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ABSTRACT 

This report presents the results of a state-of-the-art survey on 

flow-tunnel design and related instrumentation for tunnels using \\·ater 
or liquid nitrogen as the working fluid. The scope of the survey is 

purposely narrowed by considerations of the proposed tunnel to be 

designed and built at NASA's George C. Marshall Space Flight Center 

(MSFC). Initial application of the proposed tunnt>l will include internal­

fluid-flow studies of cryogenic fuel- systen1 components or combinations 
thereof. 

lvfajor considerations applicable to the principal con1poncnts of 

the proposed tunnel are presented. Some specific recommendations 
are also presented for consideration by those who will undertake thl· 

actual design and operation of the proposed tunnel. 

Literature Cited are listed at the end of the report for furth,·r 

detailed study. Many of these references are, in then1selves, design 
studies for liquid-flow tunnels or flow-tunnel sections. 

Also included is a selected bibliography on internal fluid flow, 

\Vith a brief description of each. The categories included are prcssun· 
drop; flow patterns including curved flows, rnixing, and flow n1easurc­
n1ent; visualization including :flow rnodeling, cavitation, and transients; 
flO\v of cryogenic fluids; and two-phase flow. 
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FOREWORD 

The purpose of this program is to provide a state- of- the- art 
literature survey on water-tunnel design and related instrumentation 
and a selected bibliography on internal fluid flow. Special considera­
tions for the tunnel being contemplated and t. -cen into account in this 
survey include: 

1. The tunnel is to have flow conditions of 4500 gallons per 
minute and 70 feet of HzO pressure head across the pump to provide 
a velocity of 50 feet per second through a 6-inch-diameter test section. 

2. The tunnel is to be used to study in'=ernal-flow phenomena. 

3. The fluids of interest include water and liquid nitrogen. 

Information for this report was obtained from an open-literature 
search at the Battelle library; the card-index file in the RSIC library 
at the Redstone Arsenal; the Technical Abstracts Bulletins published 
by the Defense Documentation Center; and visits to the Ordnance 
Research Laboratory at the Pennsylvania State University and the 
NASA Lewis Research Center. 

It is difficult to specify the exact sources covered in the biblio­
graphy on internal fluid flow, since the compilation includes many 
items from personal files. A complete search of American Society 
of Mechanical Engineers (ASME) literature and the Proceedings of the 
Cryogenic Engineering Conferences for the past 5 years was made. 

In addition, other references came from the personal scanning over 
the last 5 to 10 years, by people working in this area, of the 
Technical Abstracts Bulletins, Atomic Energy Commission (AEC) 
literature, and many pertinent journals. 

References on internal fluid flow are listed alphabetically within 
each category by major personal author for books and journal articles, 
and by corporate source for document and report-type literature. A 

separate personal-author index (indicating reference nun1bers) is 
also included for all references in the bibliography. Although some 
references apply to more than one category, they have been 
summarized only in the most pertinent category. Cross references 
to other sections are listed by reference number at the end of each 
section, 
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Section I. INTRODUCTION 

Water tunnels for hydraulic studies date back over 50 years. 
Even though these early tunnels 1 were used primarily to investigate 
external flow, tunnel-design technology has continued during this 
period and also has been improved through tunnel-design studies. 
Because of the extensive and detailed design studies that have been 
conducted on tunnels and tunnel components, this report presents 
the water-tunnel information only briefly, and references the sources 
for more detailed study. Available information is also presented on 
cryogenic tunnels and on tunnel instrumentation. The specific tunnel 
under consideration is required to provide a uniform maximum 
velocity of 50 feet per second through a 6-inch-diameter test section. 
Such a tunnel would include a replaceable test section, diffuser, 
pump, and settling and contraction section, comprising a closed-loop 
system. Special attention was given to a requirement that the proposed 
tunnel could utilize liquid nitrogen as an alternative working fluid. 

In the general design of the fixed-flow circuit, special attention 
must be directed toward cavitation inception and prevention, tempera­
ture control, and flow geometry as it affects the velocity profile 
at the test- section entrance. The design of the convergent section is 
critical in that at least partial corrections in undesirable upstream­
flow profiles can be accomplished with proper design. The use of 
vaned elbows and a conservative diffusion angle is considered 
important. The use of a centrifugal pump is indicated, and suitable 
pumps are available from conventional sources which incorporate seals 
and bearings suitable for cryogenic use. Although the control of 
working-fluid temperature and heat pickup are important when water 
is used as the working fluid, this aspect becomes paramount when 
cryogenic fluids are used. The use of a cryogenic bath appears 
warranted for the proposed tunnel. Adequate information is available 
to support the chaise of basic construction materials, coatings, and 
insulation for a cryogenic tunnel. 

Instrumentation and techniques are available for measuring 
pressures, temperatures, etc., as may be required for operation with 
either water or liquid nitrogen as the working fluid. 

These observations have been incorporated into general recommen­
dations to guide the design of the proposed tunnel. If these considera­
tions are adequately handled, the proposed insertion of missile 
components within the test section appears to be realistic. 
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The selected bibliography is a compilation of references on 

internal fluid flow. Rather than being limited strictly to a library 

literature search, it incLudes appropriate items taken frmn personal 

files and references of a number of people working in this area. 

In addition to a brief description of each reference, in many cases 

some evaluation of its usefulness has been given. 

In general, only incompressible, turbulent, internal flovv has 

been stressed. However, references are included frorn outside this 

area if any parts of the work described have application in this area. 

The references have been divided into seven categories as follows: 

l. Pressure Drop 

2. Flo\v Patterns Including Curved Flows 

3. Mixing 

-1. Flow 1\1c::lsurcnwnt and Visualization Including FlO\\ 
Modeling 

5. Cavitation and Tr:insicr1ts 

6. Flow of Cn'ogenic Fluics 

I. T\vo-Phasc F1ovv 

Because the n1ain interest 1n two-phase flow phenomena \vould 

be in the area of cavitation, this was n1ade a separate category. 

The general two-phase flow category is quite brief, listing n1ainly 

other survey-type reports that would provide access to the vast 

amount of literature existing in this area. 
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Section II. FLOW- TUNNEL CONSIDERATIONS 

A large V"'.·· ~:eLy of flow tunnels have been constructed for various 
types of D'{Liraulic investigations. 1 Because this state-of-the-art 
study 1s concerned with the collection of information which will assist 
in the design of a tunnel for investigating intL·rnal flow, the study 
is limited to the available literature on the closed- jet type of tunnel 
and tunnel components. Based on considerations of the flow rate of 
the planned tunnel, economy, desired visual capability within the 
test- section region, and nonautomated instrumentation for the 
tunnel (at least initially), the study is further limited to information 
on the design of closed-circuit types of tunnels. 

1. Flow Circuit 

A number of studies have been performed that have resulted 
in relatively complete guidelines for the design of closed- circuit 
water tunnels. Notable among these are the studies done at the 
St. Anthony Falls Hydraulic Laboratory of the University of Minnesota2 

and at the ordnance Research Laboratory of Pennsylvania State 
University. 3 ' 

4
' s, 6

' 
7 Subsequently, the theory and procedures included 

in these reports have been used to design tunnel systems. 1
' 

8 Additional 
f 9, 10, 11, 12, 13, 14 1 'd 'f' d t' t re erences were ater 1 ent1 1e as per 1nent o 

water-tunnel design, but most of these were not available to this 
study. Another source of information on existing water-tunnel 
facilities is the Proceedings of the ASME Symposium on Cavitation 
Research and Techniques. Papers presented at this symposium 
describe tunnel facilities and techniques used for studying cavitation 
in fluid systems. Because the prevention of cavitation is essential 
to the economic operation of most fluid systems, much of the informa­
tion presented during the symposium is pertinent to the design of 
water- tunnel facilities. 

Most of the work reported in the above cited literature was 
done during the early 1950's. Because of this, advances in materials 
and material-protection techniques for flow tunnels have outdated 
some of the de sign information. However, because structural­
design information is a minimum in most of these reports and 
because fundamental hydrodynamic theories have changed little over 
the years, the reported information is still very pertinent to water­
tunnel design. 

3 



Figure 1 presents one possible flow- circuit configuration for a 
water or liquid-nitrogen tunnel, incorporating good design features 
based only on a preliminary study of the above references and from 
discussions with NASA-Lewis Research Center and Pennsylvania 
State University personnel. These features include: 

1. An area- contraction ratio between 9 to 16, with values 1n 
the lower portion of this range preferred. 

2. A heat exchanger (if needed) located at the minimum fluid­
velocity portion of the circuit to reduce flow losses. 

3. A maximum of 5 degrees total-diffusion angle throughout 
the circuit to enhance uniform-flow conditions. 

4. Corner-turning vanes to reduce energy losses and n1:.rnm1ze 
disturbances to the tunnel test- section flow. 

5. A n1inimum anwunt of the flow circuit located outside the 
liquid-nitrogen cooling bath. The only part of the circuit not in the 
bath is that part which requires changing to accommodate various 
missile fuel- systern configurations. This part requires the installation 
of a suitable insulation material. 

6. Supports that allow for tunnel contraction and expansion 
due to large temperature changes on cooldown and warmup when using 
liquid nitrogen as the test fluid. 

The flow circuit in Figure 1 is similar to several existing tunnel 
configurations. 1

' 
2 This type of recirculating tunnel consists of the 

high-velocity test section, a diffuser, a variable- speed pump, a 
settling region and contraction section, a heat exchanger, and elbow 
sections with turning vanes. A brief discussion follows pertaining 
to each of the above, with references identified for more detailed 
study. 

a. Test Section 

Because the primary purpose for the proposed tunnel 
is to test circuit components of missile cryogenic-fuel systems, 
the test section of the proposed tunnel is a replaceable section which 
can vary throughout the range of possible combined configurations of 
fuel- system components. The chief requirement placed on the tunnel, 
therefore, is that it must supply a steady, radially-uniform fluid stream 
to the entrance of the test section. Ross and McGinle·/ have developed 
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equations for the growth of the boundary layer in the entrance region 

as well as pressure and energy-head losses in working sections. 

Theory is compared with experimental data in their studies of 

closed-jet working sections. 

Olson14 has conducted studies on closed-jet working sections 
with divergent walls where it is desirable to eliminate the static­

pressure gradient or to permit tests to be made at a lower cavitation 

index. Ripken2 has also conducted detailed studies that are appropriate 

to the design of the test section of the proposed tunnel. 

To achieve realistic results of tests of the fuel- system con1ponents, 

the components should have inlet-velocity profiles that are representa­

tive of the profiles that (~xist in the actual system of which the con1ponent 

is a part. The working-fluid velocity profile can change from a very 
uniform shape \vith a n1inimum thickness of boundary layer to a shape 
in which the n1CJjority of the flow cross section is in the boundary layer. 

These changes are a function of the turbulence level in the working 
fluid and the length of fluid run in a constant cross section cylindrical 

section. Therefore, control of the shape of the velocity profile for 

realisrn can best be achieved by varying the length of the cyLindrical 
portion of the test section just upstream of the test component (within 

reason, of course) and by introducing controlled turbulence into the 
working fluid. 

b. Contraction Section 

The achieven1ent of radial uniformity of fluid velocity 
at the entrance to the test section is a function of the configuration 

of thE' contraction section and the velocity distribution of the flow 

entt>ring the contraction section. 

Ripkcn points out that a properly-shaped contraction will provide 

a strong cort·cctiVL· action to velocity variations in a fluid stream, 

providing that a substantially-uniform pressure distribution can 

be achieved in the flow sections both preceding and following the con­

traction. Unifurrn pressure distribtttions are a result of maintaining 

parallc•l (noneddying) flow in all sections of the flow circuit. Upstrean1 

parallel flow is dependent upon the quality of the recirculating systen1, 

1. e., 1n the pt·opct· design of the turning vanes, in the provision of 

flow straigl1tcnr.'rs as necessary, etc., to provide for the prevention 

of ::;cpara.tiun and the ecsultant eddying-flow patterns. The selection 

of a prrlp•·r l rJll[Llction ratio can provide a velocity variation across 

the c·ntrii!H ,, to the' test stream of less than l percent. Based on 
r•·<ctsonal)],. c·onc;truction costs and the velocity variation figure of less 



than l percent, the contraction ratio usually required is fron1 9 to 15. 

The radius of curvature of the contraL ,ion boundary rnust never be 

great enough to cause the fluid to separate, owing to the centrifugal 

force of the fluid under curved flow being gn'atcr than the pressure 

forces acting on the fluid. Ripkcn details a nun1ber of different 

approaches taken to establish the shape of cc>ntraction curves that 

have been en1ployed in An1erican and Europc,>n water tunnels. After 

presenting these analyses, he describes experinH·ntal studies that 

include the 1neasurement of velocity distributions, separation-zone 

pressure distributions, and ent·rgy losses. 

c. Diffuser Section and Vaned Elbows 

The purpose of the diffuser sc' tion 1s to reduce the 

high-velocity test stream from the working ,.;,·ction to a lower value 

throughout the remainder of the tunnel. This reduction of velocity 
serves a nurnber of related purposes including a reduction in pun1ping­

power costs owing to reduced frictional-energy losses (power varies 

as velocity cubed); the 1ninin1ization of the destruction of the initial 

uniformity of the fluid motion while returning the test fluid through 

360 degrees to the entrance of the working section; and the reduction 

in temperature rise of the \vorking fluid or the reduction in heat­
exchanger requiren1ents with reduced frictional-energy losscO:J. 
Ross and Robertson3

' 
11

' IZ., 
16 have conducted extensivE' flo\\' studies 

in watE'r-tunnel diffuser sections. These studies have included the 
developn1ent of an analytical n1ethod te nned "SupE'rposition Analysis 11 

which yields good theoretical predictions of velocity profile:-; in 

diffusE'rs. This n1ethod gave results that con1parcd '-JUite favorably 
with experimE'ntal data obtained in a 7. 5-dcgree diffuser. Steclc, 7 

in sumn1arizing the results of Ross and Robertson's design studies 

conducted for the 48-inch \"later tunnel at the Grdnance Research 

Laboratory of Pennsylvania State University, stated that "the optin1um 

diffuser angle was a function of the total diffuser angle, the 

effective working section length, and effective working section 

diameter. " 

Ripken2 also describes numerous considerations for the design 

of diffusers for flow tunnels. He concludes that 5- to 7-dcgrec diffusers 

may be used, although the 5-degree diffuser is preferable, owing to 
the decreased likelihood of separation with subsequent cavitation 

occurring. 

In the flow circuit of Figure 1, diffusion continues through the 

first two vaned elbows. This design approach is taken to provide 

for a flow tunnel of decreased length to enhance the use of a cryogenic 
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bath for insulation when using liquid nitrogen as the test fluid. It is 

pertinent to point out that a careful study of the vaned elbows \vith such 

a design is needed. Ripken describes extensive design studies on 
vaned elbows. Similar studies appear desirable for the proposed 
tunnel. 

d. Fumps 

The information on pumps and their application in 

f "1" . bl h d 1 . . 17 18 19 ac1 1t1es con1para e tot e propose water tunne 1s extens1vc. ' ' 

The fundamentals of this general subject will not be reviewed here. 

It can be stated, however, that suitable pumps arc available for applica­

tion such as in the proposed water tunnel. 

Based on the flow- tunnel requirement of a flow rate up to 4500 

gallons per 111inute, a maxin1um hrad of 75- to 100-fcet H 20 across 
the pun1p, and a n1aximum sha.ft speed of 1750 revolutions per rninute, 

the specific speed of the pump can be detern1ined from the relation: 

where NS is the specific speeo, N is the pump speed in revolutions 
per minute, Q is the pump clischa.rgt· in gallons per minute, and H 

1s thv purnp head in feet. 

This relation yields a specific speed fron1 3700 to 4600 for a 
75- to 100-fuot lwad, which indicates that a centrifugal pump would be 

preferred for the proposed tunneL. Sandercock20 at Lewis Laboratories 

confi rnwcl the preference for a centribugal pun1p and also suggested 
that an im:ul·cr stage ahead of the centrifugal pump might be desirable 

to d(·creasv the likelihood of cavitation with low pump-inlet pressure. 

Acosta 21 and Montgornery22 have conducted inducer studies for 

c ryugc·ntc pun1p~;. The inducer is an L'xtension of the n1ain rotor, 

enabling it to be run at a higher speed than the impeller on a coaxial 

shaft. The resultant additional head rise enables the rnain-purr1p 

i n1 p c ll c r to run c a vita t ion free. 

Another pumr: consideration, 1n addition to freedon1 frorn CJ\·ita­

tiun, is that the fluid strean1 frorn the pump sr'ould be constant in flow 

and fn'L' of pulsations. Also, the flow should be frec- of rotation at all 

r cL t c s of cl is c h arc,'·. 

8 



The pump1ng of cryogenic liquids such as liquid nitrogen introduces 

a number of special considerations. Jacobs, Martin, Van Wylen, 

Birmingham, and Hardy 23
' 

24 have conducted experimental studies on 
pumping liquefied gases and have identified bearings and seals as two 
of the major problem areas for such pumps. Standard ball bearings 

fabricated from AISI S2100 steel and Type 440C stainless steel and 

containing suitable nonmetallic separators as substitutes for metallic 

separators 25 can provide satisfactory bearing service when submerged 
in liquid nitrogen. Carbon seals are normally used in liquid-nitrogen 
pumps at NASA-Lewis Research Center; pump details can be discussed 

with the pump supplier. 

e. Heat Exchanger 

Because the energy input of the pump shaft increases the 

enthalpy of the test fluid, it may be necessary to incorporate a heat 

exchanger into the proposed tunnel in order to maintain the working 
fluid at a constant temperature. Steele describes in rather complete 

detail the steps involved in determining the cooling requirements and 
heat-exchanger design for a water tunnel. Ripken2 and Lehman6 

also discuss cooling requirements for water-tunnel design. Procedures 

identified in these references are straightforward once the tunnel 
dimensions, materials, and operating parameters are established. 
Additional requirements for a cryogenic tunnel are discussed in a 

later section of this report. The use of a bath or immersion system 
as dictated for cryogenic-fluid handling may suffice for temperature 

control when using water as the working fluid. In either case, the 

effects of the temperature-control device on the temperature profiles 
at the test- section entrance must be considered. 

f. Materials 

In most of the larger water tunnels, 1
' 

6 
'

7 
,lS econom1cs 

have dictated the choice of steel as the major tunnel material with a 

protective coating applied to prevent corrosion. Steele 7 describes 

"Lithglow," a phenol-base plastic, and "Durofilm, '' a vinyl plastic­

base paint as examples of protective coatings used in water tunnels. 

Materials n1ust obviously be selected carefully for this proposed 

water tunnel because of the int'' · tion of using liquid nitrogen as the 

working fluid in the future. 

Because of expansion and contraction that would occur with liquid 

nitrogen, carbon steel with a protective coating is undoubtedly 

unsatisfactory as a tun:1el n1aterial. Based on properties of the 
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materials, stainless steel or anodized aluminum appear to be the most 

prom1s1ng materials for the proposed tunnel. Campbell 26 and 
Kaufman27 have published da'ta that support this statement. 

Ruggeri and Gelder 28 have set up a small tunnel at NASA-Lewis 

Research Center that \vill handle cryogenic as wdl as rnost ordinary 

liquids. This flow tunnel is fabricated fron1 6061 T- 6 aluminum and 

has a heavy anodized treatment for surface protection. Double Lucite 
panels having a 2-inch thickness are used for the windows. A bath 
surrounding the tunnel is fabricated of 304 stainless steel and is 

insulated with :2-inch-thick con1position corkboard bonded directly to 

the stainless steel. These materials have proven satisfactory in this 
tunnel application. 

2. Cryogenic Aspects of a Flow Circuit 

This s1 ate·- of- thP- art survey on flow- tunnel techr,ologv has 
consic:,·red both 'vater :tnclliqu-ici nitrogen as t<·st flt,;r-'c;. On<· uf the 

nwst r:;:·ficu 1 t pt·oblc·r~!s to solv<.' in the dt·sign of a flc"· circuit for 
cryogeni.c flujds is the control of te111peratures to pr~_-'\ 'C~ 1~qLl:c! 

vapur1zat1or:. 

;"'l.il'C 2 sbows th<• \·a.:.·i::tio•! 0.1 tcrny.;cratt:.rc· Zilld pre:c.cu;·c l<'1" 

vripo /iLtion of liquid n~trogt"'l. Tllc sta~:nation t<~nlpcratu:·,·-p:·,_·~-:::::rc· 

(Jj)' l"ccting point of the liquid nit ·ogc·:l ll1U~:t be lTictintai:lt·d Cit' c:lch ii 

lc·-;c1 h:1t tcn1pt·rature increas<·d due to friction fron1 powt•r ;npc<t and 
pr,~ssurl' d<:·crcd.scd due tc circuit configuration do not cause vaporiza­

tion. Figure 2 also shows that the control of t:en1perature n1ust be 

more precise than the control of pressure. ?\otc that a 30-fold 

increase in pressure (from l to 30 atn1) at 140'R increases the 
ternperaturc margin to vaporization by only S3 a R. This shows that 

heat transfer and heat additions to the \vorking fluid about the flo\\' 
circuit rnust be held to a m.inimum regardless of the planned test 
pressur,~s and, therefore, the choice of insulation surrounding the 

tunnel is critical. 

There are several ways of insulating all or parts of a cryogenic­
flow loop. These include im1nersion in a cryogenic bath, insulation 

by vacuum, and insulation by a low- conductivity insulating material. 

The prefer red method, according to the per sonncl at NASA- Lewis 

Research Center, is in1mersion of the tunnel in a cryogenic-liquid 

bath. If this 111ethod is used, the total size of the flow circuit should 

obviously be kept to a minimum so that the quantity of fluid required 

for the bath does not become excessive. Also, by holding the flmv­

circuit size to a n1inimum, the heat input due to fluid friction is held to 

a minimum as the circuit boundaries are held to a minimum. 
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Figure l shows a flow- circuit de sign that makes use of a cryogenic 
bath around all of the flow circuit except the working section. This 
arrangement has the advantage of a cryogenic bath, yet the convenience 
of ready access to the working section. This is particularly desirable 
if flow visualization during testing is to be utilized. Special insulations 

of either fibers, foarns, or powders can be used on the working section. 
Moeller, Loser, Snyder, and Hopkins 29 have compiled thermophysical­
property data for such insulating materials. 
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Section Ill. INSTRUMENTATION 

Instrumentation for a liquid-tunnel system may be considered to 
include two specific areas; direct instrumentation for the measurement 
and study of phenomena in the tunnel test section, and instrumentation 
or controls associated with the tunnel operation. 

The types of instrumentation may vary frc·m one test- configuration 
installation to another, depending upon the specific nature of the 
planned tests. Most tunnels utilize static-pressure taps across the 
contraction section that are connected to appropriate manometers or 
other pressure read-out methods and calibrated to measured test­
section velocities to facilitate monitoring velocities during tests. 
Pressures in the working section are measurable by conventional 
pressure orifices connected to pressure tranoducers located outside 

the tunnel. Rup;geri and Gelder30 describe in considerable detail the 
instrumentation in the NASA-Lewis Research Center cryogenic tunnel. 
Copper-constantan thermocouples are used to measure inner and 
outer-wall temperatures as well as temperatures in the cavitated 
region. Absolute values of tunnel-liquid temperature are measured 
upstream of the contraction nozzle to within ± 0. 0 5 a F by means of a 
calibrated platinum- resistance thermometer. Photographic equipment 
is utilized to photograph cavitation phenomena through the Lucite 
test- section windows. Treaster31 describes in detail the calibration 
of the NASA Ultra- High- Speed Cavitation Tunnel at Pennsylvania 
State University, which is the water-tunnel counterpart to the NASA­
Lewis Research Center Cryogenic Tunnel. Information is given in 
that report of procedures followed for determining velocity and pressure 
distributions across the test- section cross section, the calibration 
of velocity to the pressure difference across the contaction section, 
and the determination of the static-pressure distribution on the test­
section walls. 

The Instrument Society of America has published a Transducer 
Compendium32 covering all known sources of transcluc(·rs complete 
with their characteristics. It is suggested that this reference be 
consulted for appropriate transducers to convert pressures to a suitable 
read-out for input to recording systems. 

Pressure-control systems for water tunnels, along with pertinent 
auxiliary equipment, are described by Steele. 7 Either one form or 
another of the approaches described is necessary to control the working 

static pressure. Either the Semiautomatic Control as by Cartesian 
Manostat or the Fully-Automatic Control systems are preferred to a 
manual system. 
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Ruggeri and Gelder 28 discuss instrumentation and static-pressure 
control for the cryogenic tunnel at NASA-Lewis Research Center 
when using water as the working fluid. This is an excellent report 
because, in addition to describing the tunnel facilities and instrumen­
tation, it presents procedures and data- reduction methods for 
cavitation studies. 
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Section IV. RECOMMENDATIONS 

Although the purpose of this study was to conduct a state-of-the­
art survey of water and cryogenic-tunnel design, several lasting 
impressions were formed during the study that are pertinent. 
Because of the nature of these impressions, t 11ey are best formulated 
as recommendations that apply to the design and development of the 
facility. These recommendations are: 

l. Design the flow circuit and its auxiliary equipment for a 
cryogenic working fluid rather than for water. The most stringent 
requirements that will be placed on the system will be those due to 
the pumping, pressure regulating, and measuring functions of the 
tunnel while using a cryogenic working fluid. Designing the equipment 
necessary to perform these functions with a cryogenic fluid should 
result in an adequate water system, but designing for water will not 
necessarily yield an adequate cryogenic system. 

Z. Perform detailed experimental studies on critical components 
of the flow circuit for the purpose of optimizing these components. 
For example, study the spacing and angular setting of the turning vanes 
at a circuit corner to develop a configuration that will cause a minimum 
pressure loss. Perform the study by experimental and not by analyti­
cal means, because the exact analytical expressions required for the 
task are too cumbersome to handle. 

3. Consider, during the design anci development phases of 
the tunnel, the need for building and testing a scaled model of the 
system. Very often, the problems solved by this approach result 
in ultimate savings exceeding the costs of the· model tunnel. 
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Correlation describing mass 
and heat transfer to a fluid 
in fully developed turbulent 
flow in a pipe based on theoreti­
cal continuous eddy-viscosity 
distribution from the wall to the 
center of the pipe. Transfer 
rates calculated using the 
cor relation are in excellent 
agreement with experimental 
data. 
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to axial flux of linear momentum 
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feature of the flow patterns was 
the ring vortex set up just 
downstream of the exit by the 
reverse flow along the axis. 
Adding a divergent section 
increased the size and 
strength of the vortex. 

A theoretical treatment of the 
flow and recirculation patterns 
in both two- divergent and 
axially- symmetric ducts with 
a superimposed axially-directed 
jet is followed by a comparison 
with experimental results. 
In the two-divergent case, the 
oscillating flow was observed 
at low ratios of total flow to 
nozzle flow; and empirical 
correlation for predicting the 
frequency is presented. In 
the axially- symmetric case, 
attention is given mainly to 
means of predicting the amount 
of recirculation and size of the 
recirculation zone. 
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The change in velocity profile 
and the level of turbulence are 
examined theoretically and 
expec:imentally for a jet dis­
charging axially downstream 
in a duct. Similarity theory 
was applied to that part of the 
jet flow which excluded the 
main- duct velocity. This 
approach was moderately 
successful. 

This is a program directed 
toward development of design 
parameters for subsonic jet 
pumps. A mixing tube was 
developed to give a constant 
static pressure along its 
length at the design ratio of 
mixing- tube velocity to drawing­
jet velocity. 

Previous experimental work 
on longitudinal mixing is 
summarized and compared 
with theoretical predictions. 
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Rummel studied the mixing of 
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The composite profile was 
then determined. 

This report describes an 
investigation of the jet develop­
ment, the velocity profiles, 
and the wall- shearing stress 
in a two- dimensional, 
incompressible, turbulent wall 

jet. Experimental data 
concerning velocity profiles 
decay of the maximum velocity, 
and the jet growth are presented. 

The problem of axial mixing 
in straight pipes is analyzed. 
The effects of both the 
Schrnidt and Reynolds numbers 
are included throughout the 
turbulent-flow range. 
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The ASME Standards on 
flow-measuring devices are 
presented along with other 
information useful in the 
construction and use of these 
instruments. 
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Information on the construction 
of fluid meters, the recommended 
techn~ques governing tests, and 
the necessary equations for 
computing rates of flow is 
presented. An outline of the 
major advantages and dis­
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of primary elements is also 
given. 

This Look has reduced the 
theoretical and empirical 
constants given in the Fluid 
Meter Report to practice, 
to make available a uniform 
method of con1puting flow rates 
or sizing primary elements. 

Summaries, varying from rather 
short to rather extensive, are 
given for 16 papers on various 
n1ethods of flow visualization 
in liquids and gases. Several 
of the summaries are accom­
pained. by photographs showing 
the type of data resulting from 
the particular technique. 

This symposium presents the 
state of existing knowledge and 
some recent developments in 
the techniques of unsteady­
flow measurements. Included 
are a pressure-transducer 
survey and fundamentals of 
hot-wire anemometry, for 
example. 
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PWR Core 2 Reactor, 11 
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Various reactor-flow- study 
programs are discussed and 
techniques and results 
compared. 

Experimental data on core-flow 
distributions, plenum- flow 
patterns and mixing, pressure~ 
losses, and annular thermal­
shield flow are obtained for 
air in a quarter- scale model. 
These results are then converted 
to values applicable to helium 
flow in the prototype. 

Modeling techniques, us1ng air 
as the working fluid, are 
described in which design data 
applicable to water flov\' in 
PWR Core 2 are obtained. 
Data include core-flow distri­
butions, pres sure drops, 
and mixing for three model 
configurations. Additional 
data are included in a series 
of earlier reports: BMI-1141, 
B MI- ll 7 2 , B MI- 1 l 9 8 , B MI-
1258, and BMI-1342. 
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A very complete list of 
dimensionless numbers 1s 
presented in two parts. In 
addition to serving as a ready 
reference for the meaning of 
such numbers, this tabulation 
can assist in the proper label­
ing of coefficients in non­
dimensionalized differential 
equations and facilitate proper 
selection of groupings that 
ari~<' in model and scale-up 
studies. 

Review and analysis of current 
theories on viscosity. 
Extensive bibliography and 
list of references. 

This paper gives a broad­
based treatment of the usc of 
flow n10dels and flow tracers 
in determining the performance 
characteristics of various 
types of furnaces obtained 
in diagnosing and correcting 
design deficiencies is emphasized. 

A stream in which a contained 
aerosol has partially settled out 
is sent through a bend to the 
cross section of interest, where 
it is sucked through a filter. 
The impaction pattern reveals 
the distortion of the flow by the 
bend. Several patterns showing 
the effect of Reynolds number, 
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distance around the bend, 
relative radius of the bend, 
and obstacles in the bend are 
presented. 

Qualitative experimental study 
involving positive, zero, and 
negative pressure gradients, 
readjusting zones, and later 
stages of transition. 

Analysis of the use of a 
particle--and-force computing 
method as a statistical 
representation of the true 
dynamics of a fluid. 

A comprehensive survey of 
techniques and instruments 
used in all areas of aerodynamic 
measurement. 
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A means for detecting 
cavitation through noise 
respc'nse is described. The 
probe- coupler systems used 
in the work were shown to be 
capable of detecting the 
cavitation threshold at a 
number of different levels of 
temperature and pressure 
in water with good sensitivity. 

This report contains the papers 
pre sen ted at a symposium held 
at the Fluid Engineering 
Division Conference in 
Philadelphia, May 18-20, 1964. 
Many of the major water-
tunnel facilities are described, 
and five major research areas 
are included: cavitation damage, 
cavity flows, cavitation 
inception and desinence, 
cavitation noise, and 
cavitation in turbomachinery. 

The phenomenon in which an 
omnidirectional magnetic 
field is generated adjacent 
to a vapor bubble in a liquid 
has been applied to the 
detection of cavitation in 
various liquid.flows. 

This paper presents experi­
mental measurements for a 
venturi test section and a 
centrifugal pump. Theoretical 
expectations and comparisons 
with previous investigators' 
data are discus sed. 
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Mac ham sm of Head Break­
down in Cavitating Inducers, 11 
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The simultaneous occurrence 

of vaporous and gas co us 
cavitation on hydrofoils is 

considered. The experin1entaJ 

results show that gaseous 

cavitation occurs at rnuch 

higher an1bient pressure than 

for vaporous cavitation. 

Characteristics whicr, control 

the existence:' of metastable 
(superheated) liquid states and 

the nucleation of tbe vapor 
phase an: studied. Knowledge 
o-l these characteristics aids 

in the design of cryogenic 

equiprnent. 

The mechanism o: head break­

down in cavitating indue e r s, as 

affected by thermodynarnic 
properties of the pun1p fluid and 

scale effects, is discussed. 
The approach taken by other 

investigators is presented, 
and the limitations to cavitation 

scaling are examined in rela­

tion to experimental data. 
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high- speed recirculating water 
tunnel to measure pressure 
at wh1ch incipient and desinent 
cavitation occurred. Both 
smooth and abrupt contour 
changes were tested with 
significant differences found. 

In the~ work reported here, 
no t': iect of air content and 
water purity on liquid tension 
was found for water in venturi 
flow over the range studied. 
Increasing air content did result 
in other problems, however. 

Cavitation of liquid nitrogen 
was induced on the walls of 
a tunnel venturi. Compared 
with previous cavitation 
tests of room-temperature 
\Vater in the san1e venturi, 
nitrogen sustained nearly 
twice the effective tension and 
exhibited temperature depres­
sion at least one order of 
magnitude greater. 

The effect of cavitation in a 
Herschel-type venturi tube was 
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conditions, Additional 
restrictions on the radii to 
keep deviations within certain 
limits are also presented. 
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This report contains all the 
papers presented at the sympo­
sium. Two areas are 
stressed: hydrodynamic noise 
and supercavitating flow. 
However, much general 
information on cavitation is 
also presented. 

For certain applications, the 
pumpj et can be de signed to 

have better cavitation character­
istics than an open propeller. 

A quasi one-dimensional 
method of blade de sign but 
still meets the stringent 

requirements regarding 

cavitation. 

This report describes the use 

of an accelerometer to detect 

and also determine the location 

of cavitation in a pipeline. 

Test results on the net positive 
suction- heat (NPSH) require­
ment for centrifugal pumps 
handling water up to 420°F, 

some hydrocarbons, and 
Freon- ll are presented. The 
cavitation process is discussed, 
and methods of prediction for 
all liquids are proposed. 
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Results of cavitation tests with 
a variety of fluids are correlated 
utilizing a fluid-property para­
n1eter. This parameter can 
then be used to estimate cavita­
tion effect for other fluids, also. 

The effvct of liquid properties 
on centrifugal pmnp behavior 
under cavitation conditions is 
examined on the basis of a 
given pump handling various 
liquids. A criterion in terms 
of physical properties of the 
liquid is established that can be 
used to indicate cavitation 
effects on pump performance 
for various liquids. 

Conditions leading to cavitation 
of liquids other than water are 
examined. The concept of the 
thermal- cavitation criterion is 

considered and its utility for 
determination of NPSH correc­
tions is demonstrated. 
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Cavitation- performance data 
of several helical inducers 
for various flow coefficients 
are correlated with existing 
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correlation coefficients to 
supplement idealized free­
streamline solutions. 
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loop to study the effects of 
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A model is developed to predict 
the cooldown time o£ cryogenic 
systems. Although the model 
does not consider the dynamics 
of the system, it has beer::. 
used with success and is 
apparently the only published 
method available. 

A summary of temperature­
measurement techniques cover­
ing the entire cryogenic range 
is presented. Calibration 
methods and temperature 
scales are also discussed. 
An extensive bibliography is 
included. 
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entropy-property tables 
for nitrogen in the ranges 
listed in the title. A 
temperature- entropy chart 
is also available separately. 

This report demonstrates 
that the sharp- edged orifice 
can be used with liquefied 
gases. There are certain 
limitations, however, and 
these are discussed. 

Tests on a venturi tube used 
for liquid-hydrogen metering 
are reported. Experimental 
accuracies are listed and 
discus sed to the extent that 
they influence the test results. 
The usefulness as well as 
the limitations of the venturi 
as a low- temperature fluid 
meter are indicated. 

This book is the standard 
reference in the field of cryo­
genic engineering. It consoli­
dates in a single text informa­
tion from numerous sources 
and presents it in easily 
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