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SUMMARY M

brief review of the properties of sampled signals
is given, and used to describe systems which contain digital
components. It is shown that the errors in such digital data
systems. are of two types, one due to the inaccuracies in the
algorithm programmed, and the other due to the reconstruction
process necessary to convert the digital data to analog form.
The latter error only is discussed.

A number of realizable smoothing filters, which can
be used to improve the reconstruction accuracy over that obtain-
able directly by conventional digital-to-analog converters, are
presented. The frequency responses of these filters are compared
with the ideal recovery filter. Also discussed is the percent
root mean square reconstruction error when these filters are used
to recover a sampled sinusoid.

Circuits are presented for the realization of these
| filters using standard analog computer components.
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SMOOTHING OF DIGITAL-TO-ANALOG CONVERTED DATA
IN DIGITAL DATA SYSTEMS

1.0 INTRODUCTION

Over the past number of years a great deal of interest
has been shown in the use of digital devices in situations which
had previously been the exclusive domain of continuous or analog
devices. The two most evident examples of this trend are the
use of digital controllers for process control, and the invasion
of the hallowed analog ground of system simulation by the digital
computer, This trend has also resulted in a new dimension being
added to the fields of computation and control by the combined
use of analog and digital devices (hybrid computers) by assigning
to each that portion of the task to which it is best suited. It
is the resulting mixture of the two types of data in one system,
i.e. digital data and continuous data, that defines the systems
of interest here, and which are called sampled-data systems
(see Ref, 1, 2, 3, 4, 5).

In general, a sampled-data system is defined as any
system in which there appear signals which can be said to exist
only at discrete instants of time. The interest in radar systems,
in which data existed in the form of pulses, stimulated the
theoretical study of sampled-data systems in the late 1940's,
and by the middle 1950's a sound theory had been evolved for
dealing with these pulsed-data systems. As digital computers
became fast enough for use in real time situations, it was found
that sampled-data theory could also be applied to the study of
these digital-data systems after a suitable representation of
digital data was defined.

Section 2 discusses this problem of representation of
digital data, and indicates how the sampled-data theory, reviewed
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in Sections 3.1 to 3.3, can be applied to the study of digital-
data systems, This review of sampled-data theory also introduces,
in Section 3.4, the data reconstruction problem, which is the main
topic of this report. The section concludes with a technique for
obtaining the digital (or pulse) transfer function for certain
digital programs in the general situation when initial conditions

may be present.

Section 4 presents an analysis of the sources of error
in digital-data systems, and indicates that this error can be
separated into two distinct components. The first component can
be attributed to the numerical algorithm programmed, and the
second component can be attributed to errors in the digital-to-

analog reconstruction process.

Sections 5 and 6 present an analysis of varicus realiz-
able reconstruction devices (filters) that can be used in the
digital-to-analog recovery process, and show how they can be
constructed from standard analog computer compcnents. These
filters are compared in two ways. First the frequency response
characteristics of each is obtained. In the majority of cases
this frequency response information was not previously available,
and in all cases was not available in sufficient detail so that

the comparisons of Section 7 could be made.

Section 8 presents a new comparison between the various
filters, which is the roct mean square recovery error when the
filters receive a sampled sinusoid of a given frequency. This
comparison is in a form which allows otherwise difficult design
decisions to be made quite easily in situations where the root

mean square error is a suitable error measure,

2,0 DIGITAL DATA SYSTEMS

A digital data system is here used to define a system
in which signals that are number sequences appear. One can
think of the signal as being that sequence of numbers that

S
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appear at a given location in the digital device; the time
history of the contents of this location define a number
sequence which is related to the other number sequences at
the other locations in the device.

Consider only those situations, illustrated in
Figure 1(a), where the digital portion of the system is operating
in real time; that is, there exists an "input" number sequence
to the program, {rn}, which is derived from some external real
time signal, r(t), by a sampling process. The purpose of the
program is to cause an output time signal, c(t), which is derived
from the program "output" number sequence, {cn}, when it is passed
through suitable converters.

If the input sequence, {rq}, i$ derived from the input
signal, r(t), there must be some data transducer to translate
the input signal (voltage, current, force, etc.) to the numerical
(coded) language of the digital computer. This data translation
is done by some form of analog-to-digital conversio.n. This con-
version may be the manual reading of dials and the subsequent
entering of corresponding numbers by cards or on the computer
typewriter, or may be a completely autométic, electronic analog-
digital converter operated under program control.

Similarly some form of digital-to-analog conversion

is required to generate the output, c(t), from the sequence {cn}.

Another property of digital devices which is of concern
here is the existance of computation time. The digital computer
is basically a serial device; that is, all operations performed
by it must be programmed as a sequence of simple steps, and,
although each step is perfoimed very quickly, the whole computa-
tion may take an appreciable time. Since the inputing of r(t)
information and the outputing of the latest value of {c} are

n
steps in this program, the input and output sequences can only
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be samples of their respective continuous signals, and no
information about their behaviour is avaiiable between these
sample times. Obviously the highest sampling rates obtainable
will depend on the complexity of the program itself.

Now the input sequence can completely characterize
the signal r(t), (provided round-off errors are not significant)
if the sampling theorem, discussed in Section 3.3, is satisfied.
The output “ime signal will, in general, correspond to the out-
put sequence at the sample times (i.e. at the instant of a
digital-to-analog conversion), and it must be the task of the
conversion process to generate an intersample signal to yield
an acceptable continuous output signal c(t). This generation
of a continuous output from the output sequence is the topic

of this report.

Consider, now, the problem of representation of number
sequences. In the digital computer, the computation yielding the
output sequence, {cn}, from the input sequence, {rn}, can usually
be described by means of difference equations. Outside the
computer, however, the r(t) and c(t) signals are best described
by means of Laplace transform theory, There is an obvious need
in these sampled-data systems for a complete description based
entirely on one mathematical discipline. It is here that the
concept of the impulse function is of service.

Consider first the representation of the data as it
passes through the analog-to-digital converter at the input.
This converter must perform two distinct functions; it must
first sample the input signal, r(t), and it must then convert
this sampled value to a digital number. Let these two functions
be represented separately as shown in Figure 1(b), where the
starred notation, r*(t), represents a sampled signal, and where
the symbol for a periodically-operated switch is introduced.
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Assume that the samplin§ switch has the following
properties:

(a) it operates periodically, with period T seconds

(b) it remains closed, at the sample times, for an
infinitely short time

(c) it has as an output an impulse of area equal to the
value of the input at the sample instant.

That is,
r*(t) = 0 for t # nT for integers n
=00 at t = nT
such that
nT+¢€
J r (t)dt = r(nT) !
nT-¢

Applying similar arguments to the digital-analog
converter of the output, there results an equivalent descrip-
tion of the digital data system of Figure 1(a), by that shown
in Figure 1(c).

This figure suggests tha¢, since the data trans-
ducers of the input and output are unity gain devices, the
digital program can be described as that portion of the sysfem
which receives a sampled signal input, r*(t), and produces a
sampled signal output, c*(t). Since the Laplace transforms of
these sampled signals exist, the program can now be described
as the ratio of these Laplace transforms, yielding a Laplace
transfer function for the program, or a digital transfer func-
tion. Thus the digital-data system can be described as shown
in Figure 1(d), where H(s) is the digital transfer function, and

the output sampler emphasizes that c*(t) is a sampled signal.
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- By the use of this digital transfer function for the
digital program, the complete description of a digital-data
system can be based on Laplace transform theory.

3.0 THE SAMPLING PROCESS

3.1 The Ideal Sampler

It can be seen, with reference to Figure l(c), that
the Laplace transform description of digital-data systems can
proceed based on the concept of an ideal sampling switch., To
describe this ideal sampling switch in detail, consider the
replacement of this switch by the amplitude modulator of
Figure 2(a) (Ref. 1, p. 18).

Let the carrier be an impulse train bT(t) where

bo(t) = Z 5(t-nT)
n=0

and where b(t) is a unit impulse at t = 0. The output of the
modulator is defined as the product

* oy .
r (t) = b_l_(t) r(t)

and it is seen that r (t) becomes a sequence of impulses of
area equal to the value of r(t) at the positions of these
impulses, as required.
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Since bT(t) = 0 for t # nT, then
(0]
r(t) = [ ) s(t-a1)] + x(t)
-n=0
= Z r(t) * &(t-nT)
n=0
= ) x(aT)d(t-nT) (1)
n=0

and the character of r*(t) is exhibited.

Taking the Laplace transform of this sampled signal

R*(s) = L{r*(t)} = Z r(nT) f b(t—nT)e-Stdt
n=0 0
R*(s) = ) r(nT)e*"T (2)
n=0

® ; *
Thus, given r(t), the Laplace transform of r (t) can
be obtained.

The so-called z-transform description of sampled
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signais is obtained by introduc1n§ the notation

eST (3)

z

(00)

then R(z) R*(s/ or= ) r(nm)z™" (4)
e n=0

Several tables exist (eg. Ref. 3, p. 56) which give
the z-transform for the commcnly occurring r(t) functions, or
it can be evaluated directly from the above definition.

3.2 Frequency Content of Sampled Signals

Returning to the expression for the sampled signal
rf(t), one can evaluate the Laplace transform of this signal
directly by noting that the product of two time functions is
equivalent to the complex convolution of their respective
transforms (Ref. 6, p. 275), thus

c+ joo
RM(s) = L=" (6] = Lx(t) « p(0)) = o | R(p) Ap(s-p)ep.
c=joo

Carrying out the indicated operation (Ref. 1,
pp. 32-35), there results:

o0

R*s) =2 § (s ). 20 (5)

k=-00

This expression exhibits a most important property
of sampled signals, that is, the creation of an infinite number
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of sidebands of the shape of the 6riginal-si§nal-SpectrUm.
R(jw), these sidebands being centred at w = k (%g for k= % 1,
£ 2, 3, etc, This is illustrated in Figure 2(b).

3.3 The Sampling Theorem

The Shannon sampling theorem (Ref. 1, p. 27) can be
seen directly from Figure 2(b) by noting that the sidebands of
a sampled signal, in this case r'(t), will not interact if
R(jw) = O for all w > m/T, 1If these sidebands are non-interact-
ing, then R(jw) can be recovered from R*(jw) by an ideal low
pass filter of bandwidth 7/T.

The condition for non-interaction is that the highest

non-zero signal component, of frequency w, be such that

w < T/T
or %? < m/T where T is the period of this component
thus T < (t/2) (6)

Thus, if at least two samples per cycle of this
highest frequency component are obtained, then r(t) is re-
coverable from r (t) by linear filtering. Equation (6) is the
form in which the sampling theorem is usually stated.

Notice that the signal being sampled, r(t), must
contain no higher frequency components than that allowed by

the sampling theorem. In particular, it must not contain any
high frequency noise components, which, after the sampling,
could introduce a low frequency noise due to the sideband effect
(an effect known as aliasing). This emphasizes the fact that,
in the sampling of noisy signals, some form of presample filter-
ing is desirable (Ref. 7 and 8).
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3.4 The Data Reconstruction Task

Again, the problem is evident from Figure 2(b). If
the sampling theorem is satisfied,* then the signal is recover-
able from its samples by means of an ideal low pass filter,
with characteristics as shown in Figure 3.

It is know, however, that this ideal recovery filter
is non-realizable since the impulse response is non-zero for
t < 0, and one is faced with the problem of approximating this
ideal filter with some realizable filter.

This approximation problem is discussed in Sections
S5 to 9, and is the main topic of this report.

3.5 Digital (or Pulse) Transfer Functions

One more point deserves attention here, and this
is the evaluation of the Laplace transfer function H(s) of a
class of linear digital programs (see also Ref., 2, pp. 70-72.).

In such programs the current member of the output
sequence, C_, is a linear combination of current and past
values of the input, and past values of the output, i.e.,

Cn = aorn + alrn_l + seece + amrn_m - ‘blcn_l - b2cn_2 “oo-bkcn_k
n k
D NETLAE) bsCh k (7)

i=0 j=1
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The sampled signal representation of the output will

be
0 © m
¢t (t) = Z c b(t-nT) = Z { Z airn_ib(t-nT)
n=0 n=0 1=0
k
- ) chn_kb(t—nT)}
j=1

m
T Tt -

o0
b, ) ¢, yb(t-nT)
i=0 n=0 j n=0

ne~—l=

1

Taking the Laplace transform, and introducing the

z-transform notation,

m 00
B * B -n
c(z) = Llc (t)}szl/T In z ~ Z 3 Z Th-i%
i=0 n=0
k 0
- Z bj Z Cn—kz-n (8)
j=1 n=0
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Consider
m 00
_ -n
W) ag ) Ty
i=0 n=0
m 00
_ -1 -(i-1) -
- Z 3y (r-i+r-i+lz Tee v 12 * Z Tn-12 )
i=0 n=1
A ( 8 (
_ -1 -(1-1), -1 -(n-1)
= z ai <r_i+r_i+lz t .00 t r_lz +2 Z rn_iz )
i=0 n=1
m : ) 0
B -1 -(i-1 -i T -n
= Z ay (r_i+r_i+lz * oo+ T 2 +2 ), Tn? )
i{=0 n=0
m
= Z ay [r-i+r-i+lz-l + eee t+ r_lz'(i'l)+z'iR(z)]

i=0

where R(z) is the z-transform of the input r*(t).

= 0 for n < 0, i.e. zero initial conditions,

Assume T
ssu .

then

s
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The z-transform relating the input and output.sequences.

is thus

3

= C(z—)- = i=0 = 1
R(z) 1+ i bjz'j (g s=1/T 1n 2z Hp

This is known as the digital (or pulse) transfer
function of the program defined by the difference equation (7).

In the situation where the initial values

-i to -1

i

T r
0 for n

and Ch for n -3 to -1

are not zero, the digital transfer function becomes, from

equation (8)

R(z)
m ‘ m i 1 k j -
Toapt Ta( T e 8- Do ey )
_ =0 L =0 =1 =0  4=1
1+ i bjz‘j 1+ i bjz'j
j=1 j=1

(11)

where the second term contains the effect of these non-zero

initial values.
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4,0 ERRORS IN DIGITAL DATA SYSTEMS

Before proceeding with the discussion of realizable
reconstruction devices for digital data systems, it is of interest
to separate the reconstruction errors from other possible errors
in the system, To this end, consider the system design problem
illustrated in Figure 4(a). The system receives an input r(t),
produces an output c(t) which can be compared with a desired
output d(t), the result of some ideal operation which also

receives r(t) as an input.

| This difference between the desired output d(t) and
the actual output c(t) defines the system error €(t). The problem
of specifying separately the digital program and the data re-
construction device can be done only after their separate func-
tions have been defined, for the cver-all system design is
defined quite independently of these separate functiors. Indeed
this separation of the individual functions of the two devices
becomes necessary oniy in order to reduce the problem to a

manageable form,

The most likely function for the digital program
would be that it attempts to produce, at the sample instants,
samples of the ideal output d(t), as shown in Figure 4(b). One
can then define a sampled digital program error, Ed*(i), as the
difference between the samples of the ideal output, d (t), and
the program output

e, (t) = d"(t) - <" (t) (12)

or ¢ (t) = d t) (13)
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Let this digital error, ed*(t), be a sample of some
continuous digital program error signal, cd(t), where, from (12),

eq(t) = dlt) - cf(t) (14)

*
where cI(t) is the ideal recovery of the sampled signal ¢ (t).
Figure 4(a) can now be visualized as Figure 4(c).

The function of the data reconstruction device is

now defined as that of attempting the ideal recovery of the
*

sampled signal it receives. The ideal recovery of c (t) was

defined as cI(t), and a reconstruction error, ec(t), can be

defined as;

™
—
cr
g
1

crlt) - clt) (15)

or c(t) cI(t) + Ec(t) (16)

The system now becomes as shown in Figure 4(d).

Since the operations of sampling, followed by ideal
recovery, result in the recovery of the original signal, these
operations cancel, and the total system error becomes;

e(t) = e (t) + e _(t) (17)

where, to repeat,

€d(t) = digital error, the ideal recovery of the sampled
signal which is the difference between the ideal
output at the sample times, and the computed

values at these same instants.
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Gc(t) = reconstruction error, the difference between the
ideal recovery of the digital output, and tne
actual output.

This report will now discuss the reconstruction error,
Ec(t), for realizable reconstruction filters. The problem of the
digital error, ed(t), is considered elsewhere (Ref. 9).

5.0 POLYNOMIAL RECONSTRUCTION FILTERS

It was seen in Section 3.4 and Figure 3 that the
ideal reconstruction filter has the ideal low-pass characteristics
and so is non-realizable. One is led to compare realizable filters
with this ideal. A class of realizable filters are the polynomial
filters described by means of Figure 5.

Let the reconstruction filter output, c(t), be given

as an Nth-degree polynomi_1l, such that
N
_ i
c(t) = Z ai,n(t-nT)
i=0
for nT < t < ()T (18)

The current values of the coefficients a o fori=0,1, 2, ....N
’
will be obtained by use of past values of the output, i.e.,

a, =¢a, (c_, Co 1 Cpapt *oee Cn-N)
In this discussion we will distinguish among three

types of polynomial filters, the EXTRAPOLATING filter, the
SMOOTHED EXTRAPOLATING tilter, and the DELAYED filter.
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Consider first the extfapolating filter, At the time
t = nT, the most recent value of Cy available is ¢_, and let |
the output then start at this value. '

n
i.e., c(t) = c, at t=nT

Now let c(t) be an Nth-degree polynomial which also

passes through the most recent N values of Cyr

ice., c(t)=c _, at t= (n-1)T

T Chp av t= (n-2)T

(n-N)T

1
()
Q
purs
P

1

Thus, this filter is seen to generate an intersample
signal which is such as to predict, with an Nth-order prediction,
the value of ¢ ;. At the time t = (n+1)T when €]
available, it will, in general, differ from the predicted value,

becomes

and so c(t) will have discontinuities at the sample times.

The smoothed extrapolating filter is a logical exten-
sion of the extrapolating filter which does not allow dis-
continuities in the output at t = nT to appear, but applies
the required correction linearly over the next sample interval,
i.e. in the interval nT ¢ t < (n+1)T. |

Another means of overcoming the discontinuity in the
extrapolating filter output is to generate a signal which passes
through ch only at a time t = (n+1)T. In other words, wait one
sample interval until the end point of the intersample signal
is known, then generate it by Nth-order interpolation. This
defines the delayed filter,
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In the sections that follow various polynomial filters
are discussed, their frequency responses are given, and circuits
for their realization using standard analog computer components
are given.

5.1 Zero-Order Filter (Clamp or Zerc-Order Hold)

A very common polynomial filter is the zero-order
filter, where the most recent value of the output sequence is
converted to a level which is held throughout the intersample
period, i.e.,

for nT < t< ()T

The operation of this clamp recovery filter is illustrated in
Figure 6(a).

The unit sample or impulse response is seen to be

h,(t)

1, 0<t<T

0 otherwise

Taking the Laplace transform of this impulse response
results in the transfer function of this filter, i.e.,

H (s) = (}L.:.ﬁiiii) (19)

o S

The frequency response Figure 6(c) of this first-
order hold is obtained by substituting s = jw, to yield

H ()] = 22 lein x| (20)
s cont'd
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- sin x
and {H (jw) X oin x] - (20)
CORRAS

and where Y is the number of samples per cycle of the input of

frequency w rad./sec.

where X

In digital-data systems, the usefulness of the zero-
order hold (or ciamp or filter) results from the fact that most,
if not all, commercial digital-analog converters convert the
digital sequence {cn} to a voltage level which is, in fact,
held throughout the succeeding interval, i.e., includes a zero-
order filter. Thus any reconstruction filter of interest must
include the Ho(s) transfer function as one ot its factors.

Often the zero-order recovery is of sufficient accuracy that

its output can be used directly.

It is also possible to realize another form of a
zero-order filter with a conventional analog computer integrator,

as shown in Figure 6(b).

The input is applied to the initial condition input
of an integrator which is periodically put into the reset mode
for a short time at the sample instants, remaining on "hold" or
"operate" between these sample times. The time during which
the integrator must be in the reset mode is, for conventional
analog computer components, a function of the time constant
formed by the integrating capacitor and initial condition
resistors. In many modern analog computers, this reset time
is reduced to negligible amounts by special design (see Ref.
10).

—
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5.2 First-Order Filters

5.2.1 First-Order Extrapolator - Unsmoothed

The first-order extrapolating filter, or first-order
hold, has an output given by

c(t) = (c -c ;) (t-nT)+c

for nT <t < (m1)T

This is illustrated in Figure 7(a).

At the time nT, the slope of c(t) is assumed constant
and given by

n-1
T : '>

c
< n
and a linear extrapolation of a signal of this slope is generated

which starts at c . The impulse response is illustrated in
Figure 7(b).

Thus,

h, (t) = (1+t/T)u(t) - 2u(t-T) - 2u(t-T) <£%;>

+ u(t-2T) + u(t-21) (?;§1>

where u(t) is a unit step at t = 0.

hy(t) = (1+t/T)u(t) - 2 (1 ¥ E%i) u(t-T) + <1 4 i;%;) u(t-21)
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Now

L{f(t-t)} = e T% F(s) = if f(t-t) = 0 for t <=

Thus the Laplace transform of this filter is

Hy(s) = (3 + -T-i—2> (1 - 2e7Ts 4 72T9)

2
= (s + 1/T) G——SLT—S-) (21)

The frequency response, Figure 7(c), is given by

iy (0] = 2 [305]° i v 2

w
S

and

1

Hl(ju)) -2x + tan”~ (2x) (22)

where x = %} as before.

In order to realize this first-order filter, using

analog computing components, consider

Now this transfer function is seen to be the response

of a circuit which has an input

g(s) = (1 - 719
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followed by a zero-order hold

o) = (=20

followea by a circuit which has the transfer function
1
(1*5

This is shown in Figure 7(d).

The problem now is to generate a signal which has

the transform e'Ts.

Consider the output of the integrator, x(t), then
o) (55 ()
S S T
-Ts 2 1
(- (o)

Ts

X(s)

The sampled value of this signal has the transform (Ref. 1,
Appendix A, where z = o)

e 2 -Ts _
X*(s) = (1 - 1) ($) [(l fee_Ts)Q] = oIS

Thus the samples of x(t) are our required signal.
Mcving the zero-order hold outside the loop, and accounting
for analog computer component sign changes, the complete cir-

cuit is shown in Figure 7(e).
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5.2.2 First-Order Extrapolator - Smoothed

It is seen, from Figure 7(a), that the first-order
filter has discontinuities at the sample instants due to the

difference between the first-order prediction of the next out-
put sample, and the actual value of this sample. One can avoid
this by applying this correction linearly over the succeeding
sample interval as shown in Figure 8(a).

c(t) = ¢+ (t-nT) (c!

. n+l'cn) + (1 - [t-nT]) (CB'Cn)

for nT £t < (ntl)T

where the primed values are the first-order predictions of the
output sequence values,

Lege “ml T (Cn_cn-l) *

+ C

n (Cn-l-cn-Q) n-1

c(t) = ¢+ (t-nT) (cn-cn_l) + (1 - [t-nT)) (2cn_l-cn_2-cn)

for nT < t < (n+1)T

The impulse response of the circuit with the required
properties is shown in Figure 8(b), together with the unsmoothed

case for comparison.

B P

-




B N |

Page - 24

MK-12

Thus,

hl,s(") = 2u(t) (¢/T) - 5u(t-T) (%T)+ au(t-2T) (.t_-le)
- utean) (550

and

i (60 = 2 (25 - 5™ ()0 40 () - T ()

(l—— ’se-ST) (&) [2 - 3e7°T + 72°1) (23)

The frequency response, Figure 8(c), is given by,

. 2
IH, _(jw)l| = I [M:' 4/5 - 4cos 2x

1,s X
’ ms

ZHI  (Jw)

To realize this first-order smoothed filter, we again

_ ox + tan~ L ( sin 2x
2 - cos 2

recognize the clamp and integrator, and require to obtain an

input

T + e-QST)

£(s) = (2 - 3e7°

1

as shown in Figure 8(d).
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The integrator output is

X(s) = €(s) Hy(s) ()

(2 - 37T ¢ &72T) (1 - %) ()
S

The sampled value of this output has the transform

3)

X*(s) (2 - 3e~5T + e-2st) (1 - e-sT) <%> [ TersT

(1 - e STy

e-sT (2 - e-sT)

Thus the circuit of Figure 8(d) becomes Figure 8(e).

The additive signal at the input is recognized as
being the £(s) signal for the unsmoothed first-order case, and
Figure 8(f) results.

5.2.3 First-Order Interpolator - Delayed

Another means of overcoming the discontinuities of
the first-order extrapolator is to allow for a delay of one
sample interval, at which time a linear interpolation can be
performed. This is illustrated in Figure 9(a).

The output is given by

c(t) = (Cn'cn-l) (t-nT) + Sl

e w—_

e e I MBS
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The impulse response shown in Figure 9(b) is
- t-T t-2
hy g(t) = u(t) /7 - 2u(t-1) (3E) + u(t-21) (2D

Thus the transform is

Ts -2Ts\

Hl,d(s) = ;ii (1 - 227" + e )

_ 2
(=t (24)

The frequency response, Figure 9(c), is given by

2r [gy_lz]?

O)S X

H) 4()l

H d(jw) - 2x
Again, in order to realize this filter, write the
transfer function in the form

i le) = () - o) ()

The zero-order hold (clamp) and integrator are re-
cognized, as is the £(s) signal, as being the same as the
extrapolated case. The final realization is shown in Figure
9(d).
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5.2.4 First-Order Extrapolator - Ideal

As a measure of the limit of accuracy for linear
approximations in the intersample interval, consider the ideal

linear case when, at the time t = nT, the value of Crtl is known,
and the straight line approximation between sample values can be
generated. This would be the case, for example, when a known
function is heing outputted from the digital computer, and the
value Coht] 2N be outputted at the time t = nT. Another realiza-
tion of this ideal case is in the strict data conversion task,
when a time delay in the recovery process is of no consequence,
and a time shift in the output time axis of one sample interval
is allowed.

This ideal linear case is illustrated in Figure 10.

The situation is essentially no different from the
first-order delayed case, and, introducing a time advance of
T seconds, the transfer function becomes

eTs H

Ky, 1(s) 1,4(s)

2

o (2 (25

This is seen to be identical with the first-order

delayed extrapolator in amplitude, but without the phase shift,
and the frequency response is also given in Figure 9(c).

The realization, allowing for the dealy in the out-
put, or the presence of Cot 1 at time t = nT, is the same as in
Figure 9(d).
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5.3 Second-Order Filters

5.3.1 Second-Order Extrapolating Filter - Unsmoothed

Let the intersample signal be a second-order func-
tion of the form

c(t) = a_(t-nT)? + B_(t-nT) + &_

for nT < t < (n+l)

The coefficients will be chosen such that

c(t) = ¢ at t = nT
n
= ¢ _; att= (n-1)T
= ¢, att= (n-2)T
Thus,
ch = bn
chi-1 - % Bn * o,
Ch.p = 40 - QBn b
Solving gives
- h = %¢h.1 t Choo
n 2
B - 3c_ - 4cn_l + Cheo
n 2
d = ¢
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Thus,
-2c 3c -4c_. ,tc
o) ( n21 °n- 2) (t-nT) 2 < n n;l n;?) (t-nT) + |
for nT < t < (nt1)T

The impulse response shown in Figure 1ll(a) is

- /T)%+ 3(+/T) + 2 /T)%+ 3(+/T) + 2
hy(t) = u(t) [(t 1)+ z(t 1) ] - u(t-1) [(t T) 2( 1) ]

- u(t-T) [(tTD + 2 (tTT>]+u (t- 2T)[(Jc T) + 2 (t T)]
([ ()]

which can be written in the form

npt) = LA (8 o) 2] - 374 u(een) [(ED)+ (D)« o]

+ 3/4 u(t-2T) [(:%21>2 + 3 <t}2?> + 2]
178 u(ean) [(B30) 4 3 (£30) 4 o]

Taking the Laplace transform
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The frequency response, Figure 11(b), is given by’
IH, (Jw)| = @-[J&—x—t]:} ':\/l + %%+ 16x°
2 -w X
s
and

in x -1 3x
HA(jw) = - 3x SN X, tan ——
Z_g_i_. |sin x| <l - 4xé>

As before, we split H2(s) into recognizable factors

H2(s) = < - §%§'+ 1:)(};;;§sz> (1 - QQ-ST + e-QST)

which is realizable in the form suggested by Figure 11(c).
Consider the signal
e(t) = ax(t) + By(t)

and enquire if there exist values of a and B such that

E*(s) o 2e'ST N e-2sT
Now
K(s) = (1 - evsTy2 (bl (L
S -~ \Ts
3 -sT
: * _ -sTy~ . 1., Te
C X(s) = (1-e°T)" 1+ 5]

(1 - eT)

e~ ST (1 - e-ST)
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Similarly, :
-sT -sT
Y*(S) - & (l + e )
2
‘ E*(s) = ae”3T (1 - ¢73T) + pe~5T (1 + &°8T)
L gemsT . go2sT
Solving, a= -1, p = -3/2.

Thus the filter can be realized as shown in Figure 11(d)

5.3.2 Second-Order - Unit Delay

Again, the presence of the discontinuities at the
sample instants can be avoided at the expense of adding a delay.
In this case we get

c(t) = <? ; T)cn + (1 - 12)cn_l + <T2;; T)cn_z

where T = (t - nT)

It is seen that

c(t) = ¢ at T =1; t= (nt1)T

o 3]
(—'-
A

1

]
—
(—'-

I
_—
3

i
—
Se®
—
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The impulse response is shown in Figure 12(a),

h2,d(t) = [(t/T)2 + t/T} 9%51 - [(t/T)2 . t/TJ E‘%fll
[l'<tr>]u(tT [1-<__T>Ju(t2T
- [(BF 2T> G 21)] (t-21) - [(2 2T) (= 21')} o(£-3T)

hy 4(t) = [ (/)% + (t/7) ] - 3/2 [(t T} (t D] u(t-1)

+ 3/2 [(L%?—T)Q + (—t—’-Tz—-T)] u(t-2T)
-2 (B2 37) (£3D)] u(t-am)

Taking the Laplace transform,

3

Hy gls) = [_ gT] <l —<- s) (27)
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The frequency response, Figure 12(b), is given by

le.d(jw)l

2ar [|sin x|]3 O
W X

{Hz d(jw) Y+ 1 1. SRS
lsin x|

The filter can be realized by considering

-sT
“Ts , =2Tsy /1 - ¢ % 1 19).
= - i
H2,d(s) (1 - 2e e ) < - > T252 + o

which is shown in final form in Figure 12(c).

5.3.3 Second-Order Extrapolator - Ideal

Again, as in Section 5.2.4, one can conside' the re-

covery when delay is of no consequence, or when c is known

nt1
at time nT. The transfer function is obviously

H, I(s) = H2,d(s) . 8T

oT[L 4 2] (et 3
T2 2T- s

) (28)

and is realized using Figure 12(c).

Forming the frequency response, the amplitude is the
same as for the unit delay case (Fig. 12(b)) but with the phase
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given by

in x -1
H w) = - X _sin x_ ., tan X
2 I(J ) |sin x|

which is included in Figure 12(b).

5.4 General Nth-Order Filters

The realization of the discussed extrapolators, and,
when delays are allowed, interpolators, with analog computer
components suggests that, in general, any polynomial filter
can be realized in this way. This has been proved in general
(Ref. 11), where the general Nth-order filter, with or without
delay, will have the form show in Figure 13. The ay and Bi

are positive or negative.

6.0 OTHER RECONSTRUCTION FILTERS

Needless to say, the class of polynomial filters
discussed in the previous section are by no means the only type
of realizable filters deserving of attention, although it will
be seen that, in most cases, they provide the best performance
for a given complexity. Two additional types are discussed
here, the fractional-order hold, and first- and second-degree

exponential types of filters.

6.1 The Fractional-Order Hold

For reasons which are apparent when the frequency
response of the zero- and first-order polynomial filters are
compared, a seemingly more satisfactory frequency response is
obtained by a filter which is a compromise between the two.
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For such a filter, let the output be given by

c(t) = k(cn - cn-l) (t - nT) + c,
for

nT $ t < (n+l)T
and where

0 kgl

When k = 0, the filter becomes a zero-order filter,
and when k = 1 it becomes a first-order filter. Such a filter,
for arbitrary k, is known as the fractional-order filter (or
hold) (Ref. 1, pp. 49-51).

The impulse response is shown in Figure 14(a), and
shows how the overshoot of the first-order filter is decreased
by allowing k to be less than 1.

The impulse response is given by

hk(t) = u(t) [1+ kt/T] - (i+k)u(t-T) - %ﬁ (t-T)u(t-T)

+ ku(t-2T) + % (£-2T)u(t-2T)

u(t) [1 + kt/T] - u(t-T) [(1+k) + ?5 (t-T)]

+ u(t-2T) [k , ok iiﬁgll]
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Taking the Laplace transform,

h(s) = (& + ) (l+k)e _ 2keTS %)

T ]
k =-2Ts k =2Ts (1
tseo o tTe® Qﬂ

which can be written in the form

e 2
(s = (1 - ke ™) () v o [tea/m) (Rt
(29)

= (1 - ke™®) Hy(s) + == H)(s)

Ts+l

The frequency response for this fractional-order hold

is shown in Figure 14(b), and is given by

I, ()| = 20 Lsin x| /(i
S

where

R(x,k) = 1+ k2 - 2k cos 2x + k2 sin x (sin X _ 2 cos %)

I X X

N 2k sin x cos X
X

and

Hk(jw) = - 2x + tan~! { (1rk) sin x - }

(1-k) cos x + k 3o X
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The realization of this kM-order hold follows from
the definition of its operation and the first-order hold of
Figure 7(e). It is shown in Figure l4(c).

Notice that this requires no more amplifiers than the
first-order filter, which it becomes when k = 1.

6.2 Exponential Reconstruction Filters

The polynomial filters considered in the previous
sections are not the only realizable reconstruction filters
possible; it is also possible to approach this filter design
by more conventional means. The following considers the
problem depicted in Figure A2, where the output of the D/A
converter is fed to an exponential filter (i.e., possessing
a finite number of poles). Two cases are considered, the
first-order case and the second-order case.

6.2.1 First-Order Exponential

Let H(s) be a first-order lag with cut-off frequency

b, i.e.,

The reconstruction filter will have the transfer

function

Hl,e(s) - <l -se-ST> <sf (30)

The frequency response, plotted in Figure 15, is
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given by

L @
O

[Hy o (30)= %E [Lein XI]

i -1 (2%
Hy (o) = - x =202 = tan™ (g2
L |sin x| ( £>

where x = %; as before, and where

6.2.2 Second-Order Exponential

For H(s) second-order, the reconstruction filter

will have the transfer function

2

-sT. w
() () (31)

+ 20 W s + W
S C n n

The frequency response is given by

2 2 2
o |sin xl’\/l‘ &) | +4C2<&>

[H, ,(jo)| =
2e B e T @7’; 2] v ar? (Z)?
H2 e(Jw)= _X__§_i__Q_><__ [2<< ]

[sin x|
S - KW
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where

w
- n
(w /2)
This is plotted in Figures 16(a) to (d) for various valves of
n

{ and (ws/z),

7.0 DISCUSSION OF FREQUENCY CHARACTERISTICS

As discussed in Sections 3.3 and 3.4, it is the task
of the recovery filter to separate the signal contained in the
frequency interval - ws/2 <w < ws/2 from the sampling side-
bands centred at frequencies kw. for all non-zero integer k.
Ideally, the amplitude response of the filter should be unity
for as large a frequency interval as possible near zero, and
should be as near zero as possible for an equivalent frequency
interval about the sideband center frequencies. The deslired
phase response of the filter will depend on whether or not a
time lag in the recovery operation can be tolerated. If the
phase response increases linearly with frequency over the
above-mentioned frequency interval, then phase distortion will
be absent, and the signal is recovered delayed in time by a
value equal to the phase slope. Obviously any closed-loop or
otherwise real time situation would be affected by this delay,
whereas open-loop signal recovery would not.

It is evident, from the frequency responses presented,
that the choice of a suitable recovery filter is a task which
depends critically on the frequency content of the signal being
recovered, as well as on the system in which the filter is to
appear; even complexity does not allow for any "better" or "best"
choice. However, a number of general comments can be made.

Consider the zero-, first- and second-order filter
of Figures 6(c), 7(c) and 11(b), the significant features of
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which are summarized and compared in Figure 17, In general,

an increase in complexity yields a better approximation to the
ideal only at very low frequencies, and results in increased
departure from the ideal at the higher frequencies. Of special
note are the avoidance of celay near zero frequency for the
first- and second-order filters (at the expense of phase dis-
tortion), and the increased attenuation of the sidebands (again
for low frequencies).

The fractional-order hold of Figure 14(b) illustrates
how a compromise between the zero- and first-order filters yields
a more satisfactory amplitude response to a significantly higher
frequency. This is achieved at the expense of decreasing the
sideband attenuation over that possible with the first-order
case, and the introduction of both phase distortion and delay
at all frequencies.

The first-order smoothed filter, as expected, increases
the attenuation of the sidebands at the expense of delay and
increased distortion for higher frequencies. The first-order
ideal and first-order delayed markedly decrease the sideband
contributions at the expense of delay (for the delayed case)
but without phase distortion.

The first-order exponential seems to have little to
recommend it. It decreases the bandwidth, for a given amplitude
error, over the zero-order case, and also increases delay and
adds phase distortion. Its only advantage is the increased
attenuation of the sidebands.,

The second-order exponential of Figures 16(a) to (d)
is much more interesting. The presence of the under-damped

filter compensates for the droop in the zero-order frequency
response to extend the bandwidth for a given amplitude error.
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This !s dnne at the expense of increased phase lag, which is
in the form of increased delay at zero frequency over that of
the zero-order case, as well as the presence of phase distor-
tion. The sidebands are markedly attenuated, the attenuation
increasing, as expected, as the resonant frequency of the
filter is decreased., This reduction of resonant frequency,
however, decreases the bandwidth of the filter,

8.0 ROOT MEAN SQUARE RECOVERY ERROR OF FILTERS

One of the conclusions of the previous sections can
only be that the frequency response characteristics of the
reconstruction filters are rather difficult to interpret in
any general way. Typically, the requirements for undistorted
transmission near zero frequency (i.e. low amplitude, phase
distortion and delay) conflict with the requirements for
attenuation of the sideband components. Choosing the re-
construction filter on the basis of these frequency response
curves alone would necessarily depend greatly on the details
of the problem in hand, where the relative demerits of errors
in the various frequency intervals would have to be assigned.
There is an obvious need for a more analytic filter rating

procedure,

One can attempt this more rational filter rating by
proceeding along the lines suggested in Section 4, where the
reconstruction error, Ec(t), was defined. Assume that the
digital signal fed to the recovery filter is the sampled
version of the signal which is to be recovered. The difference
between this signal before sampling, and the recovery filter
output, is directly, then, the reconstruction error for the
filter. This is illustrated in Figure 18. It remains to
choose the recovery filter such that, for a given f(t), there
is an acceptable reconstruction error e(t).




Although many measures of reconstruction error are
possible, e.g. maximum error, mean error, etc., each of which

might be appropriate in given circumstances, the root mean
square value of this reconstruction error will be considered

here.

In the discussions that follow, time is measured by
the relation

t = (ntp)T (32)
where T = sample interval, seconds
n = integer
p = intersample parameter, where 0 < p < 1

and the following notation is introduced:

g(t) =g [{np)T] = g (33)

Using (32) and (33), the reconstruction error from

Figure 18 is given by

ntp T Intp T ﬂﬁp
tor 0 £ p <1 and ali integers n.

Let the input be a complex sinusoid of frequency w,
then

£(t) = o0t

or
ernT s ejpr

1

ntp




S y—

Let

wl = a
then
- JJan . Jpa
fn+p = e e
and ; j
N _ JJan | _jpa
Enep = Inep © © e (34)
The mean square value of this reconstruction error
will be
T
e2(t) = lim £ [ e2(t)at
T —*00. 0
NT
1 )
= lm gy f e“(t)dt
N-+oo 0
T 2T NT
= lim le{j e2(t)at + | e2(t)dt+.r | §2(t)dt}
N 0o 0 T (N-1)T
N-1 (n+1)T
. 1 2
= lim F Z '[ e“(t)at.
N=oo n=0 nT
In the nth interval,
2 2
¢ (t) B En-i-p
where t = (ntp)T
and dt = Tdp




or, in more symmetric form,

— N 1
2 1 2
= —_ € d
e“(t) = lim = Z g v+ pdP
n:

N—*oo

For this complex sinusoidal input the recovery error

will be of the form

_ jan
€ A(p)e

Thus, for the real input f(t) = cos wt, the recovery error,

e{t), will be

N *
o =EMp EMm
n+p 2
where €. is th 1 jugate of
ere ntp is e complex conjugate o €n+p'
Thus,
2 * 2 *
o 722 foen, nep)” | faep fp
np 4 4 2
Now
2 .
. _ [A(p)]2 e23an

ntp

N
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Since
00 00 g ¢ 2
2 _ 2 2jan _ 4
Z €np (A(p)] Z e Il:i§%%3] i.e., exists,
n=0 n=0
then it follows that
P [
1 2
lim -—=- ec dp=20
rq+ooh"l ngg 5 n+p
Similarly,
N 1 .
1 2, _
lim == J-[Em_]dp-vo
N—+oo n=0
Let
* *
3 3
n+p2 ntp _ A(p)2A (p) - 1(p) (37)

Since I(p) is independent of n, then the mean square recovery

error for the cosine input will be

1
e2(t) = | 1(p)dp (38)
0

In the sections following, this mean square re-
construction error for a unit cosinusoidal input is determined,
and the percent root mean square value is plotted for each as a

function of input frequency. The root mean square is defined by:

Percent r.m.s. error = e2(t) x 100

where e2(t) is given by equation (38) for a unit amplitude
cosine input.

» d
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In the majority of the cases considered, the root
mean square value of the reconstruction error was also determined
experimentally, using standard analog computer components. The
experimental errors are mainly due to the difficulty in simulat-
ing the digital features of the filters with the equipment at
hand, and the difficulty of measuring the mean square value of

slowly varying signals.

8.1 Root Mean Square Error - Zero-Order Filter

For the zero-order filter, the intersample signal is

given by

“mtp = Intp T Pmp

n ntp
= glaN _ JJan . Jap
€ = ¢J3N(] . ¢J2P)

This is of the form of equation (36), and so one forms

*
(e . ) ( )
+ +
I(p) = —=2 5 s
= 172 [eI3M(1 - &I3P)] « [e7I3N(1 . ¢7I3P)]
= 1/2 (1 - e3P . ¢TI 4 )

QO
3
Q.
[0}
N
—~
+
~—
1
[
—~
o
SN
Q.
o
1
s
w
e
=
eV}
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Substituting for a, the mean square error is given by

e2(t) = (1 - %ﬁ‘n—‘”- (39)

The percent root mean square value of equation (39)
for a unit amplitude cosinusoidal input is plotted in Figure 19
as a function of Y = samples per cycle

where
om
wT

Of interest is the behaviour of the mean square error
for small (wT), or large samples per cycle. This is obtained

from (39) and is given by

2 4 6
o - g g

8.2 Root Mean Square Error - First-Order Extrapolator -
Unsmoothed

The intersample behaviour, from Section 5.2.1, is
given by

It p = f (l+p) - pf__,

The recovery error for the input ejoot is

g . .
Eppp = € {{1+p) - peTI? - ¢)%P}
Forming I(p),

I{p) = (l+p+p2) - p(ltp) cos a - (1L - cos a)p cos pa

- {sin a)p sin pa - cos pa
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The mean square error becomes

2 11 - 5 coswT 2(1 - coswT) (coswT + wT sinwT)
L 6 i (wT)2

(40)

and the percent root mean square value of this is plotted in
Figure 19.

For small (wT), or many samples per cycle, this

becomes

2 31(wT)?  1061(wT)®
() ~ 500 " (sa)(720) ' -]

~ [0.12916 (@T)% - 0.017543 (T)® + ...]

8.3 Mean Square Error - First-Order Extrapolator - Smoothed

For the smoothed linear extrapolator, the mean square

error becomes

2 2 3
2 _ [713 coswT 2 cos‘w 2(1+coswT-4cosWT+2cos wT)
e(t)'[<6' > - 3T>' ]

(wT)?

which is plotted in Figure 19.

For small (wT) this becomes

) [lOl(wT)4 _ L3a2(en)® | ]
240 (720) (147) °°°

11

[0.42083 (wT)* - 0.107162 (@T)® + ...]
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8.4 Mean Square Error - Delayed First-Order

In this case,

22(t) = [5 + gos wl _ 2 cos wT(lz- cos wT)]
(00T)
which is also plotted in Figure 19.
Again, for small (wT) this becomes

(1) - [(mg)2 _a1len)? | Lolfen)® ]

432 (252)(720)

2
- [L“.%_L - 0.08565 (wT)* + 0.006068 (wT)® - + ]

8.5 Mean quare Error - Ideal F/rst-Order

In the case when delay is allowed, a delay of one
sample interval in the comparison loop allows the error to

become

€ = -

ntp gn+p fn+p

where

It p = (f 4) - f,)py i.e. £, is effectively know at
time nT.

In this case, the mean square error becomes
+ -
e2(t) _ [5 gos wl _ 2(1 Co; wT)]
(oT)

which is plotted in Figure 19.
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For small (wT) this becomes;
- [(ng4

[0.83333 (0T)? - 0.036375 (@T)® + 0.0007165 (@T)8 + ...]

—

|

1n)® . _18(n)® ]
84)(720)  (56)(90)(720)

(]
N,
—
pes
~
|
—

8.6 Mean Square Error - Second-Order Extrapolator

From Section 5.3.,1, the second-order intersample
response is given by

3f -4f

I p * (fn—zfn-l+fn-2> p2 N ( n n;l+fn-é> p+ £

2

For f(t) = ejwt, the above results in a recovery

error given by

En+p = [A - Be 72 + Ce-2Ja - eJap] gJna
where
a = wlT as before,
and where
A=p2+ 3p + 2
2
B=p2+ 2p
2
c=Rk *0D
2

Again, this is in the form of equation (36), and one
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forms, for a cosine input, the expression
3 e* 4 2
I(p)=M=<§L+3p3+£E—+‘-3-2+1>
2 4 4 ?
4 ,3,..2 p4+4p3¥5p2+2p
- (cos a)(p +4p™+5p“+2p) + cos 2a ( . )

2
- cos ap ELI%Etg>.+ cos [(p+l)al (p2+2p)
2
- cos [(pr2)a] (B52)

Integrating over the intersample parameter p, the mean square
recovery error for a cosine input becomes

es(t) = 45 _ 38 .45 3 <l SREDS §>-+ 3 sina - 3 sin 2a + sin 3a
15 15 2 =

. 3(1 - 3 cos a+ 3 cos 2a - cos 3a)
232

. {-3sina+ 3 sin 2a - sin 3a)
a

the root mean square value of which is plotted in Figure 20.
7 Again, for small a = (wT), this reduces to

() = [06len)® ]

945

8.7 Mean Square Error - Second-Order - Unit Delay

By a similar procedure, the mean square error
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becomes

ez(t) = f% + f% cos a - 59532;>

- 1 (3 cos a - 3 cos 2a + cos 3a -1
2 a2

3 sin a - 3 sin 2a + sin 3a

a3

+

which is plotted in Figure 20,

For small (wT) = a, this becomes

- 2 6
ez(t) ~i'a%)_ - T‘%}%‘%"' cee

8.8 Mean Square Error - Second=-Order - Ideal

In the case where delay can be tolerated and its
effect neglected, the mean square error becomes

2 14 2 1l - cos w?) 2 sin wT /1 - cos w
T e o — -
€ (t) 15 15 <08 @l ( 2 ( T)2 < wT

_ (l - Cos w'I>2
wT
which is plotted in Figure 20,

For small (wT)
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8.9 Mean Square Error - Fractional-Order Hold

The mean square error is given by

e 2
e2(t) =]+ %;-+ %) (1 - cos wT) - Ei%TQI (1 - k cos oT)
——&75 (1 T)(2 T + T sin oT)
- o) - cos @ cos wT + oT sin w

This is plotted in Figure 21 for various values of k.

For small (wT), this bchaves as

e2(t) ~ 19513 (1-k)2+ ....

8,10 Mean Square Error - First-Order Exponential

The calculation of mean square error for the exponential
filters requires a different technique, and is discussed in
Appendix A. There results, for the first-order case,

e2(t) -1 . sin el , (sin T - bT cos wT + bT)
T 2 2
(@T)< + (bT)
. (1 - e'2bT)(l - cos wT)
2bT(1 - 2e7PT cos T + e 2T)

This is plotted in Figure 22 for values of

K= b/(w/2)
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8.11 Mean Square Error - Second-Order Exponential

Again, from Appendix A, the mean square error is

shown to be
w1
e2(t) = [ 1(p)dp
(0]
where

I(p) = 1/2 [1+ N—éﬁ]

N(p) R2 + 52 + U2 - 2 cos ap (R - SZ + UA2)

+2 cosa (RS + SU) - 2 cos [a(l+p)] (S - UZ')

+ 2RU cos 2a - 2U cos La{2+p)]

2

+2 cos [(1-p)al (RZ - A%S) - 2a%R cos [(2-p)al

2

D = (l+22+ A4)-2cosa(22+ ZA2)+2A cos 2a

R= (1 - YW)

S= (X+ yw- 2)

U= (A% - YX)

W= cos (bpT + 4)

X = A cos <(1-p)bT - &>
Y = AP sec 4

Z = 2A cos bT

-dT
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(o
]

e

po |

—
]

]
N

This was evaluated digitally, and the resulting root mean square
value plotted in Figures 23(a) to 23(c) for various values of

wn/(ws/2) and (

9,0 DISCUSSION OF ROOT MEAN SQUARE RECOVERY ERRORS

There are perhaps two general comments which can be
made about the root mean square recovery error plots of Figures
19 to 23, First, for more than approximately five samples per
cycle of input frequency, increasing the polynomial filter order
results in a reduction of root mean square recovery error. And
second, the more traditional exponential filters yield a root
mean square recovery error which is always greater than that
available by using the raw staircase output directly.

One must .remember, however, that the above comments
are pertinent only if the root mean square recovery error is
a valid error measure for the case in hand. The polynomial
filters will usually allow discontinuities at the sample
instants, as does the zero-order hold itself, whereas the
exponential filters provide a great deal of smoothing of the
response. This smoothing, however, is achieved at the cost
of delay, which is seen to result in the larger root mean
square recovery errors.
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10.0 CONCLUSIONS

This report is essentially divided into two main
sections. In the first, a review of certain topics from the

théory of sampled-data systems is presented, which, in the
opinion of the author, is more intuitively satisfying than

that available elsewhere. This section also contains an
analysis of the sources of error occurring in sampled-data
systems containing a digital device. Here it is shown that
errors in such systems arise from two main processes. The
first, a digital error, is due to the numerical approximations
made in the digital process used, and the second, a reconstruc-
tion error, is due to the recovery process necessary to convert
the digital signals to continuous form,

The main body of the report is devoted to a detailed
evaluation of the reconstruction errors arising from realizable
digital-to-analog conversion processes., It is assumed that the
required conversion is achieved in two steps; first the digital
data is converted to a staircase signal by a conventional
digital-to-analog converter, and this staircase signal is next
smoothed by a realizable smoothing filter. Two families of
smoothing filters are considered, the finite memory polynomial
filters, and the more conventional infinite memory exponential
filters. Circuits are presented which allow the filters to be
realized using standard analog computing components.

The first comparison between the various digitél-
to-analog conversion processes is made on the basis of their
frequency response characteristics. It is shown that such a
comparison does not lead to an analytic evaluation, and it be-
comes a difficult design task to choose from among the possible
solutions. The frequency response curves do, nonetheless, allow
certain general comments to be made as to the types of distor-
tions present, such as phase and amplitude errors, ripple
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attenuation, etc., and should be considered if certain of these
types of error are especially important.

Lastly, a comparison based on the root mean square
recovery error is presented. This error is obtained when the
digital data to be converted are samples of a sinusoid of
varying frequency, and the resulting output is compared with
this sinusoid to form the recovery error. The curves presented
show the improvement to be expected when the higher order
smoothing filters are used, and can be used directly for design
purposes when the root mean square error is a suitable design
criterion,
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APPENDIX A

EXPONENTIAL FILTERING OF D/A CONVERTED DATA

In the case where the staircase output of the D/A
converter is fed to an exponential filter which has a non-
finite transient response, the simple method used to obtain
the filter output for the polynomial filters cannot be used,
The system of interest is obtained from Figure 18, and shown
in Figure A-1. The system is seen to be a sampled-data systenm,
and z-transform techniques can be used (see Ref. 1, 2, 3 or 4),

The modified z-transform of the output g(t) will be

6lz,m) = (1) - rla)z, {Hle]] (A.1)

which yields a recovery error whose modified z-transform is

_ -1 H
E(z,m) = <?E— F(z) - z {—%fl} - F(z,m) (A.2)
Now the mean square recovery error is, from Section 8,
given by
N 1
2 o 1 2
e“(t) = lim = Z I €n+pdp (A.3)
N —+oo n=0 0

It is thus required to take the inverse modified
z-transform of (A.2) and substitute into (A.3). The inverse

modified z-transform is given by

_ I R ¢ n-1
€(n,m) = € Lo = 5;3 ¢ E(z,m)z " ~dz




€ = A § [Eil F(z) * Z {ﬁ%fl} - F(z.m)] 2Nz (A.4)

nm o 2m)y

and

Case 13 First-Order Filtering

e e ]

ATy

Let
H(s) = 335
Then
~bmT
7 {H(s)} -7 { b } _ [ 1 _ e ]
m{ s m {s(s*+b) 21 _-bT
or
7 {Hfs)} _ (z-B) - B™(z-1)
m{ s (z-1)(z-B)
where B = e'bT
_ jwt _z _ A"
Also, for f(t) = el"", F(z) = — and F(z,m) =5
where A = e"jmT

Substituting into equation (A.2), the modified

z-transform of the error becomes

(z-B) - B™(z-1) _ A"
(z-A)(z-B) z-A

E(z,m) =

Wz - X
(z-A) (z-B)
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where W=1-B"-A"
X=pB+ B"- A"

and where m = p

1 Wz - X n
= Q d
mp  orj J (z-A)(z-B) 2z

€

- WA - X, ,n, WB - Xpn
A-B B-A

Now B" = 0 as n increases, and so has a mean square
value of zero. Thus the only contribution to the mean square

will be

€ D e—
( n+p)l A-B

Again the mean square error for a cosine input is

giver by
1 ¢ e* L
0 0
* * *
where I(p) = % W2 : §> WAQ --BX )
Now

(1 - 2B cos a+B2) I(p) = 1-BP+B2P+B%BBP - cos a[2B-BBP-BP+B2P]

2_BBP]

- cos ap[1-BP+B
+ cos alp+l) [B-BP]

+cos a(p-1) [B-Bl+p]




Page - A-4

MK-12

Integrating over the p, and after some effort, the:
mean square error becomess

] . 8dna, sin a-fcos atp _

(1 - B)(1 - cos a)

28(1 - 2B cos a + Bz)

e“(t) +
a 32+ﬁ2
where a=wT
= oK
B - e-bT
Case 2t Second-Order Filtering
Let
2
H(s) = L
2 2
s© + 2Cwns to
© 2
2 fHe)) - 2, oy
UL 1S m s(s2+2Cwns+a)
- 7 { i
M Ls[(s+d)? + b?]
where d = Q»n
b=w 1 -¢?
Then

{_;_ - A" sec 4 [z cos (bmT+4)

(z-1 2

- A cos<(l—m%bT-¢>]}

z< - 2z A cos bT + A
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MK-12
where A= edT o o=lonT
and tan g = - % I A
Now F(z) = == where C= o T

z-C

The filter output is thus

clesn) = (55 () {ghy - o° soc #

[z cos(bmT+g4) - A cos<(l-m)bT-A>]}
22 - 2zA cos bT + A2

Again it is the contribution from the pole at z = C
which yields the steady-state component of the output and which
has the non-vanishing mean square value, This component is
given by

WC - X n
S C—lY{ } c
“mp [1 - ten) -ZC+A2]

where W = cos(bpT + ¢)
X = A cos<(1-p)bT-g>
Y = AP sec g

Z= 2A cos bT
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The recovery error becomes

c - f

en+p np ntp

™
i

wp = [1 - (1Y [t} - ]

[k -c%*P + Rc? + 2cM*P + s - A%CP 4 U] ¢"

C? - ZC + A°
Where R= (1 - YW)
S= (YX+ YW - 2)
U= (A% - vX)

The mean square error for a cosine input is thus

1
e?(t) = [ 1(p)dp
0

L N
EMpEMp_ l+-§ﬁ

R+ 52+ U2 - 2 cos(wT*p)(R - SZ + UA

N
—
—
T
~
1]

2)

o
o
Q.
=
——
o]
1]

+ 2 cos(wT)(RS + SU) - 2 coslwT(1+p)](S - UZ)

+ 2RU cos(2wT) - 2U cos[ (2+p)wT]

2

+ 2 cos[(1-p)wT](RZ - A%S) - 2A°R cos[ (2-p)wT]

2

(142%A%) - 2 cos(wT)*(2%+2A%) + 2A2 cos(2wT)

O
]

T e IR
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APPENDIX B

HARDWARE REQUIREMENTS FOR FILTERS

Another comparison of the recovery filters is
obviously the hardware necessary to realize these filters.,
Table B-1 provides one such comparison based on realizing the
filters with standard analog computer components. It is assumed
that a sample and hold amplifier is available for the polynomial
recovery filters, and that the filters receive, as an input, the
staircase output of a conventional digital-to-analog converter.
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First-Order
Exponential

Second-Order
Exponential

MK-12
TABLE B-1
Circuit Diagram
Filter No. of Amplifiers Figure Number

Zero-Order None or one 6(b)
First-Order

Extrapolator

Unsmoothed 5 7(e)
First-Order

Extrapolator

Smoothed 7 8(e)
First-Order

Delayed and

Ideal 3 9(d)
Second-Order

Extrapolator 7 11(d)
Second-Order

Delayed and

Ideal 7 12(c)
Nth-Order N+ 4

Extrapolator plus inverters 13
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APPENDIX B

HARDWARE REQUIREMENTS FOR FILTERS

Another comparison of the recovery filters is
obviously the hardware necessary to realize these filterc.
Table B-1 provides one such comparison based on realizing the
filters with standard analog computer components, It is assumed
that a sample and hold amplifier is available for the polynomial
recovery filters, and that the filters receive, as an input, the
stalrcase output of a conventional digital-to-analog converter.
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