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SUMMARY

Recent experimental information on low-level atmospheric turbulence
Js first reviewed. It is suggested that the assumptions of hcmogeneity
•i'd isotropy customarily adopted for high altitudes are still useful in
this regime, and that the integral scale is roughly equal to 9/10 of
tI.e altitude up to about 1000 ft. Next, the previously published theory
of the 'power-series approximation' as applied to the vertical component
of t,•e gust is extended to include all three velocity components simul-
taneously. Fourteen different one-dimensional input power spectra and
cross spectra are found of which only five are important. Of these
five, only one is a cross-spectrum involving two different velocity
components (u and v) . Formulae for them are calculated and curves
are presented. The 'gust derivatives' required for calculating airplane
response are defined and discussed, and the most important ones are
shown to be simply the negatives of classical stability derivatives.
Methods of approach for calculating the remaining ones are suggested-
Finally, it is shown that the dispersion, or probable error of position,
is fundamentally different when the controlled variable is velocity or
heading than when it is position.
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NOTATION

[Al]. [A2] matrices of aerodynamic gust derivatives

A, B, C airplane moments of inertia

[B1]. [B2 ] matrices of equations of motion

E airplane product of inertia

(Fl). {F 2) column matrlces

(g. ). {g.) colum' matrix of gust inputs

Gei overall transfer function relating ntth output to ith gust input

[o11. [p2] matrices of overall transfer functions

h altitude

He, H&, .Hr hinge moment on elevator, aileron, rudder, respectively

Ieo I, Ir effective inertia of elevator, aileron. nidder system, respectively

kt dimensionless wave number L(Ii

k (I + k2 + k2 + k2)A
1 2 3

2, 2
k' (I + k2 + k,•• . ri '

L integral scale of turbulence

characteristic dimension of airplane

it tail length

11 overall length of wing

L, M, N aerodynamic moments acting on airplane

* mass of airplane

p. q, r angular velocity components of airplane

a Laplace transform variable

t time

dif vector amplitude of elementary spectral component

vi



(U1 . u 2 . U 3 ) velocity components of aircraft [((u. V, w)]

(ut. u1. u3) velocity components of atmosphere (- (u',v'. a')]

uo reference (mean) speed of airplane

U- '6u'/ax . and similarly for the remaining elements of the gust
input matrices {g 1 } and (g 2 )

x" position vector

(x1. 12. 13) air-fixed co-ordinates

(x. y. z) body-fixed co-ordinates

X. Y. Z components of resultant aerodynamic force

XUX()/ii(s) * and similarly for remaining elements of the gust-
derivative matrices [A ] and [A.]

wave-number vector

component wave numbe.r. 2! /

Xi component wave length

a root meal square gust velocity

co circular frequency (= flu 0 ) * rad/sec

B pitch angle

bank angle

•, 71, . control surface angles

A angle of sweep

F dihedral angle,

(bIj(k1 .k 2.k 3 ) three-dimensional spectrum function of uiuj

(I) (k 1.k 2 .k 3 ) three-dimensional spectrum function of,, a/2

0 A(kl) ove-dimensional spectrum function of aL3

C) denotes Laplace transform
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TIHEORI OF TliE FLIGHT OF AIRPLANES IN ISOTROPIC TURBULENCE "
REVIEW AND EXTENSION

B. Etkin*

1. INTRODUCTION

The flight of airplanes through turbulent air has been a subject of prime concern
to aeronautical engineers since the beginning of flight itself. The attendant problems

of structural integrity, flying qualities and performance receive continuing study.
The application of statistical methods during the past decade, in particular the

methods of power-spectral analysis and the theory of isotropic turbulence, have

brought about a significant advance in our understanding of these problems.

The theoretical approaches to analysis fall into two categories, according to the
manner of specifying the 'unit' element of the gust. The firstt uses a 'gust

impulse' as the basic element, as shown in Figure 1. References 1. 2 and 3 are
representative of analyses based on this method. The second approachil uses the
elementary spectral (Fourier) component illustrated in Figure 2 as the basic element.

This is the one which has been taken in References 4, 5 and 6. It should be emphasized
that there is no fundamental opposition between the two formulations; both can in
principle land to the samm results the aI.Cwirl nf which donanda nnt nn this ohnin
but rather on the details of the approximations subsequently made in the analysis.
It is the opinion of the author that the second method has some advantages, viz:

(1) The mathematical formulation is simpler, and hence easier to understand and

to use;

(2) It is easier to separate the elements of the theory that are essentially wing
theory from those that are essentially the representation of the turbulence:

(3) By using the power-series approximation of References 5 and 6, extended
herein, the accumulated knowledge of aerodynamics embodied in stability and
flutter derivatives is easily incorporated;

(4) Approximations involving certain parts of the frequency spectrum are easily
incorporated.

This report presents a brief review of the information on atmospheric turbulence
in Section 2. It follows in Section 3 with a semi-qualitative description of the
two basic methods of analysis mentioned above. Section 4 contains an extension and
generalization of Reference 6 to cover the case of simultaneous inputs of all three
gust components, and Section 5 presents some information on the flight path of a
vehicle flying-in isotropic turbulence.

* Professor of Aeronautical Engineering, University of Toronto, Canada

t Due to H.W. Ltepmann, Reference I

tt Due to H.S. Ribner, Reference 4



2. THE STRUCTURE OF ATNOSPHERIC TURBULENCE

It is obvious that if we wish to study flight in turbulent air theoreticrlly we
must know enough about atmospheric turbulence to construct a reasonable mathematical
model of it. For this purpose, the atmosphere close to the ground (in the boundary

ia ,,r produce, b., ,, - n needs to be couside-ed sepakiatriby fiuu that hlighihe up.

2. 1 Outside the Boundary Layer

There is little to be added to the picture of turbulence at higher altitudes which
has already been so competently given by Press and hisco-workersat the N.A.S.A.7,8
(An abbreviated account is given in Reference 5). In short, it is a reasonable

approximation to regard high-level turbulence as homogeneous and isotropic in patches
of limited extent. The velocity of airplanes is normally sufficiently high that the

tuiOuient iieia within one or these patches may De regaraea as constant during tne
time of passage: and the statistical properties of the input to the airplane are

assumed to be independent of the response of the airplane itself. i.e. they are the
same as would be obtained in rectilinear translation at constant speed. (This is

not to say that the response of the airplane is neglected in calculating the aero-
dynamic forces. The forces associated with motion of the airplane are included as
usual.) The probability distribution of the intensity o of the turbulent patches

is dependent on the route, season, altitude, etc. The one-dimensional spectrum
fuctjo, for the laLefial iuuuetiL of Lhe L.urbuieuce which is now widely accepted is

03  (k -a2L 1 + 3k 1
) 22() 1 2' (I + k) 2 )

According to the theory of isotropic turbulence 9 the above is derivable from the
more basic energy spectrum-function. The latter is

E~k) W cr 2 L k2 +1)3 (2)
7 (2

In terms of E(k) . the one-dimensional spectrum is calculated from the relations

@ij (k1) L2 j (k 1, k 2 . k3 )dk 2 dk 3  (3)

and

L2 E(k)
Dij(k12'34k3) - -k7 (k28ij - kikj) (4)

where ýij is the Kronecker delta. When Equation (2) is substituted into

Equation (4) we get

2 2• 3 k•oij - kikj (5)ij 1, . 3 (k 2 + 1) 3
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and Equation (3) becomes, for the particular energy spectrum adopted.

2-21, /tk6ij - k.k.
0 i(k ) = - 1 " I dk dk 36)

Prom"Equation (6) we may also obtain the companion to Equation (1). i.e. the

longitudinal one-dimensional spectrum

Z- 2L I

911(k ) - 2 (7)7T 1 +k

The cross-spectra 0,._ . 0, S, are all zero. since for these cases the integrand
of Equation (6) is antisymetrical with respect to one or both of k 2 . k

Unfortunately, there is insufficient information available on the scale L of the
"turbulence in the atmosphere. The value L = 1000 ft has been assumed by Press and
others to be reasonably representative but much more experimental information is
"needed. It should be pointed out that this is a very important parameter, since it
may exert a dominant influence on the energy available at the resonant frequencies
of the airplane. This effect is shown in Figure 3, taken from a Douglas Company

'reportlU. Furthermore, the accuracy of the power-series method (Sec.5) is dependent
on the ratio of airplane size to turbulence scale.

2.2 Near the Ground

At low levels, the turbulence resembles that which occurs in boundary layers

adjacent to rough surfaces and is strongly affected by the terrain. The scale and
intensity both vary rapidly with height above the ground, and in general the field
is neither homogeneous nor isotropic. A number of measurements have recently been
reported of statistical properties of low-level turbulence 1 0-13 from which two

useful general conclusions can be drawn. The first is that Equations (I) and (7)
are fair approximations to the lateral and longitudinal one-dimensional spectrum

functions. The second is that the scale factor L in these equations, up to
1000 ft altitude, may be approximated roughly by

L = 0.9h (8)

where h is the altitude. The evidence for these conclusions is given in Figures 4
to 6. Figures 4 and 5 show comparisons made in the USAF-supported Douglas study
between measured spectra, and those given by the equations. The agreement as to
shape is encouraging. Figure 6, which contains more detail at the low wave numbers,
is another comparison, using k15(k1 ) as the ordinate, and the ratio altittsde/

wavelength as abscissa. The experimental data are"those of Panofsky' 1 and the
heavy line is Equation (1) with L 0.93 h . This value of L corresponds to a
maximum of the curve at h 7 0.25 . This seems to give the shape of the experimental
curves well enough at heights as diverse as I metre and 300 metres. No importance
should be attached to the actual ordinates of the curves in these Figures, since
none of them has been Knormalized, and there are wide variations in or (which is the
area under the curve wien plotted to linear co-ordinate scales); only the shapes are
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significant. Panofsky also gives a semi-empirical formula for the variation of
intensity with height and ground roughness under unstable meteorological conditions.
This is

0= .226
low h!/h

where V = mean wind at height h

h 0  characteristic roughness length.

The questions of homogeneity and isotropy are more troublesome. The evidence shows
quite clearly that low-level turbulence reflects the nature of the terrain. If the
latter is homogeneous and isotropic, then the turbulence will be closely axisymmetric.

i.e. independent of rotation about a vertical axis, and homogeneous with respect to
translations in the horizontal plane. However, the scale and intensity in general
vary with height, and hence the turbulence is not truly isotropic and the theory
leading to the one-dimensional spectrum given in Equation (6) is not valid. I'
spite of this. there would seem to be no recourse. in the present state of the subject, ,

but to use the isotropic model for the low-level case as well as for high altitudes.
The complexity of the problem is even then quite sufficient!

Equation (8) indicates that we must be concerned with turbulence having scales as
small as 200-300 ft. At such small scales, the variation in gust velocity over the
airplane becomes important, and analytical methods of some refinement and complexity
are indicated.

3. TUE TWO BASIC METHODS OF ANALYSIS

3.1 The 'Iqimlse' Method

Let ox1 12 13 be a co-ordinate system so chosen that the mean wind in it is zero,
and such that oxI is the mean flight path. Let the airplane be regarded as planar.
so tb5 t only the distribution of atmospheric motion (u u , u2 . u) over the
horizontal plane ox, X2 is of interest. The impulsive gust element at point

(x1 . x2) then has components

u dxi dx Z uldx dx 2 . u~dXldx 2

of which we consider one at a time (as for example in Figure 1)., Now let the air-
plane come under the influence of the gust element when the c.g. is at position

(ý,0,0) . Then a typical aerodynamic force or moment associated with it. e.g. the Z

component (the negative of the lift) is

u'ddxdx2hx ,- 2)c. g.

where h(Ax 1 ,x 2 ) i"' the response function for a unit-impulse gust, and is zero
for Ax1 < 0 The total force Z(x. ) acting on the airplane is then obtained* e. g.



by integrating with respect to x2 across the span and with respect to • from
-o to cD . The autocorrelation of Z(xxe. a.) is next obtained. viz.

1
Ru(A~x1 ) = x ()Z(x I + ?7--l

and finally the spectral density (which is the quantity sought) is obtained by taking
the Fourier Transform of the autocorrelation. This procedure entails some quite
complicated mathematics. It is worth noting that the basic aerodynamic information
is all bound up in the function h(Axt.x2 )

Thus the method does not lend itself readily to incorporating aerodynamic informa-
tion (experimental or theoretical) which is in the form of stability or flutter
derivatives. There is a large body of such information. and to be able to draw on it
easily is an advantage. Furthermore, when we wish to extend theimpulse method to
include the three velocity comg-ents simultaneously. the complexity is further
increased by the presence of non-vanishing two-point cross-correlations between the
u u 21 and u; cmpoments.

3.2 TeW Fourfer Onmemt' Method

In this method the basic element of the turbulent velocity field is a wave of
shearing motion, described by the expression

e dU (WA (9,)

The corresponding distribution of downwash over the ox x2 plane, for example, is
shown in Pigure 7. Once the lift and other relevant aerodynamic forces or moments
have been determined for such basic velocity fields, the formalism for writing down
the spectra of the inputs to the airplane system Is quite straightforward. However,
In itself this step does not make the determination of the basic lift element any
easier. It replaces the problem of finding h(AxQ,.x 2) with that of finding the
periodic lift (or other force) associated with a running-wave boundary condition.
In fact, the latter solutions may be constructed by a suitable integration of the
former. Examples of solutions of this kind of wing-lift problem are found in
References 14 and 15.

3.2.J e Power-&ries Approximation

A simplifying approximation introduced in Reference 5 and extended in Reference 6
is based on representing the gust-velocity field over the airplane by a modified
Taylor series. It was shown in Reference 6 that by keeping terms in the series up
to the second order, the velocity distribution can be represented adequately for
spectral components whose wavelengths on the two axes (X, and N? . Fig.7) exceed
twice the corresponding airplane dimension (length or span)'. It was further shown
that the cut-off frequency obtained by excising the higher wave numbers is high enough
to allow inclusion of important elastic modes, and that the error due to using a

It is shown later (Sec.4.1. 1) that the wave-length limitation is actually less restrictive
than this.
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truncated spectrum is not serious provided that the ratio L/! is not less'than
about 3. The value of I for a large sweptwing airplane is about 100 ft. so the

turbulence scale L may be as small as 300 ft for such aircraft. For smaller

machines. L may be correspondingly less.

It shoul. b ,n-oted tbat it wAy fiequently aut bc eevesaary tu retain the second
order terms in the power-series development. From the examples shown in

Reference 5 it can be seen that cutting off the spectrum at component wave-lengths

less than eight times the wing chord and wing span respectively may still provide
sufficiently good results for motion in the rigid-body modes. This requires only

that the zero order and linear terms of the series be retained. Furthermore. it
will be seen in the following that the input spectra associated with the second-
order terms a very small.

4. EXTENSION O!FTHE POWER-SERIES APPROXIMATION

In References 5 and 6 only the vertical component of the turbulence (u wV)

was considered to be present. However. the simultaneous occurrence of all three
velocity components mist be considered for a complete theory. Thus we take as the
description of a single spectral component of the gust field the Taylor series

(U \ ( 2 u' i 1. 1.2.3Ut + + 2U) ""k/Ik i.k = 1.2, 0)

where the sumtion convention for repeated suffices is implied. The subscript o
denotes the airplane C.G.. i.e. the point (u 0 t~o,o) . Thus u? and its derivatives

are periodic, with circular frequency 0 Uo = co

As in Section 3.1. we consider the airplane to be a planar body, so that only
the variations in the x1l2 plane are of interest - hence the restriction of J. k to

1. 2 in Equation (10). In Reference 6 a refinement was included which improved the
fit obtained with this approximation to the actual sinusoidal velocity distribution.
she refinement was to multiply the linear terms by suitably chosen frequency-

dependent factors. This had the same effect on the input spectrum functions as
would adding certain third order terms to Equation (10). Although there is certainly
some gain in accuracy achieved thereby, this refinement adds undesirable complexity.
and is not included herein.

7te point of view taken is that each term of Equation (10) when it is applied to
a single spectral component) representg a periodic relative velocity field of simple
form. which results in periodic aerodclyamic forces and moments. These are expressed
quite generally by a set of 'gust derivatives' or 'gust transfer functions' which

are analogous to (some are identical tc) the familiar stability and flutter deriva-
tives which have been in use for so long.

Consideration of the symmetry of the velocity distributions represented by the
individual terms of Equation (10) permits separation of the associated aerodynamic
forces and moments into the usual longitudinal and lateral groups. The following
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matrix equations serve to-define the 'gust derivatives' (note that the _ust velocities
are now denoted by, u' v' w')

(F2 [A,] {ig2) (12)

where {F}

(13)

{Vp) y [

S(14)

InR

!ft  {g1) = [ii'

fgix,

vlo[.. (15)lix

wxy

{g 2} = '
UI,

IIg I

U Y

Vr

xx

ii~y

Y,wLvyi;.
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where wT a -w'/1x. etc. It will beseen subsequently that the input spectra associated
'with V are negligible, and hence that term may be dropped.

[All -x, X., Xt X.,1, l xix ",y yy. Y.y
Z/u P~ r Z Z t z F

I , UU, I;u, z.; z., zF, z,.?
X y I X I X 13 Y Y

M4u' N,, Nut r , vI U, r~ Mw;' N,? Mu;Y %, I
X X y xx. xx y YLHe,. Hew, "eu; Hew. Hev"1 Heu" He, "ev H,, ",, J

L 7y xx xx ly 77 yyd

(17)

[A2 ] ¥v' YVI Yu , F Y r¥ Yy 1
I Y I

Lv, Lyt Luj L,' Lv, Lu- L,/ i

I X Z I 17

Nv, Nvt Nut Nwr I Nv? Nut INw, NY? (18)X y Y I xx xy I .Y { yy

Hav, HjLvt Haut Hawi'? Hay, Haut Ha- I Ha- I
[x' Yrv Hru XrX; ,y I"XYI I

Hr.i Hrv, Hrut 1 rY, Hrvt 1 1rul _Hrw_ I Hrv;y
x Y ~X Y L - Y]

In the above expressions {F } and {P } are the column matrices of the Laplace

transforms of the longitudinal and lateral aerodynamic forces respectively, {g j}
and {g 2 } ) re the matrices of the Laplace transforms of the gust-velocity inputs for
the longitudinal and lateral equations, and [A1 ] and [A2] are the matrices of
'gust transfer functions' defined by Equations (11) and (12). These transfer functions

might frequently be approximated by simple derivatives. e.g. Y¥vt = 9Y/lv (see
Ref.5, Sec.4.16). The matrices [A I and [A 2 are written out above with maximum

generality, in which case there are a total of 80 transfer functional The dashed
lines in Equations (15) to (18) indicate those portions of the matrices (to the right

of the line) which would be neglected in a first-order theory. The number of transfer
functions is then reduced to 40. If only]control-fixed conditions are of interest, a

further reduction to 27 is effected by dropping all the H terms. Additional
simplifications of the sort common in stability and control work might frequently be
in order: for example, neglecting the X-force equation altogether in the longitudinal
equations of motion, and dropping certain transfer functions which experience or
analysis indicate are small.

4.1 The One-Dimensional Input Spectra

Since the 'inputs' {g,} and {gl2 contain more than one element, the airplane

system is. subjected to a set of simultaneous random inputs. Figure 8 illustrates the
general case, with inputs xi(t) , I = 1 to n , output yn(t) , and transfer
functions G, 1 (s) . The output is given by

, .



ye(s) = I ln(s)•i(s)

I

and. as shown in Reference 16 the (one-dimensional) power spectral density of Y.
is givan by

0n~C1 1 (!Oj Cic ,)G0 j ("0)Iw (WL) (19)S~i

The star denotes the conjugate colex number, so that, for example. the term
0,1,11 = *%,1 *oi.Which Is the familiar result for a single input. 91j in the

crosa-seectria of x, and xj , i.e. the spectral distribution of Ix or the
PFouler transform of the croms-correlation of xl and j. In using iqantios (19)
It Is limortant to note that

9 .... e(O) - j eIM (20)

If yn is one of the airplane response quantities such as roll angle. load factor.
wing stress."'etc. . then GnC(W) is the overall transfer function relating this
particular response to the input xi (.g. wl ). .he evaluation of thee transfer
functions is performed by applying the forces fr,) or {f 2) to the appropriate
equtions of motion. e.g. for the horizontal flight of a rigid airplane with six
rigid-body and three control system degrees of freedom:

[B 1][1 = P (21)[i7J

Is2] = {F2} (22)

where

[DII (MB - X,) XW mg X

- Zu (as - Z,) -(Muo + Z s) -Z (23)

M-N (De2 U8)

He Hew HeqS (IS2 a He)
U

""2
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L v ( A 2 -L . s ) - .(E a + L r)f L

-(s+ N) (Cs - Nr)lf-

0 2Hap -2Hr (las2  2Had 0

Hr, HrV Rrr 0 (1 rs2  HrCJI

(24)

It folloa from Equations (11). (12). (21) and (24) that [0 1 1 1~ [ n
(at]= J ( 2- [IA )] where [0,1 and [N,] are the matrices of the overall transfer
functirns. G51 for the two sets of equations. In the above equations. the

quantities 7., . etc..* are to be interpreted as transfer functions. i.ea.

+z etc (25) 1~
The eqamtions do not include any automatic control elements. but the addition of thoem
in particular cases is usually fairly straightforward.

we must noiw consider the input spectrum functions which occur In Equation (19)4
These are the cross-spectra, of all the Inputs that occur in (g,) or {g2} - that is,'
among the velocity components and their first and second derivatives. Many of these
cross-spectra are zero by virtue of the fact that the two quantities Involved are
uneorrelated (see after Eqn. (7)). However, a number of them remain. and these must be
calculated. Let the spectrum function corresponding to any pair of entries in {g l}
or (g2) be identified by a corresponding pair of subscripts. For example, @uxvxy
Is the cross-spectrum of u ~ adv' hc ocrin{ The expressionfo
the three-dimensional cross-spectrum of two scaler-components of a vector of the
form given by Equation (9) Is given by Batchelor (Ref. 9, En. 2.5. 5),as

Ifl d~A (26)

The cross-spectra of elements containing derivatives cam be written down directly
from Squation (26). For example, the spectral compoaent of u. from Equation (9)
is given by the 'xi derivative of the u. component, viz.ý

ni dl~j1 ) (27)

whenc'e for example

OU xv xyb A (28)

1" _
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The general rule is seen to be that for each derivative with respeot to xk °the
spectrum function ij is multiplied by ±i\ . The plus sign is for derivatives
of the second subscript velocity component (vxy in Eqn. (28)). the minus sign
is for derivatives of the first (u.) . The difference in sign burs because the
conjugate of the first amplitude element is used in Equation (26)!I The correspond-
ing one-dimensional spectrum function, continuing withi/the same example. is then
(of. Eqn.(3))

SifJ 2 da) (29)

or

= i IDk2 12 (k1 k k$)dk dk3  (b)

In the theory presented herein, we exclude that portion of the spectrum for which
fl >fl• and Q > fl where 0' and fl• correspond to the wave-length limits for
which the power-series approximation is valid. It must be noted that some of the
Integrals of the type contalned in Equation (29) are divergent when the limits are
infinite andthe truncation is therefore ssential. and not a matter of choice.
The expression for the truncated spe.,trum is

k- J'kdk 2 J4 1 2 k 1 k 2 h 3 dk

Ou v (k) = k• 1  (kk2,)dk3(30)

With the value of 0ij given in Equation (5) this integral, and the others like it
which occur in the equations, can all be evaluated quite simply. The integrand in the
majority of cases is an odd function of one oA both of k2  end k2  ad for these

the integral is zero. Of those which remain, some can be discarded on the basis of
the following order-of-magnitude analysis.

h*e general form for 0(k ) (apart from sign) is

k' - .
Im(k1) =dkr (ik)X (ik)O dk ) -

2

where n = a + an, ad a and 8 are the orders of the two velocity derivatives
involved. When the expression for i$,0 given by Equation (5) Is Inserted, we get

2a.2 YLk 2 S kik0 (k1 ) = -"1 -"L1 "n(ik )"" (dk 1  , - (32)
"J I -d (32)

j iT ''J (k+i)I2
I0



Depending on the values of i and J , the integration with respect to k3  leads

to zero, or one or both of the following terms

377IT-/
(k2 + k2 + 1 )h/2l - (k2 +2 + 1)3/ (33)

8 1 28

Since we are interested in values of ki and k2 up to about 100, we see that the

magnitude of 0 is characterized by the numbers
n ~4

Ll-n(lO0)n'• or L

of which the larger one is the second.

Thus the relative values of 0 with ascending n are oharacterized as shown in the

following table:.

Table I

S..n 0 I 2 3"

1 0.1 0.01 0.001 for Lý- 1000
Relative 0--

1 0.5 0.25 .0.125 for L .= 200

On the strength of these values, and noting that L =-200 is a rather small scale.

we may neglect all cross-spectra for which n > 2 . The remaining non-zero spectra

(25 ,in all) have been calculated and are given below.

For the Loegitudimal Eqmatiom

n.= 0

Cu L k1 k'0 uu = kil (34)l

30,2L 1 k__ (klf\ 2  A22,(35)
O w = I -- 

(35) i4-:7

2 

k. 

3 k

kI2

"@uux 27r k'(l + k)L +\k,/.L(

2

"+ kt " +

2 ~ ~ . 7rk( +ký

II
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7 277 1 + ~k' 2

n 2

@,U k'f[4\,k'4f

OUTk (41)

a I k' + k~
77~ 11

L~~ 2 f'k

=~ k~

=~ L ()W (46)

For Laea Igtl

2), i2iTk t1.kjjIn (48)
2-f1T -3 kI\2111T, QI. k

For aterl BotiI
3(1k 2



n=1

9,v i (49)

6.10Y F~v y(50)

I I

n 2

,u,= -9 uv1  (51)
6,~ %v(53)

=Vyv -("yv (54)

""u, =8 vE= ev (56)

"3,n = -UU3, y (57)

8e.3=-B,, (58)

The spectra given above are plotted against ki for several values of k" in
Figures 9 to 22. It may be noted that none of them are complex - they are either
real or pure imaginaries. There are 25 non-zero power spectra and cr•-n•Pectra
listed above. mny of these are equal or merely opposite in alp to others. So that
there are only fourteen essentially different ones. Of these fourteen, three are
zero-order (%uv , %v , 0.,) four are first-order (4uu, . Quvy , 8 2vx . O1 x) and
the remining seven are all second-order. Of the first-order spectra, only one Is a
cross-spectrum involving two different velocity compents. i.e. O uv, • Hence In a
first-order theory, this remains as the only cross-term between velocity components.
and if it Is neglected, complete statistical separation of the response to the three
Components of the turbulence results.j

&

4.1A The Wavelength Limitation

Examination of Figures 9 to 22 and Table I shows that the order of magnitude of
the spectrum peak is given by L' 5n . Now if the basic series giving th• valocity
(Eqn. 10) MuI been extended to inclde higher-dk,!Ier term, the effect would simply

I 2
• . 'r
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have been to add additional higher-order spectra (na )3) to the list already
calculated. It is evident that these higher-order spectra would be negligibly small
for the frequency range k < I and for the scale L> 100 . In the range 1 4k i 100
they would ultimately become large as a increased indefinitely. Thus it ampewrs
that the spectra presented are actually valid for a series representation of the
velocity containing terms of at least the third, and probably higher order. The
wavelength limitations may therefore reasonably be takeA as

b=

where lt is the overall length of the wing. Hence

to L
kl 2w-; 2 7 7-

k L L

=2w- 2w-

Por example, if L =1000 and b = 100 . then kt 20w = 62.8.

Pinally. it ma be remarked that for large L. (i.e. 1000 ft) the second-order
spectra are less at medium wave numbers (k :- I) bI a factor of order 10' than the
zero order spectra. Thus, unless relatively high freueacy responses are of interest
(e.g. elastic modes) the aecand-order spectra are not at all Important.

4.2 The Vwt Derivativs

Rquations (17) and (18) indicate that the general second-order theory, when applied
to the rigid-body motion of an airplane with three additionl control degrees of
freedom, involved 80 aeradynamie transfer functions (which we have termed %gut
derivatives'). Should additional elastic degrees of freedom of the airplane be
included (as in Ref.6). then still additional gust derivatives would be required. Am
has already been mentioned, however, substantial simplifications can be made In many
practical analyses. such as dropping the I-force equation, keeping only the first-
order derivatives, etc. These simplifications must always be determined hy the
particular circumstances. and it is not within the scope of this peper to anticipate
all the possibilities. Neither In it within it. scope to present a collection of data
on the derivatives, although it is hoped that some research at the Institute of Aero-
physics will be directed to that end. Nevertheless. a discussion of the derivatives
is given In Sections 4.2,1 to 4.2.3.

4.2.1 The Zero-Order Derivatives

The zero-order derivatives, which are the most important ones, are those with
respect to the gust-velocity components themselves. e.g. Uw, . , etc. They are
the elements of the first two columns of [A,] and the first coltm of (A]Io



These are sinply th'e aero'ynsmic transfer functions Cstability t>: ;3tlves) of

classical aerodtynamic theory, with opposite sign, i.e.

ZN, = -Z, , etc. 59)

where Z. is given by Equation (25). The reversal of sign is because w is the

velocity of the airplane in the z-direction. and w? is the Yelocity of the air in

the same direction; hence the relative motion is given by (w - w') . This group of

derivatives embodies the major aerodynamic effects of guscy air. and a simplified

calculation in which all others are neglected would still be of considerable value.

especially for small airplanes in large-scale turbulence.

4.2.2 The First-Order Derivatives

Columns 3 to 5 of ýAk7 and columns 2 to 4 of [A- contain the elements in which

there ap?:ears a first-order derivative of the velocity components. These describe

the influence of the 'gust gradient' on the airplane, and are no doubt important for

large airplanes, especially aear the ground in small-scale turbulence. It has already

been shown6 that the derivatives with respect to w and wt 'are identical with the

classical pitch and roll stability derivatives, viz.:

M.? = Mq etc.x

and (60)

L.t = -LPu etc.
y

No correspondingly simple interpretation is in general possible for the velocity

fields associated with u! and u'. For unswept wings of high aspect ratio, the

derivative ul would presumably be significant only in introducing a relative wind
at the tail different from that at the e.g., i.e.

Au -rel -ux t

This would modify the tail lift, and hence the lift and pitching moment of the air-

plane. as expressed in the derivatives Zut and Mul . For sweptback high-aspect-
ratio wings it introduces a variable (linear) relative wind along the span, which

could be treated by a suitably modified lifting-line theory. The same theoretical
wing problem is presented by the velocity field associated with ut , with the

difference that the spanwise velocity variation associated with the latter exists for

all wings, whether swept or not. For the particular case of a straight lifting line,

the forces corresponding to ul are just those given by the classical yaw-rate

derivatives, viz.:

Lu• = -Lr . etc.

The effects of the linear velocity fields associated with v and v' on the
I y

contributions of the vertical tail to the aerodynamic forces can readily be estimated,
since they merely change the average relative sidewind wind at the tail and hence

the angle of attack of the vertical tail. Their effects on the wings are rather more
involved. v- would not be expected to be of much importance for unswept wings, but
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for swept wings Y' and 1 both have the effect of modifyirn th? Wing angle offo sep wng x 'Y
attack distribution, when it has dihedral, in the -anner illt:at 2 in Figure 23.
Again. for high-aspect-ratio wings, lifting-line theory could be xzA•d to calculate
these effects in a rather straightforward -nner. For more general cases, lifting-
surfa•e theory would hare to be employed.

Men the wing is swept there is. in addition to the a changes described above.
the important variation of the mgnitude of the component of the relative wind normal
to the line of aerodynamic centres. This is given by

AVn = Tv'slnA. y < U

and the distributions of AVn associated with vY and Y' have exactly the saye
form as those shown for ALa in Figure 23. Thus the two effects will be additive inproducing rolling mcment, side force and yawing moment.

4.2.3 The Seccxrd-Ocrder beriv.atu.'es

Coluens 5 to 10 of [A1] and 4 to 8 of iA 1 contain the second-order elements.

By virtue of the as.suaDtion •ade in &tction 4.!, i.e. neglecting all input spectra
having n > 2 one column of thesm dý, rivatives is not required. That is the seventh
column in LA] 2 containing derivatives with respect to w. The reason for this
is that the low•est-order spectrun function which contains tha input w' is @v6
(n = 2) and it is identically zero. H>_nce this particular input is of negligible

importance and the associated d&rivatives art: not of interest.

' a ., have already beenOf the rea~ining derivatives, those involvinUg wz adWy ae ledybe

disc'--d in Reference 6 (using a different nomenclature). They are shown to give
the aeroynCamic forces resulting frin a periodic cambering or chordwise bending of
the wing (w.I) and a flapping or spanwise bending (w 3Y) . Values of the lift and
pitehinF monent on a two-dimensional wing in incompressible flow are given there for
the w case. The calculation of forces due to the w field could be accomplished

by a relatively straightforward application of the appropriate method of wing theory.

The elevator and rudder hinge-momeat derivatives contained in [AI] and [A ]
could all be calculated relatively easily on the assum&tion that the surface in
question experiences an angle of attack or velocity change equal to that at the mean
aerodynamic centre of the surface. The calculation of aileron hinge-moment deriva-
tiUes (the 4th row of [A1) would take more effort except when simple strip theory is
acceptable.

Generally speaking, since the input spectra corresponding to n = 2 are relativebl.
so weak. it app•ars that rough estimates of the second-order derivatives will serve
well enough for analysis.- A note of caution must be sounded in this connection.
however, when elastic modes of the aircraft are involved, for then the second-order
terms may be more important,

Reproduced From
Best Available Copy
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5. mISPUMle O TEE FLIGT PATM

baen thf aircraft is flown by a human or automatic pilot so as to traverse a

specified track (e.g.. as given by a radio beam). at a specified altitude (e.g.. as
- - ....z. ... •-.....- . * may - a __ju _ LU

(altitude) and x. (lateral displacement). These will be random variables, having
mean-square values which. wben used in the normal (Gaussian) probability distribution.

give the probability of dispersion of the airtraft from the desired (rectilinear)
flight path. In a hbomogeneous isotropic atmosphere this probability function applies

equally well to all portions of the path. However. when the controlled variable is
a velocity. rather than a displacement. the situation is fmndamentally different.
This would normally be the case for the zi decree of freedom that Is, foruard

speed, not distance flown, is the controlled variable. Likewise. it a heeding

rv&=, 'mij a*- MUM fiji Wain,~lu ka.g. WWOI G...man. 601aut * o.
becomes the random output. In such a came the displacement in a given direction is'
the integral of the corresponding random velocity compoment, i.e.

t

S = iui dt (61)

a

If we consider a very large number of flight paths through the turbulent field. and

take an ensemble average. denoted by < > . them

<Zi>= i uidt = 0 (62)

0

since the enseUmle average is equal to the space average. 7he mean square co-ordinate.
however, does not vanish:

t

ZI(t) = ,/ u1 (a)u1 (A)dadA (63)

The ensemble average (average over many flights at given time t) is

<11(t)> = f uj(a)u,(AdadA (64)

ut' then mn prodtu.t 1i(a)vij > is known from the aAtocorrelation:

Ra <ui(a)ui(1 3)> (65)
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Therefore

t

<1 (t)> U, ~R(ci 8 )dadS5 (66)
0

The integral can be shown to have the value

t

J J
0 0

At large values of t the second term become negligible. and we have the final
result

c4j> Op~ft (8

waere A z JR(ltdr Is the area under the antocorrelatio. curve of ul(t) . The
latter is directly related to the output power spectrum of u1 . and can be calculated
from it. i.e.

3()= j o~ ~(60)

where uj~ul(o) is the power spectral denmity of a, The eigaificance of the
result give in ftation 68 is thet the r.ms. disperalsm (<4x>)V varies as t .
This is the same result as in the classical problem of the 4adom walk'. Thus
the probable error in the lateral position of a compass-comtrolled flight path
increases with the square root of the time, or distance flon. The same would be
true of the distance flow itself in a speed-controlled flight. Biever. since an
altitude reference Is almost invariably used in the flight of airplanes, the probable
error In the height realn constant with time. The dispersion of entirely unguided
bodies. e.g. ballistic missiles, would vary as At in all three co-ordinates.
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Sw, dxdy JeY

Fig. 1 Vertical-gust impulse (reproduced from Diederich. Ref.2)

Fig.2 A single spectral component (reproduced from NACA TN.3255. 1954, by H.S.Ribner)
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Fig.3 Effect of scale of turbulence on output spectra. Mean-sQuare turbulence
= 12.4(fps) 2. (Reproduced from Ref. 10, Douglas Aircraft Co.)
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Fig.4 Composite and expected spectruu~of vertical gust velocities from test data
and Mil Spec 8866 Requirements. (Reproduced from Ref. 10. Douglas

Aircraft Co.)
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Pig.5 Composite and expeted spectrito of forward gust velocities from test data and
Mil Sp~c 88'16 requireaents. (Reprodutpd from R'ef.1O. Douglas Aircraft Co.)
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Fig.6 Low-level spectra-comparison of data of Panofsky McCormick Ref. 11. with
Eq~uation (1)
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Fig. 7 Variation of downwa-sh in xIx 2 plane~ for a Sin-gle spectral comixinent
(after H.S. Ribner. Pef.4)
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(b) Aa distribution associated with v' for a sweptback wingx

Fig.23 Variations of angle of attack along span of a high-aspect-ratio wing
associated witLh thjv-derivatives



DISCUSSION

O.E. Michaeisen (Canada)Y I believe Professcr Etkin mentioned that the difference
between the simple one-dimensional gust and the random turbulence may be important,
particularly with regard to v/61)L aircraft. I would believe that this indeed is
the case since the changes in inflow angles to the aircraft due to gusts are of the
same order as the basic flow angle ia the steady-state condition. In addition, an
amplification of the turbuleuce effects can occur as a result of the induced changes
in the slipstream flow angle to a tilt. or deflected slipstream wing. I would

appreciate it if Professor Etkin would comment upon this.

Reply by Author: I agree that the behaviour of vehicles in hovering and low-speed

flight subjected to low-level turbulence is important to understand in connection

with V/iiOL and U/tWL aircraft. As Mr. Michaelsen points out. the inflow angles may

be so large that non-linear aerodynamics is involved. This will certainly present
a serious difficulty. It may also be expected that all three turbulence components

will be of comparable importance, and that the correlations associated with turbulent

shear flow (Ru. Rvw) will have to be taken into consideration. I think we are a
long way yet from fully understanding the behaviour of all kinds of airborne vehicles

in atmospheric turbulence.

A-i



ADDENDUI

AGARD SPECIALISTS' METING

on

STABILITY AND CONTROL

,Complete List of Papers Presented

Following is a list of the titles and authors of the 41 papers presented at the
Stability and Control Meeting held in Brussels in April, 1960. together with the
AGARD Report number covering the publication of eaci: paper.

INTRODUCTORY PAPERS

The Aeroplane Designer's Approach to Stability and Control, by
G.H.Lee (United Kingdom) .. .. .. .. .. .. .. Resort 334

The Missile Designer's Approach to Stability and Control Problems, by
U.W.Hunter and J.W.Hindes (United States) .. .. . .. Report 335

DESIGN REQUIREMENTS

Flying Qualities Requirements for United States Navy and Air Force
Aircraft, by W.Koven and R.Wasicko (United States) .. .i Report 336

Design Aims for Stability and Control of Piloted Aircraft, by
H.J.Allwright (United Kingdom) .. .. .. ... .. .. Report 337

Design Criteria for Missiles, by L.G.Evans (United Kingdom) .. Report 338

AERODYNAMIC DERIVATIVES

State of the Art of Estimation of Derivatives, by H.H.B.M.Thomas
(United Kingdom) .. .. .. .. .. .. .. .. Report 339

The Estimation of Oscillatory Wing and Control Derivatives, by
W..A. Acum and H.C.Garner (United Kingdom) .. .. .. Report 340

Current Progress in the Estimation 6fSt-ibility,,Derivatives, by
L.V.Malthan and D E.Hoak (United States) .. . . .. Report 341

Calculation of Non-Linear Aerodynamic Stabtlity Derivatives of
Aeroplanes, bAi K.Gersten (Germany) Report 342



Estimation of Rotary StabIlLty Derivattves at Subsonic and Transonic
Speeds. by M.Tibak and H.C.Lessing (United States) Report 343

Calcul par Analogte Rhiodlectrique des lertvies Airodynamtques d'une

1Atle d'Envergure Fin .e, by M.Enselme and M.O.Aguesse (France) Report 344

A Method of Accurately Measurmng Dynamic Stability Derivatives in
Transonic and Supersonic Wind Tunnels, by H.G.Wiley and A.L.Braslow
(United States) Report 345

M.. esure des Dirtvies Airodynamaiques en Soufflerie et en V/ol, by ;
M.Scherer and P.lathe (France) Report 346

Static and Dynamic Stability of Blunt Bodies, by F.C.DuBose
(United States) Report 347

AEUOELASTIr EFFtlCTS

Effects of Aerel.astictty on the Stability and Control Characteristics
of Airplanes, by H.L.Runyan, K.G.Pratt and P.V.Bennett (United States) Report 348

The Influence of Structurul Elasticity on the Stability of Airplanes
wa4 MAltistage Missiles, by L.T.Princc (United States) Report 349

Discussion de deux Mithodes d'Etude d'un Mouvement d'un Missile
Flexible, by M.Bismut and C.Beatrix (Prance) Report 350

The Influence of Aeroelasticity on the Longitudinal Stability of a
Swept-Wing Subsonic Transport, by C.M.Kalkman (Netherlands) Report 351

So•'ep Static Aeroelastic Considerations of Slender Aircraft, by
G.J.Hancock (United Kingdom) Report 352

COUPLING PHENOMENA

Pitch-Ywa-Roll Coupling, by L.L.Cronvych and B.E.Amsler (United States) Report 353

Application du Calculateur Analogique & l'Etude du Couplage des
Mouveaents Longitudineaux et Transversaux d'un Avion, by F.C.Haus
(Belgium) Report 354

Influence of Deflection of the Control Surfaces on the Free-Flight
Behaviour of m' Aeroplane: A Contribution to Non-Linear Stabi~ity
Theory, by X. Hafer (Germany) Report 355

STABILITY AND CONTROL AT HIGH LIFT

Low-Speed Stalling Characteristics, by J.C.Wimpenny (United Kingdom) Report 3561

tT



Some Low-Speed Problems of High-Speed Aircraft, by A.Spence and
D.Lean (United Kingdom) ... Report 357

Factors Limiting the Landing Approach Speed of an Airplane from
the Viewpoint of a Pilot, by R.C.Innis (United States) Report 358

Post-Stall Gyrations and Their Study on a Digital Computer, by
S.H.Scher (United States) ... Report 359

THE APPLICATION OF SERVO-MECHANISMS

The Place of Servo-Mechanisms in the Design of Aircraft with Good
Flight Characteristics, by K.H.Doetsch (United Kingdom) Report 360

Effects of Servo-Mechanism Characteristics on Aircraft Stability"
and Control, by P.A.Gaynor (United States) Report 361

Les Commandes de Vol Considiries"comme Formant un Systime Asservi,
by J.Grdont (Prance) \. Report 362

Determination of Suitable Aircraft Response as Produced by Automatic
Control Mechanisms, by E.Mewes (Gerw~any) . Report 363

An Approach to the Control of Statically Unstable Manned Flight
Vehicles, by M.Dublin (United States) Report 364

THE USE OF SIMULATORS

The Use of Piloted Flight Simulators in General Research, by
O.A.Rathert,. Jr.. B.Y.Creer and M.Sadoff (United States) Report 365

Simulation in Modern A4ro-.Space Vehicle Design, by C.B.Wes)tbrook
(United States) .. Report 366

Mathematical Models for Missiles, by W.S.Brown and D.I. Paddison
(United Kingdom) . .. .. .Report 367

irp-fiit Simulation - Theory and Application, by E.A.Kidd, G.Bull
And R.P.Harper, Jr. (United States) Report 368

ii

DEVELOPMENT TECHNIQUES

Application of Analytical Techniques ýito Flight Evaluations in
Critical Control Areas, by J.Weil (Uted States) . Report 369

Investigation on the Improvement of Longitudinal Stability of a Jet
Aircraft by the Use of a Pitch-Damper, by R.Mautino (Italy). Report 370

X1.



Wthodes UttIls 'es pour Ia ,hse au' Point de I'Avion Breguet 9'O ,

ALIes Soufflees, by G. de Richemont (France) Report 371

TURBULENCE AND RANDOM DISTURBANCES

Theory of the Flight of Airplanes in Isotropic Turbulence; Revtet'

and Extension, by B.Etkin (Canada) . Report 372

The Possible Effects of Atnosphertc Turbulence on the Design of

Aircraft Control Systems, by J.K.Zbrezek (United Kingdom) Report 373

L'Optimtsation Statistique du Guidage par Altgnenent d'un Engin

Autopropulse en Prisence de Bruit, by P.LeFývre (France) Report 374

Reproduced 
From

est Available COPY



ADVISORY GROUP FOR AERONAUTICAL RESEARCH AND DEVELOP",1T
Organisation du Trait6 de l'Atlantique Nord

64, rue de Varenne - Paris 7 eme

August 1961

AG-RD Distribution List

Category II: "Not for Sale" Publications

COUNTRY ADDRESS NO. OF COPIES

BELGIUM Centre National d'Etudes et 25
de Recherches A4ronautiques
11, rue d'Egmont, Bruxelles

CANADA T.I.L.-Ministry of Aviation 30
Leysdown Road
Mottingham
Lon'on, S.E.9
Attn: Mr. F. G. Waite

DENMARK Danish Defence Research Board 10
£sterbrogades Kaserne
Copenhagen O

FRANCE ONERA (Direction) 90
25, avenue de la Division Leclerc
Chatillon-sous-Bagneux, (Seine)

GERMtAY Deutsche Gesellschaft fur Flugwissen- 90
schaften

Zentralstelle fur Luftfahrtdokumenta-
tion und Information

Munchen-64, Flughafen
Attn: Dr. H. J. Rautenberg

GREECE Greek Nat. Def. Gen. Staff 10
B. MEO
Athens

ICELAND Director of Aviation 3
c/o Flugrad
Reykjavik

ITALY Ufficio del Generale Ispettore del Genio 85
Aeronautico

Ministero Difesa-Aeronautica
Roma

LUXEMBOURG obtainable through Belgium

Reproduced From
Best Available Copy



NETHERLANDS Netherlands Delegation to AGARD 35*
Michiel de Ruyterweg, 10
Delft

NORWAY Norway Defence Research Establishment 22
Kjeller per Lillestrom
Attn: Mr. 0. Blichner

PORTUGAL Direccao de Servico de Material da Forca 5
Aerea

Rua da Escola Poiitecnica, 42
Lisboa
Attn: Corone! Joao A. de Almeida Viana

TURKEY Ministry of National Defence 30
Ankara
Attn: AGARD National Delegate

UNITED KINGDOM T.I.L. 120
Ministry of Aviation
Leysdown Road
Mottingham
London, S.E 9
Attn: Mr. F. G. Waite

UNITED STATES National Aeronautics and Space 400
Administration

Langley Research Center
Langley Fie.l. Virginia
Attn: Report Distribution and

Storage Unit

AGARD 64, rue de Varenne 45
Paris 7 eme

"Netherlands meets demands of SHAPE Air Defence Technical Centre.

AGL (1) 7-62-1M9-352

Reproduced From
Best Available Copy


