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[ ABSTRACT

An exact solution is developed for the fields in a rectangular
waveguide with a dielectric slab at the center. The surfaces of the
slab are assumed to be parallel with the sidewalls of the waveguide,
and the field is that of a TE mode with the electric vector parallel
with the slab surfaces. The thickness of the slab in arbitrary, but
the height of the slab is taken equal to that of the waveguide with
the remaining space assumed to be free space. Although the
equations are transcendental, it is possible to solve them to de-
termine the guide wavelength and the guide attenuation constant if
the slab parameters (dielectric constant, permeability, electric loss
tangent and magnetic loss tangent and thickness) are known. Thus,
the expressions are useful in tke design of waveguide attenuators and
phase shifters. The equations can be solved more readily for the
parameters of the slab after the guide wavelength and attenuation con-
stant have been measured, thus forming the basis of a promising tech-
nique for measuring dielectric constants, permeabilities, and loss
tangents.

Simplified equations are derived for nonmagnetic slabs which are
very thin in comparison with the wavelength and the waveguide width,
and a set of curves are included to facilitate dielectric measurements and[ the design of waveguide attenuators and phase shifters.
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THE PROPERTIES OF A RECTANGULAR WAVEGUIDE
WITH A DISSIPATIVE SLAB AT THE CENTER

[
I. INTRODUCTION

IMicrowave phase shifters and attenuators often consist of a
rectangular waveguide with a dielectric slab at the center. The
surfaces of the slab are parallel with the sidewalls of the waveguide
as shown in Fig. 1, and the electric vector of the TE mode is parallel
with the slab surfaces. Equations and graphs do not appear to be
available in the literature for the design of these components.

Il

Fig. 1. Rectangular waveguide with dielectric
slab at the center.

[

[Although this configuration has several advantages for the meas-
urement of dielectric constant, permeability, electric loss tangent and
magnetic loss tangent, this application has evidently been overlooked
in the past. These quantities can be determined accurately by placing
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a sample, in the form of a plane slab, at the center of a slotted
waveguide and measuring the guide wavelength and the guide at-
tenuation constant. This report derives equations which are use-
ful for this purpose and presents graphs to facilitate dielectric
measurements and the design of phase shifters and attenuators.

Some of the advantages of this arrangement are listed below.

1. The dielectric slab can have any thickness equal to or less
than the waveguide width. This permits the use of stock sizes and
reduces the machining costs.

Z. No error arises from the air gap between the sample and the
sidewalls of the waveguide, since this air gap is accounted for exactly
in the equations.

3. A rigorous solution can be derived for the dielectric pa-
rameters of the sample (even when the loss tangents are very large)
in terms of the waveguide attenuation constant and the guide wavelength
which can be measured with the aid of a traveling probe.

4. The mathematical equations are simplified in the symmetrical

case where the sample is at the center of the waveguide.

5. The sample is placed in a region of maximum electric field
intensity, thus permitting more accurate measurements of the loss
tangent.

6. When the sample is at or near the center of the waveguide, slight
errors in its position have only a second-order effect on the measure-
ments.

A variational solution by Berk' is available for the lossless slab,

but its accuracy is somewhat limited. Although an exact transcendental
solution is given by Montgomery, Dicke and Purcell,2 for the lossless
slab, an explicit solution for the dissipative slab does not appear to be
available in the literature. Such a solution is developed in the Appendix

of this paper in a form suitable for numerical calculations. The main
body of this paper, however, is concerned with the special case where
the slab has the same permeability as free space and its thickness is
very small in comparison with the skin depth, the wavelength in the
slab material, and the guide wavelength.



I The thin slab in of considerable practical interest since the

reflections at the ends of such a slab are small. Furthermore, the(solution for the thin slab can be presented in the form of universal
curves with fewer dimensionless parameters than are required for
the thick slab.

The problem considered in this paper is of interest in the
development of electronic polarization rotators for two reasons.

Ii It provides a convenient technique for the measurement of the dielec-
tric constants of ferroelectric media which are believed to be useful
in such devices. Furthermore, it provides a basis for the design of
waveguide phase shifters which are employed in some of the polari-
zation rotators.

If. THE BASIC THEORY

Consider a rectangular waveguide with a thin dissipative slab
at the center, as shown in Fig. 1. The permeability of the slab is
assumed to be the same as that of free space (IL = Lo), and the slab
material is assumed to be homogeneous and isotropic. For the
harmonic traveling-wave case, the time dependence eJot is understood
and the electric field intensity of the dominant TE modeis givenby.

(1) E X  e y I -b/ 2 )(-a cos 0 + jo sin e) (jy I-b/ 2 )(a cos 0 -jP sin ]

-az sin 0 -jp z cos 0

1. where b is the waveguide width, 0 is the angle of propagation of the

criss-crossing plane waves in the waveguide, and a and S are the
I attenuation constant and phase constant of each plane wave.

It may be noted that the above expression satisfies the boundary
condition Ex = 0 at the waveguide walls at ya b/a and y=-b/Z. Further-
more, it satisfies the condition that tangential E be continuous across
the boundaries of the card. To satisfy the wave equation in the free-
space region on both sides of the slab, it is required that

[(2) 2 a a 2 + 0-0

[ where ko = [i '-0 = 2v /X. and ko denotes the free-space wavelength.

L3I



The thickness d of the slab is assumed to be much smaller

than the wavelength and the waveguide width b. In this case, which
is often of practical interest, the electric field intensity is essentially

uniform (i.e., independent of y) through the slab. From Eq. (1), the

electric field intensity in the slab is given by

(3) Ex e-(b/ 2 )(-Q cos 0 + je sin 8)

e-(b/2)(c cos 9 - j sin 6] -(a sin 9 + jo cos O)z

From Maxwell's equations it is found that the magnetic field intensity is

given by

(4) Ha (ljwi )SE x /8y

. (o cose-j sin 0) (ly 1-b/Z)(-a cos 0 + jo sin e)

j[e I

(ly -b/2)(2 cos 9 -j sin 9) -(o sing +jp cos )z
+ e sgn y

where sgn y = 1 if y is positive and -1 if y is negative. The effect of

the thin dielectric slab is the same as that of an equivalent sheet of
electric surface current whose density is given by

(5) Jx = jw(Z - co)dE x

where Z represents the complex permittivity of the slab and E x is the

electric field intensity in the slab given by Eq. (3). Now the tangential
component of the magnetic field intensity Hz must be discontinuous
across this current sheet as follows:

(6) Hz(y=0+) - Hz(y=O-) = Jx

Equations (3) through (6) lead to the following result:

4



(7) Z(a coo 8- jO sin 9) [1 + a(-a cos +J sin O)b

k' - (-a cos + j sin 9)b]
: ' d( r - l)[l-e

I where Zr-4 ,fo - r -j 1Er tan b, r is the relative dielectric constant
of the slab and tan b is its loss tangent.

By equating the real parts on both sides of Eq. (7), and similarly
the imaginary parts, it is possible to obtain two real equations which are
simultaneous linear equations for (d/Xo)cr tan 5 and (Er-l)dA o . The

solution is readily obtained and is given below.

(8) (d/Xo)Er tan b
-Zczb cos~ acs

(1-e c (1/ko) sin e -(Xoa/ )e a b cos coos 9 8n(Ob sin e)

wi [1 - 2 e-' b cos cos(pb sin e) + e Z b cos 8]

I.
L (9) (Er-l)dAo =

(le-Za b cos e)(axo/Zr) cos 8 + 2(PAko)e a b c o s 0 sine sin(pb sine)

w[l-Ze " a b c oo 8 cos(pb sin 8) + e-2ab cos 8]

L If the dielectric constant and loss tangent of the slab are known, Eqs. (8)
and (9) represent transcendental equations for a cos 8and p sin 8. A
trial-and-error solution is possible, with the aid of Eq. (2). If, on the
other hand, the guide wavelength and the guide attenuation constant are
known (from experimental measurements, for example), Eqs. (8) and
(9) represent explicit expressions for the loss tangent and the dielectric
constant of the slab material and the solution is straightforward. The

L guide wavelength and the guide attenuation constant are given by

(10) Xg = 2W/(3 cos 8)

(11) c g=a sine.

1 5



These quantities can readily be measured with the aid of a traveling
probe which moves along the waveguide axis in the region containing
the slab.

1II. THE THIN LOSSLESS SLAB

In the lossless case, the attenuation constant vanishes and f = ko .
Thus Eq. (9) reduces to the following simplified form:

(12) Or-1)do = sin 0 sin(kob sin 8)

(I- cos(kob sin 0))

From Eq. (10) the guide wavelength in the lossless case is given by

(13) k g X0 /Cos 0.

If the slab thickness is zero or its dielectric constant is unity, Eqs. (12)
and (13) lead to the well-known expression for the guide wavelength of a
rectangular waveguide without a slab. Figure 2 is a set of graphs based
on Eq. (12) for various waveguide dimensions such that b/Xo = 0.6, 0.7,
0.8 and 0.9. These graphs can be employed in the design of waveguide
phase shifters and in the measurement of the dielectric constant of
lossless or low-loss slabs.

An exact transcendental equation for the lossless slab of arbitrary
thickness is given by Harrington.? In terms of the notation employed here,
the exact expression is

(14) E 2r-coS2 tan(kO  rCOS0 d/2) = sin e cot ko T sin

The data given in Fig. 2, based on Eq. (12), are found to agree accurately
with the exact equation (Eq. (14)) if the slab thickness d is much smaller
than the wavelength.

6
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Fig. 2. Effect of thin lossless dielectric slab
on guide wavelength of TE10 mode in
rectangular waveguide.



IV. THE THIN DISSIPATIVE SLAB

If the attenuation constant is small, 0 is nearly equal to kO . In
particular, if ak o is less than 0.6, it is found from Eq. (2) that a
differs from k o by less than one-half of one percent. Over this same
range of attenuation constants it can be shown that the guide wavelength
is essentially the same as that given in Fig. 2 for the losslnss slab.

Figure 3 shows the quantity (d/Xo)Fr tan 5 versus the guide at-
tenuation constant for the case where the waveguide width is b = 0. 6x o .
The curves in Fig. 3 are based on Eq. (8) with 0 taken equal to k O and
with the guide wavelength assumed to be equal to that for the lossless
case. This was found to be an accurate assumption for the range of
parameters involved in Fig. 3. Similar graphs can readily by plotted
for other waveguide widths by means of Eq. (8).

0.03 ___-j-____ 
_____ I ___

b = 0.6,\o

C, = Relative Dielectric Constant Of Slab (,- I) 0.06
d = Thickness Of Dielectric Slab 0
b = Width Of Wovegude

C002 x Wavelength In Free Space

a Guide Attenuatior Constant, , - ,0 .0 2

0k0

0.01

0 0.1 0.2 0.3 0.4

Xo ag

Fig. 3. Relation between guide attenuation constant
and loss tangent of thin slab at center of

rectangular waveguide with TE1 0 mode.
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Curves such as those plotted in Fig. 3 are useful in the design
of waveguide attenuators and in the measurement of the loss tangent
of a thin slab. In the measurement of dielectric parameters, it is
suggested that one first measure the guide wavelength in the region
containing the slab. Then the quantity (rr- 1) dA o can be determined
from Eq. (9) or Fig. 2. Knowing the slab thickness and the free-space
wavelength, it is then a simple matter to determine the relative dielectric
constant of the slab material. Next, the guide attf .iuation constant may[. be measured in the region containing the slab, and the lose tangent is
easily determined with the aid of Eq. (8) or Fig. i. To obtain accurate
results, the slab should be at least several wavelengths long and the ends
should be tapered to reduce reflections. The slab thickness should be
great enough to obtain an easily measurable attenuation much greater
than that of the waveguide itself. Furthermore, the thickness should
be sufficiently great to produce a measurable change in the guide wave-
length while keeping (Er-1)d/k o less than about 0.1.

IIt will be noticed that the graphs shown in Fig. 3 are essentially
straight lines. This suggests the existence of an approximate linear
relation between the guide attenuation constant and the quantity (d/Xo)Er
tan b. The linear approximation can be obtained from Eq. (8). It is
given as follows:

L- (X-sin X) cot 9

(15) (d/o)r tan t O Og 2 w (1-cos X)

whereI
(16) X = kob sin .I
Equation (15) agrees accurately with Eq. (8) for the cases illustrated
in Fig. 3.

Figure 4 shows graphs of the quantity (dAo)r tan b/(Xoug) versus
the waveguide width b/X 0 for (E-1) d/X o = 0 and 0.05. These curves,

L based on Eq. (15) and the data given in Fig. 2, are useful in calculating
the loss tangent of the slab after the guide attenuation constant has been
measured.

19I
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Fig. 4. Relation between loss tangent and guide
attenuation constant as a function of

waveguide width for thin slab in

rectangular waveguide.
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I V. CONCLUSIONS

A rigorous solution is developed for the dominant TE mode in
a rectangular waveguide with a dissipative dielectric slab at the center.
The slab may have any width equal to or less than that of the waveguide.
The equations are in a form suitable for numerical calculations. They
are useful in the design of microwave attenuators and phase shifters,
and they form the basis of a promising technique for the measurement
of dielectric constant, permeability, electric loss tangent, and mag-
netic loss tangent.

Simplified equations are developed for the special case where the
slab is nonmagnetic and its thickness is small in comparison with the
skin depth, the wavelength in the slab material, and the waveguide width.
A set of graphs are included to facilitate the design of microwave com-
ponents and the measurement of dielectric parameters.
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V

APPENDIX. RIGOROUS SOLUTION FOR SLAB
OF ARBITRARY THICKNESS

Consider a dielectric slab of arbitrary thickness d, real per-
mittivity _, real permeability &, electric loss tangent tan 5 and mag-
netic loss tangent tan b'. If the slab is centered in a rectangular wave-
guide as shown in Fig. 1, the fields of the dominant TE mode are givenIi as follows:

-c I z sin 0'-j z cos 0
(17) Ex = cosh[(a, cos 8' - jo sin 81 )y] e

for y < d/2

(18) Ex  A sinhI(caocos0o-Joosineo) e -aoz sinB0 -joz cos 0°

for y > d/Z

where 0o and 81 are the angles of propagation, wit], respect to the wave-
guide axis, of the criss-crossing plane waves in the free-space region

L and the slab, respectively. The angle 0' is that of the planes of constant
amplitude of each plane wave in the slab, with respect to the waveguide
axis. If the slab is lossless, the angles 01 and 0' will be equal; in the

j dissipative slab they will differ.

To satisfy the boundary conditions at the slab surfaces, the 5 dependence
j must be the same in both regions. This leads to the following equations.

[ (19) a, sin 9' = a o sin 00

L (20) 01 cos 1 = PCos 0.

L The following relations are obtained by enforcing the wave equation in
each region:

(21) 2 =a ko

0 0 0

L
[ 13

I



(22) = + wape(l-tan 5 tan b')

(23) ZaI1 l sin(O' - 81 ) = WA (tan + tan ').

It may be noted that Eq. (18) satisfies the boundary condition
that the tangential electric field intensity must vanish at the surfaces
of the perfectly conducting waveguide walls. The following result is
obtained by making the tangential electric fieid intensity continuous
across the surfaces of the slab:

(Z4) A sinh (a. 0Cos eo-jf sino)(b. _.,

= cosh[( L cos 01 - j i sin GI)d/Z]

To complete the solution it is necessary to make the tangential
magnetic field intensity continuous across the surfaces of the slab.
From Maxwell's equations the tangential magnetic field intensity Is
found as follows:

(25) H z = (I/jwi) (BEx/ay) = (I/j4)(al cos 8' -jo, sin 01)

* sinh[(a Icos 0- jo sin80 )y]e , z sin 01 -jo3 z cos 01

for y < d/2

(26) H z = (l/jwpo)(8Ex/Oy) = (1/jwpo)(-a 0 cos 00 + jao sin Ro)

- Acosh (C 0 Cos 0o-josin 0o)  - y)]e-aozsin80 ozconeo

for y > d/2

The following transcendental equation is obtained by making the tangential
magnetic field intensity continuous across the boundaries of the slab:

14



V

(27) X tanh(Xd/2) --Ir(l - j tan 6') Y coth [Y(b-d)/2]

where

(28) X = a, cos 0 - jJ31 sin 01

(29) Y = ao cos 0 -Ji0o sin 0 .

The guide attenuation constant and the guide wavelength are given
by

(30) ag = ao sin 0O = a, sin 0'

(31) Xg = 2w/( o cos o) = 21r/(p, cos 01

After the guide attenuation constant and the guide wavelength have been1. measured, it is possible to calculate the angle 00 by means of the
following expression which is based on Eqs. (21), (30), and (31):

r2
? X I~ XZ\ 2  4a'l

1.(32) slnzo 0 =0. 5 [ 1- 2i -0 + o) 0 1k

Now it is possible to calculate the quantity Y defined in Eq. (29). If the
slab is nonmagnetic, one can proceed to solve the transcendental Eq. (27)
to determine the quantity X defined in Eq. (28). The dielectric constant
and the loss tangent can then be found by means of Eqs. (22), (23), (28),
(30) and (31).

[ If the slab has a permeability differing from that of free space (as
in the case of a ferrite slab), a unique solution cannot be obtained for
p, r, tan 6 and tan 6' from measurements of the guide wavelength and
guide attenuation constant at a single frequency with one slab. However,
these parameters can be calculated with the aid of the above equations
if measurements are made at a single frequency with two slabs of the[same material with different thicknesses.
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If the slab is loseless, it is easy to verify that the above solutiom

reduces to the one given by Harrington. 3 The rigorous equations for

the lossless case are listed below.

(33) coo 00 = xo/Xg

(34) J rr -Co 00 tan(O.5kod frer - c o s
z 0. )

= r sin 00 cot[O.5ko(b-d) sin 00].

If a dissipative slab completely fills the waveguide, the general

solution simplifies as follows:

(35) tan 01 = xg/2b

(36) , = w/(b sin 0)

(37) WjL4E(l - tan btan 6') = a1 " ag

(38) wzFe(tan 6 + tan 6') = 4wag/Ag .

A very brief discussion is given by Marcuvitz 4 of the rectangular
waveguide with a resistive film at the center, and a waveguide with a

dielectric slab of arbitrary thickness at the center.
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