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ABSTRACT

An analytical model is presented for determining the peak axial pres-
sure generated at various depths in the target when impacted at hypervelocity
by a projectile of similar or dissimilar material. Detailed calculations are
given for impact of aluminum, iron, lead and copper into aluminum targets.
Available experimental data for impact into aluminum targets are discussed
in terms of the theory.
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LIST OF SYMBOLS

t time variable

p pressure

p density of medium

Po undisturbed density

x compression ratio (= po/p)

L radius of cylindrical projectile

length of cylindrical projectile

L characteristic length (= Lz )

D diameter of equi-volume sphere
S

P penetration depth of craterc

C coefficient in penetration formula

v impact velocity
0

v threshold value for energy scaling

0

E threshold energy for energy scaling

( )H subscript denoting value on the Hugoniot

6 ratio of projectile density to target density ( pp/Pt)

R distance below target surface of shock

R shock velocity in target

c H sound velocity in shocked material

A, K, R parameters in analytical model0

R position where shock in target first attenuated on axis
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SECTION I

INTRODUCTION

In two earlier interim reports [1, 2] numerical calculations were

presented describing the time dependent flow field produced when a pro-
jectile impacts a target at hypervelocity. The calculations were made
using a computer code (PICWICK I) for solving the complex system of equa-
tions governing a visco-plastic model of the process. The results indicated
that in a thick target the depth of penetration, of geometrically similar pro-
jectiles of like metal, varies with the impact velocity according to v.f 3 in
the hypervelocity regime. Calculations were also given to show that tde

crater dimensions are relatively insensitive to the density of homogeneous
projectiles of the same basic material. Experimentally observed size effects
were discussed in terms of the visco-plastic model and it was concluded that

the threshold velocity for energy scaling will depend somewhat on the dimen-
sions of the projectile.

The formula for the depth of penetration based on these results is
as follows:

P = C(p /Pt) 1/3 v2/3 (V v E EC 0 0 -- 0 0 -- 0

where the constants C, v and E must be experimentally determined. Eo o0
is a threshold impact energy which reflects the size effect on the threshold
impact velocity v . The material parameters are known from experiment
to vary among alloys of nominally the same metal, reflecting strength and
strain-rate effects that in the late st';-s of the flow process determine the

final crater dimensions.

Plate targets of finite thickness were also studied in the earlier re-
ports. The forward momentum carried by the spallation bubble from the

rear surface of the target was computed for two plate thicknesses. The
spatial divergence of the bubble and the corresponding decrease in its pro-
jected momentum density was charted. The spread of the loading and the
maximum value of the projected momentum density was obtained as a func-
tion of the standoff distances. These results are useful in analyzing meteor
bumper protection systems. Preliminary calculations were also presented
for impact into a target consisting of two spaced plates.

Many important and unresolved questions remain to be studied,
especially for finite plate targets and meteor bumper systems. Other prob-
lems of practical interest are the penetration effectiveness of projectiles of

special geometry. An improved version of the code (PICWICK II) has been
under development to treat these problems. Some recently added features
are briefly described in the first part of this report. Up to this time, how-
ever, computer time has not been available to utilize the improved capability
of the code in production runs. The IBM 7094 at Eglin AFB, used for the

earlier calculations, has been used to capacity on higher priority projects.
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A recently developed analytical description [3] of the amplitude and
velocity of the shock wave produced in a target under end-on impact by a
like-metal cylindrical projectile is summarized in this report. The analysis
is then extended to provide the peak axial pressure generated at various
depths in the target when the projectile and target materials are different.
Detailed results are given for impact of aluminum, iron, lead, and copper
into aluminum targets.

Finally, a summary of experimental data for impact of aluminum,
steel, tungsten, and glass projectiles into aluminum targets is given and the
results are discussed in terms of the theory.
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SECTION II

CODES AND COMPUTER FACILITIES

In developing PICWICK II the same basic numerical scheme was used
as in PICWICK I, but magnetic tapes are employed as external storage to
permit a four-fold increase in the number of cells in the computational mesh.
The code now permits approximately a 2000 cell mesh when using the full
visco-plastic model. The code is presently operational in Fortran 2 as a
Chain Job and in Fortran 4 as an Overlay. These two methods of sharing
internal storage were employed so that repartitioning of the mesh could be
accomplished with a minimum of the memory capacity of the IBM 7094. The
repartitioning process allows a doubling of the linear dimensions of the cells
in the computational mesh at desired stages of the cratering process to per-
mit a greater volume of the target to be studied by the same number of cells.
Thus the disturbance described by four cells at the instant prior to reparti-
tioning is described by a single cell immediately subsequent.

The four-fold increase in the number of cells in the mesh provided by
PICWICK IU would normally mean a comparable increase in the computer
time required for each cycle of the calculations. It has proved possible,
however, to reduce the calculation time that would otherwise be required
for an impact problem by about one-third. A Bypass subroutine has been
incorporated which avoids making calculations in that part of the finite-
difference mesh as yet undisturbed by the flow process. This device is
especially effective in the early stages of the flow and after each reparti-
tioning process.

Unfortunately computer time on the IBM 7094 at Eglin has not been
available to utilize the new capabilities of the code. However, provisions
have recently been made to use an alternate Air Force facility. More de-
tailed studies of meteor bumper systems will be made. Impact by hollow
cylindrical projectiles will also be treated.
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SECTION III

REVIEW AND FORMULATION OF ANALYTICAL MODEL

In reference [3] it was shown that for end-on hypervelocity impact of
a solid right-circular cylinder into a semi-infinite medium of like material
the peak axial pressure in the target, its position and speed of propagation,
can be determined accurately from an analytical model. This model as-
sumes that the axial shock frqnt, immediately after impact, moves with the
constant impact shock speed RH until the point Rl is reached where the axial
shock is first attenuated by rarefaction waves arising at impact at the pro-
jectile edge. This attenuation manifests itself by a rapid release of energy
over a short axial distance, the effect approximating a line blast. At the
very beginning of this period the shock front is planar and moving with the
speed of a planar blast wave; however, the line blast effect diminishes the
planar blast wave speed by an amount that is proportional to the speed of the
cylindrically radial blast wave generated by it. As shown in more detail in
reference [ 3] the pressure pulse moves into the target along the axial di-
rection so that its position R, measured from the point of impact, satisfies
the differential equation F 4k 4k2  (2)

[rR -R R0_R 0 J

where A, k, R 0 are parameters of the motion and it is understood that (2) is
valid for R _ R 1 . For 0 5 R 5 Rl, as mentioned above, we have R = RH where
RH is determined from the one-dimensional impact of two semi-infinite
bodies, the corresponding impact interface pressure being denoted by PH-
The parameter kZ has dimensions of a length and can be regarded as a meas-
ure of the average distance over which the line blast effect is operative. We
shall find it more convenient, however, to non-dimensionalize this parameter
and use instead the parameter

k - 2 1/3 14/3
K - L B (L t)1/3= L (3)

where L, L are, respectively, the projectile radius and length.

The peak axial pressure profile can now be computed as a function of
R from the following simultaneous set of three equations:

it 2R 0 + 2K(4)
E E 1- R

k =ýcELXL_(5)N Po (I -x)()

p p(x), x --po/p (6)
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where (4) is (2) in non-dimensional form and Ro/E is given by

R R 2 . (7)

Equation (5) is a combination of two of the Rankine-Hugoniot jump relations
valid across the shock, while equation (6) is the Hugoniot equation of state
of the target medium. The variable p is taken as the density behind the
shock. The energy release point R 1 appearing in (7) is computed from the
formula

LRH/ [cH 2 - 2 k ]lH/2 (8)

where xH is the impact value of x and cH is the impact value of the hydrody-
namic sound speed, namely

cH = XH 2  dp x = xHPo (9)

The pressure profile for R = RIl is conveniently plotted by letting x
be the running variable, taking it in the interval xH < x _9 1. As x varies, R
and p are determined and one then plots p vs R. The function p(x) is normally
quite involved and does not permit an explicit determination of its inverse.

To use equations (4, 5, 6) one must know the parameter values A, K
and Ro. The parameter A is determined by requiring the peak axial pressure
profile to have a point of inflection at R = Rl. In actuality it has a corner
there; little is lost, however, if one approximates the physical process by a
continuous curve with a continuous slope. This assumption leads to an ex-
plicit determination of A in the form

A = RHf(p), (10)

where

f(•) = 51 -440 + 8)3 - 33N-8
f (0) - 8 (1 - 1)(4 - P

and P is in turn computed from the formulas
4d d

dI = PH/ + [I - xHIPH (12)

d2 = 2PH /(l -xH) p'
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where

(dp/dx) , etc.

As v ranges over all hypervelocities of interest, the dimension-
less quantity°$ varies from -I to 0 . The quantity f(p) , however, ex-
hibits variation only in the third decimal place, being approximately equal
to 1.055.

The parameter R .is k~nown once K is available since by substi-
tuting the data (R = RI, ° = R H ) into (4) we get relation (7).

The shock position R along the axis at time t since impact is
obtained by solving the differential equation (Z) and evaluating the constant
of integration for conditions at the point R We find,

R -R/L R (R 3/2R

L R HL LL L

Z R R 3ln R o

+ 7K +--- K (13)
L L L

K 3In +20)

In determining the all-important parameter K use was made of
the PIC WICK code solutions of the partial differential equations defining
the hydrodynamic phase of the impact generated flow. In these solutions
the projectile and target were of like material and the projectile shape
was the standard one for which L = t,. From a study of many such im-
pact cases it was determined that K has the form

K = O(v ,(14)
0

where O is a parameter characterizing the target material. In all these
cases where L = t, we note that L is also equal to L . For differently
shaped projectiles; i.e., for those where L ý t, eq. (14) may still be
valid provided the aspect ratio t,/L does not differ from unity by a factor
greater than about three. To test this hypothesis the form (14) was used
for a case of lead-lead impact at vO = 1 rm/ 'sec with L = 1.8cm and

= 3.b cm, the shape factor here being o/T . It was found that the (R, t)
curve, using (13), matched the hydrodynamic code solutions for this case
almost exactly (see Fig. 16 of [3] )*

*If k were made dimensionless by dividing L instead of L then the form

factor (L/L)1/6 would have to appear in the associated parameter K
b



The manner in which K should be modified when projectile and
target are not of identical material was given a preliminary investiga-
tion by considering impacts of aluminum projectiles of differing bulk
densities into aluminum. PIGWICK solutions were obtained for L 7
shaped projectiles at speeds v = 0.76 and 2.0 cm/11sec. A study of

0
these solutions showed that the form of K given by (14) needed to be
modified by a density factor, namely 1 4 0.15(1 - 6), where 6 = On/Pt
is the ratio of the projectile density to the target density. The cdrre-
sponding profiles matched the PICWICK profiles remarkably well, even
with 8 as low as 1/6 (see the appropriate figures in reference 4 ).

Since

1 + 0.15(1 - 6) 1 + (6 1) -1/ 6 -1/b

for 6 close to 1, it is conjectured here that the appropriate densty
factor for the general case of dissimilar materials should be 6

The appropriate K would then be

K = av- 1/3 - 1/6 (15)
0

The analytical model and the PICWICK computations jointly con-
firm that a thick target sees no essential difference between the like-metal
impacts of geometrically similar projectiles of equal kinetic energies.
This is amply demonstrated in Figures 1,2. Figure 1, which appeared as
Figure 10 of reference 3 , shows the peak axial pressure profiles gen-
erated by the impacts of two equi-energy aluminum projectiles into alum-
inum, one having dimensions ýL= L = 0.2b192 cm * and speed v = 2.0 cm/rsec;

0
the other, larger and slower, with speed v = 0.76 cm/kisec and dimensions

0
L' = 0.49922. The pressure curves have essentially coalesced into one

at about 1.4 cm below the original target surface at a pressure of about 0.3
mb. There is, however, a difference in the times at which the pressure
pulses for the two impacts pass a given axial location R. This is also
shown in Figure 1, where it is seen that the pulse generated by the larger,
slower projectile arrives at an axial location R some 0.35kPsec later than
the arrival of the pulse generated by the smaller faster projectile. This
time lag was observed in the PIICWICK data and was discussed in earlier

reports 1, 2

Figure Z, taken from the work of reference 6 , shows again the
situation involving aluminum projectiles impacting aluminum; however, here
we compare three projectile impacts, all at speed v = 2.0 cm/hsec, but
involving projectiles of differing bulk densities (andyience, for equi-energy,
of differing sizes). The projectiles are of normal density, density 1/3
normal and density 1/b normal. Coalescense of the pressure profiles is
obtained at a depth of approximately 0.8 cm below the target surface at a

pressure of about 1 mb.

These dimensions were selected so that the cylinder would have a volume

equal to the volume of a 3/32" sphere. In this report the gram-centimeter-
microsecond system of units is used throughout.
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Figure 1. Comparison of shock waves produced in an aluminum target in-,
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SECTION IV

EXTENSION OF THE MODEL TO DISSIMILAR MATERIALS

When projectile and target are of dissimilar materials, the first step
in determining the peak pressure profile is the evaluation of the necessary
constants XH, RH, PH, A and Rl. This is greatly facilitated by use of the
simple computer program described in [3] for computing Hugoniot values at
impact. Their values depend on the impact velocity, the equations of state
of impacting materials, and the geometry of the projectile.

The principal question involved in extending the analytical model to
dissimilar projectile and target materials is vhat one should use for K.
PICWICK solutions are presently not available for helping to decide this
directly; however, one can lean on those PICWICK solutions involving target
and projectile of like material but where the projectile has reduced bulk
density (an approximation to porosity). In effect, then, one extrapolates the
form of K given by (15) to be applicable to any two dissimilar materials.
This form can be rewritten in the following interesting fashion:

(E p/M)I/6 d(16)

where E is the kinetic energy of the projectile and Mt is a mass of target
ma~eria~having the same volume as that of the projectile. *' is merely
a / -and so is again simply a numerical parameter characteristic of the
target medium. Thus, K has a physical interpretation, being expressed in
terms of the energy distribution produced in the target medium by the im-
pacting projectile.

Computations were made using the analytical model and the extra-
polated K given by (16) for impacts involving iron, copper, lead, and alumi-
num projectiles. The results are illustrated in Figures 3, 4, and 5.

In Figure 3, pressure profiles are shown for geometrically similar
(R = L) equi-energy projectiles of iron, copper, lead, and aluminum im-
pacting a thick aluminum target at vo = 2. 0 crn/gsec. The aluminum pro-
jectile has L = 0. 26192 cm; the other projectiles then have dimensions in
accordance with energy scaling. These are given on the figure. The
coalescense of the profiles is quite remarkable for the iron and copper.
The iron, copper, and aluminum profiles all coalesce for pressures below
0. 8 mb. The lead profile, however, remains distinct even at pressures
less than 0. 2 mb.

Figure 4 gives pressure profiles for three equi-energy aluminum
projectiles at vO = 2. 0 cm/psec but with differing aspect ratios, namely
t/, = 2, 1, and 1/2. Again the pressure profiles tend to converge and very
nearly coalesce but at pressures less than 0. Z rob.
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Figure 5 shows the pressure profiles of iron, copper, lead and
aluminum projectiles which are equi-energy (with Vo = 2. 0 cm/l•sec) but not
geometrically similar. Using the aluminum projectile with L =-t = 0. 26192
cm as a standard the dimensions of the other projectiles p were computed
f rom

t./L = pAl/Op.P

Thus, all the projectiles have the same radius but differing lengths. Again
the profiles tend to converge but do not completely coalesce even at pres-
sures less than 0.2 rob.
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SECTION V

RELATION TO OTHER INVESTIGATIONS

The peak axial pressure profiles calculated by the foregoing theory
serve as valuable supplementary information to detailed numerical calcula-
tions. A characteristic of numerical solutions obtained with finite difference
schemes is an oscillation of computed pressures about the true value. This
is especially true of particle-in-cell type calculations as a consequence of
the discrete nature of the mass representation. Yet only the detailed numer-
ical calculations describe the complete flow field behind the shock front. It
is the momentum content of this total disturbance produced in the target that
determines the final impact damage.

Detailed hydrodynamic calculation for unlike metal impact have been
reported by Walsh, et all 5) . They concluded that in the hypervelocity
regime the material of the impacting projectile-did not significantly affect
the flow produced in the targer. The projectile aspect ratio was also found
to be insignificant provided it is within a factor of 3 of unity. These conclu-
sions are actually incorporated into our extrapolations of the K in the ana-
lytical theory. The approximate merging of the pressure profiles depicted
in Figures 3, 4, and 5 appear to be in general agreement with these conclu-
sions. The coalescence, however, is not as unambiguous as for the impacts
by geometrically similar equi-energy projectiles of like materials at differ-
ent velocities (Figures I and 12) or of geometrically similar projectiles of
reduced bulk density (Figure 2).

Several experimenters have studied the penetration of projectiles of
various materials into thick aluminum (20Z4-Al) targets. Figure 6 is a
composite plot depicting the crater depth as a function of impact velocity
for aluminum, steel, tungsten, and borosilicate glass projectiles. It is
interesting to discuss the data in terms of the theoretical studies.

The data for the aluminum and steel projectiles are seen to extend
to above their respective threshold velocities for energy scaling. The data
appear to be meshing into the indicated hatched regions bounded by lines
of slope = 2/3. Now, if the cratering process were indeed independent of
the projectile material, the constant C appearing in the penetration for-
mula (1) would depený only on the target material. Consequently, at a given
impact velocity v >v , the following ratio would hold for the steel and

Q oo
aluminum projectiles impacting a target of given material,

(Pc/Ds)Fe - Al (PFe 1/3

(Pc/DS) (l - AAl) / 1 . 43
Al - Al

The centers of the hatched regions in the plots actually satisfy a ratio
closer to 2.

15



VELOCITY (CM11L SEC)

.01 .05 .1 .5 I 5
1 I I I I 1 I I I I I I I ii I I I I

50- d REF. 6 AI - 2024-T3AI
o REF 7 AI" 2024-T3AI
o REF. 8 STEEL- 6061-T6AI

"1 REF. 9 STEEL -• 2024- S Al

E' REF. 6 STEEL -2024-T3AI
A REF 10 TUNG. CARBIDE -- 2024 Al

10O 0 REF I I BOROSILICATE GLASS-'5052-0AI

5-
PC/

A&A

0'0

.5 A 0'N

0

. . .±.. I I I I 1 I 1[f il1 I I I I I pII

.01 .05 .1 .5 I 5 10

V/C0

Figure 6. Experimental data depicting the depth of penetration at indicated
impact velocity. This composite plot was made available by
E. P. Bruce. P is the crater depth and D is the diameter of the
projectile. c
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With these experimental facts in mind, further detailed calcula-
tions should be made to determine the momentum content of the deforma-
tion wave produced in a target by equi-energy projectiles of material
different from that of the target.

The velocities attained in the tests with tungsten projectiles are
considerably below the sound velocity in aluminum; the data are below
the threshold velocity for energy scaling. The penetration increases nearly
linearly with increased velocity until v = .125 cm/M sec. It then increases
to a maximum before falling off slightly with increased velocity for veloc-
ities in the range .14 to .20 cm/ysec. A similar phenomenon was also
observed in studies of impact of tungsten spheres into lead [1Z]. There
the critical velocity range of .05 to .08 cm/ipsec, was found to be associated
with the fragmentation of the brittle tungsten projectile. At higher veloc-
ities the crater bcame hemispherical and the penetration increased in ac-
cordance with v . In Figure 7, the maximum pressure produced in a
tungsten projectfie impacting both lead and aluminum targets is shown as
a function of impact velocity. It is seen that for both target materials and
the critical impact velocities produced a pressure of about .11 to .33 mb
in the projectile. It is predicted that, as was the case with impact of tungsten
into lead, as the velocity is increased well above the critical velocity associ-
ated with the projectile fragmentation penetration will increase according
to vz/3

toy
0

The data for glass spheres impacting aluminum are especially in-
teresting. The projectile is non-metallic and the data extend to muchhigher
velocities, up to 1.2 cm/,sec. Even at the higher velocities, however,th /
penetration is increasing with increased velocity at a rate greater than v
The threshold velocity for energy scaling, vo >1.2, is much higher than 0

that required for the aluminum and steel projectile data. This is a result
of the extremely small dimensions of the glass spheres, D = .005 cm as
opposed to values of D = .3 to .b cm for the bulk of the mestal-metal data.
The effect of size on V* was predicted in an earlier report [z] on the
basis of the visco-plastic model of the cratering process. As the velocity
of the spheres is further increased the threshold velocity for energy scal-
ing will be attained.
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SECTION VI

CONCLUSIONS

An analytical method has been applied to determine the peak shock
pressures experienced by dissimilar materials subjected to hypervelocity
impact. The attenuation of the peak pressures with distance below the target
surface is calculated for equi-mass aluminum, iron, copper, and lead pro-
jectiles impacting an aluminum target at 2. 0 cm/j4sec. The computed pressure
profiles tend to converge at the lower pressure but do not coalesce.

Available experimental data indicate that the proportionality constant
C appearing in the penetration formula (1) depends upon the material of the
impacting projectile. The mass and velocity of the projectile are apparently
not the only considerations. An explanation of the dependence will be sought
in terms of the impedance mismatch at the projectile-target interface. More-
over, detailed calculations using PICWICK II will be made for the case of
unlike metal impact.

PICWICK II will also be used for detailed studies of meteor bumper
systems and for impact by hollow cylindrical projectiles.
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