UNCLASSIFIED

AD NUMBER:	AD0460484					
LIMITATION CHANGES						
TO:						
Approved for public release distribution	is unlimited					
FROM:						
Distribution authorized to U.S. Gov't. age	encies and their contractors;					
Administrative/Operational Use; 16 Feb	1965. Other requests shall be					
referred to Department of the Air Force,	Washington DC 20330					
AUTHORITY						
20190516 - CFSTI PER SEG LTR, 1 JUN 19	065					

UNCLASSIFIED AD_460484

DEFENSE DOCUMENTATION CENTER

FOR .

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

(5

NORTH AMERICAN AVIATION, INC.

NA64-177

and the second

のない

小調調要ないいきみ

山口台北朝

1

ABSTRACT :

An investigation of ablation materials was conducted for application to an advanced, Mach 8 modification of the X-15 Research Airplane. Performance of the selected material, Thermo-Lag T-500, was evaluated in plasma tunnel tests and in flight tests. Estimates were made of required ablator weight and thicknesses at stagnation and non-stagnation areas of the Advanced X-15A-2. Performance data, resulting from actual flight tests, plasma tunnel tests and analytical predictions, were compared.

TITLE:

"Advanced X-15A-2 Ablation System Design, Tests, and Analysis".

AUTHOR:

Robert H. Johnson, Supervisor, Advanced X-15.

FOREWORD:

18-G-1 REV. 9-61

NORM

The studies described in this report were made from 13 May 1963 to 7 February 1964 as a part of the rebuild of X-15A-2 under Contract No. AF33(657)11614. The report represents the efforts of R. H. Johnson, P. O. Paxson, J. B. Bodne and H. Shatzkin, who were assigned to the project. K. MacDowell of the Materials Laboratory is acknowledged for his support on the flight test portion of the study. Acknowledgement is also made to J. Bartley of the Emerson Electric Company, who assisted in the plasma tunnel tests.

	LOS ANGELES D. CALIFORNIA	
		NA-64-177
	TABLE OF CONTENTS	
		Page
	FOREWORD	i
	ABSTRACT	1 .
	TABLE OF CONTENTS	11 •
	LIST OF ILLUSTRATIONS	iv
	LIST OF TABLES	viii
	TNTRODUCTION	1
	ABLATION SYSTEM DEVELOPMENT PROGRAM	
	Screening of Ablation Materials	3
	Plasma Tunnel Tests	4
	Test Facility Selection	4
	Test Specimens and Testing Techniques	4
	Analvais of Test Results	6
n de la constante de	Leading Edge Tests	7
	Flat Plate Tests	10
	Flight Tests	14
	Flight Test No.]	14
	Flight Test No. 2	17
	Flight Test No. 3	17
	Flight Test No. 4	18
	Flight Test No. 5	19
	Flight Test No. 6	20
	Heat Shield Design	21
	Aerodynamic Heating	21
	Thickness Requirements	22
Ŧ	Ablation Swatan Waight	22
A MAR	Vergerou oleage versue	~~~~
-0-		ર ન

and the second s

1

I.

2.

iii

	NA-64-17	7
-	LIST OF ILLUSTRATIONS	, Ŧ
Figure No.	Title	Page
. l "	Advanced X-15 Research Airplane	26
2	Removable Wing Tip Panel	27
3	Performance Characteristics, X-15A-2	28
24	Advanced X-15A-2 Design Mission	29
5	Summary of Maximum Temperatures, Unprotected Inconel-X	30
6	Plasma Tunnel Selection, Stagnation Point Duplication	31
7	Cutaway View of Plasma Tunnel Test Model	32
8	Heat Flux - Enthalpy Simulation, Stagnation Regions	33
. 9	Shear Stress - Enthalpy Simulation, Stagnation Regions	34
10	Flat Panel Plasma Tunnel Model	35
11	Flight Simulation, Flat Surfaces	36
12	Design Mission Simulation	37
13	Design Mission Simulation, Heat Flux	38
14	Effect of Thickness, Test Condition 1, T-500-6A	39
15	Effect of Thickness, Test Condition 2, T-500-6A	40
16	Effect of Thickness, Test Condition 3, T-500-6A	. 41
17	Effect of Test Conditions, T-500-6A	42
18	Effect of Material, Test Condition 1	43
19	Effect of Material, Test Condition 2	44
20	Effect of Material, Test Condition 3	45
21	Linear Recession Rate, T-500-6A	46
22	Surface Recession During Test	47
23	Plasma Tunnel - Leading Edge Effective Heat of	
	Ablation, T-500-6A	48

`

,

a

		NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9, CALIFORNIA	
	ι	LIST OF ILLUSTRATIONS	
<i>i</i> .			
F	lgure No.	Title	Page
	24	Variable Heat Flux Results, T-500-6A, Substrate	(, s,
*	.1	Temperatures	49
	25	Sketch of .805 in. Thick Model After Variable Heat	
		Flux Test	50
	. 26	Sketch of .550 in. Thick Model After Variable Heat	
		Flux Test	51
	27	Sketch of .354 in. Thick Model After Variable Heat	
	2	Flux Test	- 52
	28	Variable Heat Flux Tests, T-500-6A, Comparison of	24
		Theory With Tests, Material Loss	53
Y	29	Effect of Thickness, Test Condition 2A, T-500-4, T.C. No. 1	-54
	30	Effect of Thickness, Test Condition 3A, T-500-4, T.C. No. 1	55
	31	Effect of Thickness, Test Condition 4A, T-500-4, T.C. No. 1	56
	32	Effect of Slots and Holes, Test Condition 3A, T-500-4A,	2 - 0 - 1
	5	T.C. No. 1	57
	33 .	Effect of Heat Flux - Slotted Model, T-500-4A, T.C. No. 1	58
	34	Effect of Thickness, Test Condition 2A, T-500-4, T.C. No. 2	59
	35	Effect of Thickness, Test Condition 3A, T-500-4, T.C. No. 2	60
	36	Effect of Thickness, Test Condition 4A, T-500-4, T.C. No. 2	61
	37	Effect of Slots and Holes, Test Condition 3A, T-500-4A,	
		T.C. No. 2	62
	38.	Effect of Heat Flux - Slotted Model, T-500-4A, T.C. No. 2	63
	39	Plasma Tunnel - Flat Plate Effective Heat of Ablation,	
		Effect of Thickness, T-500-4A	64
1.0-0 1.2			
M NO	•	1	¥

.

·

·

G

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9, CALIFORNIA

LIST OF ILLUSTRATIONS

NA-64-177

Figure No. Title Page 40 Plasma Tunnel - Flat Plate Effective Heat of Ablation, Clean Models, T-500-4A. 65 41. Plasma Tunnel - Flat Plate Effective Heat of Ablation, Models With Voids, Slots, Holes, T-500-4A. 66 42 Flat Plate Substrate Temperature Correlations, Test Condition 2A. 67 43 Flat. Plate Substrate Temperature Correlations, Test Condition 3A. 68 44 Flat Plate Substrate Temperature Correlations, Test Condition 4A. 69 45 Ablation Material Test Regions on X-15. 70 46 Flight Test No. 1, Speed Brake, Cork 71 47 Flight Test No. 2, Speed Brake, Bare Skin 72 48 Flight Test No. 2, Ventral Stagnation Line, Cork 73 49 Flight Test No. 3, Ventral Stagnation Line, T-500-6A 74 50 Flight Test No. 3, Speed Brake, T-500-4 75 51 Flight Test No. 4, Speed Brake, T-500-4A 76 Flight Test No. 5, Heating Pattern Near A Protuberance 52 77 Flight Test No. 5, Panel F-4, T-500-4A 53 78 54 Flight Test No. 6, Ventral Stagnation Line Ablation Material Measurements 79 55 Flight Test No. 6, Ventral Stagnation Line, T-500-6A 80 Flight Test No. 6, Panel F-4 Ablation Material Measurements 81 56 Flight Test No. 6, Panel F-4, T-500-4A 57 82 58 Points on X-15 For Representative Heat Flux Calculations 83

vi

		NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9. CALIFORNIA	
		NA	<u>1-64-177</u>
C,	erenden Antonio de Carlos Antonio de Carlos Antonio de Carlos	LIST OF TABLES	
	Table No.	Title	Page
	I	Summary of Plasma Tunnel Test Conditions	5
	II	Leading Edge Test Conditions	8
	III	Summary of Leading Edge Tests, Effective Heats	
		of Ablation	9 . 9
	IV .	Flat Plate Test Conditions	11
	У ₁₉₆	Summary of Flat Plate Tests, Effective Heats of	
C ×		Ablation, T-500-4A	12
	VI	Summary of Flat Plate Tests, Effective Heats	
		of Ablation, Cork 2755	15
) VII	Summary of Ablation Material Flight Tests	16
	VIII	Typical Heat Shield Thicknesses	23
$\frac{\sqrt{2}}{1} = \frac{1}{2} \frac{1}{2}$	IX	Head Shield Weight	~4
an a	1		
C x	ō		
it it	1 ME (* 1		
•			viii

.

9

浙

「「「「「「「「」」」

NORTH AMERICAN AVIATION, INC.

LOS ANGELES S. CALIFORNIA

NA64-177

An an assessment of

1

INTRODUCTION

North American Aviation, Inc., Los Angeles Division (NAA-LAD) has designed an ablation thermal protective system for the No. 2 X-15 Research Airplane, as a part of the repair and improvement of this airplane. Repair of the right-hand wing of the vehicle was necessary as the result of an accident experienced in 1962. Some features of the improvements being made are presented in Figure 1. The main gear is being lengthened to accommodate the mounting of external ramjets. The change in the main gear configuration necessitates an improved nose gear configuration. Increased internal volume is being achieved by adding a 29-inch fuselage extension in the middle of the aircraft. Liquid hydrogen tanks and their related plumbing are being provided for installation in this area. A new windshield configuration, incorporating fused silica, is being installed in the present canopy. A capability of 8000 ft/sec velocity is being achieved by addition of external propellants. The added heat, caused by the increased velocity, is being accommodated by the use of an ablative material.

A removable wing panel, shown in Figure 2, is being incorporated into the tip of the right wing. This panel will be used to investigate the performance of heat resistant materials and experimental rib and spar designs, the effects of surface discontinuities, etc.

The estimated performance characteristics of the Advanced X-15, now designated as the X-15A-2, are shown in Figure 3. For reference purposes, the performance capabilities of the current X-15 are shown with the envelope of some of the maximum flights which have been performed. While capable of attaining the extreme altitudes as shown, the X-15A-2 flights will be directed principally toward 250,000 feet altitudes for stellar photography experiments and 100,000 feet slti-tudes at about 8,000 ft/sec velocity for hypersonic airbreathing propulsion experiments.

The X-15A-2 design mission, shown in Figure 4, is that for which the ablation protection system has been designed. This mission was chosen for the following reasons:

- 1. Maximum velocity (Mach 8) is achieved.
- 2. Thermal conditions are severe in comparison to other planned missions.

Basically, the problem of heat protection of the X-15A-2 is one of converting a design on the heat sink concept to one capable of accommodating a higher heat load with virtually no redesign of the basic structure. Figure 5 shows the peak temperatures which would be generated in the design mission without heat protection. The severe thermal environment of the design mission would subject the unprotected structure to conditions exceeding the limits of structural

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AMPONT LOS ANGELES 9, CALIFORNIA

MA 64-177

2 -

integrity. This imposes the requirement of an external heat protection system with sufficient heat blockage to preclude redesign of the basic structure of the vehicle.

The following criteria were established as a basis for developing the required heat protection system:

- 1. The peak temperatures of the existing structure must be held within design limits.
- 2. Heat protection would be required for the entire vehicle during the total flight. Although it is possible to provide partial vehicle protection, or partial mission protection and maintain acceptable temperatures, the comprehensive thermal and structural analyses required could not be accomplished within the established contract schedules and cost.
- 3. The heat protection system should add the minimum practical weight.
- 4. The thermal protection system must be compatible with basic vehicle functions on the ground and in flight.
- 5. Application and removal of the heat protection system must be effected under field conditions and must not interfere with the intended functions of the vehicle.
- 6. Initial costs of technical development, costs of raw materials, and costs of application and removal, must be within practical limits.

The present report discusses principally studies to determine the amounts of ablation material required for adequate heat protection.

NORTH AMERICAN AVIATION, INC.

ABLATION SYSTEM DEVELOPMENT PROGRAM

SCREENING OF ABLATION MATERIALS

Contract schedules and funds did not permit an extensive screening for an optimum ablation system. A cursory review of the literature and an industry survey indicated that there existed a scarcity of knowledge on the behavior of ablation materials in the low heat flux - low enthalpy region. In addition, no data could be found in the literature on ablation performance under relatively high aerodynamic shear stress, a parameter of considerable importance for the X-15.

The following materials were considered for preliminary screening:

- 1. Emerson Electric Thermo-Lag T-500.
- 2. Dow-Corning DC 325.
- 3. Armstrong Cork #2755.
- 4. NASA Purple Blend.
- 5. Molded Refrasil Phenolics.
- 6. General Electric Century Series Materials.

In reply to early contacts, the Emerson Electric Company submitted a proposal to supply a material, Thermo-Lag T-500, which would provide the requisite heat protection with an estimated ablator weight of 400 pounds per mission. This was considered an acceptable weight for the vehicle. Information was available on the performance of Thermo-Lag T-500 in environments approaching that of interest and on the production and application of Thermo-Lag type ablators, both in the molded as well as in the sprayable forms. The Thermo-Lag T-500 formulation incorporates sublimating salts with sublimation temperatures of about 530°F. The presence of these salts limits substrate (backwall) temperatures to sublimation temperatures until the salts are completely consumed. Limiting the substrate temperatures obviates a comprehensive thermal analysis of the X-15A-2 structure.

Previous test results indicated that Purple Blend did not have the requisite resistance to shear stresses. This material was, therefore, eliminated without further testing. The other materials were screened in preliminary plasma arc tunnel tests, and none showed ablation efficiencies as high as that of Thermo-Lag T-500 when compared on the basis of time to attain a substrate temperature of 500°F. Refrasil phenolic molded parts with oriented laminae at the leading edge, were a close second to Thermo-Lag T-500 on the above basis. Refrasil phenolic, however, is available only as molded parts and therefore not considered suitable for use on broad surfaces of non-stagnation areas. On the basis of the above screening, Emerson Electric Thermo-Lag

3

NA 64-177

1.5

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9. CALIFORNIA

NA 64-177

4

Land and a second for

T-500 was selected as the basic material for the ablation system of the X-15A-2. Stagnation regions are coated with pre-molded T-500-6a. Non-stagnation regions are coated with spray application of T-500-4a.

PLASMA TUNNEL TESTS

TEST FACILITY BELECTION

Selection of a suitable plasma arc facility was based on a comparison of operating envelopes to determine which available facility afforded the broadest range of test conditions covering the flight mission. Figure 6 shows a plot of flight velocity versus altitude for the 8,000 ft/sec design . mission and the operating envelopes of several available test facilities, including the NAA/LAD one megawatt, 2-1/2-inch nozzle plasma tunnel. The NAA/LAD plasma facility covers the broadest range of the flight mission and was selected, accordingly, as the test facility. Four test conditions were initially selected within the operation envelope, as indicated in Figure 6, to simulate four velocity-altitude points on the mission profile curve. The plasma facility was then calibrated in order to determine equipment settings for these four points. It was possible to get almost exact duplication of the flight parameters, enthalpy, pressure and heat flus, at the leading edge stagnation line. Plasma tunnel test conditions are listed in Table I. Included are an "off-design" point (Test Condition 5) and the variable tunnel condition, which is described below (see also reference 1.).

TEST SPECIMENS AND TESTING TECHNIQUES

The criterion for designs of the plasma tunnel test specimens was that actual aircraft structure should be duplicated as nearly as practical. Fortunately, the aircraft leading edge diameters (3/4-inch for the wing and 1-inch for the horizontal and vertical tails) fall within the capability of the NAA/LAD plasma tunnel. A diameter of 3/4-inch was selected for the leading edge test specimen. The model, illustrated in Figure 7, was made of steel to simulate thermally the metal heat sink effect of the actual structure. Ablation material was molded and bonded directly to the leading edge model. The full-scale model was mounted in the tunnel with the leading edge inclined 37 degrees to the air flow to duplicate the aircraft wing sweep. Temperature of the steel was measured with a chromel-alumel thermocouple and recorded with time. With this model it was possible to obtain the high degree of flight simulation shown in Figures 8 and 9. Shear stress was slightly low because for a given tunnel condition, the tunnel velocity is slightly lower than the corresponding flight velocity. One of the initially selected test conditions, corresponding to the lowest velocity of Figure 6, was abandoned after preliminary testing showed that adequate coverage could be obtained with the heat flux enthalpy range of the other test conditions.

	•	ORTH	H A			AN A			n, I	NC.		
¢(4								
	Z Simulated Flight Alt. 1000 ft.	102.8	103.3	103.3	1.401	1.401	100.6	9.001	136.8	91-100.5		
	ONS Simulated Flight Vel. ft/sec	7700	6650	6650	5800	5500	4730	4730	8600	1000-7030		
	EST CONDITIO Tunnel Velocity ft/sec	6590	5948	5948	5313	5313	4448	5448	6990	3903-61.94		
a Dr	TABLE I MA TUNNEL T Tinnel Mach	3.72	3.76	3.76	3.80	3.80	3.71	3.71	3.55	3.72-3.80	5	
	ARY OF PLAS Percent Oxygen	12	21	10	12	10	21	10	12	51	ion enthalp	ressure
1	SUMM Pitot Pressure (Atm)	.716	.528	.528	.386	.386	.301	.301	102.	.322-698	on Stagnat	on Pitot p
	Stagnation Enthalpy (btu/lb)	6221	616	616	768	768	171	541	1576	H13-1088	1 Based	2 Based
	Test Condition	Т	2	2A	m	34	4	μA	9	Veriable		
NTED ON C											5	

NA 64-177

Flat panel specimens (see Figure 10), simulating one dimensional heat flow, were 0.048-inch steel plates coated with various thicknesses of ablation material. Two 28-gage chromel-alumel thermocouples were affixed to the rear of the plate. Thermocouple number one was welded to the rear of a 1/2-inch diameter isolated from the rest of the plate by a groove 1/16inch wide and .038-inches deep. The centerline of the circle was 5/8-inches away from the centerline of the plate. When tested at an inclination of 45-degress to the flow, this thermocouple location corresponded to the maximum heat flux on the surface of the plate. Thermocouple number two was installed at the centerline of the plate and served principally as back-up instrumentation. Other type models, i.e., cones and cylinders, were initially selected, but failed to produce meaningful results. Cold wall heat flux simulation, obtained with the flat panel models, is shown in Figure 11. While the flat panel values are somewhat higher than those generally anticipated on the fuselage, they are indicative of flight conditions at special fuselage areas having protuberances. It is felt that reasonably accurate values of performance at lower heat fluxes can be predicted by extrapolating values obtained at higher heat fluxes. The designation 2A, 3A, 4A, indicated that the tunnel was run with a reduced partial pressure of oxygen to compensate for the higher static pressure on the models than on the surfaces of the airplane.

In addition to the steady-state conditions above, the plasma tunnel was slightly modified to obtain conditions that varied with time (see reference 1). It was possible, by using mechanical cams to regulate air flow and manual control of power input in accordance with a pre-recorded plot, to simulate the design mission speed and altitude histories from 80 to 400 seconds after launch. Figure 12 shows the simulation attained. Figure 13 shows a comparison of cold wall heat flux between the wing leading edge during the design mission and a leading edge model in the plasma tunnel tested for the conditions shown in Figure 12. While the peak heat flux value was not attained, this type of test simulated the transient effects of heat flux, enthalpy, pressure and other significant parameters on ablation performance. No unexpected or deliterious effects were noted.

Steady state tests for both leading edge and flat plate models were terminated when the substrate temperature reached 700°F. The temperature history of all thermocouples was recorded along with surface temperature measurements obtained with an optical pyrometer.

ANALYSIS OF TEST RESULTS

REV.

Ablation performance was expressed in terms of "effective heat of ablation" by dividing cold wall (80°F) heat flux by average mass loss rate. For both leading edge and flat panel tests, the average mass loss rate was obtained by dividing the total mass loss by the time required for the total mass loss. The time period for total mass loss was a value established by a correlation between substrate temperature-time histories and observations of colored movies of the tests. The time at which the bare metal substrate showed in the movies usually corresponded with an abrupt change in the slope of the temperature plot. . .

NORTH AMERICAN AVIATION, INC.

NA64-177

Leading Edge Tests

Steady State Tests

Pertinent conditions at the stagnation line of the 37 degree swept . leading edge models are listed in Table II. The shear stress is based on Reynold's analogy and the tunnel velocity (u_{∞}). The Prandtl No. was taken as .705; the wall enthalpy (h_w) was 129 btu/1b. Figures 14, 15, and 16 show the effect of the initial thickness of the molded glass cloth reinforced T-500-6a, on the substrate temperature-time history. Figure 17 shows the effect of test condition on the substrate temperature-time history for a constant initial thickness of about .5-inches. Figure 18, 19, and 20, show the relative performance of different ablator materials at the different test conditions. The "shingled" T-500-6a is seen to be slightly superior to the regular T-500-6a. The ablation material is identical, but the glass cloth laminated within the material was oriented 15 degrees away from a line along the model leading edge, producing an effect similar to shingles on a roof. The phenolic refrasil leading edges exhibited very little change in contour during the tests. The substrate temperature history has a characteristic "non-receding ablator" shape. A substrate temperature of 500°F was considered to be an upper limit for a bondline adhesive and the effective heat of ablation of the phenolic refrasil is based on the time required to reach 500°F. It is seen that although the phenolic refrasil does not recede a significant amount, it is slightly inferior to the T-500-6a when compared on the basis described above.

Table III summarizes the cold wall effective heats of ablation of the leading edge models. Run number 9 data are based on movies since the thermocouple failed on this model. Since such close approximations to flight conditions were achieved in the leading edge plasma tests, it is justifiable to analyze the data with the effective heat of ablation approach. Attempts were made to isolate the effect of shear stress by treating the tunnel data with a multiple regression analysis. Due to the relatively small sampling of data available, the effects of shear could not be delineated. Accordingly, the test results are shown as a function of cold wall heat flux.

Figure 21 illustrates the validity of the assumption of a linear recession rate when applied to the Thermo-Lag molded T-500-6a test results.

From careful studies of the movies taken during the tests, it was possible to sketch the surface of the ablator, as viewed from the side, at various times during the test. From these lines, called isochrones, the <u>surface</u> recession can be shown as a function of time. Figure 22 shows this surface recession for a selected test. The region shown is the portion of the model which had the most rapid ablation. During the initial portion of the test, the char layer is building up, hence the surface recession is small. Near the end of the test, the char itself is being eroded away, causing a more rupid surface recession.

7

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 45, CALIFORNIA

NA64-177

34

TABLE III

SUMMARY OF LEADING EDGE TESTS

EFFECTIVE HEATS OF ABLATION

	Run. No.	Test Cond.	Init. Thick. In.	Material	Mat'l Density lbs/ft3	Heat Flux btu/ft ² sec	Run Time Sec.	heff btu/lb	
	1.7	. 1	1.			100	01	helio	$\begin{array}{c} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \\ \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + $
	-1		• 40	T-300-68	90	109		4540	
	in in	1	•35				126	5240	۱ ۱. د د د د د د د د د د د د د د د د د د د
13 A.	64	· <u>1</u> .	•35				125	5190 (4560	(Avg.)
	13	, 1	.50	it .		i . 11	140	4075	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	9	. 1	.50	а. " <u>1</u> 1. 	1 1 .	n '	1404	4075	
	46	· 1	.785	13	13	13	124	2300 1	1
7	48	2	.263	91 ·		67	235	8000	
	16	2	•35	11	11	· 11 .	201	5140	
	· 17	2	.50	II	н	· 11	260	4650) 5620	(Avg.)
,	49	3	.263	n *	**	42	301	6410	
	31	3	•35		п	H	358	5730 6160	(Avg.)
	50	3	.506	н .	. ¹¹	u .	577	6380)	
t s	70	6	.516	н	11	71.4	570	10500	
	92	1	. 50	T-500-6a ²	• ч	109	200	5810	
t.	102	1	.50	Phen. Ref.	110	109	1423	3380	
	. 93	2	.50	T-500-6a ²	90	67	320	5720	
	103	2	.50	Phen. Ref.	110	67	2203	3210	
	104	3	.50	n	110	42	2403	2200	
H CLEARPA		1 1 2 1 3 1 4 1	Not used Lamina or Time to s Rased on	in analysis iented 15° au ubstrate temp Movics	way from 1 p. of 500°.	eading edge F.			N. N.
			•	•		•		9	•

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIMPORT LOS ANGELES 9, CALIFORNIA

NA64-177

Figure 23 shows effective heat of ablation versus cold wall heat flux as determined from the plasma tests. Results obtained from T-500-6a for tunnel points along the design mission are shown. A linear variation of heat of ablation with heat flux; $h_{eff} = 7200-23.6$ gcw , is chosen to represent the data for further calculations.

It is interesting to note that the slopes of effective heat of ablation versus cold wall heat flux are negative. This seems to contradict the generally accepted trend that ablation efficiency increases with increasing enthalpy and associated heat flux. The inverse proportionality is probably attributable to the high shear stresses occurring with increase in heat flux.

Variable Heat Flux Teste

In the previous section, a linear variation of effective heat of ablation with heat flux was chosen to represent the steady state data. To demonstrate the validity of the assumptions involved, three leading edge models were tested with the variable tunnel conditions shown in Figure 13. This type of test will illustrate any unusual transient ablation effects, if any, and generally check out the linear recession rate assumption. Models having three different initial thicknesses were tested. The time histories of the substrate temperatures are shown in Figure 24. In no case did the temperature go above 500°F. The thickest model was inadvertently removed from the plasma stream after about 30 seconds of testing. It was re-inserted in the stream and run for another 316.8 seconds. This accounts for the somewhat different temperature behavior. Figure 25, 26, and 27 show sketches of the three models made after the tests. Approximately .09 inches of char layer formed on the models. Measurements of virgin material loss were also made. Figure 28 shows a comparison between measured and calculated virgin material loss. The calculation was based on the linear effective heat of ablation shown in Figure 23. Reasonable agreement is noted, with the theory being slightly conservative. Further checks of the theory were made with flight tests, which will be discussed in a following section.

Flat Plate Tests

With the flat plate models shown in Figure 10, the tunnel conditions listed in Table I resulted in the local heating parameters listed in Table IV. The heat flux distribution over the plate and the location of the region of maximum heat flux was determined by tests with 1/4, inch of cork glued to the model. The maximum values of heating rate for the various test conditions were determined with a flat plate model designed as a copper calorimeter. Shear stress values were calculated in a manner similar to those for the leading edges. For the flat plate models, a recovery enthalpy equal to .85 times the total enthalpy was used.

Figures 29 through 33 show temperature-time histories of the metal substrate at thermocouple No. 1 (see Figure 10). Figures 34 through 38 show similar results for thermocouple No. 2.

Table V summarizes the flat plate data with Thermo-Lag T-400-4a ablation material sprayed on the models.

Γ		-						NA64-177	4. 1 1
-i					DATE T				
\mathcal{I}				SIBOADY OT	TADLE				
1	• •		ਜ	SUMMARI OF	PLAT P	LATE TEOL	-500-lua		
	•				ID OF AL		-)00-48		1.17-4
	En sico.	•		Thermocouple	≥ #1 D	ensity=63	#/ft3		
							4 1		
	Run No.	Test Cond.	Init. Thick. In.	Heat Flux2 btu/ft ² sec	Run Time Sec.	h eff btu/lb.	Remarks		
	71 72	2A "	.10	. 90.3	47 45	8080 7740			
	85	11	.10	11	52	8950		· · · · ·	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	61 105	11	.07	H H	26 37	6380 9100	Model had	l voids	
	62	11	.04	n	17	7310			
	<i>(</i> 10)								22 *
	73 63	́ ЗА "	.10 .07	63.7	9 5 65	11530 11260	Model had	I voids	.:.
	106	11 11	.07	8	69	11960		•	••
	84	81	.07	ii	80 84*	13870 14560		• .	
	64		.04	11	39	11830		•	
		ha	. 10		220	18050			
	. 65	4 <u>A</u> 11	.10	41.6	134	15020	Model had	l voids	
	107	11 11	.07	11	235	26350	· · ·		
	66	H	.04	н	78	15300		4 · · ·	٠
	86	Ţ8	.04	11	58	11380			
	87	3A	.10	63.7	63	7650	1/32 in.	slot 1 flow	
	. 88	11	.10	11	53	6430	1/32 in.	slot II flow	
	99 90	17	.10	11	50 72	6075 8750	1/4 in. d 1/4 in. d	la. hole-putty	f111
	91	4A	.10	41.2	135	10590	1/32 in.	slot 1 flow	
	,								
			*. Ba	sed on Thermo	couple	#2 and mov	ies.		
r									
0. 20							,		
CLEAR				•					
19-0-1									
T ORM								12	

•

· .

1.20

1

.

NORTH AMERICAN AVIATION, INC.

NA64-177

Some of the models had known voids (air pockets) which resulted from an improper drying time between successive spray coats when the models were being made. Other tests were made to determine if there were any differences in the thermal behavior of the material due to a different solvent system. It was necessary to develop a low volatile solvent system to be compatible with desert conditions. No discernable effects are noted on thermal performance due to the solvent system. Other tests were made with slots 1/32 inch wide sawed into the ablation coating. The slots were aligned both parallel to and perpendicular to the flow. Two tests to simulate screw holes left through the ablation material were performed. In one test, the 1/4 inch diameter hole was left open; in the other, the hold was filled with a putty formed of the basic T-500 material. The test results showed that slots and holes reduced the efficiency of the ablator. These data are very conservative, however, since the ratio of boundary layer thickness to slot and hole depth was small. For the thick, turbulent boundary layers on the airplane, the effect of slots and holes is expected to be negligibly small.

Figure 39 shows effective heat of ablation versus cold wall heat flux for models without voids, slots or holes. The data are plotted to indicate the effect of initial ablation thickness, if any. There are too few data points to establish any firm trends. From the data shown, an initial thickness of .07 inches appears most efficient. Figure 40 presents averaged data for all runs without holes, slots, or voids. A linear variation of $h_{eff} = 23000 - 168$ q_{cw} is seen to fit the data reasonable well. Since these data are obtained under laminar flow conditions, some accounting must be made for the turbulent boundary layers which are anticipated on the airplane. However, due to the low enthalpies of the design mission, and the relatively low mass loss rates of ablation material during flight, the heat blockage due to "outgassing" of the subliming gasses is small, whether the flow is laminar or turbulent. At this stage of development, it is judicious to take a somewhat conservative approach, particularly in the absence of low heat flux, turbulent data. Figure 41 shows all data points obtained with slots, holes, and voids. The linear variation shown, heff = 13,800 - 1.01 or

is sixty percent of the heat of ablation shown in Figure 40. By using this lower heat of ablation, the calculated thickness requirements should be conservative, even with turbulent flow, and with slots, holes, and voids in the ablation couting. Some low heat flux data ($q \cong 13$ btu/ft²sec) obtained by Emerson Electric on models with slots running parallel to and perpendicular to the flow, (see Reference 2) had cold wall effective heats of ablation ranging from 14,100 to 42,600 btu/lb. Hence, the variation shown in Figure 41 should be conservative at the lower heating conditions. Maximum use will be made of flight test data on the X-15 to align the low heating rate ablation performance.

A comparison between calculated and measured substrate temperatures was made for certain of the flat plate plasma tunnel tests. For these comparisons, an effective heat of ablation of 23,000-168 9 cw was used along with an assured ablation temperature of 630°F . The 630°F temperature was selected since the measured substrate temperatures appeared to "plateau" at about that value. Figures 42 through 44 show substrate temperature correlations for clean (without voids, slots, etc) models.

NA64-177

14

Twelve runs were also made with varying thicknesses of Armstrong Cork 2755 ablation material. The cork showed an average effective heat of ablation of about 2630 btu/lb. The results of the test are listed in Table VI. Temperature-time histories are not shown since, in general, the substrate temperature remained at approximately the initial temperature until the cork burned through, then rose very rapidly to 700°F, the temperature at which the test was terminated.

FLIGHT TESTS

At this writing, ablation material experiments have been performed on six (6) X-15-1 or X-15-3 flights. Table VII lists pertinent flight parameters and the types of experiments performed. Although the speed, heating rates and flight duration of the current X-15 are less than those anticipated for the X-15A-2 design mission, the tests served to evaluate the ablators under service conditions, and to correlate flight test performance with plasma tunnel and analytically predicted performances. Some conditions, not readily simulated in the laboratory, are the engine and flight induced vibration of the X-15 vehicle, the cyrogenic environment and the field conditions under which ablation protection systems are applied and refurbished. The following discussions will deal principally with thermal performance correlations.

Various regions of the airplane were used for testing as shown in Figure 45. Reasonably high heating rates can be obtained on Panel F-4, which is located near the nose of the airplane. This region is also free of shock waves from other portions of the airplane, and the heating rates may be calculated with confidence. The lower speed brakes, when opened, also attain relatively high heating rates, and provide a convenient test region. The ventral leading edge was used to test pre-molded Thermo-Lag T-500-6A specimens and a cork leading edge configuration. The under surface of the fuselage near the liquid oxygen tank provides a test region with cryogenic temperatures and severe temperature gradients.

TEST NUMBER 1

An 0.08-inch thick sheet of Armstrong Cork 2755 was bonded with epoxy to the lower right hand speed brake. Figure 46 shows a comparison between measured and calculated substrate temperatures. The thermocouple was located 28.5-inches aft of the speed brake hings line. An effective heat of ablation of 2500 was used in the calculation.

Post-flight inspection revealed that the epoxy adhesive with a very small amount of cork imbedded in it, remained on some regions of the speed brake. This, and the fact that subsequent plasma tunnel tests indicated a slightly higher effective heat of ablation, tends to account for the over-prediction of the calculated temperature.

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 45, CALIFORNIA

NA64-177

TABLE VI

SUMMARY OF FLAT PLATE TESTS

EFFECTIVE HEATS OF ABLATION; CORK 2755

Density - 30.5 lbs/ft3

Run No.	Test Cond.	Init. Thick In.	Heat Flux btu/ft ² sec	Run Time Sec.	^h eff btu/lb.	
52	ZA	.25	90.3	14	1980	
53	u.	.125		7.4	2100	
54	·	.08	n	-		
55	3A	.25	63.7	28.2	2800	
56	и	.1.25	и	12.2	2450	
57	u.	.08	н	9.6	3000	
58	4A	.25	41.2	49.2	3170	
59	9	.125	.0	18.4	2380	
60	.0	.08	11	9.6	1950	

* Bad Run

5

NEV. 2.47

ORM 18-G-1

PRINTED ON CLEARP

T

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AMPORT LOS ANGELES 9. CALIFORNIA

NA64-177

TEST NUMBER 2

Two layers of 1/8-inch thick sheets of cork were wrapped around the ventral leading edge to form a 1/4-inch thick glove, which extended aft of the leading edge about 6-inches. Sheets of cork, 1/8-inch thick, were also bonded to the forward portions of the left and right hand lower speed brakes. A sheet of Dow-Corning DC/325 ablator, .07inches thick, was prepared in the laboratory and bonded to the upper right-hand speed brake. The thermocouples which were located beneath the cork and DC/325 on the speed brakes, were inoperative for the flight thus preventing a valid comparison between the two. The DC/325 was ablated completely away and a small amount of cork remained near the forward portion of the speed brake.

When the speed brakes are opened, flow separation occurs over approximately the front half of the speed brake, and some portion of the ventral ahead of the speed brake hinge line. The flow reattachment region on the speed brake was evident from post-flight inspection of the cork sheet on the right hand speed brake. An attempt to calculate the heating in the separated region was not made. A thermocouple, aft of the separated region, and the cork sheet was operative. A comparison of calculated and measured bare skin temperatures, shown in Figure 47, indicates reasonable agreement for this area of the speed brake.

The cork covering the leading edge was completely burned away at the stagnation line and approximately around to the shoulder (90° from the stagnation line). The extent of erosion was progressively greater further away from the fuselage, i.e., lower on the stagnation line. This is probably attributable to the enthalpy gradient which exists ahead of the ventral caused by shock waves from other portions of the airplane. Aft of the shoulder, the cork was charred, but not significantly eroded away. It is possible that this portion of the cork was in a laminar flow region. Figure 48 shows a comparison between measured and calculated leading edge temperatures. The time at which the cork was completely eroded away at the leading edge appears to be accurately predicted, although the calculated peak temperature is too high. A reduced heat of ablation is used to account for the aerodynamic shear stress.

TEST NUMBER 3

Representatives from Emerson Electric Company, makers of Thermo-Lag, applied their ablation material to the lower ventral for this test. The leading edge coating was made up of two segments of pre-molded T500-6A. Thickness at the stagnation line was .5-inch. The two segments were butted together, with the joint running perpendicular to the leading edge. Adhesive used was HT-424. The remainder of the lower ventral was sprayed with T-500-4 to a thickness of about 0.09inches. The need for a less volatile solvent system became apparent during the spray application. The desirability of a protective coat of lacquer to keep moisture off the ablation material was also indicated on this test.

NORTH AMERICAN AVIATION, INC.

NA64-177

Six flight tests have been accomplished at this writing, and needless to say, the techniques of material application, pre-flight and post-flight measurements have improved with each flight. A material thickness measuring technique, developed for test No. 6, has revealed that flat plate (i.e., speed brake and panel F-4) thickness measurements for tests No. 3, 4, and 5 are questionable. Based on measurements made for Test No. 6, all previous char thickness measurements, which were thought to represent virgin material loss, are larger than the actual virgin material loss by as much as .01 inches. A factor which also contributes to measurement uncertainty is the fact that due to the high efficiency of the Thermo-Lag and low total heat loads of flight, the amount ablated is small to begin with; also, measurements are difficult to make in the field. Consequently, for Tests Nos. 3, 4, and 5, two "measured" thicknesses will be shown; the actual char thickness measurement and a lower "corrected" value. Ordinarily, such questionable measurements would not be reported, but are included in the event that subsequent tests will indicate a more appropriate "correction factor". The improved measuring techniques are discussed in detail in the section, Test No. 6.

Figure 49 shows the calculated cold wall (80°F) heat flux to the ventral leading edge for Test No. 3. Also shown is the calculated virgin material loss (ΔS) for the flight. The measured virgin material loss shown (not a char thickness measurement) is reasonably accurate. The bars indicate the range of measurements obtained along the leading edge. Good agreement is noted between the measured and the calculated material loss. Figure 50 shows material loss, heat flux, and substrate temperature for the speed brake area. The measured material loss (ΔS) is actually a measurement of the char layer thickness and may be too high by as much as .01 inches. A lower value of (ΔS) is shown for reference. The method used to calculate thickness measurement and over-predict the "corrected" measurement. Excellent substrate temperature agreement is noted. An ablation temperature of 630°F is used for temperature calculations.

TEST NUMBER 4

1

For this flight, the right hand lower speed brake was coated with approximately 0.09-inches of T-500-4A. The 4A means that a new solvent system, compatible with desert environment, was used. Thermal performance of the material was determined to be unaffected by the solvent system in the plasma tunnel tests. The ventral leading edge coating, which was flown on the previous flight, was left on. Since its shape had changed slightly, no material loss measurements were made on the leading edge. It performed satisfactorily, however, which indicates that the ablation material could possibly be used for more than one flight.

NA64-177

Material loss, heat flux and substrate temperatures for the speed brake area are shown in Figure 51. The calculation methods are the same as for Test No. 3. As for the previous test, both the measured char thickness and a "corrected" value for virgin material loss are shown. The design calculation method over-predicts the "corrected value". Again, good temperature correlation is noted.

TEST NUMBER 5

The principle purpose of this flight test was to check the structural compatibility of Thermo-Lag with cryogenic temperatures under actual field conditions. The lower fuselage was coated with approximately .035-inches of T-500-4A from Fuselage Station 196 to Fuselage Station 244. The coating also extended 3-inches onto the lower portion of both the right and left hand side fairings (see Figure 45). A total of 22 ft. were coated. Approximately 14-inches of the aft portion of the coating extended over the LOX tank, where -300°F temperatures occur. On the forward portion of the coating, two hydraulic vent line pipes, 1-inch in diameter, protruded about 3-inches into the air stream.

Prior to flight, a portion of the coating ahead of the LOX tank, near the left hand side fairing, developed cracks after the airplane was fueled. After a captive flight, some ablation material was noted to be lost and a total area of about 1/2-sq. ft. had poor adhesion to the skin. To prevent any possibility of temperature gradients causing skin buckling in this region, a large portion of the coated area was removed, leaving the LOX tank area and a small area around each protuberance (hydraulic vent pipe) intact. The exact cause of the lack of adhesion has not been determined, since it has not been possible to reproduce the exact type of failure in the laboratory. The difference in contraction between the Thermo-Lag and Inconel-X and the presence of water and ice on the coating, are felt to be contributing factors. However, a similar region on the right hand side of the airplane was unaffected.

The heating around the protuberances proved to be a very interesting phenomena. As mentioned before, a small patch of ablation material was left around the hydraulic vent line pipes. Due to the unfavorable conditions under which the ablation material had to be removed (i.e. in the field, at night, with the LOX tanks full and cold outside temperatures) the patch around the pipes was somewhat poorly shaped. Also, careful thickness measurements could not be made. Hence, the test results are qualitative. Figure 52 clearly illustrates, however, the heating pattern around the protuberance. The region immediately upstream of the pipe had high heating; immediately downstream was a wake, with low heating. The extent of the separated region upstream of the pipe appears to be about 1-1/2 diameters. This and the char thickness measurements made after the flight in the vicinity of the protuberance, are in general agreement with the protuberance heat transfer theory discussed in Appendix B. The photograph from which Figure 52 was made, was obtained through the courtesy of NASA at Edwards Air Force Base.

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT. LOS ANGELES 9, CALIPORNIA

NA64-177

20

1

The old char layer, which had formed from Tests No. 3 and 4, was carefully sanded away on Panel F-4, leaving about .075 inches of virgin material to be tested. Figure 53, shows heat flux and virgin material loss for the panel F-4. No temperatures were measured. The design method calculation is seen to be somewhat conservative compared with both the measured char thickness and the "corrected" virgin material loss measurements.

TEST NUMBER 6

The purposes of this test were to obtain flat surface and leading edge ablation material loss data, and to obtain quantative data on heat transfer near the hydraulic vent line protuberances. The 8×8 -inch pre-fabricated panels of T-500-4A, which were cemented to the akin around the hydraulic vent lines to obtain protuberance data, blew off during the flight. Panel F-4 was coated with about .086-inches of T-500-4A and the ventral leading edge was fitted with a pre-molded coating of T-500-6A, which was .256 thick at the stagnation line. It was possible to remove the ventral coating after the flight without damaging it, thus very good post-flight measurements were obtained. Figure 54 shows the post-flight measurements. It is interesting to note that the virgin material loss decreases rather uniformly (except at the joint) as the bottom of the fuselage is approached. This was also observed on Test No. 2 with the cork leading edge. The change in heating rate at the stagnation line, which causes this, is probably attributal to the entropy gradient ahead of the ventral. The shock system of the airplane is known to alter the local flow characteristics. The calculated material loss is seen to agree with the measured values near the lower portion of the ventral. The lower portion of the ventral would be least affected by the shock system. The very bottom of the ventral leading edge has a slightly larger material loss due to the three dimensional flow effect at the end of the ventral. An additional ablation loss of about .Ol inches occurs in the vicinity of the butt joint between the two leading edge segments of ablation material (T-500-6A). Figure 55 shows the calculated time histories of the ventral leading edge material loss and heat flux...

The instrument used to measure flat surface ablation material thickness is a conical-tipped penetrometer with a dial gage that reads in thousandths of an inch. On previous flights, a small area of the char layer was scraped away with a sharp instrument. The point of the penetrometer was then pushed onto the exposed virgin material, thus obtaining a measurement of the char thickness. The char thickness was assumed to represent the amount of virgin material ablated away. Measurements made after flight Test No. 6 indicated that the char thickness is a reasonable representation of the virgin material loss, however, the point of the penetrometer apparently penetrates the exposed virgin material, when measured as described above, giving a depth reading which is too large by as much as .Ol inches. A preferred technique of measuring is to provide small diameter measuring holes which penetrate the ablation material to the vehicle skin. The initial virgin material thickness is then measured with the penetrometer. After the flight, the

Ser.

NA64-177

the total coating thickness, including char, is similarily measured. The char layer is now carefully scraped away upstream and downstream of the measuring holes for a distance sufficient to allow the base of the penetrometer to rest flat against the exposed virgin material (approximately 3-inches). The thickness of the remaining virgin material may then be measured. Measurements on panel F-4, made with the preferred way described above, are shown in Figure 56. Char thicknesses for the two upstream points shown on this figure when measured with the old technique, were .031 and .023 inches. These values are seen to be significantly larger than the char thickness determined using the preferred technique. Figure 57 shows the calculated heat flux and material loss time histories for the flight. An average of the char thicknesses on the panel, as measured with the old technique, is shown for reference purposes.

HEAT SHIELD DESIGN

The heat shield selected for the X-15A-2 is comprised of Emerson Electric's Thermo-Lag ablation material. Leading edges are made of pre-molded segments of T-500-6A (density of 90 lbs/ft) which are attached with an adhesive to the airplane leading edges. The rest of the airplane is sprayed with T-500-4A (density of 63 lbs/ft) and heat cured. The entire coating is then sprayed with a protective coating of lacquer. A complete description of application procedures, detailed thicknesses, and removal procedures, are contained in reference 3. The following sections will discuss typical aerodynamic heating conditions over the airplane, typical thickness requirements as determined by both Emerson Electric and NAA, and a breakdown of the ablation system weight by areas of the vehicle.

AERODYNAMIC HEATING

Figure 58 shows a sketch of the airplane indicating the approximate locations of 16 points on the vehicle. Heating rates at these locations are representative of the spread in heating and other local flow properties such as pressure and shear stress. Figures 59 through 62 describe the local vehicle geometry. Figures 63 through 78 represent design mission time histories of heat flux, shear stress, and local static pressure. Figure 79 shows the fuselage heating distribution at the time of peak heating. All stagnation line heat fluxes are based on the substrate geometry, i.e., the leading edge radii have not been increased to account for the ablation coating. With the ablation coating installed, all leading edge radii are increased by 1/8-inch.

Complete definition of the heating on the vehicle required calculations at 159 vehicle locations plus local hot spots.

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AINPORT

NA64-177

THICKNESS REQUIREMENTS

Emerson Electric engineers were requested to calculate Thermo-Lag thickness requirements for the sixteen points shown above. Their results are presented in references 2 and 4. A comparison between the Emerson Electric and NAA calculations is shown in Table VIII. Reasonably close agreement is noted between the two calculations. Emerson thicknesses in the low heat flux region are greater than NAA calculations. The NAA calculations in the low heat flux regions are more closely correlated with flight test data. More than 159 points were computed by NAA to determine the complete airplane thickness distribution, and to calculate the weight of the ablation system. Included in these calculations were analyses to account for the bow shock effect on the wing leading edge (see Appendix A) and local protection required near protuberances (see Appendix B).

ABLATION SYSTEM WEIGHT

Based on drawings and actual measures of the X-15A-2 vehicle, an analysis was formulated to calculate installed ablation system weight, given the thickness distribution, and the material density. The airplane was divided in several regions, such as wing, side fairings, fuselage, etc., to allow separate calculations for these areas. Table IX lists areas of the airplane and the corresponding weight. Thicknesses used for these values include design margins. The total heat shield weight of 303.4 lbs. is below the initial target value of 400 lbs.

22

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9, CALIFORNIA

TABLE VIII

NA64-177

.700 **

23

TYPICAL HEAT SHIELD THICKNESSES

Point No.		Location On Airplane	Max. Heat Flux btu/ft2sec	Virgin Mat'l Loss, Ref 2 Inches	Virgin Mat'l Loss, MAA Inches	Design Thickness Inches
1.	Fus.	Sta. 9.28, lower	53	.156	.188	•190
3	Fus.	Sta. 75, lower	57	.089	.092	.100
5.	Fus.	Sta. 200, lower	6.5	.048	.031	.037

7 Wing Leading Edge 157* .446 .560

REV.

* Based on 3/8 inch radius

** Includes .09 in. for bow shock effects
NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9. CALIFORNIA

NA64-177

- - TABLE IX ---

HEAT SHIELD WEIGHT

					1.1
	REGION	: .		TOTAL SURFACE AREA - FT ²	WEIGHT LBS.
			4	· 1.4	1. • • • •
	Fuselage			433.24	84.30
	Side Fairings			313.71	45.10
	Wings		0	206.30	47.06
÷	Horizontal Stabilizers			1.01.33	42.69
	Upper Vertical			,85.12	23.33
	Lower Vertical (including movable)			75.40	31.03
	Canopy		-	24.60	6.03
	Helium Bottle and Shield			11.16	1.52
	Nortronics Nose Section			2.99	2.03
	Wing Leading Edges		•	•	9.00
	Horizontal Leading Edges		,		5.70
	Lower Vertical Leading Edge				2.70
	Upper Vertical Leading Edge			a	2.50
	Canopy Leading Edge		٤	en	.140
					1

TOTAL

6

1,253.85

303.4

24

AMERICAN AVIATION, INC. NORTH

1

1

KAE ALBANENE TRACING PAPER

(()

KOE ALBANENE TRACING PAPER LA 0498

NORTH AMERICAN AVIATION, INC. DED DATE 19/2/63 1 LAPPUT HUNS. TO VIRGIN MAT'L ON 10/51/65 R.H.J. PT- 8 RUN 67 DERAKLTORY 2) ADDHO NOTE ON IUSILS L.E. EMERSON MODEL # 102 . 805 IN. THICK THERMOLAG T-500-64 (TYP). STEEL (TYP) (TO VIECIO LINTE THICKNESS REMAINING (TO SUPPACE) STATION #1: . COO IN. STATION #2: .531 IN. STATION #3: .465 .522 IN. STATION #4! .565 IN. STATION #58 .637 IN. NOTE: THIS MODEL WAS EXPOSED TO AN ANDITIONAL 30 SEC. OF TEST. THE FIRST 30 STE. OF THE VAR. HEAT FLUX WAS DUN. THEN STUPPED. THE MODELTING WAS RUD THE FULL THAT OF 316.8 SHE MORE. Figure 25 - Sketch of .805 in. thick Model After Variable Heat Flux Test 7

NORTH AMERICAN AVIATION, INC. PASE NO. PREPARED BY: DED REPORT NO. NA-64-177 CHECKED BY DATE: 10/2/63 ADDED MEAS. TO VIRGIN PT-8 RUN 68 [TRAJECTORY] MAT'L ON 10/31/63. R.H.J. L.E. EMERSON MODEL # 11 : 550 IN. THICK THERMOLAG THICKNESS REMAINING (TO SUER) (TO VIRGIN MMIL) STATION # 1: .414 11 STATION # 28 .382 IN. STATION # 38 .420 IN. . 260 STATION# 4: . 402 IN. . 250 STATION # 58 .437 IN. Figure 26 - Sketch of .550 in. Thick Model After Variable Heat Flux Test

PAGE NO. 52 NORTH AMERICAN AVIATION, INC. DED REPARED BY NA-64-177 HECKED D' DATE: 10/2/63 NODEL NO ADDED HEAS TO VIRGIN PT-8 RUN 69 [TRAJECTORY] MAT'L ON 10/31/65 . RHJ. L.E. EMERSON MODEL # 70. . 354 IN. THICK THEE DLAG Survey. THICKNESS REMAINING (TO SURFACE) (TO VIRCIN MAT'S) Set get STATION # 1: \$ 255 IN. .182 IN. STATION #28 . 044 -125 IN. STATION #38 t.,,, :024 -116 IN. STATION #4! STATION #5: .235 IN. Figure 27 - Sketch of .354 in. Thick Model After Variable Heat Flux Test

I(-)

I(

(

X

(

1.

The second second

PREPARED BY	NORTH AMERICAN AVIATION, INC.					РАСЕ НО. 85 ог перопу но. NA-64-1 новёт но. X-15A-2	
DATE: 9-26-63							
		;	•	. •			
13	J ~ Sweep deg.	60.00	36.75	30.00	50.78	:	
LINE POIN	SKIN THICKNESS ~IN.	.125	.688	.594	.375		
GNATION	RADIUS~IN.	.500	.375	.500	.250		
F16.60 STA	POINT NO.	4	7	11	16	1	
	X.					· ; ,	

198-R-4 (PORMERLY ED-116)

PREPARED BY. P. Paxson	NORTH AMERICAN AVIATION. INC.	PAGE NO. 87 OF
CHECKED BY	· · · · · · · · · · · · · · · · · · ·	REPORT NO. NA-64-177
DATE: 9-26-63		HODEL NO. X-15A-2

FIG.62 FLAT PLATE POINTS

POINT NO.	$\delta_S \sim DEG.$	t ~ IN. (SUBSTRATE)	X~FLOW * LENGTH ~IN.
/ **	15.2	.125	16.11
2 **	15.2	.125	16.11
3	9.5	.071	81.85
5	0	. 050	206.95
. 6	0	.050	206.95
8	6.0	.072	4.90
9	1.8	.057	18.00
10	4.0	.046	120.00
12	5.0	.037	6.00
13 .	5.0	.037	72.00
14	4.0	.050	6.00
15	0	.050	36.00

* FUSELAGE FLOW LENGTHS ARE MEASURED FROM THE ZERO ANGLE OF ATTACK STAG-NATION POINT. THE TWO DIMENSIONAL FLOW LENGTHS ARE MEASURED FROM THE STAGNATION LINE.

** THESE POINTS ARE LOCATED ON THE NORTRONICS Q-BALL AIR DATA SYSTEM.

ED-110

	PREPARED BY P. Paxson	NORTH AMERICAN AVIATION, INC.	PAGE NO. 102 OF		
-	CHECKED BY		Y-154-7		
	DATE 9-26-63	Rentantielaurikak av 19 million i Billion	MODEL NO. A-LOA-2		
		ATIO PRESSURE, LA FT	ער דספטר צו		
1		\$ \$ \$	8 0		
			8		
i gan		N 2			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		K C	8		
			00/10		
			1 8		
5 64 1 1			$+\times$		
ŝ,	1		8		
94					
	NIS		50 /+/		
5.00	1 is		50		
1	516	9	-/		
2 1 10 1917	DE. JLE		84		
2	15 15 15 15 15 15 15 15 15 15 15 15 15 1	S Providence / Pro			
1 10-1	N DEX	SA/			
1.14	HOR		ğ		
The	200				
*	<u>a</u>	N/	8		
1 2	8				
		a			
2.2			N St		
Ť.					
		the company of the co	2 0		
5 5 1		8 12	4		
		STRESS, LB/FT ⁸	24342~2		
			N N		
1.1			TTUMPTOT~		
		035213/118 3108 ON1103A			

	АКРОНТ НО. NA-64-177 HODEL NO. X-15Л-2
	NODEL NO. X-151-2
	the providence of the second second second second
	<u> </u>
	Ř.
	8 8 8
	£
	0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 4	6
A ON	500 12
, ce	120
ş	1
5,	27.8
EKC	84
	Ť.
e	83
44	Na It
83	8
Tow	L Sec
0 0 0	0
רסאשרר אבשנואפ צענב' אנחוב	00 ~ 05
	LOWALL HEATTING RATE, BTU/J

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9. CALIFORNIA

NA-64-177 Appendix A

FUSELAGE BOW SHOCK-WING LEADING

EDGE SHOCK INTERACTION ANALYSIS

The presence of a system of shock waves caused by the nose of the airplane, side fairings, and canopy has been recognized and measured on the present X-15 airplanes. Due to the relatively large heat sink on the wing leading edge, the shock impingement on the leading edge has not caused any detectable high temperature regions. The shocks have been detected by pitot pressure measurements in the wing leading edge. On the Advanced X-15A-2, the ablation coating on the wing, because it does not have a "heat sink" capability comparable to the unprotected wing, must be designed to absorb the higher heating caused by shock impingement. The problem is to determine the additional ablation thickness required.

First, the most prominent shock, the one from the nose of the airplane, must be located. Figure 1 shows the location of the bow shock impingement on the wing leading edge as a function of Mach No. The information on Figure 1 has been obtained from wing tunnel and flight data on the current X-15 vehicles, corrected for the additional 29 inches of fuselage length between the wing and the nose on X-15A-2.

In reference 1, a method has been developed to calculate the increased heating at a shock impingement on a swept leading edge. The method has been applied to the X-15A-2 geometry and design mission and summarized in reference 2. The ratio of local heat flux at impingement to the undisturbed heat flux is shown in Figure 2.

From Figures 1 and 2 and the Mach No.-time history of the X-15A-2 design mission, Figure 3 was constructed. The location of the bow shock and the corresponding heat flux ratio are shown versus flight time. On this plot, additional lines of x/1 may be drawn on either side of the curve shown to represent the region of influence of the bow shock. This was done for regions of shock influence of 1, 2, and 3 leading edge diameters (corresponds of x/1 values of ± .00335, .0067, .01005 respectively). From this, it was possible, assuring the increased heating region to be step shaped, to determine the x/l value of the wing which was most affected by the bow shock, and for how long a period of time during the mission that the shock's presence would be felt. Having done this, the local heat flux was determined and the additional amount of ablation material required was calculated as a function of the assumed region of influence. This variation is shown in Figure 4; the location on the wing corresponds to the x/1 most severly affected. The variation of material required as a function of x/1 was determined in a similar manner and is shown in Figure 5 for a region of influence of 2 diameters.

The following arguments lead to a conclusion on the amount of additional ablation material required on the X-15A-2 wing leading edge to absorb the effects of the shock system.

NORTH AMERICAN AVIATION, INC.

NA-64-177 Appendix A

2A

1. It is recognized that shocks other than the bow shock exist.

2. Very little usable data exist on the magnitude of heat flux and region of influence of the shock impingement. Thus, a region of influence of two leading edge diameters, rather than one and one half, which available data indicate, will be used.

3. Some previous unpublished results indicated a higher stagnation line heating rate inboard of the shock.

In view of the above, an additional 0.09 inches of T-500-6A ablation material will be provided over the entire stagnation line of the leading edge to account for the shock system.

REFERENCES

1. TFD-63-653 "Summary Report of FuseLage-Bow Shock Interaction With A Wing Leading Edge Shock" by F. Hall and M. Glick.

 FS-63-11-4 internal letter "Advanced X-15 FuseLage Bow Shock-Wing Leading Edge Shock Interaction Analysis" and TFD-63-887 "Enclosure 1".

1002-X-9 NEW 8-62

NORTH AMERICAN AVIATION, INC.

NA-64-177 Appendix B

PROTUBERANCE HEAT TRANSFER

Description of Protuberances

The following table shows the protuberances considered and the ablation thickness required on the fuselage adjacent to them.

TABLE I PROTUBERANCE DESCRIPTION AND ABLATION THICKNESS REQUIRED

ITEM	FUS. STA.	SWEEP ANGLE	DIA.	AZIMUTH ANGLE, S	REQ'D THICK: OF T-500-4a
Pitot tube, forward of canopy	75	30° fwd.	.75 in.	180°	.764 in.
APU exhaust stacks	190	0°	2 in.	135°	.209
Antenna	200	30°	.75 in.	0°	.181
Hydraulic vent stacks	215	0°	1 in.	30°	.271
Lower vertical	469	30°	1 in.	0°	.115
Upper vertical	469	30°	1 in.	180°	.078
Landing skids	480	0•	6 in.	45°	.149

Theory

The following analysis treats the heating on the "flat" surfaces caused by the presence of a protuberance. Heating on the protuberances themselves is a separate problem. The theory developed by Yoshimura, in reference 1, the wind tunnel data from reference 2, and flight test data on X-15 ships 1 and 3 form the basis of the present analysis. Certain simplifications to the theory of reference 1 are incorporated herein.

Imagine a supersonic flow from left to right over a flat plate with no static pressure gradient in any direction and a turbulent boundary layer existing between the plate and free stream. This turbulent boundary layer is called the basic, or oncoming turbulent boundary layer. When a circular cylinder is inserted through the basic boundary layer, a phenomenon of three-dimensional boundary layershock interaction takes place in the vicinity of the forward half of the protuberance-plate junction and a pattern of "vorticies" is developed at the junction, as shown in Figure 1. A strong circulatory flow exists at the plate surface which flows radially outward from the junction; this is called the "reversed" flow, but the term "reversed" does not necessarily imply flow direction opposite to that of the free stream. The boundary layer developed by the "reversed" flow is considered to be laminar in the present case.

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9. CALIFORNIA

Peak Heating

NA-64-177 Appendix B

The peak heating is considered to be located at X_1 and decreases to the undisturbed value at X_3 . So far, the locations of X_1 and X_3 remain unspecified, but the value of peak heating at X_1 for an upright cylinder may be obtained from (1).

(1)
$$\left(\frac{h}{h_{\infty}}\right)_{x_{1}} = 51.83 \frac{\left[1+0.5\right]r_{e}\left(\frac{h_{1}}{2}\right)M_{\infty}^{2}\right]^{2}}{\left(\frac{V_{\infty}}{V_{\infty}}\right)^{1/4}\delta^{1/4}} \left(\frac{P_{1}}{P_{\infty}}\right)^{1/2} \frac{1}{\left[1+r_{e}\left(\frac{h_{1}}{2}\right)M_{\infty}^{2}\right]^{-1/2}}$$

where:

- $\begin{pmatrix} h \\ h \end{pmatrix}$ ratio of disturbed to undisturbed heat transfer X_1 , coefficient at X_1 .
 - V. recovery factor (.9 is taken for turbulent flow)
 - M. freestream Mach No.

 $\frac{P_1}{P_2}$ - ratio of static pressure at X_1 to static pressure in freestream.

- freestream Reynolds No. per foot (called R_{∞} , hereafter)

- boundary layer thickness - ft.

$$\frac{P_1}{P_{oo}} = \frac{P_{n+}P_{oo}}{2P_{oo}}$$

(3) $\frac{P_n}{P_m} = \frac{2 \delta M_m^2 - (\delta - l)}{\delta + l} = \frac{7 M_m^2 - l}{6}$ (static pressure across a normal shock)

$$(4) \frac{P_1}{P_2} = \frac{7M_2^2 + 5}{12}$$

Equation (1) may be arranged as follows:

$$(5) \left(\frac{h}{h_{\alpha}}\right)_{X_{1}} \left(R_{\alpha}\right)^{1/4} S^{1/4} = 51.83 \left(\frac{R}{R_{\alpha}}\right)^{1/2} \frac{\left[1+0.5\right] \cdot r_{t} \left(\frac{d-1}{2}\right) M_{\alpha}^{2}}{\left[1+r_{t} \left(\frac{d-1}{2}\right) M_{\alpha}^{2}\right]^{-12}}$$

The above equation is shown in Figure 2 along with data points from References 1 and 2. Good agreement is noted in the Mach number range tested. Also shown are test points for a cylinder swept forward and aft; along with simple analytic expressions to represent the effects of sweep.

The following table shows (Table II) conditions for the X-15A-2 M = 8 design mission. Values of boundary layer thickness are obtained from Reference 3. The variation of $(h/h_{\infty})_{y}$, S^{V4} is shown in Figure 3.

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AMPORT LOS ANGELES 9. CALIFORNIA

		مەر ئارىم قىلى قىل يۇرى كارىرى تەرىپىلىرىكى بىرىكى بىرى تەرىپىلىرىكى بىرىكى تەرىپىلىرىكى بىرىكى تەرىپىلىرىكى بى		tas tagá kerdene meditik atari (a. e. medit keta, teta	₽₽₽₩₽₽ ¹ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	NA-64-177 Appendix B				
	TABLE II DESIGN MISSION CONDITIONS									
M _{dò}	Approx. Alt 1000 ft.	. R _{oo} 1/ft	(h.) 5×	s (f1) €x = 6f1.	δ (11) @ x≅18#	s (f) @ x= 42ff				
2	69	108 x 10 ⁴	2.98	.1025	.247	.487				
4	96	48 x 10 ⁴	8.69	.128	.308	.607				
6.	100	61.4 x 10 ⁴	15.21	.1405	.338	.666				
8	100	81.6 x 10 ⁴	23.05	.1525	.368	.725				

Heating Distribution

The variation of heating upstream of a protuberance is expressed as follows:

(6)
$$\left(\frac{h}{h_{a}}\right)_{x} = \left(\frac{h}{h_{a}}\right)_{x}, \left(\frac{\chi_{i}}{\chi}\right)^{1/2} \left(\frac{p}{P_{i}}\right)^{1/2}$$

From previous arguments, equation (6) must equal $(h/h_{PO})_X$, at $X = X_1$ and must equal unity at $X = X_3$. If P is set equal to Poo at $X = X_3$, equation (6) may be solved at $X = X_3$ as:

(7)
$$\frac{X_{1}/D}{S^{1/2}} = \frac{X_{3}}{D} \frac{\left(\frac{P_{1}}{P_{ro}}\right)}{\left[\left(\frac{h}{h_{ro}}\right)_{X_{1}}S^{1/4}\right]^{2}}$$

where D - protuberance diameter

Thus, at a given Mach and δ , if X_1 is specified, X_3 is determined, and vice-versa. From examination of test data, it appears preferable to select a value of X_3 . A value of $X_3 = 2$ will be tentatively selected. The static pressure is assumed to D^* vary linearly between X_1 and X_3 . Rewrite equation (6) as:

(8)
$$\frac{h_x}{h_{x_1}} = \left(\frac{x_{y_1}}{x_{y_2}}\right)^{y_2} \left(\frac{p}{p_1}\right)^{y_2}$$

The linear pressure distribution, assuming $\frac{X_{3=}}{D}$ 2, is:

$$(9) \quad \frac{P}{P_1} = \left(\frac{\frac{P_{ex}}{P_1} - 1}{2 - x_{1/0}}\right) \left(\frac{x}{D} - z\right) + \frac{P_{ex}}{P_1}$$

At high Mach numbers, both $\frac{V_{p}}{P}$, and X_{1}/D tend to be small, hence a simplification of equation (9) is:

3B

NORTH AMERICAN AVIATION, INC.

LOS ANGELES 9, CALIFORNIA

NA-64-177 Appendix B

which when substituted into (8) yields

(11)
$$\frac{h_x/h_{x_1}}{(x_1/p)^{V_z}} = \left(\frac{1}{x/p} - \frac{1}{z}\right)^{1/z}$$

Equations (8), (7) and (9) have been solved for various representative design flight conditions (see also Table II) and plotted in Figure 4. Also, shown is the simplified equation (11). Due to the excellent agreement for a wide range of flight conditions, the simplified equation (11) will be used from here on.

From examination of Figure 4 consider the following.

Rather than attempt to tailor the ablation coating to a shape similar to the curve on Figure 4, consider a uniform thickness from X/D = 0to X_3/D . The maximum value, $(h/h_{\infty})_{\chi}$, since it affects a relatively small area, seems toohigh to use. Consider, then, an average value of heating ratio from the protuberance to X_3/D . This average value is obtained by integration between X/D = 0 and X_3/D and dividing the result by X_3/D . Groups of parameters will fall outside the integral and may be treater independently. The heat flux (of) ratio is now defined as:

(12)
$$\frac{\dot{q}}{q_{ee}} = \frac{\int (hx/h_{ee}) dx}{\overline{x_3}}$$

where:

- ratio of average heat flux near a protuberance to the undisturbed value.

 $\bar{\mathbf{x}} = \mathbf{x}/\mathbf{D}$; $\bar{\mathbf{x}}_3 = \mathbf{x}_3/\mathbf{D}$

Repeating equation (6)

(6)
$$\frac{h_{X}}{h_{\infty}} = \left(\frac{h_{X_{I}}}{h_{\infty}}\right) \left(\frac{X_{I}}{X}\right)^{V_{2}} \left(\frac{P}{P_{I}}\right)^{V_{2}} = \left(\frac{h_{X_{I}}}{h_{\infty}}\right) \left(\frac{\overline{X}_{I}}{\overline{X}}\right)^{V_{2}} \left(\frac{P}{P_{I}}\right)^{V_{2}}$$

and, in general, the static pressure ratio (see also eq. (10)) can be written

(13)
$$\frac{P}{P_i} = 1 - \frac{\overline{X}}{\overline{X}_3}$$

Equation (7) can be rewritten as:

$$(14) \quad \frac{\overline{X}_{i}}{\overline{X}_{3}} = \frac{P_{i}/P_{eo}}{(h_{x_{i}}/h_{o})^{2}} \quad or \quad \left(\frac{\overline{X}_{i}}{\overline{X}_{3}}\right)^{1/2} = \frac{\left(\frac{P_{i}}{P_{eo}}\right)^{1/2}}{h_{x_{i}}/h_{oo}}$$

Thus (12) can be written as:

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT

LOS ANGELES S. CALIFORNIA

NA-64-177 Appendix B

The integral, when evaluated, becomes:

(16)
$$\int_{0}^{X_{3}} \left(\frac{1}{\overline{X}} - \frac{1}{\overline{X}_{3}}\right)^{1/2} d\overline{x} = \left(\overline{X}, \left(\frac{1}{\overline{X}}\right)\right)^{1/2}$$

Finally, substituting (16) into (15) obtain:

(17)
$$\frac{q}{q_{ro}} = \left(\frac{P_{i}}{P_{ro}}\right)^{1/2} \left(\frac{TT}{2}\right) = \frac{TT}{2} \left[\frac{T M_{roc}^{2} + 5}{12}\right]^{1/2}$$
 (see eq.(4))

Equation (17) is plotted in Figure 5. Note that eq. (17) is independent of X_3 . This is convenient, since it will permit latitude in the choice of the size of the region around the protuberance which will be protected, without affecting the required thickness of the ablation material.

Heat Flux and Ablation Thickness Evaluation at Protuberances

Using the information previously derived, the local heat flux values for the design mission may now be determined. Undisturbed values of cold wall heat flux are obtained from calculations made using an IBM program called AXFAC. For protuberances with zero sweep, the values of heating rate ratio shown in Figure 5, are used. To account for sweep, the following relations are used (see also Figure 2).

For a protuberance swept back

$$\frac{\dot{9}}{9} = \cos^3 \Omega$$

The heat flux calculations are presented in Table III. Required thicknesses of Thermolag T-500-4a were determined using these heat flux values and a cold wall heat blockage based on heff = 13800 - 101 gew The thicknesses (which are not added to the undisturbed values) are tabulated in Table I. Note that the heating rates and thickness required at the swept forward pitot tube are very high. It would appear desirable to remove this pitot tube and obtain the required pressure information from another source, such as the ball nose.

Due to the relatively large thicknesses of ablation material required, rather than spray heavier coats of T-500 ha in the protuberance regions when the rest of the airplane is being sprayed, pre-sprayed patches will probably be made in the lab and attached with an adhesive in the field. The patches will extend radially a distance of 3 diameters $(X_3/D = 3)$ from the protuberance except for the landing skid which will use 2 diameters. For non-circular protuberances, such as the pitot, antenna, upper and lower verticals and landing skids, the protective ablation patch will still be circular, but cut out to fit around the protuberance. The added weight of ablation material required around protuberances will have a negligible (approximately 1%) effect on the total weight of the ablation system.

5B

PREPARED B	B	N	NORTH AMERICAN AVIATION, INC.					PAGE NO. 6B OF NA-64-177	
CHECKED BY: K. J								REPORT NO. Appendix B	
DATE:	HEAT FLUX AT PROTUBE RANCES							ODEL NO.	
TIME	MACH	ġ	iz.	ġ	à	á	9	19	
(Sec.)	No,	PITOT	HYD. VENT	LOW UR	UPPER	LANDING	APU	ANTENNA	
	0.2.5				QC LINE	0.00			
30	1626	.720	. 626	254	211	251	,49	.37	
40	1.694	. 922	.629	, 304	.251	,426	.57	, 44	
49	1.766	.976	.657	, 331	. 276	.445	, 61	,47	
54	1.859	1.2.85	.729	.336	.336	515	.74	.48	
60	2.014	1.7.50	.972	. 443	.443	.68	.97	.63	
70	2,355	2.94	1.595	,718	.718	1.101	1,60	1.04	
80	2.807	5.2	2,69	1.209	1.209	1.86	2.64	1.75	
90	3.349	9.35	4,46	2,03	2.03	3.11	4,47	2.91	
100	3.940	16.05	7.05	3.18	3.18	4.90	7.05	4.58	
[]2	4,774	32.2	12.55	5.67	5.67	8.71	12.54	8.17	
113	4,842	21.4	16.10	8.56	5.92	10.31	13.05	12.34	
120	5.383	31.1	21.65	11.37	8.13	13.98	17.91	16.31	
150	7.975	176.5	66.75	32,8	27.65	44.6	61.00	48.00	
150.1	7.975	153.5	71.60	37.0	27.65	46.3	61,00	53.10	
180	7.546	118.1	61.7	32,25	23.4	40,1	51.70	46.40	
220	7.077	87.5	52.15	27.7	19.3	33.5	42.60	2 39,80	
290	6.130	49,3	33.7	18.05	1238	21.65	27.3	525,90	
360	5.223	26.9	20,81	11.28	7.44	13.2	16.40	16.19	
440	4.306	13.73	10.91	5.94	3,85	6.93	8,57	8,53	
450	4,202	12.89	10.16	5,54	3.62	6,43	7.97	7.93	
500	3,731	9,18	7:23	3,02	2,75	4,73	6.09	5,47	
540	3.358	1.62	5.34	2.70	2,135	0,53	4,73	3.87	
510	5,0117	6105	4.10	6.02	1.683	214	SILE	2.70	
600	2799	7.55	5.00	1,443	1.265	2,05	611	6.08	
650	CIEY3	E.46	, 11, y. F	1728	1672	1,065	1.01	1.05	
110	1 700	1.04	1026	· T/S	1456	211	1.00	167	
836	11012	1003	177	,624.	, 5 5 7	. 374		134	
000		9	4	<u> </u>	Q	17		1 12	

1200 g

FORM 18-G-28 (VELLUM)

.

(

11 .

(i

7

1:

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9, CALIFORNIA

2

. . .

REV. 9-61

19-1

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9. CALIFORNIA

NA-64-177 Appendix C p

3 1 О

FORM 18-G-1 REV. 2-47

Ļ

10. C. I. MK

ž.

MA-54-177 Appendia C

CONDITION # 2A

2581-99-8F

10-3-63

Ξŋ

10-2-53

9-61

REV.

18-C-1

Xach

11-61-177

Hu endige C

PT-8 RUN CI NAA MODEL # 14 . 07 THICK THERMOLAG CONDITION #2A

2 581 - 99 - 9 H

NA-64-17: Appendix C

4.5

PT-8 RUN 84 EMÉRSON MODEL # 24 .07 THICK (ONDITION # 34

REV. 9-61

1-0-01

MA-co-177 Appendix C

PT-8 RUN 66 NAA MODEL #21 .04 THICK THERMOLAG CONDITION # 1/1

18.61

15 - 1-15-

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9, CALIFORNIA

NORTH AMERICAN AVIATION, INC. INTERNATIONAL AIRPORT LOS ANGELES 9, CALIFORNIA

UNCLASSIFIED

UNCLASSIFIED