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SUMMARY ll 

ytK brief review of the properties of sampled signals 
is given, and used to describe systems which contain digital 
components. It is shown that the errors in such digital data 
systems are of two types, one due to the inaccuracies in the 
algorithm programmed, and the other due to the reconstruction 
process necessary to convert the digital data to analog form. 
The latter erroi only is discussed. 

A number of realizable smoothing filters, which can 
be used to improve the reconstruction accuracy over that obtain- 
able directly by conventional digital-to-analog converters, are 
presented.  The frequency responses of these filters are compared 
with the ideal recovery filter. Also discussed is the percent 
root mean square reconstruction error when these filters are used 
to recover a sampled sinusoid. 

Circuits are presented for the realization of these 
filters using standard analog computer components. 

Q\ o 
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SMOOTHING OF DIGITAL-TO-ANALOG CONVERTED DATA 
IN DIGITAL DATA SYSTEMS 

• 
1.0 INTRODUCTION 

Over the past number of years a great deal of interest 

has been shown in the use of digital devices in situations which 

had previously been the exclusive domain of continuous or analog 

devices. The two most evident examples of this trend are the 

use of digital controllers for process control, and the invasion 

of the hallowed analog ground of system simulation by the digital 

computer. This trend has also resulted in a new dimension being 

added to the fields of computation and control by the combined 

use of analog and digital devices (hybrid computers) by assigning 

to each that portion of the task to which it is best suited. It 

is the resulting mixture of the two types of data in one system, 

i.e. digital data and continuous data, that defines the systems 

of interest here, and which are called sampled-data systems 

(see Ref. 1, 2, 3, 4, 5). 

In general, a sampled-data system is defined as any 

system in which there appear signals which can be said to exist 

only at discrete instants of time. The interest in radar systems, 

in which data existed in the form of pulses, stimulated the 

theoretical study of sampled-data systems in the late 1940's, 

and by the middle 1950's a sound theory had been evolved for 

dealing with these pulsed-data systems. As digital computers 

became fast enough for use in real time situations, it was found 

that sampled-data theory could also be applied to the study of 

these digital-data systems after a suitable representation of 

digital data was defined. 

Section 2 discusses this problem of representation of 

digital data, and indicates how the sampled-data theory, reviewed 
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in Sections 3.1 to 3«3, can be applied to the study of digital- 

data systems. This review of sampled-data theory also introduces, 

in Section 3.4, the data reconstruction problem, which is the main 

topic of this report. The section concludes with a technique for 

obtaining the digital (or pulse) transfer function for certain 

digital programs in the general situation when initial conditions 

may be present. 

Section 4 presents an analysis of the sources of error 

in digital-data systems, and indicates that this error can be 

separated into two distinct components. The first component can 

be attributed to the numerical algorithm programmed, and the 

second component can be attributed to errors in the digital-to- 

analog reconstruction process. 

Sections 5 and 6 present an analysis of various realiz- 

able reconstruction devices (filters) that can be used in the 

digital-to-analog recovery process, and show how they can be 

constructed from standard analog computer components. These 

filters are compared in two ways. First the frequency response 

characteristics of each is obtained.  In the majority of cases 

this frequency response information was not previously available, 

and in all cases was not available in sufficient detail so that 

the comparisons of Section 7 could be made. 

Section 8 presents a now comparison between the various 

filters, which is the root mean square recovery error when the 

filters receive a sampled sinusoid of a given frequency. This 

comparison is in a form which allows otherwise difficult design 

decisions to be made quite easily in situations where the root 

mean square error is a suitable error measure. 

2.0 DIGITAL DATA SYSTEMS 

A digital data system is here used to define a system 

in which signals that are number sequences appear. One can 

think of the signal as being that sequence of numbers that 
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appear at a given location in the digital device; the time 

history of the contents of this location define a number 

sequence which is related to the other number sequences at 

the other locations in the device. 

Consider only those situations, illustrated in 

Figure l(a), where the digital portion of the system is operating 

in real time; that is, there exists an "input" number sequence 

to the program, (r ], which is derived from some external real 

time signal, r(t)., by a sampling process. The purpose of the 

program is to cause an output time signal, c(t), which is derived 

from the program "output" number sequence, {cnl, when it is passed 

through suitable converters. 

If the input sequence, (r }, ife derived from the input 

signal, r(t), there must be some data transducer to translate 

the input signal (voltage, current, force, etc.) to the numerical 

(coded) language of the digital computer. This data translation 

is done by some form of analog-to-digital conversion. This con- 

version may be the manual reading of dials and the subsequent 

entering of corresponding numbers by cards or on the computer 

typewriter, or may be a completely automatic, electronic analog- 

digital converter operated under program control. 

Similarly some form of digital-to-analog conversion 

is required to generate the output, c(t), from the sequence [c j. 

Anocher property of digital devices which is of concern 

here is the existance of computation time. The digital computer 

is basically a serial device; that is, all operations performed 

by it must be programmed as a sequence of simple steps, and, 

although each step is performed very quickly, the whole computa- 

tion may take an appreciable time. Since the inputing of r(t) 

information and the outputing of the latest value of [c } are 

steps in this program, the input and output sequences can only 
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be samples of their respective continuous signals, and no 

information about their behaviour is available between these 

sample times. Obviously the highest sampling rates obtainable 

will depend on the complexity of the program itself. 

Now the input sequence can completely characterize 

the signal r(t)f (provided round-off errors are not significant) 

if the sampling theorem, discussed in Section 3.3, is satisfied. 

The output time signal will, in general, correspond to the out- 

put sequence at the sample times (i.e. at the instant of a 

digital-to-analog conversion), and it must be the task of the 

conversion process to generate an intersample signal to yield 

an acceptable continuous output signal c(t). This generation 

of a continuous output from the output sequence is the topic 

of this report. 

Consider, now, the problem of representation of number 

sequences. In the digital computer, the computation yielding the 

output sequence, (c }, from the input sequence, {r }, can usually 

be described by means of difference equations. Outside the 

conputer, however, the r(t) and c(t) signals are best described 

by means of Laplace transform theory. There is an obvious need 

in these sampled-data systems for a complete description based 

entirely on one mathematical discipline. It is here that the 

concept of the impulse function is of service. 

Consider first the representation of the data as it 

passes through the analog-to-digital converter at the input. 

This converter must perform two distinct functions; it must 

first sample the input signal, r(t), and it must then convert 

this sampled value to a digital number. Let these two functions 

be represented separately as shown in Figure 1(b), where the 

starred notation, r"*(t), represents a sampled signal, and where 

the symbol for a periodically-operated switch is introduced. 
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Assume that the sampling switch has the following 

properties» 

(a) it operates periodically, with period T seconds 

(b) it remains closed, at the sample times, for an 

infinitely short time 

(c) it has as an output an impulse of area equal to the 

value of the input at the sample instant. 

That is, 

* 
r (t) = 0 for t / nT for integers n 

= 00 at t = nT 

such that 

nT+e 

J 
nT-e 

r*(t)dt = r(nT) 

Applying similar arguments to the digital-analog 

converter of the output, there results an equivalent descrip- 

tion of the digital data system of Figure l(a), by that shown 

in Figure 1(c). 

This figure suggests that, since the data trans- 

ducers of the input and output are unity gain devices, the 

digital program can be described as that portion of the system 

which receives a sampled signal input, r*"(t), and produces a 

sampled signal output, c^t). Since the Laplace transforms of 

these sampled signals exist, the program can now be described 

as the ratio of these Laplace transforms, yielding a Laplace 

transfer function for the program, or a digital transfer func- 

tion. Thus the digital-data system can be described as shown 

in Figure 1(d), where H(s) is the digital transfer function, and 

the output sampler emphasizes that c*(t) is a sampled signal. 
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By the use of this digital transfer function for the 

digital program, the complete description of a digital-data 

system can be based on Laplace transform theory, 

3.0 THE SAMPLING PROCESS 

3.1 The Ideal Sampler 

It can be seen, with reference to Figure 1(c), that 

the Laplace transform description of digital-data systems can 

proceed based on the concept of an ideal sampling switch. To 

describe this ideal sampling switch in detail, consider the 

replacement of this switch by the amplitude modulator of 

Figure 2(a) (Ref. 1, p. 18). 

Let the carrier be an impulse train 6T(t) where 

00 

6T(t) = I   b(t-nT) 
n=0 

and where 6(t) is a unit impulse at t = 0. The output of the 

modulator is defined as the product 

r (t) = 6T(t) • r(t) 

and it is seen that r (t) becomes a sequence of impulses of 

area equal to the value of r(t) at the positions of these 

impulses, as required. 
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Since 6T(t) = 0 for t ^ nT,  then 

oo 

r#(t) = [   [   5(t-nT)] • r(t) 
n=0 

oo 

=   ^   r(t)  • ö(t-nT) 
n-0 

oo 

-    I   r(nT)6(t-nT) (l) 
n=0 

and the character of r (t) is exhibited. 

Taking the Laplace transform of this sampled signal 

oo oo 

R*(s) = L[r*(t)} = I    r(nT) J 6(t-nT)e-stdt 

n=0     0 

00 

R*(s) = I    r(nT)e- 

n=0 

snT (2) 

Thus, given r(t), the Laplace transform of r (t) can 

be obtained. 

The so-called z-transform description of sampled 
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signals is obtained by introducing the notation 

sT 
z = e (3) 

then R(z) = R*(s)/  sT= I    r(nT)z-n 

/ z=e    n=0 

(4) 

Several tables exist (eg. Ref. 3, p. 56) which give 

the z-transform for the commonly occurring r(t) functions, or 

it can be evaluated directly from the above definition. 

3.2 Frequency Content of Sampled Signals 

Returning to the expression for the sampled signal 

r (t), one can evaluate the Laplace transform of this signal 

directly by noting that the product of two time functions is 

equivalent to the complex convolution of their respective 

transforms (Ref. 6, p. 275), thus 

R*(s) =  L{r  (t)}  =  L[r(t)   •    .T(t)}  = -±-      j    R(p) AT(s-p)dp 
c+joo 

c-joo 

Carrying out the indicated operation (Ref. 1, 

pp. 32-35), there results: 

oo 

k= -oo 
(5) 

This expression exhibits a most important property 

of sampled signals, that is, the creation of an infinite number 
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of sidebands of the shape of the original signal spectrum, 

R(jü))t these sidebands being centred at co = k {jw-J  for k = ± 1, 

± 2, ± 3, etc. This is illustrated in Figure 2(b). 

3.3 The Sampling Theorem 

The Shannon sampling theorem (Ref. 1, p. 27) can be 

seen directly from Figure 2(b) by noting that the sidebands of 

a sampled signal, in. this case r (t), will not interact if 
R(ja)) = 0 for all w > ir/T.  If these sidebands are non-interact- 

ML 

ing, then R(ja)) can be recovered from R (jco) by an ideal low 

pass filter of bandwidth TT/T. 

The condition for non-interaction is that the highest 

non-zero signal component, of frequency (ü, be such that 

(0 £ TT/T 

or 2JT £ TT/T    where T is the period of this component 

thus        T £   (T/2) (6) 

Thus, if at least two samples per cycle of this 

highest frequency component are obtained, then r(t) is re- 

coverable from r (t) by linear filtering. Equation (6) is the 

form in which the sampling theorem is usually stated. 

Notice that the signal being sampled, r(t), must 

contain no higher frequency components than that allowed by 

the sampling theorem. In particular, it must not contain any 

high frequency noise components, which, after the sampling, 

could introduce a low frequency noise due to the sideband effect 

(an effect known as aliasing). This emphasizes the fact that, 

in the sampling of noisy signals, some form of presample filter- 

ing is desirable (Ref. 7 and 8). 
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3.4 The Data Reconstruction Task 
" 

Again, the problem is evident from Figure 2(b). If 

the sampling theorem is satisfied,»then the signal is recover- 

able from its samples by means of an ideal low pass filter, 

with characteristics as shown in Figure 3. 

It is know, however, that this ideal recovery filter 

is non-realizable since the impulse response is non-zero for 

t < 0, and one is faced with the problem of approximating this 

ideal filter with some realizable filter. 

This approximation problem is discussed in Sections 

5 to 9, and is the main topic of this report. 

3.5 Digital (or Pulse) Transfer Functions 

One more point deserves attention here, and this 

is the evaluation of the Laplace transfer function H(s) of a 

class of linear digital programs (see also Ref. 2, pp. 70-72.). 

In such programs the current member of the output 

sequence, c , is a linear combination of current and past 

values of the input, and past values of the output, i.e.. 

c = a r + a^r , + .... + amr„ m - b^c , - b0c 0 - ...-b.c . n   on   1 n-1        m n-m  , 1 n-l   2.  n-2     k n-k 

m 

L    &i n-i   ZJ 
1=0 

k 

[ 
j=l 

b.c , J n-k (7) 
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The sampled signal representation of the output will 

be 

CO oo       m 

c*(t) =   l   cn6(t-nT) -   I   {I   aiVl6(t-nT) 

rFO n=0    i=0 

IV, 

j=l 

m oo k oo 

i=0        n=0 j=l        n=0 

Taking the Laplace transform, and introducing the 

z-transform notation, 

m    oo 

C{z) = L{c*(t)}s=l/Tlnz= I    ^i    I    Vi2"0 

i=0   n=0 

k     oo 

j=l   n=0 
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Consider 

m <x> 

1=0       n=0 

=  I  nC'.i^S1 M'-'1-1'*   I   W") 
i=o 

m 

rFi 

oo 

i=0 ^=i 

m oo 

i=0 n=0 

m 

i=0 

where R(z) is the z-transform of the input r (t). 

then 

Assume r = 0 for n < 0, i.e. zero initial conditions, 

m 
W= Z aiz"

1R{z), 
i=0 

and equation (8) reduces to 

m k 

C(z) = R{z) [ a.z'1 - C(z) [ b.z'i 

i=0 j=l 

(9) 
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The z-transform relating the input and output sequences 

is thus 

H(z) = 
R(Z) 

m 
-i 

^T b^z 
— = H(s) 
-j s=l/T In z 

(10) 

j=l 

This is known as the digital (or pulse) transfer 

function of the program defined by the difference equation (7) 

In the situation where the initial values 

r for n = -i to -1 

and c for n = -j to -1 
n 

are not zero, the digital transfer function becomes, from 

equation (8) 

"<■' ■ m 
m mi k    j 

-    n  i 

i=0 1=0  ^1 

1+    L    b3Z 

j=l 

-J 

1=o ^i 

-j 

3=1 

in) 

where the second term contains the effect of these non-zero 

initial values. 
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4.0 ERRORS IN DIGITAL DATA SYSTEMS 

Before proceeding with the discussion of realizable 

reconstruction devices for digital data systems, it is of interest 

to separate the reconstruction errors from other possible errors 

in the system. To this end, consider the system design problem 

illustrated in Figure 4(a). The system receives an input r(t), 

produces an output c(t) which can be compared with a desired 

output d(t), the result of some ideal operation which also 

receives r(t) as an input. 

This difference between the desired output d(t) and 

the actual output c(t) defines the system error e(t). The problem 

of specifying separately the digital program and the data re- 

construction device can be done only after their separate func- 

tions have been defined, for the over-all system design is 

defined quite independently of these separate functions. Indeed 

this separation of the individual functions of the two devices 

becomes necessary only in order to reduce the problem to a 

manageable form. 

The most likely function for the digital program 

would be that it attempts to produce, at the sample instants, 

samples of the ideal output d(t), as shown in Figure 4(b). One 

can  then define a sampled digital program error, e , (t), as the 

difference between the samples of the ideal output, d (t), and 

the program output 

e/(t) = d*(t) - c*(t) (12) 

or c"*(t) = d#(t) - ed*(t) (13) 
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Let this digital error, e^ (t), be a sample of some 

continuous digital program error signal, ^UK where, from (12), 

ed(t) = d(t) - CjU) (14) 

where cI(t) is the ideal recovery of the sampled signal c (t). 

Figure 4(a) can now be visualized as Figure 4(c). 

The function of the data reconstruction device is 

now defined as that of attempting the ideal recovery of the 
JL 

sampled signal it receives. The ideal recovery of c (t) was 

defined as cT(t), and a reconstruction error, s (t), can be 

defined as; 

ec(t) = Cjtt) - c(t) (15) 

c(t) = CjU) + ec(t) (16) or 

The system now becomes as shown in Figure 4(d), 

Since the operations of sampling, followed by ideal 

recovery, result in the recovery of the original signal, these 

operations cancel, and the total system error becomes; 

e(t) = ed(t) + ec(t) (17) 

where, to repeat, 

e,(t) = digital error, the ideal recovery of the sampled 

signal which is the difference between the ideal 

output at the sample times, and the computed 

values at these same instants. 
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£ (t) = reconstruction error, the difference between the 
c 

ideal recovery of the digital output, and the 

actual output* 

This report will now discuss the reconstruction error, 
e
r(t), for realizable reconstruction filters. The problem of the 

digital error, ej(t), is considered elsewhere (Ref. 9). 

5.0 POLYNOMIAL RECONSTRUCTION FILTERS 

It was seen in Section 3.4 and Figure 3 that the 

ideal reconstruction filter has the ideal low-pass characteristics 

and so is non-realizable. One is led to compare realizable filters 

with this ideal. A class of realizable filters are the polynomial 

filters described by means of Figure 5. 

Let the reconstruction filter output, c(t), be given 

as an N -degree polynomial, such that 

N 

c(t) = I    a^U-nT)1 

i=0 

for nT ^ t < (r^l)T (18) 

The current values of the coefficients a.  for i = 0, 1, 2, .... N 
i ,n 

will be obtained by use of past values of the output, i.e.. 

( a.  = a.  ic . c -i , c 
i,n   i,nv n' n-1' n-2' 'n-N ) 

In this discussion we will distinguish among three 

types of polynomial filters, the EXTRAPOLATING filter, the 

SMOOTHED EXTRAPOLATING filter, and the DELAYED filter. 
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Consider first the extrapolating filter. At the time 

t = nT, the most recent value of c, available is cnl and let 

the output then start at this value. 

i.e., c(t) = cn at t = nT 

Now let c(t) be an N -degree polynomial which also 

passes through the most recent N values of c,» 

i.e., c(t) = cn-1 at t = (n-l)T 

cn-2 

Cn-N 

ac t = (n-2)T 

at t = (n-N)T 

Thus, this filter is seen to generate an intersample 

sig.ial which is such as to predict, with an N -order prediction, 

the value of c •,. At the time t = (n+l)T when c^, becomes 

available, it will, in general, differ from the predicted value, 

and so c(t) will have discontinuities at the sample times. 

The smoothed extrapolating filter is a logical exten- 

sion of the extrapolating filter which does not allow dis- 

continuities in the output at t = nT to appear, but applies 

the required correction linearly over the next sample interval, 

i.e. in the interval nT ^ t < (n+l)T. 

Another means of overcoming the discontinuity in the 

extrapolating filter output is to generate a signal which passes 

through c only at a time t - (n+l)T.  In other words, wait one 

sample interval until the end point of the intersample signal 

is known, then generate it by M -order interpolation.  This 

defines the delayed filter. 
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In the sections that follow various polynomial filters 

are discussed, their frequency responses are given, and circuits 

for their realization using standard analog computer components 

are given. 

5.1 Zero-Order Filter (Clamp or Zero-Order Hold) 

A very common polynomial filter is the zero-order 

filter, where the most recent value of the output sequence is 

converted to a level which is held throughout the intersample 

period, i.e.. 

c(t) = c n 

for nT ^ t < (r^l)T 

The operation of this clamp recovery filter is illustrated in 

Figure 6(a). 

The unit sample or impulse response is seen to be 

h0(t) = 1, 0 <; t < T 

= 0  otherwise 

Taking the Laplace transform of this impulse response 

results in the transfer function of this filter, i.e., 

Ho'') = (^) (19) 

The frequency response Figure 6(c) of this first- 

order hold is obtained by substituting s = jo), to yield 

_ 2Tr sin x 
0XJ ' '    O)      X 

s 
(20) 

cont'd 



and /HQ(ja)) = - x 

where x = 

sin x 

|sin x| 

= tr/Y 
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(20) 

and where Y is the number of samples per cycle of the input of 

frequency co rad./sec. 

In digital-data systems, the usefulness of the zero- 

order hold (or clamp or filter) results from the fact that most, 

if not all, commercial digital-analog converters convert the 

digital sequence [c } to a voltage level which is, in fact, 

held throughout the succeeding interval, i.e., includes a zero- 

order filter. Thus any reconstruction filter of interest must 

include the H (s) transfer function as one of its factors, 
o 

Often the zero-order recovery is of sufficient accuracy that 

its output can be used directly. 

It is also possible to realize another form of a 

zero-order filter with a conventional analog computer integrator, 

as shown in Figure 6(b). 

The input is applied to the initial condition input 

of an integrator which is periodically put into the reset mode 

for a short time at the sample instants, remaining on "hold" or 

"operate" between these sample times. The time during which 

the integrator must be in the reset mode is, for conventional 

analog computer components, a function of the time constant 

formed by the integrating capacitor and initial condition 

resistors.  In many modern analog computers, this reset time 

is reduced to negligible amounts by special design (see Ref. 

10). 
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5.2 First-Order Filters 

5.2.1 First-Order Extrapolator - Unsmoothed 

The first-order extrapolating filter, or first-order 

hold, has an output given by 

c(t) = (cn - cn-1) (t - nT) ♦ cn 

for nT ^ t < (nfl)T 

This Is Illustrated In Figure 7(a). 

At the time nT, the slope of c(t) Is assumed constant 

and given by 

.c_ - c 

and a linear extrapolation of a signal of this slope is generated 

which starts at c . The Impulse response is illustrated in 

Figure 7(b). 

Thus, 

h^t) = (l+t/T)u(t) - 2u(t-T) - 2u(t-T) (i^) 

+ u(t-2T) + u(t-2T) Q^£) 

where u(t) is a unit step at t = 0. 

h^t) = (l+t/T)u(t) - 2(1+^ u(t-T) + (l 4- ^T) u(t-2T) 



Now 

• 
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v f           •■     f_*|- 

L{f(t-T)} = e"TS F(s) ' if f(t-T) = 0  for t < T 

Thus the Laplace transform of this filter is 

"i^ = (i+-^)0-2e-Ts+e-2Ts) 
Ts 

-TK2 

= (s + 1/T) Q^f—) (21) 

The frequency response, Figure 7(c), is given by 

and 

H   (jo,)]   =   2EriLinjn    ^ +  4x2 
0)  i-  X 

S 

-1 
/Hi(jü)) = -2x + tan"

1 (2x) (22) 

where x = -y as before. 

In order to realize this first-order filter, using 

analog computing components, consider 

v^o+irX^-v- e-Ts) 

Now this transfer function is seen to be the response 

of a circuit which has an input 

-Ts Kis)  = (1 - e"15) 

■ 
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followed by a zero-order hold 

»oM = (H^ 

followeo by a circuit which has the transfer function 

(-if) 
This is shown in Figure 7(d). 

The problem now is to generate a signal which has 
-Ts the transform e 

Consider the output of the integrator, x(t), then 

X(s) = Us)(i^)(ii) 

= (1 - 
-Ts 

vTs^ 

The sampled value of this signal has the transform (Ref. 1, 
sT\ Appendix A, where z = e ) 

X*(s)=(l-eV0[_^] = -Ts 

Thus the samples of x(t) are our required signal. 

Moving the zero-order hold outside the loop, and accounting 

for analog computer component sign changes, the complete cir- 

cuit is shown in Figure 7(e), 



5.2.2 rirst-Order Extrapolator - Smoothed 
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It is seen, from Figure 7(a), that the first-order 

filter has discontinuities at the sample instants due to the 

difference between the first-order prediction of the next out- 

put sample, and the actual value of this sample. One can avoid 

this by applying this correction linearly over the succeeding 

sample interval as shown in Figure 8(a). 

c(t) = cn+ (t-nT) (c^1-cn) + (1 - [t-nT]) (c^-cj 

for nT <; t < (n+l)T 

where the primed values are the first-order predictions of the 

output sequence values, 

i.e. Vl = 'Wl' + cn 

c = (c , -c 0) + c  , n    n-l n-2/   n-1 

Thus, 

c(t) = cn + (t-nT) (cn-cn_1) + (1 - [t-nT]) (Sc^-c^-cJ 

for nT ^ t < {n+l)T 

The impulse response of the circuit with the required 

properties is shown in Figure 8(b), together with the unsmoothed 

case for comparison. 
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Thus, 

h1|8(t) =  2u(t)   (t/T)  - 5u(t.T) (^I)+ 4u(t.2T) Q^) 

. u(t.3T) (i^T) 

and 

"i.sw = K# - ^Ts C^)+ --2Ts (^) - *-3sT C^) 

= (^:!l)(iT)^-3e-sT
+e-2sT] (23) 

The frequency response, Figure 8(c), is given by. 

\^^f\^ir\ ^-«0*2* 

/H,  (jco) = - 2x + tan"
1 ( sin 2x ) 

/ 1>s  v2 - cos 2)/ 

To realize this first-order smoothed filter, we again 

recognize the clamp and integrator, and require to obtain an 

input 

C(s) = (2 - 3e-sT + e-2sT) 

= 1 + (i . 3e-sT + e-
2sT) 

as shown in Figure 8(d). 
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The integrator output is 

X(s) = Us) H0(s)(^) 

= (2- 3e"sT+ e-2sT) (l - *-Sl) M 
KTs^ 

The sampled value of this output has the transform 

X (s) (2-3e-sT+ e-2st) (l ■ e^) (i) [  ^^ 2] 

U - e  / 

-sT = e"51 (2 - e"sl) -sT' 

Thus the circuit of Figure 8(d) becomes Figure 8(e). 

The additive signal at the input is recognized as 

being the ^(s) signal for the unsmoothed first-order case, and 

Figure 8(f) results. 

5.2.3 First-Order Interpolator - Delayed 

Another means of overcoming the discontinuities of 

the first-order extrapolator is to allow for a delay of one 

sample interval, at which time a linear interpolation can be 

performed.  This is illustrated in Figure 9(a). 

The output is given by 

c(t) = (VV:) t*-"1) + Vi 
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The impulse response shown in Figure 9(b) is 

hM(t) = u(t) t/T - 2u(t-T) (*f)+  u(t.2T) Q^) 

Thus the transform is 

H, .(s) = -i* (1 - 2e-Ts + e-2Ts) 

The frequency response,  Figure 9(c),  is given by 

|H      (jo)! = 2l[lÜLJi]2 

i,a ^    L    x    J 

A.d^) - -2x 

Again, in order to realize this filter, write the 

transfer function in the form 

HM^K^-V - *-sT) (tV) 
The zero-order hold (clamp) and integrator are re- 

cognized, as is the ^(s) signal, as being the same as the 

extrapolated case« The final realization is shown in Figure 

9(d). 
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5.2.4 First-Order Extrapolator - Ideal 

As a measure of the limit of accuracy for linear 

approximations in the intersample interval, consider the ideal 

linear case when, at the time t = nT, the value of c^ is known, 

and the straight line approximation between sample values can be 

generated. This would be the case, for example, when a known 

function is being outputted from the digital computer, and the 

value c_ , can be outputted at the time t = nT. Another realiza- 

tion of this ideal case is in the strict data conversion task, 

when a time delay in the recovery process is of no consequence, 

and a time shift in the output time axis of one sample interval 

is allowed. 

This ideal linear case is illustrated in Figure 10. 

The situation is essentially no different from the 

first-order delayed case, and, introducing a time advance of 

T seconds, the transfer function becomes 

Ts 
Hl,I(s) = e  Hl,d(s) 

■»? (^ (25) 

This is seen to be identical with the first-order 

delayed extrapolator in amplitude, but without the phase shift, 

and the frequency response is also given in Figure 9(c). 

The realization, allowing for the dealy in the out- 

put, or the presence of c .-, at time t = nT, is the same as in 

Figure 9(d). 
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5.3 Second-Order Filters 

5.3.1 Second-Order Extrapolating Filter - Unsmoothed 

Let the intersample signal be a second-order func« 

tion of the form 

c(t) = an(t-nT)
2-»- ßn(t-nT) + 6n 

for 

Thus, 

nT ^ t < (nfl) 

The coefficients will be chosen such that 

c(t) =  c at t = nT 

= c    ,    at t =  (n-l)T 

=  cn-2    at t =   (n-2)T 

n        n 

c    ,  =  a    - ß    +6 n-1        n      rn        n 

cn 0 = 4ao - 2ßo +  6,, n-2. n        rn        n 

Solving gives 

a = 
n 

2c , + c 0 n-1   n-2 
2 

K- 
3cn " 4cn-l + cn-2 

2 

bn = cn 
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Thus, 

c(t) = ( n  "^ n"2) (t-nT)2 + ( 
n  n-1 n^) (t-nT) + cn 

for nT ^ t < {n^l)T 

The impulse response shown in Figure 11(a) is 

h2(t) = u(t) [(t/T)2>3(t/T).2j . u(t.T) ["(t/T)2. 3(t/Tj^2j 

. u(t.T) l^  2 (t^J^^f-^ 2 ^J 

which can be written in the  form 

M^ =  "-f [Qj* <$> 2J - 3/4 u(t-T)  [(1^)2
+ <^) +  2] 

+  3/4  u(t-2T)  [(^f21)2 +  3 Offi +  2] 

- 1/4 u(t-3T) [(i^21)2 + 3 (i^T) + 2] 

Taking th^ Laplace transform 

"2^ = (^ + Ü-O C1^1)3 (26) 
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The frequency response, Figure 11(b), is given by 

IH^J«,)! = JL [-^if Vl* x2* 16x4 

and 

/H9(jo)) =  - 3x -ÜIUL +  tan"1 (—^) 
I   2 |sin x| M  - 4x2^ 

As before, we split H0(s)  into recognizable factors 

-sT. 

T  S 

which is realizable in the form suggested by Figure 11(c). 

Consider the signal 

e(t) = ax(t) + ßy(t) 

and enquire if there exist values of a and ß such that 

E*{S) = . 2e-sT + e-
2sT 

Now 
-sT. :(s)=(1.e-sT)2(^i^)(i.) 

X*{s) = {1 - e-sT)3 • i • [ Te -sT 

(1 - e-sT) 
d 

e-sT (1 - e-sT) 



Page - 31 
MK-12 

Similarly, 

Y*(s) 
-sT (1^ e^) 

-sT. 

" 

E*(s) -sT -sT -sT -sr = ae'51 (1 - e-51) + ße"
51 (l + e"

bl) 

= - 2e-sT + e-2sT 

Solving,    a = -1,     ß = -3/2. 

Thus the filter can be realized as shown in Figure 11(d) 

5.3.2 Second-Order - Unit Delay 

Again, the presence of the discontinuities at the 
sample instants can be avoided at the expense of adding a delay, 
In this case we get 

c(t) = (l—LSV     *    (1 - T2)C  , + C^-i>  0 \     o    y n '  n-1 \    o     s  n-2 

where T = (t - nT) 

It is seen that 

c(t) = c    at T = 1;  t = (n+l)T 

n-l at T = 0;  t = nT 

cn-2 at T = "1'» t -   (n-1)T 
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The impulse response is shown in Figure 12(a), 

and 

u(t-T) h2(d(t) = [(t/T)2 + t/T] aM - [(t/T)2 +  t/T] Mit 

+ [i . (iiT)2] u(t.T) . [i . (izT)2] u(t.2T) 

+ [(tz2I)2.(t^r)J u(t.2T).[(i^r)2.(i^r)] u(t.3T) 

or 

h2.^ 
- [(t/T)2 +   (t/T)] üM . 3/2 [(±f)2 + (f)] u(t-T) 

+ 3/2 [(trai)2 + (i^I)] u(t.2T) 

. l/2 [(t^T)2 + (t^T)] u(t.3T) 

Taking the Laplace transform, 

"2,d''> ■ [^ * *] C1 ̂ )' 
(27) 
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The frequency response, Figure 12(b), is given by 

.3 

i"2.dWi = f[isiPi] ^ 

A, .(» = 3x -SiiUL + tan-l 
^—^^     |sin x| 

The filter can be realized by considering 

H2fd(s) = (1 - 2e-Ts + e-2Ts )(i s   ^ \2e2      2Ts^ 
i  s 

which is shown in final form in Figure 12(c). 

5.3.3 Second-Order Extrapolator - Ideal 

Again, as in Section 5.2.4, one can conside' the re- 

covery when delay is of no consequence, or when c^, is known 

at time nT.  The transfer function is obviously 

H2,I(s) = H2,d(s) " e 
sT 

= .•I $' iJ (H2^) (28) 

and is realized using Figure 12(c). 

Forming the frequency response, the amplitude is the 

same as for the unit delay case (Fig. 12(b)) but with the phase 
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given by 

A 2.1 (J») = - x 8in x ♦ tan"1 x 
sin x| 

which is included in Figure 12(b), 

5,4 General Nth-Order Filters 

The realization of the discussed extrapolators, and, 

when delays are allowed, interpolators, with analog computer 

components suggests that, in general, any polynomial filter 

can be realized in this way. This has been proved in general 

(Ref. 11), where the general N -order filter, with or without 

delay, will have the form show in Figure 13. The cu and ß. 

are positive or negative. 

6.0 OTHER RECONSTRUCTION FILTERS 

Needless to say, the class of polynomial filters 

discussed in the previous section are by no means the only type 

of realizable filters deserving of attention, although it will 

be seen that, in most cases, they provide the best performance 

foi a given complexity. Two additional types are discussed 

here, the fractional-order hold, and first- and second-degree 

exponential types of filters. 

6.1 The Fractional-Order Hold 

For reasons which are apparent when the frequency 

response of the zero- and first-order polynomial filters are 

compared, a seemingly more satisfactory frequency response is 

obtained by a filter which is a compromise between the two. 



— 
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For such a filter, let the output be given by 

c(t) = k(cn - cn-1) (t - nT) + cn 

for 

nT ^ t < (n+l)T 

and where 

0 ^ k ^ 1 

When k = 0, the filter becomes a zero-order filter, 

and when k = 1 it becomes a first-order filter. Such a filter, 

for arbitrary k, is known as the fractional-order filter (or 

hold) (Ref. 1, pp. 49-51). 

The impulse response is shown in Figure 14(a), and 

shows how the overshoot of the first-order filter is decreased 

by allowing k to be less than 1. 

The impulse response is given by 

hk(t) = u(t) [l + kt/T] - (l+k)u(t-T) - ~ (t-T)u(t-T) 

+ ku(t-2T) + - (t-2T)u(t-2T) 
T 

= u(t) [1 + kt/T] - u(t-T) [(1+k) + ~ (t-T)] 

u(t-2T) [k + k ll^H] 
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Taking the Laplace transform, 

Hku) = G^)-^ 
8 IS 

. k „-2TS . k „-218 
(^ 

which can be written in the form 

-Ts, -Ti „k{8) = (1 . .e-Ts, (1^1). ^[^/x) (L^)] 

(29) 

-Ts = U-ke-15) H^sj.^H^s) 

The frequency response for this fracxional-order hold 

is shown in Figure 14(b), and is given by 

lk 

where 

IV»! --   ^ hiTA J*^) 

Rlx.k) =  1 +  k2 - 2k cos 2x +  ki-|iaJ<   (lip . 2 cos x) 

2k sin x cos  x 

and 

/Hk(jü)) =   -  2x +   tan'1 |- (l+k)   sin x 

(l-k)   cos x +  k sin x 
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th 
The realization of this k -order hold follows from 

the definition of its operation and the first-order hold of 

Figure 7(e).  It is shown in Figure 14(c). 

Notice that this requires no more amplifiers than the 

first-order filter, which it becomes when k = 1. 

6.2 Exponential Reconstruction Filters 

The polynomial filters considered in the previous 

sections are not the only realizable reconstruction filters 

possible; it is also possible to approach this filter design 

by more conventional means. The following considers the 

problem depicted in Figure A2, where the output of the D/A 

converter is fed to an exponential filter (i.e., possessing 

a finite number of poles). Two cases are considered, the 

first-order case and the second-order case. 

6.2.1 First-Order Exponential 

Let H(s) be a first-order lag with cut-off frequency 

b, i.e., 

H(s) = 
s+b 

function 

The reconstruction filter will have the transfer 

II l.e^C1 s   J Vs+tJ (30) 

The frequency response, plotted in Figure 15, is 
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given by 

|H1(e(*o)l=iq^] 
J^Q 2xV 

1 + C221) 

Z^^'-'TS^F-"""1®) 

where x = -R- as before, and where 

K = 
(«s/2) 

6.2.2 Second-Order Exponential 

For H(s) second-order, the reconstruction filter 

will have the transfer function 

-sT> 

H2.e^) = CL^-)C 
CO 

s + 2C w s + 0) 
^ n    n 

z) (31) 

The frequency response is given by 

H2ie(jco) _  2JI I sin x 
0) 

i - CD2] - <2 CM)2 

[^ - (if)2]2 + ^ (M)2 

/ 
H2>e(ja>) = -    X 

sin x 
sin x 

. tan-i rüS2j 
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where 

K = 
0) 
n 

(cos/2) 

This is plotted in Figures 16(a) to (d) for various va]"es of 

C and 7——r, 
(ö>S/2) 

7.0 DISCUSSION OF FREQUENCY CHARACTERISTICS 

As discussed in Sections 3.3 and 3.4, it is the task 

of the recovery filter to separate the signal contained in the 

frequency interval - co /2 < co < ü) /2 from the sampling side- 
S 5 

bands centred at frequencies to) for all non-zero integer k. 

Ideally, the amplitude response of the filter should be unity 

for as large a frequency interval as possible near zero, and 

should be as near zero as possible for an equivalent frequency 

interval about the sideband center frequencies. The desired 

phase response of the filter will depend on whether or not a 

time lag in the recovery operation can be tolerated. If the 

phase response increases linearly with frequency over the 

above-mentioned frequency interval, then phase distortion will 

be absent, and the signal is recovered delayed in time by a 

value equal to the phase slope. Obviously any closed-loop or 

otherwise real time situation would be affected by this delay, 

whereas open-loop signal recovery would not. 

It is evident, from the frequency responses presented, 

that the choice of a suitable recovery filter is a task which 

depends critically on the frequency content of the signal being 

recovered, as well as on the system in which the filter is to 

appear; even complexity does not allow for any "better" or "best" 

choice. However, a number of general comments can be made. 

Consider the zero-, first- and second-order filter 

of Figures 6(c), 7(c) and 11(b), the significant features of 
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which are summarized and compared in Figure 17. In general, 

an increase in complexity yields a better approximation to the 

ideal only at very low frequencies, and results in increased 

departure from the ideal at the higher frequencies. Of special 

note are the avoidance of delay near zero frequency for the 

first- and second-order filters (at the expense of phase dis- 

tortion), and the increased attenuation of the sidebands (again 

for low frequencies). 

The fractional-order hold of Figure 14(b) illustrates 

how a compromise between the zero- and first-order filters yields 

a more satisfactory amplitude response to a significantly higher 

frequency. This is achieved at the expense of decreasing the 

sideband attenuation over that possib-le with the first-order 

case, and the introduction of both phase distortion and delay 

at all frequencies. 

The first-order smoothed filter, as expected, increases 

the attenuation of the sidebands at the expense of delay and 

increased distortion for higher frequencies. The first-order 

ideal and first-order delayed markedly decrease the sideband 

contributions at the expense of delay (for the delayed case) 

but without phase distortion. 

The first-order exponential seems to have little to 

recommend it. It decreases the bandwidth, for a given amplitude 

error, over the zero-order case, and also increases delay and 

adds phase distortion. Its only advantage is the increased 

attenuation of the sidebands. 

The second-order exponential of Figures 16(a) to (d) 

is much more interesting. The presence of the under-damped 

filter compensates for the droop in the zero-order frequency 

response to extend the bandwidth for a given amplitude error. 
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This is done at the expense of increased phase lag, which is 

in the form of increased delay at zero frequency over that of 

the zero-order case, as well as the presence of phase distor- 

tion. The sidebands are markedly attenuated, the attenuation 

increasing, as expected, as the resonant frequency of the 

filter is decreased. This reduction of resonant frequency, 

however, decreases the bandwidth of the filter, 

8,0 ROOT MEAN SQUARE RECOVERY ERROR OF FILTERS 

One of the conclusions of the previous sections can 

only be that the frequency response characteristics of the 

reconstruction filters are rather difficult to interpret in 

any general way. Typically, the requirements for undistorted 

transmission near zero frequency (i.e, low amplitude, phase 

distortion and delay) conflict with the requirements for 

attenuation of the sideband components. Choosing the re- 

construction filter on the basis of these frequency response 

curves alone would necessarily depend greatly on the details 

of the problem in hand, where the relative demerits of errors 

in the various frequency intervals would have to be assigned. 

There is an obvious need for a more analytic filter rating 

procedure. 

One can attempt this more rational filter rating by 

proceeding along the lines suggested in Section 4, where the 

reconstruction error, e (t), was defined. Assume that the 

digital signal fed to the recovery filter is the sampled 

version of the signal which is to be recovered. The difference 

between this signal before sampling, and the recovery filter 

output, is directly, then, the reconstruction error for the 

filter.  This is illustrated in Figure 18.  It remains to 

choose the recovery filter such that, for a given f(t), there 

is an acceptable reconstruction error e(t). 
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Although many measures of reconstruction error are 

possible, e.g. maximum error, mean error, etc., each of which 

might be appropriate in given circumstances, the root mean 

square value of this reconstruction error will be considered 

here. 

In the discussions that follow, time is measured by 

the relation 

t = (n+p)T 

where T = sample interval, seconds 

n = integer 

p = intersample parameter, where 0 ^ p < 1 

and the following notation is introduced: 

(32) 

g(t) = g [(n+p)T] = g n+p (33) 

Using (32) and (33), the reconstruction error from 

Figure 18 is given by 

e   = q   - f n+p  ^ n+ p   n+ p 

tor 0 ^ p < 1 and all integers n. 

Let the input be a complex sinusoid of frequency co, 

then 

f(t) = e jcot 

or 

f        =   eja)nT   *   eja)pT 

n+p 



f 

3 
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Let 

then 

and 

coT = a 
■ 

n+p 
eJan . eJPa 

£_..- = gr.- - e— • e- rH-p  yn+p 
. Jan  . JPa (34) 

will be 

The mean square value of this reconstruction error 

e2(t) = lim i J e2(t)dt 
T-*00   Q 

NT 

lim ^y J e2(t)dt 
N*^oo   0 

T 2T NT 

lim ^{j e2(t)dt + J e2(t)clt + ...+  J  e2(t)dt} 
T (N-l)T N-^oo   0 

N-l (rH-l)T 

= lim 
N-+oo 

NT L e (t)clt. 

n=0  nT 

In the n  interval, 

e2{t) = e2 

n+p 

where t = (n+p)T 

and dt = Tdp 
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thus, 
  N-l 1 

e2{t) = um   i   [   J e^pdp 
N-*oo     n=0 0 

or,  in more symmetric form, 

N    1 
e2 t   = lim   -i-   y       eL^dp 

N-^oo n=0 0 
(35) 

For this complex sinusoidal input the recovery error 

will be of the form 

VP = AWeJan (36) 

Thus, for the real input f(t) = cos cot, the recovery error, 

e(t), will be 

e   _ "^P   n^-p 
n+p      2 

where e   is the complex conjugate of e . , n+p        r       ^      n+p 

Thus, 

Now 

2 , *     \2 * 
re      ]2 =    ntp +   v  n+p7    ^    n+p    n+p 

n+p 4 4 2 

e^p=[A(p)]2e2J- 
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Since 
• 

oo 

I 
n=0 

E   ^p=tA(p)]2   I   e^-iAtl^   i xists, 
FO n=0 

then it follows that 

lim 

Similarly, 

N 1 
f .2 

N-^oo Mf h I I e^pdF = 0 

n= = 0 o 

N 1 

lim ^ 
N"*oo   n=0 0 

r r * i2. 7T   F   CCJ^P - 0 fl L J  n+p 

Let 

n+P '^P = A(P)0
A*(P) = l(p) (37) 

Since l{p) is independent of n, then the mean square recovery 

error for the cosine input will be 

e^(t) = I(p)dp (38) 
0 

In the sections following, this mean square re- 

construction error for a unit cosinusoidal input is determined, 

and the percent root mean square value is plotted for each as a 

function of input frequency.  The root mean square is defined by: 

= V e2(t) x Percent r.m.s. error = 100 

where e (t) is given by equation (38) for a unit amplitude 

cosine input. 
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In the majority of the cases considered, the root 

mean square value of the reconstruction error was also determined 

experimentally, using standard analog computer components. The 

experimental errors are mainly due to the difficulty in simulat- 

ing the digital features of the filters with the equipment at 

hand, and the difficulty of measuring the mean square value of 

slowly varying signals. 

8.1 Root Mean Square Error - Zero-Order Filter 

For the zero-order filter, the intersample signal is 

given by 

Vp = fn 

and the recovery error, for the complex sinusoid input, by 

e   = a   - f n+p  yn+p   n+p 

= f - f n  ^p 

= Jan _ Jan . Jap 

Vp=eJan(l.eJaP) 

This is of the form of equation (36), and so one forms 

KP) = '^V^' 

=   1/2  [ejan(l  -  ejap)]   •   [e-jan(l  -  e'^P)] 

=   1/2   (1  -  ejaP -  e-jaP +   1) 

=   (l  -  cos  ap) 

1 

and      e^(t)  =       l(p)dp =   1  - sm a 

0 
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Substituting for a, the mean square error is given by 

G M^i-^f) (39) 

The percent root mean square value of equation (39) 

for a unit amplitude coslnusoidal input is plotted in Figure 19 

as a function of Y = samples per cycle 

where 

2TT 
Y = 

coT 

Of interest is the behaviour of the mean square error 

for small (ü)T), or large samples per cycle. This is obtained 

from (39) and is given by 

Tm ^rMl! .Ml!+ M]l.+ ...1 e lt;  L 6     120   5040     ••••J 

8.2 Root Mean Square Error - First-Order Extrapolator - 
Unsmoothed 

given by 

The intersample behaviour, from Section 5.2.1, is 

q   = f (l+p) - pf . yn^p   nv p/  p n-1 

The recovery error for the input eJ  is 

^ = eJan {(i+p) - pe-Ja - e^] n+p 

Forming l(p), 

l(p) = (1+pH-p ) - p(l+p) cos a - (1 - cos a)p cos pa 

- (sin a)p sin pa - cos pa 
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The mean square error becomes 

e2/tN s ril -  5 cosa)T m  2(1 ■ coscoT) (cosa)T -H a)T slrtoT)"! 
L   6 (ü)T)

2 ■' 

(40) 

and the percent root mean square value of this is plotted in 

Figure 19. 

For small (coT), or many samples per cycle, this 

becomes 

e2(t). piMn. MiMiv   i 
240 (84)(720) 

* [0.12916 («I)4 - 0.017543 (coT)6 + ...] 

8.3 Mean Square Error - First-Order Extrapolator - Smoothed 

For the smoothed linear extrapolator, the mean square 

error becomes 

e2{t) = If— -  C05Ü)T - ?- cos ü)Pj _ 2(l+cosü)T-4cos^a)T+2cos ü)T)1 
LV6   "T"      3     J (ü)T)

2 ^ 

which is plotted in Figure 19. 

For small (col) this becomes 

7^  riOll^  11342(0)7)^ _1 
L 240     (720)(147)     J 

= [0.42083 (a)T)4 - 0.107162 (a)!)6 + ...] 



8.4 Mean Square Error - Delayed First-Order 

In this case, 

2/. \ a ["5 ■>• cos ooT m 2  cos coTd - cos 0)7)1 
6    '     (CüT)

2
       

J 

which is also plotted in Figure 19. 

Again, for small (CüT) this becomes 

e2/t) = rMil . 37(a)T)^ + 110l(a)T)
0 , +   ] 
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= [■^~ - 0.08565 (coT)4 + 0.006068 (ü)T)6 - + ...] 

8,5 Mean Square Error - Ideal F:'rst-Order 

In the case when delay is allowed, a delay of one 

sample interval in the comparison loop allows the error to 

become 

e   = q   - f n+p  yn+p   n+p 

where 

9rH-p = 'fn+l " ^'P' i,e* ^^n+l' is effectively know at 

time nT. 

In this case, the mean square error becomes 

2/.\ _ fS + cos a)T  2(1 - cos 0)7)" 
e (tj - i 7 ^—; ö L 

L   6 (o)7)2 

which is plotted in Figure 19. 
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For small (coT) this becomes; 

e2(t) - r(a)T)
4   ll(ü)T)6 .   13(a)T)8    .   "I 

L^O ' r 84^(7201   ib6)i9Q)h20) " * J 

= [0.83333 (ü)T)4 - 0.036375 (col)6 + 0.0007165 (CüT)
8
 + ...] 

8.6 Mean Square Error - Second-Order Extrapolator 

From Section 5.3.1, the second-order intersample 
response is given by 

'rtf D = G 
n  n-i n- 

*) 
p2 + ( "  "-1 "-2) p + fn 

For f(t) = eJ , the above results in a recovery 
error given by 

e .  = [A - Be n+p  L ^a + Ce-2ja - ejaP] ejna 

where 

and where 

a = coT as before, 

A = 

B = 

C = 

P + 3p ^ 2 
2 

P2 + 2p 

2 
P + P 

Again, this is in the form of equation (36), and one 



forms, for a cosine input, the expression 

I(p) a 
C^P £^P = ^3£. + 3p3 + 15£L + 32 + x) 

2 

4    2 
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■ 

- (cos a)(p4W+2P) ^ cos 2a (^A^tiE) 

- cos ap(P^^2)^ cos [(pH)a] (p2+2p) 

- cos [(pf2)a] (^) 

Integrating over the intersample parameter p, the mean square 
recovery error for a cosine input becomes 

15  15 
cos a cos a^ , 3 sin a - 3 sin 2a + sin 3a 0-^) 

+ 3(1 - 3 cos a + 3 cos 2a - cos 3a) 
2a2 

+ (- 3 sin a + 3 sin 2a - sin 3a) 
a 

the root mean square value of which is plotted in Figure 20, 

-,y^    Again, for small a = (col), this reduces to 

e2(t) ^[10610)11^  J 
945 

8.7 Mean Square Error - Second-Order - Unit Delay 

By a similar procedure, the mean square error 
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becomes 

^) = ^ + ä(—-£2¥ä) 
1 ^3 cos a - 3 cos 2a •♦• cos 3a -r\ 

-IK 1 ) 

3 sin a - 3 sin 2a ^ sin 3a 

a 

which is plotted in Figure 20. 

Foj: small  (coT) = a,  this becomes 

TfTT.    faT)2        577 (coT)6    . 

8«8 Mean Square Error - Second^Order - Ideal 

In the case where delay can be tolerated and its 

effect neglected, the mean square error becomes 

e2(t^Tf+AcosmTC'TtoT)- 2 sin coT r\ -  cos co 

(<oT) 

fl   ■ COS (üTN 
^   CöT   ^ 

i 

. (^1 - cos cofN 
^   CüT   ^ 

which is plotted in Figure 20, 

For small (coT) 

T777  (coT)0 , 
945 
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8.9 Mean Square Error - Fractional-Order Hold 

The mean square error is given by 

7(t) = 1 + (J^- + £) (1 - cos »T) - -^2 (i . k cos «T) 

 ^ (1 - cos coT)(2 cos CüT + coT sin coT) 
(<oT)2 

This is plotted in Figure 21 for various values of k. 

For small (coT), this behaves as 

7Ü)..Ml! a . k)2+.... 
6 

8.10 Mean Square Error - First-Order Exponential 

The calculation of mean square error for the exponential 

filters requires a different technique, and is discussed in 

Appendix A. There results, for the first-order case. 

»2(t) = l - sin Mt + (sin coT - bT cos coT + bT) 
^        (coT)2 I   (bT)2 

.   (1 - e"2bT)(l - cos coT) 

2bT(l - 2e"bT cos ü)T + e^2bT) 

This is plo.tted in Figure 22 for values of 

K = b/(a)s/2) 
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8.11 Mean Square Error ■ Second>Order Exponential 

Again, from Appendix A, the mean square error is 

shown to be 

e2(t) = I(p)dp 

where 

I(p) = 1/2 [i. *M] 

N(p) = R2 + S2 + U2 - 2 cos ap (R - SZ + UA2) 

+ •2 cos a (RS + SU) - 2 cos [a(l+p)]   (S - UZ) 

+  2RU cos 2a - 2U cos [a{2+p)] 

+ 2 cos [(l-p)a]   (RZ - A2S)  - 2A2R cos [(2-p)a] 

D = (1 + Z2 + A4) - 2 cosa (Z2 + ZA2) + 2A2 cos 2a 

R = (1 - YW) 

S = (X + YW - Z) 

U = (A2 - YX) 

W = cos (bpT + *0 

X = A cos <(l-p)bT - ^> 

Y = Ap sec t 

Z = 2A cos bT 

A = e-dT 
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tan t 

d 

b 

a 

= &o 

d 
b 

n 

%JI -c2 

= (OT 

This was evaluated digitally, and the resulting root mean square 

value plotted in Figures 23(a) to 23(c) for various values of 

cün/(cüs/2) and C 

9,0 DISCUSSION OF ROOT MEAN SQUARE RECOVERY ERRORS 

There are perhaps two general comments which can be 

made about the root mean square recovery error plots of Figures 

19 to 23. First, for more than approximately five samples per 

cycle of input frequency, increasing the polynomial filter order 

results in a reduction of root mean square recovery error. And 

second, the more traditional exponential filters yield a root 

mean square recovery error which is always greater than that 

available by using the raw staircase output directly. 

One must remember, however, that the above comments 

are pertinent only if the root mean square recovery error is 

a valid error measure for the case in hand. The polynomial 

filters will usually allow discontinuities at the sample 

instants, as does the zero-order hold itself, whereas the 

exponential filters provide a great deal of smoothing of the 

response. This smoothing, however, is achieved at the cost 

of delay, which is seen to result in the larger root mean 

square recovery errors. 
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10.0 CONCLUSIONS 

This report is essentially divided into two main 
sections. In the first, a review of certain topics from the 

theory of sampled-data systems is presented, which, in the 

opinion of the author, is more intuitively satisfying than 

that available elsewhere. This section also contains an 

analysis of the sources of error occurring in sampled-data 

systems containing a digital device. Here it is shown that 

errors in such systems arise from two main processes. The 

first, a digital error, is due to the numerical approximations 

made in the digital process used, and the second, a reconstruc- 

tion error, is due to the recovery process necessary to convert 

the digital signals to continuous form. 

The main body of the report is devoted to a detailed 

evaluation of the reconstruction errors arising from realizable 

digital-to-analog conversion processes. It is assumed that the 

required conversion is achieved in two steps; first the digital 

data is converted to a staircase signal by a conventional 

digital-to-analog converter, and this staircase signal is next 

smoothed by a realizable smoothing filter. Two families of 

smoothing filters are considered, the finite memory polynomial 

filters, and the more conventional infinite memory exponential 

filters. Circuits are presented which allow the filters to be 

realized using standard analog computing components. 

The first comparison between the various digital- 

to-analog conversion processes is made on the basis of their 

frequency response characteristics. It is shown that such a 

comparison does not lead to an analytic evaluation, and it be- 

comes a difficult design task to choose from among the possible 

solutions. The frequency response curves do, nonetheless, allow 

certain general comments to be made as to the types of distor- 

tions present, such as phase and amplitude errors, ripple 
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attenuation, etc., and should be considered if certain of these 

types of error are especially important. 

Lastly, a comparison based on the root mean square 

recovery error is presented. This error is obtained when the 

digital data to be converted are samples of a sinusoid of 

varying frequency, and the resulting output is compared with 

this sinusoid to form the recovery error. The curves presented 

show the improvement to be expected when the higher order 

smoothing filters are used, and can be used directly for design 

purposes when the root mean square error is a suitable design 

criterion. 

i 
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APPENDIX A 

EXPONENTIAL FILTERING OF D/A CONVERTED DATA 

In the case where the staircase output of the D/A 

converter is fed to an exponential filter which has a non- 

finite transient response, the simple method used to obtain 

the filter output for the polynomial filters cannot be used. 

The system of interest is obtained from Figure 18, and shown 

in Figure A-l. The system is seen to be a sampled-data system, 

and z-transform techniques can be used (see Ref. 1, 2, 3 or 4), 

The modified z-transform of the output g(t) will be 

G(Zim) = (1=1) . F(z)Zm Muj (A.l) 

which yields a recovery error whose modified z-transform is 

E(z.m) = (^i) FU) • Zm [tUf-j -  F(Z.m)      (A.2) 

Now the mean square recovery error is, from Section 8, 

given by 

N 1 

e2 t = lim ■^- V   e2 dp 
N-»-oo    n=o 0 

(A.3) 

It is thus required to take the inverse modified 

z-transform of (A.2) and substitute into (A.3). The inverse 

modified z-transform is given by 

e (n, m) = e n-l+m 2173  d 
(b E(z,m)zn"1dz 
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Thus, 

, JL £ flli F(Z)   ' Z   t^] ~ FU.m)] 2ndz      (A.4) 
Vm "" OTM J L  z m I   s   ^ J 

27rj -  ^  z 

and 
p = m 

Case li    First-Order Filtering 

Let 

Then 

■   z inhix-.z /-b-} = r^L.£^Li 
m \   s   J m ls(s+b)J       Lz-l a-bTJ 

ZÄ6 

or 

z    /Hisil  =  jz-B)   - Bm(z-1) 
^m 1   s   J (z-l)(z-B) 

where       B = e 
_ A1 m 

Also,  for    f(t) =  ejü)t
t    F{z)      -^    and    F(z,m)      *— 

Z~A Z""A 

where   A = e"^ 

Substituting into equation (A.2), the modified 

z-transform of the error becomes 

E(z,m) = (z-B) - Bm(z~l) _ A.m 

(z-A)(z-B)    z-A 

Wz - X 

(z-A)(z-B) 



whert    W « 1 - Bm - Am 

X = B + Bm - AmB 

and where m = p 

Wz - X 
r*-p " 2irj J {z-A)(z-B) 

zndz 

Pag« - A-3 
MK-12 

= WA - X , An + WB - X Bn 
A - B       B - A 

Now Bn -♦ 0 as n increases, and so has a mean square 
value of zero. Thus the only contribution to the mean square 
will be 

giver by 

x r*p 1   A . B 

Again the mean square error for a cosine input is 

1     * e   e 
£2(t) = J ^P n^P dp = J I(p)dp 

where 

Now 

W A - X rl   \  -   1  ^WA - )C\ ^ WA-X^ 

(1 - 2Bcos a+B2)  l(p) =   1-Bp+B2p+B2+BBP - cos a[2B-BBp-Bp+B2p] 

- cos ap[l-Bp+B2-BBp] 

+ cos  a(p+l)   [B-Bp] 

+ cos  a(p-l)   [B-B1+p] 

* 
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Integrating over the p, and after some effort, the 
mean square error becomes» 

e2/t\ u i m  sin a ^ sin a-ßcos a^-ß m    (1 - B )(l - cos a) 
a      a2 ^ ß2     2ß(l - 2B cos a + B2) 

where a = coT 

ß = bT 

B = e-bT 

Case 2> Second-Order Filtering 

Let 

H(s) = 
O) 

n 
s    +  2&ü s + & ^ n n 

ml  s   /       m ls(s5^ 2!Jo s + (o 2)J 
n n 

=  Z    / d2 +  b2      I 
m  ls[(S+d)2 +  b2]1 

where      d = C60 
n 

b = oi^f/l  - C2 
n 

Then 

: |HM| = |_J_ _ Am sec ^ fz  cos(bmT+^)   - A cos<(l-m)bT^>-| | 

z     -  2z A cos bT +  A 



where A = e-dT = e-^T 

Page - 
MK-12 

A.5 

and  tan /=-:-= -   ^ b  (/n? 
Now F(z) = -^  where C = e'^1 

z-C 

The filter output is thus 

fz cos(bmT^/rf) - A cos<(l-m)bT-jrf>1 ") 

^     z2 - 2zA cos bT + A2    -• ^ 2zA cos bT + A 

Again it is the contribution from the pole at z = C 

which yields the steady-state component of the output and which 

has the non-vanishing mean square value. This component is 

given by 

where  W = cos(bpT + j) 

X = A cos<(l-p)bT-^> 

Y = Ap sec jzf 

Z = 2A cos bT 
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The recovery error becomes 

£     = C     - f 
n+'p   n^p   rH-p 

_ f-C^P + RC2 ^ ZC1"*"13 ■>- SC - A2CP •«• Ul cn 

L      c2 - zc + A2       -^ 

Where   R = (l - YW) 

S = (YX + YW - Z) 

U = (A2 - YX) 

The mean square error for a cosine input is thus 

where 

e2(t) =  I(p)dp 
0 

2l(p) = e^ el =1+ ^Pl VK/   n+p n+p      D 

and  N(p) = R2 + S2 + U2 - 2 cos(ü)T«p)(R - SZ + UA2) 

+ 2 cos(ü)T)(RS + SU) - 2 cos[a)T(l+p)] (S - UZ) 

+ 2RU COS(2üOT) - 2U cos[ (2+p)ü)T] 

+ 2 cos[(l-p)ü)T](RZ - A2S) - 2A2R cos[ (2-p)a)T] 

,2. Ä4 2.^.2 D = (1+ZZ+A^) - 2 cos(a)T)'{Z^ZAz) + 2AZ cos(2a)T) 
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APPENDIX B 

HARDWARE REQUIREMENTS FOR FILTERS 

Another comparison of the recovery filters is 

obviously the hardware necessary to realize these filters. 

Table B-l provides one such comparison based on realizing the 

filters with standard analog computer components. It is assumed 

that a sample and hold amplifier is available for the polynomial 

recovery filters, and that the filters receive, as an input, the 

staircase output of a conventional digital-to-analog converter. 
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TABLE B-l 

Filter No. of Amplifiers Circuit Diagram 
Figure Number 

Zero-Order 

First-Order 
Extrapolator 
Unsmoothed 

First-Order 
Extrapolator 
Smoothed 

First-Order 
Delayed and 
Ideal 

Second-Ordor 
Extrapolator 

Second-Order 
Delayed and 
Ideal 

Nth-Order 
Extrapolator 

First-Order 
Exponential 

Second-Order 
Exponential 

None or one 

3 

7 

N + 4 
plus inverters 

6{b) 

7(e) 

8(e) 

9(d) 

iKd) 

12(c) 

13 
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APPENDIX B 

HARDWARE REQUIREMENTS FOR FILTERS 

Another comparison of the recovery filters is 

obviously the hardware necessary to realize these filtere« 

Table B-l provides one such comparison based on realizing the 

filters with standard analog computer components. It is assumed 

that a sample and hold amplifier is available for the polynomial 

recovery filters, and that the filters receive, as an input, the 

staircase output of a conventional digital-to-analog converter. 
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