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ABSTRACT 

This is a report of results and analysis of measurements of forces 
on spherically capped cones of 10-deg half-angle, with and without 
conical afterbodies.   These data were obtained during the course of an 
evaluation of a new three-component balance for use in a low-density, 
hypersonic wind tunnel.    Comparisons are made with modified Newtonian 
and free-molecule theories.    Measurements were made in nitrogen gas 
at a nominal Mach number of 9. 8 and unit Reynolds number of 760 in. " 1. 
The suitability of the low-load,  three-component balance for measuring 
aerodynamic forces in low-density flows is demonstrated. 
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SECTION   I 
INTRODUCTION 

Multi-component aerodynamic force measurements on typically 
small scale models in low-density,  hypersonic wind tunnels have not 
been published up to the present time,  largely because of the require- 
ment for a balance of sufficient sensitivity and accuracy to measure the 
small aerodynamic loads,    The recent successful development of a three- 
component balance for use in the low-density,  hypersonic wind tunnel 
(Gas Dynamic Wind Tunnel,  Hypersonic (L)) of the von Karman Gas Dy- 
namics Facility (VKF),  AEDC,  AFSC,  has enabled such measurements 
to be made.    This report contains data taken during the balance develop- 
ment period on a small 10-deg half-angle blunt cone which was previously 
used in studies of aerodynamic drag (Ref.   1).    Although it was discovered 
that failure to achieve the desired accuracy in locating the sting in the 
models caused excessive uncertainty of moment coefficients,  lift and drag 
were unaffected,  and the data clearly seem to warrant publication because 
of the unique flow conditions. 

SECTION   !l 
APPARATUS 

2.1   WIND TUNNEL 

Tunnel L is a continuous-type,  arc-heated,   ejector-pumped facility, 
normally using nitrogen or argon as the test gas and consisting of the 
following major components in streamwise order: 

1. Continuous,  water-cooled d-c arc-heater.    Thermal Dynamic 
F-40 or U-50®,  both slightly modified,  with 40-kw selenium 
rectifier power supply.    Gas is injected without swirl in the 
F-40 arc heater and with or without swirl in the U-50 unit. 
Unless otherwise noted,   all testing is done without use of swirl- 
ing gas injection. 

2. Cylindrical,  water-cooled settling section.    Variable size,  but 
normally of 3-in. -diam and 6- to 10-in. length. 

3. Axisymmetric,  water-cooled aerodynamic nozzle.    Variable 
sizes with 0. 10- to 1. 20-in. -diam throats and 2.0- to 8.0-in.- 
diam exits.   At this time three contoured nozzles having no flow 
gradients in the test section are available in addition to older 
conical nozzles. 
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4. Cylindrical test-section tank. 48-in. diameter surrounding the 
test section and containing instrumentation, cooling water con- 
nections,  and probe carrier, 

5. Axisymmetric diffuser.    Interchangeable designs for varying 
test conditions.    Convergent entrance,   constant-area throat, 
and divergent exit sections.    Water-cooled entrance. 

6. Water-cooled heat exchanger. 

7. Air ejector of two stages. 

8. Connection to the VKF evacuated,  72-ft-diam,  spherical vacuum 
reservoir and its pumping system. 

All critical components of the tunnel and related systems are pro- 
tected by back-side water cooling.    The two-stage ejector system is 
driven by air instead of steam because of the ready availability of high 
pressure air at the tunnel site.    Although the working gas normally is 
nitrogen or argon,  other gases may be used. 

2.2 NOZZLE FLOW CONDITIONS 

The data were obtained using a semi-contoured axisymmetric nozzle 
designed for use with nitrogen as the working gas. Since the development 
of the three-component balance was the primary purpose of this test, the 
flow conditions were limited to a single condition as follows: 

Test Region - at aerodynamic nozzle exit with 
2. 52-in.  extension in place 

Po = 20.0 psia q«  = 5.45 lb/ft3 

m = 5.85   lbm/hr Re0/in.   = 95 

To = 2200 °K TK = 113 °K 

MM = 9.8 SM = 8.2 

Re   /in. = 760 

This particular flow condition was chosen to duplicate precisely one 
set of data presented in Ref.   1,  thereby obtaining direct comparison of 
the drag measurements with previous one-component balance data.   Using 
the characteristic length_as defined in Fig.   1,  the value of the viscous 
interaction parameter,  V„,  is 0. 40 for the Type A models and 0. 316 for 
the Type B models. 



AEDC-TR-65-62 

Transverse impact pressure measurements taken at the test position 
are shown in Fig.  2 and indicate a usable core size of 0. 8 in.    The in- 
fluence of axial-flow gradients in the test region is negligible because of 
the small model length. 

2.3  MODELS 

The basic configuration of the models is a 10-deg semi-vertex 
blunted cone with a modified spherical nose segment.    This shape has 
been proposed for an instrument capsule to be used for planetary atmos- 
pheric studies.    Two types of models were tested,  one with a flat base 
and one with a 50-deg semi-vertex conical afterbody.    The flat-based 
model is designated Type A,  and the model with conical afterbody is 
designated Type B.    The models are shown in Fig.   1 with a tabulation 
of the angles of attack applicable to each model. 

At the time of model construction,   a literature survey indicated that 
in previous tests of these shapes,  moment was referenced to a point 
42 percent of the base diameter behind the model nose.    The models were 
therefore designed for the sting axis to pass through this point to eliminate 
drag-force influence on the pitching moment.   A later literature search 
revealed that other data were taken using,  as a moment reference,  a point 
on the model centerline at 48. 2 percent of the base diameter measured 
from the model nose.    The data in the present report have been based on 
this latter position which is indicated in Fig.   1.   However,  a subsequent 
examination of the models revealed that,  because of fabrication errors, 
the model mounting trunnion was positioned at neither of these stations, 
and an additional term in the solution for the static pitching moment was 
necessary to account for the drag influence.    This caused much more than 
ordinary scatter and uncertainty in some of the moment data.    Despite this 
error, the report is published because of widespread interest in data for 
the conditions simulating very high altitude. 

2.4  THREE-COMPONENT FORCE BALANCE 

The balance is of the external type and is composed of two drag and 
two lift links.   Pitching moment is intended to be derived from the two lift 
links.    The drag-force component is measured through two restoring links 
as a matter of convenience,  thus allowing determination of an additional 
moment.   However,  at this time only pitching moment was determined.   All 
components operate on the nulling principle.    The mechanical arrangement 
of the balance is shown in Fig.  3.    A complete description is given in 
Ref.  2 with a discussion of the balance performance evaluation and accuracy. 
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The model aerodynamic static pitching moment is resolved from the 
lift and drag forces and measured moment arm lengths.    This is illus- 
trated schematically by the following example: 

Sign Convention 

♦t t* 
Moment  Arm       Force 

Sting 

M P - (AJCLJ + (-A2)(-W) + (AS)(D) (1). 

Moment arms A\ and A2 are measured using a known reference on 
the balance sting and the known distance between the two lift components. 
Moment arm A3 was determined in part by placing the models on an 
optical comparator with a dummy sting in place.    Figure 4 is a typical 
result of this investigation.    Although several traces were made of each 
model at random roll positions,  the accuracy of determining A3 was such 
that a degree of uncertainty was introduced into the solution of static 
pitching moment. 

Aerodynamic forces Li, L*2>  and D are measured as individual lift 
forces and the sum of the two drag forces,  each of which registered one- 
half of the total drag force. 

It is assumed that the sting mount was correctly placed on the model 
centerline.    This was indicated to be essentially correct from the 
several measurements of moment arm,  A3,  which were made on each 
model and by the fact that each drag component registered one-half the 
total drag. 
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SECTION   III 
EXPERIMENTAL PROCEDURE AND RESULTS 

To check for flow angularity,  the models were tested both at posi- 
tive and negative angles of attack,   i.-e.,  nose-up and nose-down.    Test 
duration was on the order of 45 sec to prevent excessive heating of the 
balance and to retain cold-wall model conditions.    The wall-to-stagnation 
temperature ratio was estimated at approximately 0. 30. 

The aerodynamic forces acting on the model may be calculated from 
the balance restoring force measurements and expressed in coefficient 
form from the following relationships for the flow conditions of the 
present test.    Force units are in lbf and moment units are in in. -lhf. 

CM  = Mp/q^  Sd  = 269.11   Mp 

C.D   =   DA},*   s   =   134°55   D ^ 

CL = (Li  + L2)/qoo S  = 134.55  (Lt + L2) 

The reduced data using Eq.  (2) are listed in Table I.    Figures 5 
through 6 show the variation of Crj> and C^ as a function of angle of 
attack.    Since no flow angularity could be detected,  data from Table I 
were plotted with no distinction being made between positive and nega- 
tive attitudes.    Appropriate sign changes were made in plotting the data. 
Included in Table I   are values of the moment arms A]_,  A2,  and A3. 
The values of A3 are averages of several measurements.    Figure 7 
shows the variation of C]y[ with angle of attack.    The estimated degree 
of reliability is indicated at each angle of attack from an examination of 
separate data points.    Included in Fig.   7 are data of Ref.  3 at M^ =15 
in helium at a Reynolds number of 2.25 x 106 based on model maximum 
diameter.    The data taken at a - 140 and 170 deg with model Type B 
were lost because a model modification prevented the determination of 
moment arm,  A3.    The modification was made before the discovery 
that the error in fabrication described earlier made A3/0. 

An estimate of the error from run-to-run repeatability and balance 
calibration behavior indicates the lift and drag measurements for model 
Type A are quite good (±5 percent).    Therefore,  the static pitching- 
moment error is assumed to be introduced by the error in model fabrica- 
tion rather than in the force measurements. 

The data in Fig.  6b for the Type B model appear to be questionable 
inasmuch as the lift coefficients do not fall between those predicted by 
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inviscid Newtonian and free-molecule theory.    However, the lift forces 
of the Type B model at 140 deg < a < 180 deg are much smaller than the 
Type A model (Fig.  6a),  and the trend of the data agrees quite well with 
the theoretical calculations.    The maximum value of the lift forces 
shown in Fig.  6b is approximately 1.4 x 10"4 Ibf, which is at the extreme 
low end of the balance capability.    Thus,   confidence in these particular 
data should be restrained.   However,  it is noteworthy that correspond- 
ing normal-force coefficients in Fig.   9b seem quite plausible. 

Since prior published data on these models (Refs.  3 through 9) 
generally are presented in terms of the force coefficients,  C^,  C^,  and 
Cjyt,  the present data were converted to obtain a direct comparison, using 
the relationships 

CN  
= CL   

COS
 

K
  +  CQ   sin « 

CA  
= CD   COS «  — CL   sin K 

Average values of Cj_, and Cjy at a given angle of attack were used 
for the calculation,  and the results are presented in Figs.  8 through 9. 
Included are.typical data from Ref.  3 at Ma = 15 in helium at a Reynolds 
number of 2. 25 x 10^ based on model maximum diameter. 

Theoretical calculations shown in Figs.  5 through 9 are limited to   - 
the two extremes of high Reynolds number,  non-viscous theory and free- 
molecular flow theory.    The Newtonian-flow theoretical calculations were 
taken from Ref.  3 and converted to C^, and Cr>    It is assumed that the 
pressure coefficient is zero on all parts of the body not facing the free 
stream.    The data of Ref.  3 shown in Figs.  7,   8,  and 9 were taken using 
helium as the test medium and are compared to the theoretical curve for 
Y - 1.4.   However, the effect of y is quite small in the present case,  and 
comparisons between data taken in helium and air in Ref.  3 show little 
difference. 

The free-molecule flow solutions,  shown in the figures,  were calcu- 
lated using the method of Sentman (Ref.   10).    The speed ratio value of 
7. 0 used in the calculation is not identical to the actual free-stream value 
of 8. 2 during the present test.    This is because the calculation was done 
for a previous application (Ref.   1).    Since the effect of speed ratio (at 
high values of the speed ratio) is small,  the calculation was not repeated. 
A wall-to-free-stream temperature ratio of 6. 0 was estimated,  and fully 
accommodated diffuse reflection was assumed. 

Comparison, between the data of Tunnel L with modified Newtonian 
and free-molecule flow theories indicates large departures from Newtonian 



AEDC-TR-65-62 

theory caused by viscous interaction effects arising because of the high 
Mach number and very high simulated altitude in this test. 

Newtonian theory predicts the behavior of the model quite well when 
viscous interaction effects may be neglected,   as shown by data from 
tunnels generating high Reynolds numbers.    This agreement is true ex- 
cept for model Type A in the range 140 deg < a < 180 deg angle of attack. 
Experiments have shown (Fig.   7a) that the model is statically stable 
about 180 deg rather than unstable as predicted by Newtonian theory.   Re- 
sults from Tunnel L qualitatively agree with these experimental results. 

SECTION   IV 
CONCLUDING DISCUSSION 

The primary purpose of obtaining the data presented in this report 
was to evaluate the performance of the low-load,  three-component 
balance.    However,  the data are of interest purely from an aerodynamic 
viewpoint insofar as they represent unique and useful measurements on 
a vehicle shape of current interest,  under flow conditions which essen- 
tially simulate flight conditions at high altitude in a Martian atmosphere. 
Because of the effective freezing of thermochemical fluid processes at 
low densities,  the Earth's atmosphere also was simulated in this test 
using nitrogen gas. 

The lift and drag force data appear to be reliable,  following the 
theoretical trends and indicating the expected departures from inviscid 
Newtonian theory.    The static pitching-moment data must be considered 
qualitative because of a fabrication error which necessitated the inclusion 
of the large drag force in resolving the aerodynamic moment.    However, 
the trends of the static pitching-moment data were as expected.    The 
suitability of the low-load,  three-component balance for aerodynamic force 
tests in low-density flows is demonstrated. 
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0. 1814 R 

0.2721 R 

Moment 
Reference 
Point 

Model Type A 

0.2098 
All dimensions in inches 

Model Type B 

(Type A with Conical Afterbody) 

Number Type Angle of Attack L, in.* 

1 A 0 0.542 
2 A 10° 0.542 
3 A 20° 0.542 
4 A 31°26' 0.542 
5 A 40° 0.542 
6 A 170°32' and!40°55' 0.542 
7 A 160° and 150° 0.542 
8 B 167°57' and 140°23' 0.869 
9 B 159°50' and 150°13' 0.869 

«The characteristic length (L) is defined as the distance AB 
in the sketch of the Type A model and the distance ABC in the 
sketch of the Type B model. 

Fig. 1   Model Dimensions and Angles of Attack 
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Run Model a. Al. A2 
deg in, in. 

39 1 0 1.214 -7. 86 

40 2 -10 1.214 -7,86 

41 2 10 1.214 -7. 86 

42 3 -20 1.206 -7, 94 

43 3 20 1.206 -7.94 

45 4 -31-26' 1.190 -8. 10 

46 4 31-26' 1.190 -8. 10 

47 5 -40 1.165 -8.35 

48 5 40 1.165 -8.35 

76 7 200 1.142 -8.58 
200 1.142 -8.58 
200 1.142 -8.58' 

77 7 160 1. 142 -8.58 
160 1.142 -8.58 

78 7 150 1. 140 -8. 60 
150 1.140 -8. 60' 

79 7 210 1.140 -8. 60' 
210 1.140 -8.60' 

80 6 219*5' 1.142 -8.58 
219-5' 1.142 -8.58' 

81 6 140°55' 1. 142 -8.58' 
140-55' 1. 142 -8.58" 

82 6 170°32' 1.144 -8.56' 
170-32' 1. 144 -8.56 

83 6 189-28' 1.144 -8.56 
189-2?' 1.144 -8.56 

84 8 192-3' 1.144 
1.144 

-8.56 
-8.56 

85 8 167°57' 1.144 
1.144 

-8.56 
-8.56 

86 8 140-23' , 1. 142 
1. 142 

-8.58 
-8.58 

87 8 219=37' 1.142 
1. 142 

-8.58 
-8.58 

88 9 200-10' 1. 142 
1.142 

-8.58 
-8.58 

89 9 159-50' 1.142 
1. 142 
1. 142 
1. 142' 

-8.58' 
-8.58' 
-8. SB" 
-8.58 

91 9 209-47' 1.140 
1.140 

-8. 60" 
-8.60' 

TABLE   I 
TEST DATA 

lbf 

1                0 0 0 8. 928"3 -0 1.20 0 

1         -4.20"3 -5.05"5 •20. 75"5 8.581"3 -3.47"2 1. 16 1.77"2 

1           4.20"3 6.07"5 20.75"5 8.730"3 3.61"2 1. 18 -1.42"2 

1         -2,35"3 -9.44~5 -38.85"5 9.226"3 -6.50"2 1.24 4.65"2 

1           2.35"3 

9.77"5 38. 60"5 9.374"3 6.51"2 1.26 -4.48"2 

1         -1.04"2 -11.46"5 -56.70"5 9.572"3 -9. 17"2 1.29 6.Ol"2 

1           1.04"2 12.80"5 57.30"5 9. 721"3 9. 43"2 1.31 -5.67"2 

1         -1.06'2 -20.90"6 -72.50"5 10.267"3 -12.57"2 1.38 6.81"2 

1           1.06"2 20. 55"5 73.90"6 10. 465"3 12.71"2 1.41 -7.18"2 

1         -3.51"2 -129. 4"5 -202.2"5 12.35"3 -4.46"1 1.66 -4.B4"2 

"5.07"^ 
-5.23 * 

1.32"2 

2.14"^ 
1.96"2 

1.95"2 

-9.49 , 
-1.32"^ 

1         -3.51"2 -129. 7"s -201.2"6 12.35"3 -4. 45"1 

1        -3.51"2 -130.0"5 -200. 9"B 12.35"3 -4.45"1 

1          3.51"2 128. 4"6 215.I"5 12. 20"3 4.62"1 1.64 
1          3.51"2 127. 7"5 210.6"5 12.20"3 4. 55""1 

1          4.29"2 131. B"5 221. 9"5 11.16"3 4.76"1 1.50 
1          4.29"2 129. 8"5 291. 3"5 11.16"3 4.70"1 

}        -4.29"2 -131.4"5 -226.5"5 11.SI"3 -4.82"} 1.52 
1        -4.29"^ -131. 1"^ -224.5"5 11.31"3 

10-47  , 
-4.79 

1                * -109.9"° -199.9"5 -4.17"1 1.41 * 
1                * -109.2"5 -197.O"5 10.47"^ -4. 12"1 * 
1                * 112.2";! 198. 3"6 10.71"3 4. 18"1 1.44 * 
1                * 111.9"5 197. 6"5 10,71"3 4. 17" ! * 
1                * 78. 86"6 120.2"5 13. 19"3 2.68"1 1.78 * 
1                * 78. 86-6 120.9"5 13.19"3 2.69"} * 
1                * -80.54";? -116.3"^ 13.44"3 -2.65"1 1.81 * 
1                 * -78,86"5 -113.4"5 13.44"d -2.59"1 * 
1        -2.37"2 16. 18"6 -29. 81'5 10.67"3 -1.83"2 1.44 5.04'2 

1         -2.37-2 15.84";! -29.16"6 10.67"3 -1.79"2 4.79"2 

1           2.37"2 -18. 54"5 29.81"5 10.81"3 1.52"2 1.46 -5.68"2 

1           2.37"2 -18. 54"5 29. Bl"5 10. 81"3 1.52"2 -5.68"2 

1           i- l5'l -43.14"5 35.96"5 9.672"3 -9. 65"3 1.30 -1.08"1 

1           4. 15"2 -43.47"5 35.32"5 9.672"3 -1. 10"2 -1.07-1 
9.49"^ 1        -4.15"2 39. 43"5 -35.64"5 9.721"3 5. 10"3 1.31 

)        -4.15"2 40.44"5 -36.61"s 9.721"3 5.15"3 i.oo"* 
1         -3.28"^ 20.56"6 -40.82"6 10. 47"3 -2.73"2 1.41 s.so'* 
1        -3.28"2 21.23"5 -36. 89"5 10. 47"3 -2.38"2 6.26"2 

1          3.28"2 -28. 98"6 44.71"5 10.17"3 2.12"2 1.37 -1.03"! 
1          3.28"2 -29. 66"5 45.36"5 10. 17"3 2. II"2 -1.06"! 
1          3.2B-2, 
:           3.28 

-29.32"5 43. 74"5 10.17"3 1.94"2 -1. Ol"1 

-29. 32"5 44.39"5 10.17"3 2.03"2 

-2.52"2 
-1. OS"1 

-3.26"2 24.26"5 -43. 09"5 9.721"3 1.31 B.89"2 

1        -3.26"2 26.29"5 -43.74"5 9.721"3 -2.35"2 9.66"'' 

Run 44 was repeat of run 43 
Run 90 with Model 9 at 150-13 lost because of balance being out of alignment. 

»Unable to measure moment arm A3 
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