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ABSTRACT

The drag coefilclents as well as the stagnatlon
and base pressures of systems using an ogive oylinder or
skirted hemisphere as primary body and a flat plate, 45°
half-angle cone, sphere, and hollow hemisphere as secondary
body have been measured at transonlec and supersonic speeds,

The Mach number range was from 0.85 to 1,25 and
4,35, Secondary body size and body separation distance were
selected parameters. Thils 1s the fourth report in a series
of studles dealing with the free stream drag and wake phe-
nomena of bodies of revolution (see Refs 2, 3 and 4).

With a few exceptions in the transonic range, the

system drag was less than the sum of the free stream drag of
the fore and aft bodles,

This technicai documentary report has been reviewed
and 1s approved,
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““TTheron J. Baker
Vehicle ‘Equipment Division
AF Flight Dynamice lLaboratory
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1, INTRODUCTION

The deceleration or stabllization of a body moving
through the alr at high speed 1s often accomplished by deploy~
ing a second body downstream from this body to increase the
aerodynamic drag on the system, To predict the performance
of such a system, 1t 18 necessary to know the drag charac-
teristics of the two bodies when operating in comblination,
Obviously, the drag device, or secondary body, wlll perform
differently when in the wake of another body than in the free
stream. In particular, one would expect it to have less drag
in the wake than in the free stream,

It 18 not enough, however, to consider only the
effect of the wake on the secondary body, since its presence
may alter the drag characteristics of the primary body (by
Increasing the primary body base pressurs, for instance),
This would be particularly true when the drag device is
positioned relatively close to the primary body. Thus, it
appears that one should perhaps consider the two bodies as
a system when the distance separating the two bodles 1is not
large.

Information on the behavior of such two~body systems
is limited, particularly at high speeds, Therefore, ar ex~
perimental study of the drag characteristics of some two-
body systems at transoni. speeds and at Mco = 4,35 has been
conducted and the results are reported here,

Manuscript released by the authors December 1963 for publi-
cation as an RTD Technical Documentary Report,




2. MODELS, FACILITIES AND INSTRUMENTATION

2.1 Models

The two wake producing or primary bodles, an ogive
cylinder and a hemisphere-cylinder-cone combination called a
skirted hemisphere, are shown in Fig 1. The representative
decelerators or secondary bodies used were a c¢lrcular flat
plate, a cone with a 45° half-angle, a sphere and a hollow
hemisphere. Two sets of these bodies were constructed, one
with a diameter equal to that of the primsry body and one
with twice that diameter. The smaller bodies were positioned
at 2, 4, 6 and 8 primary body diameters downstream from the
primary body, while the larger ones were positioned at 2, 4
and 3 diameters downstream. Positioning of the hollow hemi.
sphere varied slightly from these values,

A rod of the proper length was permanently attached
to the nose of the secondary bodies, as shown for ths larger
bedies in Pig 2. The end of the rod was threaded for affixing
the primary bodies, which were thus interchangeable. The
assembled systems with the large cone as secondary body are
shown in Pig 3.

Pressure taps for measuring primary and secondary
body base pressures and secondary body stsgnation pressure
were located as shown in Fig U,

2,2 Wind Tunnels

The tests were conducted at the wir? tunnel facili-
ties of Rosemount Aeronautical Laboratories. Transonle tests
were performed in the 12" x 16" continuous flow, induction
type of transonic wind tunnel, and supersonic tests were coni~
ducted in the 6" x 9" continuous flow supersonic wind tunnel,
Details concerning these facilitles are presented in Ref 1,
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A typical model installation in the supersonic tunnel is
shown in Fig 5.

-

2.3 Drag Balance

The drag balance used to measure the drag of the
system is a mechanical-electrical device with its force
gensing unlt mounted co-axially with the models. The drag
force on the two-body system is transmitted by ita support
sting to flexible steel dlaphragms inside the sensing unit.
Deflection of these diaphragms is sensed by the motion of
the ccre of a Schaevitz Linear Variable Differential Trans-
former (LVDT), resulting in an electrical output from the
transformer proportional to the drag on the system, The
gignal from the IVDT 1s ¢transmitted through a control unit
to a Hrown Variable Span Recorder, which glves a permanent
record of the drag values. A more detalled desoription of
the balance is presented in Appendix III.

2.4 Flow Visuallzation

Conventional shadowgraph and Schlieren systems were
used for transonic and superaonic tests, respectively, to
observe and record flow characteristics about the bodiles,

2.5 Pressure Measurements

In addition to the body base and stagnation pressures
mentioned above, the balance interral pressure was measured
for sting corrections., The prescure taps were connected by
plastic tubing to mercury or merriam fluid (sp. g. = 1.05)
manometer boards, which were photographed during each test
to provide a permanent pressure recording.




3. RESULTS

The drag coefficients of tl.- systems using the
skirted hemisphere as primary body were measured at free
stream Mach numbers of about 0,85, 0,95, 1.05, 1,20 and 4.35.
For the systems using the ogive cylinder as primary body,
the drag coefficlents in the transonic range were obtained
from the results of Ref 2, with direct measurements made
only at M, = 4,35, All drag cocfficients are based on the
primary body frontal area, which was the same for all systems,

The results of these inveatigations are preasented
in this section. Base and atagnatior vressure coeffiocient
for the systems with the skirted hemispherc are included in
Appendix I, while photogranhs which indlcate characteristioc
or particularly interesting flow patterns are presented in
Appenauix II,

As shown in Fig 3, in most cases a thin rod was
arranged between the primary and gecondary bodies in order
to assure proper body alignments. This arrangement with
center rod was chogen primarily because of ite simpliclty.

In a few cases a centerline wire was used and a number of
experiments were also made without a connecting member be-
tween the two bodiea. In apite of the fact that one may
guspect that the presence of a rod or a centerline wire
inrluences the resulta of the measurements, merely the cone
ventional sting correction has been made in order 4o account
for the presence of the rod or the wire,

With the two bodles positioned relatively close to
each other, the flow reglon between them is practically iden-
tical to the one of the turbulent wake, and one may expect
that in these cases the influence of the rod or the centerline
wire is 1indeed negligible. When the secondary body is arranged
farther downstream, and particularly in a higher velocity flow




field, the flow pattern about the secondary body may be
altercd to a certaln extent through the centerline wire or
the rod, However, the results obtaluned .1ith the various
test arrangements, including those without connecting members,
do not provide differences distinctive enough to allow defl-
nite statements concerning the effect of the connecting
members,

From the practical viewpoint, the neglect of the
rod or wire effects also appears permissible since all
trailing aerodynamic decelerators do require some means of
suspension between the primary body and the tralling deceler-
ator, Therefore, the results obtained in the described fashion
appear to be acceptable for practical performance calculations,

3.1 Drag Coefflcients at Transonic Speeds With Skirted

Hemlsphere as Primary Body

The drag coefficlents of the vystems using the
skirted hemisphere as primary body at tranconic speeds are
presented in Pigs 6 through 13. The Reynolds numbers for
these tests varied from 3.1 x 105 to 3.3 x 105. The lower
reference curve in each of these figures gives the free streanm
drag coerficient of the primary body, while the upper curve
giveg the sum of the free stream drag coefficlents of the
primary and secondary bodies (both based on the primary body
projected arsa). These reference curves were obtained from
Ref 3,

Consldering firsl the results for the systems with
the flat plate (Figs 6 and 7), we note that the drag of the
system 1s considerably less than the sum of the free stream
draga of the twu bodies, With the smuller secondary body,
the system drag with the plate close tu the primary body is
only slightly larger than the free stream drag of the primary
body alone. Ac the body separation distance iIs increased,
the drag increases, cxcept in going from X/D = 6 to X/D = 8,

8
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Thi3 unexpected decrease, which occurs also for
the systems with the other secondary bodies (Figs 8, 10 and
12), has not been explained. It is not due to experimental
error, since the pressure measurements show the same trends,
See Figs 34 and 35 for an example, Whether it is caused by
some wind tunnel interference phenomenon or by the partli-
cular suspension system used or is actually characterisilc
of such two-body systems has not been established,

With the larger plate as secondary body the change
in drag with sepa—~ation alstance 1s not so great. It is
interesting to note that the measurementc at qu = 1,00 indl-
cate more drag with the secondary body at X/D = 2 than at 4,
This occurs for d/D = 2 at this Mach number fcr both the plate
and cone, while 1t occurs at all transonic Mach numbers for
the hollow hemisphere, Figure 35 indicates that a h.gher
pressure exists on the front of the plate at X/D = 2 than at
4, and Fig 36 indicates lower base pressure, substantiating
this result, It i1s probably caused by interactions between
the primary vody wake and the secondary body.

The results for the systems with the 45° half-angle
cone as secondary body, given in Pigs 8 and 9, show the same
general trends, however with a closer approach to the upper
reference curve, The drag of the system with the large cone
at X/D = 8 1s approximately equal to the sum of the free
glream drags of Lhe iwo bodies.

The systems with the sphere and hollow hemisphere
(Pigs 10 through 13) also behave in the same general manner,
with the trends for the system with the sphere being more
like those of the cone and those for the system wilth the
hollow hemisphere more like the flat plate.

These results are also plotted as drag efficiency,
71: CDt/(CDl + szooéga, versus X/D in Figs 14 through 17,
The systiems with d/D = 1 show a smooth increase in drag with
increasing body separaticn distance (except from X/D =6 to

17
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8, as noted previously), while those with 4/D = 2 tend to
dip at about X/D = 4, At the lowest Mach number (0.85) all
of the systems with /D = 1 have about t%» same drag effi-
clency; at higher Mach numbers the curves spread, however,
with the spread increasing with increasing Mach number,

The systems with the sphere and 45° half{-angle
cone are generally more efficlent than those with the plate
f and hollow hemisphere, It is also interesting to note that
the systems with the flat plate and hollow hemisphere as
secondary body have about the same drag efficlency at 4/D = 1
as at d/D = 2 for X/D # U4, part!~ularly at the higher Mach
numbers,

3.2 Drag Coefficients at Transonic Speeds with Ogive
Cylinder as Primary Bog&

Reference 2 presents the drag coefficlents »f a
flat plate, 47° half-angle cone, and sphere in the wake of a
cylindrical body at transonic speeds. Included are measurements
of the base and surface pressure on the cylinder. With the
assumption that the wake of the cylindrical body used in these
tests 18 the same as that of an oglve cylinder and that the
presence of a downstream body would not alter the pressure
on the nose of the ogive cylinder (which is indicated to be
true in Appendix IV of Ref 2), these test results were used
to calculate the aystem drag of the ogive cylinder in combi-
nation with the flat plate, 45° hzlf-angle cone, and sphere.
The syatem drag was thus calculated by

S
Op, = S;'CDQ (from Ref 2) + Cpy (from Ref 3) - (chl - cpbl)’

where Cpb i1s, the base pressure coefficient of the cylinder
with the Aecondary body present and Cp; is the base pressure
1




coefficient of the cylinder without a secondary body. Values
for Cpbl and Cpgl were obtained from Ref 2, '

The results of the calculations are presented in
Figs 18 through 23. The trends indicated are very similar
to those observed through direct measurements for the systems
with the skirted hemlsphere as primary body. The drag of
the systems with the smaller secondary bodies at X/D = 2 is
nol as close to the lower reference curve, however,

It iz interesting to note that for Mm> 1 the
oplve cylinder - flat plate system with 4/D = 2 has more
drag with the plate at X/D = 2 than at 4, Just as tho skirted
hemisphere - flat plate system did at Mg, = 1,08,

These results are also plotted as drag effleclency
versus X/D in Figs 24 through 27. The same general trends
are indicated for the ogive cylinder primary body systems
ag for those with the skirted hemispher- as primary body,
except * t the curves for 4/D = 1 are not as steep from

X/MDw 2t X/MD = b,

3.3 Drag Coefficlents at ng = 4,35

The drag coefficients of the various systems at
Mp = 4,35 are presented in Pige 28 through 31, The Rey-
nolds number for thege tests was about 3.0 x 105, except
where noted differently., Free stieam reference values piven
are from Ref 3.

There 18 sume similarity between these curves and
those at transonlc speeds, but the drag coefficient values
are generally much farther bzlow the upper reference values,
For the systems with the skirted hemisphere as primary body
and 4/D = 1 (Pig 28). Cp, at X/D = 2 18 about equal to the
drag coefficient of che skirted hemisphere slone., It in-
creases as X/D increases to 4, but then drops of remains
about the same with further increase to X/D = 8,

J{v}
w

R R S O R R, SIS H

s

o o Y




2.2

D D
= q::lg"'x L B
- ¢ o’-
18 CouCo,

14 Z o
"/’ / é _——0
"
12
0—4—-—“"4/ :/
10 /
Cp‘ o o
08
/0
/
06 ?"‘9'/
"]

/

0.2 - 2
o g X/o %g
o 79

0 '8 S0 95 100 M 105 110 1% 120 125

FIG18. SYSTEM DRAG COEFFICIENT FOR OGIVE

CYLINDER AND FLAT PLATE WITH d/D=1 AT TRANSONIC
SPEEDS. (CALCULATED FROM RESULTS OF REF 2)

ol

-~ ook - e e DS S




72
P A
6.4 S
// “CorCoZ
56
7
[ T S——
48 /
I’
4.0—-..-—-5-/ /ﬁ:\\
CD‘ o . —7 \
" D
o—] D r—x-l .i
16 ¢ X/D=20
. 40
° 79
08 |
00 Vs o0 & 100 106 110 1B 120 125

FIG 1@ SYSTEM DRAG COEFFICIENT FOR OGIVE
CYLINDER AND FLAT PLATE WITH d/D=2 AT
TRANSONIC SPEEDS. (CALCULATED FROM RESULTS OF REF. 2)

25




T T T

18 D; X —1 __[f

16 —T CD,.' . n, e
e J>/f
o 79 ]

14

-~

C:tz / “
0 1 // /,-/
o—] — //

08 ®
. e // "
L)
(T
o’
04 X
/ e
0.2 . — /
Iy
o Y\
O 85 90 95 100 108 M, 10 115 120 125

FIG 20, SYSTEM DRAG QOEFFICIENT FOR OGIVE
CYLINDER AND 45° HALF-ANGLE CONE WITH d/D=1
AT TRANSONIC SPEEDS. ( CALCULATED FROM RESULTS OF REF. 2)

26




T ]
D

64 - 4 r.-x‘i =

vam— <'T

£6 @ XD=20
| ] 1 e .
¢ 79 <: o C“:.E"
Bl—
4 X /
7~ —°
7

\\
/’}.

Cu; A B ////‘.o\:\\

Ny
32 —— e .
.u.._.-—/' / \

o \o
24 .-—-:"“/
16
08 - #CD,.
o Y,

0O 85 90 o5 100 105 110 15 120 125

Mo

FIG 21 SYSTEM DRAG COEFFICIENT FOR OGIVE
CYLINDER AND 45° HALF-ANGLE CONE WITH-dD=2
AT TRANSONIC SPEEDS. (CALCULATED FROM RESULTS OF REF 2)

27




L
1.6 < : C}"_—;:::
O X/ID: 20
a .
O ;.: CD1:CDQ.
—
1.2 / //
Co, //C / / /D
' /” 0/ v o
]
O'// ID// O =
o / -
04 / ’ /(<Cf’1
o—" " i
_—
_//
© 85 .95 1 '35 1.15 1.25
[+ +]

FIG 22. SYSTEM DRAG COEFFICIENT FOR OGIVE

CYLINDER AND SPHERE WITH d/D=1 AT
TRANSONIC SPEEDS, (CALCULATED FROM RESULTS
OF REF 2)

28




o x—y 3
oul T
—
® X/D=20
[ . 4.0
A 8.0
4.8
Cn, + Cn.
. e 0% |
/ﬂ ~e
o /‘._"""-""‘""--ﬁ..
32 D T ———
////-/ - =t

7

1.6

0.85 .95 1.05 115 1.25

Me

FIG 23, SYSTEM DRAG COEFFICIENT FOR OGIVE
CYLINDER AND SPHERE WITH d/D =2 AT

AT TRANSONIC SPEEDS. (CALCULATED FROM RESULTS
OF REF 2)

29




1.0r I
._.--—--;:"’“;
.—""-'——___ /‘;"‘
//”T ///;/ —-""“'—"u
08 — i pr s s o
»"’ ,..——""‘—'
// ,/// - /
$/l [~ %‘/
// ,
4
/
/
06 ~
//
N )
o 11
dDst /e
O B CRCULAR FLAT PLATE
0.2 A A 42 HNF-ANRE CONE e
O @ SPHERE
0

o) 10 20 30 4.0 50 60 70 8.0

FIG 24.SYSTEM DRAG EFFICIENCY OF OGIVE

CYLINDER  AND VARIOUS SECONDARY BODIES
AT M_=0.85.

30




1.0
[ |
LN ,"”"‘J
~ 4
- _.___,-" ‘____,_._....'A
-1
08 = -2—4

06

|
0
0 10 20 30 4.0 50 60 70 8.0
XD

FIG 25SYSTEM DRAG EFFICIENCY OF OGIVE
CYLINDER  AND VARIOUS SECONDARY BODIES
AT M= 0.95.

31




1.0

08 %—;‘r"’/ I //ﬂ’ /Z"i

//
/ &
/’/'
.\/J
06 7 =
O
n
Q4 /
1]
dDat /D2
O @ CIRCULAR FLAT PLATE
0.2 D A 42 HAF-ANGLE OONE o
O O SPHERE
O ™0 20 30 40 86 60 70 80

X/ID

FIG 26.SYSTEM DRAG EFFICIENCY OF OGIVE
CYLINDER  AND VARIOUS SECONDARY BODIES
AT M= 1.05.

32

o GENCHATRIRS




1.0 !
/L‘—“_‘o
/ e
<)
(,/ — P —&
o 4
/ S J/;//u
08 * ’4 "V

’
A
7/ /
t
| [/ A /
06 Vs -

/‘ /
[
/ _
~ /
\'L_-_.//
04 o
dDst /D2
0O B CROUWAR FLAT PLATE
0.2 o A 4P FAF-ANGLE CONE o
O © SPHERE
|
o)

0 10 20 30 4.0 80 60 70 8.0
X/D

FIG 27 SYSTEM DRAG EFFICIENCY OF OGIVE

CYLINDER  AND VARIOUS SECONDARY BODIES
AT M=1.18.

|
|
|
|
|
l
L
33 !
i




11
| | }
M
et 7/
10 - M/
/ \“Z o
0% //f ?
0.8
ﬁ/
. A o T TR
Teo
07 o
06
Co,
05
04
SECONDARY BODY ¢
03 0 CIRCULAR FLAT PLATE z —
A 48° HALF -ANGLE CONE =185
o SPHERE :1.68
O HOLLOW HEMISFHERE =245
02 (Cp, AVE. VALUE BETWEEN M,z4.35
* AND M_z=500)
i
o1 %::: o
D D
] | ]
0 10 20 30 40 50 60 70 80

FIG 28 SYSTEM DRAG COEFFICEENT FOR SKIRTED
HEMISPHERE AND VARIOUS SECONDARY BODIES WITH
diD=1 AT Mr 4.35.

XD

34




40 T
l | ! I S, |
w CIRCULAR FLAT PLATE CD‘: Co,;s' : 7.15

36 t—— & 45°HALF-ANGLE CONE =515
e SPHERE =447
¢ HOLLOW HEMISPHERE =755

?t_ —.tf\'.i :
2.8 e
D 2D
/ ‘\

24 / \

20 /
/ d—negmae x10> / /
16 0\#\..___/ /'T/
1.2 ‘\ }A/
18] vmrrmyeraps gy sy §W4 ....... SN IS ]

Q4

/
N

0

0 10 20 30 40 X/D 50 60 70 80
Rez30x10°

FIG 29. SYSTEM DRAG COEFFICIENT FOR SKIRTED

HEMISPHERE AND VARIOUS SECONDARY BODIES
WITH d/D=2 AT M= 435,

35

e A, . s - i i




11
10
Yo
o7
Q
Co,
0d}--=omdemcacde mnans - Co (APPROYJ === = - R L b o
v"l
Q3 -
SECONDARY BODY
0 CIRCULAR FLAT PLATE ¥
,, A 45° HALF-ANGLE CONE 15
Q2 0 SPHERE 13
o HOLLOW HEMISPHERE 2.1
°’ CY_L:*:X_:L-J ! :
D D
0 1 3 g [ '
0 10 20 30 40,0 50 60 70 80

FIG 30 SYSTEM DRAG COEFFICIENT FOR OGIVE
CYLINDER AND VARIOUS SECONDARY BODIES WITH
d/D=1 AT M_= 4.35. %



e SPHERE

SECONDARY BODIES c%c%-gz

® CIRCULAR FLAT PLATE 268
36— A 45° HALF-ANGLE CONE 48

41

¢ HOLLOW HEMISPHERE 72 /

| X
% C::_‘:_j{\;__.
28— D

0/

2.4 J /./ 49
Co, / / / /
20 V. / i/ /
R4
Z 8
16 / 7/ z
12 ‘7‘({ j{
'0 :—M/ f
og———
|
Q4 -===A--=m= e Cp (APPROK) = = = = mm oo = == R RETs EEEE
%5 0 20 0 40yp 50 60 70 & 70 80

FIG 31 SYSTEM DRAG COEFFICENT FOR OGIVE 'OR OGIVE
CYLINDER AND VARIOUS SECONDARY BODIES WIBODIES WITH

d/D=2 AT M,=435.

37

|
|




With the larger secondary bodies (Fig 29), except
for the conc, Op, decreases from X/D = 2 to X/D = 4 and then
begins a gradual 1increase. A lower value ror the cone at
X/D = 4 (flagged symbol) was obteirad by lowering the wind
tunnel stagnation pressure by about half. Pressure coeffi-
clent changes on the bodies (Fig 47) substantiate the lower
value. This indicates the possibllity of stirong Reynolds
number effecte. This phenomenon was not studied any further
because it was beyond the scope of this investigatilon.

The systems with the oglve cylinder as primary
body (Figs 30 and 31) indicate a more regular increase of
drag with increasing body separation distance, but as in
Figs 28 and 29 the type of secondary body does not seem to
be particularly significant, except for the large cone. The
system with the cone shows a drag coefficient at X/D = 8
of better than 80% of the free stream reference value, while
with the other bodies it 1s around 50% and less. The Schlieren
photograph of this test (Fig §6C) shows a strong, steady
secondary body shock.

It should be noted here that the Schlieren photo~
graphs in Appendix IT indicate that unsteady flow phenomena
about the secondary body accompany many of the supersonic
tests, particularly those with the large flat plate and hollow
hemisphere, The drag values presented represent the average
of a continuous recording tsken over a short period of time,

It 1s interesting to note that with the larger
secondary bodies the systems with the more streamlined
primary body have the greater drag at X/D = 8, indicating
that the reduction in secondary body drag due to the larger
wake of the skirted hemisphere more than offsets the greater
drag of this body.

These results are also presented as drag efflclency
versus body separation distance in Figs 32 and 33. GQenerally,
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the systems with d/D = 1 have greater efficiency than those
with /D = 2 in the X/D range of these tests. This may be
understood in view of the fact that the drag of the primary
body, which 1s only slightly altered by the presence of the
secondary body, 1s a large percentage of the system drag.
Also, as in transonic flow, the systema with the
flat plate and hollow hemisphere have quite aimllar effi.-
ciencles at M, = 4,35, The same 18 true with the sphere
and 45° half-angle cone,




4, CONCLUSIONS

Within the scope ¢ thls study, a strong inter-
actlon between the drag of the forebody and the secondary
body was noticed. With a few exceptions in the transonie
range, the drag of the system was less than the sum of the
drag of the two bodies in the free stream. In the excep-
tional cases the drag of the system was about equal to the
sum of the drag components,

The relative size and location of the secondary
body, as well as the free stream Mach number, are the
governing parameters. In an isolated case involving the
5° half-angle cone as secondary body, an appreciable
Reynolds number influence was detected. (A further summary
o other but related wake phenomena is given in Ref 5.)
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APPENDIX I
CRESSURE COEFFICIENTS

As support for the drag measurements and also tb
indilcate the pressure levels to which similar decelerators
may be subjected, the primary body base pressure and secondary
body stagnation and base pressure coefficients have been
determined. Those for the systems with the skirted hemisphere
ag primary body at transonic speeds are given in Pigs 34
through 45, PFor the tests at supersonic speed the pressures
are presented in Figs 46 through 53. _ '

Similar data for the ogive cylinder as forebody are
presented in Ref 2.

Since the trends here are generally the same as
those for the drag coefficients, a detalled discussion of
these results 18 not presented, However, a few interesting
points may be made.

The base pressure of the secondary bodjes varies
very little with X/D at both transonic and supersonic speeds,
At Mco = 1,35 the primary body base pressure alsc 1s little
alffected by X/D changes, particularly with 4/D = 1. Thus,
i1t appears that most of the reduction in system drag at
supersonic speeds 18 due to reduced pressures on the front
gi1dc of the seccndary body.

Figures 46 through 53 indicate that at M., = 4.35
the primary body base pressure and sec.:ndary body stagnation
pressure are generally about the same when the bodies are
close together, indicating the presence of a more or less
completely separated region between them.

In a review of the following graphs, a certain
allowance should be made for experimental ~-rors,
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FIG 42 BASE PRESSURE COEFFICIENT OF SPHERE

IN WAKE OF SKIRTED HEMISPHERE AT TRANSONIC
SPEEDS.
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APPENDIX IT
REPRESENTATIVE FLOW PHOTOGRAPHS

In this appendix a number of flow photographs are
presented, Many of them should not be consldered to be very
significant. but the pictures are included as addltional
experimental material and as a matter of record,
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A) XID 20, Mest088, Rge313x10%

C) XID:+60, Me:1062, R 312 x10°

FIG 54 FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
FLAT PLATE WITH d/D =1 AT TRANSONIC SPEEDS wontueD)
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F) XID =60, Mw:1210, R =317 x%0°

FIG 54 FLLW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
FLAT PLATE WiTh d/D=1 AT TRANSONIC SPEEDS concisen)




B) XD+ 4D, Merl202, Rgs3Ba0P

C) XID+80, Mas1285, n.-mx
FIG 55. FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
FLAT PLATE WiTH 6iD =2 AT Me3125
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A) XID =20, Mues1085, Rgsd0x0®

C) XID 80, Me 11085, ,.no!*

FIG 56 FLOW SHADOWGRAPMS OF SKIRTED HEMISPHERE AND
8% HALE -BNGLE CONE WITH d/D =1 AT TRANSONIC

SPEEDS (contmyen:
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D) XiD + 20, Ma3128, Red32x10°

F) XIDs80, Ma:1219, Rys37 x¥W05

FIG 56, FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
45 HALF-ANGLE CONE WITH ¢/D =1 AT TRANSONIC
SPEEDS (CONCL DED
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A) XD 20, Mast283, Rgs3.34 108

C) XD 280, Mas1i208, Resi34x0®
FIG 57 FLOW SHADOWGRAPHS OF SKIRYED HEMISPHERE AND
45° HALF -ANGLE CONE WITH d/D -2 AT Mw 2125
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FIG 58 FLOW SHADC'WGRAPHSOF SKIRTED MEMISPHERE AND
SPHERE WITH d/D =1 AT TRANSONIC SPEEDS (contineD)
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FIXD 80, Mesi22, Rpadi5x10%

FIG 58 FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
SPHERE WITH d/D =1 AT TRANSONIC SPEEDS woncum .0
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C) XID = B0, Meri074, Res35x10°
FIC 59 FLOW SHADOWGRAPHS OF SKIRTED HEMIS: AERE AND
SPHERE WITH d/0 = 2 AT TRANSONIC SPEEDS contn €D)
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D) X/D s 40, Meslid0, ResdWx10?

E)X/D 80, Mas1262, ResAdx10°

FIG 59. FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
SPHERE WIT!H /D =2 AT TRANSONIC SPEEDS ConcLuen
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FIG 60 FLOW SHADONGRAPHS OF SKIRTED HEMISPHERE AND
HOLLOW HEMISPHERE AT TRANSONIC SPEEDS (contnueD
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Ef alD., xm-24. M.taes. Rge 321 x 1
FIG 60 FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
HOLLOW HEMISPHERE AT TRANSONIC SPEEDS (ConCuoeD)
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APPENDIX III
DRAG BALANCE SYSTEM

The drag balance system includes the balance (the
mechanlcal portion of the system) and the assoclated elec-
tronic instrumentation. The balance, an exploded view of
which 1s shown in Fig 69, 1s composed of two primary parts,
the main body and the drag sensing capsule, The electronic
ingtrumentation conusists of the drag sensling and calibration
transformers, a signal generator, a control unit and a re-
cording unit,

The main body of the balance, which 18 2.05 inches
long and 1,554 inches in diameter, forms the fixed comporient
of the balance and is rigidly attached to the balance support
sting. It houses the drag sensing transformer on a posltioner
and als<c an internal pressure tap and thermocouple., The
Schaevitz Linear Variable Differential Transformer (Tyve 010M-L)
1¢ attached to the upstream end of a positioning rod, The
other end of the rid is spring loaded against a camn, which
provides axial positioning of the transformer,

The drag sensing capsule, which 18 3,102 inches
long and 1.554 inches in diameter, is composed of a fixed
inner shell and a floating outer shell. The two shells are
coaxlally arranged and are connected by two ring type steel
diaphragms which provide the spring force for drag sensing.
The inner shell slides onto the inner tube of the main body
and 1s rigldly attached to the main body by an adjustment
rod which provides adjustment of the wldth of the slot between
the main body and outer shell of the drag sensing capsule,

The outer shell, which is thus free to deflect the
diaphragms, forms the drag sensing clement. The transformer
core 1s attached to its downstream end ana the test model
sting 1s rigidly attached by means of an adapter to the
upatream end,
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A drag force on the test model causes an axial
displacement of the outer shell of th~ drag sensing capsule
relative to the fixed main body. This displacement, which
18 proportional to the drag on the model, is sensed by the
Schaevitz LVDT, The IVDT 13 energlzed by a 10KC signal
generator and its output is transmitted to & Brown Variable
Spar Recorder through the control unit. Since the output of
the signal generator to the INDT must be constant, the
generator 1s voltage regulated and is located in a sound-
proofed rocm to isolate 1t from tunnel nolse.

As a displacement of the outer shell of the drag
sengsing capsule causes an equal displacement of the trans-
former core within the transformer, the transformer gives an
output wnich is proportional to the drag. The control unit
converts this output into useful recorder Information and also
extends the recorder range, permitting measurement of drag
over g wide range without loss of sensitlvity. Two other
LVDTs, a "Hi" and a "lo" at different points on the scale,
are used as calihration tranaformers, to provide a continual
check on the accuracy of the system and minimize errors dus
to temperature fluctuations,

A linear variation of transfermer output with drag,
good sensitivlity and excellent zero return are o.tained,
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With a few exceptions in the transonic range, the system drag wes less then
the sum of the free stream drag of the fore and aft bodies.
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