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ABSTRACT

A synthesis method based on geometrical optics for designing a dual

reflector antenna system with an arbitrary phase and amplitude distri-

bution in the aperture of the second reflector is presented. The first

reflector may be illuminated by a pattern with an arbitrarily curved

phase front. A pair of first order ordinary nonlinear differential

equations of the form dy/dx = f(x, y) are developed for the system.

Questions concerning uniqueness, existence, and bounds for the solutions

are discussed. Calculations and numerical results for the design of

a uniform amplitude and phase dual-reflector system are presented.

The diffraction effects of the small reflector are analyzed by the

methods of geometrical diffraction. Their effects upon the aperture

distribution of the larger reflector are analyzed in detail. Correction

for the small reflector diffracted field is obtained partially by an

iterative procedure utilizing the above synthesis method. 1040 -iý

ý4 igk-ne t- .e'Ive4* *extensive numerical analysis that com,-

plete correction for the diffraction effects is not possible.
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GENERAL INTRODUCTION

Conventional dual-reflector antenna systems have been based largely on

the Cassegrain parabola-hyperbola design or the Gregorian parabola-ellipse
1 2.

design Some highly specialized exceptions have also been reported

The designs are all based on the principles of geometrical optics and are

limited accordingly, That is, the reflectors must be large and have a large

radius of curvature compared to the wavelength in addition to other restrictions.

A generalization of the design techniques for a dual reflector antenna that is

also based on geometrical optics and is similarly limited in application is

presented in Chaptk.r 1. It has been found that an arbitrary phase and ampli-

tude distribution can be developed in the aperture of the larger reflector of

a dual-reflector system with an arbitrarily curved phase front illuminating

the smaller reflector. The design procedure is sufficiently general so that

many useful variations of the design objectives are clearly possible. For

example, the large reflector of the system may be specified to have a circular

cross-section and arbitrary phase distribution (uniform,for example) and the

appropriate sub-reflector is then found for a given primary radiation pattern.

The methods of geometrical optics which are used for the above synthesis are

of the first order from the point of view of the assymptotic solution of

Maxwell's equations, which is an expansion in powers of the wavelength.

Second and higher order solutions have been obtained for many problems

and yield the diffraction effects. A discussion of the assymptotic expansion

and the use of higher order terms in the geometrical threory of diffraction is

made in Chapter 2. This theory is then used to analyse the diffracted field of

the subreflector. The effect of this diffracted field upon the aperture distributiol



of the larger reflector is discussed in Chapter 3 in detail, together with a

presentation of numerical results illustrating the effects. The importance

of higher order terms or the diffracted field due to the larger reflector is

generally not nearly as significant as is the diffraction due to the subreflector.

In addition, as the subreflector is made smaller in wavelength, diffraction

becomes more significant and places a limitation on the mhaimum size and

consequently the minimum blockage the subreflector presents to the main or

larger reflector.

An attempt at including the diffracted field in the synthesis procedure and hence

correcting for it exactly proved unsuccessful. It appears that in the context

of the present formulation a solution for this problem does not exist. The

complexity of the problem makes a proof of no existence difficult although

this conclusion is strongly implied by the discussion of Chapter 4. Since an

exact solution did not appear possible, an attempt at an iterative solution

using the synthesis method developeca in Chapter 1 was made and is discussed

in Chapter 5. The numerical results obtained here tended to support the

implications made in Chapter 4 that no exact solution exists. However,

the results of the iterative procedure indicated that a reasonable compensation

for the diffraction effects can be obtained. Although an approximate theory

of diffraction was used in this iterative procedure, the true diffracted field

could, in principle, also be used in this method; although perhaps with con-

siderable inconvenience in proportion to the increased accuracy obtainable.
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CHAPTER 1

FIRST ORDER DUAL REFLECTOR SYNTHESIS

Introduction

In thi3 chapter a method for the synthesis of a dual reflector antenna

with an arbitrarily specified phase and amplitude distribution in the

aperture of the main reflector is developed. An arbitrary primary

source may be used to illuminate the subreflector. The design is

based ppon geometrical optics. This technique for synthesis is used

later to obtain an iterative solution for the ref]ector shapes which

accounts for the diffraction field of the subreflector to some extent.

The synthesis method utilizes the analytical expression of the geo-

metric optics principles together with the geometry for the reflectors

illustrated in Figure 1 to develop a pair of first-order nonlinear

ordinary differential equations of the form

dy = f(x, y) (1)

which leads to the cross-sections of each reflector when subject to

boundary conditions such as

y (x = Xmax) = 0. (2)

The above differential equation can, in general, be solved readily by

high-speed machine computations. A pair of such solutions for a

uniform phase and amplitude design is presented,.
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A desirable feature about the form of the differential solution,

Equation (1), is that frequently much inforniation can be predicted

about the final solution before a machine computation is attempted.

The questions of existence and upper bounds on the size of the

reflector (1 ylmax) can be answered by considering little more than

the boundary conditions of the problem. -If f(x, y) is found in a suitable

form, then lower bounds for the radius of curvature of the reflectors

can also be found,. The procedures for finding the hounds, existence

and uniqueness proofs are discussed in Part III and can also be found

in the literature on non-linear differential equations (see Reference 8

for example). See also Reference 9 for an alternative formulation

of the problem.

The optical principles which are utilized to develop equations of the

form given in (1) for the system are the following:

a., Snell's Law 3. Application of this law at each reflector leads

to a form of (1) with f specified in terms of the angular variables

shown in Figure 1.

b., Conservation of Energy Flow4 along the ray trajectories, The

requirement that the energy flow be conserved in any solid angle

bounded by ray trajertories leads to one equation of constraint

for the system.

c. The surfaces -of Constant Phase form Normal Surfaces 5 to the

ray trajectories, and this normal congruence is maintained after

any number of reflections 6 (theorem of Malus), This principle

leads to another constraint for the system.

It can be shown that all these principles are not independent (References

Z - 6). Hence we will not need to use the expression for Snell's law
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at reflector #2 (Equation 5). The optical principles together with the

geometrical bounds of the system and the primary pattern and the phase

and amplitude distribution in the large reflector define a unique opti-

cal system (sometimes equivalent alternative systems exist, as with

the Cassegrain and Gregorian systems).

The design method is described for surfaces of revolution, in particular,

although the antenna design method can be readily extended to include

doubly curved surfaces where the surface coordinates are separable,

and possibly also under other special conditions (see Reference 10).

When the curvature in one plane is specified for the dual-reflector

system, the design procedure for the curvature in the perpendicular

plane can be the same as repo rted herein with an extension similar to

that made by Dunbar 7 for a single doubly curved reflector.

II. Analytic Expressions of Optical Principles and Formal Solutio&•

The principles stated earlier can be expressed as the following basic

equations from which the solution is developed.

Snell's law at reflector #1 leads to (see Figure 2)

dY1  F - 02 (xIyl,X2, Y2 )y
dxI -tan Lai. (3)

where

2(4e2  arc tan ÷,y2 - y1 / (4)

The solution presented in this part and much of the remainder of this
chapter is published in Reference II,
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The quantities o(el) and P(0(l are prescribed such that K(el)+P(e1 ) -

given constant (see Figure 1). The intersection of a primary field ray

with the: y1 axis determines 0(81) and P(01). The rays are found from

the known or given form of the primary field.

Snell's law at reflector #2 leads to (see Figure 3)

dy2  [e 0d -tan L ? ""31dx2 2

where

03 = arc tan Y2  (6)

The conservation of energy principle is exp, ssed differentially as,

Ii(01) sin 0 1 ( - . I 3p (xý) xý (7)

The quantity I1(01) is the power density of the primary illumination.

The quantity 13a(X,) is the power density flow normal to the aperture

of reflector #2 (y 2 =0). It is chosen arbitrarily except for the required

normalization-

1 max x2 max

Y(O1) sin 01 d 1 = I3 p(Xý) xt dx' (8)
1 m= xlp

1 ain 2rmin

The phase at the aperture can be assigned arbitrarily as Cp(X').

The path length: from the primary illumination is given by

Cp(X•) = r1 (01 , yY) + p2 (6ryr, x. y) +p 3 (x2 , yz, x2) +C'p(e) (9)



The quantity C P(01) is defined by the primary illumination as illus-P0 r •

trated in Figure 4. An arbitrary primary illumnination [I1I(I )] pha se

front is chosen as a reference. The aperture phase Cp(x,) rnnst be

defined with respect to this reference. The remaining quantities in

Equation (9) are easily found as,

r (0 y sec e1  (10)

P2 =/(/ 2 - x2)+ (.+,+ y0 " Yl)2  (11.)

and

P3 = (2ý + Y2 2 C='
2 2x y 2

p (x x)+ 2  - (dCp 2 (lZ)

The right-hand side of Equation (12) is found by expressing the theorem

of Malus from the diagram of Figure 3 as

dC
dx = sine 03 (13)

2

Since C (x.) is assumed given, then 0 (x") is, thus determined

directly.

We will now choose as a single independent variable the quantity xi,.

The remaining dependent variables will be considered functions of

x'. We will then derive the two differential equations

de 1dx--:fe (G'l x) (14),
x 2

E 1

and
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dy f Yl;X. (15)
dxF, Yl

Upon solving these equations all the remaining dependent variables can

be immediately found as functions of x2 . Although the choice of x'

as the independent variable and e1 and yl for the differential equations,

is somewhat arbitrary, this choice does allow all the following expres-

sions (f J,f ;etc. ) to be found in -_:plicit form. An equivalent formula-

tion in terms of dyl/dX1 = f 1 (x 1 ,yl) and dy /dx 2 = f (x2 ;y?) can also

be found (see Reference 9).

The quantity dO /dxý is found directly from Equation (7) as

de 1  f , I 3 (XI) x,
S- fe (6 = i,( ) sine3 (16)

This equation can be solved immediately (by numerical methods) sub-

ject to the appropriate boundary conditions (see Figure 1 and Reference, 8

for example). If' 1i(e) sine1 and I 3 (x') x' are integrable then we

can solve (16) very easily as

81 ~x.
, 1 (0 1 ) sine1dO 1 = PI(E1 ) I3 p(Xý) x2 dx2 = P 3 a(x•). (17)

1 min X2min

This integral solution will be of especial value if we can find e1 (x,)

explicitly from (17). Otherwise it appears just as well to solve (16)

since the numerical solution can be used simultaneously to solve (15).

That is, the solutions of (14) and (15) can be set up on the same computor

program.
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Before finding dyl/dxI explicitly we will find dxl/dx" as a function2i

of (0,1 Y1 1dyl/dx ) Y) 1  and yz( YX) explicitly.2 x Xl( ) , x,(O.1l , ;x2-), an ,x') expiitly

Upon finding dyl/dx' we will then have obtained a complete solution forI 2

the system.

From the diagrams of reflector #1 it is seen directly that

xl = X1 (10,y) = [jl(Ol)-Y1] tane 1 . (18)

To find dx1 /dx'i (e1, y1 dy 1 /dxý; X we use

dxI 6xI d8 1  6x dy 1
dx = - ' + -eId Y (19)
dxý TO 1 dxý 3y1

with

I 381 tan 81 + (43-yl) sec 28 (20)

where I I/dOI, and

- tan 81. (21)

aY,

We can find y2 (8
1 ,y 1 ;xI) and x2 (8lyl;x) explicitly by solving

Equations (9), and (13) simultaneously. This gives

y) = Y ( e xy';x) 2  + , y )2  - B 2]_( 22)

dC
(px xfl +B

dxt I- 2)
2 (f-Y ) +

and
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=~~~~~ ~~ x2eiyix) x + ( z +(+~)2 - 32](23
X, + •+• -, I X -X2B

22 ( x () , yl+x ) x2 + 7_ (Z3)

y,+ -(-dX + B
Z (xl- xý)'ý+
dy - ddC

2 2

with

B =C'p -• -yl) sec 01 - Cp0,(a1). (24).

Now from Equatiors(3) and (4) we obtain

dY1 dxi
fr, - 1f (0e1 Yl; Xý.. - (25)

whe re

[1 - arc tan(:+ii+Y )Yl
f 1 (G1 , Y1 ;x•) = tan L 2 2 j (26)

With Equations (18) - (24) substituted into Equations (25) and (26) we

obtain explicitly

dy 1  [fO (tan e1 + (y-yl) sec 2 l] ff 1 fl

2 2

Yl{l lX)-(1 +tan8l1 f 1 ) (7

Upon solving (2.7) for Y1 (X•) and either (16) or (17) for 8(•)

then all the remaining dependent variables, .., x1 , Y",, and x can

be found also as functions of x,' by application of Equations (4),

(18), (22), and (23) respectively.



III. Existence, Bounds and Uniqueness

For the purpose of determining existence and uniqueness of the solution

and obtaining bounds for yl and y 2 , it is convenient to use the form

of the equations given in (3) and (5) (see also Reference 9). For any

specific synthesis problem, it is frequently possible to estimate bounds

for the soluations yl(xl) and y,(x2 ) in addition to predicting uniqueness

merely by using the forms given in (3) and (5). The methods for employ-

ing this useful property are easily seen from a study of the theory of

these equations such as given in Reference 8. Some discussion of this

is given in Appendix I.

IV. Uniform Phase and Amplitude Examples

The solution for the dual-reflector system which will produce a uniform

phase and amplitude distribution in the aperture of reflector #2 is found for
n

a primary illumination 11(01) = cos eo, It is assumed that the primary

phase front is circular with center location given by the constants a and

In this case we will take the phase center of primary radiation as the

phase reference for the system so that Cp0(01) = 0, The aperture ampli-

tude distribution will be given by 13(x') - constant found from (8). The
3p 2

aperture phase distribution Cp(x') i.s also given as a constant which is

determined from (9) and the boundary conditions. We may note inamediatel

that in this case

[03 = 0 and x, = x2 ] (28)
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The boundary conditions will be chosen so that

1 min = Xmin=X = 0.

Four more independent boundary conditions are available. We will

choose

X 2  l~ e ma'and 6.xZ max ' Xl max' 0 max'an

The remaining conditions are found from Figure 1 as

Xlimax

tan, e 1 max

e2 max =arc tan +[(a9)
1 maxa )

C (x ) + +
P o )1max Co, 2max

Since the overall scale of the structure is arbitrary, the value of

XZmax will be chosen as either

a. x2  = + 1, which leads to a convex type of solution for

reflector #1 1Yj(Xl

or

b. xZmax -1, which leads to a concave type of solution for

reflector #1.

In this example we find that Equation (17) is integrable and that

(x') = 6 (x ) can be found explicitly as
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-arc CO2 (30)

with
n.+

M 1 cos 1max (31)

From Equation (22), with dCp/dx2.= sin 03 = 0 and Co(01) = 0, we

obtain

=(G y 2 01 r1 x~ (c )2 (X' - xi))z
2('+0 - Y1 + C - rd)

where r1 is given by, (10).

It is now possible to construct the function (Equation 27)

dyId,- fy(el'yl;xl) = f (y 1 ;xl) 
(33)

explicitly and solve for Y1 , X1 , Y2 , and x 2 as functions of x,.

It should be mentioned that the alternative solution discussed previously

in terms of dyl/dxl = fl(x1 . Y1 ) and dy 2 /dx 2 = f 2 (x 2 , y2 ) leads in the

present example to explicit equations for fl(xl, yl) and f 2 (x 2 , y2 )

(see Reference 9).

Numerical computations were made for the following special case:

max =0. 1,.%C=0, and eI = 30m

The values chosen are reasonably practical.
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1' 6 16
Icos Omax 10; db)

and

Xlmax0.01or%a= 0.01 or - 6, optical blockage by

max

reflector #1.

The results for the convex (Cassegrain type) solution are depicted in

Figure 5. A parabola, matched at two points, is drawn for comparison

with reflector #2,. The results for the concave (Gregorian type)

solution are depicted in Figure 6. In both cases, a numerical and

graphical check of the results indicate that the solutions conform to

the optical constaints as required. The smoothness of the contours

(large radii of curvature,) indicate that the optical des ign will be a useful

one in this case.



15

CHAPTER 1

REFERENCES

1. P. Hannon, "Microwave Antennas Derived from the Cassegrain
Telescope", IRE Trans. PGAP., Vol. AP-9, pp. 140-.153;
March 19,61

2. S. Silver, "Microwave Antenna Theory and Design", McGraw-Hill
Book Co., New York, Sec. 13. 9; 1949

3. , Sec. 4. 8.

4. , Sec. 4.4.

5. Sec. 4. 2.

6. , Sec. 4.9.

7. A. S. Dunbar, "Calculation of Doubly Curved Reflectors for Shaped
Beams", IRE Proc., Vol. 36, pp. 1289-1296; October 1948

8. H. T. Davis, "Introduction to Non-Linear Differential and Integral
Equations", U. S. Atomic Energy Commission, pp. 88-93;
September 1960.

9. V. Galindo, "Design of Dual Reflector Antennas with Arbitrary Phase
and Amplitude Distributions", PTGAP International Symposium
Proceedings, pp. 91-95; July 1963.

10. B. Ye Kimber, "On Two Reflector Antennas", Radio Engineering and
Electronic Physics, No. 6, pp. 914-921; June 196Z. (Scripta Technica
Translations, Inc.

11. V. Galindo, "Design of Dual Reflector Antennas with Arbitrary Phase
and Amplitude Distributions", to be published in IEEE Trans., PTGAP;
July 1964.



16

X2 .-. Extreme ray

xX2 max, 1" 03 max

Reflector#2 Arbitrary ray

XX

X2 , m ax Ref lector
a. r1

YZb I (8 1max)

a(1 0~) 2-a~l R•l Refecto

Primary source
I( (8m)

FLg.1 IDuiL re~er-tar s9stem. cross-seALOfl.



17

Ray slightly #
displaced from ray ý,I

Primar d 82
e2luminatao

F, 
d'

Y1 rrO y

ofuinto relete waefon

FLg.2 Georm'neA r- od refLec~tor .



18

(Cxz~Cy)Ctr of Curvature
between ray I and ray 2 X

(CX +dC C ±dC )=Centerof X2max /
x2  Xi 2  yy 2  I*

Curvature between ray 2and ray'* /I
r3=(CX21CY2 )to Aperture 0/ 9/83+d63+d03'

r4=(C x 2+dC2%+ C 2 ~)to/

Aperture/
r4/=(Cx +dC 7 dC )to V

Reflector *2

CMC

( .CxY2) -dy e,

F (9+dO,
Fiq.~~ 2.P~S~r~c ~C~aj -1 ~r~e

Dct.4CY2 dy Petco#



19

E

04 r

CbC

LZ

Q).
C-)

0 Q)/



20

Reftector 029 Surface of
-o.8 revolution

-0,7I 3,(Xz)= constant

0/ 10.6 C,=corlsfanfl
~.0 Convex solution

/0 1/ 05for reftector#I1

''P Reflecfor 4

Fi.5Da.Lref [actor, Lni~aroif pk.Zse-an/1plitLade,
Corlv/e_) 1(uto



21

1.0

9~ef~ec0: 09 Surf ace of

zKf e t o re v o k d~t o n 1 g
0.8+ =1(, Cos'6 0

iap(Xz)=cons ant

07- C,,=COnstaflt

Con c ave sot tion
04for r~e fie for#WI

0.5-

0.4-

0.3-

Reflectori

Y2 0o0 5 0.05
0d.-4 0.3 02 &1 ~J

Phase center X1, XmaxO.I=.

F9. . Duati refLec r,.anifoirrm phase -
a&iplifu~de, conrcave 50LU~tioni.



Z2

CHAPTER 2

THE SYNTHESIS PROBLEM AND THE LUNEBERG-KLINE EXPANSION

I. Introduction

The synthesis method developed in Chapter 1 was based on the principles

of geometrical optics. Although these principles were discovered

independent of electromagnetic theory, they may be derived from

Maxwell's equations. For the design of optical instruments which

operate at wavelengths measured in angstroms, the connection with

Maxwell's equations if often unimportant. At radio and microwave

frequencies where the wavelength becomes significantly large, the

connection of geometrical optics to Maxwell's equations is important,

for it allows us to determine how accurate the geometrical optics

approximation is and how, if possible, geometrical optics designs may

be improved.

For example, the geometrical optics field scattered from the subreflector

of our dual reflector system will have, in general, a sharp cutoff at

the shadow boundary as is illustrated below (a). For subreflectors

many wavelenths in diameter, the scattered field observed appears to

have just such a sharp discontinuity. When the subreflector is of the order

of 7 or 8 wavelengths and less, significant changes in the true scattered

field from. the geometrical optics field may be noticed. Diffraction

effects become significant and one observes a scattered field such as is

illustrated below in (b). In addition to the rippl.:, that is noticeable, a

large change in the amplitude is observable at the shadow boundary.

A deýtailed discussion and analysis of this diffraction effect will be made

in later chapters.



23

Fiaet Asotpt'eLa&E

Opt ic's

02n09

0202



24

Another consideration that is necessary at larger wavelengths is the

effect of a small radius of curvature for a reflecting surface. That

is, we would like to know what radius of curvature, in wavelengths,

is necessary for geometrical optics to be a valid approximation to

electromagnetic theory. Although this problem cannot be solved

exactly for most practical cases, considerable insight into the

effects of diffraction and small radii of curvature can be obtained

by deriving the principles of geometrical optics from Maxwell's

equations. There have been many such derivations 12, but the Most

satisfactory appears to be that developed by Luneberg and Kline 3

in the form of an asymptotic solution to Maxwell's equations. This

expansion in inverse powers of 1(27/) where X= wavelength) is shown

to have as its first term the geometrical optics field. Hence

geometrical opties may be referred to as a first order solution to

Maxwell's equations.

Strictly speaking, under certain conditions, the higher order terms of

the Luneberg-Kline expansion satisfy the geometrical optics principles

also. The important condition is the usual far field assumption that

the fields are considered only at a great distance from their sources.

Hence the primary source field in the synthesis problem may be

represented exactly by geometrical optics if the far field is con-

sidered or if the subreflector lies in the far zone of the primary

source.

An additional reason for discussing the Luneberg-Kline expansion is its

similarity to the asymptotic expansion of the Sommerfeld solution to
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the half-plane problem. The higher order terms of the asymptotic

solution to the half-plane problem describe the sharp edge diffracted

field. The second term provides an accurate description of the far

zone diffracted field. One distinction between the Luneberg-Kline

expansion and the asymptotic expansion of the half-plane solution is

that the latter is in powers of k

In general it is not possible to obtain an asymptotic solution to a

diffraction problem in powers of k where is an integer unless

certain conditions are satisfied. The original paper by Kline3 derives

and explains these conditions quantitatively. In essence, these condi-

tions require the diffracting obstacle to have a convex curvature and

to cast no optical shadows when illuminated by the incident field. A

surface that is concave at any point may cause reflected rays to cross at

a caustic. The asymptotic expansions do not exist on the caustics of a

field defined by a ray system. A particular expansion may however be
14

valid away from a caustic. It can be shown that more terms of the

expansion are generally necessary, however, to evaluate the field nearer

to the caustic. Away from the caustics, then, the field diffracted from

a surface which casts no shadow boundaries may be expressed as an

asymptotic expansion in k-R. Such surfaces may be infinite paraboloids

5, 6and hype rboloids

When the diffracting surface casts a shadow boundary it is still usually

possible to express the solution in terms of an asymptotic expansion

with the distinction that non-integer powers of k must frequently be

used 13, 15, 16 As was mentioned earlier, the exact half-plane solution
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may be expanded in powers k where 4 is an integer. Unfortunately,

in most of these cases the expansions are known only after the exact

solution is found. Nevertheless, it should be noted that all the expan-

sions have the same first term, the geometrical optics solution. Hence

the field diffracted from the reflectors considered in this work will

always consist in part of the surface reflected field given by geometrical

optic s.

The Sommerfeld half-plane solution suggests that a substantial part of

the diffracted field in our problem is due to edge currents near the

knife edge of the reflector. These currents, as will be shown in the

next chapter, give rise to a field which is of higher order in powers of

I/k than the geometrical optics field. In problems for which the

solution is not known apriori it has been possible to obtain excellent

results for the diffracted field by clever use of the edge current
7,9, 10, 11

concept Application of this app. cximation will be made

for the subreflector diffracted field in the next chapter.

When the reflecting surface is curved two additional considerations are

important. The first concerns the possible excitation of a surface
5

diffracted wave by rays incident tangentially to the surface5 . In the

subreflector problemn this is possible due to secondary edge diffracted

rays enamating from the edge current. Their effect is estimated and

shown to be small in the next chapter. An additional consideration is

the accuracy of the geomnetrical optics field when the reflecting-surface

has, a sm all radius of curvature.
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This last question is too difficult to answer in a precise and conclusive

manner. For example, it has been shown that the geometrical optics

solution is an exact solution to the vector electromagnetic diffraction

problem of a plane wave incident on an infinite paraboloid of revolu-

6tion .. This solution is exact and independent of the paraboloid curva-

ture at the apex. This result is unusual, however, and in fact, pecu-

liarly enough, does not apply to the equivalent acoustic problem. In

general, when the radius of curvature of the reflecting surface is

larger, then fewer terms of the expansions in powers of k are

needed. This has been shown in a number of cases investigated by

Keller, Lewis, and Seckler 5 .. They apply the Luneberg-Kline expansion

in analyses of parabolas and hyperbolas of revolution and also of

cylindrical shape. The solutions for these cases are generally difficult

to interpret since the geometrical parameters describing these shapes

(radius of curvature, focal length, etc.) do not enter into the expansions

in a reasonably simple way. The application of the expansion to reflec-

tion fiom a circular cylinder allows a direct interpretation of the effect

of surface curvature on the convergence of the expansion. As discussed

earlier, the application to this problem is approximate and does neglect

diffraction due to shadowing, etc. This example is presented after the

theory is developed in a more quantitative manner next.



IL, The Luneberg-Kline Expansion and Geometrical Optics

We will assume a time harmonic OPe dependence and suppress

this factor. Our notation will follow those of Keller 5 and Schensted 6

which are the same if we set AJn/ (i2?lM)n E We have three
n Nn

sets of waves; the primary wave U incident on reflector #1, the

*11
secondary wave U 2 incident on reflector #2, and the tertiary wave

U 3 passing outward through the aperture, We synthesize for a given

U 3 tangential in the aperture with U1 specified arbitrarily. The vector

-% iWt
U is the electric vector with ane time factor suppressed.

The Luneberg-Kline asymptotic expansions for the fields are

K1 = kCn ' 1kpl (

• --- ()n CikGz =%2 -A +r• + CPO

'e ptJlKkn ,iC 3  (c 3 =43 fr2 +'e + Ccp(3

The notation is the same as that used previously except that,4 A is the

distance from the Y-axis for j = 1, the distance from reflector #1

for j = 2, and the distance from reflector #2 for j = 3, in each case

along the ray which is normal to the optical phase fronts defined by

C = constant. (4)pJ
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In order to have (1), (2), and (3) satisfy Maxwell's equations we first

insert them into the homogeneous vector wave equation

(V2,+k 2 ) Uj =0

and set to zero the coefficients of like powers of k- This leads

to a recurrence relation

d tn + 2 1 25
+ = -"-"- V Ifn-l (5)

where 0.
..%

The divergence condition (U, U= 0) gives

VCp n = (6)

The boundary condition on a perfectly conducting reflector surface

defined by the unit normal f gives

PA x =E 0 P(7)

Finally, from the wave equation we also obtain the eikonal equation of

geometric-l optics

2

VC = (8)

(The subscripts j have been dropped from (5) through (8)). Hence (1)

throagh (3) satisfy
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(V2 + - 0

V-u = 0 \1t(9)
A _.

and n O U = 0

if (5) through (8) are satisfied.

Equation (8) implies that there is a system of rays which form orthogonal

trajectories to the wavefronts C p constant. This wavefront is a true

wavefront for the first term, , of the expansion. It is generally

not a true phase or wave front for the field when more terms are used.

Equation (5) is a first order ordinary differential eq,,'. .tion in the orthog-

onal coordinate system defined by the ray trajectories and phase fronts.

This equation permits us to relate the field at one point of a ray,

A (ýA) to the field at another point, A (),when the behavior

between � and A is known for the term. This equation describes

the flow of energy along a tube of rays. The V/ term is a

measure of the diffusion of energy between adjacent tubes of rays.

Energy flow is confined within a tube of rays whenvz /tJ- = 0.

This is true for the n = 0 or geometrical optics term.

Finally, equation (6) is of very great significance insofar as it helps to

describe the vector nature of the field. We may write (6) as

VCp" - VA -
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That is, the longitudal component of &n. along A , is given by

-V~-

Hence ? is always normal to the ray since 0.

At first order, n -- 0, equations (5) through (7) become

d- 1

-, + : 0 (10)

V 0. (11)

n= . (12)

Equations (8), (10), (11), and (12) are the usual geometrical optics

laws.



III. Example of the Effect of Surface Curvature on the Accuracy of
Geometrical Optics Reflection

Geometrical optics principles clearly do not account for the diffraction

effects at a knife edge. One may consider the radius of curvature at

such an edge as being zero (or the Gaussian curvature as being infinite).

It is well known that geometrical optics does give good results for the

fields scattered from large flat or nearly flat reflectors. Hence one

may state that if the radius of curvature of the r-iflectinq surface is

large then geometrical optics or the first term of the asymptotic

expansion of' the field gives an accurate result for the field. In this

section we wish to give some insight into the problem of just how large

in wavelengths the radius of curvature of the reflector surface must

be in order for geometrical optics to give accurate results.

In the introduction to this chapter, it was mentioned that a specific answer

to this question cannot be given since, for example, the geometrical

5, 6optics solution is exact for the infinite paraboloid . A• number of

different problems have been analyzed by Keller, Lewis', and Seckler 5

by use of the Luneberg-Kline expansion wherein the convergence propertie,

of the k series is illustrated. In many of their problems the k

expansion is in fact a true asymptotic solution since no shadow boundaries,

caustics, etc., exist in the problem. The convergence dependence on

curvature is best illustrated however by applying the Luneberg-Kline

expansion to scattering from a metal circular cylinder. The application

is approximate since diffraction effects exist here and are neglected;

nevertheless, the problem is illustrative since the radius of curvature
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of the scatterer is a constant and the convergence dependence on

this radius is easily discernible. Furthermore, away from the

shadow boundary and shadow region the expansion is correct.

For the sake of brevity, the complete details of the derivation of this

solution are not presented here. A complete derivation is given by

5
Keller et al . In essence, the geometrical optics solution is found

by direct application of the stated principles and the higher order

terms are then found from the geometrical optics solution by applica-

tion of the recurrence relation discussed earlier.

A plane wave, U. =eikx is incident upon a perfectly conducting right
1

circular cylinder from the left as illustrated below (c). The cylinder

radius is b 0  The electric field is oriented parallel to the cylinder

axis so that the total field Ez = Ut = 0 on the cylinder. The

incident field rays are parallel to the x-axis. The reflected wavefront

is not circular (except, as always, it is very nearly so in the far zone).

The reflected rays and phase fronts form an orthogonal coordinate system.

The rays are tangential to the caustic curve which is defined by

A = b o ý " /I
sin (13)

where is the distance from the caustic to the reflector surface.

The solution for the scattered field is obtained in a non-orthogonal coor-

dinate system wherein a point is defined by (4)4). The distance 4
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i- that taken along a reflected ray from the caustic to the point of

observation P. The angle P is that made by the reflected ray and

positive X-axis. The solution for the reflected or scattered field is

the Luneberg-Kline expansion

1 b ik (4- .- sin )
U 442 sin e

~j2 (14)o ..ýqtn l6ib k sing )b 4 J(ill (4

The expansion is found by application of the recursion formula to the

geometrical optics solution. The .jtn coefficients are independent

of b, 4 , and and are given by the recursion relations

+ (Zj - 4t + 2n + 5)(Zj - 4t - Zn + 3)6j-l, t-l, n-l

+ [Z4(j-1)(j-Zt-n) -6]1,12Z t, n- 1

(15)

+ 12(l - j)(2j -4t - 2n +3) aJ_2 t-1, n-I

+ 9 (2j - 5))( - 2 aj -3, t,n-I

+ 9 (2j 5),(Zj - l)a j,_3,t 1 n-I

and



36

qotn - " 'jtn (16)

and

(5.0 0 -2". (17)

First of all, it should be noticed that the asymptotic solution (14)

blows up at the shadow boundary Id= 0 as may be expected. Away

from the shadow boundary, S> 0, we wish to investigate the conver-

gence properties of the expansion with respect to the radius of curvature

Except for the (boA0 J factor, b occurs only together with k

as a factor (1/b 0 k)n . In general we are interested in the field far

away from the reflecting surface vhereA,4> b . In that circumstance

we rmay consider only the far field solution j = 0 and make the approxi-

m ation

U sinfluO) lotn

(18)nu -n -2

.('6ib k sin 4) (sin -2t

In this important case we note that the geometrical optics solution in

the far field,

• . . 3

b 0 %)sinA ik(A- 2Z sin 40o 0%ý/ ,i (19')

is accurate uniformly in 0)• so long as (k b ) is large. The.

percentage error in this specific case is,. 100/(16b° ,sin4
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when the effect of only the second tern) is considered. Note that the

error increases nearer to the shadow boundary/= 0.

This example illustrates, quantitatively for this case only, that the

geormetrical optics solution is more accurate for reflecting obstacles

with larger radii of curvature. As a crude measure of the accuracy

of the geometrical optics solution to an arbitrary reflection problem

we may use the factor (1/kb ) as the approximate order of magnitude

of the second term in the asumptotic expansion. We r-ay regard b 0

as the local radius of curva ture of the reflecting surface and the

accuracy thus obtained will, roughly, apply to the field reflected

from that portion of the surface. This confirms what is known generally

through experience. It is expected that k and b should occur together0

since any other result would contradict the fact that it is the size of

b as measured in units of wavelength only that is significant. That

result may be expected generally.

p.
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CHAPTER 3

THE EDGE DIFFRACTED FIELD

Introduction

A consideration of great importance in any dual reflector system

is. the extent and effect of the diffracted field scattered from the

smaller or subreflector. The geometrical optics field scattered

from the s.4breflector is the field that is considered in the synthesis

method developed in Chapter 1. From the discussion in Chapter 2,

it is clear that this field is of first order with respect to the Luneberg-

Kline series field description, The remaining terms or the diffracted

field scattered from this reflector may or may not be of great con-

sequence depending upon the radius of curvature and overall size

of this reflector in wavelengths. A smaller sub-reflector will have a

scattered field which is more different from the geometrical optics

field. This is expected from experience and is borne out in the numer-

ical results presented later.

In general it is important to have as small a sub-reflector as possible.

Besides the obvious mechanical reasons of weight support, etc.,

(which are of very great practical significance) the blockage of the

main reflector by the smaller one reduces the overall gain and raises

the sidelobes of the tertiary pattern, The diffracted field of the larger

main reflector is generally negligible in the vicinity of the aperture of

this reflector. :hat is, geometrical optics is very accurate for a very

large reflector. The far field of the main reflector aperture distribu-

tion is usually determined by a Kirchhoff integration over the aperture

which accounts for diffraction effects with reasonable accuracy. For
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a uniform aperture phase distribution the far zone field is a purely

diffraction determined field.

We will use the term "Kirchhoff integration" rather frequently in

what follows so that a brief definition of this term is in order. The

definition given by Baker and Copson1 is interpreted broadly here.

Their definition applies more directly to diffraction through a hole

in a screen rather than from a metal scatterer. If Ei, Hi is the field

incident upon the aperture and generated by the sources in free space

(no screen or scat-'erers present), then a Kirchhoff integration would

assume that Ei, Hi is the total field in the aperture, and the tangential

field on the screen is zero. Strictly speaking, neither assumption is

true. For scattering from a metal scatterer, we will interpret a

Kirchhoff integration as follows:

If Ei, Hi is the field incident upon the scatterer, we assume that the

current distribution on the scatterer surface is given by 2 n x Hi

A.where n is normal to the surface, Those portions of the surface

which are shadowed by the scatterer are assumed to have zero current.

The assumptions made here are similar to those made for the hole in

a screen problem and are similarly approximate. An integration of

these approximate surface currents to obtain the scattered field will

be termed a Kirchhoff integration

The purpose of this chapter will be first to determine the diffraction

field of the subreflector. In addition we will determine the actual error

in aperture phase and amplitude caused by this second order effect.. In

subsequent chapters, we will discuss various efforts to correct the
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diffraction field effects in the main reflector aperture and numerical

results will be presented.

An exact determination of the field scattered from reflector shapes

that are used in practice is not possible in general except for the flat

circular disk 2 . A Kirchhoff integration over the subreflector surface

such as that made by Rusch3 has several disadvantages. The accuracy

for very small reflectors (less than 4 * in diameter) is questionable.

The analysis requires laborious numerical computations. The entire

reflector shape is required. This is so since this analysis yields the

first order geometrical optics field and the diffracted field in the same

computation.

The diffraction field is primarily an edge phenomenon caused and deter-

mined by the abrupt discontinuity of the reflector surface and the actual

edge shape (knife edge, rolled edge, wedge or square, etc.). Hence

many very successful diffraction theories have been developed which

depend upon only the shape, position, and slope of the edge of the

scatterer. Although such edge shapes as the wedge4,5 or cylindrically
6

tipped edge could be treated we will confine ourselves to the most sim-

ple subreflector edge, the knife edge. In particular, we will apply the

geometrical theory of diffraction as developed by Keller 7. As discuss-

ed in Chapter 2, this theory is based on the Sommerfeld half-plane

8 9,10, 11
solution . Other methods which are similar have been based

on the same solution and have yielded very satisfactory results as

10, 12 7determined experimentally0' i The geometrical theory of diffraction

is somewhat simpler to apply, and yields very accurate results for

reflectors of the order of one wavelength or greater in diameter.
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It should be emphasized that the exactness of the solutions for the

diffracted field found in this chapter is of no great importance to the

general conclusions which may be drawn from the numerical results

presented later in this chapter. The edge diffracted fields found in

this chapter.will, however, be very accurate in general if the primary

source amplitude and phase does not vary rapidly near the edge, The

edge diffraction theory is based on an assumption that locally, very

close to the edge, the physical situation resembles the half-plane

problem of Sommerfeld.

The edge diffracted field has a non-circular phase front, Opposite

edges of the subreflector as shown in Figure 1 are illuminated sym-

metrically by the primary source. According to the theory of geomet-

rical diffraction each edge contributes to the total field only in the plane

normal to the edges and containing the axis of the system. Since each

edge is a directional source oriented in different directions, there can

13be no fixed phase center for the combination 3 An equivalent geomet-

rical optics description of this field will therefore require the generality

used in the description of the primary source in Chapter 1.

The descriptive geometrical parameters are illustrated in Figure 2.

Since it will be convenient later to add the primary and edge fields at

the aperture, the particular edge field ray intersecting the primary

field ray at the aperture is illustrated in the Figure, Je( dk) is the

angular power density of the diffracted field in the same units as I,1(01).

1I (X") is the aperture power flow density normal to the aperture, The
3e

edge field ray intersects the y axes at a distance de ( dZ) from the

aperture. Not illustrated in Figure 2 is the reference wavefront
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Ce J2 ) which serves the same purpose for this field description

that Cpo(8,) served for the description of the primary source field,

The quantity Ce( K2) is defined as the aperture phase given by

4 + r(5+ Ce "o, Our objective in this chapter is to find the values

of these parameters for various frequencies and reflector systems,

II. Edge Diffracted Fields and Sources

We propose to define precisely what is meant by an edge diffracted

field or an edge source in this section. This will be done by describ-

ing the Sommerfeld solution to the half-plane problem in detail.

Consider the diagram on the following page which is a cross-section

of the semi-infinite or half-plane located at 4 :, 0. We assume a

plane wave is incident on the half-plane at an angle /. The incidence

is normal in the sense that there is no z-dependence, the plane wave

travels in the plane of the diagram. The polarization is either normal

or parallel to the edge.

The diagram is divided into three regions, I, II, and III by boundaries

Gr and Gi and the half-plane. The boundaries Gr and Gi are the geo-

metrical optics shadow boundaries. Region I contains the incident and

reflected geometrical optics fields, Region II contains only the incident

geometrical optics £i L-d, and Region III is a shadow region, being optically

dark. If we subtract these fields, the geometrical optics fields, from

the total field solution, there will remain what is referred to as the

edge diffracted field. If we examine this edge diffracted field, near the,
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edge and on the surface we find an associated current distribution on

the half-plane that decays rapidly away from the edge. In fact, in the

far zone of the edge diffracted field, when 1/ V/ ýkr r (r r distance

from the edge), the energy all appears to flow from the edge itself.

That is, the edge is the center of phase of the far edge diffracted

field. Hence Keller, in his geometrical theory of diffraction is able

to represent this diffraction by rays emanating from the edge itself.

We must note that the geometrical optics representation of the far

zone edge diffracted field is not a geometrical optics field. The geo-

metrical optics field is that first term of the asymptotic expansion in

inverse powers of k where k is allowed to approach an infinite value.

As we will see shortly, the far field term of the edge field is a

1// kr- term (k and r always occur together in this dimensionless

problem), Hence the edge field becomes zero for k-c, except at

the shadow boundaries where the asymptotic expansion does not con-

verge, However, the 1/V- krr term in this problem is the first

correction to the geometrical optics field, It is the second term of
n

an asymptotic expansion in k- r of the exact field, the first term

being the geometrical optics field.

Letting U. be either the electric or magnetic field depending upon

whether E or H is oriented parallel to the edge, we express the

incident plane wave by

ikrcos(cp,-(z/) -iwt

U0 suppressed). (1)

If U is the scattered E or H field, as appropriate, 'then the solution 8
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can be expressed asymptotically (first two terms only) inside

Regions I, Ii, or III, as

I I'

Ul =(-ikr cos(Op-,,) I •-ikr cos(O+o<) (Z

4+ i ikr ec { ) ± sec ( 4+C/i
L 2'

U (!f Cikr cos(O -ck-) eci (3)UII ~~~4V~r-a k rkr (-<

sec

and

Ui +_ ikr e -c _ ) C, sec (c +&) (4)

It is clear from, the above equations that the asymptotic solution blows

up at the shadow boundaries given by v = w + . The negative and

plus signs are used accordingly as

- when U = E (parallel to edge)z
+ when U =H z(parallel to edge).'

If we subtract the geometrical optics field from the above equations,

we are left with the edge diffracted field which is expressed identically

in all regions, excluding the shadow boundaries, as

(1+ i) +• c ' q +
Ue 4 .jikr eL(. ) sec 2 + f (6)e ri 2, 2
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These expressions, (2), through (6), are valid to second order in the

asymptotic expansion of the exact solution for the diffracted field

and for

0 Z € - Zw exclusive of G r, G.. (7)

The accuracy of these equations, for a given (kr), is poorer near

S- G r and 0 = G i, since, of course, the convergence of the

asymptotic expansion is more slow closer to Gr and Gi. Near the

shadow boundaries Gr and Gi we must use the exact expression for

U. We will give this expression only for the field near Gr and in

Region I, since this is the region which concerns us in the synthesis

problem. With S defined as the angle away from 4 Gr in a negative

4 direction, we have

Ue (WpG r) = = ( ± 12 C ikr cos (8)

2- kZ r sin( l)
(I - i) ikr cos kr sr

02 d

(1+ i) ikr

4 ý4i--rkr sin (Sf + J/?)

where rT -r- and the integral in (8) is the complex

14,
Fre,;nel integral which is well ta' 71ated.

We may note in (6) that the phase center' of this edge diffracted field
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is at r = 0 (i. e., the phase of this function is a constant independent

of ý), and the energy radiated appears to flow from this point.

Now in order to obtain an approximate solution to problems more

complex than that of the half-plane, many other analysts have used

the above Sommerfeld solution as the basis for their approximations.

In all cases they assume that the knife edge of their diffracting obstacle

is locally straight and that the conductor is locally flat. Braunbek 9

is analyzing the flat circular disk, assumed that the currents near

the edge of the disk were the same as those for the half-plane (decaying
-1/2

as (r) away from the edge) and integrated the contributions

of such currents along the edge contour to obtain the diffracted field.

Millar10 and Clemmow11 analyzed the diffraction from an artibrarily

shaped aperture in a plane conducting screen when a plane wave is

normally incident upon the screen from one side. They assumed that

a fictitious filamentary edge current exists along the aperture edge.

This current is assumed to radiate the same field pattern as the

extended current that Braunbek assumed, when the Braunbek field is

evaluated in the far zone [(kr)-l/2 2-i -4 . Despite this latter assump-

tion, Millar and Clemmow obtained excellent results even up to the

aperture. In fact their results are excellent even for apertures on

the order of a wavelength in diameter (see the experimental results

of Welch 1 2 ).

Keller, in his theory of geometrical diffraction7 from knife edges,

also uses the Sommerfeld edge diffraction solution. However, ýIe does

not sum the contributions from all parts of the edge. The edge current

at a given point on the edge contributes to the radiated field only in
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the plane normal to the edge at that point. This method assumes

that the same fictitious current filament exists along the edge that

Millar and Clemmow assume.

In the formulation for the edge source which will follow, we will use

the method of Keller. His far field results for the slit in a plane

(analogous to our cylindrical problem) and also for the circular

aperture in a conducting plane (analogous to our axially symmetric

problem) are excellent even for slit widths and aperture radii of the

order of one wavelength. In the slit problem, tha edge is, of course,

straight (as in our cylindrical problem). In Keller's proble ns, as in

those of Millar and Welch, the edge is part of a flat conduL[I? screen.
Braunbe16

Braunbek 1, however, also analyzed the problem of diffraction by a

plane wave incident upon a semi-infinite truncated funnel. He also

used the Sommerfeld half-plane solution as the basis for his approxima-

tion in this problem. In this case, the edge is part of a curved surface.

The principle effect of the curved surface is not in altering the basic

nature of the edge currents, but in altering their orientation in space

and in altering the surface reflected geometrical optics field. These

changes are considered in the analysis made here.

An additional assumption made in the analysis is that the field incident

on the edge is locally a plane wave. This assumption is, or course,

consistent with the other assumptions that the edge and screen are

locally straight and flat.
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III. The Edge Diffracted Field

Under the assumptions of symmetry which we have made, the present

formulation will in general apply for either the cylindrical or rotation-

ally symmetric system. The differences are minor, so we will dis-

cuss only the somewhat more practical rotationally or axially sym-

metric case,

A Combining the Edge Fields from Opposite Edges

The plane of incidence of the field incident on the edge is normal

to the plane containing the tangent to the edge. In this plane

we have, according to Keller, radially directed rays emanating

from the point caustic at the edge as illustrated on the following

page. The ý-dependence of this distribution is given by equa-

tions (6) or (8). The angle c4 can be determined, since the

slope of the reflector at the edge and the angle of incidence of

the primary source are given boundary conditions of the synthesis

problem: 0 1 ax' and (dyl ) = tan 1/Z[- - 0 .
dx, max t max 2 max

There are two edge sources radiating fields that must be summed

in order to determine Je ( J-), Ce (O,), and de ( (Y2). These

sources lie at opposite edges of the reflector in the plane contain-

ing the axis of the axially symmetric system. Each source con-

tributes to the field at the point P as illustrated in the diagram

following (c).

The field radiated from edge No. 1 will be designated teI (re It

This field is constructed of three factors, The first
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is given by equations (6), (7) and (8) except that for the axially

symmetric case the curvature (kr) 1 /2 in formulas (6) through

(8) becomes the Gaussian curvature when P is in the far zone

field of the edges We designate this factor as Uel (rl,

In this expression we will write since it is clear

that the angle of incidence is the same for both edges. The field

Uel is the edge field for an incident wave of unit amplitude and

zero phase at the edge. The amplitude and phase of the incident

wave at both edges is the same (polarization neglected for the

moment): and given by the boundary conditions and the given pri-

mary source field, We find the amplitude and phase of the wave

incident at the edges as follows:

The primary source electric field evaluated on reflector No.. I

is given by (for the preferred polarization component)

E1 = G1 Cik [r 1 + CPO (6 1)] 0 ((1)

where G1 is a factor proportional to the Gaussian curvature.

Consider the diagram following. (d).

At the reflector edge we have

im = (e 1m) = jI 1  (9)

The curvature of the wavefront at the reflector depends on

See Appendix II or Reference 7. See also equation (24b).
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Rol (e1 ) and' rI (01). From the diagram we find that

Rol d ,) asiný e 1 , and R = ( d_. ) sin 0 (9a)d 0 1  Rlm m m

The radius of curvature in the plane of the above diagram is

then

RI = Rol + rI, and Rim Rolm + rlm at the edge. (9b)

Hence we find for GI at the edge

-1 *

Glm (kRlm) (k rim)

The phase of the incident primary field at the edges is given by

Cik [rImax + CpO (elmax)] Eik 'Pm (10)

Hence the edge diffracted field at edge No. 1 is given by

a Ie ('r 1 , tv1 ) = 1m G1  Uel (r 1 , ) eik •/r (11)

and similarly the edge diffracted field at edge No. Z is given by

AIre 2 (r 2 , dl = m GIm UeZ (r 2 , 0PZ) C (1Z)

Note that GI is not the complete formula for the Gaussian curvature for
the primary field. The Gaussian curvature is, given by

GA I = 1kRI); (k rI sin 01)]."/. See Appendix II for GAe, the

Gaussian curvature for the edge field, which is obtained similarly.
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The edge diffracted field at P is (rI and rz 2.> 2 XI max)

Are C (Te 1 (rI, 1I) ±fLre (r 2,' 2 )" (13)

Whether the plus or minus sign in (13) is us-ed depends on the

vector symmetry of the problem. In the acousti,.. case we

always use the plus sign. In the cylindrical case %e generally

would use the plus sign also. In the axially symmetric case,

when the incident vector field on the edges is polarized identically

with respect to the edge for all rotation angles (vector symmetry)

then we must use the minus sign. When the incident field is lin-

early polarized in the axial case (E-field in same absolute dir-

ection everywhere) we must perform an averaging of the fields

3
around the edges such as was performed by Rusch . How this

may be done will be discussed subsequently. For the axially

symmetric case near the axis we cannot use (13) accurately,

since the axis is a caustic of the system. A caustic approxima-

tion will be presented shortly and is discuss-ed in Appendix II.

Our next steps should be to first let P become far from the

edges, i.e., let (kr)1 )-.> and (krZ)-1 ->l (this is actually

implied already when we assume r 1 and r 2  2 X1 ). This

is consistent with geometrical optics approximations. To deter-

mine Je (42), Ceo ( and de ( J2,),we must first deter-

mine the phase contours of the far field. This will complete

the determination of the edge field. Before proceeding to det-

ermine these quantities we should:, however, clarify three

important details about the e;;,pressions for Uel and Ue 2 . The
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first concerns the precise form of Ue when the indicent

plane wave polarization is neither normal nor parallel to the

plane of incidence. The second question concerns the precise

value of ý near Gr, the shadow boundary, at which point

equation (6) must be replaced by (8). The third question con-

cerns the manner in which the caustic axis for the axial system

will be accounted for.

B. Polarization at an Angle •with Respect to the Edge

In order to resolve the question concerning the incident polar-

ization, let us define

A i) GAe sec and (14)AI

B - (l+i) GA _ ikr IS ( +,- )e+ (15)
4-- es 2

when 4 is not near Gr, and

(I + i) eikrr c-ikro[

3 T (15a)
.• 4

G -1Cos(~A4. r 7" Ae (@•- --- )

"" exp ~ d

when 4 is near Gr.
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The: quantity GAe is the appropriate "curvature" for the

system as explained in Appendix II, where

GAe = l/(kr sin j ) (in the far zone away (14a)

from ýF Q(

The angle is the angle from the horizontal defined in

equations (26) and (27). See also Figure I of this chapter.

The validity of (15a) when GAe = l/(kr sin i/2 1z )

is justified by the asymptotic form for (15a) (see Sommerfeld 8)

in a three dimensional system. Equations (14), (15), and (15a)

are identical with (6) and (8) when GAe is accounted for.

When the incident electric vector is polarized parallel to the edge

we have

Ue = Uell A - B (16)

and when the electric vector is polarized normal to the edge we

have

Ue - Uej = A+ B (17)

Now let the incident electric vector be polarized at an angle

with respect to the edge. Then we find

Uell = (cosS)(A + B) and (18)

Uei = (sinf )(A + B). (19)

* See Appendix I1.



60

Hence we see that the edge diffracted field, polarization does not

remain fixed for all 4b. In this event we will consider the field

component that is normal to, the 6K-direction along a ray as a

cross-polarized component which must be accounted for. The

desired component in the ?-direction is found from

Ue cos = I I cos, J? (A- B)

and Uej. sine Uej_• = sin2 y(A+ B)

so that

Ue Ue 1 1  + Ue = A - B (cos 2) (20).'

When the polarization is either normal or parallel to the edge,

there is no cross-polarized edge field. It is clear that in case

the preferred polarization is, for example, right circularly pol-

arized, then a "cross-polarized" left circular component will

exist in the edge diffracted fiends. (Note: If a right circular

wave is incident on the edge, then the principle polarization ref-

lected is left circular as it is for reflection from any conducting

surface. This fact was taken into account in the previous statement.)

Equation (20) is suggestive of an "averaging" method which can

be used when the incident polarization is not rotationally sym-

metric or, in other words, those cases where (?= (YO) and 0

is the angle of rotation about the axis of the axially symmetric

system., For example, if the incident wave on the subreflector

* See equation (20a) which follows (Z4),which follows.
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is linearly polarized, that is 8= 0, then we may use as an

average edge field

Ue = A,

for on the average we do have i- Yr/4 and ý?= 31T/4 for

the top and bottom halhes of the reflector. When using Ue = A

we would also use

rTe = re1 + ((Ye2

from equation (13), and hence would not get a zero on the axis

or caustic from this equation.

C. Field Near the Shadow Boundary G

We will determine a value of c• Gr at which we will exchange

(15) for (15a) in evaluating the field. This value is somewhat

arbitrary and is chosen for analytical convenience and for reason-

able approximation. Before considering this question further,

it will be necessary to decide upon a value of r at which to eval-
I

uate B when c =r-c . ,

At 4 = TT -c,, the value of B at the aperture is given for

r = 02max P2= m" Since the main reflector is in the far zone

of the subreflector, the r dependence of equation (15a) is given

essentially by the factor

- ( + i) ikr

4 GAe .

when p • (Tr-c) = Gr (see the asymptotic expansion of

Sommrerfeld 8 ). Hence for our purposes we may use
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ikr~ F-k (D 1: [~+cos(O + (A]
B (1 +i) GAe L Ae ((m) "4

-1 G MQCos (I15b)

j --GAe (2 m)c

2T exp { 7

where

G- = (k 2 Pm sin [I 2m (15c)

and

I C m 2M (See Appendix II). (I5d)

Our problem now is to connect equations (15) and (15b). The best

way to connect these equations would probably be to find two values

of ý for which they are equal in amplitude and in phase. In this

way we could, maintain the continuity of both the amplitude and

phase of the edge field,. Connecting the amplitude as indicated

in the diagrar, lollowing (e) would in principle be simple, although

connecting the phase may lead to some difficulties, Whereas the

range ý r t-:: E L_ Gr is small for the amplitude connection, it may

be large for the phase connection. For the sake of simplicity in

analysis and because the range 4)r - !- _Gr will be small, we

will use instead a somewhat simpler connection. For the phase

of B in the region pr•4•Gr we will use the phase of epquation

(15). This phase is constant over the entire range 0 ;---ý0Gr.

This is justified because the region q •rEi--_Gr is very small;
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usually less than 1° or 2°. Hence

hase of B] = (- + kr) for ("O5-OGr).(1

We will connect the amplitude by assuming that l;he amplitude

is, constant in the region 0r-0_- Gr and is given by equation

(15b) evaluated at ( = Gr. The value of 0r is determnined

by finding the intersection as shown in the diagram on the follow-

ing page (f). If we evaluate the value of (15b) at 0 = Gr (the

integral term vanishes at ( = Gr when r is finite) and set

the amplitude of this value equal to the amplitude of equation

(15) we find:

Or =_-Oý+ 2 arcsec L2Tr k m sin 12 (22)

and the magnitude of B in the range Orp2-q) ;LGr given by

-i1 (23)
BI= -(1 + i) GAe ý1k r GAe (9m)} r(r_ (23).

In summary then, we may state that Ue is given by (Z0) where

A is given by (14) and B is given by

(I~~ + -j
4 (-i G.Ae " sec 2 for (02-- 1)

B (24)

(I1+ i)ikr-
G.Ae 1 Tr "GAe(52m !for (cP~r(-ZGr)

where (r is given by (22).
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Before proceeding to determine Je (ci"2), de (J),and CoJ)

two additional points concerning the range of • for equation

(20) (and the above equations for A and B) should be mentioned.

As was indicated in equation (7), we require

0 2'"ý -- 2 wr (7)

Because of the fact that 4 is divided by two in the equations, the

solutions are not periodic in Zi, but rather over 4Tr. Hence

we shall define

Ue = 0 unless (2O0-.Zi-). (Z0a)

Taking account of (20a) may become important, for example, if

the subreflector is very curved at the edge and the ray from

edge No. 2 in the direction of 0 2max (toward X2 m of reflector

No. 2) is blocked or shadowed. In this event the value of cb for

this ray from edge No. 2 will be negative and (20a) would indicate

that Ue = 0 as desired,

D. Value of GAe

Equation (24) specifies two separate ranges of values over which

two different equations for B are valid. There are two possible

expressions for GAe depending upon whether P2 =0 or not

(i.e., is near the caustic at F2 = 0) and whether we are

considering the top edgc (U. ) or bottom edge (UeZ).

We have in general that GAe (kr),/(kr sin 1 k Xm)

where the + sign is for Ue.I and the sign is for U1
el e 2
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For sin >P Xlm /r we have GAe = kr sin

as the far zone approximation off the caustic. Near the caustic

for any finite r we should use

GAe kr sin 2 (Xlm/r

In the vicinity of P2 "• 0 we have as an approximation for

r = rc •-(.+( 6 ) +3Y3. An estimate for rc may be taken as

r c f m (24 a)rc = Zm"

More suitable estimates may be made for specific problems.

-1
When 02=O, GAe has the same value for the top and bottom

edges (Uel and Ue). Away from 0 when
I Xl, -i
js'in X >I m / rc , the value of GAe is again

independent of the edge designation. As an approximation in the

small angular sector near the caustic, we will take

-l In m (Xlm) 
b

GAe = kr sin + (( r (24b)

for both edges and thus simplify our computations considerably.

For the case of vector symmetry, this will give Afe = 0 (see

equation (13) for P2 = 0 which is correct so the error will be

over a small angu-1ar region comprising a very small solid, angle.

This is explained further in Appendix II. We choose the + sign

in equation (24b) to avoid the infinity which would occur with the

- sign when the field of edge No. 2 is evaluated near P - 0'
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E. The Total Edge Field

In order to compute the actual edge, diffracted field in the far

zone of the two edges combined, we let P-9.c>O and hence

rays rI and rZ to point P from each edge become parallel.

We designate their common angle with the i axis as .

In accordance with Figure 1 and with reference to the distance R

from the origin, we have

rI = R- Xlm sin F' (25)

and

r? = R + Xlm sin f.
( -5a)

Equations (25) and ( 2 5a) are used to replace r1 and r 2 only

in the phase factor eikr indicated in the expressions for

Uel and Ue 2 which are obtained from (14) and (24). The r term

in the equations for GAe, equations (2 4a) and (24b), are replaced

by

r1 5 r R (25b)

in accordance with the customary far field assumptions.

From Figure 1 we also readily find

+ + 0 im2- 02mn

2 -•-+ r2 + 2  (26)

<2 T-r + (8•hD--Zf) and (27)
22

i_ Olm +2r )
-T2 (28)
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With (25) through (28) substituted into the expressions for

A and B in (14) and (24) we obtain

Al L + i)GAe I -ikXlm sinP L fe+c(r) (299)

Az =L_(i+ iAeGJe, Lsc - imj (30)
4471~~G~~~IP I~2 )J(1

( ++i)GAe } ikXlrsin ( s P2 -- M (32

A 2 = - "ec c ( Z( 1

Bi = (I +i)GAe•f ikXlM ,sin • P2 +s 2 z (31)

for ( 0 •p'~dPr)

and

(I+i)GAe JikXlm sin GPJ1
=i G 2 ( Z(31a)

for ( Gr)

B (+iGee k ik Xlm sin 2 -ff Gi (3 2a)B4 Tr (ý 1 
1))eG (

- 4 
f o r r( d r • ý 2 Z G r)

From equations (11), (12) and (20) we get

Uel= AI - B1 cos 2, and Ue2 = A2 -B 2 cos z2 or

i ik(R+ 1 )
(1+i) l rM G Im GAee M ikXl rnsin 2 [ ec (33)

Ne 1 [4~ mjikxl Cze- )(3

+ CS ( 2 cos 2siJ
for (OzE4}jz r)
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/Ve- (L1+ijImG~mGAe 4-+njikXlmsin Q ec(I m) (34)

Nec 4Z 4e7-Tl ]) 2 (4)

for (IOZz2a-r)

(I+ji)lmG~m Ae ] ikXlm sin 2 G ec(I+ J (33a)

G- I (Pm cos 2<

for (4rrZlFz.Gr)

-(l+ji)m Glm GAe Mi +iklsinP)

/le 2 =L44_i 
ec( (34a)

-T G- (P2m)cos 2O

for (4rcPz•_Gr)

For the sake of convenience in future manipulations, we define

from equations, (33) and (34),

[•ec( [ +01m) + csc ( cos 2•' for (Oz'l:;-7r) (35)

z = ec(T - lm) - Csc ( P2 +6 2 M Co 2 for (O;P2zr) (36)IS 2 2

Zt = [sec(•) -1m.)' -nGAe (fzm) Cos 2 for (4r-ZlZGr) (35a)

Z Lec(- GAe ( 2m) Cos 2 for (cr~cl G) (36a)

Note that 1 is the field contribution from edge No. 1 and that
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i-J is the field contribution from edge No. 2. A common factor

from each of these contributions is omitted as may be seen in

equation (37) below.

From equation (13) we get for the edge diffracted field subject

to the conditions of symmetry specified earlier, the result

i k(R +

A(e Me I=f 2 1 (+ i) 1mGlIm G.Aee ?'m
4 -1(I7)

Z' Z) cos (k Xlm sin P.) + i ( l±i)sin(kXlm sin P2)

where the appropriate values of Z and Z2 are to be used

from equations (35), (3 5a), (36), and (3 6 a) depending on the

values of ci and (52.

The edge diffracted field given by (37) is complex and no fixed

phase center exists for this field. Hence the phase contours are

not circles. Therefore / . From (37) we can derive

:P(Ji)' de (cf), and Ceo(cJ2). The value of 'e ( )'" or Je( 2)

can be found directly from (37). When F' (4) is found sub-

sequently, then we can obtain e(d.) or Je As will be made

more evident shortly, we cannot obtain Je (Y2Z) from Je (r2) simply

by substituting P2 (e)for P.. The transformation is more

complex.

I'e = and •e = \Je.
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F. J"{ fl)

We will obtain Je () = 9) directly from (37). There

is some arbitrariness in this determination depending on our

definition of II (E 1 = (0,) fromi the given primary field. We

have assumed, however, that the primary field is cbtained by:

ik(rI + CpO)
E1 (0 1) = Gexp (ik ýr1 + G Po p )] 0l 1 ) k = P. D (38)1 j~kR 1I k rI

With this definition of~ 1 (01) we factor I/kR and obtain from

equation (37),

Je(•)('2I1mGlm l )2cos (kXlmsinP+( (39)

sin (kXlmsinr?"J

where

Ge = 1/ (sin 1r2 + Xlm/r' . (3.9a)

As we expect, this power flow is of a higher order in 1/k than

the primary field.

G. Reference Wavefront of the Edge Field - R (LPlj

We desire to find the reference phase contour curve given by

W( r.). As pointed out earlier, the curves of constant phase are

not circles for the edge field. We will choose there, a particu-

lar curve given by the phase being set equal to zero for equation

(37). Although any phase value is adequate, the value zero is

the reference contour for which the distance from the curve to

the axis, along a normal to the curve, is equal to -Ceo(4),
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the reference phase.

To simplify the notation, the following substitutions are made:

= k Xlm sin P2 (40)

f= k(R+ 'm) + 1T/4 (40a)

Y1 = Z 1 ± Z 2, Y2 =-Z 1 ±Z2' (40b)

Equation (37) may then be written as

= Dim Glin GAe F' 1Cosfcos -, Y sinfsin• 7
+ i s in cos0 + Y.2 sincos

Note from the above equation that the phase distribution of OT-e

is determined in large measure by the relative magnitude of

Yl and Y 2 ; the sum and the difference of the edge field con-

tributions from each edge.

The phase of (IT is equal to zero ife

Y1 sinfcos + Y2 sin Icosf= 0

Hence we obtain

- - arc tan (XY2 tang)
Yl

or

* Actually zero or 180'. The following additional condition is required

for zero, degrees:-~ cos~fcosý. Y. sinIPsin 51;'0.
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R( = R( -I) arctan ( Y tang'). (41)M 4k k Yil
(A convenient branch for Irn should be chosen, although this
can be seen to be arbitrary. Once Im is chosen it is generally

preferable to maintain R(r 2 ) continuous by the appropriate

branch choice in (41). It is important, however, that the

branch choice for TM be chosen so that R is far from the

caustic of the field; near Czm would be a good choice for

example).

H. The Transformation Function

The transformation function P2 (c1") can be obtained from

the phase contour R( P2) given by (41). We need P2 (J2) in

order to obtain Je(f Z), de( L), and Ceo( cr.

From the diagram following(g), we note that

= -i-- A 2  and tanA 2 = ctn (42)

(42 a)

If yl (xl) is the rectangular equation for the curve R( r2)1 then

dy: dR sin 2 + R cosAd d (42b)

dxl d R cosA - R sin A, d A2 , and (42b)

d--y-- = tan (ndxI 7) = -tan . (42c)

Eqiiations (42), through (42c) yield for 2( P
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1 d'R

tan tan (43)

1+ (t an RR dRQ

which gives, numerically, the result

F' ?[' (2 (43 a)

In order to evaluate (43) we find

dR - -Y tan (44)
-k(l + I~~Ltan, 2

+ Y2  tan g + Y2 sec 2  •'

YlI

where the prime denotes differentiation with respect to .

The Reference Phase Functions de and Ceo

The reference quantities de ( L- ) and Ceo (c41) can also be

obtained from a knowledge of R ( Fg),equation (41). If we refer

to the figure in part H above and apply the law of sines to the

diagram we obtain first

R k(-+ )-d

sin (Tr - sKZ) sin [7-(w-J')- r]

Note that (c+p) is a. given constant for the reflector system.

From the above equation we obtain

de = (&+) + L sin(2 + j R (45)

where R is :given by (41).
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If we apply the law of sines a second time to the same figure

we obtain

R -Ceo

sin (,Tr sin

which gives

Ceo sin (2) R (46)

In both equations (45) and (46) for de and Geo0 we note that

in order to obtain de ( cY) and Ceo ( cJ-, we must first solve

equation (43) numerically for ( P9.

J. Je--(6)

Having found Je (P9' equation (39), and J( equation (43),

we are prepared to determine Je (J)

First we will explain why Je (41) Je ( (22) ). The quanti-

ties Je and Je represent power flows per unit solid angle. At

a point on the wavefront given by the values r2 and R

!Je (evaluated at this value of F2) gives the value of the power

flow through a solid angle

Lsin 2 d P2  d E]

Here we have dO as the angle of rotation about the axis of the

system. At the same point, the same power flows through a

different solid angle given by

ISin • d • d 0
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Je designates tlie power flow per unit solid angle referring to

this latter angle. This is evident from the diagram (h) on the

following page.

Since the total power flow through both solid angles is the same

we have

4(r2  s in F2 d Je(J~ sin ?,d

or

=e sin J {/ (47)s sin d r

With considerable manipulation,

d 4 = f(Jf) (48)

dP2

can be evaluated directly from (43).

With de(d), Ceo( J), and Je(.) determined from equations

(45), (46), and (47) together with the auxiliary equation (43) for

(?, ( P2) we have obtained the complete edge field in a form which

will allow us to compute the edge field distribution in the aperture

of the main reflector after reflection from this reflector.
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IV. Computed Edge Diffracted Field Results

In this section the results of numerical computations for the edge

diffracted field will be presented and briefly discussed. The compu-

tations presented here will not include the edge field scattered from

the main reflector into the aperture. The presentation of those results

is deferred until the next section.

The results presented here include the diffracted fields for subreflec-

tors of various sizes in wavelengths and for various reflector shapes.

They are plotted and illustrated as a function of P. from 0' to 180'.

Between about 170' to 1800 the results are in error. The oscillations

are 1800 out of phase with the true oscillations of the field. This is

a computational error not due to the edge diffraction theory. The aver-

age field in this area (averaged over the oscillations) is, however, cor-

rect, so this portion of the plots was included in any case. Hence we

will observe the back radiated field away from the main reflector

in addition to the field incident on the main reflector.

It should be stressed that the geometrical optics field has been sub-

tracted from the total field scattered from the reflector, Only--the

diffracted or second order field is considered.

A large number of input parameters or boundary conditions are nec-

essary for each computation of a curve. Most of these parameters

remain fixed for most of the curves computed. It will be far simpler

and clutter the graphs much less if a set of standard values for these

parameters is adopted and only deviations from this set of values is
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mentioned on the graph and in the ensuing discussion. A similar pro-

cedure is followed in the next section and later chapters, so we will

refer to the following parameters as Standard Set No. 1, and present

these values in the following table:

STANDARD SET NO. I

SYSTEM Axially symmetric

elm 300

Xlm +1.00

XZm +10.0

oC = constant = 0

I (e1 ) = cos 1 6 e 1 so Ii (e0 lm) 1/10

SIGNEG T1 for respectively cancellation or addition of

the edge field from each edge at the center ( . = 0).

It will be chosen as +1 for addition as the standard

edge.

= polarization angle with respect to the ege. It is chosen

as 0° for the standard value.

A. Diffraction of Flat Discs and Strips

The edge diffracted field of a plane wave incident on a flat con-

ducting strip or disk is of no direct interest to the designcr of

dual reflector systems, but does serve the purpose here of check-

ing our computational procedure against previously computed
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work7 and also checking the theoretical accuracy of this method

of computing the diffracted field.

7

Keller computed the diffracted field of a plane wave incident

on a conducting screen with a strip aperture and circular aper-

ture. The results depicted in Figures 3, 4 and 5 are for the

diffracted field of a plane wave on a conducting strip and circu-

15
lar disk, the complementary screens . By Babinet's principle

the results are equivalent with the principle exception being that

the backscattered field in one system is equal to the forward scat-

tered field in the other. (The polarizations must also be altered,

but this makes little difference for these cases)., Hence Keller 7

presents his results for the forward scattered field only and

these compare very well with our backscattered fields ( P =

0' to 900) depicted in Figures 3, 4 and 5. In addition the results

depicted in these figures extend the published results of Keller

to the region 90' z P2 z 1800.

For the case of the metalic strip with k = 8, Figure 3, the

depicted results compare very accurately with the theoretically

17
exact results published by Karp and Russek . This is signifi-

1
cant since the Kirchhoff theory predicts substantiall.y different

results. The Kirchhoff theory predicts zeros in the field whereas

the Keller theory predicts non-zero minima in approximately the

same angular regions. *The Kirchhoff theory predicts a fixed

phase center at the center of the aperture, whereas the edge dif-

fracted field as mentioned earlier does not have a fixed center of

curvature for the phase front. This example is important for
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our purposes because it demonstrates the breakdown of the

Kirchhoff theory for small apertures or reflectors ( k = 8

implies a diameter or slit width of approximately 1. 6 wave-

lengths) and at the same time illustrates the success of the

edge diffraction theory. Since we wish to examine the diffrac -

tion effects for small reflectors of this order (two or more wave-

lengths) in diameter the distinction between the theories is

critical.

For larger diameter reflectors and for curved reflectors the

two theories, the Kirchhoff and edge diffraction theories, agree

well as will be demonstrated in the next part (B). However, it

must be remembered that the edge diffraction theory begins to

fail badly when the amplitude of the incident wave varies very

rapidly near the edge. For example, if the incident wave has

a zero at the edge, then the edge diffraction theory gives a zero

diffracted field which is, of course, wrong. The Kirchhoff theory

gives essentially the same answer for the diffracted field whether

the field varies rapidly or slowly near the edge. That is, its

solution is not cl itically dependent on the edge conrdition..

With regard to Figure 5, those readers who compare that figure

with the same case illustrated in Reference 7 will note some

small differences. These may be attribo.ted to the, difficulty in

setting up the computor program for a plane wave incident on a

flat reflector in the axially symmetric cas-c The program was

designed for the input parameters of more practical dual reflec-

tor designs such as those parameters in Standard Set No. 1 and
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large changes in the program were not warranted to merely

correct small deficiencies in one curve.

B. Edge Diffracted Fields from a Hyperboloid

(for comparison with the Kirchhoff theory and experiment)

The edge diffracted field of a conducting hyperboloid of revolution

is presented in Figures 6, 7, 8 and 9 for hyperboloids of diameter

8 A and 16 . The 8 A results in Figure 6 are for 0= 0

(H -plane cut), and the 16 A results in Figures 7, 8 and 9 are

for C= T/2 (E-plane cut). The three Figures 7, 8 and 9 pre-

sent varying degrees of detail for the 16 A results.

These results are intended for comparison with the results that

Rusch obtained by Kirchhoff integration and also with the exper-

18imental results that Rusch has obtained (Rusch j::esented

similar results in Reference 3). The agreement between the

results of the two theories is generally good, both thvori.es pre-

dicting the same major characteristics of ripple and high back

lobe ( P - 120') as do the experimental results also. For those

readers making an actual comparison between the results, it

should be noted that Rusch presents his results with the geomet-

rical optics field included as is characteristic for results obtained

by Kirchhoff integration.

It might be added that Figure 6 through 9 (and, later resulff:-) are

the first results obtained by edge diffraction the~ory for curved

reflectors known to the author and, hence, these reslt.s do extend
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the known usefulness of the theory.

One important result seen in the figures is that the forward dif-

fracted field ( F-.;90') is as large as or greater than the field

diffracted toward the main reflector ( P2 < 90'). The forward

diffracted field is, however, spread out over the angular regions

depicted in the graphs, whereas dual reflector systems designed

for high gain (easily better than 99% of all such antennas) will

focus the energy diffracted into the main reflector and hence

increase its significance in the main lobe area of the tertiary

pattern. The forward scattered field contributes to the overall

system sidelobes.

C. Edge Diffracted Fields as a Function of Frequency

Consideration of the edge diffracted field as a function of frequency

or k is of great importance to this general study, One of the

objectives as explained earlier was to examine the possibility

of using a smaller than usual subreflector for the dual reflector

system in order to reduce blockage by the subreflector. In addi-

tion, a general understanding of diffraction effects fo-r any size

reflector is of great importance.

With the above considerations in mind a study of the edgQ -{field

as a function of k was made and is presented in Figures 10
I

through 24. In addition to plotting Je ( r2) for r from 0,0 to

18 0 ', several auxiliary studies of other parameters were also

made and presented among these figures. Except where it is
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(xl, y,) origin ( •). For R-- it is apparent that -r

In other words, as explained earlier, the wavefront appears more

spherical. We are concerned, however, about the non-circularity

of the wavefront near the main reflector, and Figures 13 and 14

show how the ray directions discussed above compare in this

region for k = 2 Tr and k = 6 n. In both cases, we find that

J2"- . over the major portion of the 180' range. Later we

will find it extremely valuable to make the approximation that

0Z = 1 2 for computational purposes. This approximatioh

will be most necessary near , 800 where x' 'x% m,

since this is the general area where the edge field has the largest

effect in the main reflector aperture. It is seen from Figures 13

and 14 that the approximation PJ _ is excellent in this reg-

ion.

"We now turn to a consideration of JV (P 2 ) as a function of fre-

quency k. It is clear from the previous discussion that J' ( F,)e

will differ little in any important respect from J,( The

results of thls study are plotted in Figures 15 through i9 for

k = Zir, 4Tr, 6 Tr, 8 w, and Z20T, respectively. For our purposes

in this section, the two characteristics to take note of are:

1.) The average amplitude away from the shadow

boundaries diminishes as 1/k with k.

2) The interference effect between opposite edges

becomes larger in amplitude and more rapidel;

oscillatory as k increases,

From the point of view that we would like to eventually deform



88

the reflector shapes to compensate for the edge field, the

first fact aids us and the second fact helps to defeat this purpose.

It is impractical to attempt to correct a rapidly oscillating field

by optical techniques. However, as we will see later, the field

is usually, if not always, negligible in those regions where it

oscillates.

D. Effect of Reflector Shape and Field Symmetry

Before proceeding to compute the actual aperture edge field, it

will be interesting to study the effect on the edge field distribu-

tion of varying the primary field symmetry and the subreflector

shape.

We will vary the primary field symmetry by varying the relative

phase of the top and bottom edge sources. That is, we will let

SIGNEG = -1 instead of +1, as in Standard Set No, 1. This

type of primary field symmetry occurs quite oftent'-almost

enough to justify a complete set of numerical data for this case.

For the most significant example, we refer to the circularly

polarized primary distributions. In addition, monopulse cr

tracking feeds have this symmetry. As indicated in Figure 20,

however, the only significant difference between the field of this

symmetry and the former is that a zero exists at = 00. The

remaining general characteristics are the same excep.ý that the

oscillations are essentially 180' ott of phase.

We have already observed the differences betw'.een the edge field

of a. flat reflector and a curved reflector., 'llt•1 t fvren~es were
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significant. In Figures 21 through 24 we have plotted the edge

diffracted field as we varied X2m, keeping all other parameters

fixed. This change of xzm in effect changes the 'tilt'' of the

subreflector edges. Referring to Figure 1, this change is mrani--

fested by a change in . As x increases, decreases.

Therefore, the angular position of the shadow boundary changes,

Of course, the first order optics field also changes. On Figures

21 through 24, the position of the shadow boundary is indicated

by an arrow. The change in position of the shadow boundary and

the edge field is very small over a range of x from

10 to x 2 m = 40. This range covers a majority of practical

cases and allows us to draw the conclusion that the choice of

XZm/Xl = 10 for Standard Set No. I is sufficiently general

for practical purposes.

V. The Edge Field Aperture Effects

In this section we will investigate the direct effect of the edge diffracted

field in the main reflector aperture. The edge field is reflected by

the main reflector into the aperture wherein its amplitude per unit

area will be determined. To assess the importance of the aperture

edge field, we must, of course, compare it to J or I3, the aper-3 p Ip h pr

ture field generated by the primary source,

We will find that the edge field is qluitc significant for subreflector

diameters of less than six waveitegtgHs anid of diminishing significance

for greater diamet:ers. These rvutldts are in substantial agreement
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with those found from general engineering practice over the years.

Without presenting any statistics to document this statement, we will

nevertheless state that tLhe vast majority of dual reflector, systems have

subreflectors greater than, usually much greater than, five wave-

lengths in diameter. The results of this section it is hoped will clar-

ify in a quantitative way the reason for the five wavelength diameter

minimum that appears in standard engineering practice.

In order to calculate the aperture edge field ad id tertiary field ( 3p

or I3p) in both amplitude and phase, we must choose a particudlar

reflector system. As was pointed out earlier, the particular system

chosen will have little effect on the substance of the results, We will

choose, therefore, a Cassegrain system with the Standard Set No. 1

parameters as the boundary conditions for most calculations. A

parabola-hyperbola system is much easier to handle analytically than

the dual reflector designs found in Chapter 1, since we can obtain

closed form expressions for the surface contours of the parabola-

hyperbola system. Furthermore, to date, this system is the most

common system used in practice.

In this section, specifically, we will first define the parabola -hyperbola

system and find I3p and Cp (Cp = constant for a Cassegrain or

Gregorian system; see Chapter 1 for example). We will then determine

the aperture edge field and present extensive numerical calculations.

A. The Cassegrain System and the Aperture Field Due to

the Primary Source

The main r:flector of the Cassegrain systemi is depicted in the
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sketch following (i) and defined by the quadratic equation

2 2 2

or (49)

y AZ, / 4 fZ) (1/4f )"x_ = a+ bx .

The quantity f2 is the focal length. The focus depicted below

will be a focal point, of course, for the hyperbola subreflector

also. The slope at any point on the main reflector is given by

dy 2 /dx, = 2bx. = - (1/2f.)x 2 . (50)

The focal length is found from defined parameters as

f 1/2(U + p1 + (~+p 1 )2 7+ x7') (51)2 2m

where we define

) = c/ + B = ( - constant (O~E 0), (51a)

(See equation (58) for the definition of p1 = f 1 -kl.)

The hyperbola geometry is depicted in the sketch (j) followring

sketch (i). With f 1 , the distance between hyperbola. focii, deter-

mined from the given parameters by

fl = )/2 ( -xm ) (52)
X2m -x Im

and the distance k, in the sketch found as

k = -fl (53)

we define
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S2 2h
kk = x + f )/2

k k1  lm 1

2 = 2 k2 f2 (54)

2~ 1<k fc:=kk "k lf

-and

d = f - c (55)
1

and obtain the equation for the hyperbola surface as

S22

d, (y, - kl)2 -d (56)

or

y = k I C + 2T x1 (57)

The sketch (k) given on the following page of the parabola

and hyperbola together illustrates the composite system. Note

that 01.= 0 for this system. This system is precisely graphed

in Figure 25. This system gives a focal length over diameter

ratio for the parabola of a little greater than 0.3, a common

ratio found in practice.

W ith kI defined for the hyperbola, we can define and compute

pl = f 1 - kl (58)

The maximum value of yl in this system is easily found as

YMx = k 1 - c. (59)

Before proceeding to determine the tertiary field, it will be

interesting to find the secondary field or the geometrical optics
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field reflected by the hyperbola. We will compute this numer-
16

ically for the standard primary field Ii(O1) = cos 16 . The

actual numerical computations are made by assigning a value to

Yl and computing x, from (56). We then find

a1 = arctan (x) (60)

and

0 =arctan x (61)2 Yl + P1

We now need d 0 in order to evaluate IZ (Oz) from
d 62

11(01) by application of the energy conservation principle. This

derivative is obtained by first finding

(_z d Yl - kl
dyx ) (6?,)

d 12 01 L( + XI (63)
=( -dYy ( .. -yl) 1

and

O = cos 2 0 (Yl+P) dY! XYI ], (64)

so that

dO1 dO ! ___

d 1 d 0 1 )/ (d 2 (65)d02 dyI dyl 6)

With (72) we apply the conservation of energy principle and find

(sin 0 ) ( 12 ) 1, (0 ) (66)
Zp sin 02 dO2

The numerical results for Standard Set No. I parameters are

depicted in Figure 26.
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We now wish to obtain the tertiary field 13p. This can be

obtained from I2p(0 2) which is already determined by (66) if

we find the derivative (d 02/ dxl) and apply the conservation

of energy rule between the two fields. In the parabola-hyperbola

system, we should note that

x = xt. (67)

2

We will allow xI to be the independent variable and assign its

value first and then determine y, " With y, determined, we

may find I 2p as previously shown.

I
Given x 2 we find from (49) and (50) the values of y. and

d y 2 /dx, respectively. Then

tan 02 = ( x 2 /(YZ + V) + pl)) (68)

is found. We solve (56) and (57) simultaneously to obtain

yl (tan 02) given by

YI = Yq (69)q y - ýYqlI

2Z Z 22 2(202

Yq = (kI d + P1 c tan2 02 )/(d2 - c tan 02), (70)

and

yql = (dk c P2 c tan20 2 )/( -c tan 20z). (71)

In (69) we use the + sign if (Yqn/Yqd) -0 and the - sign other-

wise, where

2 2 2Yqn =k 1 Z dZ + Pc tan 62
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and

Yqd=d - c tan2 02

if Yqd is approximately zero, then use

Yl = (1/2) (yqln /Yqn)

where

= d2 k 2 2d2 22 20yql 1 -cd -Plc •an0 2 "

Having found y, we obtain I.p as discussed already. We

stillneed dx•/dE 2 = dx,/dE2  to obtain the tertiary field.

From (76) we obtain this value as

dI Cos 2@ 0dy2
= 2  1 - tan 0 2 (t )] (72)

dx 2  (Y2 + 1) + pI)

By applying the conservation of energy principle

I2p (62) sin 02 dO2 13p(x 2 ) x 2 dx 2  (73)

we obtain

I (x,) = Izp (02) ( )i(dZ d 2  (74)
x2 dx 2

The primary field aperture phase, Cp, is constant and may be

obtained, as a check, by

C = r1 + + 3 + C (75)

where

r, XI/sin(e , (76)
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2 = (xZ - xl)/sin 0., (77)

S= Y( (78)

and C = 0 by definition.
Po

Numerical results are depicted together with results for the

aperture edge field to be discussed next,.

B. Edge Field in the Aperture

We now wish to determine the edge field amplitude and phase

(I3e or ý3e and Ce) in the main reflector aperture. We

will determine 13 and C at xt x., the same point
3ee atx2tesm on

for which I3p and Cp were determined. This will facilitate

the complex addition of the two fields in the aperture which will

be made in Chapter 5.

It will simplify the computations considerably if we assume

that r z or that the true ray normal to the reference

phase front of the edge diffracted field is in the same direction

as the ray through the (x 1 , yl) origin. The justification for this

approximation in terms of its accuracy was presented earlier

in Figures 13 and 14. It should be noted that we will use the

true phase of the edge field at the given point on the wavefront.

It is only the direction of the ray through the reference wave-

front which is approximated.

The projection of the approximate edge field ray as it is, reflected



100

from the main reflector into the aperture at the point x is
2

illustrated in the diagram (1) on the following page, Note the

difference between this diagram and Figure 2, where the ray

is in the (ý direction. The ray reflected from the main reflec-

tor is in the J3 direction. The point of incidence of the edge

field ray on the main reflector is designated (x 3 , y 3 ) in the

same reference system as (xZ, y 2 ). A detailed drawing of

this ray and reflector structure, to scale, is shown in Figure 27.

The equations for the main reflector shape and slope in terms

of (x 3 , y 3 ) is the same, of course, as that given in. equations

(49) and (50) for the (x 2 , y 2 ) system,

x = + - 4f 2 Y3 + X2 m (79)

1 2
Y3 =(xzm " ( _) x3 (80)

4fz 4 fz

and

dY3 - (x) x3 . (81)

Given the value of the independent variable x X we would

like to find f directly. It is difficult to do this directly so

we will find x when given P2. From the geometry we have

tan P2 = x 3 /(y 3 + 2) ) (82)

from which, when solved simultaneously with (80), we obtain

h 2alectns + Y42 atn ff 2 u+d4 fro I/+ n (81).3 2 r2  r2cn 1 2 2 + 2 + 2 m (3

The values of 3,and dy3 /dx 3 are then found from (88) and (81)..
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With Snell's law at the point (x 3 , y 3 ) expressed as

dy 3/dx 3 = -tan ( , " A3,42 (84)

and (84) and (81) solved simultaneously, we obtain

J<3  P - 2 arctan (x 3 /2f 2). (85)

From (85) and the geometry we then readily obtain

2 2 3 y3 tan .3 (86)

Now given x 2  ; x2 we may solve for r2 by solving the

transcendental equations for PF, (81) through (86). This is not

very difficult, since P2 (x 2
1) is a monotonic function.

We now need dx 2/d Q22 in order to find 13e by application

of the conservation of energy principle to Je or Je (note thate e
the assumption that Ci - rimplies also that J - Je.

2 2 e e

This value is found by differentiation of previous results as

dx 2  dx 3 + dY3 (_dx3  tan J", ) (87)

T d-r. dx3 ) dr2 3

+ Y3 sec ( j(

3 4

where

( Cos2  12 )f) 2 d'x (8 8)
d d

and
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2f 2 csc 2  X 4 ctn2 f2
2 +I (89)

Applying the, conservation of energy principle, we obtain fin-

ally that

-3e •( S" .in (90:)

In order to determine the edge field phase, Ce, at the same

point in the aperture we find

f4 = x3 csc P2' (91)

(5 = (x2 - x 3) c sc ( Y33) (92)

and finally

C + C+ 5 -R. (93)

Note that C -,--R according, to the approximation

Jeo

In Chapter 5 we will use the synthesis method of Chapter I in

an attempt to correct the aperture edge field effect, In order

to carry out the synthesis, it will be remembered that the der-

ivative of the desired aperture phase distribution must be found.

For the work in Chapter 5, we will need, therefore, to find

dC = dC, By the theorum of Malus, we find directly
dx2°

that
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d Ce/dx, = sin •3 (94)

where ? is given by (85).

C. Aperture Edge Field Computations

Aperture edge field computations of 3e and C were made3e e

for a wide range of frequencies, for normal and parallel polar-

izations ( Y= T/2 and Y= 00), and for even and odd sym-

metry of the primary field (SIGNEG = + 1 and - 1) incident on

the subreflector. These results will be presented graphically

and briefly discussed in this part. Unless it is specifically

stated otherwise, the Standard Set No. 1 parameters introduced

earlier may be assumed,

Figures 28 through 29 i~lustrate the edge field amplitude, ý3e'

contribution to the aperture field in comparison with the primary

source contribution, £3p, for frequencies k = Zw, 4 Tr, 6 7,

87r, l07, 161T, and Z0Tr. The primary source contribution does

not change with frequency, of course, The important general

characteristics of the edge field contribution are the same for

all frequencies, and as will be seen subsequently, for different

polarizations (j?) and symmetries (SIGNEG). The character-

istics are:

1) A large lobe exists near the outer periphery of the

main reflector. Although we would expect this lobe

to be centered around x,. we find that it is shifted

towards a value of :< slightly less than xZm. This

shift may be accounted for in part by the approximation
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-J (see Figures 13 and 14). Some of the

shift is due, however, to a change in the amplitude

distribution caused by reflection from the main ref-

lector, For a smaller value of k or a wider edge

diffraction lobe, this shift is less important, since

it is approximately the same for all values of k

considered. The amplitude in this diffraction lobe

region has been calculated with the shadow boundary

correction discussed earlier in th•is chapter and

should be reasonably reliable. This contribution

is of major importance and will be discussed further

later.

2) Away from the shadow boundary lobe, the field

decays rapidly, the rate of decay increasing with

frequency. In the shadow boundary lobe region and

in this decay region, there is no interference effect

between opposite edges of the subreflector. The top

edge field dominates in this region. It is possible,

however, to include some contribution from the bot-

tom edge despite the optical blocking of the curved

surface of the subrefle-tor. The inclusion of sur-

face diffracted rays is discussed by Keller7. How-

ever, for this polarization ( J= 0), the transition to

the region where interference between edges takes

place is so ýsmooth that it is clear that the present

theory is adequate. For the other polarization



106

( w/2) we will see shortly that a discontinuity

does exist in this transition, but the discontinuity

is of no qualitative significance.

3) In the region where the fields of the two edges inter•-

i

fere and oscillations do take place (-- x 2 t 6) the

field amplitude levels off, but at a rather low level

(-- -20 db.) with respect to the shadow boundary lobe

and 13p* This is significant since there is very

little possiblity that the rapid oscillations in this

region could be corrected by optica.l, techniques

(i.e. , reshaping the reflector surfaces). However,

the low amplitude for all frequencies in this region

makes a correction of this effect unnecessary.

From the figures, then, it is clear that the only significant con-

tribution of the edge diffracted field is the shadow boundary lobe

where the amplitude is of the same order as the primary source

contribution. Actually, this contribution is even more signifi-

cant than is apparent from the figures. First of all, the area

subtended by the small radial segment of the shadow boundary

lobe is quite large, since this effect is at the outer edge of

the main reflector. Secondly and even more significant is the

fact that thi3 contribution to the total aperture distribution is

usually -180,' out of phase with the rest of the aperture field.

This effect, which is demonstrated quite clearly in Chapter 5, is

particularly important with regard to the gain of the antenna.

Furthermore,, it is not possible to simply change the value of
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in a new parabola-hyperbola antenna system in order to cause

the edge field to add in phase instead of out of phase at the aper-

ture. It is reasonably clear from Figure Z that changing the

boundary conditions does not alter the relative phase between

these two fields (note that only the top edge makes a contribution

to the shadow boundary lobe). What is actually required to make

the edge field contribution such that the resultant aperture phase

distribution is approximately uniform is to alter, fundamentally,

the reflector contours. This is done in Chapter 5 with some

success.

Let us examine a little more closely the origin and character

of the shadow boundary lobe. In the brief succession of diagrams

(m) is depicted the degree of approximation obtainable with larger

and larger subreflectors of the desired geometrical optics pattern

(the dashed line). This is similar to using more and more terms

of a Fourier series to approximate a square wave. The difference

between the two curves at the vertical edge of the dashed curve

is the shadow boundary lobe. In general the amplitude at this

point does not vary, but the steepness of the approximating curve.

does , and hence the width of the shadow boundary lobe also does

vary in the same manner with increasing k. This is the calculated

result illustrated in the figures.

For k = 2n we find that the shadow boundary lobe is significant

for approximately 9 z x 2 e 10 and hence 10jo of the radius or

approximately 20% of the area of the aperture since the lobe is

near the outer periphery. Since this lobe is out of phase with
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the rest of the aperture, the net reduction of anticipated gain

for the antenna may be as great as 40%, surely an intolerable

figure in practice. For the case of k = 6Tr, we obtain a similar

figure of about 15% net reduction in possible gain. Even if these

figures were 30% and 10%, qualitatively, the significance is appar-

ent. A subreflector of about 6 A in diameter (k = 6Tr) is the

minimum tolerable size that can be used in practice. This, as

was mentioned earlier, agrees with generally accepted standards

found in practice. For much larger subreflectors, the effect

becomes progressively less significant as may be expected.

In Figures 31 through 36 are illustrated the edge field phase

distributions in the aperture, Ce$ for k = 2 Tr, 4 Tr, 61T, and 8
Tr.

Figures 31 and 32 illustrate the same distribution, k = 2 ?r, but

in Figure 31 the various braches of Ce are connected to illustrate

the continuous distribution. The various branches are presented

segmented in most of the other illustrations. The change in

branch for C arises from the branch choice of the arctangente

in equation (41) for R. Since

Ce= C4 + �5 - R

this branch choice is reflected in the results for Ce also.e

Each branch in the phase curves for Ce represent another lobe

of oscillation in the amplitude •3eo Hence, for higher vplues

of k there are more oscillations or lobes and more branch

segments in the curves for C If the phase front of the edge



field were perfectly circular with the center of curvature at the

focal point of the main reflector parabola, then the phase curves

for Ce , when they were connected continuously as illustrated

in Figure 31) would appear as shown in the diagram (n). They

wolild be perfectly formed squared steps of Tt radians or A /2

height. The step jumps would occur at zeros of ý3e" For a

slightly non-circular edge diffracted field from the subreflector

or one with the center of curvature not at the focal point of the

parabola, the resulting distribution might appear as shown in the

diagram (o). In this case the amplitude ý3, does not have

zeros and the steps of Ce are not clearly delineated as before.

An excellent example of Ce for this case is illustrated in

Figure 48. The less circular the edge field diffracted wavefront

becomes the smoother the curves for C become.
e

In Figures 37 through 39 are illustrated the aperture edge fields,

23e' when the polarization incident on the edge of the subref.ector

is normal to the subreflector edge ( 4/1= •2). This may be inter-

preted alternatively as an E-plane cut whereas when e= 0, the

fields then are in the H-plane (planes parallel to electriC., E, or

magnetic, H, fields). The oscillations in the region where the

top and bottom edge fields interfere (x2 1 6) are considerably

greater than for the 0= 0 case. While they are still small com-

pared to the sbdow boundary lobu, they are not entirely insignifi-

cant, especially for the lower frequencies, k = Zw and 4T. At

around x2 I- 7. 7, we find a discontinuity in the field that is

due to the sudden introduction of edge source No. 2 (the bottom

edge) into the computations. At this point, the surface of the
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subreflector no longer optical.ly blocks the rays from edge Nio. 2
I

and the interference •)etween edges commences for xI less

than this value. As .mentioned earlier, the creeping or surface
7

wave that can be e>,cited by the edge diffracted field and 'seen"

around the curved surface of the reflector is much more signifi-

cant for this polarization, While such a correction to the com-

puted values would give a more continuous transition at this point

I
(x 2 -- 7.7), this effect is not considered very important for the

purposes of this work, The effect is interesting, however, and
7

indicative of the general validity of Keller's theory when properly

interpreted.

In Figures 40 through 42, the edge field phase in the aperture,

C is illustrated for k = 2iT, 4 Tr, and 6 Tr with Y= /Z. Note

that this phase distribution is more sharply stepped than the

equivalent Y-9 0 case. As discussed earlier, this result is con-

sistant with the lobe structure found for A3e when Y= T /Z

as compared to that for 0-- 0 and implies that a more spherical

wavefront for the edge diffracted field exists here.

Figures 43 through 48 illustrate the amplitude and pha.se for the

case when odd symmetry (SIGNEG - -1) exists in the primary

source distribution. Both polarizations, •- 0 and Tr/Z, were

used in computations for k = 6 1. There is no difference of any

consequence for the SIGNEG = -I case relative to the SIGNEG = +1

case. A zero for ý3e exists at x 2- 0 for SIGNEG = -1 whereas

a maximum exists at this point for SIGNEG =+1, but this expected

result of the symmetry is of no important consequence. The
I



I J

same differences between the Y= 0 and OK 1T/2 cases exist

for SIGNEG = -1 as do for SIGNEG = +1. This is true for both

the phase and amplitude results as is clearly evident from the

figures. No deviation of these results need be expected for other

values of k.
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CHAPTER 4

ON THE POSSIBILITY OF EXTENDING THE SYNTHESIS
METHOD TO INCLUDE THE EDGE DIFFRACTED FIELD

I. ~Itroduction

The discussion and computations presented in Chapter 3 illustrated

the importance of the effect of the edge diffracted field upon the aper-

ture distribution. The synthesis method developed in Chapter 1

showed how a specified aperture amplitude and phase distribution

may be obtained by shaping the reflectors' cross-sections when the

diffracted field is not included. It would be ideal if we could extend

the synthesis method of Chapter 1 so as to include the edge diffracted

field's contribution to the aperture distribution. In this chapter we

will discuss an attempt at finding such a solution which proved unsiccess-

ful. The method for obtaining a solution which was attempted appears

to be a powerful approach to the problem despite the lack of success

found in using it. The inadequacy of this approach was by no means

proven so it seems worthwhile to present the technique for the record,

The use of the edge source on the sub-reflector for obtaining the dif-

fracted field is an excellent choice for several reasons. Besides

providing an accurate result for the diffracted field of small sub-

reflectors as was discussed in. Chapter 3, the edge diffracted field is

independent of the reflector cross-section and depends only upon the

boundary conditions such as were stated in the synthesis method of

Chapter 1. These conditions are the position of the edge and the slope

of the edge which are determined by XIm, X 2 m, oc(@1-)., andP (r 1 m).
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Hence the diffracted field is a fixed field distribution which illumina-

tes only the main reflector. Since it does not depend upon YI(X 1 ) as

a Kirchhoff integration would, it lends itself to an extension of the:

synthesis method of Chapter 1.

It is not at all clear, however, whether a solution exists to this

problem Unfortunately, this problem will remain unresolved in

this work, although it is the feeling of the author that the results found

in this chapter imply, by no means prove, that a solution does not

exist under any conditions except that Je = 0.

1

It is well known that an arbitrary phase and amplitude cannot be

specified in the aperture of a single reflector system for an arbitrary

source illumination. Referring to Figure 1, we see that 13p and Cp

must be controlled by shaping both YI(Xl) and Y,(X ) in order that

upon complex addition to 13e and Ce) a specified amplitude and phase,

I3a and C, will result in the aperture. From an iterative point of

view, whenever I3p and Cp are altered to compensate for I3e and Ce,

the change in Y 1 (X,) and Y2 (X 2 ) also alters 13e and Ce, It is not

clear then whether an iteration would converge. The results of Chapter

.5 indicate that such an iteration would not converge, although by no

means conclusively. If a solution does not exist of course such an

iteration would not converge. The inverse is not necessarily true,

however, since the problem, mathematically, is not a linear one. If

J were very large, it is clear that a solution would not exist. The
e

dominance of '3e over I3 would preclude the possibility of correction
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of I3e by adjustment of I3p* On the other hand, even when 13e is very

much less than I3p, it is not clear whether or not a solution exists.

The above method of reasoning was inconclusive so that a more formal

or mathematical approach to the problem is necessary. Before actually

attempting the solution mathematically, let us see from Figure 2 how

the various laws and principles relevant to the problem fit together.

A normal congruence for the rays and wavefronts is defined for the

primary and edge sources when Cpo and C are specified. We knov'

that this normal congruence is maintained upon successive reflections

if the appropriate optical principles are applied. Application of

Snell's law at reflector #1 insures a normal congruence for the 12

waves incident upon reflector #2. Now the theorum of Malus applied

for C and C in the aperture insures a normal congruence foi thep e

waves and rays reflected from the main reflector. Hence it would

appear that Snell's law applied at the main reflector would be redundant.

However, the two energy conservation equations taken together with

those principles already stated do not define a unique solution to the

problem for Y1 (XI) and Y,(X?). Since Cp and C are not known (and

neither are C' = dC /dXý nor C ' = dC /dX'), then it may be truep p e e 2P

that inclusion of Snell's law at the main reflector is not redundant.

Inclusion of both these principles as independent conditions would mean

that the problem is overstated; that is, there is no solution. On the

other hand, since C and I 3L are given functions, it may be that one of

the two Snell's law applications is necessary, whereas the other is

redundant. This reasoning is certainly inconclusive, but unfortunately,
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that is the state of this attempt to an exact solution to this problem. A

reasonably satisfactory approximate solution to this problem is obtained

in Chapter 5. The remainder of this chapter is devoted to explicitely

formulating the above ideas mathematically.

II. Equations for the Attempted Exact Solution

The matherntaical formulation of the problem described in Section I

above will be performed briefly in this section. We will attempt to

arrive at a set of six simultaneous first order differential equations

with the dependences indicated below:

?2~-'( ?V~ C1 , (1)XI.

CFrom Energy Conservation

E) f3 1(0 1, 0 p, G p (,)

C fCp (C , 01, YIP Y;X) 1 (3)

From Theorum of Malus

Ce f Ce (Ce, J; X) / (4)

Y = fY 1 (0 1o C I C P Yi Y Z; X') (5)

From Snell's Law

Y2 fY 2 (01' Ce' Cp Y 2 Y; K

These equations, as shown, form a complete interdependent set.

The primed variables denote total differentiation with respect to X.

except in the case of X'. The total derivative of X with respect to

X.will always be denoted as dX /dXz. Rather ar~bitrarily, all the

variables may be considered dependent variables with X' the independent

variable. The remaining variables of significance in the problem can
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be found from those in (1) through (6) with the following dependence:

x3 = X3 (Ce' d; Xý) (7)

Y3 = Y3 (Ce' 2 ; X2} (8):

X = X2 (CpQI"YI Y2 ; X2) (9)

X = X 1 (0 1 ,Y 1 ) (10)

As we derive the explicite forms of the above equations, we will

point out the deficiencies in the formulation.

The energy conservation equations leading to (1) and (2) are

X?.= [13e/•e Q(2~)] (X~, /'Sin W-2 (11)

and

Qj = [ 13p/,l'("1)] (XV, sin 9,1(12)
The quantities I3e and I3p can be expressed in forms of the specified

aperture distribution amplitude, 13a' and phase, C, as wil 1 be done

shortly.

From expression of the theorum of Malus at the aperture we obtain

C' = sin 03 = (X2 - X 2 ) ( " X) 2 + yX (13).
p I (2 +Y
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and

C' sin r3 = (X2 - X3) (X' - X 3) + Y (14)

which will lead to equations (3) and (4).

Snell's law for each reflector and each ray system is expressed as

YI = tan 1 9 2. XI = tan [ Q9 - arctan y2_ ] (15)

Yý= -tan 492 - tan. I[arctan(; 2- XI)

-arctan , 2i, ( 2 (16)

and

Y3 -tan . 1[ -3 -3= -tan - Farctan (773

-arctan( X X3 3 ' (17)

Equations (15) and (16) lead to equations (5) and (6). It is here that the

difficulties or unresolved portions of the problem exist. First of

all, as will be seen shortly, it turns out that equation (17) is not

necessary to arrive at the formulation expressed by equations (1)

through (10). This may be explained by stating that equation (4) or

(14) for the Theorum of Malus makes (17) redundant. In this case,

however, we would expect that (16) would also be redundant with (3)
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or (13). However, it is not clear that (1) through (6) are not a

complete set of differential equations with a unique solution unless

(6) or (16) is included. Excluding (6) h.--ds to the conclusion that

Y 2 (X ) is arbitrary. It is conceivable that this is the case, and that

the Cauchy-Lipschitz conditions (see Appendix I) are not satisfied

except for certain Y 2 (Xý) and in, some cases for no function Y 2 (X9).

This last conclusion is the only one which appears consistent with

all the results obtained. It is however very unsatisfactory from an

engineering point of view since appropriate choices of Y,(X') are

too difficult to find and their existence is not certain in any specific

case. The general complexity of the equations precluded the

possibility of applying the Cauchy-Lipschitz conditions in any useful

way. In addition, as the results in Chapter 3 have shown, we

frequently find I3e5 ;3p for some X and may expect that very often

a solution will not exist in practical cases. The formulation is

however uncertain and the possibility remains that a solution does

not exist even when I3e<<I3p.

Continuing the formulation, we find for the unknown path lengths or

phases at the aperture for each source, the primary and edge sources,

that

C = (/6..l),/c os o,, +
(18)

+w(Xe -X2 ) +Y +

where
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x = (1 " Y)tan 01, (19)

and

Ge= (Y 3 + d(5'2 ))/cos• 2 +5(X 2- X 3 )2'X3 + Ce(Y 2 ) (20)

where

X = (Y 3 + de (6')) tan6r. (21)

The inclusion of C and C in these expressions defines the primarypo eo

and edge source rays and wavefronts to be a normally congruent

system.

If we let ) = 3a',3p = I3p, ands 3 e = 1 3e' then we can add the

two fields in the aperture by complex addition,

Sexp(kc) = 3p exp(kCGp +3eexp(kC e), and find that

sin 2k(C(Xý) - Ce) (22)
'3p = I3a(X) 77

sin k(Cp - Ce)

and

I I sin k(C(Xý) - C ) (23)
3a(X•)sin k(Cp - CGe
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We will now outline the substitutions that are necessary to arrive at

equations (1) through (10) from (11) through (23) and in addition

point out some cf the difficulties. In the following we read "(11)

+ (23)"iO "as" equations (11) and (23) imply. " The plus sign does

not necessarily indicate summationo The reductions. follow:

(11) + (2 3) -ý*(1) (24)

(12) + (22) w (2) (25)

[(18) + (19) - (9) (26)

(20) + (21) - (7)] (27)

[(20) + (21) = (8)1 (28)

26) + (13) ( (3) (29)

[(27) + (28) + (14)" (4) (30)

25) + (19) =!O X $• f + 7  Y1 (31)

(15) + (19) + (26) + (31) - - (5)], (32)

IZ6) + (29) + (25) + (32) ý dX X2 -dXX2 C'
>//d) 2 C p

"x2  ?bX 2  + x2 ,3
+ g!" + Yl 'I + (33)



and
I [(16) + (19) + (26) + (33) meti (6)] (34)

With the exception of (33) and (34), no difficulty with the above

substitutions occurs and they lead directly to explicite forms of (1)

through (5). Upon substituting (33) in the expression for Y-• , equation

(16), and solving for Y' as directed in (34) we find that Y is identi-

cally zero. Such a result does not make physical sense and no

alternative or method for finding a usable explicite form of (6)

has been found. It is possible that this result is due to a redundancy

of Snell's law and the Theory of Malus as discussed earlier. In

this case we are left with the indefinite results and conclusions drawn

earlier. We will therefore conclude the discussion of this attempt

at an exact solution by outlining more clearly the derivations indicated

in (34).

By performing the operations indicated in (34) we obtain

=.AX2 17 + • X 2 X],

~ta( ~ [~C ~1, 21~' (35),

Y+ ta n , (t a -. . .

We then obtain equation (9) from (18) and (19) as directed by (26).

Differentiating (9) then gives the partial derivatives necessary for

for evaluating (35).
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Consider the denominator of (35) first. Evaluating P_2 we get

DX 2  (cos 02 4, cos 0 3 )- (36)
LýY2 (sin 02 - sin 0,3)

We find therefore, upon expanding ta 2 , that

+ tan j'O2 -02 1 sin(0 2 - 0 3) p1 csg,+ 2  s

[1 = I 1 + cos(- 2 - 03 Tin; 2 - sin0 3 )
(37)

and that therefore the denominator of (35) goes to zero if either 0z = 0

or 03 = 0. We will find however, that the bracketed terms in the

numerator vanish for all 9 and 93.

From equation (13) we have that

C' = sin 03.

Differentiating (9) gives

- )X 2  i n 3
- (in0 2 - sin 03) (38)
p

and

X2 -sin @ (in •. - sin s (39)
N 2= 0-sn@3),
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so that

)x 2 •X2
- C ' + • 0.P171

This leaves (35) as

= -tan( 3 3Ui) [ 0),

7(+tan( ) ;x2,40)
I~~ ~ + ta 93 x?

With considerable algebraic effort for the case wherein

=0 and =C =0,

the case of a fixed center of phase for the primary source, we can

show that

Q 'I'x Y -X2 0•x
@i '•' + ify"i'dO

for all values of the variables. Now d and are notdO 1  19

independent if a normally congruent ray and wavefront system is

defined for the primary source. It is presumed, although not shown,

td odCthat the samre result would be obtained with - t •o and po tO0.

1 dQ I

The case when these quantities are zero is, however, by far the most

important pr-actical case. Differentiation of (9); gives
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S2 - sec 9 + (/- Y1 )sec 01 tan - in 0d

(41)
dC

(tan 0 /- Y,) sin0 2  sec02 9 1 +d0I ],,(sin 02 - sin 03),

and

bT 2 sec0 1 - sin0 2 tan@1 + cos02 ]/(sinQ, - sin 3). (42)

These equations together with (40) may be used to verify the

above assertions. In order to complete the result, the explicite form

of 09 and Y must first be obtained by carrying out the substitutions

indicated in (25) and (32).

If the difficulties indicated in the above derivations could be overcome

this method for obtaining an exact solution would be very powerful

since, for one reason, the six simultaneous first order differential

equations (1) through (6) are readily solved by the high speed corriputors

available today. However, since in this work the problem of the edge

source diffracted field has been defined and a partial correction

obtained (see Chapter 5) no further effort for an exact solution will

be made.
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CHAPTER 5

CORRECTING THE EDGE DIFFRACTED FIELD

BY APPLICATION OF THE SYNTHESIS METHOD

I. Introduction

The effect of the aperture edge field and its significance was dis-

cussed in detail in Chapter 3. As was evident from the results of

Chapter 3, the shadcw boundary lobe could be reduced to a negligible

width by increasing the size of the subreflector in wavelengths. This

approach, however, merely substitutes aperture blockage for the

aperture edge field effect. To date this has been the standard approach

to this problem. In this chapter, we shall show that much of the deleter-

ious effect of the shadow boundary lobe can be reduced by application

of the synthesis method developed in Chapter 1.

It was asserted in Chapter 3 that the most significant aspect of the

shadow boundary lobe effect was the fact that it causes the total field

in the aperture in the region of the lobe to be 1800 out of phase with the

rest of the approximately uniformly phased aperture. Computations

will be presented later to verify this assertion. The results obtained

in this chapter by repeated application of the synthesis method is that

the shadow boundary lobe phase can be made very nearly uniform with

the phase of the geometrical optics field over the entire aperture.

Hence, even though essentially no correction of the amplitude of this

lobe was obtainable, it is possible to substantially increase the gain

and efficiency of the antenna by this method. As mentioned in Chapter 3,

this correction could potentially increase the effective aperture area
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by the order of 30% for a 2 A diameter subreflector and on the

order of 10% for a 6) diameter subreflector.

The method used for correcting the shadow boundary lobe is by no

means limited to the degree of success so far obtained and discussed

above. While a 100% correction of this effect does not seem possible,

substantial correction of both the amplitude and phase does appear pos-

sible by continued judicious application of the technique.

The method to be used for correction is essentially an iterative

approach to the solution with only one iteration taken. It will be clear

from the computed results presented later that repeated application

or iteration of this method shows no promise of uniform convergence,

or at least rapid convergence. This is to be expected, since it

appears very likely that an exact solution does not exist in any case.

The phasor diagram (a) illustrates how the subreflector edge field

adds to the geometrical optics field to give the total field amplitude

SeR and phase Cl. (C, will be denoted as the total phase of the

resultant field and normalized to a length approximately equal to that

of Cp . We designate CR as the unnormalized phase. Hence we

get CR/k < ZT and tan k C1 = tan k C R). This phasor diagram

applies to a specific value of x, in the aperture. If we presume

that and C will remain essentially unchanged upon a smalltht e an esml

deformation of the reflector shapes, then we may apply the synthesis

method' of Chapter 1 to obtain an aperture distribution given by ý and'
C as indicated in the phasor diagram (b). if k3e and Ce actually

did remain unchanged for this aperture point, x'2 , then we would

expect to obtain the original geometric optics field Ap and Cp
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at this point. We will define the original geometric optics field as

the "desired' distribution we would like to obtain finally.

Upon synthesizing for and C (x',) we change the reflector

shapes from y. (x,) and y,(x,) to the new shapes y 1n(xln) and

y 2 n(xZn) and as a consequence, the new edge diffracted field in the

aperture, A3 and C en' is not equal to the former edge field. As

might be expected, we find in general that the correction method is

rrmst sensitive to the changes in Ce to Cen. This will be evident in

the computed results presented later. However, it is precisely for this

reason that the correction. obtained with the total resultant phase distri-

bution, C 2 , is very satisfactory even when the resultant amplitude dis-

tribution, SRSL' is not substantially changed, This may be seen from

a phasor diagram wherein 3e is approximately equal to 3en' but

wherein C and C may be greatly different. For a very largee en

range of C en we will find a good phase correction even when a poor

amplitude correction results. This is illustrated in the phasor dia-

gram (c) wherein the phasor en connected to is allowed to

swing over a wide arc of a circle. The resultant phasor, regardless

of the amplitude, ends up with a substantially corrected phase. The

computed results presented later will illustrate this effect.

There is no reason why we must start the synthesis for yzn(x 2 n)

and Yn(Xin) with the same boundary conditions from which y2 (x2 ).

was computed. It is, in fact, desirable to adjust the boundary condi-

tions so that C e C en near the shadow boundary lobe, namely at

Xl =x2m. An adjustment of xZn by a fraction of a wavelength makes

it possible to obtain Ce and C equal to the extent that" ~p
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tan kCe - tani. k C (i..e, G + n, i k Cp). Since

is always very large in wavelengths, this alteration of x., can have

no significant effect on the general propc L'tio, of the antenna aside

from the fact that since k C + n~r _,k C we will find that
p

tan k C i--, tan k Ce.,tan k Cp Hence, in the vicinity of theen ep

shadow boundary lobe, we can insure that a point, specifically the

boundary point, will have C --t C (or just as well, k C e k C + we en e e•)

if desired). This particular adjustment does not, unfortunately, lead

to any substantial correction of the shadow boundary lobe in amplitude.

It merely causes the shadow boundary lobe to remain in essentially

the same position in the aperture before and after correction. In other

words, this change in boundary condition causes the new main reflector

shape to be less altered in shape in the vicinity of the shadow boundary

lobe. This adjustment of the boundary does lead, on the other hand,

to a substantially improved phase correction, as will be seen later.

For the purposes of correction in this chapter, we will choose the

parabola-hyperbola system used in Chapter 3 for analysis purposes,

Hence y 2 (x2 ) and yl(xl) will be respectively a parabola and hyper-

bola. We will, however, alter somlnewhat what we consider to be stand-

ard input parameters or boundary conditions. The change will be in

the value of xZm chosen. As Standard Set No. 2 input parameters,

we will choose the following:

n is any integer, usually positive, ;ince usually C,
p
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STANDARD SET NO. 2 PARAMETERS

Same as Standard Set No. 1 except t, hat:

XZm = Maximum value indicated on Graphs.

OPTION = -] is the standard option indicating that XZm

for the new reflectors is computed so that

k C A k C at x' = x If x is note en 2 2 m * 2rn

chosen this way, then an OPTION =+l will be

indicated where appropriate.

As indicated in Chapter 3 also, the above Standard Set No. Z

parameters may be assumed in any discussion or graphical illus-

tration unless some modification is specifically mentioned.

As was mentioned earlier, an improved correction of the shadow

boundary lobe may be possible if the amplitude and phase, -9 and C

which are synthesized by the method cf Chapter 1, are altered somewhat

in anticipation of the fact that the altered reflector shapes will make

and C different than Q and C. Such a change in3en an en 3e e

and C should be made judiciously after a careful investigation. This

change is not attempted here. Inadvertantly, however, in the process

of making machine computations, the value of C was changed, in

other words this phasor was rotated in a manner described later in

this chapter. The results of these computations are presented, since

it is interesting that although the specific values of the computed varia-

bles is, of course, different than the case with Jx(kC)' not rotated,exp;

the results are in all qualitative: aspects the same as before rotation.

Computed results that are illustrated in the figures of this chapter will
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be denoted by ROT on graphs if such a rotation was made.

Before presenting the computed results, we will develop the mathe-

matics of the correction procedure. Several approximations which

afford a simplification in numerical computations are indicated in

this development.

II. Application of the Synthesis Method

Before we actually apply the synthesis method to correct the edge

field, we will compute the total field amplitude, phase, and phase

derivative in the aperture.

The relative phase, CR , of the total uncorrected aperture distribution

is easily found as

S3e

C I arctan sin k C + sin k Ce (1)
kR

cos k Cp + e )Cos k Ce

It is convenient for purposes of comparison and computation to add an

integral number of half wavelengths to CR so that CR is approxi-

mately equal to

C pm p (Xgm) Cp (2)

We define this "normalized" phase as C1 and find its value by

C1  = CR + Cpm - 1/k arctan (tan (k C pn)) (3)

The last two terms on the right hand side of (3) add' up to an integral
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number of half wavelengths, and thus provide the "'normalization"

that is sought.

Now the rotation of C, , which was discussed in the introduction

and is indicated in the figures by the designation ROT, was made

by choosing, inadvertently,

C1  = CR + C P 1/k arctan (k C p). (3a)

The amplitude of the total field is found as

'eR = 1  3p +2 3e cs (k [Cp-Ce )+ 13e (4)

These formulas are easily derived from the phasor diagrams pre-

sented earlier. Note that we continue the convention that

I = 2 I R2'I =SL S'1 etc.eR eR RSL RSL' 3p 3p '3e 3e ,

In order to obtain C and a , the phase and amplitude for which we

will synthesize new reflector shapes, we either let Ce --,C + Tr/k

or 93e - % with the result that this negative edge field added

to the geometrical optics field gives for the phase

J3e

C = 1/k arctan sinkCP sin kCe+] Cpm (5)
Lcos k C~~~e cos k Cej+ pm(5

I1/k arctan (tan k CprM)

and for the amplitu'le

I = 13p' - 2 13p" 13e1 cos (k[Cp Ce]) + 13e (6)
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Note that the value of C must be normalized by the addition of

C - I/k arc tan (tan k Cpm)pm

in order that the synthesis yield a usable result. Note also that

when tan k Ce = tan k Cp then sin k Cp = ± sin k Ce and

cos k C = cos k Ce and e-quation (5) reduc-es to
p

C = 0 pm °(7)

This holds true for the standard OPTION = -l when tan k C =
p

tan k C at x2 X

In order to actually carry out the synthesis we still need the

derivative function

dC dC
T = _dx

Z 2

where the value x in the above derivative is that point in the

aperture which is designated in the umiform phase case as x x2 .

A different value of x 2 exists for the generally non-uniform phase

distribution C but is not needed in the derviations we shall consider.

This may be made somewhat cl-arer by the diagram below (d)

wherein the ray passing normally through the aperture belongs to C p

for which x = x I and the ray passing obliquely through the apertui.
2 2

belongs to C and has the same x value but is incident upon the main

reflector at a point different in value than xZ.

As an approximation in obtaining dC we will assume that
2

dk3p d< 3e
d x dx2



192

(i

Cp - rag

X2' for botri

- >z f-or Cp - r~aj

- - zfo r C- ra on%



193

From the results illustrated in chapter three it is evident that

S3p (or 13p) is a very smooth function in comparison with 3 e

(or I3e).

This is especially true whenJ3e is large or on the order of Z3p"

When I3e << 3p the approximation is not as good but it also is

not necessary here since no correction is needed, Hence we may

state that

d 33e. = _ I d. 3e - di 3e (8)

d"A i3p) 3 3 p 2 Z 3,p) 2

41p )'

In practice,, one of the most important cases to which this correction

may be applied is, incidently, the case wherein3p = constant and

d% 3p/ d x = 0. In the present case vwe have, identically, that

dC (9)

7 -X- 0(9

dI 3 e dC

We now must evaluate dI explicitly in order to obtain dC

Referring to equation (90) of chapter three, we obtain

dI 3  dJ' (Z x 2  ) ctnfl (0

2 - _ _)

I

where 4- ,) is defined by equation (87) in chapter three. From

equation (39) of chapter three we obtain by differentiation



194

dJ'
e G I[m G rn .

S11)

Y1 Y1' cos2ý + Y2 Y!" s in? + Y 2 YI sinf cosf.5'

The remaining terms in (ii) are defined in chapter three.

In order to obtain d 2, x2  we differentiate \ d -2 and get

2 ~2
2I 

d'i x 3

d k 2 2 ( d x 3 xta

dT'r- d x d 2) +d x - tan rr3

(dy (['2_' dx) tanr3 , - s ((dr) (2

x•-- y) + y23 x 2 d (13x3- sece

+ Zv.. ( •-2'-> se 3 tan•' d-• -

'K'r2 ý dx e3)

Most of the quantities in equation (12) are defined already in chapter
three. That is, in chapter three we have defined by (85),

rz3 y2

by (80), dY3  by (81), 3 by (88), and 3 by (89). The

d3  2

remaining new differentials are readily found in terms of those already

defined. We have

r 3 dY,3 ) ( ,dx\,\ (13)

directly. By differentiating we get
P22
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d z dx 3 d 2 dx 3c ,o.)s --3 12

where fz2 is the main reflector focal length deriv'ed in Chapter 3.

d2 /
Y3 I ; 3

dx. (15)

where

dx 3  (P2 3) d(P 2

T2 - d2 r \dr ?

From e16) we get

dY
3  1dY3 (dx 3 ' ) (17)

3x 2 2ýx ý

dx3  ( dx 3  " \dx 2 /

The final remaining derivative is obtained by differentiating

(dx 3 / dP 2 ) with the result that

d2 ( 3d x \ " d x ' 21dx3  2 -2 ) ctn P. F[in 2 (dx ) ( 18)

With the above derivatives defining (di3e completely and
\ dxz

/dCe /dx 2 ) already defined in Chapter 3 by equation (94) we can

obtain \ (dC/dx2 ). For notational convenience we define first
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kQ = kC - kCpm + arctan (tan (kCpm)), (19)

D cosk C cos k C (20)Dnc : o p \\kJ 3 p)

and

D d _3e__ (21)

from equation (8) above. We find then for (dC/dx2 ):

dC -cos-Zn-kQ- .D n - D sin kCx kD 6 1 fC 3p e
z 1- [' ncL

Ae dG C fe _93e (22)
..Q•io k Ce k - Vsin k C-(s3e- sin k C e

ý 3 p 2 eý9p

k e sin k Ce - D Cos k

We are now in a position to use the results of Chapter 1 and synthesize

new reflector cross-sections Y~n (x 2 n) and Yln (xln). The variables

in the new dual reflector system will be subscripted by the letter n

with the exception of x ' This variable remains the same, by

definition, in both systems. Hence a reference to a point x,' in the

aperture applies to both reflector systems. The diagram below (e)

illustrates that the primary source rays for each reflector system

have been chosen to cross in the aperture. This is convenient for

comparison of the results when they are tabulated and in programming

for machine computations.
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The boundary conditions for the new two first order differential

equations', 0' and y" , will remain unchanged, that is:in In

max (initial G1) = arctan (xI max/,) (23)

and

Yl max = (initial y 1 ) = 0. (24)

T.ese are the conditions which would have been used if the parabola-

hyperbola system (y 2 (x2 ) and yl (xl) ) had been derived by means

of the synthesis method of Chapter 1. The boundary conditions are

consistent with Standard Set 2 parameters.

The two simultaneous first order differential equations for the new

reflector system are

n, = l n \sn1"(25)

and
j•2 0 In - 02n) '

{ -Yln ) sec 0 I tan( - 2 " ')In(2 )

Y n sec2 0 in tan( 0 1n - Zn), (26)
1 + tan 0 1n "tan ~~ 2n

where the pertinent variables for the system are defined as set forth

in Chapter 1:

XIn = (- YIn) tan 0 I, (27)

B = C V - Y In) sec 0:In , (28)
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X "~=x +( I (xIn - x 2) 2 + Yln -
2 - 2 J

21 ((d)

xn -x) x---In-Ylfl) d(x31)

~2n =~ [(3x, xý) 2- + () B2](0

y~ ~~v. y )+ (O) (X'. - X2' + B(0

n= arctan (xZ Y2n yin) (31)

0 arcsin (dx 2 / (32)

and

d -2n (82n - oe3n (33)
SX = - tan

The value of (d Z~n> is not necessary for integrating (25) and

(26) but will be used to find Cen and subsequently IRSL.

The values of Cen, I 3en and I will not be computed at x'

en 3n RSL 2

but at a different point in the aperture defined as x'n. This is done

for computational convenience. Although in principle we could compute

these variables at x1 and not define x' , this would involve a
2 2

considerably more complicated computer program. Furthermore

we find, upon making the computations, that x, -. Xn and in the

region of the shadow boundary lobe the difference between x, and X'

is negligible. The value of x' is defined by• 2n
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X2n X2 n+ Y2n tn (•'3n) (,34)

where

Y3n 2, + z arctan ( -3ný (35)

2n= arctan (X3n / (y3n + Q ) ), (36)

and

X 3 n = XZn

Y3n = YZn (37)

dy3n dy2n

dx 3n dx 2d3n dZn

The edge source ray making an angle 2n with the y. and y, axes

is thus seen to intersect YZn (Xgn) at the point (xgn yzn). Since' " Zn

0,n, then the reflected ray intersects the aperture not :t x1 but

at the newly defined point x'. These rays are illustrated in the

diagram below (f).

In order to compute Cen at xn we first compute / 4 n and n to

that point and find

+n = x3n + (V+ (38)

and'

/5n = Y3n / cos l3n" (39)



20]

EX Sa-ou rce

raf

p2 r,,

(92)
-i t1"2l\



20Z

We find R , the reference phase (or Ce) by using r n from
n Ieon 2

(36) and the results of Chapter 3 (equation (41) in that chapter).

With these values we obtain

GZen z f4n +/ 05n. - Rn (40)

or alternatively (since e2n "- 2n as explained in Chapter 3)

Cen = p5n + Ceon.

From equation (39) of Chapter 3 we obtain the value of 3' (P n.From~e eq(to P(39

In order to obtain I3en from the energy conservation equation

Ssin ( P2n) ] .

i~ ~ ~ ( ur 2n)(rn x'(1
d3en .n.n

we must first find r . The value of this derivative is found

numeric ally from

d x' (InL - In
Zn 2nLS n (4Z)

r ?.n ZnLS r2n

where x'2nLS and r2nLS are points adjacent to x'an and P2n" For

the purpqses of the computations made in this report, the interval

Xw' as n
"2n - nLS 2almost a constant 0.,05 (note that x and not Zn

is the independent variable; the equivalent interval was precisely

0. 05 for x.). Since Zn -*as an almost linearly varying function of

also, the approximatioi for (d x nid P 2 )and consequently 13en

was very good.
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If, as explained earlier, we assume that xt n we can calculate

IRSL directly. Actually this assumption is not necessary for finding

IRSL at x' but it is very convenient for machine computations. Since

this approximation was made in the computational results that will

be presented shortly, we make the approximation in these derivations

also. The approximation'is excellent in the vicinity of the shadow

boundary lobe which is most important. With this approximation we

assume that I, 13en' C, and Cen are all computed at the same point

instead of at the different points x' and x'n. We find therefore, for IRSL

that

IRSL I + 2 .1 cos k (C -Cen) + 13en. (43)

With the same assumptions made in the last paragraph we can

compute the normalized phase of IRSL' C2 , which is found as

Cin(e) arctan sin k C en

2Cos kGC+ 53ncos k C (4

+ (4N arctan (tan (k ýC )

Equation (44) completes the derivations necessary for an evaluation

of this method for correcting the aperture edge field effect. It might

be pointed out, in addition, that the syntheses indicated above and presented

in the next section are more general illustrations of the synthesis method

than was presented in Chapter 1. Neither the phase, C, nor the amplitud4

are, linear for these cases,
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IlIL Computer Edge Field Correction Results

Extensive computations were made to test the aperture edge field

correction technique discussed and derived in Sections I and II. The

results of these computations are illustrated in Figures I through 47

of this chapter. For the most part the results depicted in the figures

are se!f explanatory when taken together with the discussion in

Section I. Hence this section will be devoted to merely pointing out

some of the more significant aspects of the results and just how the

figures are organized.

Figures I through 23 use the value for C1 given by equation (3).

In other words, they do not have 9exp (kC): rotated in the complex

plane. Figures 24 through 47 depict the 'rotated'? results and have

the ROT designation noted in the figures. The amount of rotation,

incidentally. will be different for each case of different k.

Figures 1 through 23 consist of four complete correction attempts for the

three frequencies k = Z2, 4 n, and 6 T. These lower frequencies are

the most significant from the -oint of view that an edge field correction

is necessary for these small sub-reflector diameters if they are to be

of practical value Note that a frequency of k = nn implies a sub-

reflector diameter of fl wavelengths since x 1 = 1, 0. For the frequency

k = Zn, a case with the option value +1 in addition to the case with the

standard option value -I (Standard Set 2 parameters; see Section I of

this chapter) is illustrated. The differences between che results

obtained with each option value is very much the same for all k. Figures

22 and 23 illustrate the shape of the sub-reflector before and after
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correction,, yl (x,) and Yin (xln)' for rather large k values,

k = 16w and 3 2 w. The convergence of yln (xIn) -4 Y, (x1 ) should be

noted.

Figures 24 through 47 consist of four complete cases with k equal to 3Zw',

2Tr, 6 w, and 167r, For k = 6r there are two cases illustrated with

option = +1 in one case and option = -I in the other case, Figure 47,

for frequency k = 3 ZT, illustrates yl (xl) and YIn (xln) for this high

frequency. The results for the rotated cases (ROT : designation on

Figures 24 through 47) are qualitatively the same as those for the

non-rotated cases This result is of some significance and is the primary

reason for presenting these figures in this work.

In each case the following curves are illustrated:

Cand Ce versus x I;,~ ,~ve rs us
pe 3en 3e

C3p' ] 3e' C 3en versus Xý

C 1:1 Cv Ce versus xu'

3p' er' RSL versus x

and Y2 (,xz)' Y~n (x2n); Yl (x 1 ) Yln (Xln)'

In each case the independent variable xI varies from x= X to2 2

x'- 6. This range covers the significant portion of the edge field

contribution to the aperture, The value of x is approximately equal

to 10, but of course varies with k for the standard option value -1E
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The polarization case r'= 0 was the only case treated herein. No change

of any qualitative significance is expected: for the -T=r case.

However it may be expected that the correction in reflector shapes

will be different for this polarization if the same correction technique

is applied. When the primary pattern has vector symmetry (polarization

angle with the sub-reflector edge independent of rotation angle) then

this presents no problem. The very significant case of circular

polarization is such a case with vector symmetry. Otherwise some

average correction or possibly a simultaneous correction must be

searched for.

In all cases the degree of equality occurring simultaneously between

C and C and also between 9 and 9 is a measure of theCe en 3 e 3 en

correction obtainable. Although general agreement between 193e and

9 3en was obtained the correlation between Ce and Cen was poor. This

was expected since the amplitude is more sensitive to changes in the

second derivative of the reflector contour and the phases, C and Ce en'

are sensitive to both position and slope of the reflectors.

The correlation between 3e and •3en was actually very poor for the

option = +1 as is clearly evident from Figure. 2. When the value of

X is adjusted so that tan k C p-tan k Ce at x, = x2m, the condition

when option = -1, then very good correlation between 3e and (3en

is obtained. The improvement is evident from a comparison of Figure 7

results with those of Figure Z.
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The change in option choice does not affect the agreement between C
e

and Cen except near x' = X where, as discussed in Section I, aen2 2m

close agreement is expected. This change does however result in a

conaiderable improvement of the total phase distribution C2, as shown

in Figure 8. The value of C2 obtained when option = +1, Figure 3,

is not nearly as uniform as that shown in Figure 8 when option = -1.

The improvement in total phase for all value of k as illustrated in

Figures 8, 13, and 19 is actually excellent. The resulting phase, C ,

for the new dual reflector system is essentially uniform for most

practical considerations. The phase, Cl, before correction is generally

of the order of 18G' out of phase with the remainder of the aperture in

the vicinity of the shadow boundary lobe. This is true for all value of

k considered. As evidenced by the amplitudes .9 and ý shown iner 3

Figures 4, 9, 14, and 20, a substantial amount of energy is radiated

out of phase with the rest of the aperture from the shadow boundary

lobe region. Although the final amplitude, CRSL' is not substantially

different than the uncorrected amplitude, Ce the phase correction is

sufficient to alter the efficiency of the antenna substantially as was

discussed earlier. Actually, in the particular cases stu'::e:J here, the

distribution RSL is considerably more uniform than e.t'h,ýr oer

13p and would result in improved gain for this antenna. The reason

that an improvement in phase, CI to C., was obtained while no improvement

in amplitude to, was found was explained qualitatively in

Section I.
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The reflector shapes before and after correction are illustrated in

Figures 5, 10, 15, 16, 2'1, and 22. Of particular interest in the

cases of the main reflector correction is the small change near x'

xZrm for the option = -.I and the large change when option = +1. Compare

Figures, 5 and ]0 for this effect.

Two factors are worthy of notice in the sub-reflector correctior,.

For smaller k it will be noticed that the corrected su.b-reflector,

-ln (Xln)" is contoured so that a great deal of reflected energy is

directed towards the upper portion of the main reflector, This is to

help correct the large shadow buundary lobe in this reg-ion of the main

reflector, Notice that a much larger segment of t.-he sub-reflector

illumriuates the same portion of the main reflector after correction.

This effect decreases uniformly as k increases, as is evident from the

k = 16w and 3 2 Tw cases, Figures 21 and 22,

In Figure 5 a primary ray trajectory was traced as -it was xc.flected

from the sub-reflector and main reflector. The ray trajectory was

constructed from numerical data obtained with the ma.chine computed

results and it is seen that Snell's law is satisfied at each new' reflector.

All the cases discussed above were also analyzed for the case wherein

is rotated (designated by ROT on the c graphs) and these results are

similarly illustrated i.n Figures Z4 tbroutgh 47, The above discussion

applies equally to these results in every qJa7itative respect. While

these results may discourage son.ewhýt thfe hope that a judicio<,L,

variation of the para--3m.-eters will lead to both an amplitude and phase
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correction, such a parameter study does seem worthwhile since the

improvement in antenna performance could be substantial if the study

is successful.

Various discontinuities and other minor irregularities on the graphs

are explained by accompanying notes for the most part, it is worth

noting that these computations taxed almost the complete storage

capacity of the IBM 7090 at Berkeley and were very time consuming

and hence costly to obtain Computation of al! the variables in

Section II and those of Chapter 3 wvhere necessary for one value of

x,' consumed approximately fifteen seconds of comput.er time. Hence

relatively minor inaccuracies may be expected due to the ,omputer in

addition to the approximations made in the course of the derivations,

The above inaccuracies may give rise to the result that 9RSL does
not appear to converge to '3 for very small ' , whereas r does

•3 sml wheea e

converge (comparatively) to 9 for small 91e' This may be due to

the accuracy obtained or to the possibility that no exact solution exists.

If an exact solution does not exist, then an iterative solution of this type

will never converge precisely,
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APPENDIX I

EXISTENCE, UNIQUENESS AND BOUNDSý

With the functions

dyl - lXj tan( 01" 0 2

and " y (1)dx - f (x2, y ) =-tan ( 3)dx 2 2

determined for each reflector, it is important to know whether a

solution to these equations subject to the appropriate boundary con-

ditions exists, and if so, what the maximum possible value of jY
is for each solution, particularly the solution for yZ(x,).

1

The Cauchy-Lipschitz method for integrating (1) provides a useful

way to determine bounds to the solution. Briefly, the method approxi-

mately integrates (1) by the Riemann sum

n- I

Yn = . f(xi, Yi) Axi

i=0

where nAx. = x and Ax. is < 0 when the solution is developed from1 1

xmax' and also provides the necessary and sufficient conditions for

the limit (n-s ca) to exist. If the limit exists, then the solution exists.

The conditions for existence also provide a means for determining

an upper bound for I yo

1. H. T. Davis, "Introduction to Non-Linear Differential and Integral
Equations", pp. 88-93, U.S. Atomic Energy Commission; September 1960
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The Cauchy-Lipschitz conditions state that:

1., f(x,y) must be uniformly continuous. That is

If(x,y) - f(x + h,y)] < C when h < S for all &>O.

2. f(x,y) must satisfy the Lipschitz condition. That is,

there exists a number K such that

lf(x,y) - f(x,y + h)I <K h for all h , 0.

3. 1f(x, y) I must have a maximum M, in a rectangular

region in the (x,y) plane defined by xZmax - xzmin;

+b: -b; such that

max -b (2)

In (2) and what follows, the value of xmin will be taken as zero for

convenience.

The first two conditions will usually be satisfied since f(x,y) will,

in general, be single-valued, continuous and have continuous deriva-

tives in practical problems. This is assured by making appropriate

choices of any branches of f(x,y) if such exist. The distributions

Ii(O1) and I3 p (x,) may be discontinuous even though equation (1)

remains analytic. In other words, if discontinuities in Ii(81) are

reflected in I3p(X,) then the reflectors may be continuous.

Satisfaction of the last condition also provides an upper bound for

yI Y, which is equal to b. In this case, the solution is constrained
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to lie in the shaded triangular region depicted in Figure 1.

If f(x,y) can be found in explicit form and can be readily manipulated,

then the value of M and a bound for ]IyI can be found directly from

f(x,y). Furthermore, a lower bound for the radius of curvature of the
df n .

reflectors can be found directly by maximizing inx in

If f(x,y) cannot be found explicitly or in sufficiently simple form, then

absolute bounds I 1i b and [Y•2 b for (•1  and 1 .4 can be found

from equation (1) and the boundary conditions. Although b and

1 Y21b may be considerably higher than y d max and YZI max'

respectively, their finite values are proof of the existance of a solution.

Absolute bounds for y 1, and Y2 1 will be found for two cases of the

boundary conditions:

a. Xmax > 0 (leads to solutions similar to the Cassegrainian

type)

an d b.

X Zmax < 0 (a negative maximum is implied and leads to solutions

similar to the Gregorian type).

For convenience, it will be assumed that 03mm = ai m 0.

Since 03max and 0lmax are usually given 'boundary conditionas,

Since 03 = arc sin (dCp/dx,2) and Cp(x',) is given, then 0 3 (x.) is

known and so are 0.3 m and 0 max.
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it is clear from equation (1) that it is sufficient to determine an absolute

upper bound for 0 b in order to determine .dylI and
2' dxl bdyZl

dx 2 I' b

It is also assumed that o and ( are given boundary conditions

(note that they may be negative or positive).

The appropriate geometry for case (a) is depicted in Figure 2. Only

the end points of the reflectors are depicted. An extreme ray trajec-

tory is depicted from the phase center of I(1),) to the point

(Y2 0, x. = x2max). The value for 82b is found as

02b = arc tan (x2, ) for XZmax 0 (3)

which leads to a value for JYl lb as

ytb = max t l arc tan - so long as

b x and with x 0 (4)
2b 1imax2ma
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if 0 2b is less than 1 m then e1 may be substituted for

2b in (4). The value for IYb is found as either

S2Ib - x tan -1 arctan ( -ax for e > 0y 2bx2max 22b 3 3max

with x 2 max > 01 (5)

or
-2  a fo re =e

2Y21b m amax tan 3max > S2b

with x 2 max> 0 (6)

There are two possible geometries for case (b) which are depicted

in Figures 3a and 3b. The geometry in Figure 3a leads to a value

for e2b as

e arctan x~maxI) with x < 0, (7)

2b Z, x2 max

and the geometry in Figure 3b leads to

eZb arctan (Ixzmax+ Xmax) with x0 (82b 0C +' P 41a 0 8

The appropriate value of 2 b' as given by (7) or (8), is used to

find I yllb and I y21b. Since 0, and 0 always have opposite signs1 2

in this case, the value for I ylI b is found as

I l1b tan 2b + G /Ilmax with x 2 max 4 0 (9)
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Since the signs of 62 and 63 remain the same for this case, as

for case (a), the value of Iyj: b is found as eithner

y2l'b = X2 x tan 2b)' for 02b > 13max

and with x 2max 0 (10)

or

Y21b x2max I tan foI 3max 2b

with x 2  > 0 (>1)

A somewhat improved estimate of an upper bound for A YI can be
-2

obtained if the assumption is made that the sign of 1 y does
d.x2

not change over the reflector. This assumption is usually valid for

reasonably smooth I 3 p(x') and 11(01). For example, it is true for

all Cassegrain parabola-hyperbola and Gregorian parabo.a-ellipse

designs. It is also true in the computed designs shown Chap.ter 1.
d.2

If the assumption is not valid, that is -I--Y- does reve :ýe s- ' for a
(dX

small interval of x - x then the. proposed estiniaz-e for anmax M1a]In'

upper bound to I yI may be in error, but may nevertheless be a closer

estimate to the true value Yrnax1: than the absolute bounds previously

con side red.

If the second derivatives
d zyl 1 2 11 @2 (d1 d1

2

dxl 22
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and

dY2  2 - \ ( - do3
-"sec 2 3 03

. 2

do not change sign then this implies, for most cases, that (dO1 - dO2 )

and (dO2 - dO3 ) do not change sign. In this circumstance, the differences

of the angles,

(I1max - O2ba)

and

2ba - 03max)

will, in general, be the maximum differences. The value 0 2ba. is

an improved estimate of an upper bound for 1 021 which will be found

for cases (a) and (b).

For case (a), x2  > 0, an approximate upper bouad for 2O1' 0 Zba'

can be obtained by using the value depicted in Figure 4. This value is

given by

x - X02ba 1 arctan XZmax lrnax for x2 > 0 (12)0 aca max

The corresponding approximate upper bounds for I Yl max j and

Y2 2maxf y 11 ba and fY-I' ba', are then given by

x tan (2zba" 1 ax 1) ýfor x 2 rra (13)
lYll'ba =: Xlmax 2 'l" ax > 0 ( 3
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and

ba = X xtan (Zba 0"3ma for x >0 (14)

For this case, (a), the assumption has been made that

d2Y
d-•-i < 0' for all x1 .
dx Iz

2

For case (b), x2ma < 0, the assumnption is that d Yl > 0 for

dxx

all x I' The approximate upper bound for 121' ,2ba' is found

from Figure 3b, irrespective of the position of the focal point F.

The value of 0 2ba is the same as that given for 02b by equation (9)

since 01 and 0 2 have opposite signs in this case. It should be added

that the geometry of Figure 3b occurs less frequently than that of

Figure 3a in practice so that the improved bounds for I Yllmax are

usually different than the absolute bounds. The signs of 02 and 03

both change in this case, (b), so that the improved bound for IYj Kmax

is given by

Y ba x max 2"an( (15)

for x2 max < 0,

Some computed bounds which are applicable to the numerical solutions

shown in Chapter 1 (Figures 5 and 6) are presented in the table below.

The values of these bounds would justify a computation and are valuable

for that purpose.
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T RUE

CASE _____ y2bIZb

Convex 0.4237 0.84

Concave 0.4162 1 0.84

T RUE
CASE ly Im-ax I y Ib I1b

Convex 4 0o0387 0.1 O 0466

Concave 0.0674 0.173 0.146
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APPENDIX II

ON THE AXIAL CAUSTIC OF THE EDGE FIELD

FOR SURFACES OF REVOLUTION

In this appendix we shall justify the use of the factor GAe which is the

Gaussian curvature of the field wavefront in the axial case. We will also

justify the fact that a very accurate approximation of the field near the caus-

tic is not necessary, since only a very small solid angle is subtended in

this region.

1. The Factor GA.

In equation (6) of Chapter 3, the amplitude of the field Ue varies

as I/ rr This is typical for the far zone of any cylindrical

field, when r is the distance from the source to the field point.

Energy is thus conserved in any angular sector per unit length along

the cylindrical axis. For the edge field the caustic or source point is

the edge itself, and as seen in the diagram (a), the normal area sub-

tended by a tube of rays from the caustic depends on the value of kr.

Alternatively, the ratio of areas is given by kr 2 /kr 1  for areas No. 1

and No. 2 in the diagram, The curvature of the wavefronts is propor-

tional to kr . We thus define GAe for the cylindrical case as

GAe =

When the edge is part of a circular curve as in the axially symmetric

case, the ratio of two areas subtended by a tube of rays through which
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a constan.t rate of energy flow passes is proportional to r in the

far zone except near the caustic axis. Consider the diagram (b) for

tbis case. The ratio of areas now obtained is

(k r) lkr2 s in + k x j/(krj)] kr'l sin r,+ kxlm

In this case the curvature of the wavefronts is defined as the Gaussian

curvature which is

GAe ]/= kr kr sin r + kxlml

For the bottom edge when P2 is still in the same direction, we have

GAe = I/Tkr I kr sin r2 - kxlm]

We assume, therefore, that for the curved edges of the axially sym-

metric case, the angular dependence of the edge field is identical to

that of the straight edge case (cylindrical case) except as modified by

the Gaussian curvature given above. This assumption is the same as

that employed by Keller for diffraction from a flat aperture with excel-

lent results obtained in that case.

At Tr - C/-0 I we have defined G-1 ) = k2  2 sin 1
for the axial case, where r - 0 We should note that r

2m - m Zrr2m

is only ?roximately 0 2M to within the accuracy of the far field

approximation. This is explained as follows. We define r2m not

as the angle P2 when the edge ray intercepts the edge of the large

reflector, but rather the value of P2 when, ý,; intercepts the edge
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of the large reflector. Hence, =Pmwhen ~ L~

being the angle the normal to the total edge diffracted field wavefront

makes with the y, axis), While this distinction is really not very

important to the theory of the analysis and negligible when the far

field approximations are excellent, it nevertheless is important when

numerical computations are made, especially by machine computors.

The machine will not owerlook a small difference between the true far

field and approximate far field and may not complete the calculation.

Hence, the difference between the defined P and e.r must be

considered carefully.

2. The Caustic Axis of the Axially Symmetric Case

In general, for the far field we will have r x xlm for the edge

fields. Hence, GAe reduces to the same expression for the top

and bottom edges

Gpe = kr sin/ I r21

providing that r. is not small. This assumption is valid so long as
2

s in I~~I2

When r' is small, we take as an approximation for the above inequality

the value for r given by rc = F2m This is a rough approxima-

tion for the distance from the edge to reflector No., 2, when 1P is2

small. A more accurate approximation will not be of great value a.s we

More suitable choices for rc can be made for specific problems.

y•
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shall show shortly. On this basis we take for the value of GAe:

GAý = k r j Isin * * IGAe -1 r r --

When P2 > 0 and near zero, we will obtain an infinity from GAe due

to the bottom edge. To eliminate this, we make the further approx-

imation that

GA kr Lsinlr I +xmAe 2 rc

for both edges.

At r. = 0, this value for GAe is correct for both edges, For
2 A

rc

this value is again correct for both edges. Hence, it is only for a

small angular sector in r2 and a very small solid angle that the

last given value for GAe is in error, In the case of vector symmetry

for the axial system, we have ATe = 0 (equation(13)) on axis

2 = 0) and the total energy in this small solid angle will be very

small as compared with the surface reflected primary field in this

same region. Even when AY : 0 as when we "average" an incident
e

linearly'polarized primary field, the net energy in this solid angle is

still small and the value for GAe at the center ( r = 0) is fairly

accurate.

As an example, let us define 2 as that angle at which
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s in (IZ 0) Lim

The total solid angle subtended by the range (0 ;JP2 j ) is

very small for xlm/rc 1<<. The percentage solid angle in this

range of the total 4 w steradians is

C-Cos 'R x 100%
2

Hence if were as large as 20 degrees, the percentage solid2R
angle would be only 6%. The percentage solid angle of that subtended

by reflector No. 2 is much larger, however, but rR = z0 . is

very large also. For R c angle is only

0.2•0.

The above numbers indicate that a precise correction for the fields on

the caustic is not necessary and will not alter the final results in any

significant way. Hence a reasonable approximation from a computa-

tional point of view was chosen.

Ny'


