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ABSTRACT

A synthesis inethod based on geometrical optics for designing a dual

reflector antenna system with an arbitrary phase and amplitude distri-
bution in the aperture of the second reflector is presented, The first
reflector may be illuminated by a pattern with an arbitrarily curved
phase front. A pair of first order ordinary nonlinear differential
equations of the form dy/dx = f(x,y) are developed for the system.
Questions concerning uniqueness, existence, and bounds for the solutions
are discussed. Calculations and numerical results for the design of

a uniform amplitude and phase dual-reflector system are presented,

The diffraction effects of the small reflector are analyzed by the
methods of geometrical diffraction. Their effects upon the aperture’
distribution of the larger reflector are analyzed in detail. Correction

for the small reflector diffracted field is obtained partially by an

v'l k)l %“t‘ B {" [
iterative procedure utilizing the above synthesis method. m.
j N {wm A{ » ,\Iﬁ A

alhhotigbfnot con {s«wely-, Wf‘extenswe numerical analysis that com-

plete correction for the diffraction effects is not p0581b1e.
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GENERAL INTRODUCTION

Conventional dual-reflector antenna systems have been based largely on

the Cassegrain parabola-hyperbola design or the Gregorian parabolaellipse
design 1. Some highly specialized exceptions have also been reported Z.
The designs are all based on the principles of geometrical optics and are
limited accordingly. That is, the reflectors must be large and have a large

radius of curvature compared to the wavelength in addition to other restrictions.

A generalization of the design technigques for a dual reflector antenna that is
also based on geometrical optics and is similarly limited in application is
presented in Chapter 1. It has been found that an arbitrary phase and ampli-
tude distribution can be developed in the aperture of the larger reflector of

a dual-reflector system with an arbitrarily curved phase front illuminating

the smaller reflector. The design procedure is sufficiently general so that
many useful variations of the design objectives are clearly possible. For
example, the large reflector of the system may be specified to have a circular
cross-section and arbitrary phase distribution (uniform,for example) and the

appropriate sub-reflector is then found for a given primary radiation pattern.

The methods of geometrical optics which are used for the above synthesis are
of the first order from the point of view of the assymptotic solution of
Maxwell's equations, which is an expansion in powers of the wavelength.
Second and higher order solutions have been obtained for many problems

and yield the diffraction effects. A discussion of the assymptotic expansion
and the use of higher order terms in the geometrical théory of diffraction is
made in Chapter 2. This theory is then used to analyse the diffracted field of

the subreflector. The effect of this diffracted field upon the aperture distributio




of the larger reflector is discussed in Chapter 3 ig detail, together with a
presentation of numerical results illustrating the effects. The importance

of higher order terms or the diffracted field due to the larger reflector is
generally not nearly as significant as is the diffraction due to the subreflector.
In addition, as the subreflector is made smaller in wavelength, diffraction
becomes more significant and places a limitation on the mjnimum size and
consequently the minimum blockage the subreflector presents to the main or

larger reflector.

An attempt at including the diffracted field in the synthesis procedure and hence
correcting for it exactly proved unsuccessful. It appears that in the context
of the present formulation a solution for this problem does not exist. The
complexity of the problem makes a proof of no existence difficult although

this conclusion is strongly implied by the discussion of Chapter 4. Since an
exact solution did not appear possible, an attempt at an iterative solution
using the synthesis method developea in Chapter 1 was made and is discussed
in Chapter 5. The numerical results obtained here tended to support the
implications made in Chapter 4 that no exact solution exists. However,

the results of the iterative procedure indicated that a reasonable compensation
for the diffraction effects can be obtained. Although an approximate theory

of diffraction was used in this iterative procedure, the true diffracted field
could, in principle, also be used in this method; although perhaps with con-

siderable inconvenience in proportion to the increased accuracy obtainable.



CHAPTER 1

FIRST ORDER DUAL REFLECTOR SYNTHESIS

Introduction

In this chapter a method for the synthesis of a dual reflector antenna
with an arbitrarily specified phase and amplitude distribution in the
aperture of the main reflector is developed, An arbitrary primary
source may be used to illuminate the subreflector. The design is
based ppon geometrical optics. This technique for synthesis is used
later to obtain an iterative solution for the reflector shapes which

accounts for the diffraction field of the subreflector to some extent.

The synthesis method utilizes the analytical expression of the geo-
metric optics principles together with the geometry for the reflectors
illustrated in Figure 1 to develop a pair of first-order nonlinear
ordinary differential equations of the form

dy _ . ‘
Tx © f(x, y) (1)

which leads to the cross~sections of each reflector when subject to

boundary conditions such as

y{x = xmax) =0 . (2)

The above differential equation can, in general, be solved readily by
high-speed machine computatipns. A pair of such solutions for a

uniform phase and amplitude design is presented.



A desirable feature about the form of the differential solution,

Equation (1), is that frequently much information can be predicted

about the final solution before a machine computation is attempted..

The questions of existence and upper bounds on the size of the

reflector (‘I; Yl"max) can be answered by considering little more than

the boundary conditions of the problem. If f(x,y) is found in a suitable

form, then lower bounds for the radius of curvature of the reflectors

can also be found. The procedures for finding the hounds. existence

and uniqueness proofs are discussed in Part IIl and can also be found

in the literature on non-linear differential equations (see Reference 8

for example). See also Reference 9 for an alternative formulation

of the problem,

The optical principles which are utilized to develop equations of the

form given in (1) for the system are the following:

a.

Snell's Law 3, Application of this law at each reflector leads

to a form of (1) with f specified in terms of the angular variables
shown in Figure 1.

Conservation of Energy Flow 4 along the ray trajectories. The
requirement that the energy flow be conserved in any solid angle
bounded by ray trajectories leads to one equation of constraint

for the system.

The surfaces of Constant Phase form Normal Surfaces > to the

ray trajectories, and this normal congruence is maintained after
any number of reflections 6 (theorem of Malus). This principle

leads to another constraint for the system.

It can be shown that all these principles are not independent (References

2 - 6). Hence we will not need to use the expression for Snell's law



at reflector #2 (Equation 5). The optical principles together with the

geometrical bounds of the system and the primary pattern and the phase
and amplitude distribution in the large reflector define a unique opti-
cal system (sometimes equivalent alternative systems exist, as with

the Cassegrain and Gregorian systems).

The design method is described for surfaces of revolution, in particular,

although the antenna design method can.be readily extended to include

. doubly curved surfaces where the surface coordinates are separable,

and possibly also under other special conditions (see Reference 10).
When the curvature in one plane is specified for the dual-reflector
system, the design procedure for the curvature in the perpendicular
plane can be the same as repo rted herein with an extension similar to

that made by Dunbar 7 for a single doubly curved reflector.

II. Analytic Expressions of Optical Principles and Formal Solutiop™
The principles stated earlier can be expressed as the following basic
equations from which the solution is developed.
Snell's law at reflector #1 leads to (see Figure 2)
ax, - tBn 2 | (3)
where
*2
6, = arc tan| - ‘ ,
2 Bty -y, / (4)
%

The solution presented in this part and much of the remainder of this
chapter is published in Reference 11.



The quantities &(6,) and P(el) are prescribed such that o((el)+P(61) =
given constant (see Figure 1). The intersection of a primary field ray
with the y) axis determines (X(B‘l) and F(Bl). The rays are found from

the known or given form of the primary field,

Snell's law at reflector #2 leads to (see Figure 3)

dy, 92 -85 )
dx; - T\ Tz | (5)
where
0 t _x—z‘__-_i) (6)
3 = arc tan YZ

The conservation of energy principle is expr ssed differentially as

d6l

1,(6}) sin 8, (H}z— = I3, (x5) % (7)

The quantity 11(9‘1) is the power density of the primary illumination.
The quantity I‘3a(x"2) is the power density flow normal to the aperture

of reflector #2 (]y2=0). It is chosen arbitrarily except for the required

normalization:
e1 max *2 max
. ein O . - | (K 1 '+ !
J‘ Il(el) sin el del = f I3p(x2) XZ dxz (8)
e‘l min Xomin

The phase at the aperture can be assigned arbitrarily as CP(‘x'Z) .

The path length from the primary illumination is given by

ty _ o : ‘ 1 . ‘ O
Cp(xz) = rl(el’ yl) + Pz(el,yl. xz Yz) +p‘3<xzs stxz) +cp‘0(91) (9)



7',

The quantity Cpo(el) is defined by the primary illumination as illus-

trated in Figure 4. An arbitrary primary illumination [Il(el_)] phase
front is chosen as a reference. The aperture phase Cp(’x'z‘.)‘ must be

defined with respect to this reference. The remaining quantities in

Equation (9) are easily found as

ry o= [Beey - y1] sec 6, | (10)
Py =/(x2 - xl,‘)“2 + ,@ +ﬂ+ ¥, - yl).'z‘ (1)

and N
P3 i/("fz - "2)2‘ + sz = ZJ - . (12)

/o-(wt)

The right-hand side of Equation (12) is found by expressing the theorem

vV

of Malus from the diagram of Figure 3 as

P- = sino,. (13)

Since Cp‘(x'z)‘ is assumed given, then 9‘3(x'2‘) is thus determined

directly.

We will now choose as a single independent variable the quantity x‘2 .

The remaining dependent variables will be considered functions of

x5. We will then derive the two differential equations
ae, .
: - g e ) ; .
=y fel (91 ; xZ) (14)

and



dy1
dx"z

- X . ' X
= fyl (8,1 y)%)) . (15)

Upon solving these equations all the remaining dependent variables can
be immediately found as functions of xé. Although the choice of x"z

as the independent variable and 6‘1 and Yy for the differential equations
is somewhat arbitrary, this choice does allow all the following expres-
sions (fel,fy;etc. ) to be found in e:plicit form. An equivalent formula-
tion in terms of dyl/‘dxl = fl(xl,yl) and dyz/dxz = fz(xz;y‘z) can also
be found (see Reference 9).

The quantity del/dx:2 is found directly from Equation (7) as

de I, (x4)x;
1 - f (0.x)) = 2R 2 2 (16)
ax'z 91 1’72 Tl(el) smel

This equation can be solved immediately (by nume rical methods) sub-
ject to the appropriate boundary conditions (see Figure 1 and Reference 8
for example). If 11(61) sin 61 and I3P(‘x2) x, are integrable then we

can solve (16) very easily as

, ‘ - a - D ' ') ! ' 1 :
1,(6)) sin®,d6, =P (6)) I, (xp) x5 dx; = Py (x5). (17)

, X .
1 min 2min

This integral solution will be of especial value if we can find 91("'2)‘
explicitly from (17). Otherwise it appears just as well to solve (16)

since the numerical solution can be used simultaneously to solve (15).
That is, the solutions of (14) and (15) can be set up on the same computor

program:



Before finding dyl/dx"z explicitly we will find dxlldx'z‘ as a function

! '|.|‘ ‘ ‘ a v ! Y v LY
of (8,,¥) dyl/dxz,xz),‘ x,(8y, 7 ) x,(0), yi%,), and ¥,(8,, ¥)ix,) explicitly.

Upon finding dy, /dx, we will then have obtained a complete solution for

the system.
From the diagrams of reflector #1 it is seen directly that
x, = x)(0,,y,) = [B(8))-y,] tane,. (18)

‘ ind ' (o S — ‘
To find dxl/dxz‘ (Gl,yl,dylldxz, x2> we use

dx, -axl de, . 8x1 dy, (19)
dx) 08, dx) 9y, ?x'z
with
'8‘x1 2
?.e_i. = (‘)’91 tan 61 + ([3-y1) sec 91 (20)
whe re pe‘l = dp/del, and
dx,
= =~ tan 6,. (21)
We can find yz(el, yl;‘x'z) and xz‘(61, yl;x'z) explicitly by solving
Equations (9) and (13) simultaneously. This gives
N2, )
s y0yixl) = - [("1 x5)° + (‘”ﬂ' Yl) - B}
Yo = YalPyp¥yi¥p/ = — 4 (22
i de ‘
| ], ("1 - x'z)J' B
2 {(@if-y ) + — |
i -'ﬂ 1 ac 2
, 1 - P
- | Vo :
L. i

and
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x, = X, (e‘l,yl;xé) = x, + = _(23)
(‘*’ﬁ"yl)‘
cw! ) 4
with B |
' =C_- (p- -C_ (9)).
B cp (P y,) sec®, Cpo\( ) (24).
Now from Equations(3) and (4) we obtain
dy dx
L - £ (8,,y,i%}) ——t
x5 1Y %) axy (25)
where
X - X
[ *2 1 ‘
61 - arc tan<¢+p+yz_yl> }
fl(e‘l,yl;x'z)‘ = tan . (26)

Z

With Equations (18) ~ (24) substituted into Equations (25) and (26) we

obtain explicitly

(B

‘ 2
1tane1 + (ﬁ-yl)sec el}fe £,
axt = fyl (913 ylvx'z) = -

(1+tanb, 1)

Upon solving (27) for yl(x'z) and either (16) or (17) for Gl(x"z),

then all the remaining dependent variables, 6'2,, X1 Yy and x, can
!
2
(18), (22), and (23) respectively.

be found also as functions of x! by application of Equations (4),



111,

IV,

11

Existence, Bounds and Uniqueness

For the purpose of determining existence and uniqueness of the soluticn
and obtaining hounds for Yy and Yy, it is convenient to use the form

of the equations given in (3) and (5) (see also Reference 9). For any
specific synthesis problem, it is frequently possible to estimate bounds
for the solutions yl(xl) and YZ(XZ) in addition to predicting uniqueness
merely by using the forms given in (3) and (5). The methods for employ-
ing this useful property are easily seen from a study of the theory of
these equations such as given in Reference 8. Some discussion of this

is given in Appendix I.

s
'

Uniform Phase and Amplitude Examples

The solution for the dual-reflector system which will produce a uniform
phase and amplitude distribution in the aperture of reflector #2 is found for

a primary illumination 11(61): = cos"6 It is assumed that the primary

1
phase front is circular with center location given ty the constants @ and
ﬁ.. In this case we will take the phase center of primary radiation as the
phase reference for the system so that Cpo(ell)‘ =0, The aperture ampli-
tude distribution will be given by I3p(‘x'2) = constant found from (8). The
aperture phase distribution Cp‘(x'z‘)‘ is also given as a constant which is
determined from (9) and the boundary conditions. We may note imamediatel

that in this case

[63 =0 and x‘z‘ = XZ] . (28)



The boundary conditions will be chosen so that
‘ell min x|2 min - *2min

Four more independent boundary conditions are available. We will

choose

X2max’' *lmax’ e1 max’ and @.

The remaining conditions are found from Figure ! as
e )

. ‘
[S - 1 max

tan 6
l max

- *2max = *lmax | ‘
e = arc tan | ‘ ‘ 4
Z2max a + P

c x1) =/ b + | e+ B )
p 2 cos O, ‘ cos B, :
: Imax 2max

\ 7

Since the overall scale of the structure is arbitrary, the value of

g

x will be chosen as either

Zmax
a, X5 max - +1, which leads to a convex type of solution for
reflector #1 [Yl(xl):\
or
b. X5 max = " 1, which leads to a concave type of solution for

reflector #1.

In this example we find that Equation (17) is integrable and that

9‘1(:{'2‘;') = ‘B‘ll(x‘z‘) can be found explicitly as

(29)
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91 = arc cos | vV 1 -M xz : (30)

with
o n+l "

M=1 - cos ‘91 max (31)
From Equation (ZZX),, witk dC_/dx! =s8in 8, =0 and C_ (0,) = 0, we
obtain

~ 2 ( 2 | )‘2
- ?(CJY o - 'xﬂ '(mp' i) 12
2(,¢+P— v, + Cp “ rl)
where r, is given by {10).
It is now possible to construct the function (Equation 27)
dy1
- : . 3 - . 1ty

explicitly and solve for AEESTR AT and x, as functions of x'2 .

" It should be mentioned that the alternative solution discussed previously

in terms of dyl/dxl = fl(xl"' yl) and dy’Z‘/de = fZ(XZ’ yZ) leads in the
present example to explicit equations for fl(xl’ Y1)° and fz(xz, yz)

(see Reference 9).

Numerical computations were made for the following special case:

no=10, x x =0.1,6=0;, and lem = 30°,

1 ma ax

The values chosen are reasonably practical:
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16 ~ 1 o
cos” "8 TT0 (=10 db)
and
| | 2
¥l max | , ,
P L Lol = 0.01 or 1% optical blockage by
*2max |

reflector #1.

The results for the convex (Cassegrain type) solution are depicted in
Figure 5. A parabola, matched at two points, is drawn for comparison
with reflector #2. The results for the corcave (Gregorian typej
solution are depicted in Figure 6. In both cases, a numerical and
graphical check of the results indicate that the solutions conform to

the optical comstaints as required. The smoothness of the contours
(large radii of curvature) indicate that the optical design will be a useful

one in this case.
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CHAPTER 2

THE SYNTHESIS PROBLEM AND THE LUNEBERG-KLINE EXPANSION

Introduction

The synthesis method developed in Chapter 1 was based on the principles
of geometrical optics. Although these principles were discovered
independent of electromagnetic theory, they may be derived from
Maxwell's equations. For the design of optical instruments which
operate at wavelengths measured in angstroms, the connection with
Maxwell's equations if often unimportant. At radio and microwave
frequencies where the wavelength becomes significantly large, the
connection of geometrical optics to Maxwell's equations is important,
for it allows us to determine how accurate the geometrical optics
approximation is and how, if possible, geometrical optics designs may

be irmproved.

For example, the geometrical optics field scattered from the subreflector
of our dual reflector system will have, in general, a sharp cutoff at

the shadow boundary as is illustrated below (a). For subreflectors

many wavelenths in diameter, the scattered field observed appears to
have just such a sharp discontinuity. When the subreflector is of the order
of 7 or 8 wavelengths and less, significant changes in the true scattered
field from the geometrical optics field may be noticed. Diffraction
effects become significant and one observes a scattered field such as is
illustrated below in (b). In addition to the rippi. that is noticeable, a
large change in the amplitude is observable at the shadow boundary.

A dctailed discussion and analysis of this diffraction effect will be made

in later chapters.
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Another consideration that is necessary at larger wavelengths is the
effect of a small radius of curvature for a reflecting surface. That
is, we would like to know what radius of curvature, in wavelengths,
is necessary for geometrical optics to be a valid approximation to
electromagnetic theory. Although this problem cannot be solved
exactly for most practical cases, considerable insight into the
effects of diffraction and small radii of curvature can be obtained
by ceriving the principles of geometrical optics from Maxwell's
equations. There have been many such derivationsl’e, but the nost
satisfactory appears to be that developed by Luneberg and Kline3

in the form of an asymptotic solution to Maxwell's equations. This
expansion in inverse powers of %(2T/x where A= wavelength) is shown
to have as its first term the geometrical optics field. Hence
geometrical optics may be referred to as a first order solution to

Maxwell's equations.

Strictly speaking, under certain conditions, the higher order terms of
the Luneberg-Kline expansion satisfy the gecmetrical optics principles
also. The important condition is the usual far field assumption that
the fields are considered only at a great distance from their sources.
Hence the primary source field in the synthesis problem may be
represented exactly by geometrical optics if the far field is con-
sidered or if the subreflector lies in the far zone of the primary

source.

An additional reason for discussing the luneberg-Kline expansion is its

similarity to the asymptotic expansion of the Sommerfeld solution to
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the half-plane problem. The higher order terms of the asymptotic
solution to the half-plane problem describe the sharp edge diffracted
field. The second term provides an accurate description of the far
zone diffracted field. One distinction between the Luneberg-Kline
expansion and the asymptotic expansion of the half-plane solution is

that the latter is in powers of k’% .

In general it is not possible to obtain an asymptotic solution to a
diffraction problem in powers of k_n where n is an integer unless
certain conditions are satisfied. The original paper by Kline3 derives
and explains these conditions quantitatively. In essence, these condi-
tions require the diffracting obstacle to have a convex curvature and

to cast no optical shadows when illuminated by the incident field. A
surface that is concave at any point may cause reflected rays to cross at
a caustic. The asymptotic expansions do not exist on the caustics of a
field defined by a ray system. A particular expansion may however be
valid away from a caustic. It can be shown 14 that imore terms of the
expansion are generally necessary, however, to evaluate the field nearer
to the caustic. Away from the caustics, then, the field diffracted from

a surface which casts no shadow boundaries may be expressed as an
asymptotic expansion in k'n . Such surfaces may be infinite paraboloids

5‘:

and hyperboloids " .

When the diffracting surface casts a shadow boundary it is still usually
possible to express the solution in terms of an asymptotic expansion
with the distinction that non-integer powers of k must frequently be

used 13,15, 16‘_ As was mentioned earlier, the exact half-plane sclution
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n
may be expanded in pewers kT‘ where 7]_ is an integer. Unfortunately,
in most of these cases the expansions are known only after the exact
solution is found. Nevertheless, it should be noted that all the expan-
sions have the same first term, the geometrical optics solution. Hence
the field diffracted from the reflectors considered in this work will
always consist in part of the surface reflected field given by geometrical

optics.

The Sommerfeld half-plane solution suggests that a substantial part of
the diffracted field in our problem is due to edge currents near the
knife edge of the reflector. These currents, as will be shown in the
next chapter, give rise to a field which is of higher order in powers of
I1/k than the geometrical optics field. In problems for which the
solution is not known apriori it has been possible to obtain excellent
results for the diffracted field by clever use of the edge current
| 7,9,10,11

concept . Application of this app. (ximation will be made

for the subreflector diffracted field in the next chapter,

When the reflecting surface is curved two additional considerations are
important. The first concerns the possible excitation of a surface
diffracted wave by rays incident tangentially to the s.;urfaces. In the
subreflector problem this is possible due to secondary edge diffracted
rays enamating from the edge current. Their effect is estimated and
shown to be small in the next chapter. An additional consideration is
the accuracy of the geometrical optics field when the reflecting surfare

has a small radius of curvature.
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This last question is too difficult to answer in a precise and conclusive
manner. For example, it has been shown that the geometrical optics
solution is an exact solution to the vector electromagnetic diffraction
problem of a plane wave incident on an infinite paraboloid of revelu-
tioné,, ‘his solution is exact and independent of the paraboloid curva-
ture at the apex. This result is unusual, however, and in fact, pecu-
liarly enough, does not apply to the equivalent acoustic problem. In
general, when the radius of curvature of the reflecting surface is
larger, then fewer terms of the expansions in powers of k"/\?' are
needed. This has been shown in a number of cases investigated by
Keller, Lewis, and Secklers.. They apply the Luneberg-Kline expansion
in analyses of parabolas and hyperbolas of revolution and also of
cylindrical shape. The solutions for these cases are generally difficult
to interpret since the geometrical parameters describing these shapes
(radius of curvature, focal length, etc.) do not enter into the expansions
in a reasonably simple way. The application of the expansion to reflec-
tion from a circular cylinder allows a direct interpretation of the effect
of surface curvature on the convergence of the expansion. As discussed
earlier, the application to this problem is approximate and does neglect
diffraction due to shadowing, etc. This example is presented after the

theory is developed in a more quantitative manner next.
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The Luneberg-Kline Expansion and Geometrical Optics

-iut

We will assume a time harmonic & dependence and suppress

this factor. OQur notation will follow those of Keller5 and Sc:hensted‘{D

. -~ .- n -
which are the same if we set /U'n/ (iz'my" = E_. We have three
——
sets of waves; the primary wave U1 incident on reflector #1, the
-
secondary wave U2 incident on reflector #2, and the tertiary wave

.—\

U3 passing outward through the aperture. We synthesize for a given

- -
U3 tangential in the aperture with U, specified arbitrarily. The vector

- s . -iWt . -
U is the electric vector with an @, time factor suppressed.

The Luneberg-Kline asymptotic expansions for the fields are
- [« > ‘ nT kG -4 :
U1 Lg {U{M./lk) c P Cpl _'41‘ + C‘po (1)

r A

T, - T T/ (i)™

. (2)

C/:ik(;pZ ( Cpa =Ar2 +)’I + Cpo)

1]

™

2

— ikC ﬁ
\ [ /"Qa/(ik)“ 1 & v ( Co3 =4, +f’z +0) 4 Cpc)m

The notation is the same as that used previously except that,Qj is the
distance from the Y-axis for j =1, the distance from reflector #1
for j = 2, and the distance from reflector #2 for j = 3, in each case

along the ray which is normal to the optical phase fronts defined by

Cp‘j = constant. (4)



In order to have (1), (2), and (3) satisfy Maxwell's equations we first

insert them into the homogeneous vector wave equation
2 .2, =

and set to zero the coefficients of like powers of k~ ”. This leads

to a recurrence relation

-
d/U'n 1 - 2 B 1 2 5
= t T U,V ¢S = - Vi (5)

[oF

where ﬁ-l =0

N
The divergence condition (\/* U= 0) gives

Ve, W, - VL, (6)

The boundary condition on a perfectly conducting reflector surface

N
defined by the unit normal Y} gives

=)

A x

= 0 (7)

Finally, from the wave equation we also obtain the eikonal equation of
geometric.l optics
2

(ch) =1 (8)

|
(The subscripts j have been dropped from (5) through (8)). Hence (1)

through (3) satisfy

29
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VAR )z; - o

0 (9)

t 1

e
- U
/\
NX U = o

if (5) through (8) are satisfied.

Equation (8) implies that there is a system of rays which form orthogonal

trajectories to the wavefronts C_ = constant. This wavefront is a true
-

wavefront for the first term, ,4/; , of the expansion. It is generally

not a true phase or wave front for the field when more terms are used.

Equation (5) is a first order ordinary differential eq'. 'tion in the orthog-
onal coordinate system defined by the ray trajectories and phase fronts.
This equation permits us to relate the field at one point of a ray,
S —
/U;, &) to the field at another point,‘A/;l‘_ /d,) , when the behavior
—
between 4_and A, is known for the 4/"_! term. This equation describes
—
2
the flow of energy along a tube of rays‘z. The v ﬂ/ﬁ_/ term is a
measure of the diffusion of energy between adjacent tubes of rays.
—

. . Cors ‘ 72 . a

Energy flow is confined within a tube of rays wh\.nv 4/;‘_,‘ = 0.

This is true for the /] = 0 or geometrical optics term.

Finally, equation (6) is of very great significance insofar as it helps to

describe the vector nature of the field. We may write (6) as

. N
= Af—n,a_,: VA5

SV

Ve, -
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. .
That is, the longitudal component of #n’ along & , is given by

V-, -

- 4 -
Hence /- is always normal to the ray since % = 0.

At first order, )1 = 0, equations (5) through (7) become

—

d 4~ — 2
:0, + %_1/0“ V c, ) = 0 (10)
| >

ch A = o (11)
A —
n Xﬂf; = 0. (12)

Equations (8), (10), (11), and (12) are the usual geometrical optics

laws.
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Example of the Effect of Surface Curvature on the Accuracy of
Geometrical Optics Relflection

Geometrical optics principles clearly do not account for the diffraction
effects at a knife edge. One may consider the radius of”’cu‘rvature at
such an edge as being zero (or the Gaussian curvature as being infinite).
It is well known that geometrical optics does give good results for the
fields scattered from large flat or nearly flat reflectors. Hence one
may state that if the radius of curvature of the r'é’flectinq surface is
large then geometrical optics or the first term of the asymptotic

expansion of the field gives an accurate result for the field. In this

section we wish to give some insight into the problem of just how large

in wavelengths the radius of curvature of the reflector surface must

be in order for geometrical optics to give accurate results,

In the introduction to this chapter, it was mentioned that a specific answer
to this question cannot be given since, for example, the geometrical

optics solution is exact for the infinite paraboloids’ 6. A number of
different problems have been analyzed by Keller, Lewis, and Seckler5

by use of the Lunebeérg-Kline expansion wherein the convergence properties
of the k * series is illustrated. In many of their problems the k-n
expansion is in fact a true asymptotic solution since no shadow boundaries,
caustics, etc., exist in the problem. The convergence dependence on
curvature is best illustrated howewer by applying the Luneberg-Kline
expansion to scattering from a metal circular cylinder. The application

is approximate since diffraction effects exist here and are neglected;

nevertheless, the problem is illustrative since the radius of curvature
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of the scatterer is a constant and the convergence dependence on
this radius is easily discernible. Furthermore, away from the

shadow boundary and shadow region the expansion is correct.

For the sake of brevity, the complete details of the derivation of this
solution are not presented here. A complete derivation is given by
Keller et a15. In essence, the geometrical optics solution is found
by direct application of the stated principles and the higher order
terms are then found from the geometrical optics solution by applica-

tion of the recurrence relation discussed earlier.

A plane wave, Ui =Bikx is incident upon a perfectly ccnducting right
circular cylinder from the left as illustrated below (c). The cylinder
radius is bo . The electric field is oriented parallel to the cylinder
axis so that the total field EZ = Ut = 0 on the cylinder. The
incident field rays are parallel to the x-axis. The reflected wavefront
is not circular (except, as always, it is very nearly so in the far zone).

The reflected rays and phase fronts form an orthogonal coordinate system.

The rays are tangential to the caustic curve which is defined by
g b‘o -~
/d/o = —— sin ([=12) (13)
where /¢, is the distance from the caustic to the reflector surface.

The solution for the scattered field is obtained in a non-orthogonal coor-

dinate systen wherein a point is defined by (,d’,g ). The distance 4
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i~ that taken along a reflected ray from the caustic to the point of
observation P. The angle P is that made by the reflected ray and
positive X-axis. The solution for the reflected or scattered field is

the Luneberg-Kline expansion

3
ik (4 - > sin 4) .
e

oy j-2t (14)
% iam(léub k mng )

o ‘ sin 4,
7?0 fe o<.7.]

-
The expansion is found by application of the recursion formula to the

geometrical optics solution. The thn coefficients are independent

of bo’ A, and /6 and are given by the recursion relations
‘ -1 ‘ s
q_jtn = J [(2_] 4+ 4t 4+ 2n - 3)(6j - 4t - 2n - 1)]d_j-l,t,n-1

+(2j - 4t + 2n + 5)(2j - 4t - 2n + 3)a‘j-1, t-1,n-1

+[ 4(j-1)(j- Ztn)'é]aJ 2,t,n-1
(15)
+ 12(1 - j)(2j - 4t - 2n +3) aj;-Z‘,t-l,n-l

+ 942 =50 - 20 ;34,01

+9(2§ - 512j - Uaj-a, t-1,n-1

and
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aotn B 'Jg thn (16)

and

aooo = -2, " (17)

‘First of all, it should be noticed that the asymptotic solution (14)

blows up at the shadow boundary ﬂ: 0 as may be expected. Away
from the shadow boundary,ﬁ) (0, we wish to investigate the conver-
gence properties of the expansion with respect to the radius of curvature
bo' Except for the (bo//Q)j factor, bO occurs only together with k

as a factor (l/bok)n In general we are interested in the field far

away from the reflecting surface vhere 4 3> bo. In that circumstance

we may consider only the far field solution j = 0 and make the approxi-

mation
3
ST A ik(,d-‘zié) mi
U Né— -\/(_ﬁsm({) E . r?;’#od.om
(18)

-n -2t .
. (’léibok siné ) (sin f)‘

In this important case we note that the geometrical optics solution in

the far field,

3
“bo . é - ik(‘/d'" Z sin é) 3
U, ~ .\/%)sm e , (19)

is accurate uniformly in /8 }6} 0) so long as (k bo)‘ is large. The

percentage error in this specific case isw | 100/'(:16b0‘ksinf é)] Z
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when the effect of only the second term is considered. Note that the

error increases nearer to the shadow boundary/: 0.

This example illustrates, quantitatively for this case only, that the
geometrical optics solution is more accurate for reflecting obstacles
with larger radii of curvature. As a crude measure of the accuracy
of the geometrical optics solution to an arbitrary reflection problem
we may use the factor (l/‘kbo) as the approximate order of magnitude
of the second term in the asumptotic expansion. We may regard bo

as the local radius of curva ture of the reflecting surface and the
accuracy thus obtained will, roughly, apply to the field reflected

from that portion of the surface. This confirms what is known generally
through experience. Itis expected that k and bO should occur together
since any other result would contradict the fact that it is the size of

bo as measured in units of wavelength only that is significant. That

result may be expected generally.
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CHAPTER 3

THE EDGE DIFFRACTED FIELD

Introduction

A consideration of great importance in any dual reflector system

ir the extent and effect of the diffracted field scattered from the
smaller or subreflector. The geometrical optics field scattexjed

from the sybreflector is the field that is considered in the synthesis
method developed in Chapter 1. From the discussion in Chapter 2,

it is clear that this field is of first order with respect to the Luneberg-
Kline series field description. The remaining terms or the diffracted
field scattered from this reflector may or may not be of great con-
sequence depending upon the radius of curvature and overall size

of this reflector in wavelengths. A smaller sub-reflector will have a
scattered field which is more different from the geometrical optics
field. This is expected from experience and is borne out in the numer-

ical results presented later.

In general it is important to have as small a sub-reflector as possible.
Besides the obvious mechanical reasons of weight support, etc.,
(which are of very great practical significance) the blockage of the
main reflector by the smaller one reduces the overall gain and raises
the sidelobes of the tertiary pattern, The diffracted field of the larger
main reflector is generally negligible in the vicinity of the aperture of
this reflector. That is, geometrical optics is very accurate for a very
large reflector. The far field of the main reflector aperture distribu-
tion is usually determined by a K'chhhoffl integration over the aperture

which accounts for diffraction effects with reasonable accuracy. For



a uniform aperture phase distribution the far zone field is a purely

diffraction determined field.

We will use the term '"Kirchhoff integration' rather frequently in
what follows so that a brief definition of this term is in order. The

definition given by Baker and Copsonl

is interpreted broadly here,
Their definition applies more directly to diffraction through a hole

in a screen rather than from a metal scatterer. If E;, Hj is the field
incident upon the aperture and generated by the sources in free space
(no screen or scat‘erers present), then a Kirchhoff integration would
assume that Ej, H; is the total field in the aperture, and the tangential
field on the screen is zero. Strictly speaking, neither assumption is

true. For scattering from a metal scatterer, we will interpret a

Kirchhoff integration as follows:

If Ei, H; is the field incident upon the scatterer, we assume that the
current distribution on the scatterer surface is given by 2 0 x H;
where 7 is normal to the surface. Those portions of the surface
which are shadowed by the scatterer are assumed to have zero current.
The assumptions made here are similar to those made for the hole in
a screen problem and are similarly approximate. An integration of
these approximate surface currents to obtain the scattered field will

be termed a Kirchhoff integration

The purpose of this chapter will be first to determine the diffraction
field of the subreflector. In addition we will determine the actual error
in aperture phase and amplitude caused by this second order effect. In

subsequent chapters, we will discuss various efforts to correct the

41



diffraction field effects in the main reflector aperture and numerical

results will be presented.

An exact determination of the field scattered from refleztor shapes
“that are used in practice is not possible in general except for the flat
circular disk?, A Kirchhoff integration over the subreflector surface
such as that made by R‘usch3‘ has several disadvantages. The accuracy
for very small reflectors (less than 4 )\ in diameter) is questionable.
The analysis requires laborious numerical computations. The entire
reflector shape is required. This is so since this analysis yields the
first order geometrical optics field and the diffracted field in the same

computation,

The diffraction field is primarily an edge phenomenon caused and deter-
mined by the abrupt discontinuity of the reflector surface and the actual
edge shape (knife edge, rolled edge, wedge or square, etc.). Hence
many very successful diffraction theories have been d‘ev’eloped which
depend upon only the shape, position, and slope of the edge of the
scatterer., Although such edge shapes as the wedge4’ > or cylindrically
tipped edge6 could be treated we will confine ourselves to the most sim-
ple subreflector edge, the knife edge. In particular, we will apply the
geometrical theory of diffraction as developed by Keller?. As discuss-
ed in Chapter 2, this theory is based on the Sommerfeld half-plane

9,10,11

solutiong. Other methods which are similar have been based

on the same solution and have yielded very satisfactory results as

10, 12, The geometrical theory of d‘iffraction7

determined experimentally
is somewhat simpler to apply. and yields very accurate results for

reflectors of the order of one wavelength or greater in diameter.

42
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It should be emphasized that the exactness of the solutions for the
diffracted field found in this chapter is of no great importance to the
general conclusions which may be drawn from the numerical results
presented later in this chapter. The edge diffracted fields found in
this chapter.will, however, be very accurate in general if the primary
source amplitude and phase does not vary rapidly near the edge. The
edge diffraction theory is based on an assumption that locally, very
close to the edge, the physical situation resembles the half-plane

problem of Sommerfeld.

The edge diffracted field has a non-circular phase front. Opposite
edges of the subreflector as shown in Figure 1 are illuminated sym-
metrically by the primary source. According to the theory of geomet-
rical diffraction each edge contributes to the total field only in the plane
normal to the edges and containing the axis of the system. Since each
edge is a directional source oriented in different directions, there can
be no fixed phase center for the comb‘inationm. An equivalent geomet-
rical optics description of this field will therefore require the generality

used in the description of the primary source in Chapter 1.

The descriptive geometrical parameters are illustrated in Figure 2.
Since it will be convenient later to add the primary and edge fields at
the aperture, the particular edge field ray intersecting the primary
field ray at the aperturec is illustrated in the Figure. Jgf dl’z) is the
angular power density of the diffracted field in the same units as 11(61).
I3e‘ (‘Xé)‘ is the aperture power flow density normal to the aperture, The
edge field ray intersects the y axes at a distance dg ( C}‘/Z) from the .

aperture. Not illustrated in Figure 2 is the reference wavefront



II.

Ceo ( a/z) which serves the same purpose for this field description
that c\po(e,)‘ served for the description of the primary source field,
The quantity Cg( J/Z) is defined as the aperture phase given by

F‘L + (KDS + Ceo" Our objective in this chapter is to find the values

of these parameters for various frequencies and reflector systems.

Edge Diffracted Fields and Sources

We propose to define precisely what is meant by an edge diffracted
field or an edge source in this section. This will be done by describ-

ing the Sommerfeld solution to the half-plane problem in detail.

Consider the diagram on the following page which is a cross-section
of the semi-infinite or half-plane located at ¢ = 0. We assume a
plane wave is incident on the half-plane at an angle a< The incidence
is normal in the sense that there is no z-dependence, the plane wave
travels in the plane of the diagram. The polarization is either normal

or parallel to the edge.

The diagram is divided into three regions, I, 1I, and III by boundariés
G, and G, and the half-plane. The boundaries Gr and G.1 are the geo-
metrical optics shadow boundaries. Region I contains the incident and

retlected geometrical optics fields, Region Il contains only the incident

44

geometrical optics I*-1d, and Region III is a shadow region, being optically

dark. If we subtract these fields, the geometrical optics fields, from
the total field solution, there will remain what is referred to as ihe

edge diffracted field. If we examine this edge diffracted field near the
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edge and on the surface we find an associated current distribution on

the half-plane that decays rapidly away from the edge. In fact, in the
far zone of the edge diffracted field, when 1/ m- << r (r = distance
from the edge), the energy all appears to flow from the edge itself.

That is, the edge is the center of phase of the far edge diffracted

field, Hence Keller, in his geometrical theory of diffraction is able

to represent this diffraction by rays emanating from the edge itself.

We must note that the geometrical optics representation of the far
zone edge diffracted field is not a geometrical op'tic.s field. The geo-
metrical optics field is that first term of the asymptotic expansion in
inverse powers of k where k is allowed to approach an infinite value.
As we will see shortly, the far field term of the edge field is a
l/m‘ term (k and r always occur together in this dimensionless
problem). Hence the edge field becomes zero for k»>ow, except at
the shadow boundaries where the asymptotic expansion does not con-
verge. However, the I/L/_ix_'1 term in this problem is the first
correction to the geometrical optics field, It is the second term of
an asymptotic expansion in k % of the exact field, the first term

being the geometrical optics field.

Letting U be either the electric or magnetic field depending upon
whether E or H is oriented parallel to the edge, we express the
incident plane wave by

- ikrcos(¢-oL) Siwt

u, = - (o suppressed). (1)

If U is the scattered E or H field, as appropriate, then the solution&
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can be expressed asymptotically (first two terms only) inside

Regions I, II, or III, as

U. = e-ikr cos(qs—o(_")‘ + 6-‘ikr‘ co‘s(¢+o<r)

I (2)
AL ke b - K o tot
" 4Vwkr - Sec(——;—-) * sec (—-2——— ) ,
: ! 1+ : ‘ A
UI.I - C-lkr cos(d -4~ ) Z—;_I::T— e ik r Eec(i-fc ) (3)
‘ f
+* sec (_‘#:__Of_.) ] R
2 .
and
LA ikr b- o< ot ol
Unp = - 4{rkr' <  Sec (—&—‘) + sec ('—E_—) S (4)

It is clear from» the above equations that the asymptotic solution blows
|
up at the shadow boundaries given by ¢ = w2 o< . The negative and

plus signs are used accordingly as

- when U

EZ (parallel to edge)

(5)
+ when U

Hz (parallel to edge).|

If we subtract the geometrical optics field from the above equations,
we are left with the edge diffracted field which is expressed identically

in all regions, excluding the shadow boundaries, as

(1+ 1)

_ | I B
Ue . - ————-—-——-4\/;_1;_;.\ ,6.11(1' Eec(i;zgé_) + gsec (&f:_)‘i‘ ] (6)




These expressions, (2) through (6), are valid to second order in the
asymptotic expansion of the exact solution for the diffracted field

and for

0 Z ¢ < 2m exclusive of ¢ = Gr, G, - (7)
The accuracy of these equations, for a given (kr), is poorer near

¢ = G, and ¢ = Gjy, since, of course, the convergence of the

r
asymptotic expansion is more slow closer to Gr and G,. Near the
shadow boundaries G, and G; we must use the exact expression for
U. We will give this expression only for the field near G_ and in
Region I, since this is the region which concerns us in the synthesis

problem. With ® defined as the angle away from ¢ = G, in a negative

¢ direction, we have

U 0<Gy) =-(21/2 &

2 |k .
(1 -1) ikr cosg __"_1‘_ sin ( S/Z)
o < 2 aT

(1+ i) ei‘k‘r

4lrkr' sin (o€ + J/2)

- |
where Q: T - oKL - ¢ and the integral in (8) is the complex

Fresnel integral which is well ta' rlated. 14

We may note in (6) that the phase center of this edge diffracted field

ikr cos 8) (8)
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is at r = 0 (i.e., the phase of this function is a constant independ‘e‘n‘t“

of ¢}, and the energy radiated appears to flow from this point.

Now in order to obtain an approximate solution to problems more
complex than that of the half -plane, many other analysts have used

the above Sommerfeld solution as the basis for their approximations.
In all cases they assume that the knife edge of their diffracting obstacle
is locally straight and that the conductor is locally flat. Bra.unbekg,

is analyzing the flat circular disk, assumed that the currents near

the edge of the disk were the same as those for the half-plane (decaying

-1/2

as (r) away from the edge) and integrated the contributicens

of such currents along the edge contour to obtain the diffracted field.
Millarlo and Clernmow11 analyzed the diffraction from an artibrarily
shaped aperture in a plane conducting screen when a plane wave is
normally incident upon the screen from one side. They assumed that
i a fictitious filamentary edge current exists along the aperture edge.
This current is assumed to radiate the same field pattern as the
extended current that Braunbek assumed, when the Braunbek field is
evaluated in the far zone l:(k r)” 1/2 cc1 ] . Despite this latter assump-
tion, Millar and Clemmow obtained excellent results even up to the
aperture. In fact their resulis are excellent even for apertures on
the order of a wavelength in diameter (see the experimental results

of Welch1 2) .

Keller, in his theory of geometrical rdiffraction7 from knife edges,
also uses the Sommerfeld edge diffraction solution. However, he does
not sum the contributions {rom all parts of the edge. The edge current

at a given point on the edge contributes to the radiated field only in
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the plane normal to the edge at that point. This method assumes
that the same fictitious current filament exists along the edge that

Millar and Clemmow assume.

In the formulation for the edge source which will follow, we will use

l‘the method of Keller, His far field results for the slit in a plane
(analogous to our cylindrical problem) and also for the circular
aperture in a conducting plane (analogous to our axially symmetric
problem) are excellent even for slit widths and aperture radii of the
order of one wavelength. In the slit problem, thz edge is, of course,
straight (as in our cylindrical problem). In Keller's proble ns, as in
those of Millar and Welch, the edge is part of a flat conduciir screen.
Braunbeklé, however, also analyzed the problem of diffraction by a
plane wave incident upon a semi-infinite truncated funnel. He also
used the Sommerfeld half-plane solution as the basis for his approxima-
tion in this problem. In this case, the edge is part of a curved surface.
The principle effect of the curved surface is not in altering the basic
nature of the edge currents, but in altering their orientation in space
and in altering the surface reflected geometrical optics field. These

changes are considered in the analysis made here,

An additional assumption made in the analysis is that the field incident
on the edge is locally a plane wave. This assumption is, or course,
consistent with the other assumptions that the edge and screen are

locally straight and flat.
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The Edge Diffracted Field

Under the assumptions of symmetry which we have made, the present
formulation will in general apply for either the cylindrical or rotation-
ally symmetric system. The differences are minor, so we will dis-
cuss only the somewhat more practical rotationally or axially sym-

metric case,

A Combining the Edge Fields from Opposite Edges

The plane of incidence of the field incident on the edge is normal
to the plane containing the tangent to the edge. In this plane

we have, according tc Keller, radially directed rays emanating
from the point caustic at the edge as illustrated on the following
page. The $-dependence of this distribution is given by equa-
tions (6) or (8). The angle OCI can be determined, since the
slope of the reflector at the edge and the angle of incidence of

the primary source are given boundary conditions of the synthesis

problem: © » and (SXL-) = tan 1/2] © -6
I max ~ lmax 2

dx \ max - max

There are two edge sources radiating fields that must be summed
in order to determine Je (Ol/z), Ceo (J/Z)" and de (J/Z)- These
sources lie at opposite edges of the reflector in the plane contain-
ing the axis of the axially symrnetric system. KEach source con-
tributes to the field at the point P as illustrated in the diagram

following (c).

The field radiated from edge No. 1 will be designated m’el (r 1y

¢;). This field is constructed of three factors. The first
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is given by equations (6), (7) and (8) except that for the axially

symmetric case the curvature (kr)_l/z

in formulas (6) through
(8) becomes the Gaussian curvature when P is in the far zone
Yy . ‘ sk . . ‘
field of the edges™. We designate tl;us» factlpr as Uel (ry, ¢q).
In this expression we will write 0<1 = OC, since it is clear
that the angle of incidence is the same for both edges. The field

U
€]

is the edge field for an incident wave of unit amplitude and
zero phase at the edge. The amplitude and phase of the incident
wave at both edges is the same (polarization neglected for the
moment) and given by the boundary conditions and the given pri-

mary source field. We find the amplitude and phase of the wave

incident at the edges as follows:

The primary source electric field evaluated on refiector No. 1
is given by (for the preferred polarization componenf)

£, - g ek [r) + Cp (1)) b@l )

where Gl is a factor proportional to the Gaussian curvature.
(ir

Consider the diagram following (d).

At the reflector edge we have

Gy =l ey = e ©)

m

The curvature of the wavefront at the reflector depends on

* See Appendix Il or Reference 7. See also equation (24b).
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Ro1 (61) and rj (6;). From the diagram we find that

Ro1 = - —cl-?i-) sin 0}, and R = - _df_.'<) sin 91 . (9a)
d e lm d ey m m

The radius of curvature in the plane of the above diagram is

then

R, = Ro1 +r,, and le = Rolm + r,. at the edge. (9b)

1

Hence we find for G] at the edge

-1

G, = ((kRy ) (kT ).

The phase of the incident primary field at the edges is given by

ik ZI[/rn

Hence the edge diffracted field at edge No. 1 is given by

‘ ) = ik ¢ 11)
Mel (rl, ¢1) = t‘/lm Glm Uel (rl' q)l) elk ZPrn (11)

and similarly the edge diffracted field at edge No. 2 is given by

ik lljm

Néz (rzl ¢2) = ‘le C’lm Uez‘ (rZ’ ¢‘2) 6 (12)

Note that G, is not the complete formula for the Gaussian curvature for
the primary field. The Gaussian curvature is given by

‘ -1/2
G‘Al = Bk R,) (kry sin 91)] / . See Appendix II for GAe’ the

Gaussian curvature for the edge field, which is obtained similarly.



The edge diffracted field at P is (r) and rp >> 2 X max)

e = N’el (ry, 1) *‘(\fez (r,,9,). (13)

Whether the plus or minus sign in (13) is used depends on the
vector symmetry of the problem. In the acoustic case we

always use the plus sign. In the cylindrical case we generally
would use the plus sign also. In the axially symmetric case,
when the incident vector field on the edges is polarized identically
with respect to the edge for all rotation angles (vector symmetry)
then we must use the minus sign. When the incident field is lin-
early polarized in the axial case (E-field in same absolute dir-
ection everywhere) we must perform an averaging of the fields
around the edges such as was performed by Rusch3. How this
may be done will be discussed subsequently. For the axially
symmetric case near the axis we cannot use (13) accurately,
since the axis is a caustic of the system. A caustic approxima-

tion will be presented shortly and is discussed in Appendix IL

Our next steps should be to first let P become far from the
edges, i.e., let (k rl)"l =>]1 and (k rz)_1 =71 (this is actually

implied already when we assume r, and r, =>2 X; ). This
m

1
is consistent with geometrical optics approximations. To deter-
mine J, (OVZ‘)" C‘eo (J)Z)? , and ‘de ( J/Z‘)‘ we must first deter-
mine the phase contours of the far field. This will complete

the determination of the edge field. Before proceeding to det-

ermine these quantities we should, however, clarify three

important details about the expressions for Uel and Uez. The



first concerns the precise form of U, when the indicent

plane wave polarization is neither normal nor parallel to the
plane of incidence. The second question concerns the precise
value of ¢ near G, the shadow boundary, at which point
equation (6) must be replaced by (8). The third question con-
cerns the manner in which the caustic axis for the axial system

will be accounted for.

Polarization at an Angle a/with Respect to the Ldge

In order to resolve the question concerning the incident polar-

ization, let us define

(1 +1) U e (05|
A= - "1 G e sec ( Jland  (14)
4V Ae - B
- {
1+ i) ikr o +A } \
B = -+ 1 G ‘ N SO AN (15
4V e © see (=) o

when ¢ is notnear G,, and

f=

(1 + i) 5~ -1 ‘—ikr(‘1+co‘s[q>+aﬁ—“l)

B = e 2 G B
Vs A C

3n (15a)

when ¢ is near Gr"
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~ The quantity GAe is the appropriate '"curvature' for the
system as explained in Appendix II, where

1/2 - g
GAe = 1/(kr sin I Fz \) (in the far zone away (14a)

from

The angle FZ is the angle from the horizontal defined in
equations (26) and (27). See also Figure 1 of this chapter.
2|

is justified by the asymptotic form for (15a) (see SommerfeldB)‘

The validity of (15a) when G, = 1l/(kr sin 172
e

in a three dimensional system. Egquations (14), (15), and (15a)

are identical with (6) and (8) when GA is accounted for.
. e

When the incident electric vector is polarized parallel to the edge

we have

Ue = Ue,, = A - B (16)

arid when the electric vector is polarized normal to the edge we

have
Ue = Ue.L = A+ B (17)

Now let the incident electric vector be polarized at an angle

with respect to the edge. Then ‘we find

Ueyy = (cos (A + B) and (18)

Ue (sind)(A + B). | (19)

* See Appendix II.
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Hence we see that the edge diffracted field polarization does not
remain fixed for all ¢. In this event we will consider the field
component that is normal to the d/-d?irection along a ray as a
cross-polarized component which must be accounted for. The

' desired component in the aj-d‘irectio‘n is found from

. 4 2 K
U cos J/ = U, = cos (A - B)
€11 11 % &

and Uel sin a/ = Ue.l;?f» sin2 JJ(A+ B)

so that

U, = U‘e”\( £ Ug y = A-B(cos2 g (20)"
When the polarization is either normal or parallel to the edge,
there is no cross-polarized edge field. It is clear that in case

the preferred polarization is, for example, right circularly pol-
arized, then a ''cross-polarized' left circular component will
exist in the edge diffracted fiends. (Note: If a right circular

wave is incident on the edge, then the principle polarization ref-
lected is left circular as it is for reflection from any conducting

surface. This fact was taken into account in the previous statement.)

Equation (20) is suggestive of an "averaging' method which can
be used when the incident polarization is not rotationally sym-
metric or, in other words, those cases where J/= J(e)‘ and &
is the angle of rotation about the axis of the axially symmetric

system. For example, if the incident wave on the subreflector

* See equation (20a) which follows (24),which follows.



is linearly polarized, that is d/= 0, then we may use as an

average edge field

Ue = A,
for on the average we do have d/l w/4 and J/: 3w/4 for
the top and bottom halves of the reflector. When using U= A

we would also use

from equation (13), and hence would not get a zero on the axis

or caustic from this equation.

Field Near the Shadow Boundary ¢ = G,

We will determine a value of ¢ = G, at which we will exchange

r
(15) for (15a) in evaluating the field. This value is somewhat
arbitrary and is chosen for analytical convenience and for reason-
able approximation. Before considering this question further,

it will be necessary to decide upon a value of r at which to eval-

[
uate B when ¢ =7 -,

At ¢ = m -, the value of B at the aperture is given for

r = pz = sz. Since the main reflector is in the far zone
. “max

of the subreflector, the r dependence of equation (15a) is given

essentially by the factor

. Lkr
sV e :
when ¢ =< (w- O(j) = Gy (see the asymptotic expansion of

Sommerfeld‘s‘)‘. Hence for our purposes we may use
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\ ikr | -1 -ik (<, E“"'Co‘s‘(‘e‘{-oﬁ)‘] |
(1 + i) e < , P“m 1,
B=- -G VI Gae ( Corm) € in
aNT Ae 1 Ae ' (T2m el -
Y L (15b)
Gae ( sz)COS(Q—z—O—L—) .l
Dl Z » |
“ exp (i 7 T)d T
where
-1 - 5 2 | ‘
GAe (Pém) = |k (:sz sin ez‘m ’ (15¢c)
and
‘ [—;.m l o~ ‘e‘Zm ! (See Appendix II). (15d)

QOur problem now is to connect equations (15) and (15b). The best
way to connect these equations would probably be to find two values
of ¢ for which they are equal in amplitude and in phase. In this
way we could maintain the continuity of both the amplitude and
phase of the edge field. Connecting the amplitude as indicated

in the diagram ifollowing (e) would in principle be simple, although
connecting the phase may lead to some difficulties. Whereas the
range ¢‘r =d= Gr is small for the amplitude connection, it may
be large for the phase connection. For the sake of simplicity in
analysis and because the range ¢.=< ¢ =G, will be small, we
will use instead a somewhat simpler connection. For the phase

of B in the region ¢, =$=<G, we will use the phase of couation
(15). This pha‘;s‘e is constant over the entire range 0‘4"‘4) -,‘-Gr.

This is justified because the region ¢ =¢=<G, is very small;
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usually less than 1° or 2°, Hence

[phase of le = (- -3;}1 + kr) for (0=£4=G,). (21)

We will connect the amplitude by assuming that the amplitude
is constant in the region ¢r‘3¢$Gr and is given by equation
(15b) evaluated at ¢ = Gr‘ The value of d. is determined
by finding the intersection as shown in the diagram on the follow-

ing page (f). If we evaluate the value of (15b) at ¢ = G_ (the

r
integral term vanishes at ¢ = Crr when r is finite) and set

the amplitude of this value equal to the amplitude of equation

(15) we find

¢ ""“'04!-“” 2 arcsec ':m k(DZm S‘il’ll/2 1¢2m | ]’ (22)

and the magnitude of B in the range $.=¢ =G, given by

(23)

| | ' y |
14 kr | :
|B| =1 - i__ﬂ;) Gae X VZn' Gac (sz)} for (¢,=$=G).

In summary then, we may state that Ug is given by (20) where

A is given by (14) and B is given by

L ikr ] '
e (1 +\1) G,Ae€ J ' sec (4_’_%0_4'_)] for (0Z$z% )

4V’
B =< (24)
RN YT mmetio
\~ P C“.Aee J! L Zn GAe((DZm)_—:for (bpzpZ2Gy)

where ¢, is given by (22).
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Before proceeding to determine Je (“d/z), de (‘CJ/Z)’ and Ceo((kz)’

two additional points concerning the range of ¢ for equation

(20) (and the above equations for A and B) should be mentioned,

As was indicated in equation (7), we require

0=Z¢<2n (7)

Because of the fact that ¢ is divided by two in the equations, the
solutions are not periodic in 2w, but rather over 4n. Hence

we shall define

Uy 2 0 unless { 0Z¢<2m). (20a)

Taking account of (20a) may become important, for example, if
the subreflector is very curved at the edge and the ray from

edge No. 2 in the direction of 0, .  (toward Xy of reflector
No. 2) is blocked or shadowed. In this event the value of ¢ for
this ray from edge No. 2 will be negative and (20a) would indicate

that Ue = 0 as desired.

Value of GAe

Equation (24) specifies two separate ranges of values over which
two different equations for B are valid. There are two possible
expressions for G, depending upon whether /—2, =0 or not

(i.e., rZ. is near the caustic at FZ = 0) and whether we are

considering the top edge (Uel) or bottom edge (Uez)"

-1 ‘ T !
We have in general that G, c\!(jkr)/(kr sin ‘2 * k Xjim)

where the + sign is for U

e and the - sign is for U(32
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For > >

-1 /2
. we have GAe = kr sin

%sin sz E

as the far zone approximation off the caustic. Near the caustic

xlm /x

for any finite r we should use

-1 ‘ 1
GAe = kr J "si.n r; :t(le/‘I"1

In the vicinity of FZ ~ (0 we have as an approximation for

r = re= (O<+ ) +y3. An estimate for r. may be taken as

e 7 pZm'

{24 a)
More suitable estimates may be made for specific problems.

-1
When FZ = 0, GAe has the same value for the top and bottom

edges (Uel
l\

| sin /_é I = \“le/ r.| » the value of GAle is again

and Uez)' Away from /—‘2 = 0 when

independent of the edge designation. As an approximation in the

small angular sector near the caustic, we will take

G;\i = kr‘\l‘sin 'G] 4 (Rlm | (24b)

© e=n =[] )

for both edges and thus simplify our computations considerably.
For the case of vector symmetry, this will give /|}'e = 0 (s‘ee
equation (13)) for PZ = 0 which is correct so the error will be
over a small angular region comprising a very small solid angle.
This is explained further :n Appendix II. ~ We choose the + sign
in equation (24b) to avoid the infinity which would occur with the

- sign when the field of edge No. 2 is evaluated near Pz = 0.
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The Total Edge Field

In order to compute the actual edge diffracted field in the far
zone of the two edges combined, we let P-»~O and hence

rays ry and r, to point P from each edge become parallel,
We designate their common angle with the 91 axis as (—‘Z

In accordance with Figure 1 and with reference to the distance R

from the origin, we have

r, R - X|m sin PZ (25)

and

il

ro R + le sin .. (25a)

Egquations (25) and (25a) are used to replace T and T, only
in the phase factor elkr indicated in the expressions for
U

and Ue which are obtained from (14) and (24). The r term

€l 2

in the equations for Gpe, equations (24a) and (24b), are replaced

r, = r, = R (25b)

in accordance with the customary far field assumptions.

From Figure 1 we also readily find

o) = 3+ [ +(2im O2m, (26)
by = _g._ - FZ‘ + (Q_Lm?'_eanL) and (27)
e Lo (e‘l‘m; %2m (28)
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With (25) through (28) substituted into the expressions for

A and B in (l4) and (24) we obtain

: ikrl . ‘ o T B 1
: . ; -ikX1m sin P
Ay = |- U i1Gae € - 2 lsec (L2t 01m *'Zelm) (29)
L 4T i | _
~ : kx| +ik X1m sin [, “— Moo 1
Ay = |- LF0GA€ | o sec(—2-%lm,)| (30)
| 4w J - 2 i
B ikr| | _ ‘ ‘
B, - (1+1)GpeC élkXImS‘m r?,_ - csc (——_.__Zm[‘z - 92 ) | (31)
SN | | 2
for (02¢) =¢y)
eikr n r
1 (1+1)Ga- ‘+ik X sin RS 1 32
S = ‘ . CSC(/}Z ] e
for 024)224)1,)
and
B ikr| ., o i 7 ]
. -ikX|m sin /7 | -1
By =|- (1+1)Gae E e ‘,'2"‘ G ((Dzm) (31a)
. 4 . _J
for (¢r-<—¢\12Gr)\
B 'k;-‘ P ]
1 . . .
. +ik X]. sin [ . -1
B,=|-UtiGac € |5 ™ r' G g Pgm) ‘ (32a)
_ 4 N _
for (¢r =42 =Gry)
From equations (11), (12) and (20) we get
Ue; = A} - B) cos Zd/ and Uep = A, - B; cosZJ/ or
‘ ik(R+ wm
_ _(‘1+i)JlmG1mGAee | (33)
Nel ) 4‘!"

+ csc(EZ;’ezm)‘cos Zd’

for (0=d =¢dy)



k(R + Y 7'

| —(1+i)‘§’1m Gim Gae

g imen 2seci2zn _2Lm) (34)

ik(R + %umq

-(1+i).91mG.1m Gae

-csc (_I-Z'.+2_62.m) cos 2 J

for (0=Z2¢,=Zdr)

—-1kX1m SInG sec BZ S ) J-.—‘ (33a)

|-+ G1m Gae

C-'I <(>2m) cos ZOV:|

for (¢I‘ 2¢’ IZGr)

m
+ikX |, sin 13| .
= Im [sec(_&;[e_lm) (34a)

-{2_1? G-l(pZm) cos 2d/]

for (b= ¢22Gr).

For the sake of convenience in future manipulations, we define

from equations (33) and (34),

fZ_‘ZQ_Zm_s) cos ZJ/j for (0z¢;=4¢,) (35)

"Zelm) - ¢csc (_ZJZ_QZm) cos 2(}/‘ for (0=46> Z¢r) (36)

cos ZJ/ for (¢, =2¢;=G,) (352)

cos zé/i for (p.=¢p =GCr). (36a)

Note that Zl is the field contribution from edge No. 1l and that
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"""2 is the field contribution from edge No. 2. A common factor
from each of these contributions is omitted as may be seen in

equation (37) below,

From equation (13) we get for the edge diffracted field subject
to the conditions of symmetry specified earlier, the result
ikR + ¥p)

, - (141) §1mGlm GAe
/\ye = /v/el i/‘)gz = ( +1)le4j—:: Aee ('7)

‘ 7
. (Zl :EZZ) cos (k Xy sinf)) + i (-Zl *1p)sin(k X, sin [5)|

where the appropriate values of ZZ and Zz are to be used
from equations (35), (35a), (36), and (36a) depending on the

values of ¢} and ¢,.

The edge diffracted field given by (37) is complex and no fixed
phase center exists for this field. Hence the phase contours are
not circles. Therefore /12 # dé From (37) we can derive

1,12 ( dé), de (JJZ), and C‘eo(djz)' The value ofglé ( [12)‘:k or Jé( [71)
can be found directly from (37). When G ((})2) is found sub-
sequently, then we can obtain ge(d;) or Je ((};), As will be made
more evident shortly, we cannot obtain Je (dg) from .Té (B) simply
by substituting FZ (&) for PZ' The transformation is more

complex.

’ %; = Ei and ge = \/—;:j
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v
F. Je([2)
I 12
We will obtain J_ ([}) = 96 ( [3) directly from (37). There
is some arbitrariness in this determination depending on our

definition of Il (9 1) = g? (o 1)‘ from the given primary field. We

have assumed, however, that the primary field is cbtained by:

ik(r) + Cp,)
e - Ql (38)
JKR| k1,

E(6) = G, exp (ik [rl + Cp, )] ),9I (6,) =

With this definition of Sl (6‘1) we factor 1/kR and obtain from

equation (37),

‘ 2 ‘ : 2.
Je ([p)=tg) &1 Gy EZI *Zz)‘ cos® (k xlmsinr’z)+(-zl ir[l) (39)

sin2 (lem sin r'? )] o

where

T'Z } X /o). (39a)

2
G, = 1/ (sin

As we expect, this power flow is of a higher order in 1/k than

the primary field.

G. Reference Wavefront of the Edge Field - R ([})

We desire to find the reference phase contour curve given by

R( r'z). As pointed out earlier, the curves of constant phase are
not circles for the edge field. We will choose there, a particu-
lar curve given by the phase being set equal to zero for equation
(37). Although any phase value is adequate, the value zero is
the reference contour for which the distance from the curve to

the 91 axis, along a normal to the curve, is equal to .'Ce‘o‘(a/z)"'



the reference phase.

To simplify the notation, the following substitutions are made:;

kX,  sin F

e

k(RJr%l/m)‘ + w/4
Y. S Z,%Z,

Equation (37) may then be written as

Ve = le Gf;_n_' GAGE'_I 6{1 cos:rco‘sg - Y, sinfsing
4Vyn -

+ 1 {Yl sin:l’cosg + Y2 sinécos:lg 3

Note from the above equation that the phase distribution of fU;
is determined in large measure by the relative magnitude of
Yl and Y,; the sum and the difference of the edge field con-

tributions from each edge.

The phase of (Ve is equal to zero if

Y, sinfcos§+ Y, sing‘ cosf: 0

Hence we obtain

f = - arctan ( ——;{—‘;———— ta’ng)

or

A

Actually zero or 180°. The following additional condition is required
for zero degrees: [Yl cos [ cos% - Y, sin7Ysin §]‘>0:.

(40)

(40a)

(40b)
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R=R(Mp =Y - - -

(A convenient branch for Tm should be chosen, although this

-11;-) arctan ( -—%— tan g) (41)
can be seen to be arbitrary. Once Trn is chosen it is generally
preferable to maintain R(f‘z) continuous by the appropriate
branch choice in (41). It is important, however, that the

branch choice for Tm be chosen so that R 1is far from the
caustic of the field; near (‘DZm would be a good choice for

example),

The Transformation Function PZ (CJ/Z)-—

The transformation function FZ (JZ)‘ can be obtained from
the phase contour R PZ) given by (41)., We need \_‘2 { O“/Z) in

order to obtain Jé(d’z), de(‘ajz)’ and Ceo(d;)-

From the diagram following(g), we note that

PZ=‘ —g— - AZ and ta.n‘A2 = ctn ré (42)

‘7: 3; (42a)

If y; (x;) is the rectangular equation for the curve R( ré), then

dy, = dR sind, + Rcos 4, d A,
(42b)
‘dxl‘ = dR cos AZ - R sin AZ d‘AZ’ and
dy ‘
axlilL- = tan (r -N) = -tan YZ . (42c)

Equations (42) through (42c) yield for J/Z { PZ)
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1 dR

tan 32‘:{:{ tan G_ 34 (I (43)
(tan F) 7 ¢ :IF,

which gives, numerically, the result

=1 (J/Z)‘ (43a)

In order to evaluate (43) we find

dR _ -1 . - Y, Y tan § (44)
al, k(HTYZZ/Yf]tan‘g) v2

] ) §
Y tan § + Yo seczg g
Y1 Yl

+
where the prime denotes differentiation with respect to G

The Reference Phase Functions de and Ceg

The reference quantities de J/Z) and Ceg (d;_) can also be
obtained from a knowledge of R ( {'-'2), equation (41). If we refer
to the figure in part H above and apply the law of sines to the

~diagram we obtain first

R lesig - o]
sin (m - djz) sml:n (- GL/Z)' /—é:l

Note that (c5+ ?)‘ is a given constant for the reflector system.

From the above equation we obtain

de = (F+B) ¢ [S‘“‘& - [2) } R (45)

sSin 2

where R is given by (41).



If we apply the law of sines a second time to the same figure

we obtain

R = —=Seo
sin (v - ) sin [}

which gives

C = _|sind PZ) R . (46)
€0 [sin ( A./Z) )

In both equations (45) and (46) for de and Cg, we note that
in order to obtain dg (é;) and Ceg (J/Z), we must first solve

equation (43) numerically for J)Z ( G).

Having found Jé { r'z), equation (39), and d/(‘ [‘2‘), equation (43),

we are prepared to determine Jg ((};).

First we will explain why Jg ((J/Z) £ Jé <["2 (Aé)). The quanti-
ties Je and J; represent power flows per unit solid angle. At
a point on the wavefront given by the values PZ and R ( FZ)’

e

.I' (evaluated at this value of [‘Z): gives the value of the power

flow through a solid angle

Lmn G d G d 6:\
Here we have df as the angle of rotation about the axis of the

system. At the same point, the same power flows through a

different solid angle given by

[sin: ¥, a ¥, dO'_I
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Je designates the power flow per unit solid angle referring to
this latter angle. This is evident from the diagram (h) on the

following page.

Since the total power flow through both solid angles is the same

we have

Te (N sin [, d [ = Jo(fy sin d) d 4

or
Je(d/z“)‘ . sin [p 1/(_‘.1__&&_) J, () (47)
sin a
With considerable manipulation,
d_d}z = £(d) (48)

sz

can be evaluated directly from (43).

With de( d’z), Ceo(‘ 32), and Je( d’é) determined from equations
(45), (46), and (47) together with the auxiliary equation (43) for
d‘/Z ( FZ) we have obtained the complete edge field in a form which
will allow us to compute the edge field distribution in the aperture

of the main reflector after reflection from this reflector.

8
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Computed Edge Diffracted Field Results

In this section the results of numerical computations for the edge
diffracted field will be presented and briefly discussed. The compu-
tations presented here will not include the edge field scattered from
the main reflector into the aperture. The presentation of those results

is deferred until the next section.

The results presented here include the diffracted fields for subreflec-
tors of various sizes in wavelengths and for various reflector shapes.
They are plotted and illustrated as a function of FZ from 0° to 180°.
Between about 170° to 180° the results are in error, The oscillations
are 180° out of phase with the true oscillations of the tield, This is

a computational error not due to the edge diffraction theory. The aver-
age field in this area (averaged over the oscillations) is, however, cor-
rect, so this portion of the plots was included in any case. Hence we
will observe the back radiated field away from the main reflector

in addition to the field incident on the main reflector.

It should be stressed that the geometrical optics field has been sub-
tracted from the total field scattered from the reflector. Only the

diffracted or second order field is considered.

A large number of input parameters or boundary conditions are nec-
essary for each computation of a curve. Most of these parameters

remain fixed for most of the curves computed. It will be far simpler
and clutter the graphs much less if a set of standard values for these

parameters is adopted and only deviations from this set of values is



mentioned on the graph and in the ensuing discussion. A similar pro-

cedure is followed in the next section and later chapters, so we will

refer to the following parameters as Standard Set No. 1, and present

these values in the following table:

STANDARD SET NO. 1

SYSTEM =  Axially symmetric

8]

81m 30°

X1m = +1.00

dr - AT

Xom = +10.0

0(, = constant = 0

Iy (91) = cos16 8; so I {9

&

lm) — 1/10

SIGNEG = 1 for respectively cancellation or addition of
the edge field from each edge at the center ( ré = 0).
It will be chosen as +1 for addition as the standard

edge.

J/ = polarization angle with respect to the ege. It is chosen

as 0° for the standard value,

Diffraction of Flat Discs and Strips

. The edge diffracted field of a plane wave incident on a flat con-

ducting strip or disk is of no direct interest to the designer of
dual reflector systems, but does serve the purpose here of check-

ing our computational procedure against previously computed
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work7 and also checking the theoretical accuracy of this method

of computing the diffracted field.

Keller7 computed the diffracted field of a plane wave incident

on a conducting screen with a strip aperture and circular aper-
ture. The results depicted in Figures 3, 4 and 5 are for the
diffracted field of a plane wave on a conducting strip and circu-
lar disk, the complementary screenslS.‘ By Babinet's principle
the results are equivalent with the principle exception being that
the backscattered field in one system is equal to the forward scat-
tered field in the other. (The polarizations must also be altered,
but this makes little difference for these cases). Hence Keller’
presents his results for the forward scattered field only and
these compare very well with our backscattered fields ( /"2 =

0° to 90°) depicted in Figures 3, 4 and 5. In addition the results
depicted in these figures extend the published results of Keller

to the region 90° = f'z = 180°.

For the case of the metalic strip with k = 8, Figure 3, the
depicted results compare very accurately with the theoretically
exact results published by Karp and Russek”. This is signifi-
cant since the Kirchhoff theory1 predicts substantially different
results. The Kirchhoff theory predicts zeros in the field whereas
the Keller theory predicts non-zero minima in approximately the
same angular regions. The Kirchhoff theory predicts a fixed
phase center at the center of the aperture, whereas the edge dif-

fracted field a5 mentioned earlier does not have a fixed center of

curvature for the phase front. This example is important for
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our purposes because it demonstrates the breakdown of the
Kirchhoff theory for small apertures or reflectors ( k = 8
implies a diameter or slit width of approximately 1.6 wave-
lengths) and at the same time illustrates the success of the

edge diffraction theory. Since we wish to examine the diffrac-
tion effects for small reflectors of this order (two or more wave-
lengths) in diameter the distinction between the theories is

critical.

For larger diameter reflectors and for curved reflectors the

two theories, the Kirchhoff and edge diffraction theories, agree
well as will be demonstrated in the next part (B), However, it
must be remembered that the edge diffraction theory begins to
fail badly when the amplitude of the incident wave varies very
rapidly near the edge. For example, if the incident wave has

a zero at the edge, then the edge diffraction theory gives a zero
diffracted field which is, of course, wrong. The Kirchhoff theory
gives essentially the same answer for the diffracted field whether
the field varies rapidly or slowly near the edge. That is, its

solution is not ciitically dependent on the edge condition.

With regard to Figure 5, those readers who compare that figure
with the same case illustrated in Reference 7 will note some
small differences. These may be attributed to the difficulty in
setting up the computor program for a plane wave incident on a
flat reflector in the axially symmetric case. The program was
designed for the input parameters of more practical dual reflec-

tor designs such as those parameters in Standard Set No, 1 and



large changes in the program were not warranted to merely

correct small deficiencies ir. one curve.

Edge Diffracted Fields from a Hyperboloid

(for comparison with the Kirchhoff theory and experiment)

The edge diffracted field of a conducting hyperboloid of revolution
is presented in Figures 6, 7, 8 and 9 for hyperboloids of diameter
8)\ and 16 >\ . The 8 )\ results in Figure 6 are for Ol/—z 0

(H -plane cut), and the 16 A results in Figures 7, 8 and 9 are

for d/= m/2 (E-plane cut). The three Figures 7, 8 and 9 pre-

sent varying degrees of detail for the 16 /\ results,

These results are intended for comparison with the results that
Rusch obtained by Kirchhoff integration and also with the exper-
imental results that Rusch has obtainedl8. (Rusch gresented
similar results in Reference 3). The agreement between the
results of the two theories is generally good, both thcories pre-
dicting the same major characteristics of ripple ard high back
lobe ( G > 120°) as do the experimental results also. For those
readers making an actual comparison between the results, it
should be noted that Rusch presents his results with the geomet-
rical optics field included as is characteristic for results obtained

by Kirchhoff integration.

It might be added that Figure 6 through 9 (and later results) are
the first results obtained by edge diffra.cﬁon theory for curved

reflectors known to the author ard, hence, these results do extend
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the known usefulness of the theory.

One important result seen inthe figures is that the forward dif-
fracted field ( (’é =>90°) is as large as or greater than the field
diffracted toward the main reflector ( FZ < 90°). The forward
diffracted field is, however, spread out over the angular regions
depicted in the graphs, whereas dual reflector systems designed
for high gain (easily better than 99% of all such antennas) will
focus the energy diffracted into the main reflector and hence
increase its significance in the main lobe area of the tertiary
pattern. The forward scattered field contributes to the overall

system sidelobes.

Edge Diffracted Fields as a Function of Frequency

Consideration of the edge diffracted field as a function of frequency

or k is of great importance to this general study. One of the
~objectives as explained earlier was to examine the possibility

of using a smaller than usual subreflector for the dual reflector
system in order to reduce blockage by the subreflector. In addi-
tion, a general understanding of diffraction effects for any size

reflector is of great importance.

With the above considerations in mind a study of the edgc-field
as a function of k was made and is presented in Figure’év 16

through 24. In addition to plotting Jé ( [}) for ré from 0° to
1807, several auxiliary studies of other parameters were aiso

made and presented among these figures. Except where it is
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(x5 y,) origin ( [’2). For R-»o< it is apparent that d’é — I_?‘
In other words, as explained earlier, the wavefront appears more
spherical. We are concerned, however, about the non-circularity
of the wavefront r.ear the main reflector, and Figures 13 and 14
show how the .ray directions discussed above compare in this
region for k = 2r and k = 6rn. In both cases, we find that

01)2 ~ r'z over the major portion of the 180° range. Later we
will find it extremely valuable to make the approximation that
OUZ = PZ for computational purposes. This approximation
will be most necessary near f’? ~ 80° where x, ~ X5

since this is the general area where the edge field has the largest
effect in the main reflector aperture. It is seen from Figures 13
and 14 that the approximation (}Z ~ [0 is excellent in this reg-

2

ion.

We now turn to a consideration of Jé ! PZ) as a function of fre-
quency k. It is clear from the previous discussion that J'e( FZ,)

(Ajg)' The

will differ little in any important respect from S
results of this study are plotted in Figures 15 through 19 for
k = 2m, 4w, 6w, 8w, and 20w, respectively. For our purposes

in this section, the two characteristics to take noie of are:

1) The average amplitude away from the shadow

boundaries diminishes as 1/k with k.

2) The interference effect between opposite edges
becomes larger in amplitude and more rapidiy
oscillatory as k increases,

From the point of view that we would like to eventually deform
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the reflector shapes to compensate for the edge field, the

first fact aids us and the second fact helps to defeat this purpose.
It is impractical to attempt to correct a rapidly oscillating field
by optical techniques. However, as we will see later, the field
is usually, if not always, negligible in those regions where it

oscillates.

Effect of Reflector Shape and Field Symmetry

Before proceeding to compute the actual aperture edge field, it
will be interesting to study the effect on the edge field distribu-
tion of varying the primary field symmetry and the subreflector

shape.

We will vary the primary field symmetry by varying the relative
phase of the top and bottom edge sources. That is, we will let
SIGNEG = -1 instead of +1, as in Standard Set No. 1, This
type of primary field symmetry occurs quite cften,—zalmost
enough to justify a complete set of numerical data for this case,
For the most significant example, we refer to the circulariy
polarized primary distributions. In addition, moropulse cr
tracking feeds have this symmetry. As indicated ia Figure 20,
however, the only significant difference between the field of this
symmetry and the former is that a zero exists at F.. = 0°. The
remaining general characteristics are the same excerpc that the

oscillations are essentially 180° out of phase.

We have already observed the differences between the edge {ield

of a flat reflsctor and a curved reflector. Tl difterences were
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significant, In Figures 21 through 24 we have plotted the edge
diffracted field as we varied X5 keeping all other parameters
fixed. This change of X5 in effect changes the '"tilt" of the
subreflector edges. Referring to Figure 1, this change is mani- -

fested by a change in w As x increases, 2# decreases.

2m
Therefore, the angular position of the shadow boundary changes.,
Of course, the first order optics field also changes. On Figures
21 through 24, the position of the shadow boundary is indicated
by an arrow. The change in position of the shadow boundary and
the edge field is very small over a range of X5, from Xy 0 T
10 to Xy = 40. This range covers a majority of practical
cases and allows us to draw the conclusion that the choice of
X, [x = 10 for Standard Set No. 1 is sufficiently general
2m' Tlm

for practical purposes,

The Edge Field Aperture Effects

In this section we will investigate the direct effect of the edge diffracted
field in the main reflector aperture. The edge field is reflected by

the main reflector into the aperture wherein its amplitude per unit

area will be determined. To assess the importance of the aperture
edge field, we must, of course, compare it to 9‘3 or 13p’ the aper-

P

ture field generated by the primary source,

We will find that the edge ricld is quite significant for subreflector
diameters of less than six wavelenpgths and of diminishing significance

for greater diameters. These results are in substantial agreement
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with those found {rom general engineering practice over the years.
Without presenting any statistics to document this statement, we will
nevertheless state that ti'e vast majority of dual reflector systems have
subreflectors greater than, usually much greater than, five wave-
lengths in diameter., The results of this section it is hoped will clar-
ify in a quantitative way the reason for the five wavelength diameter

minimum that appears in standard engineering practice.

In order to calculate the aperture edge field and tertiary field (Q 3p
or I3p) in both amplitude and phase, we must choose a particular
reflector system. As was pointed out earlier, the particular system
chosen will have little effect on the substance of the results. We will
choose, therefore, a Cassegrain system with the Standard Set No. 1
parameters as the boundary conditions for most calculations. A
parabola-hyperbola system is much easier to handle analytically than
the dual reflector designs found in Chapter 1, since we can obtain
closed form expressions for the surface contours of the parabola-

hyperbola system. Furthermore, to date, this system is the most

common system used in practice,

In this section, specifically, we will first define the paraboia-hyperbola
system and find I’3p and Cp (Cp = constant for a Cassegrain or
Gregorian system; see Chapter 1 for example). We will then determine

the aperture edge field and present extensive numerical calculations.

A. The Cassegrain System and the Aperture Field Due to

the Primary Source

The main reflector of the Cassegrain system is depicfed in the
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sketch following (i) and defined by the quadratic equation

5
X, = -4hLy,

or (49)

2
+ me

2 ‘ 2 _ 2
y, = (XZm/4f‘z) - (1/4f2) x, = atbx,.

The quantity fZ is the focal length. The focus depicted below
will be a focal point, of course, for the hyperbola subreflector

also. The slope at any point on the main reflector is given by

dy, [dx, = 2bx, = - (1f2f,) x, . (50)

The focal length is found from defined parameters as

N I 2 2!
£, = 1/2(\) + p) ¢+ J (V+ Pyt X0 ) (51)
where we define

9= QZ,+ @ = @ = constant ( o & 0). (51a)

(See equation (58) for the definition of P, = fl-kl.)

The hyperbola geometry is depicted in the sketch {j) following
sketch (i). With f,, the distance between hyperbola focii, deter-

mined from the given parameters by

£ = V2 (—22m ) (52)

X2m - ¥lm

and the distance kl in the sketch found as

ky = V-t

we define

1’
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R (S xfm + f?)/z
54)
=k - \Iki -l ff_' |
and
g = fl2 - et (55)
and obtain the equation for the hyperbola surface as
2 1
£ = *J S— (v, - kp° -d° (56)
or
y, = k = \j et 4 -:;—z xlz‘ ' (57)

The sketch (k) given on the following page of the parabola

and hyperbola together illustrates the composite system, Note
that aé= 0 for this system. This system is precisely graphed
in Figure 25. This system gives a focal length over diameter
ratio for the parabola of a little greater than 0.3, a common

ratio found in practice.

With k1 defined for the hyperbola, we can define and compute

pp = £ -k (58)

The maximum value of 18 in this system is easily found as

Before proceeding to determine the tertiary field, it will be

interesting to find the secondary field or the geometrical optics
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field reflected by the hyperbola. We will compute this numer-

16

ically for the standard primary field 11(91) = cos 0 The

I

actual numerical computations are made by assigning a value to

y, and computing x; from (56). We then find

X1
3] 1 = arctan (Wl_}’—i ) (60)
and
x ;
82 = arctan (;1_"}'1’5-1— ) . (61)

We now need 48 in order to evaluate IZP {6 from
de;

1(81) by application of the energy conservation principle. This

2!
I

derivative is obtained by first finding

da L) (i

dy, o2 X : (62)
49, = cos? @ L 1 .dxl + x1 ] ) 63
Iy, N ey S S VL 03)
and
do 2 1 dx] b4
= cos O, | - (——‘L—Tz— ‘ 64
Vi 2 l:(y1+p1) dyi Vi ¥ Py ] (64)
so that
dG‘ _ del dez
70, = @y / Iy (65)

With (72) we apply the conservation of energy principle and find

sin ), (d 01)

= 66
2) sin 02° 'd 62 1 (66)

The numerical results for Standard Set No. 1 parameters are

depicted in Figure 26.
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We now wish to obtain the tertiary field I3p' This can be
obtained from IZP(GZ) which is already determined by (66) if

we find the derivative (d62/ dx%) and apply the conservation

of energy rule between the two fields. In the parabola-hyperbola

system, we should note that
X, = Xy . (67)

We will allow x[

5 to be the independent variable and assign its

value first and then determine vy With Yy determined, we

may find IZp as previously shown.

Given XlZ we find from (49) and (50) the values of Y, and

dyZ/d x, respectively. Then

tan 8, = ( xz/(y2+ Y +p)) (68)
is found. We solve (56) and (57) simultaneously to obtain

Y1 (tan© ) given by

2
.= + ‘ - , '69)
v, = (kg at + 13 ¢? tan® 6‘2)/(d‘2 - c% tan%e ) (70)
q 1 2
and
2, 2 2 .2 2 2 2 2, 2
yql = (d kl -c d - pl2 c tan 92)/(d -c tan 92). (71)

In (69) we use the + siga if (‘an/qu) =0 and the - sign other-
wise, where

2 2 2 2
yqn = kl d” +p,c tan 9,
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and

2 2 2
yq‘d-d‘ - ¢ tan” 8,

If qu is approximately zero, then use

y, = (1/2) (‘qun/yqn‘)

where

y = dzzk2 - ch2 - p‘lzc canzez .

Having {found y; we obtain I, = as discussed already. We
still need dx;/d 92 = dxz/de2 to obtain the tertiary field,

From (76) we obtain this value as

2  —
de, _ _cos’e, Ll Ctane, (31‘2 )] . (72)
dez (v, + VY +p)) 2

By applying the conservation of energy principle

I, (02 sin 0,0, = I, (x,) x, dx, (73)

we obtain

= L, ) G522 (2 (74)

I

The primary field aperture phase, Cp, is constant and may be

obtained, as a check, by

C, = r+ (’32' + (03 t C, (75)

r, = xl/s’mel , (76)



(DZ‘ = (xz‘ - xl)/sin 92, (77)

P3 = Yoo (78)
and C = 0 by definition.

Po

Numerical results are depicted together with results for the

aperture edge field to be discussed next.

Edge Field in the Aperture

We now wish to determine the edge field amplitude and phase
(I3e‘ or Q?)e and Ce) in the main reflector aperture. We
will determine I and C at xl = x., the same point

3e e 2 2
for which I3p‘ and Cp were determined. This will facilitate

the complex addition of the two fields in the aperture which will

be made in Chapter 5,

It will simplify the computations considerably if we assume

that FZ == C}/Z or that the true ray normal to the reference
phase front of the edge diffracted field is in the same direction
as the ray through the (Xl’ yl) origin. The justification for this
approximation in terms of its accuracy was presented earlier
in Figures 13 and 14. It should be noted that we will use the
true phase of the edge field at the given point on the wavefront,
It is only the direction of the ray through the reference wave-

front which is approximated.

The projection of the approximate edge field ray as it is reflected
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from the main reflector into the aperture at the point xé is
illustrated in the diagram (1) on the following page. Note the
difference between this diagram and Figure 2, where the ray

is in the C}/Z direction. The ray reflected from the main reflec-
tor is in the 01/3 direction. The point of incidence of the edge
field ray on the main reflector is designated (x3, y3) in the

same reference system as (XZ" YZ)' A detailed drawing of

this ray and reflector structure, to scale, is shown in Figure 27.
The equations for the main reflector shape and slope in terms

of (x3, y3)‘ is the same, of course, as that given in equations

(49) and (50) for the (XZ’ yz) system,
[- 459y + x5
X; =+ - 4f2 V3 X, (79)
x2' 1 2
y, = (—AR—) - (—) x3° (80)
41, 41
and
dys _ _ _1 | o
T = ) % (81)
Given the value of the independent variable x; = X, we would

like to find r; directly. It is difficult to do this directly so

we will find le when given FZ' From the geometry we have

tan [}, = x3/(y; + V) (82)

from which, when solved simultaneously with (80), we obtain

’ 2 2 . 2
X3 = -.Zfz ctn PZ + \14 ctn r'z f2 + 4f2 Y+ Xy (83)

The valves of V3 and dya/dxg‘ are then found from (88) and (81).
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With Snell's law at the point (x3, y3) expressed as

k- s,

dy3/dx3 = -tan ( > (84)

and (84) and (81) solved simultaneously, we obtain

d’;} = r“z - 2 arctan (x‘3/2f2)’ (85)

From (85) and the geometry we then readily obtain

X, = ¥ 7 %3t ys tam 0%" (86)

Now given le = X, Wwe may solve for FZ by solving the
transcendental equations for [}, (81) through (86). This is not

very difficult, since PZ (le) is a monotonic function.

We now need dxz/d ré in order to find I, ~ by application
of the conservation of energy principle to Je or Jé {(note that
the assumption that JIZ ~ B_ implies also that Je —~ Ji).

This value is found by differentiation of previous results as

dx dx
+ Y3 seczc); (%é—)
where

and
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2

2m |1 (89)

Applying the conservation of energy principle, we obtain fin-

ally that

Sl e | Iz, 90
be = | /TR B (90)

In order to determine the edge field phase, Ce’ at the same

point in the aperture we find

Xy csc |5, (91)

N
(?5

and finally

(x, - x,) csc Jg), (92)

- - 03
Ce = P4 + PS R. (93)
Note that Ceo‘ ~-R according to the apprtr)ximation

&, ~ b

In Chapter 5 we will use the synthesis method of Chapter 1 in
an attempt to correct the aperture edge field effect. In order

tc carry out the synthesis, it will be remembered that the" der-
ivative of the desired aperture phase distribution must be found.

For the work in Chapter 5, we will need, therefore, to find

dC. | By the theorum of Malus, we find directly

g';{qf = dx2’
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dce/dx_,_ = sin d/3 (94)

where d)_,) is given by (85).

Aperture Edge Field Computations

Aperture edge field computations of Q‘3e and C‘e were made
for a wide range of frequencies, for normal and parallel polar-
izations ( A'/= n/2 and *: 0°), and for even and odd sym-
metry of the primary field (SIGNEG = +1 and -1) incident on
the subreflector. These results will be presented graphically
and briefly discussed in this part. Unless it is specifically
stated otherwise, the Standard Set No. 1l parameters introduced

earlier may be assumed,

Figures 28 through 29 illustrate the edge field amplitude, Q‘3‘e’
contribution to the aperture field in comparison with the primary
source contribution; ‘=Q3p’ for frequencies k = 2w, 4w, 6w,

8w, 10w, 16w, and 20w. The primary source contribution does
not change with frequency, of course, The important general
characteristics of the edge field contribution are the same for
all frequencies; and as will be seen subsequently, for different
polarizations (J) and symmetries (SIGNEG). The character-

istics are:

1) A large lobe exists near the outer periphery of the
main reflector. Although we would expect this lobe

to be centered around x we find that it is siifted

2m

towards a value of x, slightly less than x, . This

shift may be accounted for in part by the approximation
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[} ~ {5 (see Figures 13 and 14). Some of the
shift is due, however, to a change in the amplitude
distribution caused by reflection from the main ref-
lector. For a smaller value of k or a wider edge
d iffraction lobe, this shift is less important, since
it is approximately the same for all values of k
considered. The amplitude in this diffraction lobe
region has been calculated with the shadow boundary
correction discussed earlier in this chapter and
should be reasonably reliable. This contribution

is of major importance and will be discussed further

later,

Away from the shadow boundary lobe, the field
decays rapidly, the rate of decay increasing with
frequency. In the shadow boundary lobe region and
in this decay region, there is no interference effect
between opposite edges of the subreflector. The top
edge field dominates in this region. It is possible,
however, to include some contribution from the bot-
tom edge despite the optical blocking of the curved
surface of the subrefle_tor. The inclusion of sur-
face diffracted rays is discussed by Keller7. How -
ever, for this polarization ( J: 0), the transition to
the region where interference between edges takes
place is so smooth that it is clear that the present

theory is adequate, For the other polarization
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( J: n/2) we will see shortly that a discontinuity
does exist in this transition, but the discontinuity

is of no qualitative significance.

3) In the region where the fields of the two edges inter-

fere and oscillations do take place (~ xl

5 =< 6) the

field amplifude levels off, but at a rather low level
(~ -20 db) with respect to the shadow boundary lobe
and Q3p' This is significant since there is very
little possiblity that the rapid oscillations in this
region could be corrected by optical techniques
(i.e., reshaping the reflector surfaces). However,
the low amplitude for all frequencies in this region

makes a correction of this effect unnecessary.

From the figures, then, it is clear that the only significant con-
tribution of the edge diffracted field is the shadow boundary lobe
where the amplitude is of the same order as the primary source
contribution. Actually, this contribution is even more signifi-
cant than is apparent from the figures. First of all, the area
subtended by the small radial segment of the shadow boundary
lobe is quite large, since this effect is at the ouvter edge of

the main reflector. Secondly and even more significant is the
fact that this contri‘;)ution to the total aperture distribution is
usually ~~180° out of phase with the rest of the aperture field.
This effect, which is demonstrated quite clearly in Chapter 5, is
particularly important with regard to the gain of the antenna.

Furthermore, it is not possible to simply change the value of 5
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in a new parabola-hyperbola antenna system in order to cause
the edge field to add in phase instead of out of phase at the aper-
ture. It is reasonably clear from Figure 2 that changing the
boundary conditions does not alter the relative phase between
these two fields (note that only the top edge makes a contribution
to the shadow boundary lobe). What is actually required to make
the edge field contribution such that the resultant aperture phase
distribution is approximately uniform is to alter, fundamentally,
the reflector contours. This is done in Chapter 5 with some

success.

Let us examine a little more closely the origin and character

of the shadow boundary lobe. In the brief succession of diagrams
(m) is depicted the degree of approximation obtainable with larger
and larger subreflectors of the desired geometrical optics pattern
(the dashed line). This is similar to using more and more terms
of a Fourier series to approximate a square wave. The difference
between the two curves at the vertical edge of the dashed curve

is the shadow boundary lobe. In general the amplitude at this
point does not vary, but the steepness of the approxirnating curve.
does , and hence the width of the shadow boundary lobe also does
vary in the same manner with increasing k. This is the calculated

result illustrated in the figures,

For k= 2r we find that the shadow boundafy lobe is significant
for approximately 9 = le 210 and hence 10% of the radius or
approximately 20% of the area of the aperture since the lobe is

near the outer periphery. Since this lobe is out of phase with
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the rest of the aperture, the net reduction of anticipated gain
for the antenna may be as great as 40%, surely an intolerable
figure in practice. For the case of k = 6w, we obtain a similar

figure of about 15% net reduction in possible gain. Even if these

figures were 30% and 10%, qualitatively, the significance is appar-

ent. A subreflector of about 6 )\ in diameter (k = 67) is the
minimum tolerable size that can be used in practice. This, as
was mentioned earlier, agrees with generally accepted standards
found in practice. For much larger subreflectors, the effect

becomes progressively less significant as may be expected.

In Figures 31 through 36 are illustrated the edge field phase
distributions in the aperture, C_, for k= 2w, 4m, 6w, and 8w.
Figures 31 and 32 illustrate the same distribution, k = 2%, but

in Figure 31 the various braches of Ce are connected to illustrate
the continuous distribution., The various branches are presented
segmented in most of the other illustrations. The change in
branch for Ce arises from the branch choice of the arctangent

in equation (41) for R. Since

Ce:€4+P5-R

this branch choice is reflected in the results for Ce also,

Each branch in the phase curves for C_ represent anaher lobe
of oscillation in the amplitude 936, Hence, for higher values
of k there are more oscillations or lobeg and more branch

segments in the curves for C_, If the phase front of the edge

10¢



field were perfectly circular with the center of curvature at the
focal point of the main reflector parabola, then the phase curves
for Ce , when they were connected continuously as illustrated
in Figure 31 would appear as shown in the diagram (n). They
wolld be perfectly formed squared steps of n radians or )\ /2
height. The step jumps would occur at zeros of Q3e. For a
slightly non-circular edge diffracted field from the subreflector
or one with the center of curvature not at the focal point of the
parabola, the resulting distribution might appear as shown in the
diagram (o). In this case the amplitude :936 doss not have
zeros and the steps of Ce are not clearly delineated as before.
An excellent example of Ce for this case is illustrated in
Figure 48. The less circular the edge field diffracted wavefront

becomes the smoother the curves for Ce become,

In Figures 37 through 39 ave illustrated the aperture edge fields,

g%e’ when the polarization incident on the edge of the subreflector

is normal to the subreflector edge ( d/: w/2). This may be inter-
preted alternatively as an E-plane cut whereas when J/— 0, the
fields then are in the H-plane (planes parallel to electric, E, or
magnetic, H, fields). The oscillations in the region where the
top and bottom edge fields interfere (le’Z 6) are considerably
greater than for the J/': 0 case. While they are still small com-
pared to the shadow boundary lobe, they are not entirely insignifi-
cant, especially for the lower frequencies, k = 2n and 4m. At
around x; = 7.7, we find a discontinuity in the field that is

due to the sudden introduction of edge source No. 2 (the bottom

edge) into the computations. At this point, the surface of the

11«
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subreflector no longer optically blocks the rays from edge No. 2
and the interference botween edges commences for x‘zl less

than this value. As mentioned earlier, the creeping or surface
wa.ve7 that can be cxcited by the edge diffracted field and ''seen"
around the curved surface of the reflector is much more signifi-
cant for this polarization. While such a correction to the com-
puted values would give a more continuous transition at this point
(le ~ 7.7), this effect is not considered very important for the
purposes of this work, The effect is interesting, however, and
indicative of the general validity of Keller's theory7 when properly

interpreted.

In Figures 40 through 42, the edge field phase in the aperture,
Ce’ is illustrated for k = 2w, 4w, and 6w with d/-: n/2. Note
that this phase distribution is more sharply stepped than the
equivalent djz 0 case. As discussed earlier, this result is con-
sistant with the lobe structure found for QE»e when J/z /2

as compared to that for A/= 0 and implies that a more spherical

wavefront for the edge diffracted field exists here.

Figures 43 through 48 illustrate the amplitude and phase for the
case when odd symmetry (SIGNEG = -1) exists in the primary
source distribution. Both polarizations, dj— 0 and n/2, were
used in computations for k = 6w, There is no difference of any
consequence for the SIGNEG = -1 case relative to the SIGNEG = +1
case. A zero for Q3e exists at le ~ 0 for SIGNEG = -1 whereas
a maximum exists at this point for SIGNEG =+1, but this expected

result of the symmetry is of no important consequence. The
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same differences between the Jyz 0 and é/:: w/2 cases exist
for SIGNEG = -1 as do for SIGNEG = +1. This is true for both
the phase and amplitude results as is clearly evident from the
figures. No deviation of these results need be expected for other

values of k.
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CHAPTER 4

ON THE POSSIBILITY OF EXTENDING THE SYNTHESIS
METHOD TO INCLUDE THE EDGE DIFFRACTED FIELD

Introduction

The discussion and computations presented in Chapter 3 illustrated
the importance of the effect of the edge diffracted field upon the aper-
ture distribution. The synthesis method developed in Chapter 1
showed how a specified aperture amplitude and phase distributicn
may be obtained by shaping the reflectors' cross-sections when the
diffracted field is not included. It would be ideal if we could extend
the synthesis method of Chapter I so as to include the edge diffracted
field's contribution tc the aperture distribution. In this chapter we
will discuss an attempt at finding such a solution which proved unsuccess-~
ful. The method for obtaining a solution which was attempted appears
to be a powerful approach to the problem despite the lack of success
found in using it. The inadequacy of this approach was by no means

proven so it seems worthwhile to present the technique for the record.

The use of the edge source on the sub-reflector for obtaining the dif-
fracted field is an excellent choice for several reasons. Besides
providing an accurate result for the diffracted field of small sub-
reflectors as was discussed in Chapter 3, the edge diffracted field is
independent of the reflector cross-section and depends only upon the
boundary conditions such as were stated in the synthesis method of
Chapter 1. These conditions are the position of the edge and the slope

of the edge which are determined by X, ., X, , OC(‘le)}’ andP (0,

lm



Hence the diffracted field is a fixed field distribution which illumina-
tes only the main reflector. Since it does not depend upon Yl(xl)‘ as
a Kirchhoff integration would, it lends itself to an extension of the

synthesis method of Chapter 1.

It is not at all clear, however, whether a solution exists to this
problem. Unfcrtunately, this problem will remain unresolved in

this work, although it is the feeling of the author that the results found
in this chapter imply, by no means prove, that a solution does not

exist under any conditions except that Je‘ = 0.

It is well known1 that an arbitrary phase and amplitude cannot be
specified in the aperture of a single reflector system for an arbitrary
source illumination. Referring to Figure 1, we see that I3p and Cp

must be controlled by shaping both YI(X and YZ(XZ‘) in order that

1)
upon complex addition to I3e and Ce’ a specified amplitude and phase,
I3‘a and C, will result in the aperture. From an iterative point of

view, whenever I3p and Cp are altered to compensate for I, and C_,
the change in Yl(Xl) and YZ(XZ) also alters I3e and Ce. It is not

clear then whether an iteration would converge. The results of Chapter
._5 indicate that sucl an iteration would not converge, although by no
means conclusively. If a solution does not exist of course such an
iteration would not convarge. The inverse is not necessarily true,
however, since the problem, mathematically, is not a linear one. Iif

Je were very large, it is clear that a solution would not exist. The

dominance of 13e over I3p would preclude the possibility of correction

166
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of I3e by adjustment of‘I3p. On the other hand, even when I3e is very

much less than I3‘p’ it is not clear whether or not a solution exists,

The above method of reasoning was inconclusive so that a more formal
or mathematical approach to the problem is necessary. Before actually
attempting the solution mathematically, let us see from Figure Z how
the various laws and principles relevant to the problem fit together.

A normal congruence for the rays and wavefronts is defined for the
primary and edge sources when Cpo and Ceo are specified. We know
that this normal congruence is maintained upon successive reflections
if the appropriate optical principles are applied. Application of
Snell's law at reflector #1 insures a normal congruence for the I“2
waves incident upon reflector #2. Now the theorum of Malus applied
for Cp and C_ in the aperture insures a normal congruence for the
waves and rays reflected from the main reflector. Hence it would
appear that Snell's law applied at the main reflector would be redundant.
However, the two energy conservation equations taken together with
those principles already stated do not define a unique solution to the
problem for YI(XI) and YZ(XZ‘)' Since Cp and Ce are not known {and
neither are CII> = de/dX'Z nor C| = dCe/dXé), then it may be true
that inclusion of Snell's law at the main reflector is not redundant.
Inclusion of both these principles as independent conditions would mean
that the problem is overstated; that is, there is no solution. On the
other hand, since C and I3a are given functions, it may be that one of
the two Snell's law applications is necessary, whereas the other is

redundant. This reasoning is certainly inconclusive, but unfortunately,
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that is the state of this attempt to an exact solution to this problem. A
reasonably satisfactory approximate solution to this problem is obtained
in Chapter 5. The remainder of this chapter is devoted to explicitely

formulating the above ideas mathematically.

Equations for the Attempted Exact Solution

The mathemtaical formulation of the problem described in Section I
above will be performed briefly in this section. We will attempt to
arrive at a set of six sirnultaneous first order differential equations

with the dependences indicated below:

3@ = £,(d5 Cp Co X5) (1)
From Energy Conservation

8] = £, (0), Cv Gy X,) 2)

c; = G, (G 8y Y, Yy X5) (3)

From Theorum of Malus

c, = fe, (Ce» /2; x",) ;j (4)

Y'l = fy, (8,, C, Cp" Y, Y, X'Z)\| (5)
From Snell's Law

Yy = £y, (8], Co G, Y, ¥y x3) | (6)

These equations, as shown, form a complete interdependent set.

The primed variables denote total differentiation with respect to X'Z
except in the case of X;_. The total derivative of X with respect to

Xé will always be denoted as dXZ/dXIZT Rather arbitrarily, all the
variables may be considered dependén‘t variables with X'Z the independent

variable. The remaining variables of significance in the problem can
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be found from those in (1) through (6) with the following dependence:

Xy = X,(C_, %y X)) (7)
Yy = Y5(C, ¥ X)) (8)
X, = XZ(‘Cp,Ol,YI,YZ; X4) (9)
X, = X(8,,Y,) (10)

As we derive the explicite forms of the above equations, we will

point out the deficiencies in the formulation.

The energy conservation equations leading to (1) and (2) are

1.£ [I3eﬁe ('Xz’] (Xé/sin B’z) (11)

and

0} ={13p/11(91)} (x'z/ sin °1) (12)

The quantities I, and I3p can be expressed in forms of the specified
aperture distribution amplitude, I3a’ and phase, C, as will be done

shortly.

From expression of the theorum of Malus ati the aperture we obtain

C, = sin0; = (X; - xz)/wxgz - XZ)Z‘ + YZZ (13)
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and

C, = sin¥; = (X - X3)/\ﬁxi - X% 4 ¥y (14)

which will lead to equations (3) and (4).

Snell's law for each reflector and each ray system is expressed as

1 1 X2 - x1
' o= - T = . - a ! Y
Y1 = tan 2.[01 92] X‘i tan‘z- 1 Ol arctan 7—_, 77,7, | X‘l,‘ (15)

1 [ ]dxz 1 X, - %
Y, = -tanx]0, - 0,|— = -tan » |arctan|——e———
2 R z | VY, Y,
X! - X dX
2 2 2
-arctan ‘ =, (16)
YZ ‘dX'Z
and
Y! = -t L | -X'~tal arct —_—CTX3
3 = 'anZ:b’Z'Z‘B» 3 = -tan > rctan Y3+e
X - X
-arctan-z-?3—3- Xy . (17)

Equations (15) and (16) lead to equations (5) and (6). It is here that the
difficulties or unresolved portions of the problem exist., First of

all, as will be seen shortly, it turns out that equation (17) is not
necessary to arrive at the formulation expressed by equations (1)
through (10). This may be explained by stating that equation (4) or
(14) for the Theorum of Malus makes (17) redundant. In this case,

however, we would expect that (16) would also be redundant with (3)



or (13). However, itis not clear that (1) through (6) are not a
complete set of differential equations with a unique solution unless
(6) or (16) is included. Excluding (6) lcnds to the conclusion that
Y,(X5) is arbitrary. Itis conceivable that this is the case, and that
the Cauchy-Lipschitz conditions (see Appendix 1) are not satisfied
except for certain Y‘Z(X'Z) and in some cases for no function YZ(Xé)"
This last conclusion is the only one which appears consistent with
all the results obtained. It is however very unsatisfactory from an
engineering point of view since appropriate choices of YZ(XIZ‘) are
too difficult to find and their existence is not certain in any specific
case. The general complexity of the equations precluded the
possibility of applying the Cauchy-Lipschitz conditions in any useful
way. In addition, as the results in Chapter 3 have shown, we
frequently find I3e$ I3p for some Xé and may expect that very often
a solution will not exist in practical cases. The formulation is
however uncertain and the possibility remains that a solution does
not exist even when I3e<< I3p'
Continuing the formulation, we find for the unknown path lengths or
phases at the aperture for each source, the primary and edge sources,

that

’

‘ 2 ‘ 2
Cp‘ = (,ﬂ-Yl)/cos 91 + V(XZ - Xl)‘ + (Y +YZ-Y1)

Afixy x,)2 +v2 4+ c_ (¢
[(Xp =Xl #Y;  +Cpl€y

where

(18)
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X, = (B-Ytan o, | (19)
and ‘

i 2 a
C_=(Y,+ d?e(b'z)‘)/cosb"z +\ﬂx'2 - X3) 95+ C_ (¥,) (20)
where
Xy =(Yy+d (F,) tand,. (21)

The inclusion of Cpo and Ceo in these expressions defines the primary
and edge source rays and wavefronts to be a normally congruent

system.

2 2
R hTal} — - .
If we 1etQZ(J(2) = I3a’g3p = 13p’ andg3e = I3e , then we can add the

two fields in the aperture by complex addition,

&exp(kc) =Q3p‘ exp(ka) +Q3eexp(kce),‘ and find that

sin“k(G(X}) - c,)

I, = I, (X)) (22)
3 32T Gin®k(c_ - C)
p e

and

.2

sin k(C(X}) - Cp)
: = ! ]
I, = I3,(X5) (23)

. 2 ‘
sin k(Cp - Ce)
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We will now outline the substitutions that are necessary to arrive at

- equations (1) through (10) from (11) through (23) and in addition
point out some o the difficulties. In the following we read "(11)
+ (23)=® vag" equations (11) and (23) imply.' The plus sign does

not necessarily indicate summation. The reductions follow:
(11) +(23) == (1)]

L

[(12) +(22) = (2)]

L(IB) +(19) == (9)]

j(20) +(21) =i (7)]

(20) + (21) == (8)]

L
(¢6) + (13) -)(3)]

[(27) + (28) + ( 14)19_(4)]

X X,
[(as) +(19) = X| = '%_gl_l_ fgp + %Y‘l“ Y'l]
| )

ﬁw) +(19) +(26) + (31) =3 (5)]

{ : \ | dx _ ,
|326) + (29) + (25) + (32) = "2 dx2 = o cp

ZXZ o1 ?Xg X, , ZXZ “
+ Tg—l— 1 + DY Y'l + X ; ]

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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and

[(16)+(19)+(26)+(33) .-»(6)] : (34)

With the exception of (33) and (34), no difficulty with the above
substitutions occurs and they lead directly to explicite forms of (1)
through (5). Upon substituting (33) in the expression for Yé , equation
(16), and solving for Y} as directed in (34) we find that Y) is identi-
cally zero. Such a result does not make physical sense and no
alternative or method for finding a usable explicite form of (6)

has been found. It is possible that this result is due to a redundancy
of Snell's law and the Theory of Malus as discussed earlier. In

this case we are left with the indefinite results and conclusions drawn
earlier. We will therefore conclude the discussion of this attempt

at an exact solution by outlining more clearly the derivations indicated

in (34).

By performing the operations indicated in (34) we obtain

0X; DX X, . TX
Y o Ay + Y o
PC_ Cp XL TC17e, T 1 Y,
P 2 1 1
02‘ _93 ’DXZ
Z
v,

‘l + tan(

We then obtain equation (9) from (18) and (19) as directed by (26).
Differentiating (9) then gives the partial derivatives necessary for

for evaluating (35).
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Consider the denominator of (35) first.

(cos 9, + cos 93)

(sin 02 - sin 0‘3)

We find therefore,

- %) X,
71 v,

i
—

1 + tan

and that therefore the denominator of (35

or 03‘ = 0. We will find however,

numerator vanish for all OZ and 03.

From equation (13) we have that
b s
Cp = sin 05.

Differentiating (9) gives

Y

upon expanding ta

Evaluating 0 XZ

we get
?Y,
(36)
9, - 9
2 , that
sin(@)2 - 03) c,osO + cos@3\
1+ cos(®, - 03)’ smO - smO |

37)

) goes to zero if either QZ =0

that the bracketed terms in the

5C— ° /(sin 9, - sin 0,) (38)
P
and
ZXZ -sin 0‘3 39
2%, /(sin 9, - sin 0,), £39)
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so that

DXZ Z‘XZ

C' + - £ 0.
I, » DX}
This leaves (35) as
o, © 0% Ly D%
z -3V 119 1 Y,

(40)

Yé = -tan(——z_— ‘

the case of a fixed center of phase for the primary source, we can

show that

. 0%, . DX,
RN 1)

20

dC
. d ‘ po
for all values of the variables. Now ——é and are not
48, a0,

independent if a normally congruent ray and wavefront system is
defined for the primary source. Itis presumed, although not shown,

that the same result would be obtained with 'gﬁé # o and dcpo # 0.
1

dO1
The case when these quantities are zero is, however, by far the most

important practical case. Differentiation of (9) gives



N

X i
[ z - ‘W sec gl + (/é- Yl)s‘ec 91 tan 01 - |sin @ dﬁ

2 T
|

. ' (41)
2 dc o
.(tan CNE W- Y} sin@, sec 8, + Ti'ﬁ—lL [(sin 6, - sin ©3),
and
X,

@-Y_l— = [secO1 - sinOZtanQ1 + cosG‘Z jl/(sin()2 - sin93)‘.‘ (42)

These equations together with (40) may be used to verify the
above assertions. In order to complete the result, the explicite form
of O'l and Y'1 must first be obtained by carrying out the substitutions

indicated in (25) and (32).

1f the difficulties indicated in the above derivations could be overcome
this method for obtainiﬁg an exact solution would be very powerful
since, for one reason, the six simultaneous first order differential
equations (1) through (6) are readily solved by the high speed computors
available today. However, since in this work the problem of the edge
source diffracted field has been defined and a partial correction
obtained (see Chapter 5) no further effort for an exact solution will

be made.
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CHAPTER 5

CORRECTING THE EDGE DIFFRACTED FIELD

BY APPLICATION OF THE SYNTHESIS METHOD

Introduction

The effect of the aperture edge field and its significance was dis-

cussed in detail in Chapter 3. As was evident from the results of
Chapter 3, the shadcw boundary lobe could be reduced to a negligible
width by increasing the size of the subreflector in wavelengths., This
approach, however, merely substitutes aperture blockage for the
aperture edge field effect. To date this has been the standard approach
to this problem. In this chapter, we shall show that much of the deleter-
ious effect of the shadow boundary lobe can be reduced by application

of the synthesis method developed in Chapter 1.

It was asserted in Chapter 3 that the most significant aspect of the
shadow boundary lobe effect was the fact that it causes the total field
in the aperture in the region of the lobe to be 180° out of phase with the
rest of the approximately uniformly phased aperture. Computations
will be presented later to verify this assertion. The results obtained
in this chapter by repeated application of the synthesis method is that
the shadow boundary lobe phase can be made very nearly uniform with
the phase of the geometrical optics field over the entire aperture.
Hence, even though essentially no correction of the amplitude of this
lobe was obtainable, it is possible to substantially increase the gain
and efficiency of the antenna by this method. As mentioned in Chapter 3,

this correction could potentially increase the effective aperture area



by the order of 30% for a 2 ) diameter subreflector and on the

order of 10% for a 6 A diameter subreflector.

The method used for correcting the shadow boundary lobe is by no
means limited to the degree of success so far obtained and discussed

above. While a 100% correction of this effect does not seem possible,

substantial correction of both the amplitude and phase does appear pos-

sible by continued judicious application of the technique.

The method to be used for correction is essentially an iterative
approach to the solution with only one iteration taken. It will be clear
from the computed results presented later that repeated application
or iteration of this method shows no promise of uniform convergence,
or at least rapid convergence. This is to be expected, since it
appears very likely that an exact solution does not exist in any case.
The phascr diagram (a) illustrates how the subreflector edge field
adds to the geometrical optics field to give the total field amplitude
QeR and phase Cl' (C1 will be denoted as the total phase of the
resultant field and normalized to a length approximately equal to that
of Cp’ We designate CR as the unnormalized phase. Hence we
get CR/k < 27 and tan k C1 = tan k CR), This phasor diagram
applies to a specific value of x"2 in the aperture. If we presume
that Q,)e and Ce will remain essentially unchanged upon a small
deformation of the reflector shapes, then we may apply the synthesis
method of Chapter 1 to obtain an aperture distribution given by cg and
C as indicated in the phasor diagram (b). I Ql}e and Ce actually
did remain unchanged for this aperture point, x'z, then we would

expect to obtain the original geometric optics field Qlip and Cp

182
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at this point. We will define the original gzeometric optics field as

the "desired'" distribution we would like to obtain finally.

Upon synthesizing for ’D‘(X‘Z) and C (x'z) we change the reflector

shapes from yt(xl) and yz(x?) to the new shapes ¥,

An(xln) and
YZn(XZn)‘ and as a consequence, the new edge diffracted field in the
aperture, “Oéen and Cen’ is not equal to the former edge field. As
might be expected, we find in general that the correction method is
most sensitive to the changes in C_ to Cen. This will be evident in
the computed results presented later. However, it is precisely for this
reason that the correction ohtained with the total resultant phase distri-
bution, CZ’ is very satisfactory even when the resultant amplitude dis-
tribution, QRSL’ is not substantially changed. This may be seen from

{
a phasor diagram wherein "‘QBe is approximately equal to tg.%en’ but
wherein Ce and Cen may be greatiy different. For a very large
range of Cen we will find a good phase correction even when a pocr
amplitude correction results. This is illustrated in the phasor dia-
(
gram (c) wherein the phasor S)Be‘,n connected to Q is allowed to
swing over a wide arc of a circle., The resultant phasor, regardless
of the amplitude, ends up with a substantially corrected phase. The

computed results presented later will illustrate this efiect.

There is no reason why we must start the synthesis for YZn( xzn)
and yln(xln) with the same boundary conditions from which yz(xz)‘
was computed. It is, in fact, desirable to adjust the boundary condi-
tions so that Ce ~ Cen near the shadow boundary lobe, namely at

by a fraction of a wavelength makes

b
pe

s = - 311
X, = Xy An adjustment of X,

it possible to obtain C, and Cp equal to the extent that



Cz:'rC[e o;
Var_ging

"4 Cen

COMPLEX PLANE
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+ nr =k C ). Since
e p) nce x,

is always very large in wavelengths, this alteration of X5, can have
o~ LI

tan kC =~ tan k C (i.e., kK C
e P

no significant effect on the general propecties of the antenna aside

from the fact that since k C_ + nn ek CT we will find that
tan k Cen"“" tan k C‘e::;tan k Cp . Hence, in the vicinity of the

shadow boundary lobe, we can insure that a point, specifically the

boundary point, will have C_ = Cen (or just as well, k Co=k Cen+ v

=]

if desired). This particular adjustment does not, unfortunately, lead
to any substaatial correction of the shadow boundary lobe in amplitude,
it merely causes the shadow boundary lobe to remain in essentially

the same position in the zperture before and after correction. In other
words, this change in boundary condition causes the new main reflector
shape to be less altered in shape in the vicinity of the shadow boundary
lobe. This adjustment of the boundary does lead, on the other hand,

to a substantially improved phase correction, as will be seen later.

For the purposes of correction in this chapter, we will chocse the
parabola-hyperbola system used in Chapter 3 for analysis purposes,
Hence YZ(XZ) and yl(xl) will be respectively a parabola and hyper-
bola. We will, however, alter sotnewhat what we consider to be stand-
ard input parameters or boundary conditions., The change will be ia
the value of X, Cchosen. As Standard Set No. 2 input parameters,

we will choose the following:

E3

n is any integer, usually positive, since usually Cp = G,
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STANDARD SET NO. 2 PARAMETERS

Same as Standard Set No. 1 except that:

Xom = Maximum value indicated on Graphs.

OPTION = -1 is the standard option indicating that X5
for the new reflectors is computed so that
k Ce A~ k Cen at x2 =Ko o If X5 is not
chosen this way, then an OPTION =+1 will be
indicated where appropriate.

As indicated in Chapter 3 also, the above Standard Set No. 2

parameters may be assumed in any discussion or graphical illus-

tration unless some modification is specifically mentioned.

As was mentioned earlier, an improved correction of the shadow
boundary lobe may be possible if the amplitude and phase, VQ and C,
which are synthesized by the method cf Chapter 1, are altered somewhat
in anticipation of the fact that the altered reflector shapes will make
Q3en and Cen different than QBe and C_ . Such a change in

and C should be made judiciously after a careful investigation. This
change is not attempted here. Inadvertantly, however, in the process
of making machine computations, the value of C was changed, in
other words this phasor was rotated in a manner described later in

this chapter. The results of these computations are presented, since
it is interesting that although the specific values of the computed varia-
bles is, of course, different than the case with Qex,)(kc) not rotated,
the results are in all qualitative aspects the same as before rotation.

Computed results that are illustrated in the figures of this chapter will
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be denoted by ROT on graphs if such a rotation was made.

Before presenting the computed results, we will develop the mathe -
matics of the correction procedure. Several approximations which
afford a simplification in numerical computations are indicated in

this development.

Application of the Synthesis Method

Before we actually apply the synthesis method to correct the edge
field, we will compute the total field amplitude, phase, and phase

derivative in the aperture.

The relative phase, CR , of the total uncorrected aperture distribution

is easily found as

sink C_ +
&

T35 sinkC,
cos kG + (%-gle?)coskce

It is convenient for purposes of comparison and computation to add an

(1)

(_Q 3e ]

1
CR = ; arctan

integral number of half wavelengths to Cr sothat Cp is approxi-

mately equal to

= 1 - “
Cpm E Cp‘(me)‘ = Cp . (2)

We define this '"'normalized'" phase as C, and find its value by

1

c, = C

| + C - 1/k arctan <tan (k cpm)\) . (3)

R Pm

The last two terms on the right hand side of (3) add up to an integral



number of half wavelengths and thus provide the '"normalization"

that is sought.

Now the rotation of C‘l , which was discussed in the introduction
and is indicated in the figures by the designation ROT, was made
by choosing, inadvertently,

C, = CR + cpm - 1/k arctan (k c‘pm)" (3a)

The amplitude of the total field is found as

R 3p + 2 l 13p I, cos (k [cp-ce]) LI PR (4)

These formulas are easily derived from the phasor diagrams pre-

sented earlier. Note that we continue the convention that

2 _q2 _2 . Q2
lr = Jer + TrsL= Orsre B3p= O3p 3= s o cte

In order to obtain C and Q , the phase and amplitude for which we
will synthesize new reflector shapes, we either let C, —~C,+ n/k
or Q3e —>» - 93e’ with the result that this negative edge field added

to the geometrical optics field gives for the phase
d3e

C = 1l/k arctan !:smk Cp QﬁgnﬁSkae :l+ Com (5)
cos k C_- e ‘
P (Q3p) cos k Ce |

- 1/k arctan (tan k Cp‘m‘),

and for the amplitude

= I3, -2 {13, I3¢ cos (k [Cp-Ce]) + I3 - (6)
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Note that the value of C must be normalized by tlie addition of

Cpm - 1/k arctan (tan k Cppm)

in order that the synthesis yield a usable result. Note also that

when tank C_ = tan k Cp then sin k Cp = *sin k Ce and
cos k Cp = =xcos k Ce and equation (5) reduces to
C = Com. (7)

This holds true for the standard OPTION = -1 when tan k Cp =

]
tan k Ce at Xy = Xy .

In order to actually carry out the synthesis we still need the

derivative function

dC dC

where the value X, in the above derivative is that point in the

aperture which is designated in the uniform phase case as X, = x"z.
A different value of x, exists for the generally non-uniform phase

2
distribution C but is not needed in the derviations we shall consider.
This may be made somewhat ci.arer by the diagram below (d)
wherein the ray passing normally through the aperture belongs to C
for which x_ = x!

2 2

belongs to C and has the same x'Z value but is incident upon the main

and the ray passing obliquely through the apertui=

reflector at a point different in value than x'Z.

‘As an approximation in obtaining g,%— we will assume that
2

dd3p e 933e
d X, dx,
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From the results illustrated in chapter three it is evident that
&3p‘ (or I3p)‘ is a very smooth function in comparison with &3e

(or I3 e‘) .

This is especially true \avhengSe is large or on the order of Q3p.
When &3e« &‘3p‘ the approximation is not as good but it also is

not necessary here since no correction is needed. Hence we may

state that
d 33e> L dg?&‘e - 1 d Le (8)
dx\ 83p/ 3p 9% 2(Q3e dx,
3

In practice, one of the most important cases to which this correction
may be applied is, incidently, the case wherein 93p = constant and

d8‘3‘p/ d X, = 0. In the present case we have, identically, that

dC
T—EXZ = 0, (9)
dI3e dC
We now must evaluate explicitly in order to obtain
d X, d X,

Referring to equation (90) of chapter three, we obtain

. 2
dI3e . dJe _<d X, > 1 .
axz 3e Exz d["Z chZ (d XZ) (d X5\
- l2

d x ‘
where <ET'—Z_  is defined by equation (87) in chapter three. From
2

equation (39) of chapter three we obtain by differentiation
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dJ' 5 1
e _ 1 GZ 1 G 2 |
a‘i'z I e Im Im {°
(11)
'Y Y! cosz +Y, Y! sinz‘+ Y2 YZ‘ sin cosé . vl
S | 3 2 T2 5 2 1 § 55 ‘

The remaining terms in (il) are defined in chapter three.

In order to obtain dZ‘ *2 we differentiate (d XZ} and get

SI:'T‘ <crr' zrx> <dx Hx>(&f’2 y, tan ¥,
() o, (Y e (22) |

ar ay
gh se'czd’ + 3 secza’
ar, 3 7 Y3 A&, 3

ay. dy |
+ 2}{3 <a—r|§—> sec2 )"3 tanb‘3 <d—>$> ) “

Most of the quantities in equation (12) are defined already in chapter

three., That is, in chapter three we have 3’3 defined by (85), Y3

by (80), V3 by (81), da’3_ by (88), and %3 by (89). The
dx3 di'z d’iz

remaining new differentials are readily found in terms of those already

defined. We have

d)’3 dr3

(13)

directly. By differentiating <f'- > we get
2 /.



2 2
d)’3 _ d %3 C,(.SZ ‘PZ ¥, 1
ai’z ax2 - Hi;"z a‘XZ ! 2 { t

1 dxy (pz'b’a ) y (Pz"”s |
CcCoOs - 81n 3
2

| (14)

2

£

2
Differentiating @y3/dx3> we get

where is the main reflector focal length derived in Chapter 3.

d vy ‘ / dx
3 _ 1 3 (15
ax a |i - 2 fZ de )
where
dx3 <dﬁ dx2> (16)
2 dFz S\

From (16) we get

dY3 _ dY3> ( > (17)
dxz

The final remaining derivative is obtained by differentiating
(dx3 / d I’2> with the result that

( > ctn r' [sm \"2 ( . (18)

With the above derivatives defining ( > completely and

ﬂ..

(dC /dxz> already defined in Chapter ? by equation (94) we can

obtain ‘dC:/dxz)‘ . For notational convenience we define first
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kQ = kC - kcpm + arctan (tan (kCpm) ), (19)
D =coskC_- '9‘36 cos k C (20)
nc - P I;; e’ e
and
d 93‘e
D, = (21)
3p ax?_ 33p>

from equation (8) above. We find then for (dC/de):

2
dC _ ] cos kQ .
rxz‘ = -._—_z-_—k D . [Dnc . {- D3p sin k Ce‘
‘ nc

(22)

3e d Ce S?:e
k v co‘skCe -4sinkC - =--}sinkC
3p 2 P \3J3p e

| ic
£33 4= sinkC_ - D, coskC
3p X, e p e

We are now in a position to use the results of Chapter 1 and synthesize

new reflector cross-sections Yaon (XZn)‘ and Yin (xln). The variables
in the new dual reflector system will be subscripted by the letter n
with the exception of x’2 . This variable remains the same, by
definition, in both systems. Hence a reference to a point x'2 in the
aperture applies to both reflector systems. The diagram below (e)
illustrates that the primary source rays for each reflector system
have been chosen to cross in the aperture. This is convenient for

comparison of the results when they are tabulated and in programming

for machine computations.
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The boundary conditions for the new two first order differential

equations, 9'1n and y'l‘n , will remain unchanged, that is:

0

l max = (initial 9‘1) = arctan (‘x1 max/ﬁ‘ ) (23)

and

Y1 max = (initial yl) = 0. (24)

Tuese are the conditions which would have been used if the parabola-
hyperbola system (y2 (xz) and y, (xl) ) had been derived by means
of the synthesis method of Chapter 1. The boundary conditions are

consistent with Standard Set 2 parameters.

The two simultaneous first order differential equations for the new

reflector system are

xl
o = I_(IG'_Y (’2—6"% (25)
n 100,.7) sin T,
and

(K- ) secz 0 tan(e‘ln _ 62n> 0!
. ﬁ Yin In ° 3 i in

Y = -
In eln eZn)

. (26)
1 + tan eln . tan(——-z-——— ‘

where the pertinent variables for the system are defined as set forth

in Chapter 1:

Xin = (ﬁ - yln) tan eln ) (27)

B=C - (ﬂ - yln) sec erm‘ s (28)



1 ac © ’ (29)
é‘m"“z) * C ‘(\’-yln) dxzy + B)
(&)
2 2
Yoan = ~ <Z> [( in xZ) ) yin) - B ]
dC o , (30)
(V- dx)({ 2
dC
1 - de)
®2n = arctan < 7 ) , (31)
Y YZn Y1in
e3n= arcsin <(31?{2 (32)
and
Won _ . (P2n e3n> 13
Ix,_ ~"®\T 7/ . (33)

dy
The value of 3_%> is not necessary for integrating (25) and

(26) but will be used to find Cen and subsequently IRS‘L'

The values of Cen’ I3en’ and IRSL

but at a different point in the aperture defined as x"z‘n. This is done

will not be computed at x'2

for computational convenience. Although in principle we could compute
these variables at x"Z‘ and not define x'zn, this would involve a
considerably more complicated computer program. Furthermore

we find, upon making the computations, that x'2 ~ X'Z‘n‘ and in the

region of the shadow boundary lobe the difference between x‘z‘ and x'Z”n

is negligible. The value of x; is defined by

199
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A -
X0 X, ¥, tan ( b'?m) (34)
where
dy
_ ‘ 3n ‘
YBn = rzn + 2 arctan <ax—3:> ’ (35)
Pzn = arctan (X3n / (Y3n + \) ) )s (36)
and
¥3n = *2n
Y3n. = Yon (37}
dy3n - dyZn
dx3n den .

The edge source ray making an angle PZn with the Y, and y, axes

is thus seen to intersect Yo (xzn) at the point (XZn’ yzn). Since 2n
# e‘zn, then the reflected ray intersects the aperture not at x2 but
at the newly defined point XIZn' These rays are illustrated in the

diagram below (f).

In order to compute Cen at x‘Zn we first compute /04n andﬂ':an to

that point and find

/an

2 | 2
\ﬂ%n + gv+ Y3,) (38)
and

/dSn =Y, / cos bgn (39)



92n (XZn )

(5

X,

Aperture

Source
ray
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We find Rn’ the referenee phase (o‘ereon) by using [ 2n from
(36) and the results of Chapter 3 (equation (41) in that chapter).

With these values we obtain
Cen t/a‘ln +la5n. - Rn (40)
or alternatively (since an . PZn as explained in Chapter 3)

Cop=Fin+fin+ C,

From equation (39) of Chapter 3 we obtain the value of J'en (Pzn)-

In order to obtain I3en from the energy conservation equation

: .r" " sin ([ 20) | .
® . -
3en  “en | x5, - fdaxy A (41)
' \dl
2n
‘ dxp . o
we must first find 37,—— . The value of this derivative is found
in
numerically from
] ! - ]
4 X2n *2nLS " *2n ) (42)

. ~ s—
al in = l""ZnLS‘ - r'Zn

. : : . r ‘
where x 2nLS and PZnLS are points adjacent to X and 20’ For
the purpgses of the computations made in this report, the interval
‘ . ‘ ) '

x'Zn - xf’.nLS was almost a constant 0. 05 (note that x5 and not X0
is the independent variable; the equivalent interval was precisely
0. 05 for x'z). ‘Since P‘Z‘n was an almost linearly varying function of
x) also, the approximatios for (d x5 fd an) and cons‘eq.uently'I}en
was very geod.
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If, as explained earlier, we assume that x'z "‘X'Zn‘ , we can calculate

I

RSL directly. Actually this assumption is not necessary for finding

1 at x'2 but it is very convenient for machine computations. Since

RSL
this approximation was made in the computational results that will

be presented shortly, we make the approximation in these derivations
also. The approximation’is excellent in the vicinity of the shadow
boundary lobe which is most important. With this approximation we

assume that I, I3en' C. and Cen are all computed at the same point

s 2 : 1 t Sy
instead of at the different points x5 and x50 We find therefore, for IRSL

that

IRSL =1+ 2 JI. I3en cos k (C - Cen‘) + I3en. (43)
With the same assumptions made in the last paragraph we can
compute the normalized phace of IRSL" CZ" which is found as

. sink C + S3en sink C_ )
C, = ( ) arctan | €n
2 k Q3en
i COSkC+ T Coskcen (44)

1 ,
+ Cpm - (K\/ arctan (tan (k Cpm)‘ ).

/
Equation (44) completes the derivations necessary for an evaluation

of this method for correcting the aperture edge field effect. It might

be pointed out, in addition, that the syntheses indicated above and presented
in the next section are more general illustrations of the synthesis method
than was presented in Chapter 1. Neither the phase, C, nor the amplitude

3 , are linear for these cases.
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Computer Edge Field Correction Results

Extensive computations were made to test the aperture edge field
correction technique discussed and derived in Sections I and II. The
results of these computations are illustrated in Figures l through 47
of this chapter. For the most part the results depicted in the figures
are self explanatory when taken together with the discussion in
Section I. Hence this section will be devoted to merely pointing out
some of the more significant aspects of the results and just how the

figures are organized.

Figures 1 through 23 use the value for C, given by equation (3).

In other words, they do not have gexp (kC) rotated in the complex
plane. Figures 24 through 47 depict the 'rotated' results and have
the ROT designation noted in the figures. The amount of rotation,

incidentally; will be different for each case of different k.

Figures 1 through 23 consist of four complete correction attempts for the
three frequencies k = 2n, 4w, and 6n. These lower frequencies are

the most significant from the roint of view that an edge field correction
is necessary for these small sub-reflector diameters if they are to be

of practical value Note that a frequency of k = nw implies a sub-

reflector diameter of N wavelengths since x, = 1.0. For the frequency

Im
k = 27w, a case with the option value +1 in addition to the case with the
standard option value -1 (Standard Set 2 parameters; see Section I of
this chapter) is illustrated. The differences between the results

obtained with each option value is very much the same for all k. Figures

22 and 23 illustrate the shape of the sub-reflector before and after
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correction, Y, (‘xl) and Yin (Xln)’ for rather large k values,
k = 16w and 32w. The convergence of Yin (‘xln) -y, (xl)‘ should be

noted.

Figures 24 through 47 consist of four complete cases with k equal to 32‘11',
2w, 6w, and léw., For k = 6r there are two cases illustrated with

option = +1 in one case and option = -1 in the other case. Figure 47,

for frequency k = 32w, illustrates Y, (xl)‘ and yln (xln) for this high
frequency. The results for the rotated cases (ROT = designation on
Figures 24 through 47) are qualitatively the same as those for the
non-rotated cases This result is of some significance and is the primary

reason for presenting these figures in this work.

In each case the following curves are illustrated:

C and C versus x! ;
e en 2

3

3p’ 93e’ Q?:en‘ versus XI2 ;

C,. C

. | -
1 2 Cp versus x, ;

93\p, 9 . Spgy versus x5

and YZ (‘XZ)’ an (XZ‘n)‘; Yl (xl): yln (xln)'

In each case the independent variable X5

varies from x'2 =X, to

x'Z‘ ~ 6. This range covers the significant portion of the edge field

contribution to the aperture. The value of x, is approximately equal

Zm

to 10, but of course varies with k for the standard option value -1.
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The polarization case &= 0 was the only case treated herein. No change
of any qualitative significance is expected for the & = % case,

However it may be expected that the correction in reflector shapes

will be different for this polarization if the same correction technique

is applied. When the primary pattern has vector symmetry (polarization
angle with the sub-reflector édge independent of rotation angle) then

this presents no problem. The very significant case of circular
polarization is such a case with vector symmetry. Otherwise some
average correction or possibly a simultaneous correction must be

searched for.

In all cases the degree of equality occurring simultaneocusly between
C and C__ and also between 9 and & is a measure of the
e en Je 3en
correction obtainable. Although general agreement between 33e and
S was obtained the correlation between C_ and C__ was poor. This
3en e en
was expected since the amplitude is more sensitive to changes in the

second derivative of the reflector contour and the phases, Ce and Cen’

are sensitive to both position and slope of the reflectors.

The correlation between 93@ and §3en was actually very poor for the
option = +1 as is clearly evident from Figure 2. When the value of
*2m

when option = -1, then very good correlation between 936 and 93en

. . ) — - e
is adjusted so that tan k vatan k Ce at x5 = X, . the condition

is obtained. The improvement is evident from a comparison of Figure 7

results with those of Figure 2.
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The change in option choice does not affect the agreement between C
e
1 _ e Cdi ‘ i .
and Cen‘ except near X5 =%y where, as discussed in Section I, a
close agreement is expected. This change does however result in a
considerable improvement of the totai phase distribution CZ' as shown

in Figure 8. The value of C, obtained when option = +1, Figure 3,

is not nearly as uniform as that shown in Figure 8 when option = -1,

The improvement in total phase for all value of k as illustrated in
Figures 8, 13, and 19 is actually excellent. The resulting phase, CZ’
for the new dual reflector systern is essentially uniforrn for most
practical considerations. The phase, C,» tefore correction is generally
of the order of 180° out of phase with the remainder of the aperture in
the vicinity of the shadow boundary lobe. This is true for all value of

k considered. As evidenced by the amplitudes ‘Ser and 93p shown in
Figures 4, 9, 14, and 20, a substantial amount of energy is radiated

out of phase with the rest of the aperture from the shadow boundary

lobe region. Although the final amplitude, 9 » 18 not substantially

RSL

different than the uncorrected amplitude, Qer’ the phase correction is
sufficient to alter the efficiency of the antenna substantially as was
discussed earlier. Actually, in the particular cases stur .24 here, the

dis‘tributiong‘ is considerably more uniform than eithor Ser or

RSL
Q3 and would result in improved gain {or this antenna. The reason

that an improvement in phase, C1 to CZ" was obtained while no improvement

RSL’® Was found was explained qualitatively in

in amplitude, Qer to 9

Section I.
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The reflector shapes before and after correction are illustrated in
Figures 5, 10, 15, 16, 21, and 22. Of particular interest in the
cases of the main reflector correction is the small change near x'z‘ ~

X for the option = ~1 and the large change when coption = +1. Compare

Zm

Figures 5 and 10 for this effect.

Twe factors are worthy of notice in the sub-reflector correction.
For smaller k it will be noticed that the corrected sub-reflector,
Vin (xln)‘, is contoured so that a great deal of reflected energy is
directed towards the upper portion of the main reflector. This is to
help correct the large shadow boundary lobe in this region of the main
reflector. Notice that a much larger segment of the sub-reflector
illuminates the same portion of the main reflector after correction.

This effect decreases uniformly as k increases, as is evident from the

k = 167 and 32w cases, Figures 21 and 22.

In Figure 5 a primary ray trajectory was traced as it was reflected
from the sub-reflecter and main reflector. The ray trajectory was
constructed from numerical data obtained with the machine computed

resvults and it is seen that Snell's law is satisfied at each new reflector.

All the cases discussed above were also analyzed for the case wherein
9 is rotated (designated by ROT on the graphs) and these results are
similarly illustrated in Figures 24 through 47. The above discussion
applies equally to these results in every qualitative respect. While
these results may discourage sow.ewhat the hope that a judiciow.:

variation of the parameters will lead to both an amplitude and phase
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correction, such a parameter study does seem worthwhile since the
improvement in antenna performance could be substantial if the study

is successful.

Various discontinuities and other minor irregularities on the graphs
are explained by accompanying notes for the most part., It is worth
noting that these computations taxed almost the complete storage
capacity of the IBM 7090 at Berkeley and were very time consuming
and hence costly to obtain Computation of all the variables in
Section II and those of Chapter 3 where necessary for one value of
x'2 consumed approximately fifteen seconds of computer time, Hence
relatively minor inaccuracies may be expected due to the .omputer in
addition to the approximations made in the course of the derivations.
The above inaccuracies may give rise to the result that QRSL does
not appear to converge to Q3p for very sma11%3en, whereas Qér does

This may be due to

converge {comparatively) to 9313 for small 939‘

the accuracy obtained or to the possibility that no exact solution exists.
If an exact solution does not exist, then an iterative solution of this type

will never converge precisely.
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APPENDIX 1

EXISTENCE, UNIQUENESS AND BOUNDS

With the functions

/ dy 6,~ 6
L. f.(x,,vy,) = tan| 1 2
dx1 1'V710 7] 2 /
and : (1)
dyz 8, - 63
T, © folxprvp) =-tan|——y—
\

determined for each reflector, it is important to know whether a
solution to these equations subject to the appropriate boundary con-
ditions exists, and if so, what the maximum possible value of I yl

is for each solution, particularly the solution for yz(xz).

The Cauchy-Lipschitz method ! for integrating (1) provides a useful
way to determine bounds to the solution. Briefly, the method approxi-
mately integrates (1) by the Riemann sum

n-1

Yn © Z fxgo yy) A%

i=0
where nAxi = x and Axi is < 0 when the solution is developed from
X nax’ and also provides the necessary and sufficient conditions for
the limit (n— o) to exist. If the limit exists, then the solution exists,

The conditions for zxistence also provide a means for determining

an upper bound for |yj.

H., T. Davis, "Introduction to Noa-Linear Differentiai and Integral
Equations', pp. 88-93, U.S. Atomic Energy Commission; September 1960



The Cauchy-Lipschitz conditions state that:

I. f(x,y) must be uniformly continuous. That is

f(x,y) - f(x + h, y)‘l < € when h <& for all §>0.
2. f(x,y) must satisfy the Lipschitz condition. That is,

there exists a number K such that

If(x,y) -f(x,y+h)} <K h forall h = 0.

3. ‘ f(x,y)‘ must have a maximum M, in a rectangular
region in the (x,y) plane defined by x2 ... - XZ2mip

+b. -b; such that

M x <b (2)

In (2) and what follows, the value of X nin will be taken as zero for

convenience.

The first two conditions will usually be satisfied since £f(x,y) will,
in general, be single-valued, continuous and have continuous deriva-
tives in practical problems. This is assured by making appropriate
choices of any branches of f(x,y) if such exist. The distributions
11(61)‘ and I3p(x'2) may be discontinuous even though equation (1)
remains analytic. In other words, if discontinuities in 11(‘61)‘ are

]
reflected in I3p(‘x2) then the reflectors may be continuous.

Satisfaction of the last condition also provides an upper bound for

lyl which is equal to b. In this case, the solution is constrained

25
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to lie in the shaded triangular region depicted in Figure 1.

If f(x,y) can be found in explicit form and can be readily manipulated, |

then the value of M and a bound for “y can be found directly from

f(x,y). Furthermore, a lower bound for the radius of curvature of the

reflectors can be found directly by maximizing % in (R, .

If f(x,y) cannot be found explicitly or in sufficiently simple form, then

absolute bounds lylt b and "yz b for yll: and ’yzl can be found
from equation (1) and the boundary conditions. Although lylz b and
YZ’ p may be considerably higher than ’jyll max and ‘yzi max’

respectively, their finite values are proof of the existance of a solution.

Absolute bounds for ‘yll‘ and ‘yz‘ will be found for two cases of the

boundary conditions:

a. Xy > 0 (leads to solutions similar to the Cassegrainian
max
type)
and b.
X5 max < 0 (a negative maximum is implied and leads to solutions

similar to the Gregorian type).

For convenience, it will be assumedthat 6, . = 9 .= 0.
. 3min 1 min
Since © and ©

are usuall iven boundary conditions
3 max lmax vy 8 y ’

sk

Since 073 = arc sin ‘(dC‘p/dx'Z) and Cp(xé) is given, then 03(x,'5)‘ is

known and so are 0. . and ©

3 min 3 max,
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it is clear from equation (1) that it is sufficient to determine an absolute

upper bound for i@z( ) 92b' in order to determine _‘;'1_& and
‘ ? X1 |b
dy21

‘dxz 1 b

It is also assumed that Oé and @ are given boundary conditions

(note that they may be negative or positive).

The appropriate geometry for case (a) is depicted in Figure 2. Only
the end points of the reflectors are depicted. An extreme ray trajec-

tory is depicted from the phase center of 11(61) to the point

(YZ = 0, X, = X, max)' The value for e‘Zb is found as
0, = tan | _2m2x | ¢ 0 3
2p © arc tan Y O X5 tax = (3)

which leads to a value for lyl ‘3b as

| i) ]
'Yllb = xlmax tan 1/2 \’arc tan (%ﬁ.‘i) so long as
‘ L
eZb = elm‘ax and with X5 max ~ 0 . (4)



If 6 is less than elma‘x then © may be substituted for

2b lmax

eZ‘b in (4). The value for I YZ‘I‘b is found as either
1 4<X2max) =
| yzlb = X5 hax tan > ‘a‘,rc‘tan o ‘for eZ‘b 5 e3max
with x, max >0
or

. 1} ‘ -
[Y2lp = *2max t20 E(e3max\} for 83 ax 3 %2

\ with X5 max S0

There are two possible geometries for case (b) which are depicted
in Figures 3a and 3b. The geometry in Figure 32 leads to a value

for ez‘b as

X
_ | Zmaxl‘ .
62b = arctan <——T> with X5 ax <0,

and the geometry in Figure 3b leads to

7] = arcta l‘XZIma‘x,+ "1 max with x
2b ~ n o+ P ‘ 2max < 0

The appropriate value of 0,,, as given by (7) or (8), is used to
find |Y1lb and lyz'b. Since 61 and 92‘ always have opposite signs

in this case, the value for 'yll b is found as

6, +6 \
tan( 2b  lmax | oip <0

2 / 2max

|y1| b - *Ilmax
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(5)

(6)

(7)

(8)

(9)



Since the signs of 9‘2 and 9‘3 remain the same for this case, as

for case (a), the value of “yzlib is found as either

IYZ'I‘b = ’fxzmax}; tan |

and with X,
max

or

6. | > 8

Lu
8
o
b
™~
[o

ol (L8]
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£ 0 (10)

with x. >0 (11)

Zmax

A somewhat improved estimate of an upper bound for ! yl can be

d v
dx2
not change over the reflector. This assumption is usually valid for

does

obtained if the assumption is made that the sign of

reasonably smooth I3p(;s<"2) and Il(el). For example, it ig true for
all Cassegrain parabola-ayperbola and Gregorian parabola-ellipse

desipgns. It is also true in the computed dezigns shown i:: Chanter 1,
L

d

. . - 3 v 3
If the assumption is not valid, that is —'-4- does reverse 7 o for a
[
dx
small interval of x_ - x . , then the proposed estima:ic fur an
max main

upper bound to | y I may be in error, but may nevertheless be a closer

Vinax | than the absolute bounds previousiy

estimate to the true value

considered.

If the second derivatives
2

d Y, ) l‘del - dez
dxlz ) dx],



2 6¢

and
2
47y, /1 2 -6,)1/de, - de
—'——2— = Lo — secC 2 3 : 2 3
dx2 A 2 &xz‘

do not change sign then this implies, for most cases, that r(dE)1 - dGz)

and (‘dez - d93) do not change sign. In this circumstance, the differences

of the angles,

(61 max eZba)
and

(GZba - e3max)

will, in general, be the maximum differences. The value ez‘ba is

which will be found

an improved estimate of an upper bound for ' 92|

for cases (a) and (b).

For case (a), > 0, an approximate upper bound for

X2 max ‘: 62" ! e’Zba"

can be obtained by using the value depicted in Figure 4, This value is

given by

X - x ‘
. ‘ 2max lmax
0, = arctan < < /5 ) for x, .. >0 (12)

The corresponding approximate upper bounds for Ij Yy maxl and

and ‘yzl‘ba’ are then given by

a (BZba - Olmax )
ren z

|jy2 ma‘x'r ’ I Yl"‘ ba

>0 (13)

for

‘ Yl“ ba - Flmax X2 max
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and

|

/1

for x

| <92ba - e“3maLx
tan : > - ;

>0 (14)

l; YZI‘ ba = *2max 2max

For this case, (a), the assumption has beex made that

2
dy1

————'2— < 0 fo‘r all xl.
dx1 ‘

2
For case (b), Xy o < 0, the assumption is that d Y1 > 0 for
max —

dxl

all X - The approximate upper bound for ,92[ , B is found

2ba’

from Figure 3b, irrespective of the position of the focal point F.
The value of GZba is the same as that given for Gbey equation (9)
since 61 and 62 have opposite signs in this case. It should be added
that the geometry of Figure 3b occurs less £ requently than that of
Figure 3a in practice so that the improved tounds for l‘y1| are

max

usually different than the absolute bounds. The signs of 9, and 93

both change in this case, (b), so that the improved bound for '5 Yo ’: max

‘ 0 - |e \ |
tan( 2 ba 2, 3max,> ' (15)

is given by

|Y2|ba = | XZmaxl‘)

for £ 0,

*2max
Some computed bounds which are applicable to the numerical solutions
shown in Chapter 1 (Figures 5 and 6) are presented in the table below.
The values of these bounds would justify a computation and are valuable

for that purpose.



TRUE
CASE |Y2|max |Y2|b |Y2|ba‘
 Convex 0.4237 1 0. 84
' Concave 0.4162 1 0. 84
TRUE ‘

CASE |Yl|max IYll‘b ,Yll'ba
Convex 0.0387 0.1 0.0466
- )

Concave | 0.0674 0,173 0. 146

26¢
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ye+b —
o)< M i R

| Yomaxcl b\_,/// | M:X max< b
// "jG(max) O
——4 ‘ / / = X

b} =-b \>K’cc‘t¢n9le 62

Ft‘g.i. Existence and bound for 9(><)

Jo = - ‘
e
Phase cenfer
( a."ﬁ'ar I (9, )
F‘g 2. Case @), (szM}O) Cassegramian Type,
ALSo[u.‘éc_ l)ou. nd ",:or \63
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Xemax

X1max

\1;
Ry

¥

{

AN

b « arctan (Ixz mm.x’ * xlmd“)
0(+P

v .
-X, th. 3b

Fig. 3. Case (b), CX s < 0) C-regorian type,
| ALSo‘tu.fc Lound Jcor /921



Xz ~ay

"z ) x)/

9 b d.rct‘dn (sz“ h X|MC$ .
2ba =

o*tp

b/
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Fig, 4, Cdse‘ (a—), (szax >O)j Afrroxinna’ce, ,9,“4\(‘
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APPENDIX II

ON THE AXIAL CAUSTIC OF THE EDGE FIELD

FOR SURFACES OF REVOLUTION

In this appendix we shall justify the use of the factor Gpe which is the

Gaussian curvature of the field wavefront in the axial case. We will also

justify the fact that a very accurate approximation of the field near the caus-

tic is not necessary, since only a very small solid angle is subtended in

this region.

lo

The Factor GA@

In equation {6) of Chapter 3, the amplitude of the field U, varies

as l/ lkr. This is typical for the far zone of any cylindrical

field, when r 1is the distance from the source to the field point.
Energy is thus conserved in any angular sector per unit length along
the cylindrical axis. For the edge field the caustic or source point is
the edge itself, and as seen in the diagram (a), the normal area sub-
tended by a tube of rays from the caustic depends on the value of kr.
Alternatively, the ratio of areas is given by krz‘/krl for areas No. 1
and No. 2 in the diagram. The curvature of the wavefronts is propor-

tional to kr . We thus define G,, for the cylindrical case as
GAe = 1 /Jkr

When the edge is part of a circular curve as in the axially symmetric

case, the ratio of two areas subtended by a tube of rays through which
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2.
a constant rate of energy flow passes is proportional to r~ in the
far zone except near the caustic axis. Consider the diagram (b) for

this case. The ratio of areas now obtained is
(k rz‘)‘ ‘krz sin '} + kxl‘mll/(krl‘)“ "kr‘1 sin G + kxlm

In this case the curvature of the wavefronts is defined as the Gaussian

curvature which is

‘ R
GAe = ]./,,Ikr‘kr sinf12+kxlm‘

For the bottom edge when PZ‘ is still in the same direction, we have

GAe = l/Jkr‘kr sin r; - kx]m| .

We assume, therefore, that for the curved edées of the axially sym-

metric case, the angular dependence of the edge field is identical to
that of the straight edge case (cylindrical case) except as modified by
the Gaussian curvature given above. This assumption is the same as
that employed by Keller for diffraction from a flat aperture with excel-

lent results obtained in that case.

At & = m-oL' we have defined GAL (Pzm) = szszn sin| 6, |

for the axial case, where r;_m = 0, . We should note that PZm

is only proximately 92 to within the accuracy of the far field

m

approximation. This is explained as follows. We define Q‘m not

as the angle PZ when the edge ray intercepts the edge of the large

. J .
reflector, but rather the value of Q when (&Z intercepts the edge
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Axis of Axta.l.l‘j ﬁSylmm.tric Sy stem

(b)
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of the large reflector. Hence, l—:z = [, Wwhen J)Z = aém ( J/?
being the angle the normal to the total edge diffracted field wavefront
makes with the y, axis)., While this distinction is really not very
important to the theory of the analysis and negligible when the far
field approximations are excellent, it nevertheless is important when
numerical computations are made, especially by machine”computors.
The machine will not overlook a small difference between the true far

~

field and approximate far field and may not complete the calculation.

Hence, the difference between the defined PZm and GZm must be

c onsidered carefully.

The Caustic Axis of the Axially Symmetric Case

In general, for the far field we will have r =3 X1m for the edge
fields. Hence, GAe reduces to the same expression for the top

and bottom edges

G-Ale = kr sinl/2 ‘ B'

providing that G is not small. This assumption is valid so iong as

l‘.lm.l\

sin ] >>

When ré is small, we take as an approximation for the above inequality

the value for r given by rc = sz . This is a rough approxima-

b

tion for the distance from the edge to reflector No. 2, when G is

small. A more accurate approximation will not be of great value us we

s

More suitable choices for r. can be made for specific problems.



shall show shortly. On this basis we take for the value of Gpe:

.-1 1 7 3. R !
Gpae = kr ‘l"s,in N + ﬂm_
Z rlc ‘
“When B_ > 0 and near zero, we will obtain an infinity from Gpe due
to the bottom edge. To eliminate this, we make the further approx-

imation that

Gal = kr Jsinllg'+—————xl_lm k
'

for both edges.

At r; = 0, this value for Gae is correct for both edges, For

i 5|55 |2l |
Te

this value is again correct for both edges. Hence, it is only for a
small angular sector in FZ and a very small solid angle that the

last given value for Gp, 1is in error. In the case of vector symmetry
for the axial system, we have /U.e = 0 (equation(lS)) on axis

( I:.Z = 0) and the total energy in this small solid angle will be very
small as compared with the surface reflected primary field in this
same region. Even when /U; # 0 as when we ''average'' an incident
linearly 'polarized primary field, the net energy in this solid angle is
still small and the value for Gpe at the center ( G = 0) is fairly

accurate,

As an example, let us define r:,‘R as that angle at which
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sin lBR‘,’{:’(lo) ' Iir];:m_l

The total solid angle subtended by the range (0 <

'GR) ) is

4«{. The percentage solid angle in this

e

very small for /XIm/rc

range of the total 4w steradians is

(Lecor R )+« ioo%

Hence if PZR were as large as 20 degrees, the percentage solid
angle would be only 6%. The percentage solid angle of that subtended
by reflector No. 2 is much larger, however, but QR = 20° is

very large also, For [ =~ 5°, the subtended solid angle is only

2R

0. 2%,

The above numbers indicate that a precise correction for the fields on
the caustic is not necessary and will not alter the final results in any
significant way. Hence a reasonable approximation from a computa-

tional point of view was chosen.,



