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Section 1
MATHEMATICAL ANALYSIS

PREDICTION OF LAUNCH VEHICLE TRANSONIC
BUFFETING FROM WIND TUNNEL DATA

R. E. Bieber
Lockheed Missiles and Space Company
Huntsville, Alabama

A problem which has attracted widespread attention in recent ycars is
prediction of the dynamic response of a vertical-rising ballistic mis-
sile or spacecraft to random pressure fields which occur during tran-
sonic filight. Because of the practical importance of this problem ex-
tensive wind tunnel mecasurements have been made on rigid scale
models of various vehicle configurations. Time histories of the un-
steady pressures have been obtained by means of closely-spaced pres-
sure transducers located at the model surface. The present papcr
develops a method for applying empirical wind tunnel data of this type
to the prediction of the beam bending response of a full-scale vehicle.

The wind tunnel measurements arc uscd to formulate a model of the
inflight random pressure field. This requires application of best avail-
able scaling laws to the wind tunnel data. A statistical model which
synthesizes the random pressure field as a process nonstationary in

space but stationary in time is employed.

From the mode shapes of the dynamic system and unstcady pressure
field empirical model, the statistics of the generzalized forces are
solved for. The problem then reduces to one of spectral analysis of a
multi-dimensional linear system. Finally, the meihods developed have
been applied to the calculation of the transonic buffct bending moment
response for a particuiar iaunch vehicle.

INTRODUCTION

Wind tunnel and flight test measurement
programs reveal that conventional launch vehi-
cles develop boundary layer turbulence during
transonic flight. This excitation and resulting
vibration is generally referred to as transonic
buffeting. Here "transonic'' is used loosely
since this buffet phenomenen can occur over a
wide range of Mach numbers depending cn the
body shape. A comprehensive review of launch
vehicle buffeting is given by Rainey {1]. The
present paper develops an analytical method
for predicting the vibration response of the full-
scale vehicle from fluctuating pressure data
collecied in wind tunnel tests of rigid scale

NOTE: Refercnces appear on page 8.

models. Among those who have applied such
methods to actual vehicles are Goldberg [2]and
Bieber [3].

The turbulent aerodynamic boundary layer
can cxcite both local panel vibrations and gross
elastic bocy motions of the vehicle. In the
present paper the vehicle will be synthesized
as a beam and the bending response studied;
however, similar techniques can be applied to
the panel vibration problem.

The following assumptions will be used in
solving for the statistics of the bcam bending
moment response.

1. The pressure fluctuations in the turbu-
lent boundary layer can be represented as a
normal random process, nonstationary in space,
but stativnary in time.




2. The unsteady pressures as measured
at the surface of the body are unaffected by
lateral motions of the body. Thus 'rigid" model
pressure measurements can be employed.

2 T Vavmd +3 ~ sswemn Andn e
2. Fluctunting pressurc data can be scaled

frnm madst a1 _crals rahint.

4. Linear equations of motion are valid.

In regard to the first assumption, for actual
flight through the transonic region the random
pressure field is nonstationary in both time and
space. Theretore, the mezn-square buffet re-
sponse at some location on the vehicle will start
at some low level of intensity, build up to some
maximum intensity, and then decay to some low
level again. In order to simulate this nonsta-
tionary effect the transient response to a sta-
tionary random pressure field suddenly im-
pressed on the system will be investigated.

WIND TUNNEL DATA

Wind tunnel tests performed over the past
few years on launch vehicle scale models have
provided a valuable sou:zce of experimental data
for flight dynamic analyses. In Refs. 4-7 a large
volume of unsteady pressure data collected from
wind-tunnel tests of rigid scale models is pre-
sented. The tests were conducted in the Ames
Research Center's 14-foot transonic wind tunnel
with a nominal Mach number range of 0.60 to
1.20. The longitudinal distribution of fluctuating
pressure was measured by means of closely
spaced pressure transducers mcunted along the
top center-line of each of the models for various
positive and negative angles of allack. A large
number of model configurations ranging from
simple cone-cylinder shapes [7] to complicated
"hammerhead' shapes [6] were tested. Also,
in Ref. 8 unsteady pressure data collected on
1.6 and 8 percent scale models of a large nianned
space vehicle mounted in the Langley Research

Laboratory 16-foot transonic tunnel are presented.

For both the Ames and Langley tests a sta-
tistical description of the random pressures in
the form of /C, (rms) versus model station is
given. Spectral density analyses were per-
formed on a limited number of measurements.
Since the data were intended primarily for low
frequency aeroelastic response studies the fre-
quency range of the model data is limited to
approximately 500 cps.

MODEL OF RANDOM PRESSURE FIELD

For the type of wind tunnel data discussed
in the previous section it is desired to construct

a model for the random pressure ficid. Con-
sider any pair of fluctuating pressure meas-
urements p(x, . t) and p(7.v, t), where (x,:)
and (“,v) are locations on the surface of the
model and 0 < t < T. The pressures of inter-
est will always be measured from the static ar
steady pressure level so that time averages
are zero:

E(p(x.7.t)] = E[p(£,0,t)] = 0. (1)
Since the pressure process is assumed normal
or Gaussian, the construction of an empirical
modzl reduces to finding a suitable correlation
function, i.e.,

. Eip(x.0,t) p(&, 0,1 +7)]
S e)

> (%, o 7
T (%) O (5, u)

where o_ is the measured rms pressure and a
function of the spatial coordinates {nonstation-
ary) and o _ is the correlation function but as-
sumed to be only a function of the difference in
time (stationary).

Unfortunately the average products
E(p(x,7,t) p(£,v,t +7)] required in Eq. (2) are
usually not obtained in the reduction nf the wind
tunnel data; consequently certain assumptions
must be made about the form of the correlation
function.

Perhaps the simplest model is one which is
separable into spatial and temporal correlation
functions,

o0x.E 0 ooy = f(lx==]y a]o=- oy hery . (3)

where f( ), g( ), and h( ) each have the
properties

fn = (-0
f(ny] 1 {4)
f(0) 1.

Y

The spectral density corresponding to Eq. (3)
also has a simple form,

<I'p(u:x.~'. Lu) = r)(:-c. )
ya() . (5)

where

gj. cos wr h(7)dr . (6)

n

(b( )

The spectral density function Eq. {5) is in gen-
eral complex; however, in this particular case




the imaginary part (quadspectrum) vanishes.
Also the real part (cospectrum) differs from
any primary spectruni only by a scale factor;
the primary spectrum being defined as,

2

<hp'( oy X, () = v (x.07) £(0) g(0) d()

o (X,6) () - (7)

The niost commonly assumed form o. the
corielation function incorporates a convecting
field vejocity, V_

- f(lx-£1-Vary acld =) (7). ()
This model has been used successfully in de-
scribing the behavior of the turbulent boundary
layer along soiid walls. For the three-
dimensional bodies of interest there are indi-
cations [1] that the convecting pressure field
feature is present but not as predominant as in
the solid wall experiments.

In the following sections, the beam vibration
response due to a random pressure field with
separable correlation function Eq. (3) will be
derived. Whether the separable model, the
convecting model, or some other model is the
most realistic one, however, will require con-
siderably more wind tunnel data reduced to the
form of correlation functions or alternately
spectral density functions.

SCALING LAWS

Scaling laws applicable to the model fluc-
tuating pressure data are the object of con-
tinuing research. Wind tunnel test programs
are in progress for establishing empirical
scaling laws from tests of different percent
scale models. In the present paper, very sim-
ple scaling lauws are proposed. These have
been partially substantiated by experiment.

The rms or standard deviation of the fluc-

tuating pressure will be scaled by the dynamic
pressure, i.e.,

Py, = ey (9)

]
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. model fluctuating pressure,

correspending full-scale pressure,
and
dynamic pressure.

In the notation of Refs. 4-8 the full-scale G,
(rms) is identical Lo that of the modei.

el
»
1l

3§

The question of the nondimensional fre-
quiency to be used in scaling the spectral den-
sity function is more difficult. Most investi-
gators propose some form of the "Strouhal
number,' i.e.,

S =y (10)
where
« = frequency,
= characteristic length, and
v = velocity.

The characteristic length will be taken as the
main body diametcr (the turbulent boundary
layer thickness is almost universally accepted
for boundary layer noise along solid walls).
For velocity the free stream velocity will be
used. The frequency scaling then becomes

\' Dl
CI A R 1y

()

which together with Eg. (9) determines the
scaling of the spectral density function.

~ 2
q, vV, D 19
q)Pg( 2) - <,_> V—l D_Z(I)Pl("l) ( )

In Ref. 8 the proposed scaling laws resulted
in fair agreement between results obtained on
the 1.6 and 8 percent models.

EQUATIONS OF MOTION

In predicting the response of a dynamic
system to random excitation, except in a few
special cases, one is limited to linear systems.
For the beam vibration problem under consid-
eration modal analysis techniques will be ap-
plied. Thus, second order linear differential
equations in the generalizced coordinates will
be solved.

For a vehicle with control elements these
equations are usually coupled, i.e.,

n

L (A0 + By + Cja ()

i=1

0;(t). (13)

i=1,2,...n,

where q(t) is the generaiized displacement and
Qi t) is the generalized force. In a dynamic
loads analysis, however, uncoupled equations
will usually suffice. In the present analysis,
the following simplified equations will be used.




Q.(t
ﬁi(t) + Biél-,(l) + "’izqi(t) = —G— , (14)

where B, is the ith mode damping coefficient,
w, the elastic beam natural frequency, and G;
the generalized inertia. The damping coeffi-
cient B, is assumed to be of the form

B, = a; + b, + ¢, (15)
where a,, b,, and ¢, represent structural,

control system, and aerodynamic damping,
respectively.

For a practical vehicle structure the nat-
ural frequencies can usually be computed with
reasonable accuracy. The structural, control
system, and aerodynamic damping are, how-
ever, extremely difficult to predict and con-
servative estimates or experimental data are
often needed.

In the present study the bending moment
will be considered as the significant structural
response. In terms of the modal displacements,

MOty = )0 M (x) a;(t) . (16)
i=1
The unit moment M, (x) is computed by

iz J’ d"z,[ i mix,) (%) dx (17)

0 0

My (%)

where m(x) is the beam mass distribution and
b, (x) the mode shape.

MEAN-SQUARE RESPONSE

Under the assumption of normal random
pressure field and linear equations of motion
the bending moment response is also normally
distributed. The statistics of the bending
moment at a particular station are sought.
Since the time average of the unsteady pressure
was taken as zero, the average bending moment
is also zero. Therefore, the problem reduces
to solving for the variance which is also the
mean-square resporse in this case.

From the bending moment as given by Eq.
(16), the mean-square can be written

EM(x. )] = M) = I M (x) @2

(18)
v 2 Z Mli(x) Ml)(x)qlq) .
i¥]

The variances & and cross-variances qq,
are, however, not easily obtainable. In fact, it
is first necessary to solve for the statistics of
the generalized forces. Subsequently a}, aq;,
and M*(x) will be found by introducing an
"equivalent white noise'" spectral density for
the generalized forces and then applying multi-
dimensional spectral analysis.

From the definition of generalized force,
Q(t) = N(x.t) ¢, (x) dx (19)

the cross-correlation can be written,

L
E |:J’ N(x, t) ¢, (x) dx
0

L

x J‘ N('c_,t+7)¢>j(;) (L‘}

0

L L
jati(x)uxj (&)
0 0

x E[N(x, ) N(£, t47)] d2 . (20)

E[Q;(t) Q;(t+7))

In terms of the random pressure field the nor-
mal force, N(x,t), is

27
N(x,t) = R(x)f p(x.0. ty sin 0 d (21)
0
and
27
E[N(x. t)N(Z, t+7)] = R(x) R(:)I sin o d
0

2r

x" sin ;E[p(x, Lty pes, ,t+7)](1;. (22)

Yo

By substituting for E[p(x.0,t) p(s v, t+ )]
from Eq. (3),




2m

E[N(x,t)N(*,tr)] = R(x)K{ )J p(X0) sinod

0

27

f o (£, o) sinv f(lx= £ a(l0-v])h(r)du.
0

(23)

In order to simplify the solution of Eq. (23)
the standard deviation of the pressure at a par-
ticular station will be assumed constant in the
circumferential direction,

e (x,0) = o (%) (24)
then
E[N(x, t) N(&, t+7)] = K'R(x) R(€)
x o (%) o (£) f(Ix=£[)h(r)  (25)
with
2m 27

K? = I sin ¢ dFJ. sinvg(|0=-viYdy. (26)
) )

It can be shown that X is bounded by o < K < 4.
This result is obtained by solving Eq. (25) for
the two limiting cases,

£]

(1) pclo-vly = S¢le-oD)

(2} pclo-ohy

"

1(17-vl), 050 <
= - 1(jo-vl),m < U< 20
By substituting kq. (25) into Eq. (20), the

cross-correlation function for the generalized
forces is finally obtained,

L
E[Q;(t) Q;(t+7)] = K2l1(7)j R(x) 0 (%) ¢ (x) dx
0

L

o[ R0y iche-ely s
0

= @jh@) ,oi.g=1,..0, n. (27)

From Egq. (27) it can be seen that the general-
ized forces are also stationary, with spectral
density functions

6’0;03("') = (roj () (28)
where ¢(.) is given by Eq. (6].

Knowing the spectral density functions Eq.
(28), the variances and cross-variances g

and G;q, can be solved for. For instance, if

Q,(t) is "white noise,” 0 , with spec-
trum intensity Q. ¢, then an exact solution for
the steady-state displacement variance is

’voiz ¢
i i 2¢ 2
! 2B;;°G;

"~

(29)
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Furthermore, it is well known that for a lightly
damped system and a relatively smooth spec-
trum a good approximation to the displacement
variance is

= 2

] vQ. .
2 1 1
a; = - - 30
2B, 0 G} &
where @, is the amplitude of the actual spec-

trum at the natural frequency «,. In the present
analysis the followinyg "equivalent multi-
dimensional white noise' spectral density model
will be used:

W.N. R o
(”Oioj(‘) = Oy Vo, \/E I(«), Lj=L...on. (31)

By following the methods of Ref. 9, the re-
sponses a;° and &a; can be solved for. In
Rei. 9 the variance matrix of the response vec-
tor of a second order linear differential system
acted on by "white noise' forcing functions is
determined using the algorithm of the Fokker-
Planck equation. A digital computer program
was written for carrying out the numerical
computations.

Letting r  and r;; denote the variances
d; and a;q; due to unit spectral densities

W.N. o
(boioj(J) = Ww), i,j=1,....n, (32)

the mean-square bending moment is given by

M) - Z Mfi<x) 6'12"';’1;
* Q.Z. My ()M () QQ, Vb, Vb, il (33)
& B

The question arises as to how this mean-
square response builds up with time. This
nonstationary part of the solution can also be
obtained by the methods of Ref. 9. For the
lightly damped system under consideration,
however, a good approximation to the tran-
sient mean-square bending moment is given
by




_2 D 2 l’ -B. :] tests occurred at a Mach number of 0.80 and
M (x, t) ya Mli(x)(;‘~ L1-,. i |

v2 ). My OO M () @, [1- e

iFj

APPLICATION TO LAUNCH VEHICLE

angle-oi-attack of 4 degrees. In Fig. 1, AC
(rms) as measured along the top centerline of

the model (windward side for ~ = -4 degrees)
_(Bi‘“_:) N is shown. Results for « = +4 degrees could
2 |- also have been used since there was little dif-
ference between the windward and leeward side
(34) rms pressures. The AC, (rms) distribution

provides the function, NEIP required in the
mean-square response computation.

The first three berding mode shapes for

The methods developed-will be applied to the vehicle are plotted in Fig. 2 along with a
the prediction of transonic buffet loads for a listing of the first three natural frequencies and
full-scale launch vchicle. The vehicle configu- generalized inertias. The lowest natural fre-
ration is shown in Fig. 1. The results obtained quency is 2.54 cps.

are presented in greater detail in Ref. 2.

A very important system parameter in this

Scale model wind tunnel tests were per- type of analysis is the damping. The structural
formed in the Ames Research Laboratory's damping was conservatively estimated at 1/2
14-foot transonic tunnel. The critical distribu- percent critical for the first mode and 1 per-
tion of rms fluctuating pressure during these cent for the higher modes. The control system
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and aerodynamic contributions were obtaincd
by analysis. The total in pcrcent critical for
the first thrce modes is tabulatcd bclow.

Mode B, (Percent Critical)
1 1.575
2 1.255
3 1.465

Since no spectral density analyses were
performecd on this model data, a spectral den-
sity shape obtained for the vehiclc of Ref. 2 was
used in determining the values ¢, for the "equiv-
alent multi-dimensional white noise'" spectral
density, i.e.,

Dy N (0 0.0, Vo, Jo. 1(w) (35)
Q,0,() = 0iQj vy Vb 1(w)-
After applying the scaling laws Ey. (11) and Eq.

(12) the following spectral density heights were
obtained:

®, = 0.012;

(]2

0.007 ;
and

®, = 0.007 .
The cross-varianccs (m were computcd ac-
cording to Eq. (27),

L
Oioj = sz R(x) *p(x) Sy (x) dx

0

XJ R(£) o () () f(Ix=5])ds (36)

0

Since no circumferential correlation data was
available for estimating, . (/- v|), the value
of K from Eq. (26) could not be computed. An
intermediate value (0 < K < 4) of K = 2 was
selecied.

The longitudinal correlation, f([x- 7|y,
occurring in Eq. (36) has an extremely impor-
tant effect on the final results; consequently
scveral parametric cases were considered
(again in the absence of data reduced to corre-
lation or cross-spectral density form).

Lofgix-2h) = () = 200 )
zero correlation,

2. f(A) = (M) 5
unit correlation,

3, f(}\) c-r.’52.22 , (37)
2-diam correlation, (Cont.)

-12./26.11
4, f(|x-1y = f(y - @ ,

1-diam correlation, and
5. By = 0084085
1/2-diam correlation. (37)

Cascs 1 and 2 are the limiting cases of "inde-
pendent observations' and "perfect correlation.”
Cases 3-9 refer to f(1) decaying to 1 percent

of its maximum value in two-main body diam-
eters, one-main body diameter, and one-half -
main body diametcrs, respectively.

For the zero correlation case the compu-
tation of 0,0; from Eq. (36) reduces to solving

i
(TQi = KZJ Rz(x) rpz(x)‘,“i(x) 'J.(x)dx, (38)

0

and for unit correlation,

L
0,0, = K U R(x) o (x) 4 (%) dx}

0

ro l
x| ROO e x) g0 dx | . (39)
L"‘o _]

For cases 3-5 a matrix solution was used.
0,0, K (0] [RO 7o ()]

. | T T
x [flx- 21} [Roxyo (0] [¢] - (40)

The ith row of the ; matrix is the ith mode
shape evaluated at equal inteivals x,. ...,
The matrix R(x)o,(x) is a kxk diagonal matrix.
The correlation matrix ¢ x- =) isa kxk
symmetric matrix with unit diagonal elements
and equal elements equal distances away from
thc diagonal.

The variances r,; and cross-varianccs
r;; due to unit white noise spectral density Eq.
(32), were computed by the methods of Ref. 9.
The mean-square bending moment (using the
first three bending modes) was computed irom
Eq. (33). The {irst bending mode contributed
greater than 95 percent of the total.

The 35 extreme value bending moments
versus vehicle station for each of the five
cases of longitudinal correlation are plotted in
Fig. 3. One can obscrve that thc extreme
values for the unit correlation case are approx-
imately ten times those for the zero correlation
case. Although final judgment must be rcserved
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until actual correlation data is available, both
of the limiting cases are considered unreason-
able. The one-diam correlation results were
used as transonic buffeting design iimit loads
for this particular vehicle.

Figure 4 shows the buildup of the transient
mean-square response versus time. Assuming
that the transonic fluctuating pressure field
exists over a Mach number range correspond-
ing to a flight time of 10 seconds, then the tran-
sient mean-square will achieve approximately
99 percent of its steady-state value.

Finally it should be pointed out that the
above results are those due to the transonic
r~ndom pressure field. These must be com-
bined in a ratioral way with the wind or other
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Fig. 4 - Advent mean-square
bending moment versus time

steady loading occurring during transonic flight in
obtaining the total flight loadsfor this condition.
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SPACECRAFT ADAPTER RESPONSE TO FLUCTUATING PRESSURE

George A. Watts
NASA Manned Spacecraft Center
Houston, Texas

The bluffness of manned spacecraft launch
configurations causes the transonic aecodynamic
regime to begin at low subsonic Mach numbers.
The sharp corners cause separated flow with
oscillating shocks at the points of reattachment;
and protrusions and bracings cause thick bound-
ary layers of turbulence. These in turn, pro-
duce an intense, randomly-fluctuating pressure
field over the surface of the spacecraft, its
adapter, and the booster forebody (Fig. 1).

Fig. 1 - Typical space vehicle con-
figuration showing transonic aero-
dynamics

Adapters generally are cylindrical shell-
like structures reinforced by a few shallow
rings and longitudinal stiffeners. They are not
norinally pressure stabilized, as are the booster
tanks, nor are they attached to strong pressur-
ized cabins, as are the spacecraft walls. This
makes them uniquely vulnerable to the fluctuat-
ing pressure environment.

The response of the adapter may be as-
sumed to be the sum of the responses of its

NOTE: References appear on page 18,

individual vibration modes. For shells of con-
ventional manufacture these modes are lightly
damped and consist of combinations of numbers
of circumferential waves and axial half-waves
(Fig. 2). The natural frequencies and detailed
shapes depend on the mass and stiffness distri-
butions of the walls. Each mode has a general-
ized (or effective) mass (M) which is found by
summing up the masses of all elements of the
shell after each has been weighted by the square
of its modal displacement.

Al TWO AXIAL
HALF WAVES

B) SIX CIRCUMFERENTIAL
WAVES

Fig. 2 - Typical shell mode shapes

The response of each mode depends on its
damping, natural frequency, generalized mass,
and the generalized force produced by the ran-
dom pressure field on that mode. The general-
ized force is the sum of the {orces (pressure-
times-area) acting on elements of area weighted
by modal displacement. Since the pressure on
each element of area is a function of time, the
generalized force is a function of time also. In
the present case this force is a stationary ran-
dom function of time and may be characterized
by a power spectrum f _(.), that is,

(force)?

radian per sccond

which is a function of frequency.

The mean squared response of the nth mode,
treated as a single degree of freedom [1], is then
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where

w = displacement of nth mode at its
nondiniensionalizing point,

v, = damping of the nth mode, c/c_ ,

M, = generalized mass of the nth mode,

w, = natural frequency of the nth mode,
rad/sec, and

f () = generalized force power spectral

value at the natural frequency of
the nth mode.

The generalized force depends on two char-
acteristics of the pressure field; the pressure
power spectrum ¢(), that is

in2
(psi)
radian per second

as a function of frequency, and its distribution
over the shell surface, and the nondimension-
alized pressure cross-correlation power spec-
trum o;;(») between pairs (ij) of areal ele-
ments which make up the shell. The power
spectrum ;;(~) is the average value of the
cosine of the phase difference of the pressures
at the points i and j at the frcquency . The
generalized force power spectrum is readily
calculated in the following way: [2]

n 1/2

f ¢ N2 N 1/2
ale) = (W S;) @ + 2%, W, 5, 5,0,,9,

o,

wnwnS - 1/2 1/2
+2W, W, 8,50, 3

.n 2 n_.n 172 1/2
+ (W, 8,) @, +2W, WS, S ¢, & o +..

WS byt L

where
n n . -
WoWo= normalized displacements of the

nth mode at the points 1, 2, . .. .
on the surface of the shell

S,,S, = elements of shell surface area
associated with each point

9,, = normalized pressure cross-

correlation power spectrum be-
tween points 1 and 2
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¢, = pressure power spectral density
at point 1.

It is, therefore, a straightforward problein
to calculate the rms response of each mode
and, from knowledge of the mode shape, deter-
mine the rms displacement or acceleration at
any point of the shell. It is also possible to
factor each element of mass of the shell by its
acceleration and thus determine the structural
loading in the mode. From this loading the dis-
tribution of stresses throughout the shell in this
mode can be analyzed.

The stress in a single mode is a random
sine function of time with the number of peaks,
per unit increase in amplitude per 100, rapidly
decreasing with increasing amplitude in what is
known as a Rayleigh [3] distribution.

The rms stress for all modes at a point in
the structure is obtained by summing the
squares of the rms stress of each of the modes
at that point and taking the square root. The
distribution of peaks is then between a Rayleigh
distribution and a normal, or Gaussian, dis-
tribution depending on the number of modes and
the contributions by each mode.

To obtain the complete stress picture at
the point in the shell, the static stresses due to
overall body loads and static pressure differ-
ences must be added to the dynamic stresses,
From this point forward, the assessment of
structural adequacy becomes a matter of phi-
losophy, none of which is very sound. One line
of reasoning supposes that "nature opposes
infinities" and limits dynamic stresses to an
upper bound. This upper bound is often taken
as three times the rms value (or 3 sigma). The
3 sigma value plus static stress is then treated
as a limit stress at which the structure will not
yield. If, for example, an ultimate factor of 1.5
is applied to the limit, the structure will not

_fail at that stress.

Another line of reasoning establishes a
small allowable failure rate, and then checks
to see that statistically this rate is nct ex-
ceeded. Obviously, assigning any allowable
failure rate to a man-carrying vehicle is an
odious undertaking.

The mode shapes and frequencies may be
determined either by analysis or experimenta-
tion, but the structural damping can only be
found by experiment. The distribution of
stresses can usually be readily calculated for
each modc but it can also be found experimen-
tally. The pressure-power spectrum distribu-
tion over the shell surface can be found




cxperimentally in wind tunnels, or by flight test.
The cross-correlation spectra between pairs of
points over the surfaze alone have defied prac-
tical determination by any means. Experimental
methods do exist for measuring the cross spec-
tra, but they demand painstaking effort and pre-
cision apparatus. This is partly the result of
the wind tunnel model cata being 1/scale higher
than full scale in frequency. The problem is
compounded by the need for a much greater
amount of cross-corieclation data than power
spectrum data. In fact, if the shell is broken

up into n elements, the number of spectral plots
required are n power spectrum and

3 (a-1)

cross-spectrum. For example, 100 elements
become 100 power spectral plots but close to
5000 cross-correlation spectral plots. In prac-
tice, this number can usually be reduced some-
what by ignoring the small values which occur
between points great distances apart, but the
requirement still hobbles a practical solution.

The lack of cross-correlation data com-
pletely frustrates the ability to calculate di-
rectly the response of the modes. In searching
for a way to circumvent this lack, it was noticed
that the first few flights in a series leading to
the eventual flights of lightweight production
structures employed boilerplate structures of
the same external aerodynamic configuration.
Tt was further noticed that, although the boiler-
plate structurs was much heavier and stiffer, it
was broken up into panels of approximately the
same size as those on the production structure.
It appeared that the modes and frequencies of
the boilerplate structure would be similar to
those of the production structure and should,
therefore, in flying along the same trajectory,
be excited by similar forcing functions. Fur-
thermore, the strength of the boilerplates
would not be in question since the mass of the
boilerplates is several times larger than that
of the production structures and, therefore,
would allow only small deflections.

It was, therefore, decided to determine the
modes, frequencies, damping, and generalized
masses of the boilerplate vehicles before flight,
and then to measure the mean squared response
of each of the modes by using accelerometers
during the flight test. From these measure-
ments the forcing functions could be deduced
from the first equation. Then, even though the
actual correletion was not known, the effects of
the correlation on the modes would be known,
and the forcing functions could be applied di-
rectly to a calculation of the response of the
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lightweight production structure. It was, in ef-
fect, as if the entire bcilerplate structure had
been calibrated as a microphone and was being
used to measure the fluctuating pressures.

The cylindrical boilerplate adapter shell
was as shown in Fig. 3. The lowest frequency
mode, Fig. 4, had two circumferential waves
and a frequency of 47 cps. The mode shape is
shown 2s contours of equal acceleration on the
developed surface of the shell; the solid lines
showing convex areas, and the dashed lines, the
concave. Figures 5-7 show other modes and
frequencies up to 267 cps. From these mode
shapes and a knowledge of the surface-mass
distribution, generalized masses were calcu-
lated. The damping ratio of each mode was
found by two methods: first, by letting the vi-
brations decay freely and measuring the loga-
rithmic decrement, and secondly, by measuring
the frequency span between the half-power
points of the resonant response curve. The two
methous agreed well, and the damping ratios
are shown by the circles in Fig. 8. For

Fig. 3 - Boilerplate adapter
construction. Adapter con-
sists of an aluminum shell

reinforced by thin rings
and stringers attached by
rivets.
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interest's sake, the damping values for a slightly
tapered adapter, 10 feet in diameter and 5 feet
leng, made of magnesium skin spot-welded to
magnesium stringers are also sho ;a. Damping
values for a 16-inch diameter, 16 inches long,
electrodeposited copper shell of very thin walls
aie also shown [4].

Although no consistent trend of damping
ratio with either frequency or wave number
could be found, it was generalily noted that the
damping was very low, with the bulk of the data
less than 1 percent of critical.

Figure 9 shows a harmonic analysis cf the
accelerations measured at a point in the adapter
at the maximum excitation level (that is, M =0.9,
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g = 550 psf). Figure 9 also shows responses at
several of the modes defined in the ground tests,

for example, at 141,199, and 267 cps. Rather
large responses are seen at significantly higher
frequencies, but these result in only small de-
flections and correspendingly small stresses,
as shown in the harmonic analysis of stresses
at a point in the shell in Fig. 9.

At the present point in the program, eval-
uation of the forcing functions of the various
modes excited in flight is taking place. Soon
the modes, frequencies, and damping of the pro-
duction structure will be experimentally meas-
ured; the response will be deduced; and a year
or so hence, the verification of the answer in a
rroduction flight test will take place.
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Generally speaking, it would be desirable
tc find a way to deduce the response of light-
weight production adapters without first having
to fly a boilerplate version. An attempt has
been made to do this by applying wind-tunnel
measured-power spectra and experimental vi-
bration data. Without correlation data on the
specific configuration it would be advantageous
to know if there were any physical upper and
lower bounds to the response of a mode; that is,
if forms of the correlation existed which would
produce values of the response which could not
be exceeded and undershot.

It is clear from the second equation that
the maximum response occurs when ¢;; is al-
ways unity and has thc same sign as the product
W W This is the same.as saying that the pres-
sure must be directed inward, whercver the
mode is dished in, and directed outward, wher-
ever the mode is dished out, or that the pres-
sures are no longer spatially random but are
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distributed according to the sign of the mode
shape. The magnitude of the pressure at each
point would be the spectrum value determined
from wind tunnel test.

The minimum resprnse wculd occur when
the 9, were all zero. This would still yield a
rcsponsc beeause {ull corrclation would exist
across each elemeat of area; however, as ele-
ments of area are reduced in size (but in-
creased in number), the response would reduce
so that in the limit with zero (or random) cor-
relation the response is zero.

Evaluation of these limits helps the solu-
tion of the problem very little because the
actual response is generally much less than the
maximum. Ratios of the actual rms responsc
of spacecraft adapters to the maximum {or cor-
relation factors Cn) have been evaluated from
recent flight test data and are generally less
than 0.1.




The values of C are a function only of air
flow geometry, the frequency considered, and
the shell mode shape. They are not a function
of the intensity of fluctuating pressure, its spec-
tral distribution, or the generalized mass or
damping of the inode.

It is hoped that values of C_ can be eval-
uated for different spacecrafit external configu-
rations and adapter modal patterns and frequen-
cies, and that a systematic variation can be
four d so that boilerplate testing in the future
will not be necessary. With this set of data it
will then only be necessary to determine the
fluctuating pressure intensity and spectral dis-
tribution. It is, therefore, important to know if
tests on small scale models in wind tunnels will
supply this data.

Figure 10 shows the distribution of rms
pressure over a spacecraft and its adapter at
Mach number = 0.9 and zero angle of attack as
observed in flight, and compares it with several
values measured in a wind tunnel under the
same conditions. It should be noticed that they
differ in an inconsistent manner by about 50
percent. At each of the two stations, X = 138
inches and X = 270 inches, pressure power
spectra were measured. They are shown in
Fig. 11 and are compared with wind tunnel plots
corrected to full scale frequency. The distribu-
tions are guite similar with peaks occurring at
approximately thc same frequencies. The squar-
ing of the pressures tends to accentuate the dif-
ferences. The ragged appearance of the flight
data is caused by the narrow band filter.

Answers deduced from present day wind-
tunnel data could easily be in error by a factor
of two, even if the correct €, were known.
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Fig. 10 - Fluctuating pressure
distribution (m = 0.9)

CONCLUSIONS

1. Efficient methods to measure pressure
cross-correlation power spectra at closely
spaced intervals over adapters would greatly
aid the prediction of shell mode response.

2. Evaluation of the values of c_ on full
scale and model adapters and classifying them
according to air flow geometry (vehicle con-
figuration), frequency, and adapter-mode shape
should eventually lead to a solution of the re-
sponse problem without recourse to cross-
correlaticn data.

3. Wind-tunnel techniques and electronic-
measuring and data-analysis equipment should
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Fig. 11 - Power spectrum of fluctuating pressure
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be improved so that better agreement with

5. Great improvement is needed in the
fuli scale data can be attained.

ability both to predict analytically and to

. . verify experimentally the high frequency mode
4. Studies of structural and aerodynamic £ : -

g EErE e PIEETEA (o bkl (f1s mame shapes and frequencies of shell-like structures.

standing of damping at high frequencies.
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SUBHARMONIC BEHAVIOR OF THIN-WALLED ELASTIC BEAM

Wai Keung Tso
Norair Division
Northrop Corporation
Hawthorne, California

During a resonant Lesting of thin-walled beams of monosymmetric cpen
section for coapled torsional and bending vibrations, certain nonlinear
behavior of th: bearn was observed. By considering the beam as sys-
tem, the shaking table excitation the input to the system, and the re-
sponse of the beam the output of the system, the phenomenon can be
described as being a high order subharmonic oscillation of the system
under special conditions. When the shaking table frequency was at a
multiple or near multiple of the fundamental frequency of the system
and the system had one of its higher natural frequencies at the table
frequency, the response of the system was made up of both harmonic
and subharmonic oscillations, with the subharmonic oscillations having
a frequency close to the fundamental frequency of the system.

Alternatively, the phenomenon can be described in terms of the vibra-
tional modes of the beam. When a higher mode was excited externally,
the fundamental mode was also excited under special conditions, result-
ing in a high order subharmonic oscillation of the system. This phe-
nomenon was very critical of the exciting frequency. The range of ex-
citing frequencies over which such subharmonic behavior was possible
depended on the amplitude of the external excitation. Also, the transi-
tion from narmonic to subharmonic oscillation depended on the path of
approach to the critical region. Over a narrow range of exciting fre-
quencies, thc system could be shock excited into subharmonic oscilla-
tions or could be returned to harmonic oscillations through external

means.

In other words, there existed two stable steady states within
this narrow range of table frequency. The system displayed the ''jump"
phenomenon as commonly known in noalincar mcchanics.

Such behavior cannot be predicted from the linearized theory of cou-
pled torsional and bending vibrations of thin-walled beams.
lieved that such subharmonic behavior was caused by the nonlinear
couplings of the different modes of the system.

It is be-

INTRODUCTION

Generally when a thin-walled beam of uni-
form asymmetrical section is subjected to
dynamic excitation, both bending and torsional
vibrations will result. Due to the low torsional
rigidity of thin-walled beams of open section,
the problem of coupled bending and torsional
vibrations is of particular interest. The exist-
ing theories for the coupl~d vibrations of thin-
walled beams of open section are due to Vlasov
[1] and Gere [2]. A more refined theory is
proposed by Tso [3] which includes the effect of

NOTE: References appear on page 25.
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shear strain due to bending and warping of the
beam. From the theories; it is shown that the
motions of the beam can best be described by
three generalized coordinates {, n, and 6. {
and n are displacement coordinates of a sec-
tion of the beam about the shear center in the
directions of the two principal axes of the sec-
tion, and 6 denotes the rotation of the section
about the shear center. When the section is
asymmetrical, all three generalized coordinates
are dynamically coupled. Therefore, even if the
external excitation is along a principal direc-
tion, all three coordinates will be excited, re-
sulting in coupled torsional and bending vibra-
tion. If the section of the beam has one axis of
symmetry, say n is directed along the axis of




symnietry, the theories show tiiat the coordinates
© and - are dynamically coupled, but the coor-
dinate ; is not coupled with the rest of the coor-
dinates. Thus, if the external excitaticns are in
the -, direction, only the coordinate » is excited,
resulting in uncoupled bending vibrations only.
When the excitation is along the ! direction,
both ¢ and { will be excited, leading to coupled
torsional and bending vibrations; however,

will not be excited in this case.

The resonant test was carried out on thin-
walled sections with one axis of symmetry and
the excitation was applied in the direction per-
pendicular to the axis of symmetry so that cou-
pled torsional and bending vibrations would be
excited.

All three theories are linearized theories;
the assumption is that the rotation of the sec-
tion is so small that it is justified to use the
approximations sin ¢ yand cos 0 = 1. Tt
was shown experimentally |3] that the theories
give good results under most circumstances
when the beam is long. Because of the lineari-
zation process, however, the theories can pre-
dict only harmonic response of the beam under
external excitation. The observed nonlinear
behavior of the beam during the test necessi-
tates a reexamination of the linearized theories
under special conditions.

The phenomenon can be described in terms
of the vibrational modes of the beam. Under
the condition that a higher mode of the beam
had a resonant frequency at a multiple or near
multiple of the fundamental frequency, there
was a tendency for the fundamental mode to be
excited also when the external excitation was
at or near the resonant frequency of the higher
mode, resulting in a high order subharmonic
oscillation. The following is a detail account of
the experiment and observations.

EXPERIMENTAL SETUP

The sectional shape of the thin-walled beam
used for the test was that of a circular split
ring. Such a2 shape was specified by three pa-
rameters, the radius a, the thickness c, and
the central angle subtended by the two radii
joining the edges of the section to the center
2¢, as shown in Fig. 1. Such specimens were
realized by splitting thin-walled circular alu-
minum tubes along their lengths with the proper
central angle. The actual aluminum tubes used
had an outer diameter of 2 inches and a thick-
ness of 1/16 inch. Two specimens were pre-
pared, one subtending a central angle of 180
degrees (half ring), and the otlier an angle of

270 degrees. The specimens were examined
to insure that any pretwist resulting irom the
release of internal stresses during the cutting
process was negligibly small. One end of the
specimen was cast into a block c¢f "Cerobase,”
a low melting high density alloy, to form a
built-in end. The other end was left free so
that the system constituted a cantilever. The
specimen was cast in such a way that the axis
of syminetry of the section would be perpendic-
ular to the direction of the excitation. With the
specimen mounted in this way, there would be
little or no excitation in the direction parallcl
to the axis of symmetry and hence the uncou-
pled bending vibration in that direction would
not be excited. Thc block was mounted rigidly
onto the shaking table as shown in Fig. 2.

A Ling shaker was used with a B&K oscil-
lator control to supply the input to the beam.

W

Cto,a,)

Fig. 1 - Split ring section of
semi-central angle ¢

Fig. 2 - Mounting of test
specimen on shaker
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The frequency of the shaker was measured by
a counter. By using a 1-second gate time, the
frequency of the shaker could be determined to
within +1 cps. The response of the beam was
measured by optical means. The Optron Dis-
placement Follower was used. By attaching a
special target on the beam, the displacement at
that particular point of the beam could be meas-
ured by the Optron. A signal proportional to
the displacement of the target was sent out
from the Optron and was fed into an oscillo-
scope. The expcriment was performed with the
shaking table acceleration being kept constant.

OBSERVATION AND RESULTS

The nonlinear behavior was first observed
on the response of the specimen with the sec-
tion shape of a half-ring (i.e., ® = 90 degrees)
at a beam length of 35 inches. For a small
range of the exciting frequency near the reso-
nant frequency of the sixth mode* (2 bending
predominant mode with one node}, the response
of the beam was not harmonic but consisted of
a superposition of two sinusoidal waves. The
frequencies of the two waves were identified by
means of a wave analyzer in connection with a
Berkeley Counter. In this case, one component
of the signal had the shaker's frequency of 490
cps and the other component had a frequency of
35 .cps. Visual inspection of the mode shape of
the beam indicated that the beam was essentially
vibrating at the first mode, and 35 cps was very
close to the fundamental frequency of the sys-
tem. The frequency ratio showed that the sys-
tem was executing a 14th subharmonic oscil -
lation.

The range of table frequencies over which
such subharmonic behavior was possible de-
pended on the amplitude of excitation of the
table. The larger the excitation, the wider was
the critical range. In the case cited, the range
was from 489-493 cps for an excitation of 2g
constant acceleration of the shaking table. The
corresponding ranges for 4g and 6g constant
acceleration were 486-493 cps and 484-493 cps,
respectively.

The transition from harmonic to subbar-
monic oscillation also depended on the path of
approach to the critical region. When the criti-
cal region was approached from above by de-
creasing the table frequencies slowly, the tran-
sition was comparatively insensitive to external
disturbance. When the critical region was ap-
proached from below, the transition was sudden

*The modes are numbered in an ascendingorder
of the magnitude of their respective frequencies.
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and highly sensitive to external disturbance.
Over a narrow range of exciting frequencies,
the system could be shock excited into subhar-
monic oscillations or could return to harmonic
oscillations through external means. In other
words, there existed two stable steady-states
within this narrow range of table frequency. In
the case cited, this multi-stage range was 489-
490 cps for the 2-g constant acceleration exci-
tation. The corresponding figures for the 4-g
and 6-g constant acceleration were 486-488 and
484-486 cps, respectively. Plots of the re-
sponse against table frequency are shown in
Fig. 3, corresponding to an excitation of 2-g
and 4-g constant acceleration. The response
plotted was the rms value of the displacement
at the midpoint of the beam normalized to the
value of the displacement at a frequency of 480
cps. It should be pointed out that the frequency
plotted is the table frequency and not the fre-
quency of the specimen. The plot shows at least
qualitatively the response of the beam as the
critical region was approached from both direc-
tions. It also illustrates the existence of the
"jump" region. At 493-cps frequency, it was
at the borderline stage of entering the critical
region and the amplitude of the response be-
came very critical to slight variations of the
table frequency.

An effort was made to detect the existence
of any other subharmonics, using the wave ana-
lyzer to scan the whole frequency range. Also,
the table frequency was changed to integral
multiples of the resonant frequency of the first
mode. Both efforts failed to detect any further
subharmonics.

As the beam was shortened, this phenom-
enon was observed again at beam lengths of 32,
29, 26, and 23 inches. In every instance the
driving mode (the mode which was performing
harmonic oscillation) was bending predominant
with one node, and the companion mode (the
mode which executed subharmonic oscillation)
was the fundamental mode which was torsional
predominant with no nodes. For the sccond test
specimen with a section of semi-central angle
¢ = 135 degrees, similar behavior occurred at
beam lengths of 39 and 34 inches. The resonant
frequencies of the driving mode and the com-
panion mode in various cases are shown in
Table 1. It can be seen in each case that the
higher mode resonant frequency was a multiple
or near multiple of the first mode resonant
frequency.

In order to eliminate the possibility that
such behavior couid be caused by the shaker
due to unbalanced moments from: the specimen,
a double cantilever system was cast. The
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section used was ¢ = 90 degrees and it was ar-
ranged in such a way that the system was sym-
metric in bending and antisymmetric in torsion
relative to the shaking table. Such a system
could not exert moments on the shaker. Similar
subharmonic vibrations were observed for this
spccimen at a beam length of 38-1/8 inches.
The responses at the midpoint of one cantilever
in this system as seen on the oscilloscope are

Fig. 3 - Mid-beam response at critical range

shown by a series of photographs as the table
frequency varies. The shaker was set at a con-
stant acceleration of 4g. At each frequency in

Figs. 4 and 5, the upper trace represents the

response of the beam measured by the Optron.
The lower trace is the acceleration of the

shaker measured by an accelerometer on the
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table top. The acceleration trace essentially
gives a frequency scale to the response trace.




TABLE 1
Resonant Frequencies of Driving Mode and Companion Mode
under Subharmonic Vibration Conditions

Cross Beam Frequency of Frequency of
Section Length | Driving Mode | Companion Mode | f,/f.
(degrees) | (inch) fy (cps) fc (cps)

o =90 35 490 35 14.0
¢ =90 32 576 38-39 15.0
@ =90 29 694 43 16.1
¢ =90 26 853 50 17.0
¢ =90 23 1050 62 17.0
¢ =135 39 572 26 22.0
¢ =135 34 736 31 23.8
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Fig. 4 - Subharinonic responses at
405, 406, 407, and 409 cps

At a table frequency of 405 c¢ps, the response
shows the beam is vibrating at the same fre-
quency as the shaker and there is no subhar-
monic oscillations. At 406 cps, subharmonic
oscillations begin to set in. The responses at
407 cps and 409 cps show the superposition of
the harmonic and subharmonic vibrations. Also,
they show the rapid increase in amplitude of the
subharmonic oscillations. At 410 cps, it is seen
that the amplitude of the harmonic oscillations
begins to grow; because the table frequency is
near the resonant frequency of the driving mode.

23

The response at 412 cps shows the increase in
amplitudes of both the harmonic and subhar-
monic oscillations. At 413 cps, the maximum
response of the beam is shown. The subhar-
monic response at 414 cps shows the disap-
pearance of the subharmonic oscillations re-
sulting in a pure harmonic vibration of large
amplitude, corresponding to the resonant con-
dition of the driving mode. Further increase in
the table frequency results in a decrease in am-
plitude of the harmonic response, since the
resonance of the driving mode has passed.
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Fig. 5 - Subharmonic responses at
410, 412, 413, and 414 cps

The subharmonic frequency in this case
was close to 32 cps, the frequency of the first
mode. Again, visual inspection of the mode
shape indicated that the companion mode was
the first mode. The frequencies 414 cps and
32 cps give a ratio of 12.9, or 13. Thus, the
system was executing a 13th order subhar-
monic oscillation. This ratio can also be ob-
tained by counting thc numbecer of cycles of the
high frequency oscillations in one cycle of sub-
harmonic oscillations in the pictures shown.

It should be noted that the responss shown
on thc photographs is the displacement of a
point at the middle of the beam. If the dis-
placement at the tip of the beam were taken for
illustration, the difference in amplitudes due to

subharmonic oscillations would even be greater.

The subharmonic behavior of the system is
much more violent than the resonant motion of
the driving mode.

Anocther point to be noted is the narrow
range of external exciting frequencies over
which such subharmonic vibration is possible.
In all cases observed, the width of such range
is no more than 1 or 2 percent of the frequency
of the external excitation. It is perhaps due to
this fact that, as far as the author knowse, ench
behavior has not been reported before.
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DISCUSSION

In order to analyze such behavior, the
linearizing assumption of sin 7y cOs 1
in the theories cannot be used. This leads the
governing equations for 7, », and ' to a set of
coupled nonlinear partial differential equations
of extreme complexity [3]. Siniplification of
the equations leads to the consideration of a
simplified model to represent the system. In
the simpiified model, two modes, the driving
mode and the companion mode, of the system
are considered. The two modes are coupled
together nonlinearly. The response of the driv-
ing mode subjected to external excitation is
taken to be harmonic. Thc analysis then reduces
to the parametric excitation of the companion
mode through its coupling with the driving modc.
A detail analysis by Tso and Caughey [4] shows
that provided the amplitude and the frequency
of the parametric excitation satisfied certain
relationships, the compa..ion mode can be ex-
cited to perform periodic motion with a period
which is a multiple integral values of the period
of the driving mode.

CONCLUSION

.. purgass of this paper is to report the
existence oi certain dvnamic behavior of




thin-walled elastic beams of monosymmetric
open scction which is not predictable from the
existing linearized theories. It is believed that
such behavior can be attributed to the nonlinear
coupling of modes of the coupled torsional and

bending vibrations under special circumstances.

Experimental observaticns suggest that a
necessary condition for the subharmonic behav-
ior is that the resonant frequency of the driving
mode be a multiple or near multiple of the fre~
quency of the companion mode.

The subharmonic oscillation causes the
beam to vibrate with a much larger amplitude
than the ordinary harmonic response. Such
violent motion can lead to failure if it is not

foreseen and allowed for in design. Such behav-
ior has been generated in the laboratory, and it
is conceivable that it can happen in structures
where such beams are used and coupled tor-
sional and bending vibration of such member is
possible. Therefore, it is believed that the re-
ported phenomenon is interesting both from the
theoretical and practical point of view.

ACKNOWLEDGMENT

The testing was done in the Vibration Lab-
oratory in the Thomas Engineering Laboratory,
California Institute of Technology, Pasadena,
California.

REFERENCES

1. V. Z. Vlasov, Thin Walled Elastic Beams
(Translated from Russian; published by
Israel Program for Scientific Translations,
Jerusalem, 1961), 2d ed.

2. J. M. Gere, and Y. K. Lin, J. App. Mech.,
25, 373-378 (1958).

3. W. K. Tso, '"Dynamics of Thin-Walled Beams
of Open Section,’ Dynamics Laboratory Re-
port, California Institute of Technology (Junc
1964).

4. W. K. Tso, and T. K. Caughey, "Parametric
Excitation on a Nonlinear System," submitted
to J. App. Meck. for publication.

DISCUSSION

Dr. Morrow {Aerospace Corp.): I wonder
if you would venture an opinion as to whether
these subharmonics could be induced by a ran-
dom cxcitation at the higher frequencics?

Mr. Tsc: The excitation from our shaker
is sinusoidal. T am not sure whether the sub-
harmonics would be excited by the random. 1
do hesitate to say that it is the main cause al-
though there is bound to be sufficient random
noise in the system to excite the fundamental
mode to some cxtent. Duc to the nonlincar
coupling mechanism this excitation will be am-
plified somewhat, particularly since the mate-
rial damping is small.

Dr. Morrow: My question really had to do
with whether it might be excited by random vi-
bration out in flight as opposed to having been
excited in the test.

Mr. O'Hearne (Martin Co.): At the point at
which you had two stable solutions, were they
both subharmonics?

Mr. Tso: No. The lower branch is har-
monic.

Mr. O'Hearne: Pure harmonic ?

Mr. Tso: It is pure harmonic. Any jumps,
then, is a superposition of harmonic motion and
subharmonic motion due to the action of two
modes, thc driving mode and the companion
mode. The photographs show one spot which is
the superposition of two modes.

Mr. O'Hearne: Do supcrharmonics appear
in your experiment at ail?

Mr. Tso: They are not observed at all.
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PREDICTION AND MEASUREMENT OF VIBRATION RESPONSE
OF THE PEGASUS MICROMETEOROID MEASURING SATELLITE

C. E. Lifer and R. G. Mills
Propulsion and Vehicle fngineering Laboratory
Marshall Space Flight Center
Huntsviile, Alabama

All too often in strucwural design programs, dynamic loads are not con-
sidered at all or at best are given only courtesy consideration. The
Vibration and Acoustics Branch at Marshall Space Flight Center con-
tends that, from conception through final design, a knowledge of the
structura! response characteristics is necessary information. This
paper presents a case example in support of this philosophy.

The National Aeronautics and Space Administration, in late 1962, ini-
tiated a competitive RFQ to design, fabricate, and deliver a spacecraft
with evaluation of the hazards presented by meteoroids in the 200- to
700-mile altitude range as its primary mission. The satellite was to

be the payload for two vehicles already scheduled as a part of the Saturn
I development program. Therefore, the spacecraft development pro-
gram was not governed alone by its own unique mission requirements,
but in addition by the restrictions placed on it by the Saturn I vehicle
configuration and environments.

The Pegasus satellite consists of two wings deployed about a rectangu-
lar center section. Each wing is composed of seven hinged sections
initially stacked within the boilerplate Apcllo service module. The
overall undeployed package is 197 inches long, 85 inches wide, and 19
inches deep.

The schedule was almost prohibitively short, thus greatly accentuating
all of the development problems encountered. This paper deals with
ouly one of many, specifically, the dynamic envivonment respons? loads.

The dynamic environment generated by mechanical, acoustic, and aero-
dynamic excitation is described in a set of specifications for each MSFC
vehicle. The vehicle is divided into zones of similar structure, with
each zone defined by a statistical compilation of vibration data obtained
from both static and flight tests. This information has been developed
through both analytical techniques and statistical studies developed for
this purpose, and proven adequate for design and test purposes.

A vibration analysis was performed to determine the longitudinal re-
sponse loads for use in a stress analysis of the Pegasus support struc-
ture. The analysis was based on a simple rigid body model because

details of the capsule design werc not available. This analysis indicated
failure loads.

With this development, a concentrated effort on dynamic analysis with
more refined models was begun by MSFC and the Fairchild Stratos
Corporation. The loads obtained from these analyses dictated struc-
tural modifications to thc basic design. Successive analyses which
incorporated these changes were performed.

Because of the short schedule and the high dynamic response indicated
by analysis, a structural dynamic test model was built and tested to the
predicted vibration environment. Its purpose was the verification of
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flight models.

response characteristics and to provide a test bed for possible modifi-
cations to the structure before qualification testing of the prototype
model. It also proved valuable as a functional mockup in solving many
small problems that would otherwise have plagued the prototype and

The iterative design-anualysis procedure employed early in this program
lead to a successful DTM vibration test program, thusly avoiding costly
schedule slippages in order to incorporate design modifications.

INTRODUCTION

In February 1963, the National Aeronautics
and Space Administration (NASA) awarded to
the Fairchild Stratos Corporation (FSC) a con-
tract to develop and manufacture a satellite for
the primary purpose of evaluating the hazards
presented by meteoroids in the 200- to 700-
mile altitude range. The vehicle selected for
this satellite was the eighth Saturn I, and flight
schedules at that time required that the first
flight assembly be delivered in June 1964; this
allowed only little mnore than a year for devel-
opment, testing, and manufacture.

The configuration proposed by FSC and
chosen by NASA is shown in Fig. 1. The space-
craft consists of two wings, each wing composed
of seven hinged sections. During boost into
orbit the wings are folded into a package 197
inches long, 85 inches wide, and 19 inches deep,

PEGASUS

METEOROID MEASU'R"EMENT CAPSULE
DEPLOYMENT SEQUENCE |

and placed inside the boilerplate Apollo serv-
ice module as shown in Fig. 1.

The deployed wings will provide a detection
surface area of 2000 square feet, with a wing
span of 96 feet. A total system weight of under
4000 pounds was permissible, with approxi-
mately 3400 pounds allocated to the satellite.

The function of the satellite is to record
impacts of meteoroids and to transmit to earth
by means of radio telemetry information on the
frequency of occurrence and size of the impact-
ing meteoroids. The detector panels are ca-
pacitors whose electrical properties will be
altered by penetrations upon impact. Use of
several different capacitor plate thicknesses
and laboratory calibration of the electrical dis-
charge pulse will permit meteoroid size deter-
mination.
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Fig. 1 - Pegasus configuration




The strict weight limitations and the unique
structural configuration imposed severe design
and test problems. These problems were com-
pounded by the dynamic environments imposed
by the Saturn I booster, and because of the short
schedule they required unusually extensive and
thorough design analyses.

The intent of this paper is to illustrate the
manner in which dynamic analysis was used to
improve the system design, and how laboratory
test results correlated with analytical assump-
tions and calculations.

ENVIRONMENT SOURCES

The vibration, acoustic, and shock environ-
ment specifications which were used in the de-
sign analysis and testing of the Pegasus equip-
ment and structure were derived from meas-
urements made on Saturn I, Block I, vehicles
and from theoretical studies of the Apollo
adapter structure and the spacecraft configu-
ration. Figure 2 shows the Saturn I vehicle
with « Jupiter nosecone from which flight data

INSTRUMENT

UNIT

NM—>—() OM—A—SC ’

i
1

3

were used in establishing environments. Sig-
nificant portions of the launch which provided
data were the ignition and lift-off phase, in
which the payload is subjected to mechanical
excitation and acoustical energy reflected from
the laynch pad, and the transonic and maximum
aerodynamic pressure periods of flight during
which the adapter shroud is buffeted by aero-
dynamic pressure fluctuations. The adapter
and its relation to the Pegasus assembly is
shown in Fig. 3. Theoretical techniques of pre-
dicting adapter structure environments from
acoustic pressures were used in conjunction
with the measurements to derive the environ-
ment specifications. The mass and elastic
properties of the Pegasus were considered in
this study, since the impedance of the payload
greatly affects the shell vibration amplitudes.
These techniques are described [1].

The vibration environments predicted for

the interface between the Pegasus and the
adapter at the six support points are shown in

NOTE: Reference appears on page 35.

Fig. 2 - Saturn ] vehicle with Jupiter nosecone
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Fig. 3 - Saturn 1 vehicle showing Pegasus location

Fig. 4. A comparison of the predicted environ-
ments and environmental measurements on the
sixth Saturn instrument unit structure is shown
in Fig. 5.

ANATYSIS

The first vibration analysis work was per-
formed by the Analysis Section at MSFC in
support of preliminary design of the satellite
supporting structure. At this time no stiffness
information or design details were available,
and the satellite was represented as a rigid
body. The analysis model is shown in Fig. 6.

| .
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The satellite is represented by M, and a portion
of the adapter section structure is represented
by M,. The spring elements (k) represent the
stiffnesses of the shell structure and the space-
craft support structure. The purpose of this
analysis was to provide designers with appiox-~
imate loads on the supports resulting from vi-
bration response in flight.

The responsc motions of the system de-
scribed above were studied with an analog com-
putcr. Sincc the motion of M, represents the
predicted environments, the relative motion of
M, to M, was used directly to calculate response
loads. The support structure loads were found
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Fig. 4 - Pegasus predicted vibration environments
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to be excessive due to response in the lateral
direction. This was primarily the result of
having the supports placed far below the center
of gravity of the satellite so that large moments
had to be reacted by the supports.

The increased weight of the support struc-
ture required to withstand the response loads
was not practical, and the loads were not con-
sidered accurate enough for de iteria.
more detailed analysis was required and dy-
namics perscnnel of FSC were requested to
provide vibration analysis of the satellite, and
to provide MSFC with an accurate spring-mass
medel of the system. The models derived from
the FSC study are shown in Fig. 7, and include
mass and stiffness representations of the de-
tector panels, panel mounts, wing frames, cen-
ter section, and support structure.
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Analyses of these models were performed
with numerical techniques of matrix iteration
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on digital computers. Response loads in each
spring element and response displacements of
some mass elements were calculated from the
mode shapes, frequencies, and predicted envi-
ronment levels, and with analog computer solu-
tion of differential equations of motion.

In the longitudinal analysis, the equation

LY

was solved for the eigenroois and eigenvectors
of the system using the Stodola matrix iteration
method. An analog computer solution of the
Lagrangian equations of motion was used to
calculate the system response to an excitation
of M,. Since the motion of M, was defined as
the environment, the relative motion of M, to
M, was used to calculate the force in K,. This
force was distributed equally to the six space-
crait support points.

The matrix iteration method described
above was employed to find the coupled naturai
frequencies and mode shapes of the lateral
model. The system response to an input at the
adapter section was determined using a normal
mode approach in which only the first four
modes were considered.

After the equations of motion were decou-
pled and the first four modes were isolated, an
analog computer solution was used to determine
the generalized coordinate accelerations. The
response loads were calculated in terms of a
moment and lateral force at the lower support
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and a lateral force at the top support from J = generalized mass,
the equation:
¢ = eigenvector of frequency,
M
t g = generalized coordinate accelerations,

st = [MU]e[E] and

S A = niatrix defining the moments and
TJ shears at each support due to a unit
where load at each lumped mass of the
system.
M; = rnoment at lower support,
s, = lateral force at lower support, Parallel analvses were conducted by FSC

in which the structure was idealized into a
r = lateral force at top support, lumped parameter sysiem. The matrices which

32

n
il




define the structural characteristics were de-
rived in two ways: (1) by equivalent springs
based on assumed load paths with simplified
bending and axial members; and (2) by deflec-
tion influence coefficients based on an energy
solution for unit loads applied to the actual
redundant structure.

The inertia matrices consisted of concen-
trated masses acting at a point assumed to be
the center of gravity of locally distributed
weight. The differential equations of motion
for forced vibration were solved to obtain a
transmissibility equation in matrix notation:

[T.] = {1- WS 0] [Ma] + i[gm]}" {1- i [gm]} ,

where
_ (_1)1/2
T = transmissibility,
W = frequency,
S = flexibility influence coefficients, deflec-
tion at m due to load at n,
M = mass, and

g = nondimensional damping coefficient.

The transmissibility equation was solved
on an IBM 7090 computer for a range of W's,
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including all structural resonances, to obtain a
plot of response versus frequency for each sta-
tion of the model. The internal loads were then
obtained directly from the response calculations
by using the unit solution matrix which defines
the flexibility matrix.

A subsequent sirength analysis indicated
that these loads would cause failure. The pri-
mary contributor to the high response loads was
the cantilevered condition of the spacecraft basic
structure. Since the forward lateral restraint
proposed by dynamics engineers of MSFC and
FSC had been rejected, it was necessary to de-
monstrate the necessity of having it incorporated
into the design.

The vibration analysis was extended to in-
clude design modifications in an attempt to re-
duce the response loads as much as possible,
and to provide a structure which would withstand
the loads. This approach produced the modifi-
cations shown in Fig. 8 and described below.

1. The wing frame member sizes were
made proportional to the expected loads and the
detector panels were "detuned" from coupling.
The detector panel "'detuning' was accomplished
by providing an arbitrary diiference in the sup-
port mount spring rate, and reducing the dy-
namic magnification across the support through
use of a high damping elastomer. Since the
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Fig. 8 - Refined analysis models




panels make up about 1/3 of the total spacecraft
mass this reduced the loads significantly.

2. A tongue-and-groove conncction was
added between each wing frame to transfer the
shear from frame to frame directly to the cen-
ter section in order to reduce amplitude of vi-
bration during longitudinal cxcitation.

3. The single strap binding the wing
frames together was replaced by a double strap,
and by adding outriggers between each stack to
transfer lateral loads directly to the center
section. This modification reduces the lateral

bending response of the wing frames.

Although these modifications shiowed sig-
nificant reductions, the response loads were
still excessive and the lateral natural fre-
quency of the spacecraft was within the range
of the Saturn bending mode frequencies. When
the results of the analysis program was pre-
sented, the decision was made to provide a for-
ward lateral restraint. This raised the frequen-
cies and lowered the response loads to accept-
able values.

TESTING

The original Pegasus test program did not
provide for vibration development testing of the
spacecraft assembly prior to final qualification
testing of a prototype model. This qualification
test was scheduled just before delivery of the
first flight model. It was apparent from the vi-
bration analyses inat early development testing
would be extrcmely beneficial to the program,
A dynamic test model (DTM) was built and
tested to qualification levels.

The DTM was a full scale model, structur-
ally, mechanically, and dynamically similar to
the prototype. It was intended as a tool for
evaluating the structural response characteris-
tics and defining any necessary modifications
to reduce excessive responses.

The lateral axis test arrangement is shown
in Fig. 9. The lower support structure flexi-
bility was simulated in the specimen-to-fixture
adapters, and the forward support flexibility was
provided by the tower structure. The longitudi-
nal axis test was accomplished by rotating the
shakers to the vertical position as shown in
Fig. 10.

Two MB Electronics C-210 shakers were
used to subject the specimen to the predicted
Saturn vibration environment. The test proce-
dure consisted of a 10-minute sinusoidal sweep

34

Fig. 10 - Longitudinal DTM
test setup

from 5 to 2000 cps and a 5-minute resonant

well at the major resonant frequencies. This
test procedure applied to the three orthogonal
axes. Low level survey sweeps were conducted
in each axis prior to the high level sweeps. The
maximum input level was 3.6 peak 2S5 shown in
Fig. 4.

Instrumentation consisted of 22 channels

of continuous accelerometer recordings, 12
channels of continuous strain gage bridge




circuit recordings, and 24 channels of single
(dynamic) strain gage recordings.

Three low level sweeps were conducted in
each axis prior to the high level test. Twenty-
two different accelerometers and 36 different
strain gages were monitorrd during each sweep.
Trom this data the locations of highest response
were selected for eontinuous recording during
the high level test. The strain gages were
recorded on oscillograph and the accelerometers
were recorded on magnetic tape, played back
through an X-Y plotter and presented as plots
of acceleration vs frequency.

The strain measurements were used to
calculate the stress (and thus the load) in strue-
tural members throughout the spacecraft. The
accelerometer data was used in determining
frequency, mode shapes, and distribution of dy-
namic magnifieation throughout the spacecraft.

The test demonstrated the overall struc-
tural integrity of the spacecraft in that no fail-
ures occurred. The frequencies and modes of
vibration and the dynamic load distributions
obtained during testing agreed with those pre-
dicted by analysis.

The dynamic loads measured by the strain
gages were lower than those predicted by anal-
ysis. Peak longitudinal load measured in the
lower support structure was 13,940 pounds and
the predicted load was 16,250 pounds. The
loads measured in the lateral direction was
4550 pounds compared with a 6550 pound pre-
dicted load. The error was approximately 15
percent in the longitudinal direction and 30 per-
cent in the lateral direction. The difference is
probably due to the conservative estimate of
damping used ir the analysis. An investigation
is planned in an effort to simulate the DTM test
results by adjusting the analysis parameters,
thereby defining a more accurate analytieal
model.

CONTRIBUTIONS TO DESIGN BY
VIBRATION ANALYSIS

The results of vibration analysis had sig-
nificant effects on the final design of the Pegasus
satellite. The most outstanding of these effects
wastheincorporation ofaforward lateral support.

The forward support had been considercd
in the conceptual design phase, but had not been
justified by static considerations. It was left
then for the dynamics analyst to develop the
supporting evidence and to demonstrate the need
for the support. This need was adequately de-
monstrated by both MSFC and FSC analyses.

In addition to demonstrating the necessity
for a lateral forward restraint the analysis
program uncovered design modifications that -
greatly inereased the overall structural in-
tegrity of the system.

The initial design of the wing frame struc-
ture called for similar structural member
sizes throughout for simplicity in design and
fabrication, and for identical detector panel in-
stallation hardware for each panel. Vibration
analyses performed by FSC showed these design
approaches would result in high dynamic re-
sponse loads. As a result, more efficient de-
signs were developed in which the frame mem-
bers were made proportional to the load and
detector panel responses were "'detuned' by
using isolators as mounts.

Excessive response amplitudes of the wing
stack as a result of longitudinal excitation was
reduced by a tongue-and-groove arrangement
which transferred shear directly to the center
section and thus reduced the load on the hinges.
The lateral bending response of the wing stack
was redueed by changing the method of binding
it together and adding outriggers to trunsfer
load directly to the center section.

The high response amplitudes of the elec-
tronic canister predicted by analysis were con-
firmed during DTM tests. A more detailed
analysis of the canister was performed in which
a stiffener system and an isolation mounting
system were developed that would reduce the
high frequency response amplitudes.

The purpose of this paper has been to point
out that structural vibration response should be
a design consideration in todays space vehicles
where engine noise and aerodynamically gener-
ated sound pressure levels exceed 160 db. Vi-
bration analysis techniques should be employed
during the design phase so that problems are
uncovered prior to testing and design modifica-
tions are easily incorporated.
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SPECTRA OF NONSTATIONARY RANDOM PROCESSES

G. P. Thrall
Measurement Analysis Corporation
Los Angeles, California

INTRODUCTION

The concept of a power spectrum associ-
ated with a stationary'random process has been
developed and applied to the analysis of physi-
cal problems for many years. It is a fact, how~
ever, that many random phenomena have non-
stationary characteristics which cannot be neg-
lected. For example, the vibration which a
missile undergoes during the boost phase has a
mean square value which fluctuates quite rap-
idly and thus causes the spectrum to vary with
time.

The purpose of this paper is to develop sev-
eral approaches to defining a useful spectral
density function for nonstationary random proc-
esses. A spectral decomposition which is the
double Fourier transform of the nonstationary
covariance function is derived in a later scction
entitled '"Double Frequency Spectra.” The re-
sult is a spectral density function involving two
frequency variables. A second approach, which
is hased upon narrow band filtering and ensem-
ble averaging gives a tinie dependent pcwer
spectrum and this is developed in the section
entitled "Time Varying Power Spectra.'" Fi-
nally, a third spectral decomposition is arrived
at by taking a time average of the time depend-~
ent spectrum. It is pointed out that the aver-
aged spectrum has the advantage of being a di-
rectly measurable quantity. Finally a detailed
comparison is made of the three spectral de-
compositions and recommendations for further
research is presented in the section entitled
"Spectrum of a Periodic Nonstationary Process.”

SPECTRAL REPRESENTATION

Let x(t) be a zero mean, nonstationary
random process. Since x(t) has zero mean
for all t, its covariance function is given sim-
ply by

R(t,.t,) = E[x(t)) x(tp)],

)

NOTE: References appear on page 45,
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and depends explicitly on the times t, and t,,
rather than on the time difference (t,-t,) as
is the case for stationary random processes.
Because of the two dimensional nature of the
covariance function, it will be seen that the
various spectral decompcesitions are also two
dimcnsional.

Double Frequency Spectra

A spectral decomposition involving two
frequency variables may be obtained by intro-
ducing a new random process X(t) which is
defined as the Fourier transform of thc origi-
nal nonstationary process x(t). Thus,

®

X(t) = j‘

-

~iwt

x{t) e dt , (2)

where

w = 2nf . (3)
The right side of Eq. (2} mav not exist in terms
of ordinary integration theory and X(f) must be
interpreted as a symbolic function [1], in the
same way that the Dirac delta function, s(-), is
a symbolic function. In fact, if x(t) is set equal
to one for all t, it follows from the properties
of the Dirac delta function that

©

I e it de = 5(f)y.

-

X(f) =

Certain properties of X(f) are immediately
apparent from the definition. Since x(t) has
zero mean, the expected value of X(t) is zero:

©
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X(f) will in general be a complex random proc-
ess and can be written as




X(f) X, (F) + iX,(1), (5)
where X, (f) and X,(f) are real random proc-
esses.

The covariance function of X(f) will be
denoted by S, (f,.:,) for reasons which will be
explained shortly, and is defined by

Se(f fy) = E[X(F) X'(f)] (6)
where (*) denotes the complex conjugate oper-
ation. Equation (6) is the standard deflinition of
the covariance function of a (possibly complex)
random process [2]. It should be noted that
S.(f,,f,) must be interpreted as a symbolic
function since it is the expected value of two
random symbolic functions. By expanding Eq.
(6) in terms of X, (f) and X,(f)

Su(fy.f) = E{[xl(fl) v in(fl)] [xx(fz) - iXz(fz)]}
= E[X,(f) X(fp] + E[X,(f,) X,(f)]
- B ) X(F)) - B () X))}
=Sy, £)) + 8y(f1 )
- is),0EE,) - S, f )] M
where
Sp(fy fy) = E[X,(F)) X (£)], .k =1,2.

The real part of S (f,.f,) is the sum of
the individual covariances of X, (f) and X,({),
while the imaginary part is the difference of
the covariance between X,(f) and X,(f:. Along
the line f, = f, = f, S (f,f) isreal and gives
the mean square content of X(f) at the fre-
quency f.

Returning to Eq. (6), another expression
for s,.(f,.f,) may be obtained by using Eq. (2):

Sx<f1' f2)

g Slwyty g L @aty
E‘:j x(t,)e dt, I X(ty) e dtz:l

-m -m

@©

ity ,w,t,)
H E[x(t,)x(t)] e It dt, dt,

-®

@
_ ci(e ty-e,ty)
-J‘J‘ Ry(t;.t,) e

T

dt1 dt2 .

(®)
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This result shows that s (f,, f,) is the double
Fourier transform of the covariance function
of x(t) and is called the generalized power
spectral density function.

In the stationary case, Eq. (8) reduces to
the standard Wiener-Khintchine relation. This
will now be shown. If the change of variable

t, o+t
¢ = 122
7=t2—t1
f f ©
+
. 122
g = f, -1,

is made, then
case,

Eq. (8) becomes, in the stationary

o
S.(f.g) = ﬂ R (r) e T g gy
-

5(g) J Ro(y e 2?7 q, . (10)

In terms of the original frequency varia-
bles, the above relationship is

o fl+f
127 T
. 2 11
S (f fy) = 8(f,-f) I R (T)e dT( )
-x
which means that S.(f,.f,) is zerc every-
where except along the line f, = f, = f where

the two dimensional density is infinite. Clearly,
this indicates that ""e spectral density has been
reduced to a one dimensional density. By in-
tegrating out the delta function, Eq. (10) becomes

(12)

which is the Wiener-Khintchine relation.

The one-dimensional nature of s (f,.f,)
in the stationary case implies that, if f, + f,,
the X(f,) and X(f,) are always uncorrelated
and, in particular, are independent if x(t) is
Gaussian. For a nonstationary process, the
fact that S.(f,.f,) has a two-dimensional
struciure means that there is correlation be-
tween the content of the process at f, and that
at f,.




Through the transformation in variables of
Eq. (9), the paranieters may be expressed as

)
1 o

ol 3

(13)
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In terms of t and 7, the nonstationary autocor-
relation function R (t,.t,) becomes R (t,7)
where

Ry(t,.t,) = E[x(t)x(t,)]
. E[ (t-zz)x(ug)]
= B (t.7). (14)

These relations are discussed further in a re-
port by Bendat, et al. [3].

A major limitation to the usefulness of
S,(f,.f,) or 4 (f,g) in engineering applica-
tions where data is a nonstationary random
process [4] is that it is not subject to direct
measurement. Rather, S (f,,f,) must be
found by performing the double Fourier trans-
formation on the covariance function R_(t,, t,).
The problem lies in the fact that there is no
way to observe X(f) experimentally. A differ-
ent nonstationary spectral decomposition which
does not have this measurement problem will
be presented in the next section.

Time Varying Power Spectra

Let x,(t) be a single record of a zero
mean, nonstaiionary process x(t) which is op-
erated upon as shown below.

narrow band

record
filter

Xp(t) —ed SQUATE | e

~ dhAad A £

Note that R (t,7) is an even function of 7, that

is,

Rx(t,-”r) = ”.x(t,T) . (15)
In terms of f and g, ihe generalized nonsta-
tionary power spectral density function S (f ,f))
becomes & (f,g) where

Sx(fl,fz)

E[X(f,)X(f)]

s (-3 ()

n

= A (f.e). (16}
Note that & (f,g) is an even function of ¢,
namely
Af-g) = A(fe). (17)

In place of Eq. (8), there results
A (f.g) = H R(t,mye TR qegr o (18)
The inverse double Fourier transform gives

R (t,7) = J‘I d.(f.g) ALY dg df . (19)
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tangular filter with a transfer function given by

iv] 'f+§

H(v) = 1, 5

B
£-3

- 0. elsewhere (20)
where B is the filter bandwidth and f is the
center frequency. Although the filter is not
physically realizable, it is a good approxima-
tion to many narrow band filters.

The corresponding weighting function is
simply the Fourier transform of H(») so that

®
i27vt

J{ H(v) e dv

-

h(t)

sin (7Bt)

7t

cos (2nft)

sin (at)
= ———— cos (wt),
mt

(21)

where the last equality of Eq. (21) is obtained
by letting

a = 7B
and (22)

27f .

W =



The filter output is given by

@

X (£, £,B) = J h(p) x;(t-p) dp (23)

-

and is the instantaneous value of that part of
x;(t) which lies within the bandwidth B cen-
tered at the frequency f. The output of the
squaring device is obtained by squaring both
sides of Eq. (23) so that

2

o \
x2(t,f,B) = <I h(p) x,(t - p) dp)

-

il

ﬂ h(p) h(ag) x;(t-p)x;(t-qg)dpdq.
(24)

It should be noted that the right side of Eq. (24)
is always positive since it represents the
square of a real function of time.

By recording x.(t,f,B) as a function of
time, repeating the filter-square-record oper-
ation N times, and ensemble averaging, an
estimate of the average value of x?(t,f,B) is
obtained. Letting N become arbitrarily large
will cause the estimate to converge to the true
average value. Thus,

N

E[x2(t.f,B)] - Lim ITI{ 2. x2(t.f,B) (25)
@ i=1

To compute E x?(t,f,B) mathematically,

one must take the expected value of £g. (24).
This yields

E[x2(t.1.B)] = ﬂ h(p) h(a) R(t - p, t-q) dpdq,
(26)
where R(t,,t,) is the covariance iunction of
x(t). Equation (26) may be expressed in terms

of the double frcquency spectrum by using the
relation

.’ i[m t,-w,t ]
R(t.ty) :j].S(f‘,fz)c Lo df, df,. (27)

Substitution of Eq. (27) into Eq. (26) gives

E{x%(t.f,B)] = ﬂ h(p) h(aq) ﬂ S(f,. f)) (28)
"o S (Cont.)
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iflw t- - t-
ol [{ErP et df  df, dp dq

A ~iwp i iw,q
= J(I h(p)e dp)(INQ)e : dq)

x(wl-wz)t

x S(f,.f,) e df, df,

—H H(E ) HY(f,) S(f,.f,)

{wp-wy)

t
x e af df, . (28)

This result states that E x2(t,f,B) is the
Fourier transform of a weightcd version of the
double frequency spectrum of x(t). The form
of Eq. (28) is similar tn the rolotignchis botween
the input and cutput spectrd of a linear filter
when the input is stationary, namely,

Sout () = H(f) H'(f) S, (f). (29)

One may now define the time varying spec-
tral density as follows:

S0 = 0 %E[xz(t,f,B)] . (30)

Boo

From Eq. (28), s(t,f) may be written as

s(t,f) = lim 1—13”' HOf ) N5(f) S(f,, 1))
B-0 &l

i(wl-wz)t

df | daf, . (31)

Unfortunately, the limiting operation and the
integration may not be interchanged because
1/B does not approach a finite limit as B ap-
proaches zero. Thus, it is not possible to sim-
plify Eq. (31) by performing the limiting opera-

2 man £3 -
tion first.

Using Eq. (26), the time varying spectrum
may be expressed as

s(t,f)y = lim %-ﬂ.h(p)h(q) R(t-p, t~q)dpdn
B~o B JJ
(32)

It should be noted that the filter bandwidth is
contained implicitly in the product {h(p)h(q)].
As before, the limiting operation and integra-
tion cannot be interchanged so that ihe integra-
tion must be performed first.
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To measure s(t,f) experimentally, one
would need a large collection of records so that
an ensemble averaging could be performed. An
alternative approach, when only one or a few
records are available, is to use some form of
curve fitting on x2(t,f,B)/B to estimate the
functional form of s(t,f). A major limitation
to the usefulness of s(t,f) is that it must be
determined for each frequency of interest.
Thus, the entire sequence of filtering, squaring,
recerding, and averaging must be performed at
some initial frequency f,, and then repeated at
all other frequencies of interest. The result of
this processing is to generate a family of cne-
dimensional functions, s(t.f;), i=1,...,N,
which approximates the two-dimensional fuiic-
tion s(t,f).

Time Averaged Spectrum

A function related to the time varying spec-
trum, and which may have important applications
in the characterization of nonstationary proc-
esses, is the time average of s(t,f). This aver-
age spectrum is defined by

5 = 4 J st fy dt

T

(33)

where T is the time interval of interest. The
value of T could be the entire duration of the
nonstationary process, in which case a limiting
operation may be involved, or some smaller
interval, such as a tape loop lenth, in which
the spectral structure of the process is of par-
ticular interest.

Problems which are of concern here deal
with questions of the length of T required to
give an accurate estimate of s(f), and the
sampling variability of these estimates for dif-
ferent ncnstationary processes. These matters
are not easy to solve analytically, and may re-
quire considerable experimental testing for
various cases of interest. The time averaged
spectrum S(f) for a nonstationary process,
however, is easy to measurc and can rcsult in
significant savings in proccessing requirements
over other means of describing the process.
Finding an appropriate short averaging time to
use for different nonstationary processes can
lead to a meaningful interpretation of how non-
stationary power spectra change with time,

From Eq. (32), it follows that

S(f) % J. B.lim0 J]- h(p) h(q) R(t - p,t - q) dp dqdt

t

o r 1
lim Hh(p) h(a) [% JR(t-p.t-q)dtJdpdq-
B0 % T (34)
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In the second equality, the order of integration
has been interchanged. This operation is jus-
tified by the fact that the "t' integration is in-
dependent of the limiting operation and assuming
all integrals exist. Let R(p-q) be defined by
ﬁ(p- q) = %JR(t—p, t-q)dt.
T

(35)

Then,

SH = Lin [[ ) h@ Rep- aydp da. (36)
B0 /Y

The function R(p- q) is seen to be the average
covariance function of the random process when
time trends have been smouthed vver. It is
easily shown that R is strictly a function of the
difference (p- q) and is thus the covariance
function of a stationary process. We are jus-
tified, therefore, in employing all the results
available for stationary processes in studying
the time averaged spectrum.

The meaning cf £q. (36) is that S(f) is the
mean square value of the frequency f of a sta-
tionary process with covariance function,
R(p-q). Another expression for S(f) may be
obtained by noting that, in the stationary case,
the spectrum and covariance function are
Fourier transform pairs; thus,

-9

I .R-('T) e-277i'r dr

-m

_S_(f) = (37)

SPECTRUM OF A PERIODIC
NONSTATIONARY PROCESS

In this section the double frequency and
time averaged spectra will be calculated for a
particular type of nonstationary process to il-
lustrate the results of the preceding section.
The time dependent spectrum will not be cal-
culated because of analytical difficulties.

Let x(t) be a random process composed
of the product of a zero mean, stationary proc-
ess, y(t), and the periodic function, cos (w,t):

(38)

The covariance function of x(t) may be com-
puted as follows:

x(t) =

cos (wyt) y(t).

R (ty.ty) = E[x(t) x(t,)]

cos (wyt,) cos (wotz)E[y(tl) y(t2)J

cos (wyt ) cos (wot )R (t, - t)). (39)

If the change of variable,




(40)
=ty -t
is made in Eq. (30), it is seen that
R(t,7) = —;- [cos (wy7) + cos (2w, )] Ry(7) . (41)
Note that
Ry(t,0) = = [1 + cos 205t R (0)] 2 0 for all t.

(42)

In general, however, Ry(t.T) may be positive
or negative.

Substitution of Eq. (35) into Eq. (18) shows
that

1
A (f.8) = 3 8() [Sy(f— fo) + S,(f+ fo)]

+

P

[Be- 2f,) + s(g+ 2f)] Sy(f), (43)

where §(g) is the Dirac delta function defined

by
J.m e-u"gt dt .

-

S(g) = (44)

Equation (44) shows that the function 3,(f.8)
exists only along tae lines g=0 and g = t 2f;
in th_e (e, f) plane.

The time averaged power spectrum may
be obtained by integrating Eq. (39) with respect
to t after making the substitutions t, = t-p,
t, = t-q. Upon performing these operations,
it is found that

N—

R, (p-q) = = cos [wc(p-m] R(p-q). (45)

\2e

From Eq. (37), the time averaged spectrum is

©

J( cos (wr) cos (w7) Ry(7) dr

-

5,(f)

"
e L

—

= Z[sy(f-fo)+ S,(f+fy)] (46)

Thus, for a periodic nonstationary process, the
effect is to shift the spectrum by +f, and to

divide the peak spectrum amplitude by four. In
particular, a single peaked spectrum for S,(f)
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centered at f= 0 is changed into a double peaked
spectrum for S (f) centeredat f = +f . One
must be careful to interpret such a result cor-
rectly when dealing with nonstationary data.

To illustrate Eq. (46), consider the case
where a stationary random process y(t) hasa
Gaussian spectrum given by

-af2
Sy(fy = e ", (47)
Substitution into Eq. (46) yields
- . 2 . 2
§x(f) _ -‘]i[e a(f fo) ‘e a(ﬂfo) ]
~a(f2+f 2
= -é-e et 0)cosh (2af f) . (48)

Note that S (f) is nonnegative for all values of
f, in agreement with physical requirements.

EXPERIMENTAL RESULTS

In order to verify some of the analytical
results derived previously, a brief experimen-
tal program was carried out. Because of the
fact that analog equipment was used, only the
time averaged power spectrum was studied
since the other two spectral decompositions re-
quire ensemble averaging.

The nonstationary random signal used for

the experiments was of the form
x(t) = cos (wot) y(t),

where y(t) was a band-limited stationary ran-
dom signal. The signal y(t) was created by
feeding the output of a random noise generator
through a narrow bandpass filter. The narrow
band noise signal y(t) was then fed into one
channel of a multiplier while a sine wave sig-
nal from an oscillator was fed into the other
channel. The resulting nonstationary signal out
of the multiplier was analyzed using a single
filter continuous scan type power spectral den-
sity analyzer.

Two specific nonstationary signals were
analyzed as follows:

1. the product of a 25-cps sinc wave and a
20-cps bandwidth ncise signal with a 100-cps
center frequency (Fig. 1), and

2. the product of a 35 cps sine wave and a
50-cps bandwidth noise signal with a 100-cps
center frequency (Fig. 2).
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Signal Conditions

random signal with
bandwidth of 20 cps
and center freq. of

Analysis Conditions

B = 5.3 eps

X'- o0

T
K = 40 seconds
4 100 cps Rg= 0.04 cps/sec
e = 0.05
3
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1 -
0 T T T Y
0 50 100 150 200
frequency - cps
> 7 Signal Conditions
above signal multiplied
by a sine wave with a
frequency of 50 cps
4‘
3 -
Z B
l -
0 T T T !
0 50 100 150 200

frequency - cps

Fig. 1 - Spectrum of sine wave modulated noise:

random signal with

bandwidth of 20 cps and center frequency of 100 cps
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Analysis Conditions
random signal with B

Power Spectral Density, Relative Units

= 14 cps
bandwidth of 50 cps T, - 90
and center freq. of K 14 scconds
100 cps RS 0.3 «ps/sec
€ = 0,05
1 1 I I I 1 I !
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frequency - cps
Signal Conditions
above signal multiplied
by a sine wave with a
frequency of 35 cps
WMM\‘\/\\
l l | I I I | 1
25 50 75 100 125 150 175 200

frequency - cps

Fig. 2 - Spectrum of sine wave modulated noise: random signal with
bandwidth of 50 cps and center frequency of 100 cps
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The power spectral density analysis was
performed using an analyzer filter bandwidth
that was about 1/4 the spectral width of the
noise signal. Specifically, for case (a), B = 5.3
cps and for case (b), B = 14 cps. The RC aver-
aging time constant K for the output was suf-
ficient to produce a BT product of 400 and
hence, a normalized standard deviation for the
resulting power spectral density measurement
of ¢ = 0.05. Specifically, for case @), Kk = 40
seconds, and for case (b), K = 14 seconds. The
scan rate R, was selected to allow about 3 RC
time constants per analyzer filter bandwidth.
Specifically, for case (a), R, = 0.05 cps/second,
and for case (b}, R, = 0.3 cps/second. Since
the signal being analyzed was continuous with-
out limit (there was no recirculation of signal
data}, the sample record length T_ was effec-
tively unlimited.

The plots shown in Figs. 1 and 2 clearly
indicate the sum and difference shifting of the
stationary spectrum caused by the sine wave
modulation.

CONCLUSIONS AND
RECOMMENDATIONS

In the previous sections three approaches
to the spectral decomposition of nonstationary
random processes have been derived and illus-
trated. As was stated in the introduction, the
purpose of this study is to develop a useful
spectral density function for these types of
processes. This goal, however, can be taken
in two contexts: firs., to provide an adequate
analytical description of the frequency struc-
turc of the process, and sccondly, to provide a
quantity which can be easily measured exper-
imentally.

It was shown in the second section that the
double frequency spectrum and time varying
spectrum both give an analytical description of
the frequency structure. Each approach con-
tains essentially the same information, but in
different formats. In the case of the double
frequency spectrum, the correlation between
frequencies is given, while the time varying

spectrum indicates relations between frequency
and time. The choice of which one to apply to a
particular nonstationary process would depend
upon the nature of the overall problem and the
type of information desired about the process.

The one major drawback to these two spec-
tral decompositions is the two-dimensional
nature of the functions. In one case, the spec-
trum is specified in terms of two frequency
variables, and in the other case as a function
of time and frequency. This leads to a signifi-
cant measurement problem since many records
must be collected, processed, and averaged in
order that a good estimate be obtained. For
many practical situations, it is not feasible to
obtain the requisite number of rccords because
of the high cost of experimentation. This would
be the case in estimating the spectrum of mis-
sile launch vibration, for example. Finally, it
should be noted that the amount of data process-
ing required to generate an estimate of a two-
dimensional spectrum will be quite large com-
pared to the estimation of the spectrum of a
stationary process.

Essentially the reverse oi the statements
presented above apply to the time averaged
spectrum. While it is relatively easy to esti-
mate from one or a few records, the time
structure of the spcetrum is lost due to the
averaging operation. In situations where the
power density changes appreciably with time,
this information could be quite important but
would not be available. 1t is true, however, that
the time average spectrum may be used to esti-
mate the time varying spectrum at selected time
points. This could be accomplished by taking a
short time average about the point of interest.

This paper has covered some of the math-
ematical aspects of spectral decompositions of
nonstationary processes; however, much still
remains to be done. In particular, practical
methods to estimate the time varying, time
average, and short time average spectrum need
to be developed and an error analysis per-
formed to determine the relationships between
record length, sample size, averaging time,
and bandwidth,
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DISCUSSION

Dr. Morrow (Aerospace Corp.): I'dlike to
add a couple of comments to this. The second
of the twe methods, the time dependent spec-
trum, is essentially a rigorous definition of the
concept in terms of an operation that is difficult
to carry out in practice because one must ac-
quire an ensemble of records to work with.
What we do in practice is to make a compro-
mise. Instead of averaging over an ensemble
we average over a brief interval of time which,
hopefully, is not longer than the interval in
which the vibration can be considered station-
ary. That, of course, brings up a couple of
problems one has to look at. The first con-
cerns just how stationary it is in the interval.
At least one has to make an intuitive peace
with this problem. Secondly, there are some
uncertainties that arise out of the length of the
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sample used. In any event if one compares this
approach of a time dependent spectrum with one
which is averaged over the entire record I think
there is something additional that should be
pointed out. When you consider one of these in-
tervals by itself you can make a good case for
considering the vibration to be Gaussian. At
least you can make a good case for saying that
if there were some deviations from the Gaussian
it would make veryv little change in what happens
at the failure point. So now if you choose to
average over the entire record oi a nonstation-
ary process then the associated distribution is
not necessarily Gaussian. In other words if you
mix two signals of unequal strength the distribu-
tion can remain Gaussian. If, however, you apply
two signals of unequal strength in sequence the
overall distribution is undoubtedly uot Gaussian.
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by a numerical example.

A method of analysis is presented which is convenient and direct for
systems up to seven degrees of freedom. Considering lightly damped
ems, the roots of the frequency or characteristic equation are ob-
tained by an approximation procedure; this procedure provides a good
approximation which can be improved if necessary. The mean-square
response 1s found using available integrals.

The method is illustrated

INTRODUCTION

In many applications it would help consid-
erably to have available a convenient, relatively
simple method of analyzing a multi-degree-of-
freedom system for random excitation. Vari-
ous proposals have been presented [1,2]. A
particular method may have certain advantages
and certain limitations. For example, the use
of a particular method may degend on the type
of computer available. This paper presents a
method which is convenient in certain cases and
might be regarded as an alternate or extension
of the method presented by McCalley [3].

OUTLINE OF GENERAL METHOD
OF APPROACH

Considering lightly damped systems, the
roots of the frequency or characteristic equa-
tion are obtained by an approximation method
explained by Myklestad [4]. This provides a
good first approximation which can be improved,
if necessary, by various established numerical
methods. The mean-square-response is found
by using integrals presented by Crandall and
Yildiz [5] and Solodovnikov [6]. The procedure
will be illustrated by a numerical example.

EXAMPLE-FREQUENCY
EQUATION STUDY

Consider the lightly damped system shown
in Fig. 1, with two masses M, and M, , two

NOTE: References appear on page 50.
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springs with spring rates K, and K,, and two
dampers with viscous coefficients C, and C,.
The displacement of mass M is x,, the dis-
placement of mass M, is x,, and the externally
applied shaker forces are F, and F,. Let t
represent time. Application of the dynamic
equation to each mass gives the relations

d*x, dx dx,
M, - + [cl+c2] = - G
* [K1+K2}x1'K2X2 = F,, 1)
and
d2x2 dx dx2
M2 dt? Cogp +Cop ~KxitKyx,y = Fye (2)

For the transient solution, with no external
excitation, a start is made with a relation of the
form

SPRING
%2
MASS
R—V) — oy
Fa ¢ Cz-n A '
2
| ‘ DAMPER V,
2 5
Fig. 1 - Example of lightly damped

system with two degrees of freedom,
Mass: M, = 5.0 1b, M, = 2.0 1b; Spring:
K, = 8181b/in, K, = 1000 ib/in; Damper:
C, = 0.78 ft-lb/sec




x = Ae"" s (3)

where A is displacement amplitude, and r is a
coefficient. Let A, represent the displacement
amplitude for mass M, and A, is the displace-
ment amplitude for mass M,. Then Egs. (1) and
(2) become

[Myr21 (€, +C)r +K, +K,]A - [C,r+ K, ]A, =0 (4)
- [Car+K,)A, + [Myr2+Cor K JA, = 0. (5)

Solving Egs. (4} and (5) simultaneously yields
the frequency or characteristic equation

(6)

Equation (6) can be written in the simpler form

4 3 2 -
r* + Byr® + Byr? + B,;r + B, = 0, (7)

where B,, B,, B,, and B, each is a constant.

One of various possible procedures will be
used for determining the complex roots of the
frequency equation. By way of background ex-
planation, Myklestad [4] has indicated that the
frequency equation for a single-degree-of-
freedom system can be written in the form

2+ r2p +p? - 0, (8)
with the roots

r, = -=5p ¢+ ip\/q—"? : 9)
and

£, = -8 - ip1- 87, (10)

where p is the natural undamped frequency, 3
is the damping factor (ratio of damping coeffi-
cient Lo the critical damping coefficient), and

i=4-1. Let

a= ép. (11)
Then Eq. (8) can be written as
r2 + r2a+ p?2 = 0. (12)

With this background explanation, refer to
the system shown in Fig. 1. It is convenient to
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consider the whole system as having as many
damped modecs as there are degrees of freedom.
Thke procedure involves the determination of the
natural undamped frequencies; for ¢, =0 and
C.=0, Eq. (7) becomes

r4 + B,r? + B, = 0. (13)
Let r = ip. Then Eq. (13) becomes

p* - Bp?+B, = 0, (14)
with the four values of p as
(15)
For a lightly damped system, these root valucs
provide a very close approximation for the
dainped frequency values; this is illustrated by
Egs. (9) and (10). Then it is assumed that each

damped mcde can be represented by a second-
degree frequency equation of the form

[r2 + 2a;r + plz] [rz + 2a,r + p22] = 0, (16)
where
ay = &Py, a, = 3,py
Expanding gives
rf + 2(a,ta,)r?+ (1:012 +4aa, + 1::2)2 r2
+ 2(alp22+ azpf)r + p12p22 0. (17

The next step is a comparison of Eqs. (17) and
(7). By comparing the coefficients of the r?
and r terms, the following two linear equations
are obtained:

[}
josl

2
22, & 232

1 (18)
and

2a,pt? + 2a,p? = B (19)

g
Solving Egs. (18) and (19) simultaneously gives
numerical values for a, and a,. From known
values of a, and a,, the damping factors 3,
and &, can be computed, and thus the complex
roots can be expressed in the form given by
Egs. (9) and (10)

r, = -81pl + ip! \/I-—Sf (20)
and
r, = -8,p, t ip,/1- 522 (21)




1f it is desired to check or refine this calcula-
tion, one of various established numerical
methods can be used.

Use of the foregoing method gives fre-
queney values of 32.4 and 86 cps and damping
faetors of », =0.0081 and -, =0.013.

RESPONSE DUE TO RANDOM
EXCITATION

The impedance ratio -(.), a funetion of
angular frequency .., is defined by the relation

Force

z(w) =

Displacement (22)
The magnitunde of impedance is |z(w)|. Let

Ppi o) represent power spectral density of the
exciting force, and P _(.) the power speetral
density of the displacement x. Then the follow-
ing relations hold:

) . P ( ‘)
()07 pE (23)
e - J P () do (24)
0
— * P (w) d.
Rt e (25)
o z(n)

By assuming white-noise input, Eq. (25) can be
written in the form

X2 [ ==
pF z( o) :

o

J' He do. (26)

where H(v)! is the reeiproeal of the magnitude
of impedance. There is a question about the
integration of Eq. (26) for partieular cases.
Following are thc integrals adapted from
Crandall and Yildiz [5] whieh provide integrals
for cascs up to twe degrees of freedom and
from Solodovnikov [6] whieh provide integrals
for cases up to seven degrees of freedom.

Examples of Integrals Adapted from
Refs. [5] and [6]

i0E,

2D, + iwD

2 1

+ E
() 2

+ D,

9]
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Integral for (I) is

‘ . , E° + D, D,
H(o)l dw — b5

172
0

ol

H()

Integral for (1) is

o

J‘ | H( ;))2 o

o

E2

o 2
D, (PaDy=Dy) + D (F) - MBE) —
2 2
+ D3(El~ = QEOEZ) + E3 (DIDZ_DOD.Z)

ol

y 2
D (D,D,-D,) - Dy D;

EXAMPLE~STEADY-STATE
SOLUTION STUDY

Next consider the steady-state solution for
the system shown in Fig. 1. A start is made
with solulions of the form

X, X100 (27)
and
1ut
X, X,0€ (28)
where x , is the displacement amplitude for
x;, and x,, is the displacement amplitude for

x,. Substitution in Egs. (1) and (2) gives the
result

LK 4Ky = M+ 1(C 5 Gy o] %y,

- [Kzi iC, 0] x F, (29)

20 1

= [Ky v i€, ] xp + [Ky= oM, +iC0) %, = F,. (30)

Consider the case in which F, - ¢0. The trans-
fer function x,, ¥, ean be determined, as by

means of the Cramer rule. Use of the muaeri-
eal values listed in Fig. 1 gives the relation

H( ) X, F,

21.5x10° - 16.10% + 1138

4 017.34.3- 33 3% 10% 2+ 15, 20x 10504 12, 2 10_‘23'1)




Equation (31) is type (II) (see previous section); CONCLUDING REMARKS
the use of the integral from the previous section

gives the final result The foregoing method involves two major
BE e B03n 0 (32) steps, the solution of the frequency equation and
T F : ' the integration of the response equation. Using
in units of the foot-pound-second system. For presently available integrals, the method is
a given input excitation, the displacement re- convenient and direct for systems up to seven
sponse can be determined. degrees of freedom.
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STRUCTURAL RESPONSE TO A VELOCITY-DEPENDENT
STOCHASTIC EXCITATION®

W. J. Stronge and G. K. Fisher
Supersonic 1Track Division
U.S. Naval Ordnance Test Station

A theoretical analysis of the forced vibrations of a single-degree-of-
freedom, linear svstem having viscous damping is presented. The vi-
brations are excited by the system traveling over a specific random
surface — the Supersonic Naval Ordnance Research Track (SNORT).
Thus, the time-history of the forcing function and the statistical meas-
ures of the response reported heredepend on the velocity of the system
along that track. The response of this model has been related to a
dynamic loading factor for track vehicles that corresponds, within a
factor of 2, to experimental measurements.

INTRODUCTION

Several informative applications of statis-
tical methods for determining the response of a
mechanical system to a random excitation have
been presented recently [1-4]. Because of the
generality of the treatment in most of these
current works, however, their usefulness to the
engineer in the field who does not have a good
background in statistical methods is limited.
The information presented in this paper is in-
tended to provide a relatively simple method of
determining system response characteristics
by using hand calculations and a simple me-
chanical model.

The model consists of a discrete parame-
ter single-degree-of-freedom linear system
having viscous damping. This system is ex-
cited by traveling at a constant velocity over an
uneven surface such as a roadway, rail, or
ground surface, where the random surfacne can
be represented by a stationary stochastic proc-
ess. The system is assumed to maintain con-
tact with the rigid surface without friction. The
absolute acceleration and relative displace-
ments of the system in response to a particular
stochastic process are determined as a fun-tion
of the vehicle velocity, damping ratio, and nat-
ural frequency. These functions are then re-
lated to a design dynamic loading factor which

*This paper was not presentcd at the Symposium,
NOTE: References appear on page 66.
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depends upon the probability of exceeding some
maximum amplitude.

The particular random process considered
is based on the measured contour of the rail of
a high-velocity test track (SNORT).T The
method of measurement of this rail roughness
gives rise to a spectral density with distance
along the track as its argument. A smoothed
analytical representation of this excitation is
transformed into the time-dependent frequency
domain by introducing the variable velocity.
This quasi-stationary analysis has agreed
within a factor of two with experimental results
obtained thus far for the response of a system
even when the system is accelerating at rates
of up to 200 ft/sec?.

THEORY OF LINEAR SINGI.E-
DEGREE-OF-FREEDOM
VIBRATING SYSTEMS

The forcing function of the simple, discrete-
parameter mechanical system used in this study
is caused by a velocity-dependent displacement
excitation applied at the foundation. The motions
of the system in response to this excitation {5]

TSNORT, located at the U.S. Naval Ordnance
Test Station, China Lake, California, offers
4.1 miles of precision aligned track for the
research testing ofmissile systems ,warheads,
aircraft, and aircraft components traveling at
supersonic velocities.




are analyzed below. Consider the system shown
in the following sketch:

i
c K

NN

F(t)

Mechanical system vibration model

The differential equation of motion for this
system is

my + cy + ky = F(t), (1)
or
y + 20 )nj,' + »nzy R(t) , (2)
where
w, = JEm
{ =c¢ Ccr v
Cep = 2/km |
and
R(t) F(t) m.

When the absolute motions of the system
are sought and the motions of the base, rather
than the excitation forces, are known, Eq. (2)
becomes

¥ o= 2 (F-9) + ol (vi-y) . ()

The motions of the basc {track) are denoted by
the subscript t. The relative motions between
the body and the track are obtained by refer-
ring the coordinate system to the body. With

Z = y-y, the equation of motion is

Z+ 2van.Z + ,unZZ = -y, 4)

Periodic Excitation

When R(t) is a periodic function, the re-
sponse, y(t), can be found by several different
methods. The Fourier series method described
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here is applicakle when the disturbing force
can be described by 2 trigonometric series.

F(t) = a /2 + Z (a,cos nat + bsin nawt), (5)
n=1

where » is some fundamental frequency of the
excitation.

The coefficients, a, and b, of the Fou-
rier series are a measure of the amplitude of
that part of the forcing function, F(t), having a
frequency nw. The frequency spectrum of a
periodic forcing function, F(t), will be dis-
crete. Each frequency composing the spectrum
will have two 90-degree out-of-phase compo-
nents with coefficients a and b;:

Fi(1)

b

I

l
b 04 o
|

w 2w Sw 4w

-

b

J

1
7w

b
|
Sw  bw Nw

Periodic frequency spectrum

In considering the forced vibration of a linear
system, the response is obtained by superim-
posing the vibrations produced by each term in
the Fourier series, Eq. (5), applied individually
to the system. Thus, the problem of analyzing
the response to a periodic excitation that can
be described by a trigonometric series be-
comes one of finding the generalized response
to a sinusoidal excitation [61 Thie model used
with a sinusoidal track waveform is shown
below:

~X

Vibration model traveling over
sinusocidal wave




The diameter of a wheel, rolling on the
track without friction, is infinitely small. The
sinusoidal wave of amplitude y, has a wave-
length ». The track functi¢ii can be written

- &

Y¢ T Y, Sin -:’—( o (6)
Take k = 27/A, where k is the wave vector.
Note that, when the mechanical system is trav-
eling over the waveform, x becomes a function
of time:

Yy = ¥, sin kx(t). (7)
This function is then differentiated to obtain the

time-dependent excitation due to a sinusoidal
waveform.

Random Excitation

Random forcing functions are those excita-
tions composed of variables whose instantane-
ous values are not predictable. A random vari-
able is a real valued function defined on some
sample space consisting of all possible out-
comes, where the statistical probability distri-
bution of the variable on the sample space is
described by an n-dimensional probability
density function. A stochastic process is an
ensemble of random variables depending on
some argument such as time or distance. The
stochastic process is said to be stationary if
the probability distribution remains invariant
with translation of the argument.

The expectation of a random variable, x,
defined over some discrete sample space of
numerically distinct events with x; values —
each with probability p; —is

E(x) = L x;p; (8)
When the sample space is continuous,
E(x) = j xp(x) dx, (9)

-®

where p(x) is the probability density function.
The expected value, E(x), of the random vari-
able is equal to the mean, ., or statistical
average of x.

The moments of the probability density
function are pertinent in describing the distri-
bution of the random variable. The nth mo-
ment is
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J xOp(x) dx ,

-®

E( x™y = (10)

from which it can be seen that the mean is just
the first moment. The second moment about
the mean, called the variance, 32, is particu-
larly important in the practical analysis of sto-
chastic processes. Thus,

éx2 = E [x-,ux]2 = E [xz] = }Lx2 o (11)
The variance is the first moment describing the
dispersion of the random variable [7].

With these statistical terms defined, one
can now look for the input-output relationships
of a system excited by some particular stochas-
tic process. Either the Fokker-Planck or the
Fourier series method can be used to deter-
mine statistical measurements of the random
vibrations excited in a system by a particular
stochastic process. The Fokker-Planck method
sclves a partial differential equation of the dif-
fusion type for the probability distribution of
the response. This equation is generally solv-
able only for excitations with a white spectrum=
in which the response will always have a nor-
mal or Gaussian distribution. The Fokker-
Planck method is amenable to non-Gaussian
excitations, and is generally applied to nonsta-
tionary problems.

The Fourier series method which does not
need a white spectral density, requires a
Gaussianly distributed excitation process to
determine the response distribution function
uniquely. The Weiner-Khintchine theorem re-
lating the autocorrelation and the spectral den-
city is most important to this method. The
Fourier series method, usually applied to sta-
tionary processes, is used in this study because
of the interest in other than white excitation
spectrums [1].

The relationship in the time domain be-
tween the input, e(t), and the output cf 3 linear
system is

t

I h(t=-7) e(7) dr .

-o

y(ty = (12)

Here, h(t) is the unit impulse response of the
system and 7 is the lag. If e(t) can be ex-
pressed as a Fourier transform, the Fourier

%A white spectrum has a constant amplitude
from a frequency of -o to +-.




transform of y, y(j»), can be found. Hence, in
the frequency domain

y(j®) = H(jw) E(jw) . (13)

When e(t) is a stationary stochastic process it
is described by the Fourier transform pairs,
S.(w), the spectral density, and R(7), the auto-
correlation function. .

Using the Weiner-Khintchine theorem, the
output spectrum S _(v) is

S (@) = H(jw) H(-jw) S () = [H(jw)| " S (w) . (14)

where H(-jw) is the complex conjugate of H(jw).

The variance of the response is found by
integrating the response spectrum S (w). Thus,

©

j IH(joy] " S (w)dw .

-®

E{y?] = (15)

This relationship is fundamental to the develop-
ment of the response characteristics to stochas-
. tic excitations [2].

VEHICLES HAVING CONSTANT
VELOCITY

When the mechanical system is traveling
with a constant velocity over the stationary
waveform, the steady-state vibration solutions
can be found by applying the excitation function
to the system transfer function. The transmis-
sibility of the system is found by analyzing the
response to a sinusoidal excitation. The trans-
fer function, derived from this transmissibility,
applies to the random excitation as well as to
the periodic excitation, since the Fourier series
method of solution is being used.

Calculation of Transfer Functions

For a constant velocity, the time dependent
function is determined by x(t) = xt. Differen-
tiating the track displacement function (Eq. (7))
with respect to time, the following track de-
scription is obtained

Ye = ¥, sin ot

Ve = Yoo €os wt (16)

'yt S yow2 sin wt |
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where the forcing function frequency, «, is
equal to kx.

Transmissibility of Absolute Motions.
Absolute motions of the mass have an excitation
function,

R(E) = wly, + 2oy, .
Substituting Eq. (16) into this function, the ex-

plicit sinusoidal track excitation function is
obtained; i.e.,

R(t) = (17)

yo2l_,wmn cos wt + yo'un2 sin wt .
Because the terms in this expression are two

vectors, oriented 90 degrees apart and having
the same angular velocity,

< 4C2w2>1 2 . (18\
R(t) = yyu, {1+ 3 sin (wl - ¢), ;
w

n /

where

1 2w

Y= tan’

This excitation function is applied to the differ-
ential equation of motion for the system, Eq. (2).
By assuming a sinusoidal response solution,

Eq. (2) becomes

Rty (19)

Clw? - w?) sin wt + 2Clww, cos wt =

or

1/2
2 r, 2 472w2 ]
Cw,, L(l -t 7 sin (wt - a)
@ w
. n n

(20)

sin (wt -y,

where

1 = tan’!

SN
:

Defining the transmissibility as the relative
amplitude of the response to the amplitude of
the excitation,

H, Y_Co : (21)




the transmissibility for absolute motions has
been found to be

—

4C2Lu2
1+ 5
HA = “n . (22)
/ w? \2 4722
(l T T2 W 2
\ n / “n

If a harmonic excitation of the form ei“*
were used as the forcing function, and if a re-
sponse of the same form were assumed, the
transfer function in complex notation [3j would
be

n

Hy(iw) = . (23)

2 2 4 2ilww,

2 q
w o+ 21{"‘“"6

an—w

The transmissibility for absolute motion is
shown in Fig. 1.

Transmissibility of Relative Motions. The
transmissibility of relative motions can be
found in the same manner as is used for abso-
lute motions. In this case, the excitation func~
tion, R(t), is equal to -y,. Hence, from Eq.
(16) the relative motion excitation from a
sinusoidal track is

R(t) = yow2 sin wt . (24)

This excitation function is substituted into the
equation of motiva for the system Eq. (4). Then
the differential equation for relative motion can
be written

Cr(wn2 -w?) sinwt + 2C lww, coswt = y w?sin ot .

(25)

The transmissibility of relative motions in
response to this sinusoidal track excitation,
with the transmissibility defined as before,
is then

i
9
8
. /
6 /
, /
/
x> . b
s /
t‘
~ \ /
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L
/ ) Q.\ {0
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N

Fig. 1 - Transmissibility of absolute motions
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€, Response to a Periodic Excitation

Hy 5 (26)
° The periodic excitation can be thought of
as composed of a number of sinusoids. With
2 the appropriate transfer functions, the re-
2 sponse is merely the product of the forcing
Hy - B . (27) function and the transfer function.
1/
(1 w2 47)2(1)2
- — %
\ w ? w Absolute Response. The absolute motions
of the mass in response to the sinusoidal track
This transfer function could also have been sxeizdion Wik by
found in complex notation [3] by starting with
an excitation of the form ei«t, In that case, y = yHy = y, Hy sin (wt-a), (29)
Hy(iw) = w? (28) v = yHy = yowHy cos (wt-a), (30)
wn2 - w? 4 2i§wmn
R, . - and
The transmissibility of relative motions,
as a function of the damping ratio Z, is shown . . )
in Fig. 2. Vo= YHy = y oMy sia(et-arm) . (31)

l— {:0
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,;,//U/Z/ 2
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£
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/
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Fig. 2 - Transmissibility of relative motions
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Phase relationships between the
forcing function and the response

For the case of oscillatory motion (damp-
ing less than unity) the absolute acceleration
response is highly spiked ncar the resonant
frequency. Higher frequency excitations result
in a response which asymptotically approaches
a value 2w/«  due to the velocity-dependent
nature of the damping. (The displacement re-
sponse is relatively independent of damping
ratio and excitation frequency in this range.)

Relative Response. The relative displace-
ment response is of prime importance because
it is directly related to the stress in the spring
of the system. The relative displacements be-
tween the mass and ithe track are

Z = ZHy = y Hy sin (wt-a). (32)
The maximum relative displacement re-
sponse occurs when the excitation frequency
equals the natural frequency of the system. At
this point, the stress in the isolator is a maxi-
mum, and varies inversely with the damping
ratio. For forcing functions higher than the
natural frequency, the relative-displacement
transmissibility asymptotically approaches

unity.

Response to Random Excitations

The random roughness of the track forms
a stationary stochastic process and can be used
as a velocity-dependent forcing function of the
system. To use the Fourier series method of
solution, the description of the stochastic proc-
ess should be in the frequency domain—a
spectral density distribution. The excitation
function can then be written in terms of the ex-
citation spectral density, S (), at a differen-
tial frequency element, Aw. A displacement
excitation with S_(w) in units of ft2/rad/sec is
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2

Yo = Sy(@)hw. (33)

A velocity excitation spectrum, S, .(«), in units
of ft?/rad/sec becomes

o 8 2
= 2 =
Vy = @%yy =

S (w)Aw . (34)
Acceleration excitation spectrums, S, .(w), are
commonly given in terms of g?/rad/sec.

§t2 = Wt yt2 = S u(w)hw. (35)

In this form of the spectral density, which
is the mean square value of the excitation func-
tion in the frequency domain, the relationship
with the Fourier-series expansion of the exci-
tation function is emphasized.

The expected value of the mean squared
response is just the variance of the response
for an unbiased distribution function. The well-
known result for the response, given in Eq. (15),
is

©

2
Ely?] - I S (@) |Hy(iw)| ™ daw.

The same result will be obtained for the
absolute velocity and acceleration response
when excited by their respective excitations.
Thus,

@

'f Se,(w)lﬂA(iw)lzdw, (36)

-

Eiy?|

and

@

j Sou(w) IHA(iw)I ? da . (31)

-

E[y?]

Other forms of the response can be found from
any specific excitation by using Eqs. (34) and
(35).

It can be seen that

S,
Sen(@) S (@) - (38)
(4)4

Therefore, the acceleration response, in units
of g?, to a displacement excitation spectrum,
in units of ft2/rad/sec, will be

= w‘Se((u)
E[y?] = J T !HA(la))lzdm, (39)

=&




and the displacement response in ft? to an
acceleration excitation spectrum, g?/rad/sec,
will be

- gzse,,(m
Ely?] - J’ et (40)

. 2
= [Hy(iw)| " dw.

-m@

The relative response can be obtained hy using
the same manipulations. The relative displace-
ment response, in ft2, to a displacement exci-
tation spectrum, ft?/rad/sec, is

@

I S (w) ‘HB( iw)‘ : da

-

E(Z2] = (41)

while the response to an acceleration excitation
spectrum in g2/rad/sec will be

f” 825 ()

4

E[Z?) IHB(_ i) : dw . (42)

w

For gelutions of integrals of this form, the
expression must be convergent in the limit as
The integral can then bec solved by con-
tour intcgration [8]. If, however, S () can be
expressed as an even valued polynomial, ana-
lytic in the intervai -« to «, and if it has a
root with all poles in the upper half plane and
none on the real axis, then tabulated values of
the integral can be found in several sources
f4,9,10].

W=,

Integration of complex function

Response to SNORT Excitation

The SNORT rail-roughness excitation has
a nonwhite spectral representation. (The anal-
ysis of this spectrum from discrete measure-
ments is reported in Ref. 11.) The assumption
is made that the track contour is a stationary
stochastic process; i.e., this sample of track is
representative of the entire length of track.

o
0

An approximation made to the spectrum
grossly smoothed the spectrum but resulted in
an analytical expression that could be used in
the tzbulated integrals. This function, which is
a polynomial with complex roots, has been
superimposed on the spectrum in Fig. 3. In
general, some polynomial that will allow intc-
gration if the function remains bounded can he
found for any spectrum. This particular ex-
pression for the SNORT spectral density as a
function of the wave vector, &, is:

2x10°*
.

S_(k) = (43)

Ve TRy
This amplitude is for a spectrum taken from 0
to . The expression is analytical, symmetri-
cal, decays rapidly, and meets the resirictions
discussed previously in all respects.

Because this spectrum was analyzed from
measurements made along the track where the
argument of the random variable is distance, it
is wavelength-dependent. To transform the
spectrum into the usual frequency domain, the
spectrum must be weighted over the waveform
by the velocity of the mechanical system. The
product of a wave vector and velocity will be
the frequency of that wave vector. To maintain
the proper density, the ordinate of Fig. 3 must
be divided by velocity, since

-4
5wy 5 — 2"10—2 (44)
)'t[l 3+ (w x)2]
or
2x 1074 %3
Se() = ——m (45)
[a% + £2] ",
where
X
a =
o T
and

The relative displacement response te this
displacement excitation spectrum is determined
by using Eq. (41). After identifying the complex
roots, Eq. (45) can be written

2 x 10" %x3
S(w») = 5

(46)
(B ia)? (B4 ia)

and the transfer function will be
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Then, by evaluating Eq. (41) using the tables of
Ref. 10, we obtain

1074:3/3 a*(1+ La)

20{(1+2a%)" +4%a(1+ a2+ [a)]

(a8)

®{72] in.2 =

The square root of this variance of the relative
displacement response has been plotted as
Fig. 4.

The absolute acceleration response to the
track displacement excitation can be found from
Eq. (39).

By applying S_(~) from Eq. (46), and for
[H (i) ?,

1+47% 57

(49)
(1+2i03=- B3 (1~ 2i13- 8%

. 2
lHA( i) =
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104733 wf a3(1+ La+4L2 +160%a+ 167402 + 473a%)

2(386)2 [(1+a2)” + 4la(1+ La+ a?)]
(50)

This absolute acceleration response of the
mass to the track excitation has been plotted as
Fig. 5.

The response characteristics of this sys-
tem have been strongly infiuenced by the shape
of the spectral approximation, Fig. 3, and in
particular, by the shoulder at approximately
k = 0.4. In the frequency domain, the excita-
tion from this wavelength will occur at the
natural frequency of the system when a = 1.5.
It is near this point that the relative displace-
ment is a maximum and the character of the
absolute acceleration changes from vibrations
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Fig. 4 - Relative displacement response
to the SNORT excitation

at the natural frequency to a response consist-
ing primarily of higher frequency components.

The effect of velocity on the response can
be investigated by considering the quasi-steady-
state, or slowly accelerating, system. Increas-
ing velocities tend to sweep the natural fre-
quency of the system from right to left on the
abscissa of Fig. 3. The relative displacement
response increases in amplitude until it ac-
quires a velocity where a = 1.5. Here, the
lightly damped system passes through a maxi-
mum relative displacement whose magnitude
depends on damping ratio but is independent of
natural frequency. Higher velocities result in
the response asymptotically approaching a
value

E[z?] = 8x10°*

which is independent of the damping ratio.
The absolute acceleration rms response

as a-w,
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increases at the 1.8 power of velocity up to ap-
proximately a = 1. Here a transition of the
principal excitation frequencies occurs because
of the particular shape of the excitation spec-
trum. The amplitude of the rms response at
any particular velocity then depends directly on
the natural frequency of the system, while the
influence of damping ratio depends upon the
particular value of "a" at which the system is
operating. Knowledge of these response char-
acteristics is of primary importance in under-
standing the various system parameter influ-
ences on the response behavior.

DESIGN APPLICATIONS

Since the preceding sections have dascribed
the general response characteristics of a single-
degree-of-freedom oscillator excited by the
particular excitation spectrum of Fig. 3, design
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applications will be confined to those applicable
to supersonic tracks. It now remains to exam-
ine the characteristics of the response spectra
and draw some conclusions which will be useful
to the design and isolation of rocket sleds.

One characteristic is the relationship be-
tween the peak values of the vibration response
and the statistical response measure.nents that
have been calculated. Since the input to this
particular single degree-of-freedom oscillator
is a stochastic process, so is the output. How-
ever, due to the highly spiked nature of the
transmissibility of the oscillator (Figs. 1 and 2),
and since the excitation can be considered as a
complex waveform of randomly varying ampli-
tude, the oscillator will transmit most of the
excitation energy near its natural frequency,
and thus will act as a narrow bandpass filter.
Although the oscillator will vibrate primarily
at its natural frequency, it is also receiving
energy at every frequency in its bandwidth and
will, therefore, exhibit a random beat
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phenomenon.* Since only the spectral density
of the input is known, this random envelope
cannot be determined; however, it is assumed
that the output is a Gaussian process by arguing
the central limit theorem. The distribution of
the peak values of the response will then be
Rayleigh. I the Rayleigh distribution of peaks
is assumed, the probability that the ratio of a
given response, y, to the expected response, v,
exceeds some specified value during any one
cycle is given by Rei. 12 and plotted in Fig. 6,

%] )

The probability that the amplitude will
never exceed some maximum value y, ,

ol

exp (- y12 '2y? (51)

*If a simple oscillator is excited by two fre-

quencies in its bandwidth, it will exhibit the
phenomenon of '"beats''; i.e., the envelope of
the amplitude of its oscillations will vary in
a periodic manner depending on the difference
in the two exciting frequencies.
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compared to the maximum expected value y_,,,
during some number of say «t cycles, can be
determrined by finding the product of the prohn-
bilities of each of the cycles. (The probability
that the ratio y,/y will not exceed some value
during any one of a set of cycles is mutually
exclusive.) Because the variance y of all the
cycles is not equal if the velocity is not con-
stant, the individual probabilities must be
weighted with respect to the maximum expected
value y_,.. Therefore, the probability of not

exceeding some ratio y,/y_ . in ot cycles is:

2 2
v
e[ ] 1 ol emlle 22— —y"‘a"> . (52)
[Vmax ) 52 AV,

In order to evaluate Eq. (52) for a constant ve-
locity where 3 = §__ , 57 cycles are required
before there is a 50-50 chance of finding a y,
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greater than 3 y_, , while for y = (3/4)y__,,
288 cycles are required.

From the experimental evidence available
to date, the assumption of y, /¥, ., = 3 is real-
istic for typical track tests and is used to esti-
mate the maximum amplitudes from the rms
values derived in the analysis.

Of immediate concern is the transfer of
results obtained for the simple oscillator hav-
ing a single point of contact with the rail, toa
sled having two or more points of contact. It is
possible to obtain at least qualitative results if
the sled can be considered as a rigid body
mounted on relatively soft springs at its points
of contact, with spring constants so chosen that
the vertical mode is decoupled. Using the de-
coupled model and considering only vertical
oscillations, the range of interest in the param-
eter "a" used in Figs. 4 and 5 can be determined




for use in operational sled designs. Thus, for
a sled with a 15-cps natural irequency,

. { 0.61 for x 100 fps
X
a = ————- = 6.1 for x = 1000 fps .
V3 2715 12.2  for % = 2000 fps
Therefore, for most sleds (and certainly for ail
those with an isolation system) the maximum
response range of interest will be in the domain

1< amax < 10 .

It is seen from Fig. 4 that the preceding
values of "a" will always pass through the
maximum values of the expected relative dis-.
placement response. Since in a linear spring
the relative displacement is directly propor-
tional to the loading factor, the force exerted
by the spring on the rigid mass can be deter-
mined. This result can be generalized o de-
termine the dynamic loading factor (DLF), thus

DLF = )‘dynamtic u >'sta':ic )
static
M &
‘static k 2

where
M = mass of body,
g = acceleration due to gravity
386 in/sec?,
k = spring constant, Ib/in., and

. = natural frequency, rad/sec.

Therefore,

Q 2
53
DLF - -0y (53)

P
133

Now, assuming a damping coefficient of
7 = 0.05 and reading the maximum expected
displacement of Fig. 4, the dynamic load factor
becomes:

700 %1072 (3) (54)
DLF(.= 0sy = <—g— + 1,
where the factor y,’y = 3 has been chosen ar-
bitrarily since less than 1 percent of the peaks
occurring at the maximum response have an
amplitude exceeding 3 times the rms. Equation
(53) is plotted on Fig. 7. It will be noted that,

in general, Eq. (53) yields dynamic loading
factors much lower than those currently in use
for sled design. Since the equation includes no
consideration of aerodynamic loading, loading
due to aerodynamic forces must be superim-
posed on the loading due to the track excitation.
A recent study by Sonnenburg [13] rather con-
clusively confirms that the loading on a sled
can be resolved into a more-or-less constant,
rail-induced force superimposed on the varying
aerodynamic loads.

To better understand the characteristics of
vibration isolation and attenuation, reference is
again made to Fig. 5. As stated previously, the
oscillator vibrates primarily at its natural fre-
gueiicy, from Fig. 5, this appears to be a valid
assumption {or values of "a'" less than 1. In
the region of ""a" between 1 and approximately
7, the acceleration response flattens out and
then begins to diverge for values of "a'" greater
than 10. This divergence is caused by the mag-
nification of accelerations associated with fre-
cuencies higher than the natural frequency.

The divergence is due primarily to the particu-
lar shape of the SNORT spectrum (Fig. 3).
Since the acceleration response for any given
value of "a'" is directly proportional to its
natural frequency, it is advisable to choose a
lightly damped, low-frequency system to keep
acceleration response as low as possible. For
any structure chosen, however, the response
spectrum will be distorted by contributions of
frequenc;2s higher than the natural frequency
at values of ""a"" greater than 10.

EXPERIMENTAL RESULTS

Experimental evidence of the influence of
natural frequency upon the structural response
of sleds has been acquired from reed gages
(steel cantilever springs with mass attached to
the tips) [14]. Each one scratches a target in-
dicating the maximum excursion of the mass.
This mcasurcment can be cquated to a static
force that gives the same structural resprnse.
This is equivaient o an experimentally meas-
ured dynamic loading factor that any component,
located at the same position and having the
same natural frequency and damping, would
experience. The measurements shown in Fig. 8
were made on a sled that attained a maximum
speed of 710 fps after 2 seconds. The solid
lines depict the range of maximum amplitudes
measured directly over the shoe during three
instrumented runs, and the dashed lines depict
measurements taken at the inboard end of the
tubular steel axles. Although very few sled
structures have natural frequencies as high as
those shown in Fig. 8, the plot indicates the
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increasing dynamic loading factor required for
higher frequency components, and the attenua-
tion of vibration amnplitude that a suspension
component, such as the axle, can yield.

To datc, experimental results that include
the time history of the response have been ob-
tained only for the relative displacement of a
decoupled sled with six points of support, and
only qualitative confirmation of the theoretical
model has been obtained. These experimental
data, which consist of readings taken during
several runs, w=re chtzined from strain gages
affixed to the center axle of the sled (Fig. 9).
This sample record clearly shows the response
to be primarily at a frequency f = 14 cps with
an rms amplitude value of approximately 500 lb.
A maximum amplitude of approximately 3 y has
been observed on the average nf once a run,
From data obtained by shaking the sled, it has
an observed natural frequency of f_ = 13 cps
with burned out motors. The damping ratio
of its rubber isolator mounts is between
0.05 < ¢ < 0.10, while the spring constant
k = 7530 lb/in.

By applying the above sled parameters to
Fig. 4, it is found that y_, = 5.6 X 10°? in;
the expected force exerted by the isolator then
becomes (k)(y_.. ) =422 lb.

max

Although the experimental evidence appears
to be in quite good agreement with the informa-
tion obtained from the theoretical model, the
record was obtained as the sled was constantly
accelerating, making it extremely difficult to
do a statistical analysis. To achicvc a reason-
ablc statistical confidence, final comparison of
the theoretical and operational models must
await the evaluation of sample data taken from
several runs of a sled traveling at constant ve-
locity, or from a large ensemble of records.

CCONCLUSIONS

This analysis has demonstrated a concise
method for calculating the response of a me-
chanical system to a broad general class of
random excitations. The spectral density of
the process need not be "‘white' nor need the
excitation be a displacement process. We would
like to emphasize that it was by going to the
source of the vibrations and then transforming
this excitation into the time domain that the
velocity-dependent structural rcsponse arose.
This is contrary to the approach currently pop-
ular in missile component design in which the
response in one vehicle is analyzed and extrap-
olated to later designs.

One unfortunate aspect of the simple ap-
proach advocated here is that the calculations
involve an integration across the product of the
excitation and transmissibility spectrums.
Hence, undamped systems (which involve an
unbounded function) cannot be solved, and only
statistical measures of the composite response
are obtained. A qualitativc impression of the
spectral dens‘ty distribution of the response
can be obtained by examining the transmissibil-
ity of varicus wavelengths at a particular
velocity.

Vibration and sirain gage records obtained
during anproximately 10 runs of three vehicles
have qualitaiively confirmed the hypotheses.
The amplitudes were within a factor of 2 of
those predicted. Such agreement is perhaps
fortuitous, but it certainly is encouraging in
light of the relatively crude mathematical model.
This excellent agreement is believed to result
from the inclusion of an isolation system which
limits and controls the vibrations of thc com-
plex sled structures. Therefore, it seems evi-
dent that a properly designed isolation system
not only reduces the stresses in the structure,
it also makes the problem of their prediction
tractable.
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VIBRATIONS OF A CANTILEVER BEAM CONSIDERING A
NON-RIGID WALL SUPPORT*

H. F. Cooper, Jr.
Bell Telephone Laboratories, Inc.
Whippany, New Jersey

The effects of a non-rigid wall support on the natural frequencies,
mode shapes, and forced response of a cantilever beam are studied,
and graphs of the first several natural frequencies and mode shapes
as functions of the wall stiffness are presented. The wall support is
represented by linear and torsional springs so that the effect of the
wall's stiffness in translation and rotation are considered in terms of
the two spring constants.

The response solution is given formally for the cantilever loaded with
any of the usual forcing functions, and is particularly evaluated for a

given for a particular

the response characteristics.

triangular (in time) uniform pressure puise.
triangular pulse and several wall stiffnesses;
and it is found that the wall stiffness can have an appreciable effect on

Numerical results are

INTRODUCTION

W. J. O'Donnel considers the static deflec-
tion of a cantilever beam due to the elasticity
of the support wall {1], and of built-in beams in
general [2]. He shows that the error incurred
by treating beams as being rigidly built-in is
significant for typical cases encountered in
design work. It is shown herein that the sup-
port stiffness may significantly affect the dy-
namic characteristics of the cantilever.

The natural frequencies and mode shapes
as functions of the rotational and translatory
spring stiffness at the wall, o’ and g’ (see
Fig. 1) are determined, and the displacement
dynamic response of the caniilever due to an
arbitrary forcing function (f(x,t)) is deter-
mined formally in terms of an eigenfunciion
expansion. Numerical results are given for the
case where f(x,t) is a uniform (in x) triangu-
lar (in t) pulse.

Since the characteristic equation and the
expression for the eigenfunctions involve the
hyperbolic functions, difficulties are experi-
enced with a direct application of numerical
techniques (such as subtracting one large

*This paper was not presented at the Symposium.
NOTE: References appear on page 82.
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Fig. 1 - Mathematical model

number from another which is very close to the
first number). A procedure for avoiding these
difficulties is described.

FORMULATION OF THE PROBLEM

The differential equation for a beam of con-
stant cross section and density, neglecting shear
and rotatory inertia, is given by the Bernoulli-
Euler Theory as Eq. (1) where subscripts denote
partial differentiation. The boundary conditions
are given by Eq. (2), and it is assumed that the
cantilever is initially relaxed so that y(x,o0) =
v(x,0) = 0. Upon introduction of the non-
dimensional variables in Eq. (3), Egs. (1) and
(2) are transformed into Egs. (4) and (5).
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The dimensionless stiffness parameters, «
and 3, Eq. (3), may be given a physical inter-
pretation in terms of the two single degree of
freedom models in Fig. 2. The tip deflection
of the cantilever due to a uniformly distributed
unit load is given from strength of materials as
£4/8E1. The total moment at the wall is given
by 4¢?/2 and the angular deflection of a line
drawn from the wall support to the deflected
tip position is 4’ /8EI. Thus, the angular spring
constant at the wall simulating cantilever elas-
ticity is o = 4E1/4. For the second single
degree of frecdom model (simple spring mass)
the equivalent spring constant is 5, = 8EI/4°.
Thus, the parameters « and 3 are proportional
to the ratios of the wall stiffness (to rotation as
translation) to the cantilever stiffness (based on
the corresponding single degree of freedom
model).

4a’ 83’ a' a BB
a = — e L 6
a, B ,Bo a, 4 ,Bo 8 ( )
TOTAL LOAD
=1L8. 6=
7

Fig. 2 - Lumped parameter models

SOLUTION

The method of solution was to determine
the eigenfunctions and eigenvalues of the homo-
geneous form of Eq. (4) and to expand the forced
deflection in terms of the eigenfunctions. It may
be shown that the homogeneous boundary value
problem is self-adjoint; therefore, its eigeu-
values constitute a countably infinite set, and
its eigenfunctions constitute a complete orthog-
onal set [3].

Assuming an oscillatory solution for the
homogeneous form of Eq. (4) in the form of
yol&.my = Y (£)e “»7 and following standard
procedure, one arrives at the characteristic
equation (7) and an expression (to within an ar-
bitrary constant) for the eigenfunctions Eq. (8).
To facilitate later analysis, an orthonormal set
of eigenfunctions ¢, are defined in Eq. (11).

a, +b cosk coshk + -% (c,-d.) sink coshk

- -; (c,+d,) cos k_ sinh k, = 0 )
Y, = L,cosk &+p sink £+ m coshk &£+ sinhk &
(8)
kn = \/w—n
a, = 1+ k:/a/:f c, = -2k /a (9)
_ xY _ 3,4
b = 1-k /ag dn_2kn,~,
Cn = o [ sin k, - d, coshk_ + b sinh k]
n
- L[ k, - b_coshk_tc_sinhk
By = B, a_ cosk_ -b coshk tc_sin "]
(10)
n, = - [—]L [an sinhk_ + b sink_+ d_ coskn]
n
D, = a,  cosh k_+ b cosk +c sink,
\pn ' 2 4.
wn='): >n=J’Wnd€
0
(11)
1
j O 0,ds = 8 =1 m= n
Q =0 mtn

The inhomogeneous differential equation
and associated boundary conditions are satisfied




by Eg. (12) provided q, is a solution of Eq.
{13) [4]. For the case of relaxed initial condi-
tions, q, is given by Eq. (14) so that the solu-
tion is given formally by Eq. (15).

VEY = 2 a (7Y @n(E) (12)

n=1

1

J g(£,7) 9,(5) d& = C () (13)

(]

Ay t @y 9,

A = A [ e sinur-nan (14)
N

[y

— »
n=1 n

V(&7 = j;-“igﬂgj J C (t) sinw (7~ t)dt . (1%)
0

For the particular case of a uniform, tri-
angular pressure pulse (Fig. 3), f(x,t) is given
by the product of the width of the cantilever and
the pressure time history. For this case C (7)
is given by Eq. (16) and q (r) is given by Eq.
(19).

plt)

+
Ty

t —>

Fig. 3 - Pressure time history

CalT) = xrgp(vt) (16)
wet (17
- EI
o E 1 [7n sin kn + u (1 - cos kn)
nn
+ 7, sinh k_+ cosh k- 1] (18)
Kpoyn
q, 7 [wn(7l = 7)Y+ sinw 7= w7, coOs ,n'r]
n 71
0 <7< Tq
(19)
(Cont.)

1

COMPUTER STUDY

The 1.B.M. 7090 Computer was used to de-
termine the roots of Eq. (7) (eigenvalues), the

- mode shapes Eq. (8) (eigenfunctions), and the

forced response of the cantilever Eq. (12) as
functions of « and A direct application to
the characteristic equation and the equations
defining ., »_, and 7, as they are given in the
preceding sections leads to erronecus results
due to difficulties inherent in the digital com-
puter (taking the difference of two large num-
bers which differ in higher significant places
only, for example). Thus, the equations devel-
oped in previous sections were altered so that
meaningful results could be obtained.

Since the eigenvalues, k , make up an un-
*;ounded countable set, it is natural to observe
the behavior of the relevant expressions as k
increases without bound. The expressions from
Egs. {7) and (10) may be written as in Egs. (20)
and (21) by dividing numerator and denominator
by ehr’2. Also, Eq. (8) may be written as in
Eq. (22).

/ cn+dn Cn_dn
+ \I)n{» —a cosk + - 3

Ln+dn\ c, -, -k,
bn - 7/ cos k_ + - 2 sin kn + 2u e

. _2kn
sin kn € G

(20)

i -2k, -k,
n =L [hn - = (b, +d )e +2a.¢ cas kn}

-k

-2k
T [—hn+cn— (by+c e "+2a ¢ "coskn]

(21)

1 Sk -k L
' i [—nn (1 —¢ n) _ ¢ 0m (dn cos kn + bnSU'l kn)]

-2k -k
L, = a, (|+F ") +2¢ " (b cosk +c sink, )

Yo = Gy o k &0 o sin k




As kn—vﬂ);

bn—dn -bn+cn

- 1,

n a - -1, Hn = a

n n

and n,_ - -1 By a simple algebraic manipulation,
(n,+1) and (q_ - 1) is given by Eq. (23). As
k-5 Y »-1 and Z -cos k, - sin k. From
Eq. (20) as k, -~ ®, tan k_ -- @ so that cos k -0
and sin k_- -1; thus 7 - 1.

2 L. -k,
(mp*+l) = i [(bn—dn) cosk, + (c -b_ ) sink_ +ag¢ J
n

(23)

-k
(ny=1) = Ll [—an— e " [(dn+bn) cos k_ + (b #c ) sin kn]]
n

= 2y,

The normalized form of Eq. (22) may then
be written as in Eq. (24) in which thc magnitude
of each terin is bounded above by i for large
k. . A, is given in the appendix in terms of y_
and z . The only other alteration involves re-
writing Eq. (18) for y_ intermsof Y and Zz,
as in Eq. (25). The equations which were usad
in the program were (12), (19), (20), (24), and
(25); with 7., pn, nn, Y,, and z_ as defined by
Egs. (21) and (23), and A as defined in the
appendix.

k (1-%3 k.
l\(A Y +an—]
n

(24)

1 . =
- - &
P, A [{n cosk £+u sink £+7Z €
n

1 . -k
Yn T TR [Ln sink_ +u (1-cosk)+Z -1-Ye “] ]

nn

(25)

RESULTS
Variation of Natural Frequencies

Figures 4-7 are semi-logarithmic plots of
the first four eigenvalues «_ . The natural {re-
quencies for a given beam in ¢ps may be deter-
mined from the plots by use of Eq. (26).

o
Py (cps) .

w
£ nn

(26)
2

As seen in Fig. 4, o
nantly upon g for

1>102<L>2s>:
a

, depends predomi-

e}
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predominantly upon o« for

B> 102("T > 12.5) :

el /

and for « > 102, S > 102, =, is approximately
what it would be for a rigid wall support

(a =4 - ®). The major variation in «, occurs
for 1072 <« < 102; 102 < 8 < 102. Figures
5-7 may be interpreted in a similar manner.
For « > 102,

8 > 103(g~ > 25, F > 125) ,
o o

the rigid wall model is adequate for determining
@, (and ). For a > 102,

the rigid wall model is adequate for determining

w, and w, (as well as », and ).

It will be noted that as n increases (higher
frequencies), the major variation of .. fora
given o occurs for a2 region of larger and larger
3. For example, for a« - », the major change in
v, 1s for 10? < 2 < 10* while the major change
in w, occursfor 10-2 < 3 < 102. This trend
was noticed for the higher frequencies as well
as those presented here.

Variation of the Mode Shapes

The first thrce mode shapes (y ; n = 1,2,3)
for various values of o and 3 are given in Figs.
8-12. In Fig. 8 (» = «) the model is rotationally
rigid at the wall (v I(0) = 0) but may have trans-
latory motion depending on the value of 5. In
Fig. § {/i= ») the model is rigid to translation
(5,(0) = 0) at the wall but may have rotational
motion depending on the value of «. In Figs. 10-
12 the model may both rotate and translate at
the wall. The dotted lines in these figures indi-
cate the model shape for the cantilever with
rigid wall supports.

From these figures it is clear that the trans-
latory stiffness (5) of the wall support appreci-
ably affects thc mode shapes, especially the
higher modes. For example, in Fig. 8 the sec-
ond mode shape with 5 < 100 is very much like
the first mode shape for the cantilever with a
rigid wall support.
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Fig. 11 - Mode shapes: [= 193
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Fig. 12 - Mode shapes: 3= 102
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From Figs. 9, 11 and 12 it appears that the
general mode shape is not affected as much by
the rotational stiffness () as by the translatory
stiffness (5). It will be noted in all of thefigures
that as the stiffness is decreased, the point at
which the mode shape intersects the equilibrium
line moves toward the wall (to the left).

Forced Deflection for -, = 0.5
and Three Values of o and g

U Eq. (19) is rewritten in the symbolic
form Eq. (26), then a non-dimensional forced
solution may be written as in Eq. (27). Note
that the static solution from strength of mate-
rials for a cantilever loaded uniformly by a
pressure P, is given by y_ = P_«/8, so that
Eg. (27) may be as y/8y,.

q, = «P Q. (7,,7) (26)

©

2L Y 0 QlryT) @)

o n=1
Figure 13 gives a time history of the beam
deflection for three cases: a=j3-o (rigid wall);
a = 10%, 5= 102; and

a = 103, /3-8( =

o

’e)

Tb[‘(‘
I
—
S——

In these cases the positive phase duration of the
pressure pulse (r ) was taken as 0.5. From
Fig. 4, for o = f=w, w, » 3.5 so that the funda-
mental non-dimensional period is given by

27/w; ~ 1.8. Thus, r, is slightly greater than
a quarter period of the fundamental mode of
vibration for a rigid wall.

It is clear that there are many combinations
of parameters (a,3,r,) which might be of inter-

" est; however, only these three were chosen to

demonstrate the results that are possible.
There is little difference between the rigid wall
case and the second case (a = 103, 4= 102) as
might have been expected from the results in
the previous sections. In both cases the "dy-
namic factor" [5] is approximately given by
y/y, ~ 8 {0.11} = 0.88. The dynamic factor for
a single degree of freedom model with an
equivalent stiffness of the cantilever under a
corresponding forcing function is 0.9 {5]. This
close comparison was expected since Eq. (27)
after 10 terms was given by the first term +15
percent for early terms and 15 percent for
later terms. The series apparently converged
to three places after five terms.

From the third case considered (wall trans-
lational stiffness tqual to the cantilever static
stiffness), it is seen that the peak displacement
is approximately 3/2 of the rigid cantilever

_t
7=y
0
& —_— 0.1
— . 0z
S

0.05 —0.3

a=00,B=00,7 =05 0.4

= 0.5

0.10 o8
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o o o o000
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Y o140 <
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0.7
0.15 0.8
0.20 L | L | | i [T TR 4
0 0.2 0.4 0.6 0.8 10

Fig. 13 - Forced response
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peak displacement (for +, = 0.5). Note that
7 » 0.2 before the cantilever begins to respond
flexurally.

DISCUSSION AND CONCLUSIONS

The first several flexural mode shapes and
natural frequencies are given very closely by
the Bernoulli-Euler Theory [6]; hence, the re-
sults of the sections entitled ""Variation of Nat-
ural Frequencies' and ""Variation of Mode
Shapes' are adequate for the usual design con-
siderations of natural frequencies and mode
shapes. Similarly, if one is concerned with the
steady state response of the cantilever with a

non-rigid wall support the procedure leading to
the results of the previous section should be
adequate for determining the displacements. If
one is concerned, however, with the transient
response, a more elegant theory must be applied
{for example the Timoshenko beam theory) to
account for the shear effects which may pre-
dominate during very early times [7].
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LIST OF SYMBOLS

A cross-sectional area (in.?2)
C.(7) parameter (in.)

1B)_ ik

n’* n

dimensionless parameters

E Young's modulus (psi)

I area momeni of inertia (in.4)
P, peak reflected pressure (psi)
W berriwidtn (ip )
dimensioniess parameters

dimensionless parameters

c:,d:,
f(x,t) forcing functions (Ib/in.)

f irequency (cps)

reduced forcing function =
4

L f(Lé,vT) (iny)
EI
k, dimensionless parameter (/<))
“ beam length (in.)
p(t) reflected pressure time history (psi)
q,(7) generalized coordinate (in.)
t time (sec)
t, positive phase duration (sec)
x length along the beam (in.)

y deflection (in.)
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y, static deflection of a cantilever under a
uniform pressure P_ (in.) )

o' torsional spring constant (# in./rad)
o reduced torsional spring constant (rad)-!

o, equivalent beam torsional stiffness
(# in./rad)

translatory spring constant (lb/in.)

8 reduced translatory spring constant
(dimensionless)

equivalent beam translatory stiffness
{Ib/in.)

7, parameter (in.3)

dimensionless parameters

« loading parameter = w.£*/EI {cu. in./lb)

A_ normalizing parameter

£ normalized position coordinate = x//

7 nondimensional time coordinate = t /v

7, nondimensional positive phase duration
=t lvll'
time parameter = V':ETE (sec)

y,, eigenfunction

o, orthonormal eigenfunction

w, dimensionless circular frequency (rad)

2,0 circular frequency = «

no

v {rad/sec)

n’

» beam density
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Appendix

EVALUATION OF THE NORMALIZING FUNCTION

2 2 2 .

b= L, coszkng + pq Sin2knf + 7, cosh2f + sinhzg
+ 20 pu sin k & cos k & + 2L n cos k & cosh k &
+ 20 ces k 4 sinh k & + 2p 7 sin k & cosh k &

+ 2p, sin k £ sinh k £ + 27 sirh k & cosh k & . (28)

Since

it may be shown that

2 2 2 2 2 q
A, = f{kn (gn tpg t 0, —1) + ({n ';j.n) sin k_ cos k|

n
. 2 : 2, ; .
+ 2% poosint ko o+ 2Ap m - 1)+ 2, sxnhzkn + (nn + 1) sinh k_ cosh k_

U2 {(Lamn - 1) cos ko b (Do 4y sin k] sinh k)

+ 2 [({nnn+u.n) sin k_ + (L - pm,) cos kn] cosh k_ . (29)
Note:
ek" - e-k"
sinh k= 2
kn —kn
€ "+ €
cosh kn = 2
21(" 2k
sinh?k_ = — € L (30)
sinn < = - -
n 3 2 (Cont.)
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sinh k_ cosh k| —a 5 (30)

Thus, Eq. (29) can be replaced by

2 1 [ 2 2 2

= L 4 \
o an L..n \on + g +7/n

o r\
2 2

\ , \
—1)+(\{ —;.'n)‘ k. s k,

n

2k -2k
€ 2 €
a2~ (- D

2
+ 20 uy sin? ko 4+ 2@, - 0L) - My b (ng+ 1)

K
+e " [((’nnn-#n+én_#nnn) cos k + (L +pum,+ L, Hu,) sin kn]

-k
+ [(“:n'qn+“n+ L= mymy) €os ko + (=0 = pomy,+ Lo, + i) sin kn]} . (31)

Note:

Lol = Hn + Lo = gy (14 )L, = 1)

oty t Lomy +opg = (1m0 + )
{32)
“Lamn topg t Ln S e L(Ln +uy)

-[’n - #l\nﬂ i lnnn + U-“ = (T}n- ])(‘Z‘n-#n) :

And from Egs. (22) and (23) of the body of this paper — _+1 = 2Z e'k“; and 7 -1 =2Y_. So that Eq.
(51) becomes

2 1 2 2, 2 2 2 .
R -Zk_{kn (7.n+/1,n1'77n-1) +(Ln-#n>s1nkn cos k

n

X 2 2 -2k
+ 2 pg sin?k o+ 2(pm =L ) -, + 20 - Y, e ©
+ [(Ln-#n) cos k_ + (L +u.) sin kn] [ZZn]
. a -k"
+ [-(Ln+#n) cos k + (L -u,) sin knJ |:2Yn € ] . (33)
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Section 2
COMPUTERS iN DESIGN

DIGITAL COMPUTER APPLICATION
TO NONLINEAR VIBRATIONS

F. H. Collopy and R. Serbagi
AVCO CORPORATION
Wilmington, Massachusetts

INTRODUCTION

There are numerous dynamic problems
being encountered continually in structural
systems which do not exhibit an ideal linear
behavior. The engineer can solve these prob-
lems by: (1) lincarizing and solving for the
idealized linear system; (2) utilizing the analog
computer to soive the more realistic nonlinear
system; and (3) utilizing a digital computer to
solve the nonlinear problem by numerical
schemes. There are times when it is prudent
from an engineering viewpoint to use approach
(1) and reduce the complexities of the problem.
One must rely on experience, however, to pro-
vide the degree of caution required when making’
such engineering assumptions. Oftentimes non-
linieaiities may be the controlling factor in a
design or analysis and should be accounted for.
The analog computer has been widely used to
solve the nonlinear differential equations which
describe a nonlinear system. With the improve-
ment within the last decade of the high-speed
digital computer and the development of many
numerical routines, there exist certain distinct
advantages in using the digital computer to
solve nonlinear vibration problems for a wide
range of applications.

It is the purpose of this paper to indicate
the significance of the digital computer in solv-
ing nonlinear problems. This is accomplished
by (1) knowledge of the digital computer and its
uses, (2) ability to communicate with the digital
computer through a general purpose program,
(3) ability to recognize and solve special dynam-
ics problems utilizing this general purpose
program, and (4) addition of certain flexibilities
by the programmer which will enable the

dynamicist to write in his own language the
peculiarity of the particular problem.

An illustrative problem is contained in the
appendix to better emphasize the thesis of this
paper.

DIGITAL COMPUTER PROBLEM
SOLUTION

Techniques for Handling Input

The disadvantages of most digital computer
programs for solving nonlinear dynamics prob-
lems arise when the engineer encounters diffi-
culties in matching a physical system to the
wathematical constraints of the digital program.
Generally, it is impossible to make minor
changes to tne program if it doesn't fit the
problem exactly. The types of changes the en-
gineer usually desircs to make are: (1) changes
in the forcing functions; (2) changes in the non-
linear terms; (3) the selection of more output
variables; (4) additional operations, such as
saving maximum valucs of some variables; (5)
calculating stresses, bending moments, and the
like; and (6) the plotting of any or all of these
values as a function of time.

It is advantageous for the engineer to have
a program with the input in a language not too
different from his own. In this way, the engi-
neer can communicate directly with the com-
puter and ask the program to perform a wide
range of calculations, and at the same time not
be frustrated by the procedures of asking a
programmer to make continuous changes to
existing programs (which entails the rigorous




checkout period causing frustrating time delay
in solving a problem). One example of a lan-
guage to accomplish this is FORTRAN, the
most widely used computer language. FOR-

TRAN is an acronym for FORmula TRANslation.

Similar problem-oriented languages in other
digital computing systems are ALGO, COBOL,
BALGOL, JOVIAL, and so on. The two proce-
dures involved in utilizing these languages are:
(1) presenting the problem to the computer in

a language it can understand (FORTRAN, and

so forth); and (2) compiling, which is a proce-
dure that transforms the FORTRAN instructions
into the proper elementary machine instructions
to solve the problem. The use of FORTRAN is
governed by a strictly regimented set of rules
that must be followed in formulating equations
and instructions to the computer. It is advisa-
ble for any engineer intending to use this lan-
guage to familiarize himself with it, preferably
by formal instruction. Special 1-week courses,
which are offered in various educational insti-
tutions, serve as an excellent introduction.

Instead of requiring the engineer to utilize
the strict formulation of instructions needed in
the use c¢f FORTRAN, it would be highly desir-
able for the program to accept statements less
sirict than FORTRAN. For example, if the en-
gineer wants the forcing function to be

F(t) = 10 + 100t? for t < 5.0
and
F(t) = 0 for t > 5.0

then, he would write

ko= 10.0 + WU.UrT**2. T-LT-5.0

F = 0.0 , T-GI'-E-5.0,

where T-LT - 5.0 means time less than 5.0.
T-GT-E - 5.0 means time greater than or
equal to 5. Writing the above instructions com-

pletely in FORTRAN would require slightly
more effort.

If the engineer wants {o plot (x, - x,)* 109,
then he would write

PLOT [x(1) - x(2)] * 1.0E6 .

or, if upon completion of the problem he wants
to output the maximum value of x, - x,, he
writes

Max [x(1) * x(2)] -

If the engineer wanted to formulate these in-
structions by means of compiling a subroutine

written in a strict FORTRAN-like language, the
effort required would be greater.

Either of the two preceding techniques for
utilizing a digital computer will reduce the work
of the engineer required to solve a particular
problem. Also, it will allow him to solve a

arge variety cf problems without the constant
aid of the programmer. The important role
that the programmer plays is in the construc-
tion of the digital computer so that the engineer
can solve the various problems encountered in
nonlinear systeins by merely specifying the
nonlinearities as input to the program.

Linear Vibration Problems

The differential equations of motion for a
mechanical system under vibration which has
viscous damping are most commonly presented
as

MIX + [CIX + (KIX = F(t), (1)
where [Ml, (C], and (K] are, respectively,
the mass, damping, and stiffness cuefficient
matrices of the system; F is the forcing func-
tion as a function of time, and X is the general-
ized displacement coordinate. Equation (1)
représents the general form of a set of linear,
ordinary differential equations. There are
many useful numerical methods for solving
these equations on a digital computer. Methods
which utilize a Runge-Kutta integration routine
are the most common because the procedure
involved is remarkably simple for digital pro-
gramming.

Nonlinear Vibration Problems

The most common form of a nonlinear vi-
bration problem is the multi-degree-of-freedom
system with a nonlinear forcing function:

X+ ([TX+ KX = FXX. 0. 2

It is easily recognized that the left side of Eq.
(2) is identical to the left side of Eq. (1). This
indicates that (2) (the nonlinear equations)
might be solved much the same way as (1) (the
linear equations). In the solution of Eq. (1) by
a numerical integration scheme, a set of con-
stant values are obtained at each incremenial
time step by evaluating the forcing function
F(t) external to the main program. These val-
ues are then presented to the main program at
each time step. Since the calculation of the
forcing function, F, is performed external to
the main program, the process involved in the




method of solution of Eq. (2) can be identical to
that of Eq. (1). This can be accomplished if the
ability to describe the nonlinear forcing function,
F(X,X.t), as part of the input to the computer is
made flexible enough for practical applications.
It is maintained that the programmer easily can
provide this flexibility to the dynamicist.

A morc gencral set of nonlinear cquations
of motion which contain nonlinear stiffness or
damping functions could be written as:

MIX+ [C(X, X, )] X+ [K(X,X, t)]X = F(X,X,t), (3)
where certain terms within the damping matrix,
[C], or the stiffness matrix, (K], are functions
of velocity, displacement, and time. An avproach
whereby the nonlinear equations of (3) can be
solved by utilizing the same computer program
as used to solve the nonlinear equations of (2)

is described as follows:

1. Expand Eq. (3) in a nonmatrix form.

2. In each equation transpose all nonlinear
terms which are on the left side of the equation
to the right side and the transposed terms can
now be considered as part of the nonlinear
forcing function.

3. Since Eq. (3) is now basically the same
as Eq. (2), all previous comments on the solu-
tion of Eq. {2) are applicable.

The following illustrations are presented to
demonstrate the above discussion:

1. Equation (4) is nonlinear due to the yy?
term,

v+ yyl+ky = F . 4)
By rewriting Eq. (4), so that all nonlinear terms
are on the righthand side of the equation, we
obtain Eq. (5) which is solvable by the previous
discussion,

§rky = Fp- gy’ (5)

2. Equation (6) is the equation of a pendu-
lum with damping proportional to the square of
the angular velocity; and the equation is non-
linear if large deflections are assumed. This
equation is transformed into Eq. (7) and is solv-
able by means of the aforementioned technique:

X+ CX|IX| + k sinX = 0;

(6)
(7)
Once the enginéer has formulated his prob-

lem in the above form, he need only to specify
the linear portion which is the three constant

X = - [(CX|X| + k sin X] .
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matrices, [(M], [C], (K|, and the nonlinear
portion which is the general forcing function.
The forcing function is then specified in a
FORTRAN-1ike language.

For example, using Egs. (5) and (7), the
engineer would write, as input, the following
forcing function statements:

for Eq. (5),
F = D(1) - XDkX#*2 ,
and
for Eq. (7),
F = - [D(4)*XD*ABS(XD) + D(2)* sin (X)],

where D(1), D(2),...etc., represent constant -
whose values can be included in the input data.

This method of inputting allows for com-
plete flexibility in defining the forcing function.
Other options which can be implemented easily
by the programmer is to allow the engineer to
call for additicnal calculations and printouts
based on the results of the integration routine.

TYPES OF DYNAMIC NONLINEARITIES

Tlustrations of nonlinearities which can
exist in dynamic systems which would require
particular formulation and which would be solv-
able by a digital computer program as described
in this paper are given below.

Nonlinear Stiffness

Cushioning material exhibits nonlinear
load-deflection characteristics as shown in
Figs. 1-3.

Fa kX 423

- R(LB/IN)
-

F,Ibs

X,in

Fig. 1 - Cubic elasticity

Nonlinearities occur in systems where
springs act over only part of the displacement
range. Such a physical system and its piece-

ise linear force deflection curve is shown in
Fig. 4.
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Fig. 2 - Tangent
elasticity

Fig. 3 - Anoma-~
lous elasticity

Fig. 4 - Discontinuous springs

An elastoplastic structure, cne which has
an initial elastic stress-strain curve but which
has a subsequent inelastic part with uniform
resistance after yielding, as is characteristic
of honeycombed materials, has an idealized
load-deflection curve as shown in Fig. 5.

Nonlinear Damping

One type of nonlinear damping is evidenced
in a form of Rayleigh's equation:

- (a;-a,x)yx + wix = 0. (8)

Also, Eq. (§) contains a nunlinear damping ex-
pression, CX|X|.

Separation Problem

In order to investigate the dynamic charac-
teristics of staging effects and separation load-
ing on missile systems and re-entry vehicles,
the dynamicist has to describe accurately when
the subsystems separate cr when they rejoin
each other. Figure 6 shows a separation prob-
lem which could be encountered. An impulse,
I, imparted to system A and B (initially one
system) in the directions shown could cause A
and B to separate from each other and after
separation would cause each system to vibrate
as a separate system. If, however, T was a
steady thrust load it could, depending on the
ratioof T and I, cause A and B to rejoin after
separating or prevent them for ever separating.
The equations describing this problem would be
piecewise linear. This problem could be read-
ily solved by the type of digital computer utili-
zation technique presented in this paper.

WIDE-RANGE APPLICATIONS

The generality of such a solution provides
a technique for investigating many classical
forms of nonlinear differential equations which
can eventually be reduced to a form of Eq. (2).
There are many branches of science other than
vibrations whose behavior is described by non-
linear differential equations. To name a few,
there are acoustics, astronomy, electronics,
aerodyramics, hydraulics, and cable telegraphy.
The general introduction to the book by N, W,
McLachlan, Ordinary Nonlinear Differential
Equations in Engineering and Physical Sciences,
serves as an excellent reference for historical
background on the field of nonlinear differential
equations, their application, and solations.

To illustrate the wide range of applicability
of a digital computer program as described
herein, some examples of classical nonlinear
difierential equations widely studied by scien-
tists and engineers are listed.

Fig. 5 - Elastoplastic resistance




— [ e e

Fig. 6 - Separation system

van Der Pol's Equation

In the area of self-sustained oscillations
are such systems as electrical systems con-
taining vacuum tubes, self-sustained vibration
in mechanical systems resulting from the action
of solid friction, the "chattering" of the brake
shoes against the wheels of a railroad car when
the brakes are applied, aerodynamic effects on

uspension bridges, and the like.

The general form of differential equation
used in the field of electronics to represent the
behavior of the triode-oscillator was studied
quite extensively by B. van Der Pol, namely,

y+ F(y)y + kv = 0.

Hill's Equation for Mechanical-
Electrical Systems

A form of Hill's equation is

) 1

LX + at) X = 0;:

this equation represents a mechanical-electrical
system containing a circuit having an inductance
and coudenser in series. The most common
application of this type of equation is in stability
work.

Surge Tank Applications in Hydro-
electric Power Plants
The differential equations of motion to de-
scribe the motion of the water level in a surge

tank installation are

5&-{- al|X|)‘(+ a, = Q/c .

Large Deflection Theory of a Pendulum

The nonlinear differential equations of
motion of a pendulum with quadratic damping,
such as would be encountered if a pendulum
were immersed in a fluid, are

X +CX|X| + k sin X = 0.
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Lane-Emden Equation

This equation, used to describe the gravi-
tational equilibrium of a gaseous configuration
in stellar structure, is

u

é"+-tz-é+0' = 0.

Mathieu's Equation

Mathieu's equation, which represents a
string being driven by an attached vibrating
reed, is of the form

X + [(a+bx2)— 2c cos 9]x 2 0o

There are many more examples that can
be c.ied from the vast amount of literature
Eieal}ng with nonlinear differential equations

i-4].

CONCLUSIONS

For a wide cross section of disciplines, it
has been demonstrated that the solution of non-
linear differential equations easily can be ac-
complished by means of a general purpose
digital computer program. For the program-
mer, it has indicated what type of flexibilities
should be included in the formulation of dynamic
respunse programs, and has illustrated a unique
but simple approach to digital computer solu-
tions of nonlinear vibralions. For the dynami-
cist, this paper illustrates the capabilities
provided by the programmer so that the dynami-
cist can readily solve a wide range of dynamic
problems containing various nonlinearities.

For engineers and scientists working in fields
unrelated to vibrations who, however, become
involved with nonlinear diiferential equations,
this paper indicates an approach which may be
taken to solve these equations with a digital
computer.

NOTE: References appear on page 92.




Appendix

ILLUSTRATIVE PROBLEM

The physical problem considered is shown
in Fig. A-1 and it is desired to describe the
response of the system to a forecing function
f(ty. . A digital computer was used for solving
this problem and the output appears as displace-
ment, velocity, and acceleration of each mass
at every 0.025 millisecond for 0.5 millisecond.
In addition to the digital output, plots of the
same coordinates will be made, including a plot
of the relative displacement between masses 1
and 2. The nonlinear portion of this example is
in the spring force K,X, which is represented
as aX, + X,

f(t)

f"n

Fig. A-1 - Sample
problem

-AN N

P

kZ(NONLINEAR)

’

The equations of motion of the system are:

M X, + K(X,-X,) = f

- 2
M,X, + K (X, - X,) + aX, + X, = 0

or
MIX + [KIX = F,
where
X, er 0 K, -X,
X = M} = (K] =
X2 0 M2 _Kl Kl+a.
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and
£
F = s
2
_/Bx')
where
(t+1)10° t < 0.00025
f =
0 t > 0.00025

The constants used in the sample problem are

10., M, = 100., K
= 10'%, and g = 10'4.

= 109,

My = 1
a

By using the input language described in the
main body of this paper, the input can easily be
written:

M(1,1)10. M( 2, 2)100.
K(1,1)1.E10 K(1,2)- 1.E10
K(2,1y- 1.E10  K(2,2)2.E10

Initial Time 0, Final Time 0.0005
Print Time 0.000025, Plot Time 0.000025

PL@T X(1), XD(1), XDD(1), X(2),
XD( 2), XDD(2)

PLAT X(1) - X(2)

vy
n

1 1E6* (T+1.0), if T-LT-0.00025

F, = 0, if T-GT-E-0.00025
F, = -1E14%X(2)**2
END OF DATA.

Tt is apparent from this problem that the
engineer need only specify the peculiarities of
his problem in a language similar to his own.
The results appear on the following pages. Only
the plots are contained in this paper since it
would be space-consuming to show actual
numerical output.
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INTEGRATION OF A COMPUTER INTO THE DESIGN PROCESS

A. L. Head, Jr. and G. Harris
LTV Vought Aeronautics Division
Dallas, Texas

Integration of a computer into the design process is an essential ingre-
dient in the successful design of modern flight vehicles.
requirements of a design-integrated computer system are defined as
{fiexibility, speed, and economy. The various characteristics which
provide these fealures are discussed in detall. A systeimn meeting these
requirements is discussed with emphasis on its operational aspects.

The bLroad

Integration of a computer into the design
process is an essential ingredient in the suc-
cessful design of modern flight vehicles. As a
particular design evolves, potential problem
areas must be recognized and acceptable solu-
tions determined. The modern high spced com-
puter is a powerful tool for use in obtaining
effective and timely solutions to these prob-
lems. To adapt such a complex tool to the de-
sign process, an automated system of computer
operation is invaluable. Such a system provides
the function of adapting the computer to the job
at hand in order to provide answers on an over-
night basis by using simplified instructions as
input.

The broad requirements of a design-
integrated computer system may be simply
stated as flexibility, speed, and economy. The
system must be flexible regarding problem
size, type, and complexity ‘¢ solve efficiently
the vast range of problems which are encoun-
tered during the design process. In addition,
such a system must be readily adaptable to new
types of problems as they arise.

The real key to a design-integrated com-
puter system is the speed of operation. From
the viewpoint of the engineer this means speed
in "turnaround time' — the time required, after
submittal of problem, to obtain answers. In
particular this should mean overnight service
to avoid delays. Flexibility and speed are
closely related, since it is the flexibility of the
system which circumvents the necessity for
special programming and checkout of new prob-
lems vrith associated time delay and potential
errors.
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Similarly, speed and economy are closely
related. The actual machine efficiency or speed
in computing tinse is of extreme importance,
but it is only a part of the total picture. The
actual measure of speed and economy is a bal-
ancc between computing time, turnaround time,
probability of errors, extent of reruns, and re-
quired manhours.

To examine in more detail some of the
characteristics of a computer system which
provides the features of flexibility, speed, and
economy, consider the following requirements:

1. modular system

2. problem formulation and submission by
engineer

3. automatic data filing and recall
4. high degree of automation

5. cconomical machine operation with
growth potential.

A modular computer system may be de-
scribed as one in which an engineering rroblem
is solved by using a sequence of relatively
simple computing routines with the sequencing
performed automatically by a master system
routine, according to a set of instructions in a
simple language. This may be contrasted with
a non-modular system wherein a single special-
ized routine is used to solve a particular type
of problem. Basically, the ingredients of a
modular system consist of the system or gov-
erning routine, a library of individual computing




routines, and a system of communication be-
tween the engineer and the machine. The main
advantage of a modular system is the inherent
flexibility and adaptability to new types of prob-
lems. The main disadvantage of such a system
is a reduction in machine computing time effi-
ciency when compared with the specialized
routine approach. This is partially offset by
the fact that protective and recovery devices
are possible with a modular system that enables
mistakes to be corrected with minimum cost.
For example, if incorrect answers are obtained
due to an error, the problem needs only to be
repeated from the point of the error. The level
of moduiation or degree to which the library of
routines is subdivided is a tradeoff between
flexibility and machine economy. Indeed, a
typical system will have varying degrees of
modulaticn; that is, the library will contain
many routines which are specialized combina-
tions of other library routines.

Problem formulation and submittal by the
engineer at the working level is mandatory for
rapid service. The engineer develops a famili-
arity with the capabilities and limitations of the
computer and its governing system. As a re-
sult, problems are formulated from the begin-
ning for efficient computer operations. Direct
communication between the engineer and the
machine, excert for keypunch and operating
personnel, eliminates the technical middleman
together with the associated time delays and
potential misunderstandings. Conscquently, the
speed and accuracy with which results are ob-
tained are greatly increased. Since the average
engineer is not familiar with programming lan-
guage or the internzl working of the machine,
the system language or means of communica-~
tion must be extremely simple and as foolproof
as possible. This enables the working engineer
to use the computer on a routine, everyday ba-
sis. As a result, the computer becomes truly
integrated into his day-to-day work.

Automatic data filing and recall providcs a
means whereby data may be stored on tape and
recalled for use in subsequent problems. This
feature eliminates the time required to prepare
and keypunch frequently used data; hence, it
contributes significantly towards the minimiza-
tion of turnaround time.

A high degree of automation is required to
eliminate time and error caused by the human
factor. Once data for a particular problem are
prepared, the computer itself must perform the
functions of collecting additional data and nec-
essary library routines, executing the comput-
ing phase, filing data, and printing the results.
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Machine economy is extremely important,
because it is a major part of the overall econ-
omy of the computer operation. Growth poten-
tial is required both from the viewpoint of abil-
ity to add additional modules to the system and
also from the viewpoint of adaptability of the
system to new generations of computing
machines.

A system having many of the above char-
acteristics has been in operation at Ling- Temco-
Vought for several years. This system, called
PAS (Production Assembly System), has effec-
tively made the modern high speed computer an
integral part of the design process. PAS was
conceived in the mid-1950's and has been con-
tinuously improved and expanded since that
time. The {lexibility and growth potential in the
basic system has ailowed PAS to survive three
generations of computing machines.

PAS may be defined as a medular program-
ming and operating computing system oriented
toward matrix arithmetic. The problem origi-
nator, by making use of the various computing
routines which make up the PAS library, can
solve any particular problem by using extremely
simple instructions as input. PAS also contains
a data filing and retrieving system. Supplied or
calculated data may be stored cn magnetic tape
for future use. The systeni, when so insiructed,
will retrieve any stored data for use in a par-
ticular problem.

PAS provides the working engineer with a
method of communication with the computer
without requiring him to understand the pro-
gramming language or the internal working of
the machine. The basic means of communica
tion is the Problem Plan Form. Ry usc of this
form, the engineer specifies the operations to
be performed, their sequence, the data to be
used and the data's source, and the disposition
of the problem results. The plan form may be
described as a series of boxes with each box
containing the information necessary for the
computer to perform a particular operation or
portion of the problem. A routine number and
box number describe the operation to be per-
formed and its order within the problem. The
data to be used are indicated by a type number,
data code (title), and data size. The source of
the data and the disposition of the results are
also indicated. Space is provided for the engi-
neer to add remarks or notes to the plan form
for future reference. The plan form is illus-
trated and described in detail in Fig. 1. It is
emphasized that the key to the plan form is its
simplicity and adaptability to simple mechani-
cal checks to insure that it is properly filled
out for a particular problem.
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Fig. 1 - Sample problem plan form
Although the main purpose of the plan form Unsteady Aerodynamics Ro:tines
s one of communication, it also provides a
valuable documentary record of work performed. Uncompressible Airiorces
The plan form listing is extremely neat and Compressible Airforces
easily filed, and it provides a detailed record Supersonic Airforces
of how each problem was actually solved to-
gether with the data uscd, An example of such Mode thape Routines
a listing is shown in Fig. 2.
Inertia
ithough the governing routine portion of Influence
the system is the heart of PAS, ihe working en- Mode Shape
gineer is more concerned with the library of
individual computing routines. The PAS library Flutter and Response Rout:nes
of routines is quite large at the present time,
numbering approximately 125. Following is a Flutter
partial list of the type of routines that form Frequency Response
this library: Transient Response
Matrix Routines The operational use of PAS may be de-
. scribed as follows. To run a particuiar
&d(ilF“iP . problem, the engineer formulites the prob-
g catioy lem in a series of steps to fit available com-
Inverse puting routines. He then prepares a prcblem
. . . plan form consisting of a sequence of boxes,
Matrix Logic Routines one for each particular routine used. Each
Assembly engineer has access to a PAS handbook
Group which contains for each routine a description
Matrix Operations of what the routine does, how the plan form is
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BY 4 A MALLICK
UNIT 2-53061

TITLE ATA WING PANEL
POINT C MATRICES M.95

DATE 07/16/64 CORRECTIONS
010 016420 A x 8 2 MUA 0 3 3 7
3 UNITY O 3 3 16
9 MU7? 0 3 3 112
020 016420 A X B 2 MuB 0 3 3 9
3 UNITY O 3 3 16
9 MU9 0 3 3 144
030 016460 MAT OPER 0 KA 1 3 3 112
4 MU7 0 3 3 112
9 KM7 1 3 3 112
040 016460 MAT OPER 0 K8 1 3 3 144
4 MU9 0 3 3 144
9 KM9 1 3 3 144
050 016480 SUM B8A8 0 SuMA 0 1 7 1
1 KM7 1 3 3 112
2 HTCS O 3 16 7
9 CA95 1 16 16 16
060 016480 SUM BAB 0 SuMd 0 1 9 1
1 kM9 1 3 3 144
2 HTOP 0 3 28 9
9 CB9S5 1 28 28 16
070 016410 8AB 1 CA95 1 16 16 16
2 TPRAL 0 16 4 1
9 CA95T 1 4 4 16
0B0 016410 BA8 1 €895 1 2B 2B 16
& vWRB 0 28 4 1
9 C8957 1 4 4 16
L3I0 016490 A PLUS B 2 CA9ST 1 4 4 16
4 £895T 1 4 4 16
9 CT95T 1 4 4 16
100 016700 END PROBLEM

Fig. 2 - Plan form of a

filled out, size restrictions, and other pertinent
information. Having completed the plan form,
the engineer then prepares any necessary sup-
plied data on standard 80 column keypunch pa-
per. ‘Both plan form and data are then key-
punched, verified, and returned to the engineer
for checking. After any changes or corrections
are made, the engineer gives approval to run
the problem. The computer operating person-
nel load the plan form and data for the problem
(normally together with several others), and
the machine automatically performs the rest of
the operatior.. The operational use of PAS is
summarized in flow diagram form in Fig. 3.
Appendix A contains an example of the use of
PAS to obtain the cantilevered mode shapes and
frequencies of a uniform beam. Included are
the formuiations of the problem, the PAS plan
form, the supplied data, and the results.

Additional features of PAS worthy of note
are the protective and recovery devices built
into the system. The machine will not accept a
problem unless the plan form, the PAS hand-
book specifications, and the required data are
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PROBLEM NO 5353 0101
PAGE 01 OF 02 0102

CH NO /B822 0103

S 0104

0165

0106

S 0108

0109

0110

5290 030 0112
mao 0113

0ils

5290 040 0116
020 o117

0118

5290 030 0120
030 o121

5290 010 M.95 CORRECTED 0122
X PP C MAT CENTER SFOY (3123

5290 C40 0125
040 0126

5290 020 M.95 CORRECTEQ 0127
X PP C MAT OUTER PANEL 0128

050 0130

5290 003 0131
L 0132

060 0204

5290 002 0205
L 0206

n70 0208

080 M.95 CORRECTEQ COMP- 0209

L LETELY TR ROLL PIT AR 0210

0212

typical problem

compatible. The individual computing routines
used also have built in safeguards causing a
machine stop if certain types of errors occur.
A very beneficial feature is the ability to rerun
only part of a problem; that is, a problem may
be corrected and restarted in any box.

Three generations of computers have
stretched the growth potential of PAS to the
iimit. To utilize more fully the increased
speed and storage capability of the newer com-
puters, an improved version of PAS called
MOSS (Matrix Oriented SyStem) is being devel-
oped. Although the basic concept is the same,
an automated modular system with simple
communication, significant changes are being
made. These include a change in communica-
tion v a Fortran-iike language vherein the
arithmetic statements refer to matrix opera-
tions rather than numbers as in Fortran. In
addition, a means of problem segmentation is
included to fully utilize available core storage,
and a multiple tape data scatter system is in-
cluded to reduce data retrieval time. The goal
of MOSS is to retain all the advantages of PAS
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Fig. 3 - Flow diagram showing PAS operation

while increasing the system flexibility and should further integrate the modern high speed
gaining a significant increase in machine effi- computer into the design process.
ciency. Thus, the operational use of MOSS

Appendix A

AN EXAMPLE OF THE USE OF PAS TO OBTAIN THE CANTILEVERED
MODE SHAPES AND FREQUENCIES OF A UNIFORM BEAM

FORMULATICN OF EQUATIONS where
OF MOTION

{p} = column of independent dis-
placements about an equi-
librium position of a set
of collocation points, in:

The mode shapes and frequencies of a
cantilevered uniform beam are determined in
this appendix to illustrate the use of PAS.
Before proceeding with the PAS problem, the
equations of motion will be developed. For a 15 = d? {p} = column of accelerations
conservative system under the action of an dt? in./sec 2 ’
external loading condition the equations of mo-
tion can be written as follows:

{F] = matrix of stiffness coeffi-
AN ravgs - _ cients for set of collocation
(f)ma « Ber = @, (A1) o
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[A] = matrix of inertial coeffi-
cients for set of collocation
points, 1b

{0} = column of external forcing
functions acting at collo-
cation points, 1b

g = gravitational constant,
386 in./sec?

é— (A (P} + [Flip} = {0}. (A-2)

The solution to the homogeneous equations
yields the mode shapes and frequencies of the
system and is of the following form:

{p} = {4} cos (wt-a), (A-3)

{¢} = column matrix of amplitude con-
stants, mode shape

« = angular frequencing of oscillation,
rad/sec

a = arbitrary phase angle, rad.
By substituting Eq. (A-3) into Eq. (A-2) and
simplifying,

(- “’—g’ (A + ) (&) = (0}, (A-4)

By premultipiying Eq. (A-4) by [E] = [F]"! and
rearranging,

([E[(A} - ALTD) {¢) = {0}, (A-5)
where
[E] = [F]"! = matrix of influence coeffi-
cients for set of colloca-
tion points, in./1b,
A = g/w?, in. = eigenvalue,

[1] = unity matrix.

For a solution other than the trivial one of
{¢} = {0} to exist the determinant of Eq. (A-5)
must equal zero,

I[EI[A) - A[I]] = 0. (A-6)
Expansion of Eq. (A-6) yields an n-order
polynomial in A. It can be proved that all the

roots are real and positive. For each root, A,,
thare corresponds a frequency
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TVEYRD e Lt 3 T YRees:
(A-7)

For each root there also exists
{p}; = {p}; cos (w;t-a;). (A-8)

The most general solution to Eq. (A-2) is a
linear combination of solutions given by Eq.
(A-8).

{p} = 1 {¢}; cos (w;t - a;) - Z {¢}; a;
i=1 i=1
= [¢l{n}, (A-9)
where
[¢] = modal matrix,

{a} = column matrix of principal coordi-
nates.

Instead of formally expanding Eq. (A-5) to
obtain the modal columns and frequencies as
indicated above, Eq. (A-5) can be placed ina
convenient iteration form as follows:

([ET[A)) {¢} = A (&) . (A-10)

There exists in the PAS library a mode
shape iteration routine based upon Eq. {(A-10)
that can be used for solving mode shape prob-
lems. Consequently, to obtain the modes and
fraquencies for any conservative system, it is
only necessary to determine the influence co-
efficient matrix, [E], and the inertial matrix
[A] .

CANTILEVERED UNIFORM BEAM

The influence coefficient matrix for a can-
tilevered uniform beam is of the following form:

3

(E] - £ (5 (A-11)
EX
where
{4 = length of beam, in.
EI = modulus of flexural rigidity, lb-~in.
[E] = matrix of dimensionless influence

coefficients.
The inertial matrix is of the form

[Al = wi[A], (A-12)




where

w

running weight distribution, 1b/in.

(A matrix of dimensionless inertial

coefficients.
By substituting Eqs. (A-11) and (A-12) into
Eq. {A-10)

(E) [A] (¢} = M{¢ , (A-13)
where
v . Bl &
w{4 w2
Thus,

g 3
D:Vg]/g ]/é ol NE ]/2 Vgcps.(A-m)
£2 WP X VL AP

PAS PROBLEM AND RESULTS

To illustrate the use of PAS, a problem to
obtain the mode shapes and frequencies of a

BY J D LHANEY

£} CONSTANT, LB-IN,
W CONSTANT, LB/IN,
4

3 2 1

il

0.2 0.4 0.6 0.3 1.0

W=

Fig. A-1 - Schematic of
cantilevered uniform beam

cantilevered uniform beam is included herein-
after. Figure A-1 is a schematic diagram of
the beam showing six collocation points. The
PAS plan form and supplied data are shown in
Fig. A-2 for a uniform beam of EI = 1 lb-in.?,
w = 1.0 1b/in., and 4 = 1.0 in. The results are
presented in Fig. A-3. These results show the
computer listing of (E], (A}, [#!, f's, and
2's. The mode shapes are shown as plots in
Fig. A-4.

TITLE UNIT BEAM MCOES PROBLEM NO 5515 o101
UNIT 2-53C61 PAGE C1 GCF 01 0102
DATE 09/22/64 CH NOAG222C/1220 0103
010 015011 BEAM INERTIA 1 XpP 0 1 6 1 S 0104
2 SW 0 2 4 1 S 0105
S W e 6 6 1 L UNIFORM BEAM MASS 0106
9 C C 1 3 1 L MATRIX ~ UNIT LENGTH 0107
9 A 0 6 6 1 L AND RUNNING MASS 0108
020 021180 STR INF COEF 1 Xep 0 1 6 1 o0 | o110
2 El 0 2 4 1 S o111
9 K C 6 3 1 L INFLUENCE CCEFFICIENT cl12
3 TVMP 0 12 6 1 L MATRIX — UNIT LENGTH 0113
S E 0 6 6 1 L AND BENDING STIFFNESS 0ll4
030 015030 MODE SHAPE 0 E 0 6 6 1 020 UNIT BgAH MOGES ANO olle
1A 0 6 6 1 C10 FREQUENCIES 0117
S P 0 6 4 1 L cl18
S LA 0 1 4 1 L 0119
S CN C 1 4 1 L 0120
3 CHE 0 4 4 1 L. o121
040 D16700 END PROULEM 0123
xpe 5515 010 OCl 0C6 QCl C FLOATING
1 01 50 2000000C 50 40000000 50 60000C0C 50 8000C00C 51 10000000
SW 5515 C10 002 0C4 001 O FLOATING
! 01 5C 500CC0GC 51 10000000 51 1000G00OC
2 01 50 5C0000C0 51 10000000 S1 10000000 51 10000000
El 5515 C20 002 004 001 O FLOATING
1 01 50 50GC000C 51 10000000 51 10000000
2 01 50 50000C00 51 1000CGCC S1 10C0000C 51 100€0COC

Fig. A-2 - Plan forrn and supplied data for cantilevetred uniform beam problem
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DYNAMIC RESPONSE ANALYSIS OF
COMPLEX MECHANICAL SYSTEMS

S. F. Mercurio and F. E. Niechniedowicz
Sperry Gyroscope Company
Division of Sperry Rand Corporation
Great Neck, New York

ordinate end fixed.

A digital computer program has been developed by the Sperry Gyro-
scope Company that will calculatc the influcnce coefficients of a com-
plex mechanical system, its resonant frequencies, and the mode shapes
of the system. It uses three simply-obtained inputs:
the mechanical system; (2) Mass lumping of the system; and (3) Flexi-
bility of the system in sections between coordinates, assuming one co-

(1) Geomet>y of

INTRODUC TION

By using simply-obtained inputs that accu-
rately yield, as verified by aciual tests, the dy-
namic response, mode shape, and influence co-
efficients of a mechanical system, we have
developed a digital computer program that has
reduced the dynamic response analysis of a
complex mechanical system to a systematic
procedure. The program, which consists of
writing the equations of motion and solving
these equations by a numerical iteration tech-
nique, requires three simply-obtained inputs:

1. Geometry of the mechanical system,
2. Mass lumping of the system, and

3. Flexibility of the system (in sections
between coordinates).

The flexibilities are expressed as cantilever
beam flexibilities.

Based on these simply-obtained inputs, the
digital computer will calculate the influence
coefficients of the system, the resonant fre-
quencies of the system (including ihe fundamen-
tal and higher modes), and the mode shapes of
the system.

The principle advantage of the computer
program for the dynamic response of complex
mechanical sv<tems is that parameter varia-
tions of a given system are easily performed.
Once the geometry of the mechanical system is
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defined, the mass and flexibility of the mechan-
ical components may be varied such that the
optimum system may be designed. The results
are ovtained quite speedily. For examplc, the
first three modes and corresponding mode
shapes may be obtained for a system with up to
26 degrees pf freedom in less than 45 seconds
of computer time on a machine such as a
UNIVAC 1107.

The capability of the program is 60 coor-
dinates with cross-coupling effects existing
among all 60 coordinates. The largest ship-
borne tracking radar (the ARIS 40-foot antenna
and mcunt assembly) while undergeing opera-
tional modification, was analyzed using this pro-
gram. The results of this method of analysis
were compared to the actual test results and
were found to be in close agreement.

In the test the ARIS shipborne antenna and
mount assembly were dynamically tested in two
steps: first the 40-foot antenna was investigated
and underwent extensive vibration tests to de-
terinine its natural frequencies and the corre-
sponding mode shapes; second, the antenna and
mount combination underwent similar tests.

THEORY

The basic theory of analysis, which is em~
ployed in the computer program, is outlined by
the following relationships.

A conservative system vibrating about the
equilibrium position, with small angular and




linear motions, can be expressed in matrix
form by Eq. (1):

i

lMijllxj!+|KinXj|=0. 1
1

IA A
IN A

i
The solution to Eq. (1) for free vibration is
expressed by Eq. (2):

X1 =

i cos wt|, 1<j<n. (2)

IX,;
Differentiating Eq. {2} with respect to time
results in Eq. (2a):

1X1| = -w? cos v:t|X°ji, 1<jen. (2a)

If Egs. (2) and (2a) are then substituted into
Eq. (1) the following result is obtained:

-qulMinchHlKU||x05t=0, 1<i<n

Equation {3) may be rewritten by premul-
tiplying the |X;;| matrix and premultiplying
the |M;;| matrix by the inverse of the stiiiness
matrix. The result of the preceding operations
with the collection of terms yield Eq. (4):

-1y P 2 3
1K M HIX = 1w Ix. .1, 1<i<n 4)
1<j<n
a -1
Since IKij! = |F;,l, then
!F“HMU['XOjl = 1’1w2:x°j!y 1<i<n (4‘1)
1<j«<

The flexibility matrix may be expressed as
shown in Eq. (5):

T
IBjil lfinBijl = lFijlv 1<i<n ®)
1<j<n.
Where [f“.l is the component flexibility
matrix, the component flexibility is defined as
the fix end cantilever rotations and translations
between the coordinates and includes cross

coupling effects.

If Eq. (5) is substituted into Eq. (4a) the
resulting expression is given by Eq. (6):

T

|B.

]il 1//W2 lx

ojl‘

|finBij||Mij||x°jl = (6)

Equation (6) demands for its solution a
series of matrix multiplications and iterations
which is extremely applicable to the computa-
tional procedures of a high speed digital
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computer. The digitil computer is supplied with
the static equilibriumi malrix |B,.|, the mass
matrix [M;;[, and the component flexibility
matrix |f;;|. The programmed computer then
calculates the influence coefficients of the sys-
tem,

T )

|f.1j| - lBjiI EfijluBi”; (Ga)
the dynamic matrix of the systein,
= | o

[U;jl = IFi)'I.MijI, (6b)

and the lowest natural frequency and mode

shape of the system by means of an iterative
procedure,

The next operation of the program is then
toc employ an orthogonal transformation on Eq.
(6) such that the next higher modes of vibration
and the next high mode shape may be obtained.
This procedure is then repeated until a prede-
termined mode is reached.

The elevation vibrations model of the ARIS
ships antenna and mount assembly is shown in
Fig. 1. Coordinates 1 to 8 indicate displace-
ment, while coordinates 9 to 24 indicate rota-
tions. The sct at static equilibrium matrix
values, or the B;; matrix, is given in Table 1.
All values of B, which do not appear in Table 1
are zero.

As a typical example, the value of B, , is 1
and B,_,, is 142 because a unit load applied at
coordinate one would cause a unit shear at coor-
dinate two. This same unit load at coordinate
one would cause a moment at coordinate 10 of
142. Therefore B,_,, is 142 (the reader should
consult Ref. [1] for the applicable theory). The
corresponding component flexibility matrix
values are given in Table 2 and their corre-
sponding mass matrix values are given in Table
3. Values of flexibilities und mass that do not
appear in Tables 2 and 3 are zero. The flexibili-
ties used are component flexibilities namely the
fixed end cantilever rotations and translations
between coordinates. With all the parameters
in Tables 1, 2, and 3 as inputs to the computer
program, the computer calculated the natural
frequencies of tiais ARIS 40-foot antenna and
mount as shown in Table 4.

The actual results obtained during testing
showed a first mode natural frequency of ap-
proximately 7.5 cps.

Similar computations and tests have been
run for the train axis model. Computer results
were 8.14 cps and actual measurements gave
approximately 8 cps.

NOTE: References appear on pages 105 and 106.
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TABLE 1

Matrix Inputs, Elevation Model

Bl-l =1
By =By ,=1
By, =B, =B ;=1
B,.,=B,,=B,,=B,_,=1
By.y=By ,=B;_ ;=B _,=B.;=1
Bg.y = Bg., = By = Bg = Bgg=B;.4=1
B, ,=B.,-8_,=B,_,=B, =B (=B_,=1
By =By, =By ;= By = By o= By o= By, =By
B, =1
B,,., = 142
Bio-9 = Bip-yo = 1
B,, ,= 231B,,_, = 89
B11-9 - Bll-ln 1111 - 1
Bip.;= 0B, ,=0
B12-12 =1 B13—3 = 154
B,,., = 385 B, , = 243
Bisoo " Bisino ® Brsonn T Brgogp 71
Brgong = U
Biso23 7 Bigge = 1
B,, , = 413
B,, , = 271
14-3 = 182
Bl4-4 = 138
Bl4-5 = 280
Biyoo = Biyiyo " Braogn = Bygyp = 1
Big-13 = Bigoge = 4
Biy-23 " Blage =1
By, , = 461
B, , = 319
B15.3 = 230
B15,4 = 186
Bls.s = 76

L 17

18,17

19,17

24-1
24-2
24-3
B24'9

B

23-23

48
Bis 10
=By 1
= Bis.oy
629
487
398
354
244
216
Bis. 10
Bi6.1a
= Big-24
=1
=Big s =
=By 1s
= By s
" Byras
=1
=Bys 7
=By
375
133
44
Bys-10 =
1
275
133
44
= Bys-1o
= Byy-2a T

24-23

=B;s.11 = B
=Bss =1
=1

=B 117 B
= Big 45 =B
=1
=1
=By =1

Bio.1s = B
Byio1g = B
Byy1g = B
=1
Byyon =1
=By, =1
1

s-12 ©

6-12 —

16,16

20-20

21-20 —

22-20
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TABLE 2 TABLE 3
Flexibility Input, Elcvation Model Mass Matrix Input, Elevation Model
(rad/in.-1b or in./1b) (in.-1b/sec? or Ib-sec?/in.)

fo_, = .327 x 1073 fo,.1, = 107 x 10°° M., = .238 x 10*! My, p, = -455 x 10°
f,,= .198 x 107° fl,., ° -1435 x 107° M, , = .227 x 102 M, 1, = 4219 x 10°
f,.0° -222x 1077 fl, 4y = 222 x 10710 M, , = .168 x 102 M ;s = -3845 x 10°
f,o, = .307 x 107° f3. 45 = -700 x 10711 M,., = .12116 « 10° My, = -1284 x 107
f,oyp = -225x 1078 f4 6= 874 x 10710 M, = .1292 x 107 M,, ., = .168 x 102
f,_, = 940 x 1077 fla.qq = -917 x 10711 M,_, = .1247 x 103 Mg ,s = -14036 x 103
f,o,,= -1435x 1078 fig ;= 174 x 107° M,_, = .1155 x 103 My, = -110 x 10°
fo.g= 272 x 10710 flg 15 229 x 10711 Mg, = .1906 x 103 Myo oy = - 1247 x 10°
fo.14 = -874 x 10710 flg g = -156x 107° Mg g = .147 x 10° M, _,, = .3052 x 103
f,_, = .1396 x 1076 fle 16 = 111 x 10711 Mg yo = -30314 x 10% | M,, ,, = .1906 x 10°
f,o05 = 174 x 107° fiy 47 = -310 x 1076 Moy = -321 x 10° Mys.p5 = -354 x 10°
f,., = -1164 x 1076 flg.1g = -408 x 1077 M, ., = 156 x 10° My, ,, = .184 x 10°
fy 16 = -156 x 107° f0-00 - 442 x 107°
fo.q = -165 x 1077 fhy.py = -117 x 10711 TABLE 4
floop = -222 % 1077 frnpy = 995 % 101! Resonant Frequencies {cps)
flo-10 = -250 x 107° fo4_5, = -210 x 1071° 1st Mode 2nd Mode 3rd Mode
f,., = -225x 1078 7.74 9.95 10.6
CONCLUSION lfij | = component flexibility matrix,
In conclusion, it can be seen that the pro- |B;;| = static equilibrium matrix,

gram is straightforward and uses simply-
obtained inputs and will yield, as the title of | ] : |
this paper implies, "The dynamic response of |X;| = coordinate matrix,
a complex mechanical system."

| = dynamic matrix,
NOMENCLATURE i,j = indices,

The following nomenclature is used in this w = frequency rad/sec,

paper:
IM;;| = mass matrix, t = time,
IK”| = stiffness matrix, e ' - inverse of a matrix,
]Fijl = flexibility matrix, | |T = transpose of a matrix.
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CONSIDERATIONS OF CAPTIVE FIRING VIBRATION ON
NONOPERATING PROPULSION SYSTEM COMPONENTS

Gerald Sardella
Martin Marietta Corporation
Martin Company, Baltimore Division
Baltimore, Maryland 21203

-

An analysis was performed con the individual spring-mass systems of
components in a launch vehicle propulsion system to determine their
response to vibration during static firing. These componenis were
selected because they are not subjected to pressurization and propellant
mass loadings during captive firing, but nevertheless must be unaffected
by the additional period of vibration environment.

The individual spring-mass systems were parts of three types of valves
and one regulator. Analog simulation of a typical spring-macs system
enabled the evaluation of the presence or absence of system loadings by
a variation of damping, spring, and force parameters. The system ex-
citation was provided by a random spectrum shaped to the predicted
vibraticn environment level.

The results emphasized pressure preloading as a means of eliminating
or significanily reducing valve and regulator sysiem responses. Con-
sideration of these results, similarity of valve dynamic systems, and

| the unpredictable aspects of the detrimental efiects of vibration expo-

surc clearly warranted a conservative approach to operational recom-
mendations. The requirement that all valve poppets remain closed (or
scated) for unpressurized engine captive firing was established and

pressure loadings to ensure operational success were recommended
according to the statistical analysis of the analog study.

INTRODUCTION

Under normal launch vehicle operational
conditions, propellants are loaded and systeins
are pressurized prior to engine firing. Forces
resulting from the presence of these fluids and
pressures form an integral part of each valve
and regulator dynamic system in the form of
spring, damping, and force parameters. Com-
plete absence of such forces would, therefore,
create a dynamic system whose response to
the vibration environment could be affected.

This consideration of propulsion compo-
nents arises during lower stage static captive
firing with unloaded upper stages. In this con-
figuration, the propulsion components will be
subjected to additional time periods of vibration
under zero propellant loadings fcr which they
were not originally designed. There is much
concern over the effect of such operations on
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particular components regarding performance
or life, or both. The objective of this analysis
was to study the individual spring mass sys-
tems of each component, evaluate the system
loading effects in view of possible component
degradation and to establish requirements of
propellant and pressurization levels to assure
component protection in this mode.

BASIC CONSIDERATIONS
Classifications of Components

The following components were considered
for study (three are shown schematically in
Fig. 1): valve A, solenoid valve; valve B, re-
lief valve; valve C, check valve; valve D. relief
valve; and gas regulator. The valve and regu-
lator assemblies are considered in this analysis
as similar dynaniic systems since they each




contain one or more single-degree-of-freedom
spring-mass systems which act independently
while providing the required pressure and flow
performance. These spring-mass systems,
which are primarily the main and pilot poppaots
differing only in dynamic parameter magni-
tudes, are operationally comparable whether
normally seated or unseated. The check valve
contains two flappers restrained by torsion
springs which are identical single-degrec-of-
freedom systems. The analysis treated these
valve systems as spring supported concentrated
mass particles in determining the response to
and the effects of vibration environments.

mam popprr /7
VALVE A
SOLENOID VALVE

VALVE B
RELIEF VALVE

VALVE C
CHECK VALVE

Fig. 1 - Components studied

Detrimental Effects

Consideration of the detrimental effects of
excessive inertia forces for the valve type com-
ponents resolved into the ivllowing areas: (1)
valve seat permanent deformation, (2) spring
fatigue, and (3) poppet bottoming. Generally,
although spring fatigue is a possibility, low
stresses during spring extension and compres-
sion due to the limited travel make this aspect
unlikely even for extended periods of operation.
Damage to the poppet due to hottoming would be
possible if the inertia forces were sufficiently
high and the impact surface (the poppet seat or
the poppet '""back-stop") sufficiently stiff or of
peculiar design to generate poppet surface ir-
regularities. The extent of such damage would
require experimental determination. The most
probable mode of failure or performance
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degradation for valves would be leakage or poor
valve seating due to permanent valve seat de-
formation under vibratory inertia loads.

Analysis Approach

Similarity of the valve and regulator dy-
namic systems suggested formation of a gen-
eralized type approach for the various aspects
of vibration response. The soleroid main pop-
pet was selected as a typical poppet configura-
tion for detailed response analysis and dynamic
parameter studies. Since the poppet spring is
preloaded and the plastic valve seat spring rate
is orders of magnitude greater, nonlinearities
are introduced in the force-deflection relation-
ship which are not readily treated analytically.
This consideration is characteristic of the
other valve type systems. Due to these non-
linearities, determination of the response to the
random vibration environment and the magni-
tude of poppet seat forces required a solution
which an analog computer could provide. With
a judicious parameter study, the effects of
spring, damping, and pressure preloads could
be sufficiently generalized such that the results
would not only be utilized for the solenoid valve
but applied to the other systems without a simi-
lar analog study.

Since the solenoid valve assembly is
mounted on the primary structure with no inter-
mediate bracketry between the primary struc-
ture and the valve assembly, the vibration
environment is, therefore, transmitted directly
to the valve case. The vibration spectrum
utilized for the valve analysis was that consid-
ered to be a conservative estimate of the envi-
ronment at the valve interface. The response
of the main poppet to this environnient was
evaluated and applied to the other valves and
regulator. The analysis was confined to the
unpressurized static captive fire mode, and
acceptable operational recommendations in this
configuration was the objective.

ANALOG STUDY
Problem Description

Due to the nonlinearities in the force-
deflection relationships, the equations of motion
for the solenoid valve main poppet describe the
system separately for positive and negative
relative motion of the poppet mass and the case.
Since there is no attachment to the seat, the
system can be represented schematically for
the unseated region (positive relative motion:
x_ > 0) as follows.
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The equation of motion to describe this system
can be written as

M%_ + Cx, + K x_ + F, + ME, 0
or
M+ C% + K (x_+x) = F(t) (1)
where
F(t) = -Mx%,,
X, = X, =X, and
K,x, = F_ = spring preload.

Negative relative motion (x, < 0) intro-
duces the spring and damping properties of the
valve seat for consideration. This ""seated
region" is represented schematically as shown
below.
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The equation of motion describing this system
can be written

F(t).
(2)

M+ (Ci+Cyk + (K +K)) x +F + F,
where

C, = valve seat damping,

=
n

) valve seat spring,
F_ = preload, poppet spring, and

F, = preload, pressure force.
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An analog solution was programmed for
the response of the main poppet to the forcing
function F(t) utilizing Eq. (1) for positive X,
and Eq. (2) for negative «_. The function F(t),
representing the vibration excitation, was de-
rived by shaping white noise to the required
power spectral density. Figure 2 shows a
comparison of the random shaped forcing func-
tion used for the analog study with that defined
as the component design environment.

Analog representation of the following pa-
rameters were programmed for the solution: (1)
x, positive, (2) x, negative, (3) ¥, (4) x_, (5) F(t),
and (6) seat forces, defined as C,x, + K,x_ for
negative x . In addition, a statistical distribu-
tion of seat force and a measure of percent of
time x_ is positive was also programmed. The
total time under static captive fire vibration
was considered to be 60 seconds.

1600,
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Fig. 2 - Random forcing
function spectrum




Results of Analog Study

A range of damping and spring constants
(C, and K,) was selected to establish the ef-
fects on response due to the variation of these
parameters for the plastic seat or other types
of seats in other valve poppet systems. These
effects, evaluated in terins of the percent of the
total time the poppet is off the seat, are plotted
in Figs. 3(a) and 3(b). Damping effects were
found to be negligible for systems with damping
greater than 2 percent critical. Spring varia-
tion effects were found to be negligible for sys-
tems whose resonances were above the 10- to
2000-cps band of excitation. During these vari-
ations (with zero pressure preload), the main
poppet was off the seat up to 32-percent of the
total time, the largest amount of time for the

system resonance within the range of excitation.

Poppet dynamic seat forces were found to ex-
ceed the 3¢ {¢ = standard deviation) value of the
rms v1brat10n environment for up to 10 percent
of the total time.
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Fig. 3 -~ Parameter variation effects
on poppet response

Pressure preloads, F_, were introduced
for comparison with the zero pressure preload
runs, Increments of pressure force equivalent
to inertia loads based on 3, 4, and 50 on the
rms environment were applied to the main
poppet mass. Figures 3(c), 4(a), and 4(b) show
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Fig. 4 - Dynamic seat force
distribution and transients

the effect of these pressure loads on the poppet
response in terms of percent of total time off
the seat and in terms of seat force distribution.
For the nonresonant system (frequencies above
2000 cps), the percent of time for the poppet off
the seat was reduced to less than 1 percent for
the lowest increment of pressure force and to a
negligible amount (estimated less than 0.1 per-
cent) for the largest increment of pressure
force. Dynamic seat forces were reduced to 1
percent of the time in excess of 3o for the low-
est increment of pressure force and to a negli-
gible amount (less than 0.1 percent of the time)
for the largest increment of pressure force.
The resonant system (approximately 800 cps)
also experienced reductions in these areas due
to the addition of pressure preloads. The time
off the seat was reduced to 9 percent for the
lowest pressure level (30) and to 0.8 percent
for the largest trial value of the pressure forces
(50). Seat forces were also substantially le

For the lowest force increment, dynamic forces
over 3g occurred only 5.5 percent of the total
time and was reduced to 3.5 percent of the time
for the largest increment of force.

APPLICATION OF ANALOG RESULTS

The results of the parameter study indi-
cated that the elimination of poppet travel and
reduction of seat forces and force transients
can be accomplished through the addition of
pressure preloads. Pressure forces equivalent
to inertia loads based on 2¢ should be consid-
ered a minimum for eliminatlion of poppet seat




forces and {orce transients resulting from pop-
pet travel for stiff valve systems. This will
apply to systems where the poppet seat spring
is svfficiently stiff (resonant frequency greater
than 2000 cps) that a 1:1 transmissibility of vi-
bration to the poppet can be assumed, and iner-
tia forces for 99.7-percent probability can be
computed by applying 3¢ to the rmis vibration
environment. For resonant systems, pressure
forces equivalent to inertia loads based on 50
should be considered a minimum requirement.

Inertia foreces far the spring-mass systems
were computed using this approach. All system
resonances were considered greater than 2000
cps with the exception of the relief valve main
poppet and solenoid. Inertia forces for these
two systems were compuied on 2 50 basis.
Comparison of these forces with the preloads
for the static captive fire mode were made to
evaluate the requirement for poppet seating.
Inertia forces in excess of the preloads oc-
curred in the case of the solenoid valve main
poppet, the solenoid rod and the check valve.

In order that the requirement for poppet seating
be maintained, pressure forces are required
for these components.

Degradation in valve type components during
the captive fire configuration is most probable
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in the form of valve seat deformation, which
can give rise to subsequent leakage problems.
This leakage can be caused by minute deforma-
tion in the valve seat induced by poppet chatter.
Valve chatter will occur where inertia forces
due to vibration excitation exceed the spring
and pressure preloads. To avoid exposure to
the detrimental effects and thereby cirzumvent
the unpredictable regione of the problem, the
requirement for valve poppets to remain closed
(or seated) for the static coptive fire configura-
tion was established.

The poppet seating requirement was estab-
lished by the results of the analog simulation of
a typical valve dynamic system. Elimination of
poppet response was accomplished by the addi-
tion of pressure preloads. Al! systems studicd
had sufficient preload forces with the exception
of the solenoid main poppet and rod and the
check valve. Minimum pressure preloads of
three times the standard deviation (30) were
required for these components.

The approach presented is an expedient,
effective, and reliable way to eliminate the
most probable mode of degradation. It was
demonstrated that the use of the analog com-
puter could be an important tool in evaluating
the performance of components with specific
application during the component design phase.




A PRACTICAL APPLICATION OF A DIGITAL COMPUTER PROGRAM
DURING THE DESIGN PHASE OF AN AEROSPACE STRUCTURE

Bohus T. Bata
Martin Marietta Corporation
Martin Company, Baltimore Division
Baltimore, Maryland 21203

A procedure is described which uses a digital computer program in the
design of a truss structure for a missile installation of electrical and
electronic components. This computer program performs a three-
dimensional analysis of a complex structure with sufficient speed and
ease of submittal to make possible its use during the initiat-design
phase. The importance of detailed analysis in the earlv design stages
is demonstrated by describing the major changes in the evolution of the
final configuratio-.

The structural requirements specified for the truss were that the fun-
damental frequency in any translational or rotational elastic mode ex-
ceed 30 cps, and that the static load design factor be as high as 16.8 g
(ultimate). Due to space limitations, the truss was required to have a
span of over 100 inches, with varying depth from a maximum of 21-1/2
inches to a minimum of 11-1/2 inches at midspan. The supported
equipment weight of 400 pounds was distributed over the entire truss,
with some larger componrents located at midspan.

Submittal and data interpreting technique is described. By promptly
interpreting the modal data into useful information, it was possible to
achieve a configuration where the entire truss, including bracketry for
over 30 components, weighed less than 80 pounds with a fundamental
frequency of over 40 cps. Further weight reduction was not possible
due to stress and manufacturing limications.

Up to three configurations or modifications werc programmed per day,
each yielding complete three-dimensional load, stress, and dynamic
analyses, including modal data.

The validity of the computer program has been cstablished by its ap-
plication to classical problems of known solutions and by measured
test data of complex structures.

The generalized approach of this program to static-dynamic analysis
enables any structure, whether trusses, beams, shells, or combination,
to be analyzed both statically and dynamically in a single submittal,
thus providing the designer with a powerful tool to use during both the
initial stages and detail design.

INTRODUCTION the computer is programmed for three-
dimensional analysis, both static and dynamic,
Described in this paper is a procedure of complex structures. Moreover, its speed
which uses an IBM 7094 digital computer in the and ease of submittal make it useful during
design of a truss structure. Compared with both the initial design phase and final detail
manual mcthods, the procedure is a highly ef- analysis.

fective way to reduce structural weight since

113




DESIGN REQUIREMENTS AND
CONSIDERATIONS

The subject truss was to support 33 elec-
trical and electronic components of varied
sizes and shapes, with individual component
weights ranging from the largest of €0 pounds
to the smallest of only 2 pounds. The total
weight of all components was estimated in the
preliminary design to be 200 pounds. with an
additional weight of 300 pounds of wiring.
(These values were reduced before the firal
Analysis iu 270 pounds of coinpunents and 130
pounds of wiring.)

The truss was to be located between two
dome-ended fuel tanks, accessible from three
doors in the missile skin. This location called
for a maximum truss span of 110 inches, with
a maximum depth at midspan of only 11-1/2
inches.

The dynamic response specified for the
truss was that its fundamental frequency in any
translational or rotational elastic mode exceed
20 cps. The static strength requirement was
based on the more severe of two conditions:

(1) a vibration induced limit load factor of 7 g
along any orthogonal axis plus a static limit
longitudinal load factor of 2 g, or (2) a static
limit longitudinal load factor of 12 g. The ulti-
mate strength required was defined as 1.4 times
the above limit load factors.

To establish the preliminary configuration,
the truss was assumecd to consist of tension-
compression membhers, with structural and
component masses statically distributed to
adjacent tube intersections. The truss was to
be supported by elastic reactions. The reaction
compliances of the truss supporting structure
were computed using the method of MacNeal
and Bailie [1]. These compliances accounted
for the bulkhead influences of the domes and
smear thickness of the frames and stringers of
the local cylindrical structure.

ANALYTICAL TECHNIQUE

The program performs both the static and
dynamic analyses by an element-matrix force
technique. The structural model consists wholly
of elements, the internal loading of which can
be represented by force and moment resultants
at grid points. Any structural system can be
synthesized by multi- mesh network of simple
structural elements (tension, bending, torque,

NOTE: References appear on page 119.

shear, force, and moment reactions) comiected
together at the grid points.

The elements are classified as primary and
redundant. The primary elements comprise a
statically determinate basic structure, their
number being equal to the number of equilib-
rium equations at the grid points. These equa-
tions are solved for the primary elements in
terms of the redundant elements and external
forces and moments. Elastic properties are
assigned to the elements; redundant elements
are calculated to make internal deflections
compatible, and the deflections and rotations of
the structure at selected grid points are tien
determined, leading to a deflection influence
matrix on which the vibrational and dynamic
analyses are based.

This program, in general, requires the
following types of input information:

Geometry of structure

Selection of structural elements
Sectional and material properties
Selection of degrees of [reedom

Loading conditions (static and/or time-
dependent loads).

The output of the program is of three types:

1. Internal loads and stresses in all struc-
tural elements for the prescribed loading con-
ditions (static or time-dependent), due to unit
loads and normalized modal loads.

2. Deflections and rotations at selected
grid points for specified loading conditions
(static cr time-dependent), for unit loads, or
normalized modal loads.

3. Resonant frequencies and mode shapes.

A more detailed description of the analyti-
cal technique and submittal procedure is pre-
sented by Kaufman and Hall [2} and Clark [3].

CONFIGURATION SELECTION

The initial configuration (Fig. 1) was based
on the premise of providing the maximum com-
ponent accessibility within space limitations,
while minimizing the interconnecting wire
lengths. No attempt was made to analyze the
truss structure; the member sizes were esti-
mated by the designer. This truss (1A, 88
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Fig. 1 - Configuration evolution, equipment truss
(preliminary design)

pounds) was programmed with the component
and wiring masses statically distributed from
assigned locations to adjacent grid points The
88-pound truss weight included 10 percent (30
pounds) of component weight estimated for
component brackets. The resulting resonant
frequency of 14 cps was considerably below the
minimum of 30 cps, and from the modal data it
was concluded that increasing member sizes
would not sufficiently increase the frequency of
ihis configuration to offset increased truss
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weight. To demonstrate this, the member sizes
were increased to a prohibitive total weight of
260 pounds; the resulting truss frequency was
only 23 cps.

The more efficient approach indicated was
to restrain the midspan deflection by providing
additional truss supports. Using truss 1A
compliances and adding three members, truss
2A (97 pounds) had the resonant frequency
raised to 24 cps. By optimizing member sizes




and further increasing the depth of truss near
both ends to maximum permitted by available
space, the resulting truss 3A (139 pounds) had
a resonant frequency of 29 cps.

Unfortunately, the added members were in
the middle of an access door. Inspection of
modal data (Fig. 2) resulted in the conclusion
that replacement of the above 3 members by
like supports at two locations, approximately
1/3 of the span length from the ends would re-
sult in suppression of the lowest mode, yieldirg
a further increase in resonant frequency. This
addition to truss 4A (142 pounds) resulted in a
34-cps truss. Optimization of truss member
sizes reduced the weight (truss 4B) to 127
pounds, with fundamental resonant frequency
of 31 cps.

At this time it was noted that the upper
ends of truss 4B had a larger modal deflection
than midspan (Fig. 3). Two small members
were added to the truss in configuration S5A
{130 pounds), thereby yielding a significant in-
crease to 47 cps. Successive reductions in
member sizes reduced the truss weight to 70
pounds (truss 5D). Though this truss satisfied
the mirimum requirement of 30 cps, the static
loading conditions resulted in excessive stresses
in many members.

Truss 5E (34 cps), weighing 78 pounds and
made entirely of 1.375-inch square aluminum
tubing of 0.062-inch wall thickness, was selected
for the final design.

FINAL ANALYSIS

During the detail design several tube mem-
bers were added to the 5E truss to permit effi-
cient component weight distribution, which rc-
sulted in some added stiffness. Four of the
members were also strengthened to withstand
local bending imposed by component mounts.
This, combined with eventual weight reduction
of supported components to 270 pounds and wir-
ing to 130 pounds, yielded a fundamental reso-
nant frequency of the truss of 48 cps (consider-
ably atove the minimum of 30 cps spccified).
As further weight reduction by decreasing
member sizes was not possible becausc of
stress and manufacturing limitations, and only
the minimum value of the fundamental resonant
frequency was specified, this design was re-
leased for production.

Figures 4 and 5 present the analytical
model and mode shape of the fabricated truss
(actual weight 76.5 pounds), which is shown in
Fig. 6.
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CONCLUDING REMARKS

The truss presented in this paper consisted
exclusively of tension-compression elements,
without considering the berding capabilities of
the truss members. This was done to simplify
the submittal procedure and save time, as the
bending stiffness of truss members does not
contribute significantly to overall truss stiffness.

The initial preliminary results were avail-
able within a week of go-ahead. Most of this
time was devoted to the analytical model syn-
thesis, with less than 10 minutes needed for
obtaining the solution for a problem of this size
(98 elements and 72 degrees of freedoin). The
required computer time for subsequent varia-
tions of the truss was less since the initial so-
lution is retained on magnetic tape, and modifi-
cations are re-entered from the point of change
in calculations. The ability to modify the prob-
lem while retaining large portions of submittal
data enabled as many as three configurations
to be investigated in a day.

Diversified types of structural problems
have been investigated on this program, ranging
irom entire payload-booster structures to smaii
but complex support structures. Problems with
1400 elements and 400 degrees of freedom have
been analyzed successiully and even larger
problems completed utilizing the partitioning
technique.

The validity of the computer program has
becn established (i) by its application to classi-
cal problems of known solutions, and (2) by
measured test data of complex structures
analyzed.

The generalized approach of this program
to structural analysis enables any structure,
whether trusses, beams, shells, or a combina-
tion, to be analyzed both statically and dynami-
cally in a single submittal, thus providing the
designer with a powerful tool to use during both
the initial stagces and detail design of a structurc.

Though the analytical solution of even the
most complex structure has been reduced to a
mechanical submittal routine, sound engineer-
ing knowledge is still required to synthesize
correctly the analytical model that will yield
the desired informaticn, and to interpret cor-
rectly the subsequent data.




\ODE FREQUENCY, 29 CPS

Fig. 3 - First mode, truss 4B
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1.

Fig. 5 - ©"irst mode,
final » ipuration

MODE FREQUENCY, 48 CPS
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STATIC AND DYNAMIC ANALYSIS BY
A MATRIX FORCE METHOD*

S. Kaufman and D. B. Hall
Martin Marietta Corporation
Martin Company, Baltimore Division
Baltimore, Maryland 21205

This paper presents a matrix-force method for static and dynamic anal-
vsis of aerospace structures by an element-matrix technique. Any
structural systemn, such as a stiffened shell, three-dimensional truss,
or a system of connected beams, can be simulated by a number of sim-
ple structural elements connected together at grid points. The tech-
nique of model synthesis and selection of elements and the matrix
method of solving for stresses and deflections are developed. Attention
is given to the influense of thermal inputs on the structural loads,
stresses and deflections. The deflection influence matrix forms the
basis of vibrational and dynamic analyses.

A somewhat unusual method of partitioning composite structures is de-
scribed. Partitioning is systematized by supporting all segments inde-
pendently, with fictitious elastic supports where necessary, considcring
all connections between segments redundant and firally climinating the

fictitious supports.

The overall method has been used successfully in handling both the
statics and dynamics of swept wings, to compute thermal stresses in a
thick cylinder and to reproduce accurately the natural frequencies and

mode shapes of a thin cylindrical shell and the molecule ethylene.

INTRODUCTION

This paper presents a brief outline of a
matrix-foree method [1] for statie and dynamie
analysis of aerospace struetures by an element-
matrix technique. This method is part of an
iBM 7094 digiial computer program for static
and dynamie analysis of structures [2]. The
teehniques outlined here are particularly well
suited to analyzing three-dimensional-truss,
plate and shell structures up to thousands of
structural elements, where stresses, defleec-
tions and dynamie response are required.
Shells of noneireular cross seetion with eut-
outs, stiffeners and internal eompartments are
also well suited to these methods, particularly
when one uses partitioning to permit large
numbers of elements, thereby allowing a more
accurate representation of the strueture.

*This paper was not presented at the Symposium.
NOTE: References appear on page 128.

The overall method is quite versatile. It
nas been used sueeessfully in handling both the
statics and dynamies of swept wings, thermal
stresses in a thiek eylinder and normal modes
of eylindrieal shells and moleeules.

METHOD OF ANALYSIS

In the matrix foree method a model of the
strueture eonsisting of a network of grid points
and load earrying elements (including reaetions)
is constructed. The elements are divided into
primary and redundant elements, the primary
ones forming a base set whieh is just statieally
stable. The exeess elements are designated
redundants, S. The ehoiee of the primary ele-
ments is, cf eourse, not unique; various deter-
minate sets ean be chosen. The best sets are
the ones that minimize the eoupling among the
remaining redundant elements, thereby yielding
the best eonditioned compatibility equations.
Among these, the best are those utilizing the




strongest elements and shortest load paths.
Thercfore, this selection is important for the
sake of accuracy.

The elements have the common property
that their internal loads v can be represented
as force resultants at the grid points. Equations
of equilibrium are establishcd between internal
forces of the elements and external forces p.
The solution to these equations in matrix nota-
tion can be stated as follows:

{yy = M{S} + M,{P}. (1)

In addition to an internal load, each element
has a characteristic deformation. The deforma-
tions of the elements must be selected so they
are conjugate with the element loads in the vir-
tual work sense (i.e., elongation of tension ele-
ments, end rotation of beams, displacement of
supports, and the like). These deformations
in matrix notation are
{8} = Eg{y} + {H} = EM{S} + EM,{P} + {H} .  (2)

{H} is a column matrix comprising free
thermal elongations, settlement of supports,
and so on. For example, the thermal elonga-
tion of a simple tension element is the product
of its length, coefficient of expansion, and tem-
perature change. The matrix E; isa sym-
metrical compliance matrix which relates the
elastic portion of the deformation in each ele-

ment to its own lead and those of other elements.

The elastic deformation in an element rela-
tive to its own load is thc product of the corre-
sponding diagonal terms of the compliance
matrix and the load; the nondiagonal terms of
the matrix relates the elastic deformation of
the elements to the load of other elements. For
example, the diagonal compliance of a simple
tension element is its length divided by the
product of its modulus of elasticity and cross-
sectional area. A typical example of diagonal
and off diagonal (coupled) compliances is the
rotation () at the ends of a beam produced by
moments (B) at the ends, or
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where 4 is the length and EI the cross-section
bending stiffness of the beam. Proper repre-
sentation of compliances is the most important
factor in analyses which replace a structure by
a network of elements. The compliances for
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skew and triangular networks for plate and shell
structures are developed by the authors [1].

Loads in the elements must be distributed
so as to make their deformations compatible.
In matrix notation, compatibility conditions are

T

M, (3} = {0}. 3)
By means of the relationship Eq. (3) one

can now relate the internal loads and deforma-

tions in terms of the external loading {P} and

{H} as follows:

{7} = AMP} + A {H}, 4)
and
{8) = EGMP} + (I+Egr){H}, (5)
where
T
A= (I-Mg M E)OM,,
= T
}\h = —Mlg IMl )
T
g = M E M. and

—
]

- the identity matrix; and superscripts
T and -1 denote transposition and in-
version, respectively.

Just as deformations had to be conjugate
with the element loads, deflections {n} must be
defined to make them conjugate with the exter-
nal loads (P} so that they may be caiculated by
virtual work. The virtual work is made up of
the product of real deformations Eq. (5), from
whatever source, and the internal loads from
virtual (unit) external loading (P}, identifiable

as \ in Eq. (4). Whence,

(m} = AP} + A {H}, (6)
where

T
A E A
and
T
A, = A (T+EN) .

In this method, it should be emphasized that
enough reactions must be supplied as structural
elements to completely restrain the structure
from rigid body motion. The symmetric matrix
A is sometimes called the ''deflection influence
matrix' for the supported structure. For the
case ofafree-free or partially constrained struc-
ture it can readily be modified by calculating




inertia forces to balance applied forces, thus
eliminating the fictitious constraints.

As the sizc and complexity of structural
analysis problems increase, we must resort to
partitioning. Here, the engineer can use physi-
cal intuition .to assist the mathematician in
hard-to-manage matrix opcrations which result
from large order matrices. This has been pro-
grammed and extensively illustrated [1]. Briefly,
the method goes as follows. The structure is
broken down into manageable segments. Each
scgment is restrained against rigid body motion
by fictitious elastic reactions ,* as needed.
Fictitious external forccs P_ are supplied at
the location and in the direction of the fictitious
reactirns. Also provided are equal and opposite
forces P, acting at the common boundaries of
the segments. These forces are treated as
redundants. Deflections at the boundaries +,
and those of the segments » are computed as
well as intcrnal loads v and fictitious reactions.
These are computed in terms of the fictitious
external forces, forces on the boundaries, P
forces (conjugate to - deflections), and frec
thermal expansions, H. In abbreviated matrix
notation these relationships can be stated as
follows:

dw Ah Ac Ad A(j (prlw
T
Ad AL’. Ai Am P:l
- G
4 b ‘(' d « P
.8 \
O AN O

To satisfy compatibility, thc rclative dc-
flections on thc boundaries between adjacent
segments defined by the virtual unit P, loads
(redundant forces) must be set equal to zero or

b {0} . (8)

To satisfy equilibrium at the location of the
fictitious reactions, thc fictitious reactions and
associated fictitious loads must bc made to
cancel each other. That is

(vSY + {P_ (0} . 9)
Equations (8) and (9) are next solved for

P, and (P} in terms of '©"} and {(H}. This

solution is substituted into Eq. (7) obtaining
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internal loads and deflections for thc composite
structure analogous to Egs. (4) and (6), re-
spectively.

The deflection influence matrix obtained
with or without partitioning forms the basis of
the vibratory and dynamic analyses. In matrix
notation the cquations of motion are:

() = A[P(t) - K#(t) - Gi(t)] , (10)

where P(t), K and G are, respectively, the
fercing function matrix, the mass matrix and
the damping matrix. The comjputation of fre-
quencies, mode shapes and transient response
is based on the modal method [1].

EXAMPLES

Figure 1 shows the plan view for a thick-
skinned, 45-degree swept wing model along with
one comparison of measured deflections [3] and
calculated deflections [4]. Figure 2 shows the
symmetrical normal modes of a delta wing
tested by the NASA [5] along with a comparison
of the computed results [6].

Of particular interest for shell-type appli-
cations is the analysis 7] of a thin cylindrical
shell whose gridwork for the analytical model
is shown in Fig. 3. Agreement with known
analytical results [8] between the first 18 axial
symmetric ireguencies (Table 1) is good.

As another exanmiplc, a comparison of ther-
mal strcsses in an infinitely long hollow cylin-
der (inside radius 0.5 unit, outside radius 1.0
unit) was computed [9 ] by the method of this
paper. The loading consisted of a logarithmic
radial tempcrature gradient and the stresses
are compared in Table 2 against a Timoshcnko
closed form solution {10].

Anothcr cxample of particular interest in
the ficld of molecular vibrations [11]is that of
the normal modes of the molecule ethylcne
(C,H,) composed of four tcrminal hydrogen
atoms and two interior carbon atoms. The nor-
mal modes of ethylene as computed by the
method of this paper are compared in Fig. 4
against those computed by Herzberg [12]. A
comparison with experimentally measured fre-
quencies [13] is shown in Table 3.

The program bhas been used as an aid i
solving numerous problems involving actual
hardwarc. Some of these applications have becen
discusscd by Mr. Bata (see page 113).




| A SPAR-R 1B | COMPUTEQ | MEASURED
f‘ 7? 0 INTER- | OEFLEC- | DERLEC-
I’T”"’i‘ / W SECTION | TIONS TIONS
o 1 0,454 | 0.4288
2 0.5283 | 0.5109
3 0.6093 | 0.6015
4 0.6955 | 0.6946
5 0.788 | 0.7970
6 0.2263 | 0.209
7 0.2840 | 0.2774
8 0.343 | 03382
9 0.4110 | 0.4069
10 0.4877 | 0.4972
11 0.0638 | 0.0709
12 0.0949 | 0.1003
13 0123 | 0.1307
14 0.1563 | 0.1625
15 0.2029 | 02093

Fig. 1 - Comparison of analytical with test deflections--
45-degree swept wing model

1ST MODE

3RD MOOE aTH MODE
. LEGEND::
1818 NODAL LINES--TEST
< ——— = NODAL LINES--THEORY
\!
N \)‘] . 42.3 TEST FREQUENCY --CPS
STH MODE 42.6 CONPUTEQ FREQUENCY--CPS

Fig. 2 - Comparison of test with theory symmetrical
modes—45-degree delta wing model
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—v Calculated modes as per this report

— — -+ Variations to these modes as per Ref.[12}

Fig. 4 - Normal modes of C,H,

TABLE 3
Freguency Comparison for the Molecule Ethylenc
_ Frequency (cm™1)
Vibration Symmgtry Experimental Computed
Specie (Arnett & Crawford, (Ref.{11))
Ref. [13])

v, A, 3019 3015

v, 1623 1758

v, 1342 1238

. A, 1027 1027

- B . 3075 3119

Ve 1236 1248

v, B, 949 951

Ve B, 943 942

vy B,, 3106 3104

Yo 810 or 99512 995

v B,, 2990 2988

Vi, 1444 1443
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Section 3
DESIGN TECHNIQUES

SONIC AND ULTRASONIC VIBRATION SENSITIVITY
OF X-BAND MICROWAVE COMPONENTS

- R. Strike and G. G. Sundberg
General Dynamics/Pomona
Pomona, California

vibratory excitations.

Experience has proved that the electrical performance of microwave
circuitry can be degraded through the effects of acoustic or mechanical
excitations. This electrical degradation can be a critical problem in
the development of high-performance, radar-homing missiles, where
high-resolution microwave circuits must operate vnder high-amplitude

Data collected during the acoustic and vibration evaluation testing of

numerous microwave components have shown that ultrasonic as well as
sonic stimuli can produce unwanted changes in component electrical
properties. These changes, which may be due to resonant or nonreso-
nant mechanical responses, are of concern when the component's dy-
namic or steady-state electrical properties no longer fall within toler-
ances dictated by the intended application. Parts which have proved
most prone to acousfically produced degradation include waveguide

sections and both vacuum-tube and solid-state frequency control oscil-
lators.

Jynamic changes in electrical properties in simulated missile environ-
wents, and the mechanisms of such changes, are presented for typical
examples of these components. Data presented for the parts show the
correlation between the acoustic excitations, the mechanical responses,
and the dynamic electrical responses. In each case, the excitation fre-
quencics above 10,000 cps are shown to be of primary importance.

INTRODUCTION

There exists a variety of phenomena
wherein an acoustic or mechanical stimulus is
able to perturb the steady-state functioning of
an electrical circuit. Appropriately controlled,
as in microphones, strain gages, or motion
sensors, these phenomena lend themselves to
useful applications. Yet similar phenomena
can constitute a significant problem in the de-
sign of low-noise or high-stability electronics,
particularly where exposuie to high--level
acoustic and mechanical excitations must be
considered. This paper describes specific ex-
amples of undesirable perturbations in the
functioning of X-band microwave components.
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The reader should recognize that the significance
of any perturbation depends on the intended ap-
plication and that our judgement of desirability

is based on missile system applications where
electrical gains in excess of 107 are not un-
common.

ACOUSTICALLY FORCED CHANGES
IN THE PROPAGATION VELOCITY
CHARACTERISTIC OF A RECTAN-
GULAR WAVEGUIDE

Techniques for computing the microwave
signal distortions which are caused by certain
resonant vibration responses of a rectangular




waveguide have been demonstrated.! These
demonstrations suggested that relatively low
levels of vibratory response could cause seri-
ous distortions in a signal that has been trans-
mitted through a long section of acoustically
excited waveguide. Recently we had the oppor-
tuniity to check these techniques against experi-
mental data for a section of thick-wolled alu-
minum waveguide.

Our test specimen was a 3-foot length of
the aluminum guide, which we connected as a
transmission line between a microwave signal
source and a matching terminal impedance. Six
semiconductor strain gages were bonded to the
narrow and broad walls of the guide in an ori-
entation to indicate cross-sectional strains.
The specimen was routed through the sound
chamber so thal only the central portion (a
2-foot length) of the guide was exposed to a
broadband, random, acoustic excitation of
158.5-db overall level.? Figure 1 shows rms
spectral analyses of the excitation, the strain
in the narrow waveguide wall, and the frequency-
modulation (FM) noise components which were
produced in a sinusoidal microwave signal.

lF. J. O'Hara and G. M. Moore, The Microwave
Journal 6:70-71 {1963).

“All sound pressure levels indicated in this re-
port are in decibels (db) referenced to 0.0002

The correlation between mechanical responses
and phase modulations as indicated by FM unoise
responscs seems consistent with theory, even
to the extent that secend-harmonic vibrations
produced no ¥M noise. Assuming first and sec-
ond harmonic mode shapes as shown in Fig. 2,
we also found excellent correlation between
measured FM noise levels and levels which
were computed from the wall-strain data.

Our technique of estimating the change in
waveguide depth from strain data is as follows:

Construct the angle, -, such that the prod-
uct of « and the waveguide wall half-thickness,
h’2, equals the half change in the guide's nar-
row wall dimension, /2, where . is the
measured strain and b is the narrow-wall
outer dimension.

gy 11

wais

For small values of :, and on the condi-
tion that the guide corners remain stationary,
equivalence can be shown between . and the
angle, /7, which, being small, can be equated
to tan

This estahlishes the desired relationship:
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Fig. 2 - Vibration modes for wavcguide

or

h

d =

-3

where Ad is the change in waveguide depth.

The mechanism of phase modulation can be
appreciated by recegnizing that any change in
the internal depth of the waveguide causes a
change in the velocity of electromagnetic signal
propagation, which can be determined from the
following equation:

0

o

Ce(t) =

yi- Liﬁm]

where { is the microwave signal frequency,
is the free space wavelength, and d(t) is the
time dependent function which indicates instan-
taneous waveguide depth. These propagation
velocity changes occur at the vibration frequency
and cause phase modulations in proportion to

the depth variations. Note that the phase modu-
lations will increase in proportion to waveguide
length, or number of microwave signal wave-
lengths, as long as the waveguide walls vibrate
coherently along that length. The absence of
phase modulation at the second vibration mode
may be attributed to the zero changes in wave-
guide depth or, in vther words, we in=phase
motions of the opposite narrow walls.

o]

A portion of the waveguide evaluation tests
was devoted to determining the responses to
mechanical excitations at the waveguide sup-
ports, and these additional investigations al-
lowed us to compare the effects of acoustic and
mechanical cxcitations. The comparison was

interesting, but not surprising, as we found that
localized oscillatory forces (as produced by
electrically driven piezoelectric crystuis)y ex-
cited only localized vibrations which produced
no measurable FM noise. The mass loading at
the waveguide support, or piezoelectric crystal,
accounts for this failure to excite the waveguide
natural vibrations by essentially detuning the
sections of mass-loaded guide (fundamental
frequency of 12,500 cps) and the sections of un-
loaded guide (fundamental frequency of 14,560
¢ps). Even discrete frequency mechanical ex-
citations varied through the 10,000- to 20,000-
cps range failed to produce measurable FM
noise or significant nonlocal vibrations of the
waveguide walls.

This phenomenon of waveguide microphonics
provides a vivid demonstration of the need for
extended frequency range environmental testing
since any test limited to the customary 10,000~
cps upper frequency would have failed to excite
even the fundamental vibrations. The phenom-
enon also illustrates how extremely small dis-
placements (10-7 inches) can cause measurable
changes in the electrical preperties of a com-
ponent. In this instance the acoustic excitation
used for testing was a good approximation to
the measured service environment of the wave-
guide, and the laboratory measurements of wall
strains and FM noise were in excellent agree-
ment with later field measurements.

MICROPHONIC RESPONSES IN A
VACUUM-TUBE MICROWAVE
SIGNAL SOURCE

Operation of the radars in radar-homin
missile systems is such that signals which are
transmitted or reflected between the control




station,> the interceptor missile, and the target
contain informalion regarding the relative mo-
tions of control station, missile, and target.
Parts of this information are conveyed in the
form of doppler variations in the radar signal
frequencies, so we {ind that an instrument for
the evaluation of microwave signal spectral
content is necessary to the radar-homing sys-
tem. This instrument may be instulied in the
control station or in the missile. In any case,
it is likely that it will be required to operate
under significant vibratory excitations, and it
is possible that these excitations will degrade
instrument performance.

The problem may be resolved by shielding
the entire inctrument from excessive excita-
tions. This approach requires unnecessarily
large weight and space penalties, however, and
it is usually more practical to shield at com-~
ponent level. In a klystron oscillator-equipped
instrument the latter seems invariably true as
the klystron makes significant, if not always
predominant, contributions to the microwave
noise threshold of the instrument. The extent
of tliese contributions is illustrated in Fig. 3
by the amounts of FM and amplitude modulation
(AM) noise which are produced by a klystron

3The control station may be a fixced or moving
land, sea, or air position. In certain instances
the missile may contain all radars.

osciliator operating under a broadband, random,
acoustic excitation of 135-db overall level.

The generalion of video noise (composite
AM and FM noise} in a klystron results from
the relative motions of the tube elements, which
include the heater, cathode, anode, grids, and
reflector. Significant correlations have been
noted between calculated, and in one instance
measured, fundamental vibration frequencies
for the klystron elements and the microwave
signal modulation frequencies of 10,000 cps and
below. The response data obtained for the
klystron further emphasize the need and use-
fulness of extended frequency environmental
testing.

MICROPHONIC RESPONSES IN A
SOLID-STATE MICROWAVE
SIGNAL SOURCE

The relatively high sensitivities of klys-
trons to acoustic or mechanicai excitations
make them unsuitable for many low-electrical-
noise or high-level-environment applications.
This deficiency can be corrected by providing
the klystron with the aforeinentioned environ-
ment shielding or, more elegantly, by substi-
tuting «n alternate signal source which is less
responsive to acoustic or mechanical excita-
tions. The most successful of these alternate
sources are solid-state devices which consist
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of a crystal controlled radio frequency (rf)
oscillator and a series of frequency multipliers,
filters, and amplifiers. Comparisons between
ruggedized vacuum-tube and typical solid-statc
sources have proved that the latter are two to
four orders of magnitude less responsive to
vibratory excitations. This is an impressive
advantage, but even these responses could prove
detrimental in high-performance missile sys-
tems.

Additional investigations of this potential
microphonics problem were initiated after ex-
aminations of typical microwave noise spectra
indicated that all primary signal distortions
were occurring at a relatively few frequencies.
This finding suggested that one or a few com-
ponents might be introducing these distortions,
which in turn suggested that it might be feasible
to reduce the responses by improving or shield-
ing these few components. Component response
level tests seemed the most straightforward
way of isolatling the responsive parts, particu-
larly after estimates of mechanical resonances
for the circuit mounting structure and the com-
poncnts revealed that only a few parts were
likely to have resonances near the signal dis-
tortion frequencies. These parts inciluded the
frequency control crystal, several parallel
plate capacitors, a tunable capacitor (thc oscil-
lator trim capacitor), and a relatively large
diode (used with reverse bias as a trim capaci-
tor). Preliminary testing showed that the

1 x ]0—6—

capacitance of cach part could be affected
through acoustically excited responses of the
part and that three parts responded at or near
the lowest frcquency where microwave noise
had been observed. Figure 4 shows the re-
sponses of two of these parts.

We were most interested, however, in the
frequency contrcl crystal, which proved to be
responsive at each of the frequcncies where
major microwave signal modulations has been
obscrved. Subsequent testing substantiated that
mechanically forced resonant vibrations of tne
crystal blank were a predominant cause of
microwave signal distortions. Figure 5 shows
typical acoustic test data obtained by exposing
a missile mounted signal source to a simulated
missile acoustic environment and by exposing a
compliantly mounted frequency centrol crystal
to the same environment. Note the coincidences
between frequencies for maximum modulations
of the signal, as monitored at the output of the
microwave signal analyzer, and maximum vi-
brations of the crystal blank. Note also that
the vibration response data are measured val-
ues obtained by monitoring the piezoelectric
outputs of the crystal blank, which conveniently
serves as a built-in vibration sensor.

The correlation between piczoelectric re-
sponse voltage and microwave signal modula-
tions was unexpectedly good since sound pres-
sure or mechanical force at a given frequency

- i €, ]
&= - Lt
e ..
s L
[=]
o2 ! E’z %
L @0.5x 107
L
a
& |
T\
a .,
0 o RN L1 bl
DIOOE MICROPHORICS
1x10° — - — - —
z a & %
£ = F——tl=r—0,
= ! | %o
x ' 3
\z = h.
WX 5x10-8}
.‘.I’\ —
.
&
g b
e |
0 1 1 | | | -1 EVEL
CAPACITOR WICROPHONICS
T dof —
%.8 OVERALL LEVEL: 145db
345
2.0
w 'z
a3
oy - |
et
o
28 w0 i NS |
= 1 2 5 1 20 50 100 200

0
FREQUENCY - KC

Fig. 4 - Microphonics of diode and capacitor




200
gy oo 100
oada b
9000
osgg
2622  xf
S X m
> 0
5 Il
2000~
S T o0
R
goE -
oz
3s 2004
26w
:;& 100
5 g 50}
7|
CRYSTAL
140 —
= J/ﬂ_./\__,v
¥ & 1w e
AsE
w ..z
Eds b
aliv
za0
3 2 b
2 2
o~
00— L 1

L — N |

1 Il 1

OUTPUT OF WICROWAVE SIGNAL ANALYZER (MOUNTED IN MISSILE)

1

t
|

= =
PIEZOELECTRIC RESPONSE (MOUNTED ON RUBBER THREADS)

OVERALL LEVEL: 155db —I

| |

0 20
FREQUENCY - KCPS

il J
50 100 200

Fig. 5 - Response data for
frequency control crystal

and piezoelectlric rvopunse vullage and oauia-
tion amplitude at the same frequency proved to
be linearly related. This last relationship
seemed to apply frcm unit to unit, at least
where crystals had comparable mechanical and
electromechanical resonances, and a signal
source which employed a crystal with relatively
low piezoelectric responses performed better
than sources with other crystals.

The tests also provided data on the trans-
mission of energy from crystal case to crystal
blank. Figure 6 shows the construction of a

CRYSTAL BLANK
(MECHANICAL VIBRATION ——
FUNDAMENT AL. 6000 CP5)

FOIL — |

CONDUCTOR

A 1ich consists
simply of a quartz disc or blank, ele(‘trlcal
leads which wholly or partially support the
blank, and a gas-filled metallic or glass can
which encases the blank. Crystals suspended
in an acoustic field on nylon or rubber threads
generated rather large piezoelectric signals,
as shown in Fig. 5 but the same crystals gener-
ated virtually no piezoelectric output when one
face was bonded to 2 massive steel block. This
evaluation, the same as we used for establish-
ing the acoustic sensitivity of mounted acceler-
ometers, showed that restraint of acoustically

POGUonCY control Crystal w

Lo—— CASE

ELECTRICAL LEAO
(MECHANICAL VIBRATION
' OF LEADS AND BLANK

AT FUNOAMENTAL
FREQUENCIES BETWEEN

200 AND 1500 CPS)

Fig. 6 - Typical frequency control crystal
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excited gross motions eliminated the objection-
able responscs, even though five faces of the
crystal were still exposed to acoustic excita-
tion. From this finding we can conclude that
structural couplings between the case and blank
are more important than acoustic coupling
through the gas medium.

This third example of environmentally pro-
duced microwavce signal distortions illustrates
that even very small motions4 or strains of a
critical electrical part can signilicantly alter
the electrical functioning of an entire micro-
wave circuit. In this instance the phenomenon
might have been delected in a conventional
acoustic test, but the extended frequency tests
made it possible to evaluate microwave signal
modulations at fundamecntal and higher-order
harmonic frequencies. It seems unlikely that
this problem could have been detecied in an ex-
tended frequency missile vibration test since
the solid-state signal scurcce is vibration iso-
lated from primary missile structure.

ACOUSTIC ENVIRONMENT
SIMULATION

The acoustic laboratory at General Dynam-
ics/Pomona is equipped with unique facilities
for the simulation of missile environments.
The newest of our facilities, shown in Fig. 7,
can be used either as a 2-foot-diameter
progressive-wave chamber or as a'13-cubic-
foot reverberation chamber. Low-frequency
excitations (20- to 1500-cps discrete {requency,

4Estimates on the basis of piezoelectric re-
sponses under 155-db acoustic excitation indi-
cate that peak-to-peak displacements ot the
crystal blank center point were on the order
of 10'7 inches.
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Fig. 7 - Acoustic facility at
General Dynamics/Pomona

narrowband, or broadband excitations) are at-
tained only under progressive-wave conditions,
so the problems of standing-wave resonances,
which seem characteristic of most small rever-
beration chambers, are avoided. Fortunately
the physical dimensions of our test specimens
are generally small enough ¢o insure uniform
specimen excitation through sound diffraction,
thus eliminating the need for multiple specimen
orientations during low-frequency testing.
High-frequency tests (1500- to 140,000-cps
broadband excitations) are performed under
reverberant or progressive-wave conditions
(the latter if simultaneous high- and low-
frequency excitations are desired). In either
case, excellent sound field diffusivity,and spec-
tral uniformity (within tolerances of plus 4-db
and minus 0-db) have been attained, provided
that the specimen's volume did not exceed 30
percent of the test chamber volume.

The performance limitations of this newest
facility are summarized in Fig. 8, which shows
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the envelope of true rms sound pressure levels.
Both the low-frequency source, a Ling Mcdel
EPT-24 electropneumatic transducer, and the
high-frequency source, impinging sonic and su-
personic air jets, are capable of providing exci-
tations which have Gaussian or near-Gaussian
amplitude distributions. Sound pressure levels,
spectra, and time histories can be controlled by
adjusting the electrical and pneumsadtic inputs to
the low-frequency source and the pneumatic in-
puts to the high-frequency source.

SUMMARY AND CONCLUSIONS

Examples have shown that high-frequency
acoustic excitations can cause unique
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degradations in the electrical performance of
microwave componenis. Certain of the indi-
cated degradations have heen of sufficient con-
sequence to require special excitation control
measures (in excess of protection afforded by
usual packaging) or electrical compensations in
current missiles. Otihers are expected to
become important as missile environments
increase in severity or as microwave perform-
ance requirements become more stringent.
Whether the problem is current or potential,
the data make it apparent that limited frequency
range environmental tests cannot provide a
positive measure of an electrical component's
responses to the broadband excitations of mis-
sile flight.




DESIGNING ELECTRONIC EQUIPMENT FOR THE COMBINED
RANDOM AND SINUSOIDAL VIBRATION ENVIRONMENT

A. W. Sinkinson
RCA
Burlington, Mass.

Damage to electronic equipment during combincd random and sinusoidal]
vibration testing is of a mechanical nature. The design engineer needs

a method for mathematically determining ar equivalent constant ampli-
tude sinusoidal response fcr fatigue stress @nalysis and for empirically
confirming adequate strength by a simple sinusoidal vibraticn test. Such
a method is mathematically developed in this paper. Plots for deter-
mining the probability of peak values also are presented.

When a sinusoidal stress has various amplitudes, the fatigue damage is
cumulative and is proportional to the sum of the ratios of the number

of actual cycles at a particular stress to the number of cycles to failure
at the same stress. A mechanical system with only one significant
prime resonance as a practical approximation acts as a narrowband
filter which responds to a combined wideband random plus sinusoidal
input with a random amplitude single frequency sinrusoid and thus le:nds
itself to fatigue analysis by Miner’s hypothesis if the character of the
stress variation can be determinead.

The expression for the relationship between fatiguc stress and number
of cycles to failure based upon the linearity of the log-S log-N curve is
substituted in Miner's expression for the damage coefficient. A simi-
lar expression is set up for the damage coefficient of an equivalent con-
stant amplitude sinusoidal stress, and the two damage coefficients are
equated. The resulting equation is solved for the equivalent stress, and

acceleration is substituted for stress since they are proportional within
the elastic limit.

When the ratio of the sinusoidal component to the random component in
combined sinusoidal and random alternating waves is greater than 3,

the distribution of the envelope of the combined waves behaves like a
normal law, and the probability density is defined by ihie usual expies-
sion. To date, the magnitudes associated with the response functions ol
electronic equipment for aerospace applicativa have usually established
this ratio greater than 3, and, therefore, the expression with the correct
parameters can be substituted for the number of acceleration peaks at
each acceleration level in the equation for thc cquivalent sinuscidal
acceleration.

Mathematical manipulation, including approximations, allows the dif-
ferential equation to be solved for the equivalent sinusoidal accelera-
tion response. The derived expression is

/ﬁN( —l

. - e .o
y. = \/ - + IJ Yoo

where
y. = equivalent sinusoidal acceleraticn response
y. = sinusoidal component of response
s
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the material

sumed sample.

k negative reciprocal of the slope of the tog-S tog-N curve of

o Naperian base {2.718 ...)

a ratio of peak sinusoidal component of response to rms ran-
dom component of response.

Thke equivalent sinusoidal input is obtained by dividing the above ex-
pression by the amplification factor, q.

As a check on the mathematics, reasonable correlation was obtained by
using the above expression and numerical summation to solve an as-

The analytical design of electronic equip-
ment to withstand a vibration environment can
be divided into two parts: strength of the sup-
porting mechanical structure and fragility of the
electronic piece parts. In each case, meaning-
ful conclusions can be made only after the re-
sponse to the vibration input at critical locations
has been defined. Failure in the vibration en-
vironment exhibits a mechanical nature; there-
fore the important response parameters are
instantaneous peak values and fatigue effects.
Emphasis is intended here to establish the point
that determination of rms power or energy lev-
els without further definition does not adequately
evaluate mechanical damage.

For a pure sine wave input or a random
Gaussian input, the literature is explicit in
teaching the response function [1]. For the
combined sinusoidal and random vibration in-
put, however, there is a scarcity of teaching of
a naturc easily handled by the engineer who is
packaging electronic equipment. Most dis-
courses on such a response function are of such
a general nature as to entail laborious mathe-
matical analyses.

Insufficient empirical data are available to
establish rigorously the adequacy of substitut-
ing a constant-amplitude, single-frequency, sine
wave swept over a range of frequencies for
variable-amplitude and continuous-frequency-
spectrum excitation in vibration testing [2].
Inexactness of our present ability to predict
mechanical fatigue contributes greatly to this
inadequacy. Therefore, all vibration testing
performed for satisfying contractual require-
ments should adhere rigorously to the specifi-
cations and not include substitutions.

During the mechanical design of electronic

equipment, however, the magnitude of the me-
chanical loading must be determined to safeguard

NOTE: References appear on page 144.
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against failure from instantaneous peak loads

or from fatigue effects. This is especially true
in those instances where combined sinusoidal
and random vibration is prevalent, e.g., in mis-
siles and spacecraft, because of the nced for
high material efficiency to minimize weight. The
two pertinent mechanical properties of materials
and clectronic parts are listed in the following
forms: (1) peak values, such as ultimate strength
for materials and shock level for parts and (2}
fatigue stress versus number of sinusoidal stress
reversals for materials and acceleration level

in gravity units (g} over a period of sinusoidal
vibration for parts. Therefore, the design can
proceed if the actual expected peak loading and

a sinuscidal cyclic loading eguivalent to the
combined sinusoidal and random loading can be
estimated. Furthermore, relatively inexpensive
sinusoidal vibration testing and shock testing

can be performed on a mechanical model as a
check on design prior to the commitment of
complex electronic models.

For these reasons, as a part of the design
function of RCA Aerospace Systems Division,
Burlington, Mass., on the rendezvous radar and
transponder for LEM, an expression was derived
after Crede and Lunnev [3] and Miles and Thom-
son [1] for computing a cyclic stress of constant
amplitude which produces fatigue damage equiv-
alent to that produced by combined sinusoidal
and random vibration loading. Reference was
made to the work of Rice [4] in esiablishing the
statistical distribution of stress values and thus
the probability density function of their ampli-
tude (Fig. 1) for insertion into the expression
for equivalent stress amplitude derived from
considering Miner's linear theory of cumulative
damage [5]. Expected peak loading was esti-
mated by referring to Rice's plots of the distri-
bution function of the envelope of combined
sinusoidal and random functions (Fig. 2).

A mechanical system with only one signifi-
cant prime resonance as apractical approximation
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acts as a narrowband filter, which responds to
a combined sinusoidal plus wideband random
input with a random amplitude single-frequency
sinusoid, and thus lends itself to fatigue anal-
ysis by Miner's hypothesis if the character of
the stress variation is determined. For pur-
poscs cf this discussion, the conventional
curves showing stress versus cycles to failure,
as commonly plotted for structural materials,
may be idealized, as shown in Fig. 3. This is a
hypothctical curve; it applies for all stress
greater than the endurance limit and for all
cycles greater than one. For fatigue analysis,
strcsses are assumed to be within the elastic
limit and therefore proportional to loading (ac-
celeration). Failure due to stresses outside
the ela<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>