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ABSTRACT 

Tests were conducted in the 30-Inch Hypersonic Tunnel on the 
Aerospace Research Laboratories,  Wright-Patters on Air Force Base, 
Ohio to determine the effects of Reynolds number and frequency of 
oscillation on the damping-in-pitch derivatives of a 10-deg half-angle 
cone.    Free oscillation data were obtained at a nominal Mach number 
of 20,  at Reynolds numbers,  based on model base diameter,  from 
50, 000 to 100, 000,  and at model oscillation frequencies from 8 to 
45 cps.    Test results are presented,  and comparisons are made with 
modified Newtonian impact theory and an unsteady flow field theory. 

iii 
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NOMENCLATURE 

A Reference area (base area), ft2 

Cm Pitching-moment coefficient, pitching moment/q^Ad ■ 

CmQ [dCmfd{qd/2Vj]  q—0 
q Damping-in-pitch derivatives, 1/rad 

cm.       [acm/5(id/2va>)] i—-o 

Cy_. Number of cycles to damp to a given amplitude ratio, R, cycles 

d Reference length (model base diameter), ft 

f Frequency of oscillation, cps 

I Model and flexure moment of inertia about pivot axis, 
slugs-ft2 

Mß Angular restoring-moment parameter, ft-lb/rad 

MQ Angular viscous-damping parameter, ft-lb-sec/rad 

M'/j Aerodynamic angular viscous-damping-moment parameter, 
ft-lb-sec/rad 

MB Mach number 

p0 Stilling chamber total pressure, psia 

q Pitching velocity,  rad/sec 

qa, Free-stream dynamic pressure, psf 

R Ratio of amplitude of a damped oscillation after a number of 
cycles to the initial amplitude 

Re^ Reynolds number based on model base diameter 

T0 Stilling chamber total temperature, °R 

t Time,  sec 

VB Free-stream velocity, fps 

a Time rate of change of angle of attack,  rad/sec 

0 Angular displacement,  rad or deg 

6 Angular velocity,   rad/sec 
-   ■ 

6 Angular acceleration,  rad/sec2 

u Angular frequency,  2?rf,  rad/sec 

vi 
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ud 
_-.. Reduced frequency parameter,  rad 

SUBSCRIPTS 

o Maximum conditions 

v Vacuum conditions 

w Wind-on conditions 

Vll 
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SECTION   I 
INTRODUCTION 

When an aerodynamic model is tested in a wind tunnel,  it is desir- 
able to duplicate the Reynolds number and the Mach number of its full- 
scale counterpart assuming real gas effects are not of interest.   If the 
body is a dynamic model,  then the model should be tested at the same 
reduced frequency as the full-scale vehicle. 

The only wind tunnel facilities that are available at the von Karman 
Gas Dynamics Facility (VKF),  AEDC for testing at M« = 20 are hotshot 
tunnels which are short run time (50 msec useful run duration) facilities 
which require that the model oscillation frequency be very high (-150 cps) 
in order to obtain dynamic stability data.   The flow velocity in the hotshot 
facility is about 10, 000 ft/sec.   Because of the low velocity and high 
frequency,  compared to flight, the reduced frequencies available in 
these tunnels are on the order of 30 times higher than those in flight. In 
order to establish the role of the reduced frequency (frequency of oscilla- 
tion) in dynamic stability testing in the hotshot tunnels,  it would be 
necessary to compare the data'from the hotshot facilities with the data 
obtained in long run time facilities where full-scale reduced frequencies 
may be duplicated. 

A program was initiated to conduct dynamic stability tests at the 
Fluid Dynamics Facilities Laboratory (ARF), Aerospace Research 
Laboratories (ARL), Office of Aerospace Research (OAS), Wright- 
Patterson Air Force Base (WPAFB),  Ohio,  where wind tunnel facilities 
capable of useful run times of up to 2 min are available.    The tests were 
conducted in the ARL 30-Inch Hypersonic Wind Tunnel using a free 
oscillation, low amplitude (±1.5 deg) dynamic stability balance.    Experi- 
mental data presented in this report were obtained at a nominal Mach 
number of 20,  at zero angle of attack,  for Reynolds numbers ranging from 
50, 000 to 100, 000 and at reduced frequencies ranging from 0. 0019 to 
0. 0107 rad.    Comparisons are made between these experimental results 
and modified Newtonian impact theory and an unsteady flow field theory. 

SECTION  II 
APPARATUS 

2.1   WIND TUNNEL 

The ARL 30-Inch Hypersonic Wind Tunnel,  shown schematically in 
Fig.   1 and fully described in Ref.   1,  is a free-jet facility that is operated 
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in a blow-down fashion using axisymmetric nozzles to generate high 
Mach number airflows.    This facility is operated at Mach numbers 
from 16 to 22 and with Reynolds numbers from 104/ft to 105/ft at air 
reservoir temperatures to 4000°R.    Presently the facility is operated 
at temperatures only slightly above the experimental condensation curve 
for hypersonic facilities (Ref. 2).    A 3000-psia high pressure air stor- 
age station and a 135, 000-cu-ft vacuum sphere system coupled to a 
three-stage vacuum pumping station provide the required pressure ratio 
for establishment of flow.    Storage air is processed with silica-gel 
dryers to a dew-point below -60°F at atmospheric pressure.    The heater 
for the tunnel is a gas-fired,  ceramic pebble bed,  regeneration-type 
storage heater.    In operation, the 12. 5-ft-deep bed of 7/8-in. -diam 
pebbles is heated by a methane-oxygen air burner. 

The facility is presently equipped with a conical nozzle having inter- 
changeable throat sections and a 30-in.  exit diameter.    The nozzle enters 
into a 5-ft cubic test cabin.    The dimensions of the test cabin allow suffi- 
cient room for installation and storage of instrumentation and/or models 
outside the test jet. 

The facility is currently operating with test run times on the order of 
2 min with an established hypersonic isentropic jet (test core) of about 
20-in.  diameter. 

2.2  BALANCE 

The balance is a remotely controlled, pneumatically operated, sting- 
supported,  free oscillation, low amplitude (±2 deg),  one-degree-of- 
freedom system (Fig. 2).    The pivots used in these tests were two sets 
of cross flexures with nominal stiffnesses of 58 and 680 ft-lb/rad. 

The model pivot system is pneumatically displaced to a desired 
amplitude by a set of displacement arms which apply a couple about the 
pivot axis of the balance.   Once the desired amplitude is reached, the 
pneumatically operated releasing piston (Fig.  2) is fired into the set of 
cams which made contact with the set screws located in the displacement 
arms, thereby releasing the static couple. 

Because of the high stagnation temperatures encountered during the 
operation of the tunnel,  a portion of the balance was water cooled by 
means of wrapping copper tubing around the rear portion of the balance 
and internally cooled by air directed on the model bulkhead.    External 
model cooling was provided, when data were not being taken,  by a retract- 
able air cooling device (Fig.  3).    Essentially the external cooling device 
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consisted of nine orifices arranged in a cruciform to provide a uniform 
airflow along the models periphery. 

The time history of the motion of the models was measured with a 
direct-writing oscillograph in conjunction with a strain-gage bridge 
mounted on one of the cross flexures. 

2.3 MODELS 

The models were conical bodies of revolution having 10-deg semi- 
vertex angles, bluntness ratios (nose to base radius) of 0.017, and pivot 
axes locations of 58. 7 percent of the model length (Fig. 4).    The models 
were fabricated from 303 stainless steel.    Two nose sections were 
fabricated, one solid and the other hollow.    These nose sections in com- 
bination with an aft ballast weight enabled the tests to be performed on 
models of two different inertias.    The combination of two pivots and two 
model inertias yielded four dynamic models whose frequencies of oscil- 
lation were 8. 1,   12.6,  28.8,  and 44. 9 cps. 

SECTION  III 
PROCEDURE 

3.1   DATA REDUCTION 

The equations of motion for a free oscillation, one-degree-of-freedom 
system may be expressed as 

I y  - M00 - Hg6 = 0. 

The method for computing the dimensionless damping-in-pitch de- 
rivatives is indicated by the following expressions: 

e =  e0 e
(M*/8Ih sin v^VTt 

M 2 I I    In    R 

Cmq   + Cmi    = M'0  (2VDo/q„  Ad*) 
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The expression for obtaining the aerodynamic viscous-damping 
parameter (M'g) is based on the premise that the structural damping of 
a cross-flexure pivot varies inversely with the frequency of oscillation 
(Ref.  3). 

Correction factors,  to account for the variation of the ratio of 
specific heats,  as a function of stagnation pressure and temperature 
were obtained empirically from flow calculations based on the Beattie- 
Bridgeman equation of state,  (Refs. 4 and 5).    These factors were 
applied to the isentropic flow relationships to obtain V„,  q^,,  and Red. 

3.2  TESTS 

The wind-on damping measurements and the damping measurements 
with wind-off, at atmospheric conditions, were conducted at ARL.    The 
wind-off damping measurements at near vacuum conditions (typically 
10 microns) were conducted at the VKF and evaluated for all four models 
at the same mean amplitudes. 

The wind-on test procedure consisted of cooling the model balance 
system until the steady-state tunnel conditions had been established. 
Cooling was then discontinued,  and the model was displaced and released 
with the resulting motion recorded on a direct-writing oscillograph.    The 
tests were conducted at M,,, = 20,  zero angle of attack, and mean ampli- 
tudes of ±1. 5 deg, for Reynolds numbers ranging from 50, 000 to 100, 000 
and reduced frequencies from 0. 0019 to 0. 0107 rad.    A summary of the 
test conditions is presented in Table I. 

SECTION  IV 
PRECISION OF MEASUREMENTS 

The measurement of the damping- in-pitch derivatives is affected by 
the uncertainties in determining the model moment of inertia (I), the 
angular frequency of oscillation (w), and the amplitude ratio (R>. 

As a result of the above sources of error, the maximum estimated 
uncertainty in measuring the damping-in-pitch derivatives,  Cm   + Cm., 
is ±0.5. q or 
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SECTION V 
RESULTS 

Figure 5 exhibits the effects of a Reynolds number variation on the 
damping-in-pitch derivatives for the four models tested.   The models 
having the two lowest reduced frequencies {0. 0019 and 0. 0030 rad) display 
the trend of increasing dynamic stability with Reynolds number.   The con- 
figurations having the two highest reduced frequencies (0. 0068 and 
0. 0107 rad) display the trend of decreasing dynamic stability with increas- 
ing Reynolds number. 

Figure 6 illustrates the effects of a reduced frequency variation on 
the damping-in-pitch derivatives for near constant values of Reynolds 
numbers.    At the two lower values of Reynolds numbers (50, 000 and 
70, 000) model dynamic stability is increased as the reduced frequency is 
increased;  whereas at a Reynolds number of approximately 100, 000 model 
damping is unaffected by varying the reduced frequency. 

Both unsteady flow field theory (Ref. 6) and modified Newtonian im- 
pact theory (Refs.   7 and 8) are conservative in the prediction of the 
damping-in-pitch derivatives.    The low frequency data (Fig.  5) indicate 
a trend of increasing with Reynolds number and would be expected to 
approach the theoretical predictions at higher Reynolds numbers where the 
theory should be more applicable. 

SECTION  VI 
CONCLUSIONS 

A wind tunnel test program was conducted in the ARL 30-Inch Hyper- 
sonic Tunnel to determine the effects of frequency of oscillation and 
Reynolds number on the dynamic stability of a 10-deg half-angle cone.   Con- 
clusions based on these tests are: 

1. Increasing the frequency of oscillation increases the dynamic 
stability at low Reynolds numbers but does not significantly 
affect it at high Reynolds numbers. 

2. Increasing Reynolds number may dynamically stabilize or desta- 
bilize a model, depending on the frequency of oscillation. 

3. Both modified Newtonian impact theory and unsteady flow field 
theory are in poor agreement with these measured data. 
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Fig. 3   Model-Balance Installed in Test Cabin 
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All dimensions are in inches. 
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b.   Photograph 

Fig. 4   Wind Tunnel Model 
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TABLE  1 
TEST SUMMARY 

Entry 
°R 

Po- 
psi 

v.,            0, 
fps           deg cps rad 

Red 

Sep1 ,.   64 2 3       2300- »2400 1000- -2Q0O 5400          il 5 8.1 0.0019 48,000—94,000 

i 

12.6 0.0030 49,000 

Dec.   64 8.1 0.0019 51,000—100,000 

12.6 

28.8 

0.0030 

0.0068 

54,000—104,000 

54,000—101,000 

• 44.9 0.0107 48,000— 92,000 
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