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ABSTRACT

Measurements obtained during recent testing in the Propulsion
Engine Test Cell (J-2A) are analyzed to determine the accuracy of
measuring liquid-propellant rocket engine performance. The eguip-
ment and calibration techniques used to obtain the data and the sta-
tistical methods employed for error analysis are discussed. The
results demonstrated that the one standard deviation errors in thrust,
chamber pressure, cell pressure, oxidizer flow rate, and fuel flow
rate measurements are less than 10,110, 20, 198, +0.769, 0, 181,
and 10. 150 percent, respectively. The accuracy of the primary cal-
culated performance parameters, thrust coefficient, specific impulse,
and characteristic velocity, are 10,226, 10. 166, and 0. 234 percent
{one standard deviation), respectively.
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SECTION |
INTRODUCTION

The primary product obtained from tests conducted in the Propul -
gsion Engine Test Cell (J-2A)} is the published technical information and
data. These data are of limited value unless some statement is made
concerning the accuracy and precision of the measurements used to
obtain the data,

The purpose of this report is to characterize the quality of per-
formance data by stating the possible errors in measurement of engine
test data and to combine these by standard statistical methods to show
the guality of measured and calculated performance parameters. The
primary rocket performance parameters, thrust coefficient, character-
istic velocity, and vacuum specific impulse, are calculated from the
measured data by the following equation:

Cr = F/Pc A,

[e]
fl

* Pc A.tg/‘ift

Iep = F/w

where
F = Fm + PEl A-ne

This report presents the accuracy of steady-state measurements of
Fm. Pecs %o, Wi, Pa, Ape, and A; by demonstrating the precision of the
data (random error) and by estimating the magnitude of systematic
errors. These errors are then combined by '""propagation of error"
mathematics to compute the standard deviation of the parameters,

Cr., c*, and Igp .

The data used for these analyses were obtained during three phases
of testing (I, II, and III} of the LEM Ascent enginel. For Phases I and
I1I, the prototype LEM Ascent engine was a 3500-1b nominal thrust,
ablatively cooled engine. For Phase II, a water-cooled, hard-contour
engine was used. Firings were performed at pressure altitudes rang-
ing from 77,000 to 108, 000 ft and at temperatures from 70 to 80°F.
Phases I, II, and III consisted of twelve, twenty-eight, and nine firings,
respectively.

1The results of these tests are published in four AEDC technical
reports. Ome of these is a summary report covering all three phases.
The other three reports cover the phases separately,

3
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The data analyzed were obtained from the steady-state portion of
rocket firings using high resolution recording systems for all measure-
ments except propellant flow rates, Analog transducer signals of axial
thrust, chamber pressure, and cell pressure were converted to fre-
quency form (20,000 to 80, 000 cps) for recording on magnetic tape.

Propellant flow data were derived from flowmeter pulses generated
by turbine-type flowmeters (proportional to volumetric flow rate) and
were recorded on magnetic tape. Analog tape data were reduced to engi-
neering units by a digital computer and were averaged and printed at
0.2-sec intervals,

SECTION I
APPARATUS

2.1 TEST CELL

The Propulsion Engine Test Cell (J-2A) (Fig. 1 and Ref. 1) is an
ultrahigh altitude simulation, rocket engine test chamber which can
provide pressure altitudes in excess of 400, 000 ft. A complete descrip-
tion of the test cell can be found in Ref. 2.

The test cell was operated in a conventional manner for the tests
discussed; that is, no ultrahigh altitude pumping or cryogenic systems
were used. The pressure altitude was obtained by facility exhausters,
mechanical pumps, and a rocket exhaust-driven ejector-diffuser.

2.2 ENGINE THRUST MEASURING SYSTEM

The rocket engine was rigidly mounted in a thrust cradle which was
supported by five universal flexures as shown in Fig. 1, Two of these
flexures were mounted in a vertical plane on the centerline of the engine
to provide vertical support to the cradle and to prevent pitch and vertical
movement. Three flexures were mounted in horizontal planes, Two of
these flexures were located in a horizontal plane on the centerline of the
engine to restrict horizontal movement and yaw. The other flexure was
displaced from the centerline to prevent roll of the cradle about the
centerline or engine axis., The system of flexures allowed the cradle
freedom of movement axially with a minimum of interacting forces. The
axial force of the engine was restrained by the thrust butt through a load-
cell train consisting of two flexures and two load cells mounted in tandem
on the centerline of the engine. The flexures were attached to the cradle
and to the thrust butt.
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The propellant supply lines, cooling water lines, and instrumenta-
tion connections to the engine and cradle were installed in a manner
which would minimize tare loads,

2.3 INSTRUMENTATION

The primary measured parameters required for this analysis were
rocket engine thrust, chamber pressure, propellant flow rate, and cell
pressure,

2.3.1 Engine Thrust

Two 0 to 5000-1b, dual-bridge, strain-gage-type load cells were
mounted in series (Fig., 1)} and provided four thrust data channels. The
tnrust measuring system (Fig. 2) was calibrated by using an in-place
deadweight calibrator. The calibrator is remotely controlled and applies
known incremental forces on the cradle assembly in the same direction
as engine thrust, This calibrator allows in-place deadweight calibrations
at altitude conditions and has a mechanical advantage of 10.22, The
calibrator weights were corrected for a local gravity constant of
32, 141 ft-lbg/sec2-1bm.

2.3.2 Propellant Flow Rate

The propellant flow measuring system consisted of two 1-in, volu-
metric, turbine-type flowmeters and two resistance temperature trans-
ducers in each propellant supply line as shown in Fig. 3.

Before the first test, the flowmeters and sections of the propellant
supply lines (immediately upstream and downstream of the flowmeters)
were removed and bench calibrated as an assembly using propellants as
the flowing ftuid. Before the first firing and during the test series, the
flowmeter sections were bench calibrated using water as the flowing
fluid (Fig. 4). Corrections for the difference between the propellant and
water calibrations (viscosity effects) were applied to all subsequent water
calibrations of the flowmeters,

Since the flowmeter calibrations based on the propellants as the work-
ing fluids were not accomplished at AEDC, no attempt was made to statis-
tically determine the accuracy of thoge calibrations (the viscosity
corrections),

Because the flowmeter measured volumetric flow rate, it was neces-
sary to know the specific gravity of the propellant in order to convert the
volumetric flow rate to a weight flow rate. The specific gravity was
determined by measuring the temperature of the propellant immediately
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downstream of the downstream flowmeter. The corresponding specific
gravity was determined from a graph of temperature as a function of the
specific gravity. Specific gravity data for this graph were measured in
the laboratory from propellant samples obtained from each propellant
tank prior to each test period.

Propellant temperatures (used for specific gravity determination
during testing) were measured with resistance temperature transducers
(Fig. 5). This instrument contains a platinum resistor in an a-c bridge
circuit, As temperature changes, the bridge is unbalanced, and a voltage
proportional to temperature results.

2.3.3 Chamber Pressure

Chamber pressure measurements were made with strain-gage-type
transducers, The transducer outputs were analog voltages proportional
to pressure {Fig. 6).

Calibrations of the pressure transducers were performed in two dif-
ferent ways., For Phages I and II, the pressure transducers were bench
calibrated in the laboratory using a system of air deadweight gages as
the standard. For Phase III testing, in-place calibrations were performed.
The secondary standard used for the in-place calibrations was a variable-
reluctance-type pressure head,

2.3.4 Cell Pressure

The device used to measure test cell pressure was a variable-
capacitance sensor (Fig, 7). This instrument contains a taut metal
diaphragm which forms the center plate of a three-plate capacitor.

One side of the diaphragm is cpen to cell pressure, while the other side
is exposed to a known reference pressure, The capacitance sensor
forms an a-c bridge circuit with an excitation transformer. As pres-
sure deflects the diaphragm, the bridge is unbalanced, and a voltage
proportional to the pressure is developed and is ftransmitted to the re-
cording system.

The capacitance sensors were calibrated prior to installation in the
test cell by using a precision micromanometer as a pressure standard,
The capacitance sensors were calibrated in the cell by placing a known
voltage change in the a-c bridge circuit and correlating the analog out-
put with the laboratory calibration.

Heaters in the cell pressure sensors maintain the head temperature
within specified limits. The heaters are also used for vacuum bakeout
of the sensors up to 300°F. This allows vacuum outgassing of any residue
accumulated on the sensing components.
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2.3.5 Recording Systems

The recording systems used for thrust, chamber pressure, cell
pressure, and propellant temperatures each consisted of a voltage-
controlled oscillator, recording amplifier, and one or more channels
of a magnetic tape recorder. The voltage-controlled oscillator pro-
vided a linear frequency deviation proportional to the analog voltage
input signal from the transducer, The oscillator operating frequency
range was approximately 20, 000 to 80, 000 cps. This 60,000-cps range
corresponded to the range of the measurement, The measurements
were recorded in frequency form on the magnetic tape and were aver-
aged and printed at 0.2-sec intervals by a digital computer,

The recording systems were electrical resistance calibrated im-
mediately before each rocket firing while the transducers were at alti-
tude conditions,

The propellant flow rate recording systems did not utilize the voltage
controlled oscillator. The flowmeters generate pulses {proportional to
volumetric flow) which are amplified and recorded directly on magnetic
tape. A digital computer determined the number of pulses per unit time
from the magnetic tape and printed a corresponding flow rate at 0, 2-sec
intervals,

SECTION Il
ANALYSIS

3.1 STANDARD DEVIATION

The standard deviation is the most accepted measure of variability
of randomly distributed data. A discussion of the standard deviation
and its derivation may be found in numerous text books dealing with
statistical analysis. It must be emphasized that the standard deviation,
in practice, is a statement of probability based on the assumption that
the data are randomly distributed about a mean. The standard deviation
is the square root of the mean-squared deviation of the individual meas-
urements from the mean of the population and is designated sigma (o),

T -

o o [ (x -1

e —
1]

This equation is valid only when n represents the total number of
possible observations (the entire population). In practice, the standard
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deviation S$(X) is estimated from a sample of the total possible observa-
tions and is defined as

S{X) = ’(E {X-—i_}i\.
n-1

In this equation, the denominator under the radical is reduced by one
from n ton -1, causing $(X) to be conservatively large. S{X) is, there-
fore, an estimate of ¢ based on a sample of less than the total number

of possible observations. As the ratio of — :1 approaches one, S{Xi
approaches o.

The equation of the normal distribution curve in terms of the rela-
tive frequency of occurrence {as a function of the variable X), the mean
X, and the standard deviation ¢ {5(X) is often used interchangeably) is

- ;(x_—i)’
Y = 1_ e 2 [
oy 2x

The distribution of all the data obeying the normal curve can be
established by two numbers: the mean (X) and the standard deviation
(¢) . Sketch 1 shows the frequency distribution of observations following
the normal law. The abscissa is scaled to the magnitude of errors,
whereas the ordinate measures the number of observations.
Y (Frequency)

3o 2¢ 1o X 1lc 2a 30
SKETCH 1

The percentage of the total population that lies within the various
ranges about the mean are shown in the following table:

Percent of Total Data Error
50,0 X t 06740
68.26 X + 1.000¢
90.00 X z 16450
95.00 X + 1.960 ¢
95.45 X & 20000
99.73 X & 3.0000
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3.2 COMPARISON OF OBSERYED SAMPLES AND THE NORMAL DISTRIBUTION

An analysis was made to determine if the observed data were randomly
distributed (followed the normal law) so that standard statistical methods
could be employed. The method used was the comparison of histograms
of the observed data with the normal curve calculated from the observed
mean deviation of the data from the average values of redundant measure-
ments and the estimated standard deviation, S$(X), The comparisons of
histograms and calculated normal curves (Fig. 8) show the character of
the randomness of the data. The data presented in these figures have
been reduced to the difference between measurements of redundant chan-
nels and the mean (X). The mean is the arithmetic average difference
between individual channels and the average of the redundant channels
(corresponds to X in the previous equations), S$(X) (the best estimate
of o) was calculated from the equation

— = .

The abscissa of the histogram was divided into finite increments,
and the number of observations in each increment was counted. An in-.
spection of the histograms shows that the observed data are normally
distributed to a degree sufficient for employment of the best estimate
of the standard deviation, S{X), for the statistical analysis.

3.3 ERROR NOTATION

During a test firing, primary data (Fy, P., w, and P,) were meas-
ured by multiple instrumentation, and steady-state values {observations)
were determined from averages of each channel measurement over a
predetermined time interval (0.2 sec). A typical plot of these observa-
tions and the error notations are shown in Sketch 2,

Systematic True Value

Absolute

Trend of Channel 1
Trend of Channel 2

| | L&Random

Time
SKETCH 2

Measured
Value
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Error definitions are as follows:
3.3.1 Absolute Error

The absolute error of a single observation represents the difference
between the observed value and the true value.

3.3.2 Random Error

The random error of a single observation represents the difference
between the observed value and a value associated with the trend of the
data. Random errors are those which cannot be directly established
because of random variations in the system. (Random variations must
follow the normal distribution, Otherwise, these variations are biased
and, therefore, are not completely random.) Measurement electronics
are so improved that random errors of instrumentation systems make
up a very minor part of the total error, For instance, consider the
errors in chamber pressure measurements of the Phase 1I series of
testing. The total estimated error of P: is +0. 201 percent, whereas
the random error is +0, 007 percent.

3.3.3 Systematic Error

The systematic error represents the difference between the best
estimate of the true value and the value associated with the trend of the
data. By assuming that the systematic errors are randomly distributed,
these errors may be shown to be related to the average difference be-
tween duplicate data. The following analysis shows that the mean dif-
ference gives an estimate of the lower limit (one ¢) of the systematic
error,

In Section 3. 1, the probability density curve was given by
-2
-1 (;_-_1)

1 c
Y = —— €
oy2n

where X is the mean of the differences between the average of the redun-
dant measurements and the measurement. For ease of calculation, let

X = 0 so that
Y = 1 __ e__;_(%)
o\ 2n
12
If h = i/T , then Y = -—V,h= e " * ., The term, h, is now a measurement
o r

of precision; with a large value of h, the probability density curve has a
sharp high peak with narrow limits, and with a small value of h, the
density curve is shallow with a large spread.
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12y
From the equation Y = v;?_ et , the probability of an error
w

between X and X + AX is the area under the curve between X and
X +AX or Y - AX (see Sketch 3).

Y - AX = ( LY XZ)AX

v
X AX
3o 20 1o X lo 20 30
SKETCH 3

The probable number of errors of size X to X + AX in n measure-

12 412
ments is n times this probability or —-3—%— e VX ) AX, and the sum of

the errors of this magnitude is the product of the magnitude of a single
2yl
error, X, times the number of errors, or (—’\‘/n-__—" e B X )AX.
L)

The sum of all errors of all sizes is

\ _hzxi
e = f Xoh . . dX

+
2[[1'1 _hzxz
- _2nh f e XdX

- ——20h =X (L9 pr)xdx
(—2n') V7 .,f ° (

2 ok bl
I WS B
h\/rr o

Therefore
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The arithmetic average error of a set of single channel measure-
ments is equal to the sum of all errors divided by the number of
observations,

T = p Y - n - 1
n nh\fir_ h\/;
_ 1 = - oV
and YE) T Vr
or o = ?\/_2—‘}?

For multiple channel measurements, the variance of the average
is merely the variance of the individual channel divided by the number
of channels. The standard deviation is proportional to the square root
of the variance so that for multiple channels

iV
V2 VN

where N is the number of channels and 7=A.

o =

The estimate of the lower limit of the systematic errors is tabu-
lated in Tables I through IV.

3.4 VARIANCE

The variance is the mean squared deviation from the mean which
is simply ¢* [ or S(X)* when the standard deviation is estimated from a
sample ] and is a basic measure of the distribution.

The pooled estimate of the standard deviation of a population which
has known sample variance is

_ (0, ~1)S(X)* + (0, - 1)1S(X)*+ - -
§(X) - \[ (o — D+ (g, =10+ - "

This equation is good for a unique population only; that is, all S(X)'s
must be sample deviations of the same error., The S$(X) values for the
systematic and random errors were determined by this equation.

3.5 CALIBRATION STANDARD
In order to calibrate any measuring device, a basis of comparison

or true value must be found with which to compare the outputs of the
instruments. Absolute accuracy is unobtainable, even in the laboratory.

10
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The following table lists the calibrating equipment, the one sigma
errors, and the parameters concerned. Errors of calibrating equip-
ment are traceable to the National Bureau of Standards. Transfer
errors are included where applicable.

Parameter Description of Equipment lo
Thrust In-place deadweight calibrator 0. 100 percent
Chamber Pressure Laboratory air deadweight '
calibrator 0. 12 percent
| In-place reluctance-type standard 0. 069 percent
Cell Pressure Micromanometer pressure 0. 104 percent
standard
Propellant Flow Flow bench calibrator 0. 100 percent
Rate Hydrometer 0. 0005 1b/1b
Mercury thermometer {for SG
versus temperature curve) 0. 2°F

3.6 PROPELLANT FLOW MEASUREMENT ERROR

In addition to random error and systematic error, flow data are
subject to the additional errors in the flowmeter calibration constants
(see Section 2, 3. 2) and specific gravity (SG) determination,

The specific gravity of the propellant is a function of temperature
and may be determined from the following typical equations:

5Go = 1.334 (at 0°F) + (- 0.001185/°F) (TF)

I

5G¢

1]

0.9359 (et GF) + (- 0.000509/°F) (TF)

The error in the determination of the propellant specific gravity is then

a function of the errors in the hydrometer readings of a propellant sample,
in temperature measurements of the laboratory samples, and in the pro-
pellant temperature measurements in the supply lines during testing,

The le errors in specific gravity readings of the propellant sample were
0.0534 and 0. 0328 percent for fuel and oxidizer, respectively. The errors
in specific gravity resulting from temperature measurement of the sample
were (0, 0108 and 0. 0154 percent for fuel and oxidizer, respectively. The
lo errors in specific gravity readings, which can be attributed to the errors
in temperature measurement of the propellants in the supply lines, were
0.0152 and 0.0164 percent for the fuel and oxidizer, respectively. The
deviations in the propellant flows caused by these deviations in specific

v

11
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gravity determination were:
S{wo)SG

0.0386 percent

S(#w[)SG = 0.032B percent

3.7 AREA MEASUREMENTS

The diameter of the nozzle throat and exit were measured with in-
side micrometers. An average diameter reading was used in the area
calculation. Two micrometer measurements each were taken at a mini-
mum of four different locations in 45-deg increments. The rocket nozzle
throats measured for this series of tests were constructed of aluminum
or ablative material, The pre-fire throat measurements were accurate
to 0. 0022 percent (one sigma). Post-fire measurements of ablative
material throats are less accurate than pre-fire measurements because
of erosion and the soft texture of the charred surface material. Post-
fire ablative throat measurements were accurate to 0. 13086 percent
{one sigma). The one sigma value for pre-fire nozzle exit diameter
measurements was 0.00416 percent. The one sigma value for post-fire
ablative nozzle exit diameter measurements was 0.0150 percent.

These measurements and results are presented in Table V. Since
the area is proportional to the square of the diameter and since the one
sigma error of the diameter measurements is much less than 1. 00, the
error in the area is twice that of the diameter measurementl, The 1o
errors for pre-fire ablative and hard contour engines were:

]

S(AD) 0.00440 percent

S(Ape) 0.00834 percent

Post-fire ablative measurements were:

S(A,) 0.278 percent

]

S$(Ane) = 0.0302 percent

it

1{1+¢)*-1 when ¢ is small equals 2¢

12
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SECTION 1V
RESULTS

4.1 ENGINE THRUST MEASUREMENT

The number of observations, system errors, and random errors of
the individual firings are tabulated in Table 1. The values of 1o sys-
termnatic error and random errors determined from these data are:

S(F)g = 0.010 percent

S5(F); 0.005 percent

In addition,

S(FXwe = 0.10 percent (deadweight calibrator)

The standard deviation of the thrust measurements is the square
root of the sum of the squares:

S(F) = YSF)s? + SIF) + S(F)? dwe
= 0.101 percent
4,2 CHAMBER PRESSURE MEASUREMENT
The number of observations and the calculated values for §(P:), and

S(P;), for individual firings are tabulated in Table II. The error values
for those firings using laboratory calibrated transducers are:

S(Pe )5 0.159 percent

S(Pe), 0.008 percent

S(P;),, = 0.120 percent console calibrated

5(P.} \IS(PC): + S{Pc)? + S(Pc)? cc

n

0.198 percent
The errors for those firings using in-place calibrations are:

S(Pc)! = 0.170 percent

[lj

5(Pe¢), 0.019 percent

13
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S(P. )ip 0.0693 {in-place calibration)

S(P.) = VS(P)? + 5(P)? + S(P)?

ip

0.183 percent
4.3 PROPELLANT FLOW RATE MEASUREMENT
4.3.1 Oxidizer Flow Rate Measurement
The number of observations and the calculated values of 5(w,), and

S{w,), for individual firings are tabulated in Table Illa. The 1o errors
are:

S(#¥s), = 0.141 percent

S(ws), = 0.040 percent

S(wo}, , = 0.100 percent

S(wolg; = 0.0386 percent

S(Wwe) = VSGWo)F + S(Wo)? + Slig) 2 + Shvoll,

it

0.180 percent

4.3.2 Fuel Flow Rate Measurement

The number of observations and the calculated values of S(wp), and
5(w¢), for individual firings are tabulated in Table IIIb, The l¢ errors
are;

S(%f), = 0.073 percent

S(w() = 0.079 percent

S(ws),, = 0.100 percent

S{wp)g; = 0.0328 percent

S(wi) = VS + SG? + St 2 + Sl

0.150 percent

14
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4.3.3 Tote! Propellant Flow Rate

The total propellant flow rate deviations are estimated from the
standard propagation of errors for addition to be 0.125 percent (one
gigmal.

4.4 CELL PRESSURE MEASUREMENT

Cell pressure was the only measured condition which did not attain
steady-state during any of the firings, During the 30-sec firing, the
systematic errors were unusally high, The systematic errors recorded
during two long duration firings were much less, indicating the effect of
transient data on cell pressure accuracy. The resulis obtained during
the long duration firing are presented below for comparison.

The number of observations and the calculated values of S$(Pa.), and
S(Pa), for individual firings are tabulated in Table IV, The error values
are:

S({P, ). = 0.673 percent

§{(Pa), = 0.339 percent
S{Pa}, = 0.104 percent (calibration)
S(Pa) = \S5(Pg)! + S(Pa)} + S(Py)?

0.751 percent

The errors for the long duration firings are:

S{Pa), = 0.147 percent

S5({P,), 0.403 percent

Ir

S(Pa), = 0.104 percent (calibration)

S(P,} 0.441 percent

15
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4.5 ACCURACY OF THE PERFORMANCE PARAMETERS

It can be shown (Ref. 3) that the error of any function (Q) of inde-
pendent quantities {q,, q,, q,, j+- qu) whose errors (R,, R,, R,, --- Ry}
are known, and if ¢ is a product function of independent quantities,
the errors can be expressed by R = vR? + R + R,;? + --- Ry when the
errors are expressed in percentages. When 0 is a sum or difference
function of the independent quantities (qu),then the q’'s must be weighted
before they are expressed as R, . By using these relationships, the
errors of the performance parameters were established.

The equation for vacuum thrust is
F = Fm + Pg Ane

The deviation of vacuum corrected thrust is

S(F) \IDI S(l'—"]m2 + Dz S(Pa) S(Ane):

0.110 percent

D, and D, = weighting factors for addition propagation of errors

where

Fr
D, = —!
P, A,
D, = _AF_C
The equation for thrust coefficient is
_ F
CF = F.%

The deviation of thrust coefficient for tests using laboratory calibrated
chamber pressure transducers was

S(CF) = VYSIM* + S(P)* + S{A)?

0.226 percent

The deviation of thrust coefficient for tests using in-place calibrated
chamber pressure transducers was

S(Cf) = 0.214 percent

The percentage error in I, from the equation I, - - was
4

SUsp) = VS(F)* + Siwy)?

0.166 percent

16
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The percentage error in ¢*, from the equation ¢* = P, A, g/, was

S(e*) = YS(P)? + S(A)? + S(wy)?

The deviation in ¢* for those tests using laboratory calibrated chamber
pressure transducers was

S(c*) = 0.234 percent

The deviation in ¢* for those tests using in-plac\e calibrated chamber
pressure transducers was

5(c*} = 0.222 percent

SECTION V
SUMMARY OF RESULTS

The accuracy of measured steady~state engine data obtained during
recent testing in the Propulsion Engine Test Cell (J-2A) has been deter-
mined and is stated in terms of one standard deviation, S(X), as a per-
centage of the steady-state point:

Thrust, P S(F) = 0.101 percent
Chamber pressure, P.

{laboratory

calibrations) S(Pc) = 0.198 percent
Chamber pressure, P,

(in-place

calibrations) S(P.) = 0,183 percent
Propellant weight

flow, wy; S{w() = 0.125 percent
Throat area, A, S{A1)} = 0.0044 percent

Nozzle exit area,
Ane S(Ane) = 0.0083 percent

The 1o errors of the calculated engine performance parameters,
F, Cr, Lsp, and <*, from the measured data were:

IL.aboratory with Resist-

In-place P, ance Substitution P.

Calibrations Calibrations
Vacuum thrust, S(F) 0.110 percent 0.110 percent
Vacuum thrust coefficient, ${Cr) 0.214 percent 0.228 percent
Specific impulse, S(Igp) 0. 166 percent 0.166 percent

Characteristic velocity, $(c*) 0.222 percent 0,234 percent

17
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THRUST MEASUREMENT SYSTEMATIC AND RANDOM DEVIATIONS

Firing Number

S(F)s , percent

S(F')y, percent

I1-03
2-02
3-02
4-02

II1-02
-04
-05
-06
-07
-08
-10

II3.13
-14
-15
-16
-17
-18
-19
-20
-21

II3.22
-23
-24
-25
-26
-27
-28
-29

101
-02
Mz _g1
-02

nI3-p1
-02

37
38
38
38
65
65
65
65
65
65
65

65

85
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
44
364
44
364

44
364

.00168
. 00500
. 00390
00461

. 002538
.00361
. 00455
. 00578
00611
.02138
. 00374

00407

. 00334
.00518
.00396
. 00420
. 00660
. 00480
.00743
. 00510
. 00324
. 00462
. 00558
.01195
. 00390
. 00850
. 01037
. 01564

.01229
.01077

. 01209
. 008922

.01741
. 01850

D0 O OO0 OO0 O0ODUO00 OO0 OCOO0 O QOO0 OO

L0 DO OO0 OO0 O000CO 0O0OC0COOoCOOOO O OO0 OOO S

. 00441
. 00328
. 00493
. 00373

. 00655
. 00726

00664

. 006864
. 00808
. 00563
. 00557

. 00635

. 00734
. 00680
. 00626
. 00688
. 005682
. 00706
. 00646
. 00715
. 005189
. 00462
. 00537
. 00501
. 00568
. 00509
. 00587
. 00552

. 00108
. 00233

.00158
. 00553

.00129
.00162

S(F)s = 0.010 percent
S(F) = 0.005 percent
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TABLE I}
CHAMBER PRESSURE MEASUREMENT SYSTEMATIC AND RANDOM DEVIATIONS

a. Using Laboratory Calibrations

Firing Nomber n S(P¢), , percent S(Pc),, percent
I-03 37 0.0034 0.01701
I3-02 as 0.0545 0.00801
I4-02 38 0.0245 0, 00909
II1-02 65 0.0104 0. 00540
-04 65 0. 1650 0.00720
-05 65 0, 1400 0, 00581
-086 65 0. 1440 0. 00602
-07 65 0.1570 0. 00562
-08 65 0.1330 0, 00502
-10 65 0, 1690 0. 00441
II2-13 65 0. 1730 0. 00553
-14 65 0.1330 0, 00625
-15 65 0. 1430 0. 00564
-16 65 0, 1660 0. 00636
-17 65 0. 1460 0. 00439
-18 65 0. 3250 0.00475
-19 85 0. 1470 0.02393
-20 65 0. 1400 0. 00635
-21 85 0,1510 0.00581
113-22 85 0.1620 0. 00452
-23 85 0. 1660 0.00537
-24 85 0. 1460 0.00437
-25 85 0,1643 0.00487
-26 65 0.1701 0. 00644
-29 65 0.1522 0.00699
-28 65 0. 1660 0. 00487
-29 65 0. 1609 0, 00505

S(Pc), = 0.159 percent
S(P.), = 0.008 percent
b. Using In-Ploce Calibrotions

Firing Number n S(P,_-). » percent S(Pc}, » pereent
1111 -01 44 0. 1648 0. 02050
-02 364 0, 0866 0.09350
III2-p1 44 0. 1434 0,01388
-02 364 0,2382 0.00258
II13-01 44 0. 1552 0. 00252
-02 364 0, 1488 0.00530

S(Pc), = 0.170 percent
§{P¢), = 0.019 percent
32



TABLE Il
PROPELLANT FLOW RATE MEASUREMENT SYSTEMATIC AND RANDOM DEVIATIONS

AEDC-TR=55-51

a. Oxidizer
Firing Number n S{Wwo),, percent | S{+,)_, percent
I1-03 37 0.0173 0, 0596
12-02 38 0.1177 0. 0548
I3-02 38 0. 3634 0, 0433
I4-02 38 0.1422 0.0521
113-23 62 0.1440 00,0785
-24 65 0.1472 0.0510
-25 69 0, 1642 0. 0657
-26 65 0.1477 0.0644
=27 65 | 0.1417 0.0701
-28 85 0. 1498 0, 0708
-29 65 0. 1504 0.0575
III1-01 44 0.1122 0.0204
-02 364 0.1202 0,0165
m12-01 44 0.1286 0.0130
-02 364 0.1314 0,0176
I113-01 44 0,1117 D,0218
-02 364 0.1222 0D.0182
S(wo), = 0.141 percent

S(we), =

0.040 percent
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34

b. Fuel

TABLE Il (Concluded)

Firing Number

5 (V'\-'f)s , percent

S(wi),, percent

II1-p2
-04
-05
-06
-07
-08
-10

II3-22
-23
-24
-25
-26
-27
-28
-29

1I11-01
-02
III2-01
-02
II3-01
-02

B5
65
65
65
65
65
65

65
65
65
65
65
65
65
65
44
364
44
364

44
364

. 1380
. 1349
. 0792
. 1248
. 1268
.1128
.0011

. 0631
. 0222
. 0432
. 0481
. 0426
. 0200
. 0320
. 0404
.0516
. 0535
. 0531
. 0371

. 0597
. 0669

CO o0 OO0 D000 OD OO0 DOOO

SO 0DC OO 00O COoOO0O0DDO0OOCOCOoOoCD

. 1157
. 0961
. 0863
. 1110
. 1101
. 1347
. 0836

. 1364
. 1098
. 1068
. 1061
. 1181
. 1062
. 1202
. 1297
. 0735
. 0288
.0275
.0273

. 0240
. 0264

S(\i’[)! = 0.073 percent
S(%¢), = D.079 percent




TABLE 1Y

CELL PRESSURE MEASUREMENT SYSTEMATIC AND RANDOM DEVIATIONS

AEDC-TR-65-51

Firing Number ! n | 5(Pg), , percent S(Pa}, , percent
IIz.13 : 65 0,6035 0.2420
-14 65 0.6741 0. 0838
-15 65 0.6211 0. 1077
-18 65 0.7147 0. 2440
-17 65 1. 1300 0. 2357
-18 65 1,0820 0, 2203
-19 65 1,2474 0. 2429
-20 65 1. 3442 0, 2439
-21 65 1. 3461 0, 2525
1101 44 0.4318 0. 3560
1I2-01 44 0,3933 0,3574
-02% 364 0,0592 0, 4236
III3_p1 ' 44 | 0.1990 0.3453
-02% 364 i 0. 1965 0.3818

S(Pa), = 0.673 percent
S(Pa), = 0.339 percent

* Long Duration Firings
S(Pg), = 0.147 percent
S(Pn), = 0.403 percent
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@. Pre-Fire Nozzle Throat

TABLE V¥
CALCULATED PRE- AND POST-FIRE DIAMETER MEASUREMENT DEVIATIONS

I
Firing Series | Reading No. 1 Reading No. 2 A 5 & x 107"
I 4. 930 4. 930 0 0 0
4,929 4,930 0.001 0. 005 0. 25
4,930 4,830 0 0 0
4.930 4.930 0 0 0
Iz _ 4,947 4.947 0 0 0
I 4,946 4,947 0.001 0. 0005 0. 25
I 4,947 4.948 0,001 0. 0005 0. 25
i 4,948 | 4.948 0 0 0
I3 4.947 | 4.850 0.003 0.0015 2, 25
4. 944 4.951 0,007 0.0035 | 12,35
4,943 4,943 0 0 0
4.944 | 4.943 0,001 0.0005 0. 25
I4 4.935 | 4.935 0 L0 0
4,936 | 4.936 0 o 0
4. 936 | 4.934 0.002 | 0.0010 1.0
4,933 f 4,934 0.001 0. 6005 0.25
38 =16.85 x 107
n = 16
Diam = 4.940
S5(X) = 0.00215 percent
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TAB LE' Y (Continved)

b. Pre-Fire Nozzle Exit

Firimg Serles Reading No. 1 Reading No. 2 A | ] : 5 x 107
I 31,321 31,320 0.001 1 0, 0005 0,25
31. 334 31.324 | 0,010 0. 0050 25. 00
31. 306 31.318 0.012 0. 0060 36. 00
| 31,321 31.320 0.001 ' 0.0005 0.25
| 12 31,230 | 31,231 0,001 | 0.0005 0.25
[ 31,211 31.210 | 0.001 l  0.0005 0.25
31,215 31,215 ., O 0 0
31,282 1 31,282 ° D 0 0
I3 31.319 31,319 0 0 0
31,272 31,272 0 0 0
' 31.207 ' 31.207 0 0 0
} ' 31.284 . 31.284 0 0 0
v Ig 31. 267 31.272 D. 003 0.0025 6.25
31,221 31,213 0. 008 0.0040 ' 16,00
31,220 31.217 0.003 0.0015 2. 25
31.258 | 31.259 0. 001 0. 0005 0.25
1111 30.847 30,862 0.015 ., 0.0075 56, 25
30, 839 30. 841 0.002 | 0.0010 1.00
30. B44 30. 847 0, 003 0.0015 [ 2,25
30, 838 30,861 | 0,023 0.0185 1272.25
L1485 30. 892 30, 893 0. 001 0. 0005 0. 25
, 30, 880 30, 879 0.001 0. 0005 0. 25
30.872 . 30,873 0.001 ' 0.0005 0. 25
30. 868 30,871 | 0. 003 0.0015 |, 2,23

S(X} = 0.00416 percent
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c. Post-Fire Ablative Throat

TABLE Y (Continved)

i| Firing Series | Reading No. 1 Reading No. 2 A & & x 10°°
| 1 5.117 5,120 0.003 0.0015 2,25
| 4,873 4.885 0.008 0.0040 | 186.00
4.907 4. 900 0.007 0.0035 | 12.25
! 4.911 4. 920 0.009 0.0045 | 20.25

Iz 4.998 1 4998 0 0 0

4,975 4,971 0, 004 0. 0020 4.00
4, 965 4.998 0.033 0.0165 |272.25
4. 965 5.011 0.046 0.0230 529.00
I3 ' 4.884 ! 4,882 0.002 0.0010 1.00
4.888 | 4.886 0,002 0.0010 1.00
4.869 4.868 | 0.001 0. 0005 0. 25
4. 885 4.887 0. 002 0.0010 | 1.00
4,928 4. 930 0.002 0.0010 | 1.00
I4 4.839 . 4,841 0.002 0.0010 1.00
4,881 4.882 0.001 0.0005 0.25
4,887 4,892 0.005 0.0025 6.25
| 4,852 4,847 0.005 0.0025 6.25
1y 4.574 4.572 0.002 0.0010 1| 1,00
' 4,546 4.540 0.006 0. 0030 9. 00
4,544 | 4.546 0.002 0.0010 1. 00
4.355 4.548 ' 0,008 0.0040 | 16.00
1112 4.556 4,558 ' 0.002 0.0010 1. 00
4.612 | 4.6813 | 0.001 0.0005 , 0.25
4.586 | 4.590 0. 004 0.0020 | 4.00
4,543 4,545 0. 002 0.0010 1.00
1113 4,495 4,518 0. 023 0.0115 |132,25
4.535 4,365 | 0.010 0.0050 | 25.00
4,595 4,596 0. 001 0.0005 ' 0.25
4.512 | 4.539 0.027 0.0140 {196.00

38
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TYABLE V¥ (Concluded)

d. Post-Fire Ablative Nozzle Exit

AEDC-TR-65-51

i Firing Series Reading ¥o. 1 |Reading No. 2| A & & x10°°
|
I 31.256 | 31.256 0 0 0
31.321 31.317 0. 004 0. 0020 4,00
31,304 31.309 0. 005 0.0025 6. 25
31. 306 31,312 0. 006 0.0030 9. 00
I2 31.202 31,205 0. 003 0.0015 2.25
31.200 31, 206 0. 006 0. 0030 9, 00
31.155 31,162 0. 007 0.0035 12. 25
31,125 31,162 0.037 0.0185 1342, 25
I3 30, 957 30. 951 0. 006 0.0030 9. 00
30. 900 30, 907 0. 007 0. 0035 12, 25
31.011 31,012 0.001 0. 0005 0. 25
31,015 31,021 0. 006 0. 0030 9. 00
31,015 31.021 0. 008 0, 0030 9. 00
14 30, 520 30, 521 0.001 0. 0005 0. 25
31.422 31,420 0.002 0.0010 1,00
31.130 31.122 0,008 0. 0040 16, 00
30. 760 30. 685 0.015 0.0075 56, 25
I3 30.616 -30.610 0. 006 0. 0030 9. 00
30. 952 30. 956 0. 002 0.0010 1,00
' 30. 905 30,911 0. 0086 0. 0030 9. 00
30. 498 30, 496 0. 002 0.0010 1,00
2 30,858 30, 859 0. 001 0, 0005 0.25
30. 825 30. 826 0. 001 0. 0005 0. 25
30. 652 30. 654 0. 002 0.0010 1,00
30,613 30.613 0 0 0
1113 30,753 30, 745 0. 008 0. 0040 16. 00
30, 744 30, 727 0,017 0. 0085 72. 25
30, 595 30, 592 0. 003 0.0015 2,25
30, 875 30. 876 0. 001 0. 0005 0.25

S(X) = 0.015 percent
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