean crustal density remains 2.88gm/cc and mantle density remains constant, 

one would get the correct crustal thickness only by using a density of 2.88gm/cc 

in the Bouguer correction. In later parts of section IV the problem of changes 

in mean crustal density and in mantle density were considered. Let us tempo- 

rarily assume that we have a region where the mean crustal density remains 

2.88gm/cc and the mantle density remains constant. The question is: How could 

the reduction of the observed stations in this area using a density of 2.88gm/cc 

in the Bouguer anomaly help in the prediction of gravity at other points. 

Let us consider the two ways in which the 2.88gm/cc Bouguer anomaly 

can claim to be better than the Bouguer anomaly using correct densities for 

interpolation purposes. These ways are 

1.) The 2.88gm/cc Bouguer anomalies themselves could be more 
easily interpolated, 

2.) Seismic information could be used to predict Bouguer 
anomalies ( P= 2.88gm/cc) more accurately than other 
types of Bouguer anomalies. 

To explore the first contention we note that since almost all topo- 

graphic features are lower in density than 2.88gm/cc the Bouguer anomalies 

using 2.88gm/cc will retain a correlation with local elevation changes. If we 

rigorously take into account the difference in density between material present 

and 2.88gm/cc either above or below sea level we have simply added a constant 

to the result we would have gotten using any other density. This can be seen 

from the following consideration. 

Let V be the volume from sea level to a depth h and out to some dis- 

tance d from the point. Then using the exact densities present we get for the 
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attraction 

A = k / ^2 cos * dV 

When using the density difference  <r- 2.88 = Aer we get for the attraction 

difference 

A' = kl A* cos* dV = k / -2L cosv» dV - k 2.88 fcaa*     dV 

Thus if we retain the same area of integration the second integral is a constant 

at all points.  If we use a ACT computation only for sediments and not for the 

basement we will introduce spurious effects correlated with the sediments.  It 

is difficult to visualize what these would be expected to represent. 

From the above considerations it is difficult to see how Bouguer 

anomalies ( P = 2.88) would be more easily interpolated than those using the 

correct density for the material present. Point anomaly values computed using 

P = 2.88 would include, in addition to the effect of deep seated features, 

correlations with local topography and near surface mass distributions. Examin- 

ation of the two types of Bouguer anomalies on an empirical basis also failed to 

show any interpolation advantage to using a density of 2.88gm/cc. Figure 6-1 

shows a typical profile along which the two have been compared. Additional large 

scale profiles not included in this report but provided to ACIC as large scale 

blackline prints show similar results. 

The next question is: Will Bouguer anomalies P = 2.88 averaged over 

o    o 
lxl square areas by more closely correlated with crustal thickness? If this 

were the case we could more easily estimate these anomalies than others where 

there were seismic measurements of the earth's crust. However, this is not a 

particular reason to compute Bouguer anomalies using 2.88gm/cc in an area where 

deflection computations are to be undertaken even if it proves to be true. For 

deflection interpolation purposes the detail needed for the gravity field can 
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0      0 
hardly be expected to be provided by correlations of 1 x 1 average anomalies 

with crustal thickness. 

Perhaps it is well to pause here and again emphasize what we are after. 

The observed gravity at the earth's surface is a rapidly varying function pro- 

duced by all of the masses of the earth. Because points where gravity is ob- 

served are normally too far apart to adequately sample the short period changes 

accurate interpolation is not possible. If we can use knowledge of existing 

density distributions to compute the short period components of the gravity 

field and remove them we will then be able to interpolate the long period por- 

tion of the field between observation points with adequate accuracy. If in 

the process of removing the short period components of the gravity field we 

add to the gravity field functions which have only long period components the 

resultant may also be easily interpolated. 

Two factors prevent the use of geologically corrected Bouguer anomalies 

directly in deflection computation formulae. First as noted previously the 

Bouguer anomaly as usually computed does not use the same density model at all 

points. To utilize Bouguer anomalies at all would require using a model taking 

into account the topography around the world with the increased computations 

involved. Second, the secondary corrections related to using such a density 

model would be long and complicated. The is related to computation of the 

quantities A and ^* of equation (5-1Ö) for this model. Also one often has 

stations which are sufficiently close together to allow adequate contouring with- 

out any geologic correction in one area while in an adjacent area geology must 

be taken into account. To use geologically corrected gravity values in the 

formulae would require that the effect of any density change made in the model 

be computed at all gravity stations. The above factors combined with the fact 

that Pellinen (1962) has developed a method of using ordinary complete Bouguer 
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anomalies directly in computations leads to the conclusion that the best method 

is to use the geologic and geophysical information for interpolation but revert 

to normal complete Bouguer anomalies to draw up gravity contour maps for use in 

the actual computations. 

l8Q3tatic Anomalies 

With respect to the problem of interpolation, isostatic anomalies can 

be thought of as extensions of Bouguer anomalies just as the Bouguer anomalies 

are themselves an extension of free-air anomalies. In each case one is seeking 

to improve the density model used in anomaly computation so that it more nearly 

approximates the actual density of the earth. The free-air anomaly is computed 

using as a density model an ellipsoid with concentric ellipsoidal shells of con- 

stant density. In computing a Bouguer anomaly this density model is altered to 

take into account the earth's visable topography either locally as is usually 

done or, if desired, completely around the world using a constant density. In 

a geologically corrected Bouguer anomaly lateral variations in the density of 

the upper crust as indicated by geology and geophysics are included in the den- 

sity model where possible. Both gravity observations and seismic data show 

that large scale lateral density variations occur at depth; usually in such a 

way as to balance the topographic and other near surface inequalities.  In 

isostatic density models an attempt is made to include the deep seated density 

variations as well as those included in the Bouguer density model. 

The question to be asked here is whether or not any of the isostatic 

density models result in an anomaly which is more easily interpolated over 

distances of 30 km or less than is the geologically corrected Bouguer anomaly. 

Both from the theoretical point of view and from actual observation the answer 

would appear to be no.  There are a number of reasons for this. First note 

that we are only interested in the region within 166 km of a point.  That the 
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effect of the densities assumed in the isostatic models beyond 166 km is small 

is obvious from the publication of Karki, et al (1961) giving the effect of the 

distant topography plus compensation according to the Airy-Heiskanen model T = 30. 

Clearly the smoothly varying function shown there could be of no effect on inter- 

polation over distances of 30 km or less. For the area within 166 km of the com- 

putation point the amount of improvement in interpolation accuracy to be gained 

by using an isostatic anomaly depends upon both the accuracy with which the 

compensating densities of the model actually reflect the conditions within the 

earth, and the degree to which "local" compensation exists. With respect to the 

accuracy of the density model assumed it is becoming increasingly clear 

(Wool.lard, 1962) that compensation is not achieved in a uniform manner everywhere 

but is acnieved by complex variations in crustal thickness, crustal density and 

upper mantle density. Thus a density model which assumes that compensation is 

achieved by variation of a single parameter such as crustal thickness is not 

likely to give more than a rough approximation to the actual density distribu- 

tion. The fact that often an isostatic density model will nearly explain the 

observed gravity even where seismic results indicate it does not correspond to 

the actual density distribution is in itself an indication that the gravitational 

effect of the compensating masses is normally a rather smoothly varying function. 

The type of compensating masses most likely to have significant short 

period effects in the gravity field would be local compensation for features of 

small lateral extent. Every indication is, however, that such local compensa- 

tion does not exist. The finite strength of the earthfs crust would tend to 

make local compensation unlikely and investigations of gravity traverses across 

features of small lateral extent (Woollard, I962) indicate that local compensa- 

tion does not exist. 
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In Figure 6-2 an example is given of a typical profile comparing 

isostatic and complete Bouguer anomaly. It can be seen that although come 

large scale, long-wavelength trends may be nearly removed by using an isostatic 

density model, variations over distances of significance for interpolation 30 km 

or less are virtually unchanged. The same result may be seen on the large scale 

profiles were also used in the investigations and provided to ACIC as blackline 

prints. The general conclusion is that for interpolation over short distances 

of 30 km or less not enough additional interpolation accuracy would be attained 

to justify the extra work entailed in isostatic anomaly computation and deter- 

mination of the secondary corrections where the isostatic anomalies were used 

directly in deflection computations. 

Model Earth Anomalies 

In so far as interpolation is concerned the utility of the Model Earth 

Anomaly can be quickly determined from the formula for its computation. The 

Model Earth Anomaly can be written 

ASme = g - [ ^ - T - A( H - h)] = g -(74-Ah-T)+AH 

*here 4tSne= Model Earth Anomaly 
g = observed gravity 
y  = International formula value plus free-air correction 
T = terrain correction 
A = Bouguer correction factor 
h = actual height of station 
H = height of Model Earth at station 

From the meaning of the symbols we see that the Model Earth Anomaly 

can be written 

Ag  = Complete Bouguer Anomaly +■ AH (6-2) 
me 

Since the height H is the weighted mean height of an area of 100 km 

or more in radius around a point it must be a very slowly varying function of 

position. Thus the model earth anomaly will be no better than the Complete 

Bouguer Anomaly for interpolation over short distances of 30 km or less such as 
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we are interested in here. Since the Model Earth Anomaly will be no better 

for interpolation than the complete Bouguer anomaly and it requires more compu- 

tation tc attain this anomaly it doe6 not appear to have any particular value 

for deflection interpolation computations. 

Before leaving the Model Earth Anomaly it is perhaps worth while to 

consider the reason for its developement since it so well illustrates the dif- 

ferences in outlook between the Classical and the New Geodetic Theory. 

The Model Earth Anomaly was developed for use with the classical 

theory. Its aim was to develop an anomaly which could be interpolated and 

extrapolated as easily as the is©static anomaly, would be more easily computed 

than the isostatic anomaly, would avoid assumptions concerning densities down 

to sea level, and would produce negligable deformation of the geoid. 

With the advent of the "New Theory" the questions of incorrect density 

assumptions and deformations of the geoid are no longer important. Thus the 

Model Earth Anomaly has lost much of its reason for existing. The Model Earth 

Anomaly is not appreciably easier to compute than an Isostatic Anomaly in 

cases where tables such as those of Karki, et al (l96l) are available for de- 

termining the distant topographic-isostatic effect. In this case the primary 

computational labor in either method is related to making the terrain correction 

out to l66 km. 

Since, as we have seen, the Model Earth Anomaly is simply the complete 

Bouguer anomaly with a mean elevation term added it should be smoothly varying. 

However, DeGraff Hunter1s contention that the Model Earth Anomaly is normally 

somewhat smaller in magnitude and smoother than the isostatic anomaly seems 

theoretically somewhat unlikely. Since the Model Earth Anomaly is very similar 

to an average free-air anomaly and average free-air anomalies are positively 

correlated with average elevation, we would theoretically expect the Model Earth 
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Anomaly to run consistently positive in mountain areas. Figure 6-3 illustrates 

this tendency in an area in the Rocky Mountains. 

Recently Saunders (1963) has made a study of Model Earth Anomalies 

in which he computed these anomalies for a large area in Colorado. His re- 

sults also show the Model Earth Anomaly to be consistently more positive than 

the isostatic anomaly in -mountainous areas. 

Rudzki Anomalies 

The relative accuracy of Rudzki anomalies for interpolation can he 

seen from the formula for the attraction of the Rudzki density model. This 

formula can be written 

ff = I.F. + Top - T.M. 

where 

I.F. = International formula attraction 

Top = Attraction of topography around the world 

T.M. = Attarction of deviation masses below sea level 

This attraction formula resembles that of an isostatic anomaly. 

However, in the case of most isostatic models the deviation mass is chosen so 

as to try to approximate the actual density distributions below sea level. In 

the Rudzki density model the deviation mass is chosen in order to avoid secondary 

corrections when using the classical theory. Clearly an anomaly produced by 

using a density model in which a portion of the density distribution does not 

attempt to correspond to that of the actual earth should not be expected to be 

expecially useful for interpolation in general. The Rudzki anomalies differ 

from the Bouguer and isostatic anomalies only with respect to the long period 

components of the anomaly field. Thus it would be possible to apply geologic 

corrections to a Rudzki anomaly and have a suitable anomaly for interpolation 

over short distances. Since, however, they would be no better for interpolation 
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than Bouguer anomalies they have no theoretical advantage in the "new theory" 

and wou\d require much greater amounts of labor to compute. They have not been 

considered. 

Summary 

At the risk of being repetitious, the results of this section will 

be summarized here since the approach used and the conclusions reached vary 

somewhat from those anticipated when the investigation was undertaken. In the 

contract specifications, profiles from "Geoid Correlations: Test Profiles" 

were designated as profiles to be studied in order to "determine the best geo- 

physical reduction method to transform observed gravity into anomalies of geo- 

detic accuracy and significance". At the time this study was begun it was clear 

that the use of geologic and geophysical information could improve the accuracy 

of interpolation and extrapolation of gravity values. However, it was not clear 

in what way this fact could be incorporated into the theory of physical geodesy 

in order to achieve the most improvement in the computed geodetic quantities. 

Primarily this resulted from the confusing claims and counter claims of propo- 

nents of the various types of anomalies. Thus to begin this study geodetic 

theory was carefully examined. As a result of this part of the study it became 

clear that modern geodetic theory did not indicate any theoretical advantage 

for one type of anomaly over another. Most of the apparent advantages and the 

theoretical problems which lead to them no longer existed when using the "New 

Geodetic Theory". Instead, the accuracy of the results obtained with the "new" 

theory were dependent primarily on the accuracy with which the gravity field 

could be interpolated between observation points. The result of this is a re- 

orientation in the way gravity anomalies are viewed. Previously, one considered 

an anomaly to result from computing the effects on the observed gravity of 
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transfer of mass, and moving from one point to another in space before comparison 

with the observed gravity.  In the present situation one can think of the gravity 

anomaly as simply the result of comparing observed gravity at the point of obser- 

vation with the gravity predicted at that point by some density model.  Thus an 

anomaly is simply the difference between the actual density distribution of the 

earth and the density distribution of the model.  Viewed in this way, one can 

almost decide even before studying any profiles what type of anomaly will be best 

for interpolation.  The more nearly a density model approximates the density 

distributions of the actual earth, the more accurately the anomaly computed from 

it can be interpolated. 

For the particular application under consideration in connection with 

this contract — interpolation of deflections of the vertical — a reasonable 

amount of gravity data is absolutely necessary to achieve an answer of satisfac- 

tory accuracy. The question of interpolation over short distances was therefore 

the question of greatest importance and the one most closely studied.  Tha 

anomaly profiles prepared as required under sections 3a, 3b and 3c of the 

technical specifications of the contract, bore out the general conclusions 

reached theoretically concerning the general problem of interpolation but were 

too gross in scale to be of great use in the question of interpolation over short 

distances.  These profiles are being provided to ACIC at original scale.  They 

are not included in the report since it was felt that after the reduction nec- 

essary to obtain a reasonable size for binding with the report they would provide 

no useful information. 

In order to study empirically the relative accuracy of anomalies for 

interpolation over short distances, a number of comparative profiles were pre- 

pared using closer spaced observational data.  These bore out the theoretical 

expectations. 
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Of all the types of anomalies computed without using geologic and 

geophysical control, the complete Bouguer anomaly, using as nearly as possible 

the actual density of the topography, is as good as any other and requires less 

computation. Anomalies such as isostatic and Rudzki anomalies differ from the 

complete Bouguer anomaly only in ways that do not effect interpolation over 

short distances.  No special method of utilizing geologic and geophysical data 

was discovered under this contract. Actually, none could be expected. Once it 

was established that the problem was one of simple interpolation it becomes a 

question of applying all of the results from Woollard (1962) and the results thus 

far determined under contract AF :?3 (60l) - 3879 with ACIC to any particular 

problem at hand. If actual subsurface densities are known, an altered density 

model to take these into account may be constructed and anomalies computed using 

this model. Alternately, empirical correlations may be used between geologic and 

geophysical quantities and various types of anomalies. 

The existence of empirical methods which can be applied to improve 

interpolation even when no exact density model can be determined suggest the use 

of geologic and geophysical knowledge to improve the interpolations of some type 

of existing anomaly rather than to compute an anomaly in which the geologic and 

geophysical information has been inserted directly into the density models. 

The complete Bouguer anomaly, with geology and geophysics utilized for interpola- 

tion between observation points, appears to be the best type of anomaly to use to 

produce a contour map for use in deflection interpolation computations. The 

complete Bouguer anomaly also has advantages over other types of anomalies insofar 

as ease of computation of the anomalies is concerned. In the next section the 

manner in which the theory of Sections k  and 5 may be combined to allow the 

Complete Bouguer Anomalies to be easily utilized for computation is presented. 
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Section 7 

Formulation for Solution 

The problem of the formal setup for solution of the deflection compu- 

tations is important from the point of view of practicality. According to the 

formulation in the new theory the deflection of the vertical in an arbitrary 

direction 1 is 

(T-i) 
where 

R  p /A    0 v dS dt ,    ,Ag   2Nv dH 

S = Stokes function 
t = angle between radius vectors of fixed and variable point 

R2dw = incremental surface element of sphere of radius R 
V = theoretical g (international Formula) 
Ag = free air anomaly 

p = R2 P hAg 
Gl 11  J —3 dw r

o 
H = normal height of variable point 

H0 = normal height of fixed point 
h = H - H0   x 
r0= 2 R sin i = distance between fixed and variable points 
N = height anomaly 

Pellinen (1962) seeks an answer by making use of the formulation given in section 

5 allowing use of anomalies other than free air in the equations. Pellinen uses 

the complete Bouguer anomaly in the sense that all mass above sea level is actu- 

ally considered around the world. This instead of a Bouguer Plate corrected for 

topography is theoretically used. The following development is taken from Pel- 

linen (1962) with some clarifying remarks added and misprints corrected. 

To arrive at the formula for deflection of the vertical we will first 

consider the formula for height anomaly. Let us call the potential due to the 

topography T and the potential difference between the potential of the actual 

earth and the model (which is the international formula plus topography above 

sea level) T» . 
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Then 
W  - U  + f  + T1 
P    P    P     p 

Then according to section 5 ve have 

(7-2) 

TQ   YQ (T.3) 

and . ,     2T'„   ,81', 
Ag gJ - (^g-) (74) 

where *■' - Klp- YQ) + (||)p + «E] 

(7-5) 

Then in a manner completely analgous to the development of section 

4 ve get 

T' - T^ I (A*' + Gi> s <cos ♦ > dw 

1    2* J r 
where G 

o 

(7-6) 

(7-7) 

Then ■' ' T^r-  J (Ag' + G') S(*) df 
YQ (7-8) 

and     * - la 
YQ (7-9) 

However, there can be no zero or first order harmonics in H therefore 

we must write 

*  fp: TPQ - *pi 

(7-10) 

where T  and TL  are the zero and first order harmonics in the formal expansion 
Po     "t 

of the potential of the topography. 

Now we note that the attraction of the material above sea level at a 
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point P iß 

g  «  4«kaH     -   kaR   r   (i  .   i)   dw 
o     r (7-11) 

2        Pi/2 where r ^ (r    + h ) '     = distance from fixed to moving point on surface taking 

into account topography.    We note in passing that the  second term comes from the 

integration of the attraction of a number of line ele»nents with rQ   and r being the 

distances to the two ends of the line.    Thus the attraction of material above  sea 

level is broken down into the attraction of a spherical shell of thickness H0 

plus deviations of the actual topography around the world from the elevation H0. 

Now going back to equation  (7-5) we write 

*•' - [4«+*i+<ti + A>] 
But according to (7-ll) with an accuracy of the order of §• 

(7-12) 

T 4*kQHo   -    kciR2   J"    (7  -   ~)   dw 

f 

* *"  -R *    - 1   *V   *'  " (7-13) 

CM*) 
and J_   M  2«koHo   + V2 

PJ (7-15) 

2   P /l _ li 

where Vp - potential of second term on RHS of (7-13) 

Then neglecting Vp which we shall investigate later. 

Ag? - [Ag + 3 * _ 2nk(jH + Ag J 

where we are using the symbol Ag. to represent k a R J ( ji-)dw.  Note that 

AK is essentially a terrain correction except that it is carried completely 

around the earth. Pellinen states that it actually differs very little from the 

simple terrain correction. Whether or not we accept this, the difference should 

contribute little when used for interpolation of deflections. 

Now we shall write T as the sum of two parts^T0 the potential the masses 
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above sea level would have if they were condensed on the surface H = H0 which 

is approximated by the sphere passing through P and AT which is the difference 

between this potential and the actual potential of masses above sea level. 

Thus with an accuracy of *r ve have 

f °. koR2 r -H- aw - k<TR
2 r laus a« 

P        J ro J  ro (7-I6) 

Now to get the potential of the actual topography we go back to (7-13) 

and divide the potential T into two terms analgous to the two terms in g. 

We can write for the potential of a spherical shell 

-*2 J1* dW «4nkOHoR (7 IT) 

Now to get the potential due to the second term •  We can see the part 

of this potential which is most important by examining the equation which holds 

at distances close enough that earth curvature is unimportant. We get for the 

potential of a homogeneous line mass (see MacMillan, 1958 p. ^2) 

,  ,   tan 1/2 62 dV «kalog -_^rT71-T-- 
1 (7-18) 

where the symbols have the meanings shown below 
J 

To •2/J 

Using the fact that 1/2 92 = h?  tan 1/2 92 = 1 and substituting for 

tan. l/2 8, in terms of r0 , r, h we get 

r+h 
dV - ka In —jr 

o 

(7-19) 

or v = k 0 J2 f'1 In £±£ dw 
J °      ro (7-20) 

As stated this formula holds only out to the point where the curvature 
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of the earth is important. Thus we might write 

fn - kaR
2 J H° dw + kaR2 Jri in lit dw + V 

P       J ro Jo (7-21) 

where V represents the potential of topography beyond r.. We shall asstune that 

this can be ignored. If it is not absolutely negligable in magnitude at least 

it is slowly varying enough to be ignored in deflection interpolation work. Thus 

ijQ  set 

ATP  - f    -  fI  - -   koR2  J 5ü  dw  .   k a   R2 | JL   dw  + kaR2  J 1»  dw pp J* Jr Jr o o o 

+ kaR2  ;o
1   In I±Ü  dw     OR       AT  . kaR2 J   (l„   <*+h>  .   _L) 

o     o 
d"    (7-22) 

or expanding ln(r jh) in series, keeping the first three terms and 

h F° 
cancelling the —. terms we get 

3       5 
AT - k a R2 J l\  -^ + £, -*3> dw 

(7-23) 

Now we note that we can think of k a H in (7-l6) as a density layer 

on the surface of a sphere. Then introduce a function Q ° associated with R and 
P 

H by the integral equation 

G°   -   2*kaH  -   I   kOR J 2_   dw 

This is an equation exactly analogous to equation (4-51) of section k 

and the solution is 

(7-24) 

kojf   dw   "^r^S   (cos»)   dw 
o (7-25) 

Or from equation (7-l6) 

To       ,o To     .    R   J  0°     s(cos  ♦)   dv 
D p Pi        4n ü      p P        P° l (7-26) 

where the zero and first order harmonics have heen left out in the solution. 
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Subetituting (7-16) into (7-24) 

-o 
G°     =   2TTk<JH  -   I    ~? (7-27) ,p        -     «..«»B    -     1       -j 

R 
p        4TT 

=0 
= 0 - -^f  J   <2itkoH  -   I     ±£)   dw (7-23) 

Now going "back to equation (7-3 ) 

1 = !P     . IE  +    ~ (7-29) 
VQ YQ VQ 

or more properly since there can be no zero or 1st order terms in N 

-R -       f« -   T°    -  f°,       Af -   AT    -   AT, « P P° ol   4. ol 
YQ y         (7-30) 

or substituting from (7-26) 

N  a      fc       ^ ^  T° A?  -   AT     -   Af, 
'   SrtY    J    (2«k<JH  -  -2 if)   S   (cos  ♦)   dw  + . ^£ i     (7-31) 

Now substituting (7-31)  and (7-8)  into (7-3) we get 

Rr                                              «, TSO                                     AT -   AT 
N  = 3— J (A3'   + G^  + 2*koH  -   ^ ±£)   S   (cos   A)dw  + 0 

YQ (7-32) 

or substituting for Ag' from (7-15) and collecting terms 

R   r ** AT~ AT - AT  - AT, 
K " SnV $   (As * % + Gl + 1  HT> s <cos ♦'> d» + 2 i 

Q
 YQ   (7-33) 

Let us now turn our attention to the deflection formulae for this 

type of development. The formula for deflection is 

9 'TA (H) "T <Ä H' + TB *>     <7"3*> 
or 

-1 9 • °' + 13 * if {|u T'Op.X.H) + ^j T (cp.X.H)} 

(7-35) 
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but as shown in section k for using the potential where it is known we have 

j, T' (cp.X.H) - ~'«?.X) + {äS1 + ~-}|-g        (7-36) 

^T «P.X.H) -|| (q,,\) +{zt5+?}|i (7-37) 

but substituting from (7-6) 

(7-33) 

and using T = T^ +7if   and remembering there can be no first order terms we get 

but from (7-26) 

3    (T°  -   T2) R    p   -O   ds   dtj? 
 are— s z* J  G

n TT? 7"S TR   J   ^p H7 3"S 
dw (7-40) 

Using (7-38),  (7-39),  and (7-1*0) we get 

6S   *'   +1-^QJ   <A»'   + •! +  <#  38*-+ "*" 

^*? oil _J 
5"S   RvT 

j       d (AT  -   Af1) 
where   A9p   ■ ——= ^.7,  

(7-41) 

3   T° or   since   Ag'   «  As  + ^ 1 >   2nkoH  + A3       and   G°   -   2itUcrH - ^ ± 

9 - ^ J(A-* ASP +1 T + ci) 8 8dw * A9p - h+ T 
cJE      1 
TB   RY, 

Now  we   use   equation   (7-23)   to   set 

'Q       J r r 

dw 

(7-42) 

(7-43) 

But   one   can write 

olf  „ 9Af 5r 9 
"oV " "ST oT 

AT or ^ 
)"r 57 o"s 
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Noting that    dr ■ ?, cos •. d'|r 

and    dfl - cos (rQ,l) dG (7-44) 

where COB (r0, 1) is the cosine of the angle "between the direction In which 

the deflection is computed and the direction of the incremental surface ele- 

ment from the station. 

Then from equations (7-43) and (7-^) we get 

(7-45) AOp    a 
•kOR2              1 h3 

r 

3 h5. 
"5 75> cos ^    COS <ro ,1) dw 

but     dw  ■ sin ijid^dA »  2 
.      1, 

sin -<f 
2 

cos -\|fd\|(< 
2 

iA   » 
1 

RV cdrdA 

A9p    a 
-ka 

Ä   r 

3h* 

3^ 
cos 1   COS 

<*0 ,1) drdA (7-46) 

It might "be pointed out here that, instead of equation (7-^5) one has 

in the original reference, equation 19 of that reference (Pellinen, 1962). 

.\ AeP « koR f cos t  cos (r ,1) (- -- - I !>) dw        (7-47) 
2 2 r-4    o v° 

Clearly the factor yQ     is incorrectly omitted from equation (7-^7)« A question 

also might arise with respect to the correct power of R. This can be examined 

by use of a dimension check. The units of k are cnP/gm sec . Remembering that 

dw is dimensionless we have for (7-^5) 

koR2    h        cm^    8m     2   sec     cm11 

~TT   ' "n¥I  *  2 '   3 ' cm  ' "cm" • —n*I TQ    r      gmsec*   cm cm 

or the rhs of (7-^5) is dimensionless as it should be. If we use equation (7-U7) 

with Y0  added to the denominator the rhs would be -Q-gj- which would be in- 

correct as a dimension. 

If we integrate (7-46) to obtain the effect of an area lying between 

A = Ai, and A a A2 and r a r-j_ and r - rg we get the following, using the 

assumption that with small angles cos \J;/2«l> 

A(A9p) » ;» cos (,o,l) AA {£ <* . Jj, . «! 4 . -V>} (7_40) 
H rl   r2        rl   r2 
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where h is the average value of the heicht difference and A A = A^ - Ag. 

For practical computations the above equations can "be simplified in 

the following manner. The quantities 3/2 51   and G\  "beneath the integral 
R l 

sign in equation (7-U2) can "be assumed to be negligible and ignored.    Similarly 

the term        Ag+ II I   ^H    JL_ can be assumed to be negligible.    If these 
L R i   ae    S\Q 

assumptions are made, equation (7-^2) reduces to 

6  "*3^ J"   ^  +A«p)lf    ™  dw  + A9P (7-49) 

Similarly we have from equation (7-15) 

Ag1   =  Ag  + A3     -   2*kaR (7-50) 

As stated previously we can use for A3 the simple terrain correction. In 

this case Ag' is the complete Bouguer anomaly. Thus from (7-50) we get 

Ag 4» Ag  »Ag1 -!- 2itkaH and (7-49) becomes 

6 " *7cT J" (is' + 2*lcOH) if BI dw + ASp        (7-51) 

The integral on the rhs of (7-51) is exactly analgous to the normal 

integral used for deflection computation in classical theory, only the anomaly 

used is changed. Thus the normal Rice template may be used to solve the in- 

tegral expression. In computations it is found best to use the Rice template 

twice—once for each integral term. 

The advantage of carrying out the computations in this way is that the 

highly variable component requires estimation of average elevations rather than 

average anomalies of the form (Ag1 + 2 it k o R).  Since elevation contour 

maps are already available, whereas, the special anomaly maps required would be 

fully as complex as the elevation maps, and would have to be drafted this is a 

tremendous advantage. 
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The complete Bouguer anomaly Ag* on the other hand is a very smoothly 

varying function and, once a realistic representation of the gravity field has 

been derived, using geological and geophysical data, maps are easily prepared. 

An additional advantage of proceeding as in the last paragraph is 

that the term A9p requires averaged elevations. Although the use of the Rice 

template for integration of the A9p integral does not produce a solution in 

which each section of each ring has the same weight, the average elevations 

obtained from the Rice template can be used to obtain A8p with a minimum of 

additional calculations. Certainly this method of procedure is much to be pre- 

ferred over goiug through the entire process of picking average elevations 

from another template. 

In Part 2 of the Final Report on this investigation the procedure 

described above will be applied to actual data and the results compered with ' 

observed astro-geodetic deflections. A detailed outline of the steps followed 

in applying the procedure will be included. 
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