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2kaAt(R - ETn + f) 
T1 = T   + n       n 

MV + f KVa» + (R • £Tn - TKCbV 
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u^lMvLx) 
(R - K + T) ^,CaTa' + (R • ^'n ■ r) <'bCbV] 
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4. Equation 25, page 13 should be: 
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ABSTRACT 

Presented in this report are finite-difference (forward) heat 
transfer equations applicable to transient, radial heat flow in spheres 
and cylinders and applicable to transient, one-dimensional heat flow in 
flat plates. By very minor manipulations, a single heat transfer procedure 
can easily be utilized to determine transient heat flow in all three basic 
structure configurations. 

For each skin configuration the, accuracy of the finite-difference 
procedure, compared with exact analytical methods, depends on optimum 
selection of the calculation time increment and the incremental distance 
between temperature nodes in relation to the material thermal properties 
and on the closeness of the approximate temperature gradients to the true 
gradients. 
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LIST OP SYMBOLS 

A *, area 

9 - angle In radians 

9 - solid angle in steradians 

ß - dimensionless modulus 

R - radius of cylindrical or spherical section 

ETn - distance from outer surface of cylindrical or spherical 
section to temperature point n 

e - surface emissivity 

At - time increment for computation 

T - temperature 
■ 

k - thermal conductivity of material 

C - specific heat of material 
■ 

p - density of material 

h - heat transfer coefficient 

T - Incremental thickness for each material 

Tr - radiation sink temperature 

Te££ - effective gas temperature (boundary layer) 

q - convective heating 

q - radiative heating 

%oUr '  solar heatin8 

qcon<j - heat conducted 

'»stored " 8tored ener8y 

a •  Stefan-Boltzmann constant 

iv 



LIST OF SYMBOLS (Cencludtd) 

Subtcrlpf or Superscript! 

a - material MA" 

b - material "B" 

be - backside or Internal surface 

0 - external surface ,«, 

1 - Internal surface 

r - radiation sink 

1 - condition existing atter the lapse of one (1) At 

n - nodal point 

x - nodal point 
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Stetion I. INTRODUCTION 

The U. S. Army has had great success using finite-difference 
(forvard) techniques to accurately determine transient heat transfer 
in homogeneous and composite wall missile structures. Heating effects 
on most Army missile structures have been analyzed by use of finite- 
difference methods applicable to transient, one-dimensional heat flov 
in flat plates. This flat-plate technique is generally quite adequate 
for structure analyses of missiles such as JUPITER, PERSHING, REDSTONE, 
and SERGEANT because most of the airframe exposed to inflight aero- 
dynamic heating has a relatively large radius of curvature in relation 
to the skin thickness. Thus the curved structure actually approached 
a flat plate in relation to heat storage and heat flow. 

Contrarlly, a flat-plate solution may not suffice for analysis of 
small hemlsphericsl tips, small hemicyllndrical leading edges, small 
caliber vehicles, large or small cylindrical and spherical solid 
propellent motors exposed to environmental thermal shocks, and many 
other missile components and sections. Thus, accurate, flexible 
procedures for at least three basic structure configurations are 
necessary for proper thermal analyzation of present and future Army 

missile systems. 

One purpose of this report is to focus attention on the similarities 
existing in finite-difference heat transfer equations for radial heat 
flow in spheres and cylinders and one-dimensionsI heat flow in flat 
plates. Another purpose of this report is to present one general heat 
transfer procedure which can be used to determine transient heat transfer 
effects in three basic configurations, i.e., sphere, cylinder, and flat 
plate. 
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Section II. FLAT-PLATE, CYLINDER, AND SPHERE PROCEDURES 

1. Background 

Transient, finite-difference (forward) heat transfer methods 
have occupied a vital role in the development of several of the Army's 
most prominent, reliable missile systems. During the historical heat 
protection material development program for the JUPITER nose cone, 
flat-plate, finite-difference, heat transfer methods were used success- 
fully in analyses of reentry simulation test results1 and in analyses 
of inflight aerodynamic heating effects.z'3 This same heat transfer 
method, in conjunction with a simultaneous ablation routine,4 was used 
exclusively to determine the thermal protection requirements for the 
PERSHING reentry body. Later, calculated inflight temperatures were 
found to be in good agreement with temperatures measured on the reentry 
body of PERSHING missile 308.5 Agreement of finite-difference results 
with exact solutions is discussed briefly in Paragraph 6 of this 
section. 

With the advent of large solid-propellant power plants for use in 
severe environments, as well as increased demand for hypersonic, low- 
altitude flights by small vehicles or large vehicles having small lead- 
ing edges or tips, the Army has become increasingly involved with heat 
flow problems which are not adequately solvable by flat-plate techniques. 
Recently, therefore, transient, radial heat transfer procedures for 
cylinders and spheres, in finite-difference form, have been derived. 
Using the radial procedure for a cylinder, good agreement between 
measured and calculated temperatures of a PERSHING XB-1 motor subjected 
to severe thermal shock in a cooling chamber were obtained.6 

Procedures for determining -radial heat flow in cylinders and 
spheres have many applications in missile design and analysis, since in 
numerous cases the assumption of only radial flow is sufficiently 
accurate. For instance, transient, radial heat flow in a small, solid 
hemispherical tip may be adequate for materials with low thermal 
diffusivities (reinforced plastics, for example) even when the heat 
input varies with external surface station. Transient, radial heat 
flow at the midsection of a cylindrical solid-propellant motor having 
a large L/D ratio may be adequate in most cases because the present 
solid propellants have small thermal diffusivities and end effects 
do not influence the motor midsection for many hours. 

The conduction equations presented for each of the three basic 
structure configurations are applicable to any number of material 
layers; however, only two layers are illustrated because this is the 
maximum number of materials necessary for the application of all 



equations for thermally thick skins. Equations for thermally thin 
skins and thick-thin combinations have been derived for flat plates, 
cylinders, and spheres to account for all practical material arrange- 
ments. These equations are not presented due to similarity of the 
derivations to those of the thick-thick wall cases discussed. 

Many statements made throughout the discussion of the flat-plate 
procedure are also applicable to the other tvo procedures, and are 
not repeated to preclude repetition. Since the average area of a sphere 
across which heat flows Is not a linear function of the radius, the 
derivation of average areas for the spherical configuration is shown in 
Appendix A. Shape factors have been purposely omitted from the radia- 
tion terras throughout the report. 

2.    Transient, Ont-Dimtniienal Heat Tramftr lor Flat Platts 

One-dimensional, flat-plate heat transfer in a homogeneous 
material can be determined by solving heat balance equations at the 
exposed surface, unexposed surface, interior nodes, and interfaces. 
The forward finite difference method was used. It was assumed that 
the incremental thickness (T) can be selected sufficiently small to 
give accurate temperature gradients between adjacent nodes and that the 
incremental time (At) is small enough to neglect any effect on regions 
more than one r from the node in question. 
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Figure 1 

a.  Exposed Surface 

From Figure 1 the heat balance at the exposed surface is 

^COUVQ  ^solar ' rad0 
4cond 
1— 2 

'stored (1) 
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1^2 

where 

^convo"^ (Teffo - TO 

^solar " ^eÄt received from sun per unit area 

qrad0" 
eo^ <!? - TrM 

q   - M (T1 - Ta) ncond     T ■a 

H8to  paLa 2    At 
1 

The area, A, is uniform for one-dimensional, flat-plate heat transfer. 
Rewriting Equation (1) we have 

ho^££0 - I.) + Vlar 
+ *< - TA + m^Jil . ^li m_lii) 

(2) 

A f- 
'• ,  let Y » —r- . and SOIVP fnr T.1 

pCTC 

n  = ^(1 - 2Yah0 - 2ßa) + 2ßaT8 + 2Yah0Teff + 27.^(1* - T?) + 

Multiply by  2At ■ . let S - kAt  ^p^ v a -At  a ,  1  r  m. 
PacaTa       OCT

2
 '      pCr '   solve for Ti 

2Y O 
a^solar (3) 

The coefficient of ^ in Equation (3) must be > 0 otherwise V  will 
depend on ^ in the negative sense which is not reasonable. Therefore 
set the coefficient of T,  equal to zero and solve for ßa. Note after 
Equation (2) that Y ■ ß(T/k). a 

1 " 2Yaho " 2ßa - 0 

ß i  
3  2 + 2(hoTa) (4) 

ka 

Tin Eouatlon'm^ ^^ CritlCal ^ ^ i8 the UPPer limit of ** ß in Equation (8)  for convergence.    It is readily seen that if ß in 
Equation (8)  is a maximum of 0.5 (to make the coefficient of T   - 0) 

nn!?M      C0*fficient of Ti  in EcIuation (3) is negative because^Yh is 
positive.    Therefore,  ß must be equal to or less than 1 

2 + 
2(hoTa) 

ka 
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The maximum h0 expected or calculated for the specific case for analysis 
should be used In determining the critical 0. 

b. Interface Equation 

At the Interface between material "A" and "B" (T„. FlRure 1) 
the energy balance Is n»  »   / 

qcond  "cond " ^stored 

n-i-*n n-»n+i   n (5) 

or 

ka<Tn-x  - Tn)    +   kb(Tn+1  - Tn) 
Tb 

(PaVa+PbVbX^ -Tn) 
2At 

Rearrange and solve for T' n 

TA " Tn + (!„., - Tn) 
2k At a 

.Ta<PacaTa + PbcbTb)_ 

(Tn+l " Tn) 
2kbAt 

Tb<PacaTa + PbcbTb) 

(6) 

c. Internal Nodes 

The heat balance at any interior point of a homogeneous 
wall (Figure 1) may be written 

^cond 
n^n+i 

^cond 
n+i-* n+2 

^stored 
n+i 

(7) 

or 

kb(T" - W + MV^iW             (T^ - T^) 
Tb Tb PbcbTb Tt  

Solving for T'+1 wlt'i    3 - -^~   gives 
per 

TiUi -Vi^1 ■ 2M   +   M^+W (8) 

__-^^_^ M^HMHIH1. 
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d. Backside Surface 

The energy balance at the backside surface, T. , may be 
written as 

q,-q      -q     m     a 
cond     ^com^     ^radi     ^stored .QV 

bs-l-^bs bs 

or 

V\l ' ^^ + hi^f£i - Tb8) + e^ - Tb*8) - 

^W^s - Tbs) 
2At   

Rearrange and solve for T' 

Tbs " Tbs<1 " 2Ybhi " 2^b) + 2ßbTbS.i 
+ ^iTefft + 

^hH^ti " Tbs) 

(10) 

To find the limiting 0 for the backside material, equate the coefficient 
of Tbs (Equation 10) to zero and solve for ß,. 

h = —ITT (ID 
2 + —L2 

kb 

3.    Transient. Radial Heat Transfer for Cylinders 

a. External Surface Equation 

Consider a cylindrical segment heated as shown In Figure 2. 

From the energy balance at the peripheral surface 

^conv   ^solar ~ ^rad„ "* ^cond " ^stored o o 
1-2   1 

or 



"I l>o<Tef£() " Ti) + »» 1,oUr ' R9L «9» & ' V " 

(i - ^)ei^ (t, -1.) - (» - ^)9i(capa i) 2Llä 

Let ß ■ ^-r-  and Y ■ «-— , rearrange, and solve for Ti. 
pCr        PtT 

Ti = 1 - 2ß 

(12) 

4 \   ,      'aqsolar 

1-Iä 

Equating coefficient of Ti to zero, since T^ cannot depend on the 
previous T], in the negative sense; 

0 = 1 
l-lä 

4R L 

Yaho + ^a (^ " ä) 

(13) 

Since Y ■ ß T , the critical or limiting ß at the external surface is 

h- 
1- Ta 

1 . Ja + hoTa 
2R  k„ 

(14) 

For R-*» and T finite or T/R« 1. Equation (14) approaches the one- 
dimensional flat plate case(Equation 4). 

b. Interface Equation  (Figure 2) 

At point Tn (interface between Material "A" and "B") the 
energy balance becomes 

"cond   "cond   ^stored 
n-i-»n   n-»n+i     n (15) 

m^^m^^^m 



Figure 2 

or 

^M^)<v,-T„)^MTn4)(T: 

(R - IT ) (paCaTa+PbVb)(T' " Tn) 

Tn) 

solving for T^ 

K T +    ^M^) 
n        V^^nHPaVa+PbCbV  (Tn-1 

2kbAt(R-2:Tn3) 

Tb(R " ITn)(PacaTa + PbcbTb)  (Tn+1   " Tn) 

Tn) + 

(16) 

c. Interior Equation (Figure 2) 

At point Tn+l (Material "B") the energy balance becomes 

^cond 'cond 
n-»n+l   n+l-*n+8 

Stored 
n+l (17) 

or 

 , ,   ^^^^^^___-_ _._^^_ 
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b b 

(Tn+i " Tn+x) 

n+l 'ih n+a " Tn+i) 

(R -iT^Xp^Tb) 

kAt .„J v _ _A£ 

At 

Let ß - -^ and Y 
per pCT 

Solve for T' 
n+l 

T;+l = Tn+1  1 - ßb I(R ■£Tn+i ^)+(K. • ^Vi 4)1 
R -1 Vi 

-        +   T ßbjTn   R.£T n+l n+8   R - £T n+l 

(18) 

^cond 

bs-i •*• bs 

d. Backside Surface Equation (Figure 2) 

At point Tbs (Material "B") the energy balance becomes 

^rad^ ^ 'conv-i ^stored 
bs (19) 

or 

Th (
R
 ■ lTbs+ T) ^Tbs-i - Tbs>+ ei^R - ^^x^i ■ T

;S> 
+ 

hi(R - lTbs)(Teffi  - Tbs)  - (p.C, ^) (R - ITbs + 'i)^^) 

Let    ß=^   and    Y - -^ 
PCT2 PCT 

Solve-for T^ 



^■^^M ■■■•■'■l" ■' ,M  " ■   ■■—  -——  

T1 1 " 2ßb 
R -IT.    +^  bs      2 

R-lTbs+^ 
4 

R " ITbs 
^Vbhi —^  | Tbs + 

R -ETb8 + 

29bT^Tt>^- + ^ 
MR - lTbs) 

R - ET. o + lb 
bS      4 

Leff. 

2\Ha 
•>     R - L' bs 

R - ETK   + ^ bs       4 

(T4    - T4 ) 

Equating coefficients of T.  to zero 
bs 

0=1- 2Ybh 
R-E' bs 

1    R-ET,   +Tb bs   T 
20, 

*-ETbS + ^ 

R-ETb8+i 

(20) 

but    Y = ß ^ ,  thus 

0 =    1 - 2ßb ^ hi 
R-E' bs 

R - ETbs + i 
23^ 

R ■ ETbs + lb 

Solving for ßb the critical ß at the inner surface yields 

*b = 

R-ZTHfi-Hi 
4 J 

(R-ETbs + M+(R-ETbs)Mb 
(21) 

For small T^s and small E^g's, the one dimensional flat plate case 

(Equation 11) ic  approached as R becomes relatively large. 

10 



"" 

e. Observations 

For finite T'S and R-^-oo, cylindrical temperature Equations 
(13), (16), (18), and (20) revert to flat-plate temperature Equations 
(3), (6), (8), and (10), respectively. 

4.     Transient, Radial Htat Transfer for Sphorts 

solar 

qconv0 

^rad. 

Figure 3 

a. External Surface Equation 

Consider a spherical segment heated as shown above. 
From the energy balance at the pheripheral surface 

qconv0 
+ qsolar " qrad0 ' ^nd ~  qstored 

1-^2   1 

(22) 

or 

11 
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<PR8ho<Teff0 - Ti) + ^aq8olar " ^WW " ^  ' 

Note:    See Appendix A for derivation of average areas. 

Let ß , AtiL.   and _4t 
pc-r per 

Then 

CaTaJTj - W 
2AT 

Ti - Tx 1 - 20 
(1 -  Ta/2R)2 + ^/12Ra 

a    (1 -  Ta/4R)a + Ta/48Ra 27 
3    (1 - Ta/4R)3 + T|/48R2 

2S2 

(1 - T./2R)2 + l*/12Ra 

\2   ,   _a //ona 

'Isol ar 

(1  - Ta/4R)*i + T^MSR3 

27. 

+ T, eff. 27, 
2^-2 //.o«3 (1 -  Ta/4Rr + T|/48R' 

(1 - T./4R)3 + T^^SR3 
+ (nn - Tj) 27. 

€0a 

(1 - Ta/4R)a + T|/48R3 

(23) 

Set the coefficient of Ti equal to zero and solve for the limiting 

1 

3   when h    is a maximum. 
a O 

0. 
2    .      2 ,,„„2 (1 -  T-/4Rr + Tt/48R' 

(1 - T /2R)3 + Tf/12R2    +ioI§ 
k Ka 

(24) 

For finite T^s  Equation (24) approaches the flat-plate Equation (4) as 
R becomes large. 

b. Interface Equation 

At point Tn (interface of material "A" and "B") the energy 
balance is 

12 
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Mcond 

n-i n 

^cond 

n"**n+i 

'stored 

n 
(25) 

or 

'a 

|oaCaT, (R -ETn + ^j)    +    ^fgj + pbCbTb  (R - E Tn - ^ + ^Ljj 

Solve for T' n 

/v; PacaTa [(R - ETn + ^) + ^]+  p^T, [(R - ETn - ^) + ^.jp 

(Tnn  " Tri) 
2^b[(R.£Tn.^)8^] 

)Tb| eacaTa [(R - ETn ^y + ^1] +  BbcTb [(R . E.n - $ + lL]ji 

(26) 

c. Interior Node Equation (Figure 3) 

At point Tn+1 (Material "B") the energy balance is 

^cond   "cond * ^stored 

n— nfi  n+i"*n+8   n+i 
(27) 

or 
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Let 0 - -^j , then 
pcrr 

J,  D  ^-^n.^)
3^]-^^^)8^] 

(R- lTnJ
8
+. 

12 
(R-  ^TnJ +^- 

12 12   / 

(28) 

d.  Backside Surface Equation 

At the backside surface (Tbs) the heat balance Is 

^cond ■ ^radi " ^convi  =  qstoreu 

bs-i-*bs bs ^ 

or 

1 T *     T 

* Th 
(Tbs-i  " TbS) [(K -   2>bs + ^)   + T2 J+ v ^i^Tri4  * V)(R -  ^Tbs)2 + 

. hiCTeff,  - Tbs)(R -   libsf  - cp (^k) (T'8 - Tbs)[(R -   E^ + ^) + ^3] 

^    and    Y = 4L 
per PCT 

Let    0 = -^f   and    V - ^ ,  then 

14 
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Tu    = Th« < 1 
bs        OS 

29b [(I-   2Tb8+-|)   +:Y2J 

\ D8       L' 48 

aVbh^R - lTb8)S 

(R.ETb8 + ^+ife: 
V D8       4/        48 

\        2Vbeia(R-   lTb8)8 

Equate the coefficient of Tbg to zero and 3olve for the limiting 0b 

when h.  is a maximum. 

(30) 

0b 

L(R-IT-^)J 
[(R - ETbs + ^J + ^p (R - ETbs)

a| 
(31) 

As with the cylindrical Equation (21) this ßb approaches the flat- 
plate limits (Equation 11) when Tb is finite and R is relatively large. 

c.  Observations 

For finite T'S and R —», spherical temperature Equa- 

tions (23), (26), (28), and (30) revert to the flat-plate temperature 

Equations (3), (6), (8), and (10), respectively. 

5.    General Equations Applicable to Flat Plates, Cylinders, and Spheres 

Due to striking similarities between finite-.iifference heat 

transfer equations for flat plates, cylinders, and spheres, general 
equations adaptable to all three configurations are derived and 
presented as Equations (32) through (37). The coefficients G and m and 
the exponent m are inserted to perform manipulations resulting in 
equations applicable to the desired skin configuration. The following 

table gives values assigned to G and m. 

Skin Configuration 
Flat Plate 
Cylinder 
 Sphere  

m 
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6.      Finite-Difference Results and Procedure Selection 

Calculated results from the three finite-difference heat 
transfer procedures presented in this report have been compared with 
the exact solutions.7»8 Excellent agreement, within 0.3 percent, 
was obtained in each case for a material initially at uniform tempera- 
ture (T0) and with one of its surfaces maintained at a constant ' 
temperature different from T0 after time zero. The accuracy "of any 
finite-difference heat flow equation depends on the proper selection of 
the time interval (At) and distance increment (T) as well as the close- 

r      x. . i. TX " TX+1   , 
ness of the approximate temperature gradients, T " '"  to the true 
gradients. 

For the majority of missile structure analysis, the simple flat- 
plate procedure may be sufficiently accurate. For instance, examination 
of the cylindrical and spherical conduction equations (Equations 20 and 
30) at the inside surface (where the maximum deviation from a flat 
plate obviously will occur) shows that a ratio of R/Sfbs (radius/wall 
thickness) of 100 gives results approximating, within 0.6 percent, 
the flat-plate solution (Equation 10). Thus, for adequate engineering 
analyses and structural design, the simple one-dimensional flat-plate 
procedure is advantageous in many investigations because of the 
required computer time. 
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Section III. CONCLUSIONS 

One general finite-difference heat-transfer procedure can be 
used with minor manipulations, to calculate transient, radial heat flow 
in spheres and cylinders and to calculate one-dimensional heat flow in 
flat plates. 

Excellent agreement between finite-difference calculations and 
exact analytical results is obtained when proper time and distance 
increments are chosen in relation to material thermal properties. 

For hollow or solid spheres and cylinders composed of one 
homogeneous material»the limiting modulus,/? , may be determined by 
parameters at the internal surface even though the external surface ma^ 
be the only surface exposed to convective heating. 

Comparisons oi  finite-difference calculations with exact analytical 
results for several special heat transfer cases are necessary for final 
determination of the accuracy of the finite-difference methods. Results 
of these additional comparisons will be published in a future document. 
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Apptndix A 

DERIVATION OF AVERAGE AREA EQUATIONS FOR SPHERICAL CONDUCTION 

Since the surface area subtended by a solid angle on a sphere is 
not a linear function of the radius (R) the average area (S)  through 
which heat flows and the average area for determining heat storage 
volume ( T! ) must be found. 

1.    External Surface 

The average area from 1 to 2 (Figure 3) is found from 

cp  R2dR 

^R-T 

9 (■■f)-fi (38) 

To find the average area for determining the heat storage volume from R to 
T 

R - _ä the following equation is used. 
2 

'I 
R 

R2dR 

A = 
R-T /2 

a 
T /2 
a 

9 
/   T \2   T 2 - 

(R-f)+t8J (39) 

Results of the integration in Equations (38) and (39) are reflected 
in Equation (22) of the text. 

2- Interface 

The average area from n-i to n (Figure 3) is 

.R-IT_+T, 

9 

3- 
JR

RER 

-=  cp ''-k + rl^ (40) 

and the average area from n to n+i is 

H 
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9 R3dR 

R- ET -T. 
n t 

9 ('-£v4)34 (41) 

The average area for finding the heat storage voluTtie at an interface (n) 
is n 

■ R-ET+T a/2 

i n   a 
cp I R dR 

R
:
ET -T./2 

T    +  Tu * 
a       b 

2 2 
T  \ T 

ET   +-*)   +   A 
n      4 48 (42) 

ET   -^, 
T. X2        T. 2 

"n      4/48 

Results of the integration of Equations  (40),  (41), and (42) are used in 
E-quations  (26). 

3.    Interior 

The average area through which heat flows from n+i to n+2 
is given by Equation (43). The Ä between n and n+i is found by using 

+ T /2  in Equation (43). 

cp I R2dR 
*VET  -T. 

T         n-fl b 
A =  ~  • 9 lR " ^n+l ■ ^) + ^2 

(43) 

To obtain the heat storage volume at node n+i the following average 

area is used. 

R- ETn.1+Tk/2 

9 I RadR 

* ■('■^4] (44) 

Results of the integration in Equations (43) and (44) are 

inserted in the interior Equation (27). 
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4.    Backiidt Surfact 

The average area through which heat is conducted from nodes 

bs-i to bs (Figure 3) is 

I cp I R dR 

VET 

R- ^Tb8+Tb 
a. 

bs 
9 R ^.4)4.] (45) 

and the area determining the heat storage volume is 

/•R- LTbs+Tb/2 

cp I R2dR 

y f-Hs4)a4] (46) 

The results of the integrations of Equations (45) and (46) are reflected 

in Equation (29). 
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Apptndix B 

LIMITS OF THE DIMENSIONLESS MODULUS, ß , FOR 

FLAT PLATES, CYLINDERS, AND SPHERES 

In all conduction equations presented in this report, the modulus, 
ß, has limits which are critical to the stability of the equations. 
This is due to the necessity of coefficients of a particular temperature 
point being equal to or greater than zero because it is unreasonable 
for a temperature to depend on a previous temperature in the negative 
sense. The following equations show the limits of ß under conditions 
where the heat transfer coefficient (h) equals zero. 

1. Heat Transfer Coefficient (h) = 0 

a . Flat Plate 

The equations of ß applicable to the external and internal 

surface (Equations 4 and 11) reduce to the following upper limit 

when h0 = 0 and h^ = 0. 

M < 1 (47) 

b. Cylinder 

(1) External Surface 

The limiting ß equation (Equation 14) at the external 

surfaces reduces to the following when h0 = 0. 

ß^ ^R - T IT 
 a_ 

.a - T /4 
a 

(48) 

which has values approaching 0.5 and 0.75 for R» Ta and Ta-* R 

respectively. 

(2) Internal Surface 

The limiting ß at the internal surface or center of a 
cylinder (Equation 21) reduces to the following when hj, = 0. 

^ 

1 

bs 

bs 

+ V2 \ 
+ V* / 

(49) 
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The values of Equation (49) approach 0.25 and 0.5 as2n,8—••R and 
when R» STb8 respectively. Thus when l^- 0 the limiting modulus ß  of 
a cylinder composed of one homogeneous material may be determined by 
Equation (49) rather than Equation (48). The limiting^ varies radically 
from 0.5 only when R - 2Tbg is less than one T. 

c. Sphere 

(1) External Surface 

The critical ß in Equation (24) reduces to the follow- 
ing when hn = 0. 

1 
/     T x5     T2^ 
I1 "it)   +12F 
7—'T 

48r 

(50) 

The values of ß  in this equation approach 0.5 and 0.875 when 
R»Ta and when Ta—►R respectively. 

(2) Internal Surface 

The limiting ß  in Equation (31) reduces to the following 
when h. = 0. 

^ 

1 

(R-2Tbs+T) 

M^r). 

(51) 

The ß  in this equation has values approaching 0.125 and 0.5 when 
IT   -+K and when R» 2Tb respectively. Thus the overall 

critical ß  for solid or near solid spheres composed of one homogeneous 
material may be determined by Equation (51) rather than Equation (50). 
The lower ß  limit of 0.125 is approached rapidly after R - 2Tbg becomes 
less than one r. 

2.      Htat Transftr Cotfficitnt #0 

To determine the limits of ß for each of the three configurations 
when h ^ 0 the/J must be determined for the maximum heat transfer 
coefficlent. Both external and internal surfaces /J's should be calculated 
to determine upper, limits which are valuable in insuring stability or 
convergence of the equations. 
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