UNCLASSIFIED 457947

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications; or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

15 Vine Guarderly Report No. 22947 Copy No. upper Cuse) AD NO. A Study of the Decomposition Mechanism of Ammonium Perchlorate Chamistry and Prepared by: Departm coring 1., 0.00. Auburn Unive 9 Quarterly rept. no. 2, 1 Jul APM F. T iA D4-01+002-080-1023(21 Cont:

AUBURN UNIVERSITY

AUBUEN 65

ALABAMA

AUBURN RESEARCH FOUNDATION

fice of the Director

October 15, 1964

Telephone 867-6611 Area Code 906

Commanding General U. S. Army Missile Command Redstone Arsenal, Alabama

Attention; AMENI-RK

Res Contract DA-01-000-0ED-1023 Part I Quarterly Progress Report 1 July = 1 October 1984

Dear Sir:

Quarterly Progress Report on Part I of referenced contract is enclosed. Other copies of this report are being distributed as follows

> l copy to: U. S. Army Missile Command Redstone Arsenal, Alabama Attn: AMSMI-RKP, Mr. W. B. Thomas

- l copy tog U. S. Army Missile Command Redstone Arsenal, Alabama Attn: AMCPM-PH-HBA, Mr. H. Mpperly
- 1 copy tes U. S. Army Missile Command Redstone Arsenal, Alabama Attns AMCPM-PH-EAB, Mr. L. Paghe

THE LAND-GRANT UNIVERSITY OF THE

3 copies to: Chemical Propilsion Information Agency Johns Hopkins University Applied Physics Laboratory Silver Springs, Maryland

2 copies to: National Aeronauties and Space Administration Head, Operations Section Scientific & Technical Information Div: (SAK/DL) P. 0. Box 5700 Bethesda, Maryland 20014

In accordance with Exhibit 3, Section III, paragraph 3, a funding summary of Phase I of referenced contract is enclosed.

Sincerely yours,

C. Jensen, Jr. Director

5

WCJ;eab

Bnolt

ec: w/e enclosure; Birmingham Presurement District, U. S. Army Birmingham, Alabama

Dr. James E. Land

CONTRACT DA-01-009-080-1023

FUNDING SUNGLARY REPORT - PHASE I

For Period February 22 - September 30, 1964

Salaries and wages	\$ 6,720.45
Overhead	2,639.16
Travel	211.40
Comunications	25.35
Computer Time and supplies	-
Supplies and equipment	
(1) non-expendable	748.65
(2) expendably	512.09

Total

\$10,857.10

QUARTERLY PROGRESS REPORT #2

Birmingham Ordnance Contract DA-01-009-ORD-1023(2), Part 1, entitled, "A Study of the Decomposition Machanism of Ammonium Perchlorate" For the period: 1 July to 1 October 1964

1. Introduction

主文の語の教育を読む

This study of the decomposition of ammonium perchlorate (hereinafter abbreviated AP) upon the application of heat is employing differential thermal analysis (DTA) to obtain the data needed for the evaluation of activation energies, reaction orders and mechanisms.

In quarterly report 91 we described the process of DTA and developed the mathematical treatment of the measured data which would yield the desired quantities. Also, there was reviewed and summarized the current published thoughts regarding the changes which transpire as AP is heated from 25 to 450° C. Four distinct changes are recognized. These are an endothermic crystal transformation (about 240°C), an endothermic sublimation process (247-347°C), a low temperature exothermic decomposition (below 350°C) and the large, exothermic high temperature decomposition (above 350°C).

Using DTA, the peak temperature (T_{R}) for each of these processes is measured as a function of the rate of heating (Ψ) . A plot of $\ln(\Psi/T_{R}^{-2})$ vs. $1/T_{R}$ then should give a straight line plot where the slope of the plot is (-)E/R, E being the activation energy of the change and R is the universal gas constant.

2. Current Efforts

(a) Eautoment

buring the pariod of this report work first was expended on

procuring and asscabling the DTA equipment.

The F & M Hodel 240M Proportional Power Proportioning Temperature Programmer, purchased new from the manufacturer, on receipt was found to be defective and repair to faulty wiring caused delay in placing it in operation.

The Mosaley Model 2 X-Y recorder received from a Government Surplus warehouse in California Was non-operative and much time was consumed in determining cod ceplacing faulty components.

Fig. #1 is a block diagram showing the components of the DTA equipment being used and their relationships. The heater and block are shown in more detail in Figs. 2(a) and (b). These were constructed in our own shops.

The use of the Sargent SR recorder is to follow the heating rate so that it can be known with certainty at each peak temperature on the DTA plot. Such is necessary as experience has demonstrated that the setting on the temperature programmer is only approximate.

Into the block are inserted two glass sample holders as pictured in Fig. #3. These hold the AP (sample cell) and Al_2O_3 (reference cell). After the sample and reference materials are placed into the respective holders and tamped into place, the thermocouple probe, containing the Chromel-Constant thermocouple, is then pushed through the center of the material. These thermocouples transmit signals to the y-axis of the recorder. Another thermocouple in the block transmits a signal to the x-axis. A correction term, experimentally determined, must be algebraically added to this to obtain the temperature in the conter of the reference. It was found that the recorder would not function properly if an attempt

- 2-

was made to record the signal from the reference thermocoupic on the x-axis simultaneously with the signal from the voltage difference being recorded on the y-axis.

-3-

The side arm on the sample holder (Fig. #3) allows the sample, while being heated, to be subjected to vacuum, normal atmospheric pressure or increased pressure of an unreactive gas such as nitrogen.

(b) <u>Material</u>

The AP used in the runs reported herein was obtained from the G. Fredrick Smith Chemical Co. of Columbus 22, Ohio, is item #3 in their catalog and is classified as reagent grade. When used from their bottle without further treatment it will be listed as stock material. The material was kept in a desiccator over P_4O_{10} to insure no moisture being absorbed. In an effort to obtain particles of AP of different sizes the stock material was screened through two stainless steel wire mesh sieves. That retained by U.S. 40 mesh will be called coarse, that retained by U.S. 60 mesh will be designated medium while all passing through the 50 mesh will be termed fine.

(c) <u>Results</u>

Before commencing DTA runs with AP we desired to know and have confidence in the performance of our equipment. Samples of ammonium nitrate, benzoic acid, modium nitrate and milver nitrate were studied and the values for changes compared to those quoted in the literature article of Barstod (<u>Am. Mineralogist</u>, <u>37</u>, 667 (52)). The following table shows our results and it is felt that most of the determined values agree within reasonable limits to those quoted in the literature.

			Meanur	ed at heati	ng Tate of
Compound	Change	T <u>Literature</u>	2°/min	: <u>4[°]/min</u>	: <u>10⁰/min</u>
NH4NO3	Inversion	32 °C	39.1	42.8	38.3
NH4NO3	Inversion	85	82.4	87.3	85.5
NH4NO3	Inversion	125	124.5	125.4	127
NH4NO3	Fusion	170	166.8	166	169
Benzoic acid	Fusion	121.8	123	123	125
NaNO3	Fusion	314	306	306	308
AgN03	Inversion	160	163	164	168
AgNO3	Fusion	212	208	208	209
			•		

-4-

During this period we have made 52 separate DTA runs on AP samples at various heating rates and under either atmospheric pressure or partial vacuum.

Instead of recording all the experimental curves obtained the data will be presented in tabular form. In Fig. #4 we have recorded a typical DTA plot. Curve (A) is for AP <u>vs.</u> air while being heated; (B) represents AP <u>vs.</u> partial vacuum. On curve (A) reading from left to right four peaks may be found and will be numbered as shown. Peak #3, an endothermic peak is noted only when stock or coarse material was heated.

As seen in the (B) curve of Fig. #4 only three peaks are noted.

In the following tobles, first, is indicated which peak temperature was being measured, the type of AP heated and the atmosphere above the AP.

The columns then show our sample no., the weight of AP added to the sample tube, the peak temperature in degrees Centigrade and Kelvin, the rate of heating in degrees per minute as determined from the S.R. recorder plot, the peak temperature in ^OK squared, the ratio of the heating rate ($\frac{1}{12}$) to T_{12}^{2} , the reciprocal of the T_{11} and finally the natural logarithm of the ratio. On a separate plot, numbered to correspond to the table number is the graphical plot of $\ln(\Psi/T_m^2)$ vs. $1/T_m$ for a selected few of the tables. By estimation, the best straight line has been constructed through the plotted points and the slopes determined. Hultiplying these slopes by the value of R (1.99 cal deg⁻¹mole⁻¹) gives the activation energies summarized in Table 18.

At this time we feel that insufficient data has been collected to attempt to draw eny conclusions. Such will be a part of later discussions.

No attempts have been made yet to determine reaction orders from these data.

(d) Present Plans

Efforts now continue on measuring the DTA diagrams of AP decomposition, where the three particle sizes are run under a nitrogen atmosphere to minimize the sublimation process. Our next step will be to make measurements with various catalysts added to the AP to determine what possible effect such catalytic agents may have on activation energy magnitudes.

Jakes E. Land Project Supervisor

8 October 1964

Material:	AP (stoc			TABLE I				
`		ik material);	Peak #1	(Crystal 1	ransformation)	- endother	mic; Heated	ve. atmosphere
Sample #	Sample Wt.(g)	Peak Tomp. deg. C	T _m deg. K	Rate deg/min。	1 <mark>2</mark> (x 10 ⁻⁵)	Rate/12 (x 10 ⁵)	1/T _u (x 10 ³)	$\ln(\text{Rate}/T_m^2)$
1.02.1	n kmk	0 FXC	536.1	9.60	2.8772	3.336	1.864	-10 .308
1-70-2	0.5000	252.9	526.1	4.41	2.7578	1.593	1.901	710°11-
1-11-1	0.4996	240.0	513.20	2,11	2。6337	0.801	1.948	-11.735
1-64-1	0.4994	248.9	522°.]	10.03	2.7259	3.680	1.915	-10.210
1-84-2	0.4935	243.4	516.6	4.51	2.668	1.690	1.936	-10.988
1-84-3	0.4974	240.3	513.5	2.22	2.6358	0.842	1.947	-11.685
1-87-1	0.5067	256.1	529.3	10°40	2.8016	3.712	1.889	-10.201
1-93-1	0.5046	248.9	1.224	0/. 7	24/27	12/21 12/21	776 K	004"NT-
1-94-1	0.5027	262.6	535.8	Q. 91		207.0	008°T	(KO*K -
1-94-2	0.5023	262.6	535.8 2 0 0		TOT/.72	7.80/ 0.80/	030 1 030	
	0.4990	258.7	6" [ES	10.30	2.8292	3.641	1.880	-10.225
1-96-1	0.5067	1.12	11.	13.00	2.6450	4.915	1.944	- 9.921
1-98-2	0.5039	256.8	£30°0	02.0I	2.8090	3.809	1.887	-10.176
2- 2-1	0.5004	243.4	516.6	2.40	2.6688	0.899	1.936	-11-620
2-10-1	0.2469	24.3.0	516.2	1.89	2°6646	0°109	1.937	-11.857
2-11-1	0.2513	247.0	520.2	4.45	2.7061	1.644	1.922	-11-016
2-11-2	0.2508	24,3.0	516。2	1.98 1	2.6646	0.743	1.937	-11-810
2-11-3	0.2532	251.7	524.9	12 。 26	2.7552	4.450	1.905	-10,020
2-13-1	0.2514	241.8	515 .0	2.23	2.6522	0.841	1.942	-11.686
2-13-2	0.2527	246.2	519°4	4.47	2.6978	1.657	1.925	-11.008
2-13-3	0.2518	252.1	525.3	11.66	2.7594	4.226	1.904	-10.072

TABLE II

Material: AP (stock material); Peak #2 (exothermic); Meated vs. atmosphere

Sample #	Sample $kt.(g)$	Peak Tsnp. deg. C	T _{in} deg. K	Rate deg/min.	r ² (x 10 ⁻⁵)	Bate/72 (x 10 ⁵)	1/T _{li} (× 10 ³)	1n(Pata/1 ²)
				07.0	00 13 6	0 728	989-1	-10.509
1-02-1	0.5006	320°0	20566	2°60	70107			202 11-
1-70-2	0,5000	291.8	565°0	3°.8	C24ToC	ACTOT	2	
	0.1.006		544.2	2,00	2.9615	0.675	1.838	-11.906
T-T/-T	1001 0		570.2	8.86	3.3547	2.641	1.727	-10.539
	100+ 0			00 C	2012	1.181	1.813	-11.344
1-84-2	0.4935	2/803	20102	2200				118-11-
1-84-3	0°4974	263 °4	536 . 6	ຮູ	2.8174			
(-20-1	0.5067	313.7	<86.9	8°70	3.4445	2.526	101.I	020°07-
	0.50.6	287.1	560.3	3.40	3.1394	1.033	1.785	-11.433
		206 3	2005	02.11	3 , 594.0	060.4	1.668	-10°104
	0,000	222 6	KOK 7		3.5466	3.297	1.679	-10.320
7-4A-T		1 7 1 6	500 K		3.4763	2,819	1.696	-10.476
1-//-T	07/1C0	4•0TC	20200	22°	2 2228	0.280	1.722	-10.689
1-36-1	0.5007							-10.381
1-98-2	0.5039	314.9	588°1	01.01	00400			
2-2-1	0.5004	266.5	539.7	2,10	3.9128	0.721	1.8.3	-11°c#0
2-2-2	0-5041	284.0	557 °2	ع•د 8	3.1047	1.256	1°795	-11.285
5-11-0	0.2532	312.9	586.1	8,68	3.4351	2.527	1.706	-10.586
			ELE 6	110	2. 0770	3,171	1.833	-10.359
2-11-2	8TCZ*0	40212		2.44				

.

-1

	·			TABLE III				
Material:	AP (stock	material);	Peak #3 (e	ndothermic); Heated vs.	atricephere	0	
Sample #	Sample Mt.(g)	Peak Temp. deg. C	T _교 deg. K	Rate deg/min.	t ² (x 10 ⁻⁵)	Rate/T ² (x 10 ⁵)	1/T _h (x 10 ³)	ln(Rate/T ²)
1-70-1 1-70-2 1-70-2 1-84-2 1-84-2 1-93-1 1-93-1 1-93-1 2- 2-2 2-2-2 2-2-2	0.5006 0.4996 0.4996 0.4996 0.4996 0.4996 0.5004 0.5004	449.5 426.8 426.8 332.7 332.6 332.6 332.6 336.5 336.5 336.5 336.5 354.4	722.7 700.0 605.9 601.2 602.3 609.8 609.8 609.8 609.8 609.8 609.8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.2235 4.9000 3.9766 3.9766 3.7601 3.7173 3.7173 3.7173 3.7388 3.7173 3.7388	1.9433 0.7102 0.5746 2.1224 1.0106 0.5862 0.5662 0.5862 00	1.384 1.429 1.650 1.655 1.655 1.660 1.660 1.555 1.660	-10,849 -11,436 -12,067 -11,502 -11,502 -11,933 -11,910 -11,910
•				TAH.E IV				
Material: Sample #	a AP (stoo Semple	sk material); Peak Temp.	Peak #4	(exothermi) Rate	c); Heeted vs. T_ (x 10 ⁻⁵)	, atmosphel Rate/ <u>1</u> m	re 1/T _n (x 10 ³)]n(Rate/12)
1-71-1	Nt. (g) 0.4996	deg. C 428.0	deg. K 701.2	deg/min. 2.16	4.9168	(x 10 ⁵) 0.4393	1.426	-12.335

Water in A not

.

.

- ---

			1.	NBLE IV (con	nt。)	·		
					na (na series) and a series of the			
-84-1	1661°0	439°2	712.4	7°78	5°0751	1.5330	1.404	-11,086
842	0.4935	1,22,9	696.1	3.33	4.2256	0.6872	1.437	-11.858
R13	0.4976	1.00.0	682.2	2°03	4.6540	0.4362	1.466	-12.342
3 1 1	0.5067	1.1.7.9	721.1	7,80	5.1999	1,5020	1.387	201.11-
	0.5016	1.25.1	104.7		5.0226	0.7555	117-1	-11,752
10	0, 5027		732.2	3.6	5.3612	2.5927	1.366	-10. 550
1 - TC	0 5023		1200		270C2	1.470	1.371	
74-10			0 1 7 1 V		1 705.0	1905		310-01-
	0.4440				4 • 1 7 0 7	0.4440		007-01-
	6017-0	0 7 7 7		7007				617 11
1-11		0.144	20 97.1	0.50	CONT ² C			
7	0.2503	428.4	9.107	7•78	4.9224	0.4022	1.442	
5 1 7	0。2532	440.5	723.7	11.72	5°2374	2.2375	1.362	10/ 01-
13-1	0.2514	427.3	700.5	2 . 13	4.970	0.43	1.428	-12.347
13-2	0.2527	439.3	712.5	3.75	5.0766	- 1367	1.404	-11.616
13-3	0.2518	452.3	725.5	11.85	5.2635	2.2514	1.378	-10,701
· ·								
				TABLE V				
terial:	Coarse A	lP; Peak #1	(endothe n	nic); Heat	ed vs. atmosphe	ere Sre		
ple #	Sample	Peak Tomp.	۴.	Rate	T ² (x 10 ⁻⁵)	Rate/T ²	1/T _m (x 10 ³)	lr(Rate/T ₁₁)
	Wt.(g)	deg. C	deg. K	deg/min.		(x 10 ²)		
Ľ.	0.5007	247.4	520 .6	4.10	2.7102	1.5128	1.92	-11,096
N.	200-0	24.5.4	O° / TC	07.2	<>>10*2	1(0) 0	5.6.7	
ſ	0 5000	201 0			0 103 C			

					•		
X		•	•		· .		
1.776 1.729 1.735 1.722	0.59% 1.3025 2.5997 1.2171	3.1719 3.2707 3.3235 3.3686	1.90 4.26 8.64 4.01	563.2 571.9 576.5 580.4	290.0 298.7 303.2 307.2	0.5002	12221
1/1 _n (x 10 ³)	Rate/T ² (x 10 ⁵)	T ² (x 10 ⁻⁵)	Rate deg/min.	H E D D D D D D D D D D D D D D D D D D	Peak Temp. deg. C	Sample Wt.(g)	sple #
		vs. atmosphere	:); Heated	exothermic	; Poak #2 (Coarse AP	terial:
			TABLE VI			•	
1.903 1.885	0.0404 1.5075 3.01.68	z。1040 2。7594 2。8620	2.024 4.16 8.64	530.5 530.5 530.5	252.0 252.1 257.3	0.2007 0.2063 0.2254	-23-3 -23-3
1.846 1.846	1,4182 1,4182	2°9333 2°9333 2°9616	1°50 4°16 2'1	524°2 541,6 707 0	251.0 268.4	0,2021	រុក ដុក្ត
1,930 1,508 1,866	0.7634 1.6164 3.2755	2.6853 2.7468 2.8697 2.1170	2,05 4,44 9,40	528.2 524.1 535.7	245.0 250.9 262.5	0.5002 0.5023 0.2019	- 7-1
		(•;		1			
			BIE V (cont				
	1.930 1.930 1.938 1.907 1.901 1.903 1.903 1.903 1.903 1.903 1.903 1.903 1.903 1.903 1.752 1.752 1.752 1.752 1.752 1.752 1.7755 1.7755 1.7755 1.7755 1.7755 1.7755 1.7755 1.7755 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.6853 0.7634 1.930 2.7468 1.6164 1.930 2.7468 1.6164 1.930 2.8697 3.2756 1.865 2.7419 0.6914 1.901 2.7591 1.4182 1.865 2.7591 1.5075 1.865 2.7591 1.5075 1.901 2.7591 1.5075 1.903 2.7591 1.5075 1.903 2.7591 1.5075 1.903 2.7591 1.50775 1.885 2.7591 1.5075 1.885 2.7791 1.5075 1.885 7.646 0.8464 1.903 7.752 1.776 1.776 7.19 0.5990 1.772 3.2581 0.6139 1.772 3.2707 1.3025 1.776 3.3235 1.2771 1.772 3.3686 1.2771 1.772	HEF V (cont.) 2.0° 2.6853 0.7634 1.930 4.44 2.7468 1.6164 1.930 4.46 2.8697 3.2755 1.866 1.901 1.901 4.16 2.9333 1.4182 1.805 2.794 1.903 2.794 1.903 1.416 2.7646 0.8464 1.903 4.16 2.7694 1.5075 1.903 4.16 2.7694 1.5075 1.903 4.16 2.8620 3.0163 1.635 1.693 1.693 hate $T_{\rm m}^2$ (x 10 ⁻⁵) Rate/ $T_{\rm m}^2$ 1/ $T_{\rm m}^2$ (x 10 ³) deg/min. (x 10 ⁵) Rate/ $T_{\rm m}^2$ 1/ $T_{\rm m}^2$ (x 10 ³) deg/min. (x 10 ⁵) 1.3025 1.775 1.900 3.1719 0.55990 1.776 4.200 3.2561 0.6139 1.775 8.664 3.3335 2.55997 1.775 8.664 3.3368 1.2171 1.722	TABLE V (cont.) TABLE V (cont.) 524.1 $\frac{1.4.14}{4.4.4.1}$ $\frac{2.06853}{2.81668}$ 07634 1930 524.1 $\frac{1.4.14}{4.4.4.1}$ $\frac{2.7646}{2.89333}$ 07634 1930 524.5 $\frac{1.9}{4.16}$ $\frac{2.8653}{2.9149}$ 069914 1901 524.5 $\frac{1.9}{4.16}$ $\frac{2.7646}{2.93333}$ 069914 1901 524.5 $\frac{1.9}{2.9446}$ 27646 069914 1901 524.5 $\frac{1.6}{2.9}$ $\frac{2.7646}{2.0620}$ $\frac{1.6}{2.0652}$ 1683 524.5 $\frac{2.91}{2.0056}$ $\frac{2.6620}{2.00169}$ $\frac{1.6}{2.0653}$ 1690 525.5 $\frac{2.6620}{2.0160}$ $\frac{2.00169}{2.00169}$ 1901 $\frac{1.901}{2.905}$ 525.5 $\frac{2.6620}{2.0106}$ $\frac{2.00169}{2.0160}$ 1664 $\frac{1.001}{2.00169}$ 1901 Fmate T T T T 171 172 Fmate T T T 172 172 172 Fmate T T T T 172	TABLE V (cont.) Z45.0 S18.2 2.05 245.0 518.2 2.05 5.265 1.930 260.5 534.1 9.40 2.6657 0.7634 1.930 261.6 524.2 1.90 2.7448 1.666 281.0 524.2 1.90 2.7448 1.900 281.0 524.2 1.90 2.7544 1.900 282.1 525.3 2.16 2.7593 1.04182 1.900 282.1 525.3 2.16 2.7593 1.04182 1.900 282.1 525.3 2.16 2.7593 1.04182 1.900 282.1 525.3 2.16 2.7593 1.04182 1.900 282.1 525.3 2.16 2.7593 1.0303 1.990 282.1 525.3 2.16 2.7593 1.04182 1.900 282.1 526.2 2.0180 1.666 1.666 1.666 282.1 526.2 2.0180 1.683 1.693 282.1 1.241 1.271 1.71(1.105) 1.416 1 1.255.1 1.075 1.776 2.992 290.2 500.6 500.6 <td>TABLE V (cont.) TABLE V (cont.) 0.5002 24.5.0 518.2 2.04 2.667 1.664 1.990 0.5002 24.5.0 518.2 2.04 2.667 0.7634 1.990 0.5002 23.5.4 51.1.0 2.467 0.7634 1.990 0.5002 23.6.5 1.1.4.1 2.7645 0.7634 1.990 0.5002 23.6.5 4.1.6 2.7645 0.6711 1.901 0.2007 23.6.4 51.0 2.7645 0.6711 1.901 0.2005 28.2.1 5.34.2 2.744 1.901 1.901 0.2005 28.6.4 5.34.2 2.7645 1.901 1.901 0.2005 279.3 5.016 1.1675 1.901 0.2005 297.3 5.364 2.7645 1.901 0.2005 279.4 1.901 2.7794 1.901 0.2005 279.4 1.666 1.666 1.901 0.201 290.5 8.64 2.7794 1.901 0.2025 290.4 7 2.7794 1.901 0.2025 291.7 7 1.901 1.901 Mutoff factor Ta</td>	TABLE V (cont.) TABLE V (cont.) 0.5002 24.5.0 518.2 2.04 2.667 1.664 1.990 0.5002 24.5.0 518.2 2.04 2.667 0.7634 1.990 0.5002 23.5.4 51.1.0 2.467 0.7634 1.990 0.5002 23.6.5 1.1.4.1 2.7645 0.7634 1.990 0.5002 23.6.5 4.1.6 2.7645 0.6711 1.901 0.2007 23.6.4 51.0 2.7645 0.6711 1.901 0.2005 28.2.1 5.34.2 2.744 1.901 1.901 0.2005 28.6.4 5.34.2 2.7645 1.901 1.901 0.2005 279.3 5.016 1.1675 1.901 0.2005 297.3 5.364 2.7645 1.901 0.2005 279.4 1.901 2.7794 1.901 0.2005 279.4 1.666 1.666 1.901 0.201 290.5 8.64 2.7794 1.901 0.2025 290.4 7 2.7794 1.901 0.2025 291.7 7 1.901 1.901 Mutoff factor Ta

.

١

3 A 4

- 1

÷

				TABLE VII				
Material :	Coarse	AP; Peak #3;	Heated	vs. atmosph	ere			
Sample #	Sample Nt.(g)	Peak Temp. deg. C	Н dea. К	Rate deg/min。	T ² (x 10 ⁻⁵)	Rate/T ² (x 10 ⁵)	1/T _{2:} (x 10 ³)	ln(∺ate/ ⁿ² ¤
2-7-2	0.5023	399.3	672.5	4.12	4.5226	0116°0	1.467	-11-606
Material ;	Coarse A	P; Peak #4. (exothermi(; Heated	40. etaosphere	Ð		
Bemple #	Sample Nt.(g)	Peak Temp. deg. C	r a deg. K	Rate deg/min.	T ² (x 10 ⁻⁵)	Rate/T ² (x 10 ⁵)	1/1 ₂ (x 10 ³)	ln(Rato/T ² ,
2-7-2	0.5023 0.2019	448.6 1,69.1	721.8	4.22 9.10	5.2100 5.5101	0.8100 1.6515	1.385	-11.73
2-12-2	0.2027	46503	738.5	2.00 2.00 2.00	5.4538 5.4538 5.1538	0°7921 0.7921	1.354	
2 2	0.2063	457.9 454.6	1.127.8	4.32 8.64	5.2969	0.8082	1.367	-11-726

¥1~. **

•••

. (

;

· · · · · · ·

. ,

> , .

• -

ъ.,

. . .

.

• .

	1 mult	4 ClO ; Peak	A 1 (e ndot	TABLE IX	ated vs. atmosf	bher e		
1	Sample Wt.(g)	Peak Temp。 deg。 C	T A deg. K	Rate deg/nån。	T ² (x 10 ⁻⁵)	Hate/1 ² (x 10 ⁵)	1/T ₂₁ (x 10 ³)	ln(Rate/T ²)
1	0.1992 0.2017 0.1995 0.2005 0.2010	251.7 250.1 254.3 245.8 249.0	523.3 523.3 527.5 519.0 522.2	2.21 4.30 10.4 3.90 3.90	2.7552 2.7384 2.6996 2.7270	0.8021 1.5703 3.7376 0.7982 1.4301	1,905 1,910 1,695 1,914	-11,733 -11,733 -10,194 -11,738 -11,135
				TABLE X				
	HN mnfbei	L Clo ; Peak	#2 (exoth	ютіс); Н	cated vs. atmos	sphere		
	Sample M.(g)	Peak Temp. deg. C	deg. X	Rato deg/min.	T _H ² (x 10 ⁻⁵)	Ruto/1 ² (x 10 ⁵)	1/T _m (x 10 ³)	ln(Rate/T ²)
	0.2010 0.1995	303.3 325.6 327.6	576.6 598.9	10.5 10.4 1.16	3.3241 3.5868 3.5868	3.158 2.900	1.7343 1.6697	-10.363 -10.448 -11.271

であるが、おといいろいろうかないときます。 In(Rate/T_) ln(Rats/T² -11.059 -12,342 -11,609 -10,799 -12,553 -11,661 -10,837 1/T_m(x 10³) $1/T_{m}(x \ 10^{3})$ 1.924 1.915 1.893 1.392 1.361 1.400 1.333 1.333 1.333 Rate/1² (x 10⁵) Rate/T² (x 10⁵) 0.7812 1.5738 3.7269 0.4366 0.7433 2.0411 0.3534 0.8620 1.9662 Peak #4 (exothermic); Heated vs. atmosphere Peak #1 (endothermic); Heated vs. atmosphere T² (x 10-5) T² (x 10⁻⁵) 2.7009 2.7259 2.7878 5.1538 5.3949 5.0951 5.5741 5.1509 5.1509 TABLE XII TABLE XI deg/min. deg/min。 2°25 10°60 10°60 1°97 1°97 10°50 2.11 4.29 10.39 Rate Rete deg. K × 727.9 723.6 723.8 727.7 732.1 522.1 522.1 528.0 deg。 e-st Peak Temp. Peak Temp. 246.51 248.95 254.8 deg. C deg。 C 457.9 457.9 457.9 457.9 Material: Medium NH, ClO ; Fine NH Clo 1 **W.**.(g) Wt.(g) 0.2023 0.1392 0.2017 0.1995 0.2005 0.2010 Sample Semple Material: Semple # Sample # 1777 2-22-1 2-22-2 2-22-3 2-24-1 2-24-1 2-24-1 2-24-1

and the second se

とうかなる しょうしたい 一般 しょうせい

.

•	-11.712 -10.233 -10.233		ln(Rato/T_)	-10.482 -11.409		
•	1.929 1.925 1.893		1/T _E (x 10 ³)	1.706 1.623		
	0.8192 1.5383 3.6704	lere	Rate/T ² (x 10 ⁵)	2.803 1.109		
t.)	2.6853 2.6977 2.7926	ed vs. atmosph	112 (x 10 ⁻⁵)	3.4351 3.7970	Х	
LE XII (con	2.2 4.15 10.25 TABLE XIII	mic); Heat	Rate deg/min.	9.63 4.21	•	
TAB	518.2 519.4 528.0	2 (exother	여 ^태 여 태 (586.1 616.2		
	245.0 246.2 254.8	lo ₄ ; Peak #:	Peak Temp. deg. C	312.9 343.0		
•	0.1993 0.2048 0.2014	Plue NH ₄ C	Semple W. (g)	0.2014		•
	2-26-1 2-26-2 2-27-1	Storial :	Sample #	2-27-1 2-25-2		

•			ln(Rate/T ²)	-12.224 -11.726 -12.423 -12.423			ln(Rate/r ²)	-10.091 -11.619 -10.862	
•			1/T _n (x 10 ³)	1.453 1.399 1.399 1.431 1.431	1.374		1/7 _m (x 10 ³)	1.874 1.933 1.918	
		20	Rate/T ² (x 10 ⁵)	0.4909 0.8081 1.7104 0.4025 0.4025	1.6345	vacuum	Rate/1 ² (x 10 ⁵)	4.1459 0.7359 1.5817	
		ed vs. atmosph	T ² (x 10 ⁻⁵)	4.7362 5.1080 5.2619 4.9184 5.1022	5°291); Heated vs.	T ² (x 10 ⁻⁵)	2.8462 2.6770 2.7186	•
• • • •	TABLE XI	mic); Heat	Rato deg/mino	800 800 800 800 800 800 800	8.65 TABLE XV	endothermi:	Rate deg/min.	1.99 1.99 1.30	
		4 (exother	T D deg, K	688.2 714.7 721.8 698.6 714.3	15U°7	Peak #1 (d b dog.	533.5 527.4 522.4	
		lo 4 ; Pezk #	Peak Temp ₅ deg. C	4.15.0 4.15.0 4.25.4 4.25.4	454.02	material);	Peak Temp. deg. C	260.3 244.2 248.2	
•		Fine NHAC	Sample W. (g)	0.2013 0.2021 0.2020 0.1993	0.2014	AP (stock	Semple M. (g)	0. 5084 0. 5020 0. 5010	۰.
¢, 		Material:	Sample #	2-25-1 2-25-2 2-25-3 2-26-1	2-21-1	Material :	Sample /	1-87-3 1-88-2 1-68-1	• • •

•	•		·	TAN TIBLE XVI	• •			
faterial :	AP (stock	material);	Poak #23	Heated vs.	Vacuua			
Sample #	Sample Wt.(g)	Peak Temp. deg. C	deg。 X	Rate deg/min。	T ² (x 10 ⁻⁵)	Rate/Tm (x 10 ⁵)	1/T _n (:: 10 ³)	ln(Rate/ ⁷ in)
1-37-3 1-88-2 1-88-1	0.5020 0.5020 0.5010	304.05 258.3 275.1	5.777 531.5 548.3	8.10 3.60 3.60	3.3374 2.8249 3.0063	2.4270 0.7783 1.1975	1.731 1.881 1.824	-10.626 -11.763 -11.332
				TABLE XVII				
fateriel:	AP (stock	c material);	Peak #3;	Heated vs.	Vacuum			
Sample #	Sample W. (g)	Peak Temp. deg. C	л В deg. К	Rate deg/min。	1 <mark>2</mark> (x 10 ^{−5})	Rate/T ² (x 10 ⁵)	1/1 _m (x 10 ³)	ln(Rate/T ²)
1-87-3 1-88-2 1-88-1	0.5084 0.5020 0.5010	413.9 394.6 390.3	687.1 667.8 663.5	8.00 3.60	4.7211 4.4596 4.4023	1.6945 0.4709 0.8178	1.455 1.497 1.507	-10.985 -12.266 -12.714

Sample	Atmosphere	Peak No.	Slope	Autivation energy in cal./mole
Stock Ap	air	1	-37.0	73.6
Stock AP	air	2	- 9.7	18.2
Stock AP	air	3	-15.0	29.8
Stock AF	Rir	4	25.8	51.3
Coarse AP	air	ĩ	-11.9	23.7
Coarse AP	eir	2	-40.0	79.6
Coarse AP	air	3	a.H	en these
Coarse AP	air	4	70°0	139.3
Medium AP	air	1	-54.3	108.0
Medium AP	air	2	-15,06	31.6
Medium AP	arr	4	84.6	168.4
Fine AP	air	1	-45.0	. 89.6
Fine AP	sir .	2		_*.
Fine AP	air	4	-18.3	36.4
Stock AP	VECUUA	l	-60.0	119.4
Stock AP	48 C Hum	2	- 7.7	15.3
Stock AP	ASCINE .	3	-20.0	39.8

TABLE XVIII

* 3

insufficient data from which to make the celculation.

.

,