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ABSTRACT

The drag coefficients as well as the stagnation

and base pressures of systems using an ogive cylinder or

skirted hemisphere as primary body and a flat plate, 450

half-angle cone, sphere, and hollow hemisphere as secondary

body have been measured at transonic and supersonic speeds.

The Mach number range was from 0.85 to 1.25 and

4.35. Secondary body size and body separation distance were

selected parameters. This is the fourth report in a series

of studies dealing with the free stream drag and wake phe-

nomena of bodies of revolution (see Refs 2, 3 and 4).

With a few exceptions in the transonic range, the

system drag was less than the sum of the free stream drag of

the fore and aft bodies.

This technical documentary report has been reviewed

and is approved.

' Theron JiaerVehicle Equipment Division
AF Plight Dynamics Laboratory
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2. INTRODUCTION

The deceleration or stabilization of a body moving

through the air at high speed is often accomplished by deploy-

ing a second body downstream from this body to increase the

aerodynamic drag on the system. To predict the performance

of such a system, it is necessary to know the drag charac-

teristics of the two bodies when operating in combination.

Obviously, the drag device, or secondary body, will perform

differently when in the wake of another body than in the free

stream. In particular, one would expect it to have less drag

in the wake than in the free stream.

It is not enough, however, to consider only the

effect of the wake on the secondary body, since its presence

may alter the drag characteristics of the primary body (by

increasing the primary body base pressure, for instance).

This would be particularly true when the drag device is

positioned relatively close to the primary body. Thus, it

appears that one should perhaps consider the two bodies as
a system when the distance separating the two bodies is not
large.

lnformation on the behavior of such two-body systems
is limited, particularly at high speeds. Therefore, ar ex-
perimental study of the drag characteristics of some two-
body systems at transonic speeds and at M = 4.35 has been
conducted and the results are reported here.

Manuscript released by the authors December 1963 for publi-
cation as an RTD Technical Documentary Report.
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2. MODELS, FACILITIES AND INSTRUMENTATION

2.1 Models

The two wake producing or primary bodies, an og~lve

cylinder and a hemisphere-cylinder-cone combination called a
skirted hemisphere, are shown in Fig 1. The representative

decelerators or secondary bodies used were a circular flat
plate, a cone with a 450 half-angle, a sphere and a hollow
hemisphere. Two sets of these bodies were constructed, one
with a diameter equal to that of the primary body and one

with twice that diameter. The smaller bodies were positioned
at 2, 4, 6 and 8 primary body diameters downstream from the
primary body, while the larger ones were positioned at 2, 4

and 8 diameters downstream. Positioning of the hollow hemi-
sphere varied slightly from these values.

A rod of the proper length was permanently attached
to the nose of the secondary bodies, as shown for the larger
bodies in Pig 2. The end of the rod was threaded for affixing
the primary bodies, which were thus Interchangeable. The

assembled systems with the large cone as secondary body are
shown in Fig 3.

Pressure taps for measuring primary and secondary
body base pressures and secondary body stagnation pressure

were located as shown in Fig 4.

2.2 Wind Tunnels

The tests were conducted at the wirA tunnel racili-
ties of Rosemount Aeronautical Laboratories. Transonic tests

were performed in the 12" x 16" continuous flow, induction
type of transonic wind tunnel, and supersonic tests were con-

ducted in the 6" x 9" continuous flow supersonic wind tunnel.
Details concerning these facilities are presented in Ref 1.

2
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A typical model installation in the supersonic tunnel is

shown in Fig 5. r

Drag Balance

The drag balance used to measure the drag of the

system is a mechanical-electrical device with its force

sensing unit mounted co-axially with the models. The drag

force on the two-body system is transmitted by its support

sting to flexible steel diaphragms inside the sensing unitI

Deflection of these diaphragms is sensed by the motion of

the ccre of a Schaevitz Linear Variable Differential Trans-

former (LVDT), resulting in an electrical output from the
transfoimer proportional to the drag on the system. The

signal from the LVIDT is transmitted through a control unit

to a Brown Variable Span Recorder, which gives a permanent

record of the drag values. A more detailed description of

the balance is presented in Appendix 1II.

2.4 Flow Visualization

Conventional. shadowgraph and Sohlieren systems were

used for transonic and superionic tests, respectively, to

observe and record flow characteristics about the bodies.

2.5 Pressure Measurements

In addition to the body base and stagnation pressures

mentioned above, the balance internal pressure was measured

for sting corrections. The pxzeszure taps were cornected by

plastic tubing to mercury or merriam fluid (sp. g. - 1.05)

manometer boards, which were photographed during each test

to provide a permanent pressure recording.

6
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3. RESULTS

The drag coefficients of th" systems using the
skirted hemisphere as primary body were measured at free

stream Mach numbers of about 0.85, 0.95, 1.05, 1.20 and 4.35.

For the systems using the ogive cylinder as primary body,

the drag coefficlnts in the transonic range were obtained

from the results of Ref 2, with direct measurements made

only at M o 4.35. All drag coefficients are based on the

primqry body frontal area, which was the same for all systems.

The results of these investigations are presented

in this section. Base and stagnatior pressure coefficient

for the systems with the skirted hemispher. are Inclu4ed in

Appendix I, while photographs which indicate characteristic

or particularly interesting flow patterns are presented in

Appencatx I1.

As shown in Fig 3, in most cases a thin rod was
arranged between the primary and secondary bodies in order

to assure proper body alignments. This arrangement with

center rod was chosen primarily because of its simplicity.

In a few cases a centerline wire was used and a number of
experiments were also made without a connecting member be-

tween the two bodies. In spite of the fact that one may

suspect that the presence of a rod or a centerline wire

influences the result3 of the measurements, merely the con-

ventional sting correction has been made in order to account

for the presence of the rod or the wire.

With the two bodies positioned relatively close to

each other, the flow region between them is practically iden-

tical to the one of the turbulent wake, and one may exzpct

that in these cases the influence of the rod or the centerline

wire is indeed negligible. When the secondary body is arranged

farther downstream, and particularly in a higher velocity flow

7



field, the flow pattern about the secondary body may be

altercd to a certain extent through the centerline wire or

the rod. However, the results obtained ,.th the various

test arrangements, Including those without connecting members,

do not provide differences distinctive enough to allow defi-

nite statements concerning the effect of the connecting
members.

From the practical viewpoint, tho neglect of the

rod or wire effects also appears perinissible aince all

trailing aerodynamic decelerators do require some means of

suspension between the primary body and the trailling deceler-

atnr. Therefore, the results obtained in the described fashion

appear to be acceptable for practical performance calculations.

Drag Coefficients at Transonic SPeeds WIth Skirted

Hemisphere as Primar Body

The drag coefficients of tho oystems using the

skirted hemisphere as primary body at tranconic speeds are
presented in Figs 6 through 13. The Reynolds numbers for

these tests varied from 3.1 x 105 to 3.3 x 105. The lower

reference curve in each of these figures gives the free stream

drag coefficient of the primary body, while the upper curve

gives the sum of the free stream drag coefficients of the

primary and secondary bodies (both based on the primary body

projected area). These reference curves were obtained from
Hefr 3. Considering first the results for the systems with

the flat plate (Figs 6 and 7), we note that the drag of the

system is considerably lea6 than the sum of the free stream

drags of the two bodies. With the smuller secondary body,

the system drag with the plate close to the primary body is

only slightly larger thnn the free stream drag of the primary

body alone. As the body separation distance is increased,

the drag increases, except in going from X/D = 6 to X/D = 8.

I
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This unexpected decrease, which occurs also for

the systems with the other secondary bodies (Figs 8, 10 and

12), has not been explained. It is not due to experimental

error, since the pressure measurements show the same trends.

See Figs 34 and 35 for an example. Whether it is caused by

some wind tunnel interference phenomenon or by the parti-

cular suspension system used or is actually characteristic

of such two-body systems has not been established.

With the larger plate as secondary body the change

in drag with sepa'ation aistance is not so great. It is

interesting to note that the measuremento at M. = 1.0 indi-

cate more drag with the secondary body at X/b - 2 than at 4.

This occurs for d/D = 2 at this Mach number fer both the plate

and cone, while it occurs at all transonic Mach numbers for

the hollow hemisphere. Figure 35 indicates that a hLgher

pressure exists on the front of the plate at X/D = 2 than at

4, and Fig 36 indicates lower base pressure, substantiating

this result. It is probably caused by interactions between

the primary body wake and the secondary body.

The results for the systems with the 450 half-angle

cone as secondary body, given in Figs 8 and 9, show the same

general trends, however with a cloqer approach to the upper

reference curve. The drag of the system with the large cone

at X/D = 8 is approximately equal to the sum of the free

s Lre. dxragb of the Lwo bodieu.

The systems with the sphere and hollow hemisphere

(Figs 10 through 13) also behave in the same general manner,

with the trends for the system with the sphere being more

like those of the cone and those for the system with the

hollow hemisphere more like the flat plate.

Th~se results are also plotted as drag efficiency,

?.,= cDt/+CDI CD2o•I), versus X/D in Figs 14 through 17.
The systems with d/D =11 show a smooth increase In drag with

increasing body separation distance (except from X/D = 6 to

17
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8, as noted previously), while those with d/D = 2 tend to
dip at about X/D = 4. At the lowest Mach number (0.85) all
of the systems with d/D = 1 have about tti same drag eff1-
ciency; at higher Mach numbers the curves spread, however,

with the spread increasing with increasing Mach number.

The systems with the sphere and 450 half-angle

cone are generally more efficient than those with the plate

and hollow hemisphere. It is also interesting to note that
the systems with the flat plate and hollow hemisphere as
secondary body have about the same drag efficiency at d/D a I

as at d/D - 2 for X/D 0 4, partfoularly at the higher Maoh

numbers.

3.2 Drag Coefficients at Transonic Speeds with Ofive

Cylinder as Primary Body

Reference 2 presents the drag coefficients if a

flat plate, 4ý` half-angle cone, and sphere in the wake of a

cylindrical body at transonic speeds. Included aro measurements
of the base and surface pressure on the cylinder. With the
assumption that the wake of the cylindrical body used in these
tests is the same as that of an ogive cylinder and that the
presence of a downstream body would not alter the pressure
on tho nose of the ogivc cylinder (which is indicated to be
true in Appendix IV of Ref 2), these test results were used
tn calculate thc nystem dpag uf the ogive cylinder in combi-

nation with the flat plate, 45o half-angle cone, and sphere.

The system drag was thus calculated by

C 92 (from Ref 2) + C (from Ref 3) -- Pl),oDt : D 2 Dl "p i?~

where CPb is. the base pressure coefficient of the cylinder

with the iecondary body present and C * is the base pressurePbj

22I
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I

coeff'cient of the cylinder without a secondary body. Values

for Cpb and Cpb were obtained from Ref 2.
The re•ults of the calculations are presented in

Figs 18 through 23. The trends indicated are very similar
to those observed through direct measurements for the systems
with the skirted hemisphere as primary body. The drag of
the systems witn the s'eller secondary bodies at X/D - 2 is
niot as close to the lowct- reference curve, however.

It is interesting to note that for M1 > I the

o&tve cylinder - flat plate system with d/D - 2 has more

drag with the plate at X/D = 2 than at 4, Just as tho skirted
hemisphere - flat plate system did at MW - 1.08.

These results are also plotted as drag efficiency
versus X/D in Figs 24 through 27. The same general trends
are indicated for the ogive cylinder primary body systems
as for those with the skirted hemispher:ý as primary body,
except t' t the curves for d/i• w 1 are not as steep from
X/b - 2 t.- x/*D - 4.

3.3 Drag Coefficients at M - 4.35

The drag coefficients of the various systems at
MN - 4.35 are presented in Figs 28 through 31. The Rey-
nolds number for these tests was about 3.0 x 105, except
where noted differently. Free streant reference values given
are from Ref 3.

There is cmw similarity between these curves and
those at transonic speeds, but the drag coefficient values
are generally much farther below the upper reference values.
For the systems with the skirted hemisphere as primary body
and d/D - 1 (Fig 28). CDt at X/b - 2 is about equal to the
drag coefficient of ;he skirted hemisphere alone. It in-
creases as X/D increases to 4, but then drops of remains
about the same with further increase to X/A = 8,
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With the larger secondary bodies (Fig 29), except

for the conc, CDt decreases from X/D = 2 to X/D = 4 and then

begins a gradual increase. A lower value for the cone at

X/D = 4 (flagged symbol) was obtpiv-d by lowering the wind

tunnel stagnation pressure by about half. Pressure coeffi-

cient changes on the bodies (Fig 47) substantiate the lower

value. This indicates the possibility of strong Reynolds
number effects. This phenomenoii was not studied any further

because it was beyond the scope of this investigation.

The systems with the ogive cylinder as primary

body (Figs 30 and 31) indicate a more regular increase of
drag with increasing body separation distance, but as in

Figs 28 and 29 the type of secondary body does not seem to
be particularly significant, except for the large cone. The
system with the cone shows a drag coefficient at X/D a 8
of better than 80% of the free stream reference value, while
with the other bodies it is around 50% and less. The Schlieren
photograph of this test (Fig 66C) shows a strong, steady
secondary body shock.

It should be noted here that the Schlieren photo-
graphs in Appendix II indicate that unsteady flow phenomena
about the secondary body accompany many of the supersonic
tests, particularly those with the large flat plate and hollow

hemisphere. The drag values presented represent the average I
of a continuous rpenrding taken over a short period of time.

It is interesting to note that with the larger
secondary bodies the systems with the more streamlined
primary body have the greater drag at X/D - 8, indicating
that the reduction in secondary body drag due to the larger
wake of th; skirted hemisphere more than offsets the greater
drag of this body.

These results are also presented as drag efficiency
versus body separation distance in Figs 32 and 33. Generally,

38
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the systems with d/D - 1 have greater efficiency than those

with d/D = 2 in the X4/ range of these tests. This may be

understood in view of the fact thdt the drag of the priiary
body, which is only slightly altered by the presence of the

secondary body, is a large percentage of the system drag.
Also, as in transonic flow, the systems with the

flat plate and hollow hemisphere have quite similar effi-
ciencies at MO = 4.35. The same is true with the sphere

and 450 half-angle cone.
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4. CONCLUSION3

Within the scope cf this study, a strong inter-
actlon between the drag of the forebody and the secondary
body was noticed. With a few exceptions in the transonic
range, the drag of the system was less than the sum of the
drag of the two bodies in the free stream. In the exoep-
tional cases the drag of the system was about equal to the
sum of the drag components.

The relative size and location of the secondary
body, as well as the free stream Mach number, are the
governing parameters. In an isolated case involving the
450 half-angle cone as secondary body, an appreoiable

Reynolds number influence was detected. (A further summary
of other but related wake phenomena is given in Ref 5.)
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I
APPENDIX I

'RESSURE C CEPPICIENTS

As support for the drag measurements and also to
indicate the pressure levels to which similar decelerators
way be subjected, the primary body base pressure and secondary
body stagnation and base pressure coeffloients have been
determined. Those for the systems with the skirted hemispheve
as primary body at transonic speeds are given in Figs 34
through 45. For the tests at supersonic speed the pressures
are presented in Figs 46 through 53.

Similar data for the ogive cylinder as forebody are
presented in Ref 2.

Since the trends here are generally the same as
those for the drag coefficients, a detailed discussion of
these results is not presented. However, a few interesting

points may be made.

The base pressure of the secondary bodies varies
very little with X/b at both transonic and supersonlc speeds.
At Mo M 4.35 the primary body base pressure also is little
affected by X/D changes, particularly with d/D - 1. Thus,
it appears that most of the reduction in system drag at
supersonic speeds is due to reduced pressures on the front
sidc of the sek~oridary body.

Figures 46 through 53 indicate that at M. - 4.35
the primary body base pressure and sec.)ndary- body stagnation

pressure are generally about the same when the bodies are

close together, indicating the presence of a more or less
completely separated region between them.

In a review of the following graphs, a certain
allowance should be made for experimental .-rors.
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APPENDIX I'

REPRESENTATIVE FLOW PHOTOGRAPHS

In this appendix a number of flow photographs are

presented. Many of them should not be considered to be vqry

significant, but the pictures are included as additional

experimental material and as a matter of record.
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C) xin o, 0, I-•1.062, R ,3.12 x10

FIG 54 FLOW SHADOWGRAPHS OF SKIRTED HEMISPHERE AND
FLAT PLATE WITH diD z1 AT TRANSOiiC SPEEDS (O~NTINJEOD
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FIG 54 FLoW SHADOIWGRAPHS OF SKIRTED HEMISPHERE AND
PLAT PLATE WITH d/D:1 AT TRANSONIC SPEEDS (CCN'CLJEoM
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FIG3 55. FLOWJ S4ADONGRAPHS OF SKIRTE HD4RMISIR AND
FLAT PLA\TE vyiTH diD z2 AT M.125
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FIG 56 FLOW SHADONGRAPHS OF SKIRTED HEMISPHERE AND

4to HALF&.kNC4LF CONE WITH d/D = AT TRANSONIC
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FIG 5,8 FLOW SHALOWGRAPHS OF SKIRTED HEMISPHERE AND
SPH-ERE WITH d/D =11 AT TRANSOWIC SPEEDS WCW*Lw. )
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FIG 59 FLOW Sj-SOFSKIRTED HEMI&f .ERE AND
SPHERE WITH d/D :2 AT TRANSONIC SPEEDS (C-TN I
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FIG 60 FLOW SKADOWGMRAPHS OF SKIRTED) HEMlSIHIE AND

HOLLOW HEMISPHERE AT TRANSCNIC SPEEWS (~A
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APPENDIX III

DRAG BALANCE SYSTEM

The drag balance system includes the balance (the

mechanical portion of the system) and the associated elec-

tronic instrumentation. The balance, an exploded view of

which is shown in Fig 69, is composed of two primary parts,

the mpin body snd the drag sensing capsule. The electronic

instrumentation conuists of the drag sensing and calibration

transformers, a signal generator, a control unit and a re-
cording unit.

The main body of the balance, which is 2.05 inches

long and 1.554 inches in diameter, forms the fixed component

of the balance and is rigidly attached to the balance support

sting. It houses the drag sensing transformer on a positioner

and also an internal pressure tap and thermocouple. The

Schaevitz Linear Variable Differential Transfoy.ier (Type 0O0M-L)

io attached to the upstream end of a positioninZ rod. The

other end of the rid is spring loaded against a caamo which

provides axial positioning of the transformer.

The drag sensing capsule, which is 3.102 inches

long and 1.554 inches in diameter, is composed of a fixed

inner &hell and a floating outer shefl. The two shells are

coaxially arranged and are connected by two ring type steel

diaphragms which provide the spring force for drag sensing.

The inner shell slides onto the inner tube of the main body

and is rigidly attached to the main body by an adjustment

rod which provides adjustment of the width of the slot between

the 'main body and outer shell of the drag sensing capsule.

The outer shell, which is thus free to deflect the

diaphragms, forms the drag sensing clemcnt. Thc transformer

core is attached to its downstream end and the test model

sting is rigidly attached by means of an adapter to the

upstream end.
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A drag force on the test model causes an axial

displacement of the outer shell of t- drag sensing capsule

relative to the fixed main body. This displacement, which

is proportional to the drag on the model, is sensed by the

Schaevitz LVDT. The LVDT is energized by a lOKC signal

generator and its output is transmitted to a Brown Variable

Sparn Recorder through the control unit. Since the output of

the signal generator to the LVDT must be constant, the

generator is voltage regulated and is located in a sound-

proofed room to isolate it from tunnel noise.

As a displacement of the outer shell of the drag

sensing capsule causes an equal displacement of the trans-

former core within the transformer, the transformer gives an

output wnich is proportional to the drag. The control unit

converts this output into useful recorder information and also

extends the recorder range, permitting measurement of drag

over a wide range without loss of sensitivity. Two other

LVDTs, a "Hi" and a "Lo" at different points on the scale,

are used as calibration transformers, to provide a continual

check on thc accuracy of the system and minimize errors due

to temperature fluctuations.

A linear variation of transformer output with Orag,

good seri9.tivity and excellent zero return are o.tained.
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