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ABSTRACT

Presented in this report are finite-difference (forward) heat
transfer equations applicable to transient, radial heat flow in spheres
and cylinders and applicable to transient, one~dimensional heat .flow in
flat plates. By very minor manipulations, a single heat transfer procedure
can easily be utilized to determine transient heat flow in all three basic
structure configurations.,

For each skin configuration the accuracy of the finite-difference
procedure, compared with exact analytical methods, depends on optimum
selection of the calculation time increment and the incremental distance
between temperature nodes in relation to the material thermal properties
and on the closeness of the approximate temperature gradients to the true
gradients.
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Section |. INTRODUCTION

The U. S. Army has had great success using finite-difference
(forward) techniques to accurately determine transient heat transfer
in homogeneous and composite wall missile structures. Heating effects
on most Army missile structures have been analyzed by use of finite-
difference methods applicable to transient, one-dimensional heat flow
in flat plates. This flat-plate technique is generally quite adequate
for structure analyses of missiles such as JUPITER, PERSHING, REDSTONE,
and SERGEANT because most of the airframe exposed to inflight aero-
dynamic heating has a relatively large radius of curvature in relation
to the skin thickness. Thus the curved structure actually approaches
a flat plate in relation to heat storage and heat flow.

Contrarily, a flat-plate solution may not suffice for analysis of
small hemispherical tips, small hemicylindrical leading edges, small
caliber vehicles, large or small cylindrical and spherical solid
propellant motors exposed to environmental thermal shocks, and many
other missile components and sections. Thus, accurate, flexible
procedures for at least three basic structure configurations are
necessary for proper thermal analyzation of present and future Army
missile systems.

One purpose of this report is to focus attention on the similarities
existing in finite-difference heat transfer equations for radial heat
flow in spheres and cylinders and one-dimensional heat flow in flat
plates. Another purpose of this report is to present one general heat
transfer procedure which can be used to determine transient heat transfer
effects in three basic configurations, i.e., sphere, cylinder, and flat
plate.




Section Il. FLAT-PLATE, CYLINDER, AND SPHERE PROCEDURES

1. Background

Transient, finite-difference (forward) heat transfer methods
have occupied a vital role in the development of several of the Army's
most prominent, reliable missile systems. During the historical heat
protection material development program for the JUPITER nose cone,
flat-plate, finite-difference, heat transfer methods were used success-
fully in analyses of reentry simulation test results' and in analyses
of inflight aerodynamic heating effects.2:3 This same heat transfer
method, in conjunction with a3 simultaneous ablation routine,? was used
exclusively to determine the thermal protection requirements for the
PERSHING reentry body. Later, calculated inflight temperatures were
found to be in good agreement with temperatures measured on the reentry
body of PERSHING missile 308.° Agreement of finite-difference results
with exact solutions is discussed briefly in Paragraph 6 of this
section.

With the advent of large solid-prbpellant power plants for use in
severe environments, as well as increased demand for hypersonic, low-
altitude flights by small vehicles or large vehicles having small lead-
ing edges or tips, the Army has become increasingly involved with heat

flow problems which are not adequately solvable by flat-plate techniques.

Recently, therefore, transient, radial heat transfer procedures for
cylinders and spheres, in finite-difference form, have been derived.
Usiniy the tadtal proceldare for a eylinder, gulld agtecudit tetween
measured and calculated temperatures of a PERSHING XB-1 motor subjected
‘to severe thermal shock in a cooling chamber were obtained.t

~ Procedures for determining radial heat flow in cylinders and
spheres have many applications in missile design and analysis, since in
numerous cases the assumption of only radial flow is sufficiently
accurate. For instance, transient, radial heat flow in a small, solid
hemispherical tip may be adequate for materials with low thermal
diffusivities (reinforced plastics, for example) even when the heat
input varies with external surface station. Transient, radial heat
flow at the midsection of a cylindrical solid-propellant motor having
a large L/D ratio may be adequate in most cases because the present
solid propellants have small thermal diffusivities and end effects
do not influence the motor midsection for many hours. °

The conduction equations presented for each of the three basic
structure configurations are applicable to any number of material
layers; however, only two layers are illustrated because this is the
maximum number of materials necessary for the application of all
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equations for thermally thick skins. Equations for thermally thin
skins and thick-thin combinations have been derived for flat plates,
cylinders, and spheres to account for all practical material arrange-
ments. These equations are not presented due to similarity of the
derivations to those of the thick-thick wall cases discussed.

Many statements made throughout the discussion of the flat-plate
procedure are also applicable to the other two procedures, and are
not repeated to preclude repetition. Since the average area of a sphere
across which heat flows 1s not a linear function of the radius, the
derivation of average areas for the spherical configuration is shown in
Appendix A. Shape factors have been purposely omitted from the radia-
tion terms throughout the report.

2. Tronsient, One-Dimensional Heat Transfer for Flat Plates

One-dimensional, flat-plate heat transfer in a homogeneous
material can be determined by solving heat balance equations at the
exposed surface, unexposed surface, interior nodes, and interfaces.

The forward finite difference method was used. It was assumed that

the incremental thickness (r) can be selected sufficiently small to
give accurate temperature gradients between adjacent nodes and that the
incremental time (At) is small enough to neglect any effect on regions
more than one r from the node in question.

T .
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Figure 1
a. Exposed Surface
From Figure 1 the heat balance at the exposed surface is
conv, * 901ar - qrado " 9cond © Ystored (1)
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where

qconvo' hoA (Teffo - Ty)

9%o0lar " heat received from sun pe:‘unit*atea

q

- 4 _mé
rado GOGA (TI. Tro) |

q - kaA (Tl - Ta)
cond Ta
1+2
Ta A(T{ - Ty)
Ut0 = PaCa?y At
1

The area, A, is uniform for one-dimensional, flat-plate heat transfer.
Rewriting Equation (1) we have

ko(Tg = Ty) Tq (T1 - Ty)
4 arse -~ -a
hO(Teffo = Tl) + qsolar + GOO(Tro = Tl‘) + Ta paca 2 At

(2)

20t kAt At '
Multiply b let B = —==, let Y = -&= and solve for T
ply by paCaTa ) 8 pCTz s oCT 1

Ti = Ti(l - 2v;h, - 28,) + 2T, + WahoTegs + 2Vye,0(Ty - Tf) +

2Y

a9so0lar -(3)

The coefficient of T, in Equation (3) must be 2 0 otherwise T, will
' depend on T, in the nesative sense whisli le ot measormble, Tierelore,

set the coefficient of T, equal to zero and solve for B+ Note after
Equation (2) that Y = B(1/k).

1 - 2V,hg - 28, = 0

1
- 4
3a 2+ 2(hyTy) (4)
ky

This beta is denoted beta critical (Ba) and is the upper limit of the
f in Equation (8) for convergence. It is readily seen that if § in
Equation (8) is a maximum of 0.5 (to make the coefficient of T, = 0)
then the coefficient of Ty in Equation (3) is negative because 2Yh 1is

positive. Therefore, B must be equal to or less than 1
9 4 2(hgTy)
k

a




The maximum h, expected or calculated for the specific case for analysis
should be used in determining the critical .

b. Interface Equation

At the interface between material "A" and "B" (T, Figure 1)
the energy balance is

9eond ~ Ycond ™ Ystored )

Nel-=n neenti n

or

kg(Tp.y = Tp) + kp (Tpgy = Tp) o (paCaTa * PpCy T (Ty = Tp)
Ta ‘Tb 2A¢t

Rearrange and solve for T,

2kaAt
! = -
o=t t (o - T Ta(PaCaTq + PpCp ™) i

(6)
2ky, At
(Tpgy = Tp)
i Tl 1y (paCaTy + ppCyTp)
c. Internal Nodes
The heat balance at any interior point of a homogeneous
wall (Figure 1) may be written
9cond =~ 9cond * Ystored (7)
N -n+l ntl= n+2 n+1
or
ky(Ty - Tot 1) + kb(Tn+z } Tn+1) - Cor (T&+1 - Tn+1)
Ty T bbb At

Solving for T 4, with @ = -%?55 gives
p 4

Tt = Tn+1(1 - 28y + Bp(Tq + Tpy,) (8)




d. Backside Surface

.-The energy balance at the backside surface, Tpgs may be

written as
q -9 -9 q
cond convy rady stored (9)
bs-1-+bs bs
or

kb(Tbs-l 3 Tbs)
Th

prbTb(Tgs ) Tbs)
2At

4 4
* ohy(Tegr, = Tog) * g0(Ty, - Tpg) =

Rearrange and solve for Tés

Ths = Tpg(l - 2Vhy - 2B) + 28Ty y + 2YyhyTege, + (10)

Pyego(rl, - T

To find the limiting § for the backside material, equate the coefficient
of Tys (Equation 10) to zero and solve for ﬁb.

1

By = 2h, T (1L

2 +
» k,

3. Transient, Radial Heat Transfer for Cylinders

a., External Surface Equation

Consider a cylindrical segment heated as shown in Figure 2.

From the energy balance at the peripheral surface

qconvo * 9g0lar - qrado ~ 9cond ™ Ystored
1-2 1




- ROL e0 (T - T*) -
6L eq0 (T1 - Ty )

ROL ho(Teffo - Ty) + ROL Yolar
Ta ke ( Ta) ( | Ta) -1
(R-2—>9L T (Ty - Tg) = (R - % ) %L\CaPa 3 At
(12)
Let B = Mt q v A& , rearrange, and solve for Ti.
oC7 pCT
T T
1~ 38 Yalo -5
T =1-25, —2 . 2 T+ fas, —22 |1, 4
1 -Ja I “1-1
4R 4R 4R
2Tahy - " £y 850 {T‘ ) T‘) + 2Yg9s0lar
T ef £ T 1 T
l1-_4a < 1-_a o 1 -_a
4R : 4R 4R
(13)
Equating coefficient of T) to zero, since Ty cannot depend on the
previous T; in the negative sense;
2 Ta)
0= 14 T Yaho * Ba<1 T 2R 1
l1-_8
4R J
Since Y = § % y the critical or limiting B at the external surface is
8, = : | W
a 2 1-Ta4 hoTy
T
1- Z{ﬁ 2R k,
For R—=® and T finite or ¢/R<<1, Equation (14) approaches the one-
dimensional flat plate case (Equation 4).
b. Interface Equation (Figure 2)
At point T, (interface between Material "A" and "B") the
energy balance becomes
9%ond ~ 9cond " 9stored
n-l--n n-=n+l n (15)




kg Ta) VL K ( Tb)
E(R-ETH+-2— (Tyoy -Tn)+-T; R-Lr - 2 ) (T - T,) =

(paCaTa + op &) (T - Tp)

® - Iry) 20t
solving for T,
R -Lr + )
2k At(R - LT+ =
T'=T + 2 22

T -=T.) +
nT T TR LT ) (p,CaT, ¥ oGty (Tned ” Tw)

.
b
ZkbAt<R -Lr, - —)

T 2 (Tppr = Tp)
Th(R = B70) (05CaTg + ppCyT,) * 0 n

¢. Interior Equation (Figure 2)
At point T (Material '"B") the energy balance becomes

9%ond ~ 9cond ~ Ystored
n-n+l n+l - n+2 n+l

or

(16)

(17)




™

(Ta+s = Tnaa)
At

(R = Lm4)) (o CyTy)

kAt Qt
Let = —= an nd Y=
2 pCT? pCT

1
Solve for Tn+1

( z'rn_,_1+—29) (R ET -—2-)

! = -
Tn+1 Tt 41 - B R - ZTn+1 +
. (18)
-
ng R - an+l+7 . s R-Lry -5
b 2 ©R-Iry w2 R -LT,
/
d. Backside Surface Equation (Figure 2)
At point T, (Material "B") the energy balance becomes
9%ond ~ 9rad; Yconvy;  Istored (19)
bs-1 - bs bs

or

ky, Tb) 4 4
T—b (R - ETbS + —2' (Tbs-l - Tbs) + 610’(R 'szs)(Tr - T ) +

hi(R - ZTbs)(Teffi - Tig) <°be 2)(“ Ly + 4)('%8;_ths>

and Y = -4t

pCT2 pCT

Let B8 =

1
Solve-for Tbs

( T, 4——) (Tn = Ton) + 7 (R Lron - >(Tn+a "i'n+1)"

i e



R - Ly, R -Lryg + 5

0= 1-2Yh, - 28
b
b r-Ln +T P R-Ln, + T
S S
4 4
but Y =8 X thus
T
b
0= 1-28 =h - - 28, .
b R-Ln, + R-Zm + b
4

Solving for Bb the critical B at the inner surface yields

1
»C [ 2 ][(R Lo+ 2)r @ -szsm}

(21)

T
R-szS+_2 kb

For small Tb's and small szs's, the one dimensional flat plate case
(Equation 11) is approached as R becomes relatively large.

10




e. Observations

For finite 7's and R+, cylindrical temperature Equations
(13), (16), (18), and (20) revert to flat-plate temperature Equations
(3), (6), (8), and (10), respectively.

4. Transient, Rodial Heat Transfer for Spheres

solar

Qc
onv,

l

|

Figure 3

a. External Surface Equation

Consider a spherical segment heated as shown above.
From the energy balance at the pheripheral surface

Yeonv,, * dg0lar ~ qrado ' qQ‘ond = 9g¢ored (22)
1=—2 1

or

11

.
Y

‘I




¢RPh0(Teffo -Ty) o+ QPR:'aqsolar - PR eqo(Tt - T:o) -

2 2 ]
Ta 2 Taa ka(Tl - Ta) - Ta Ta } paCaTa(T), = Tl)
‘P[(R -7) + 12][ T, ? (R"Z) ¥ 748 20T

Note: See Appendix A for derivation of average areas.

Let B = Atﬁ; and 7 = At

pC pCT
Then
[ (1 - 1,/2R)% + 72/128° hy
TL=T |1-28, 3, 3,8 " 2a 2 . 2,008
(1 - 7,/4R)® + 1,/48KR (1 - 74/4R)" + 3 /48R
[ (1 - 1,/2R)% + 73/128° hg
T3 |2 2 2 F] Tets |27a 2 F] 2 |t
a (1 - Ta/l"R) + 73/48R 0 (1 - T, /4R)° + Ta /48R
Dq £ (T‘ T‘) 2y “o?
Asolar| ™™ T, /4R)2 + T4 /48R o MM (R + s |

(23)
Set the coefficient of T; equal to zero and solve for the limiting
8, when h_ is a maximum.
a o
B, = -
a 2 2 2 2 hoT
(L -7 /2R)® + 7 /12RF + .02
[(1 - T,/4R)° + 73/48R2:| [ a a ky (24)

For finite T7,'s Equation (24) approaches the flat-plate Equation (4) as
R becomes large.

b. Interface Equation

At point T, (interface of material "A" and "B") the energy
balance is

12




q q q

cond cond stored

(25)

-t
n-1 n n~ nH n

or

k, 3 H k 3 ]
ety tffr- Dr e B ] 0 - ) B - Y -

(Tq = Tn) T\ T 3 .0
¢ ...__nE’At n—{OacaT.[(R 'zTn + “2‘) + _2'8"] + prbTb [(R - Z‘Tn - T—:) + —28-]}

Solve for T'
. n

H] H]
et + (1 r)\ 2““&[(“' Z"n*%) *%]
- - < H) ‘ 4
n Tt \Tp n z,a,; ?aCﬂTa [(R - L +f.%) +T_Z_8_]+ 05Cy T [(R <L, - L:) +ﬂz.a.]$
]
( . )\ ZAtkb[(R - Ly - %)2 + 3-11'3]
T - Tp), ) S g L
m ; /Tb«: £4Ca T, [(R - E1n +T_2) +_Tz_8} + 0pCpTy [(R - ZTn - l:".) + %]é
(26)
c. Interior Node Equation (Figure 3)
At point T ., (Material "B") the energy balance is
q - q = q
cond cond stored (27)
n—~ ntl  nHl n+s n+l

or

13




2 ] ] a
cp[(k - ZTn,H + .T_.) +.:r_b_]ﬂ (Ty - Tp4a) + cp[(R - z'rnﬂ - E) +Tb

2 12

"

]
;P[(R ) ZTH*'I)a ¥ %](%&) Ty = Towy)

Let B = 25K oy
pcr?
™Y L To Y L T
[(R' Lo + 2) * 12]’“[(R LTon 2> +ﬁ]
T = T~ % 2 T *
(R Z‘Tn+:l) +—b‘
12
Lo *+3) +3 By - 3) + 35 |
) (- Lry +3) + . o (R-Lrpy - 3) + 2
B (- L+ )? + T nte (R - L1, )° + b
n+l 12 +1 12
(28)
d. Backside Surface Equation
At the backside surface (Tbs) the heat balance is
Gcond = Y9rad; " Yconvi = Ystoreq (29)
bs-1;="bs bs
or
2 2

k T T ‘
% Tb) _b_] . s _p ey . 2 4
9 T (Tpg-y - Tbs)[(R - Dy + 2) )t e et - T MR L)’ +

2
9 hy(Tegr, - Tpd (R = Lrpg)® = 9 (m) (Tys - Tbs)[(R - Ly + 'T%> * %]

Atk At
Let B=—% and Y_pC‘T’ then

pCT

14




28y, [(R - ZTbs + I%)a + :‘;—32] Zthi(R -z'rba)i

T =T, q1~-—7 3 ) - 3 g
beg 5 (R - Dnyg + ) + " (n - L, +Ib.) + 1o
4 48 4 48
' 2 2
T T
. SZBb[(R - szs + -—Z') + —:2] . T s 2Yphy(R - szg)a {
P o
bs-1 R- L1 +I£‘+Tb2 effy R- Lt +I£=+Tb
bs e bs —
4 48 4 48

s 2V, ¢40(R - L)’
(Tl{'i ) T(t))s)” (R ) LTbs R Tb)a +£

4 48
(30)
Equate the coefficient of TbS to zero and solve for the limiting By
when hi is a maximum, ~
8 = 1
b ~ 2
L — [(R - L1y + I‘z) + 2% (r - Drpp)?
R-Lr +.0 2 k (31)
bs 4 b

As with the cylindrical Equation (21) this By approaches the flat-
plate limits (Equation 11) when 7y, is finite and R is relatively large.

c. Observations

For finite T's and R— =, spherical temperature Equa-
tions (23), (26), (28), and (30) revert to the flat-plate temperature
Equations (3), (6), (8), and (10), respectively.

5. General Equations Applicable to Flot Plates, Cylinders, and Spheres

Due to striking similarities between finite-1ifference heat
transfer equations for flat plates, cylinders, and spheres, general
equations adaptable to all three configurations are derived and
presented as Equations (32) through (37). The coefficients G and m and
the exponent m are inserted to perform manipulations resulting in
equations applicable to the desired skin configuration. The following
table gives values assigned to G and m.

Skin Configuration |G| m
Flat Plate 1({1
Cylinder 211
Sphere 212
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6. Finite-Difference Results and Procedure Selection

Calculated results from the three finite-difference heat
transfer procedures presented in this report have been compared with
the exact solutions.”:8 Excellent agreement, within 0.3 percent,
was obtained in each case for a material initially at uniform tempera-
ture (T,) and with one of its surfaces maintained at a constant
temperature different from T, after time zero. The accuracy of any
finite-difference heat flow equation depends on the proper selection of
the time interval (At) and distance increment (7) as well as the close-
Tx - Tx+1

T

3

ness of the approximate temperature gradients, to the true

gradients.

For the majority of missile structure analysis, the simple flat-
plate procedure may be sufficiently accurate. For instance, examination
of the cylindrical and spherical conduction equations (Equations 20 and
30) at the inside surface (where the maximum deviation from a flat
plate obviously will occur) shows that a ratio of R/Espg (radius/wall
thickness) of 100 gives results approximating, within 0.6 percent,
the flat-plate solution (Equation 10). Thus, for adequate engineering
analyses and structural design, the simple one-dimensional flat-plate
procedure is advantageous in many investigations because of the
required computer time.




Section Ill. CONCLUSIONS

One general finite-difference heat-transfer procedure can be
used with minor manipulations, to calculate transient, radial heat flow
in spheres and cylinders and to calculate one-dimensional heat flow in
flat plates. L :

Excellent agreement between finite-difference calculations and
exact analytical results is obtained when proper time and distance
increments are chosen in relation to material thermal properties.

For hollow or solid spheres and cylinders composed of one
homogeneous material,the limiting modulus,§, may be determined by
parameters at the internal surface even though the external surface ma,
be the only surface exposed to convective heating.

Comparisons of finite-difference calculations with exact analytical
results for several special heat transfer cases are necessary for final
determination of the accuracy of the finite-difference methods. Results
of these additional comparisons will be published in a future document.
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Appendix A
DERIVATION OF AVERAGE AREA EQUATIONS FIOR SPHERICAL CONDUCTION

Since the surface area subtended by a solid angle on a sphere is
not a linear function of the radius (R) the average area (A) through
which heat flows and the average area for determining heat storage
volume ( TA ) must be found.

1. External Surface
The average area from 1 to 2 (Figure 3) is found from
R
0 fnadn
R

- T E
. q,[(n -3 +§] (38)

a

>l
"

To find the average area for determining the heat storage volume from R to

T
R - ?? the following equation 1is used.

R
¢ R dR

_ R-T_/2 T 2 *r:
AT T “’[( "4_> * g (39)
a

Results of the integration in Equations (38) and (39) are reflected
in Equation (22) of the text.

2. Interface

The average area from n-1 to n (Figure 3) is

R- Lt +1,
@ | B°dR
R- 3 3
ZT“ - ) + Ti] (40)
12

>
]
1
"

T ‘P[(R ) ZTn * _Zé

a

and the average area from n to n+l is

T L M g




R- LT,
r.ij%R
R- L1 - R
n b = —b _b... ’
T ‘P[<R -Lr, - 2> * 12] (1)

A=

The average area for finding the heat storage volume at an interface (n)

is
R- D1 +7,/2
v R°dR
. 2
R- an-Tb/z

_ Z Ta Taa]
A= Ta+'|'b = @ (R- Tn+.-z-> +ﬁ + 42)

2
‘:(R L - %)2 + IE—Z—]}

Results of the integration of Equations (40), (41), and (42) are used in
Equations (26).

3. Interior

The average area through which heat flows from n+t to nt2
is given by Equation (43). The A between n and n+1 is found by using
+ Tb/2 in Equation (43).

R- z'rn+1.
o) R°dR
- - 2 2 43
K = R ZTn-{-l Tb = R - ZT - E’. + .:r.b_. ( )
A ¢ Tl ~ 2 12

To obtain the heat storage volume at node n+1 the following average
area is used.

R- DT 41 /2
cpJ‘RadR
R- L7 ., -1./2 T2
T - ntl b = . 2 ., _b (44)
A T ‘P[(R zTn+1) * 12]

Results of the integration in Equations (43) and (44) are
inserted in the interior Equation (27).

¥
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4. Backside Surface

The average area through which heat is conducted from nodes
.bs-1 to bs (Figure 3) is ' '

R" ZTbS.'-Tb
cij%R _
| R- Lt R
- bs b b
A= ™ = cp[(R - z'rbs + T) + 12‘] (45)

and the area determining the heat storage volume is

" R- Z'rbsﬂb/z
cijadR
- VR.Ln BT ]
1= bs 2 . b -
A= T :p[(R ZTbs + 3 ) * 8 (46)
2 , -

The results of the integrations of Equations (45) and (46) are reflected
in Equation (29).




Appendix B

LIMITS OF THE DIMENSIONLESS MODULUS, B, FOR
- FLAT PLATES, CYLINDERS, AND SPHERES

In all conduction equations presented in this report, the modulus,
8, has limits which are critical to the stability of the equations.
This is due to. the necessity of coefficients of a particular temperature
point being equal to or greater than zero because it is unreasonable
for a temperature to depend on a previous temperature in the negative
sense. The following equations show the limits of B under conditions
where the heat transfer coefficient (h) equals zero. ’

1. Heat Transfer Coefficient (h) = 0
a. Flat Plate

The equations of B applicable to the external and internal
surface (Equations 4 and 11) reduce to the following upper limit
when hy = 0 and hy = 0. '

1
B 3 glé?

b, Cylinder

(1) External Surface

The limiting B equation (Equation 14) at the external
surfaces reduces to the following when h, = 0.

< 1
B2 "R- T2 (48)
o| ——2—
R-17/4
a
which has values approaching 0.5 and 0.75 for R>> 14 and 71,—=R
respectively. :

(2) Internal Surface

The limiting P at the internal surface or center of a
cylinder (Equation 21) reduces to the following when hj = 0.

(49)

< 1
By = , R -szs + 'rb/z
R -szs + 'rb/4

27




. AR AP s A SO 5

The values of Equation (49) approach 0.25 and 0.5 asZrpg—+R and
when R>» Zr,, respectively. Thus vhen hy= 0 the limiting modulus 8 of
a cylinder composed of one homogeneous material may be determined by
Equation (49) rather than Equation (48). The limiting B varies radically
from 0.5 only when R - 27, is less than one 7.

c. Sphere

(1) External Surface

The critical 8 in Equation (24) reduces to the follow-
ing when h, = 0.

1
B, ST T\ T° (50)
2R 12K '
2 2 g

Ta) Ta
L(l "/ T BE

The values of f§ in this equation approach 0.5 and 0.875 when
R>>1, and when r,—»R respectively.

(2) Internal Surface

The limiting 8 in Equation (31) reduces to the following

when h, = 0.
1 "
1
< ‘ 51
Bb = T < 1)
(R -2 +—>
bs 2
2 =
'rb)
(R -ZTbs +T

The B in this equation has values approaching 0.125 and 0.5 when
Z'rbs—>R and when R >> Zrbs respectively. Thus the overall

critical B for solid or near solid spheres composed of one homogeneous
matet¥ial may be determined by Equation (51) rather than Equation (50).
The lower f limit of 0.125 is approached rapidly after R - Zr, becomes
less than one r. )

2.  Heat Transfer Coefficient £0

To determine the limits of 8 for each of the three configurations

when h # 0 the must be determined for the maximum heat transfer
coefficient. ~ Both external and internal surfaces f§'s should be calculated
to determing upper. limits which are valuable in insuring stability or
convergencé of the equations.
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