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SUMMARY

P:Iight data can be dangerously misleading in the absence of careful interpretation.
This Report discusses test results pertinent to a variety of typical flight-control
problem areas of the current generation of airplanes. The results presented were
obtained from flight investigations of many research and operational aircrw

NASAFhigirt~Resaarch.Conlel QUEL. Lhe.past-10-yommer-_ .

‘ﬁ:'The Réport considers basic stability problems such as pitch-up, roll coupling, and
marginal directional stability. Development of augmentation sysyems and contrel system
evaluations are also discussed in some detail. Throughout the Report, the importance
of co-ordinating flight and similar results are very much stressed and it is shown that
in many areas even the most painstaking interpretation of flight data can lead to
possible disaster if flight tests are not adequately supported by simulator studies
using realistic stability and control derivatives.,
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NOTATION

normal acceleration, g units

transerve acceleration, g units

wing span, ft

rolling-moment coefficient, rolling moment/gsb
effective dihedral derivative, 9C;/9,

= 9C}/38,, per dag

pitching-moment coefficient, pitching moment/Gsc
longitudinal-stability derivatiie; oC,,/ %, per deg
= 0C,/%, per deg

normal-force coefficient, normal force/qs
normal-force-curve slope, oCy/%a , per deg
yawing-moment coefficient, yawing moment/gSb
directional-stability derivative, oC /98, per deg
= 0C,/38, per deg

vertical-tail-effectiveness parameter

mean serodynamic chord, ft

stick force, 1lb

acceleration of gravity, 32.2 ft/sec?

pressure altitude, ft

moment of inertia about X-axis, slug ft?

moment of inertia of rotating mass of the engine relative to its axis of
rotation, slug-ft?

moment of inertia about Y-axis, slug-ft2
moment of inertia about Z-axis, slug £t 2

stabilizer incidence, deg
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rolling moment/Ix , per sec?

Mach number

yawing moment/Iz , per sec?

rolling angular velocity, deg/sec or fadians/sec .
average rolling velocity, radians/sec

critical rolling velocity (see Fig.5)

pitching angular velocity, radians/sec

dynamic pressure, %ov2, 1b/ft?

yawing angular velocity, radians/sec

wing area, tt?

" time, sec

airspeed, ft/sec
angule of attack, deg

maximum positive or negative angle of attack attained in a roll maneuver,
deg ‘

angle of attack of principal axis, radians

initial angle of attack, deg

angle of sideslip, deg

maximum angle of sideslip, deg

incrementsal change in bank angle, deg

control-surface deflection, deg or radians

aileron deflection, positive when left aileron is deflected down, deg
left-aileron deflection, deg

right-aileron deflection, deg

total aileron deflection, deg

elevator deflection, positive when trailing edge down, deg
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Sh horizontal-stabilizer deflection, positive when trailing edge down, deg

S, rudder deflection, positive when deflocted to left, deg
8YD yaw-damper deflection, deg
6 pitching velocity, deg/sec

mass density of air, slug-ft?®

¢ angle of bank, deg

Wy rotational velocity of engine rotor, radians/sec

Wy undamped natural frequency of Dutch roll mode, radians/sec
Subscripts

The subscripts B and &, indicate the partial derivative with respect to the
specific subscript.
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APPLICATION OF ANALYTICAL TECHNIQUES
TO FLIGHT EVALUATIONS IN CRITICAL CONTROL AREAS
NTROL . :

Joseph Weil*

1. INTRODUCTION

Since its inception in 1947, the Flight Research Center of the N.A.S.A. has
engaged in a wide range of basic stability and control research using a variety of
rocket and jet aircraft as test vehicles. Some of the general objectives of these
mahy flight investigations are summarized below.

General Objectives of Flight-Test Programs

i, To conduct exploratory stability and control
programs in a flight environment

2. To correlate flight results with predictions

3. To determine whether safe to proceed to more
critical condition (flight guidance)

4. To determine criteria against which other
aircraft can be evaluated

5. To determine whether a specific aircraft meets
detailed handling-quality requirements

Because the N.A.S,A. Flight Research Center has been concerned mainly with explorato
investigations of flight-control problems, most emphasis has been placed on the first
three items. The Flight Research Center methods may differ somewhat from the procedure
an aircraft company might use in demonstrating and certifying a new'design; Neverthele
the pitfalls encountered and the ultimate solutions to the problems should be of genera

interest.

Since the scope of this subject is sc broad and the approaches are many, this Report

is limited to studies of inertia coupling, lateral-directional control problems, and
pitch-up.

Three flight-test situations are discussed. In one, the phenomenon is more or less
unexpected and, perhaps, unknown; therefore, all analysis is necessarily after the fact.
In the second, an in-flight build-up procedure is used - however, without adequate sup-

porting analytical work. Finally, the procedure by which flight-test and analytical
work are closely co-ordinated is described,

2, ROLL COUPLING

In 1954, the first flight experience with inertial coupling in rolling maneuvers
was encountered. Prior to this time, published reports of analytical studies! pre-

*Head, Control and Guidance Branch, NASA Flight Research Center, Edwards, Chlifbrniq,
U.S.A. '
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diqped the existance of the problem arza, Unfortunately, the predictions were, for
the most part, treated as an academic curiosity until the jarring realization of an
aetggl occurrence in flight, :

A chronological examination of the experiences of the Flight Research Center
pertinent to roll coupling during the period from 1954 to 1958 provides an excellent
illustration of the three types of situations referred to in Section 1.

2.1 F-100A

The first manifestations of serious roll coupling at the Flight Research Center
occurred almost simultaneously on the X-3 and F-100A airplanes in late 1954, Because
the F-100 was a military aircraft just entering operational squadrons, there was a
tremendous push by both military and civilian officiais to obtain a complete under-

standing of the causes of the violent and uncontrollable motions at the earliest

possible date, Essentially all Flight Research Center effort was, therefore, concen-
trated on obtaining solutions of the F-100 problem.

The first indication of severe roll coupling encountered on the F-100A airplane at
the Flight Research Center is shown in Figure 1. This is a time history of an abrupt
two-thirds-aileron-deflection roll to the left made from level flight at a Mach number
of 0.70 and an altitude of 32,000 feet. This roll occurred, incidentally, during the
first series of planned roll maneuvers. Unfortunately, the roll-velocity trace was
lost during the maneuver. Sone after the aileron-control input, angle of attack
decreased steadily and negative (adverse) sideslip developed. Between 3 and 4 seconds,
the rates of divergence in angles of attack and sideslip increased markedly and the
maneuver became uncontrollable. Recovery was made when the controls were brought close
to their initial settings. During the motion, a left sideslip angle of 26° was
recorded and angles of attack much larger than -16° were attained, followed by 12° at
recovery. The large excursions encountered were similar to those which had been
measured months earlier during some North American Aviation flight tests.

There were many theories concerning the cause of the coupled motions. These ranged
from the realization that, in fact, roll coupling had been encountered, to assumptions
of longitudinal instability at low angles of attack, large effects of pitching moment
due to sideslip, and static-directional instability. Immediate steps were taken by
personnel of the Flight Research Center and Langley Research Center to analyze the
violent manuever on the analog. A five-degree-of-freedom form of the equations of
motion was used, which included cross-coupling terms and the best available stability
and control derivatives. Some of the required derivatives were obtained from an -
expedited low-speed wind-tunnel test program conducted at the Langley Research Center
following the manuever shown in Figure 1.

A comparison of the calculated motions with flight data is presented in Figure 2.
Although the exact phasing of the motion could be improved, the basic correlation was
fairly good. Thus, it was established clearly and for the first time that the violent
motions were caused by roll coupling ahd could be estimated to a good degree of
accuracy.

puring the same analog program, various controlling parameters such as Cng v Cmg
and Cpns, were caried in a systematic fashion, These tests indicated that the major
cause of severe roll coupling in the F-100A was insufficient directional stability.
The sensitivity of the motions to small stabilizer inputs and the beneficial effects of
increased pitch damping were also clearly revealed.




The analog resuits magde it possible to proceed, with some confidence, with roll
evaluations of the P-100 using two enlarged vertical tails provided by North American
Aviation. Even g¢, the flisht programs wers conducted in 4 véry cautious manner with
initial rolls being made at low aileron deflections and restricted bank angles. No
further occurrence of a completely divergent maneuver was encounteéred on the F-100,
although sideslip angles as high as 20° were reached with the intermediate tail. The
larger tail tested was adopted for the production versions of the P-100A and F-100C and
has proved satisfactory even though sideslip angles of 14° or 15° are attainable in
full-deflection 360° rolls at low dynamic pressure, : ‘

2.2 YF-lOZ

At the same time that the F-100 roll integrity was being established, the Flight
Research Center was also engaged in a general handling-quality evaluation program on
the YF-102 airplane. Roll maneuvers were included in the program, Because of the
F-100 and X-3 experiences with roll coupling, the roll program was planned in a
gradual build-up fashion - however, without supporting analog tests. Low-deflection
and short-duration rolls were attempted at first, followed by moderate-deflection 180°
rolls. The latter rolls were accompanied by a moderate amount of sideslip but, as soon
as the pilot applied corrective control, the airplane recovered immediately. The roll
illustrated in Figure 3 was allowed to develop further than in the previous maneuver,
with severe uncontrolled motions evident. Presented in Figure 3 are control deflections,
rolling and pitching velocity, and angles of attack and sideslip. The results indicate
a large increase in the rate'of sideslip build-up at about 4 seconds (¢ = 256°) .

This caused the pilot to reverse the alleron control; however, appreciable rolling
velocity was retained, and the sideslip build-up continued at an ever-increasing rate.
At about 360° bank angle, the angle of attack suddenly diverged negatively, causing

a large reinforcement of roll velocity. The up-elevator, applied at about 4 seconds,
somewhat aggravated this maneuver. The pilot was unaware of the elevator input. He
was, however, familiar with a similar maneuver previously encountered on the original
F-100A airplane and personally had experienced several violent maneuvers on the X-3
airplane. In the instance of the F-100A, up-elevator had aggravated the motion.
Recalling this, the pilot applied down-elevator at about the time of the angle-of-attack
divergence (t = 5 sec). When this appeared to be of no avail, he pulled back on the
stick and, although no quantitative data are available beyond t = 7 seconds, the
controls were finally neutralized for recovery.

Immediate plans were made to conduci a detailed study of the problem on the analog
- a step that should have been undertalien earlier. Figure 4 presents a comparison of
the calculated and flight time histories, which show good correlation. The major
aerodynamic derivatives used in the calculations were obtained from flight .data. The
only derivative not assumed constant with a was Cig . The exact simulation of a
maneuver of this type can be critically dependent on small changes in many of the
controlling parameters. The first attempts at correlation by using the flight
derivatives resulted in maximum amplitudes of the same order as flight, but the phasing
was rather poor. A minor reduction in the parameter Cn8 produced the good agree-
ment shown in Figure 4.

Although exact control inputs are used when attempting to correlate flight and
calculated motions, general results of the type presented in Figure 5 for the YF-102
have proved to be of great value in flight planning as well as in giving a good indi-
cation of the relative severity of the roll-coupling problem.




Figure 5 summarizes the results of calculations for a series of 360° left rolls in
which the operator used a control stick to stop the roll motion at about 360°.
Presented are plots of aileron control angle, maximum sideslip angle, and maximum
angle-of-attack excursions as a function of the average roll velocity in a roll
megneuver, The average roll velocity was computed as the bank angle at control
reversal divided by the time required to reach the specified bank angle. The vertical
. dashed line represents the lower undamped critical roll rate calculated by the

formula shown. The value of p,,. depends on the static stability, inertia
characteristics, and engine momentum. It was found in the general analog study of
Reference 2 that the lower critical roll rate usually corresponded to the average roll
rate at which near-maximum amplitudes occurred. The results shown in Figure 5 would
predict the occurrence of maximum sideslip angles of the order of 26° and large angle-
of-attack excursions, with the most extreme motions noted near critical roll rate. 1In
the same roll range there is a break in the curve of SatA plotted against D such
that greatly different motions are attainable for essentially the same aileron
deflection. The flight maneuver presented in the previous Figures is represented by
the circular symbols. Although the control manipulation differed somewhat from that
“used in the general calculations, the maneuver occurred in a roll range where the more
violent motions could be expected.

Although the exact control inputs (elevator as well as aileron) can play an
important part in a specific roll maneuver, it is evident that simple general
calculations of the type shown with elevator fixed would have indicated the intoler-
able nature of this flight condition had they been available at the proper time.

2.3 F-104A

As a result of initial Flight Research Center experience with severe roll coupling,
it appeared that only a fully co-ordinated flizht and analytical program could yield
a safe apprcach for, in some instances, even the smallest incremental steps were not
adequate flight safeguards.

In 1957, the N.A.C.A. was asked by the United States A4ir Force and Lockheed Air-
craft Corporation to demonstrate the rolling capability of the F-104A airplane. Here
was an opportunity to conduct a roll program in a systematic and rational fashion.
Preliminary analog studies indicated that potentially serious problem areas existed
at low and negative angles of attack.

A 35-flight program was completed in late 1957 in which the safe limits for rolling
maneuvers were defined. By using the logic summarized in Figure 6 (discussed later),
a large range of flight conditions was explored with dispatch without the occurrence

of large excursions in angle of attack or sideslip or otherwise uncontrollable aspects.

" The correlation between estimated and flight results was generally .good.

3. LATERAL-DIRECTIONAL PROBLEMS

Many aircraft have suffered over the years with a variety of lateral-directional-
stability and control problems. This section will contrast the analysis techniques
used for three representative occurrences.

3.1 F-104A Twin-Duct Instability

During the initial exploratory flight tests of the NACA F-104A airplane in January
1957, a compressor stall occurred at a Mach number of approximately 2.0 and an
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altitude of 37,500 feet. Figure 7 shows a time history of the resulting motions.
Immediately after the compressor stall, the throttle was retarded and shortly there-
afteér an andamped Dutch roll oscillation with an amplitude of about +4° 6t sideslip
was encountered. As the speed decreased to about M = 1.5, the motions finally
subsided. Had this maneuver been performed at a somewhat lower altitude, the loads
imposed on the vehicle might have been critical.

At first, it was thought that the lateral cscillation was sustained by aileron
inputs caused by the lateral accelerations imposed on the pilot. Further analysis of
wind-tunnel tests revealed that the disturbance producing the lateral oscillations
was in the form of fluctuating asymmetric shock fields in the region of the twin
inlets. Other wind-tunnel data and subsequent flight data indicated that at high Mach
numbers under reduced throttle conditions, or following a compressor stall, the flow"
rates through each inlet and the accompanying shock positions differ. This produced
a fuselage side force and yawing moment. The yawing moment caused the airplane to
sideslip which, in turn, caused the shock position to revérse. A hysteresis-like
model (Fig.8) describing the disturbing moments was derived from the tunnel tests by
Lockheed engineers,

The model was used with an analog at the Flight Research Center to assess the
relative importance of a number of factors affecting the peak airplane motions
attained during the forced lateral oscillations. The basic character of the flight
motions was substantiated., It was found that the use of a relatively high yaw-damper
gain produced both: the deflection and rate saturation which rendered the yaw damper
completely ineffective in the initial NASA flight experience. Later, flights with
reduced damper gain and a 100% increase in the available yaw-damper rate produced a
marked decrease in the motions obtained following intentional throttle retardation.
The source of the problem was finally eliminated when the manufacturer modified the
engine’ s operating characteristics and extended the splitter plate to within % inch of
the compressor face, thus effectively isolating the two ducts.

The problem illustrated would, admittedly, have been difficult to predict. However,
it is obvious that availability of suitable wind-tunnel data at an early date,
together with the analytical means ultimately used, would have made it possible to
assess the problem prior to flight. 4

3.2 X-2 Divéergence

In September 1956 the X-2 airplane was lost after having attained a Mach number of
3.2. A time history obtained from records recovered from the wreckage is presented
in Figure 9.

The analysis of the airplane instability experienced during the flight was made by
using the internally recorded data, an analog computer, and the aerodynanmic-derivative
coefficients obtained from wind-tunnel and flight area. At the time of the last
flight, the stability and control data available for flight guidance were limited to
M = 2.4, although theoretical estimates were available for the ultimate Mach number
range. A more complete set of wind-tunnel data was obtained following the accident
to define the significant derivatives for the high angle-of-attack and Mach number
region of the flight envelope, thereby enabling a more accurate analysis of the cause
of the instability.
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The directional instability shown in Figure 10 can be explained as follows: The
X-2 remained stable up to a Mach number of 3,2 while at low angles of attack; however,
after burnout, control motions were initiated tn increase the apgle of attack ard ta
produce a left bank (see Fig.11). As the speed decreased below M~ 3,0 and the
angle of attacg simultaneously increased, the directional stability was lowered to such
an extent that when right aileron was applied to stop the increasing left-bank angle,
the yawing moment resulting from the aileron deflection caused a build-up in the right
sideslip until the roll due to sideslip was greater than the maximum capability of
the ailerons. Roll rate continued to build up rapidly until critical roll veloé¢ity
for inertial coupling (calculated to be 1.35 radians per second for these conditions)
was exceeded. At critical roll velocity, violent uncontrollable motions characteristic
of inertial coupling, occurred about all three axes. It should be noted that the rudder
was normally locked for flight at supersonic speed and there is no evidence that it
was unlocked during the last X-2 flight. ‘

A directional-stability analysis of two X-2 flights is hown in Figure 10. The
directional-stability parameter CﬂB is seen to be positive during the last flight
(B) at least until the divergence was well developed. However, when ailerons alone are
used for control, the value of Cp, required to maintain lateral control is equal to
Cns Clg/Cl . On ‘the lower portion of the figure a ratio of these parameters is

plotted for two flights in a manner such that uncontrollability is present for values
less than unity. Although a portion of an earlier flight (A) was in the Mach number
range where an instability could occur, the airplane maintained a low angle of attack,
with C"B always greater than the critical value. The ratio of C"B to the critical
value for the last flight indicated that the airplane was unstable above a Mach number
of 3.1, even though the angle of attack was low. Therefore, an instability before
burnout could be expected; however, the divergence‘did not occur until approximately
15 seconds later when the angle of attack was higher and yawing moments resulting from
control action were introduced. This indicates that the flight C“B was higher than
wind-tunnel values, or that flight Cnsa was lower than wind-tunnel values., A more
complete discussion of the X-2 results can be found in Reference 3.

Figure 11 shows a time-history comparison of the directional divergence which
occured during the last X-2 flight with a programed six-degree-of-freedom analog
simulation of the divergence using modified derivatives obtained from the postflight
wind-tunnel data. To obtain the agreement shown, it was necessary, as noted
previously, to increase the value of Cn,; and to decrease the value of Crg_ by
small amounts. a

The X-2 experience is an example of a flight program that was expanded too rapidly,
considering the information available, to define adequately the projected flight
regime, Although some simulatoer guidance was afforded the pilot prior to his. fatal
flight, it was obviously insufficient.

3.3 X-15 Damper-0ff Lateral-Directional Instability

A Brief review of a recent sggdy of a lateral-directional control problem
involving the X-15 research airplane is presented in the following section. The
discussion will illustrate a proper approach for investigating such problems.

The X-15 program has had, perhaps, the most complete and extensive wind-tunnel
coverage ever available for an advanced vehicle. An important part of the flight
program is to verify the wind-tunnel results and to have the best estimates available
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for flight planning. Figures 12 and 13 show comparisons of flight, wind-tunnel data,
and theory for some of the more important stability and control parameters. As can be
=zeen, the correlation ix generally good. A cemplete discussion of the methods used

in theoretical estimations is presented in Reference 4.

Each X-15 flight is planned in minute detail with the aid of a complete six-degree-
of-freedom analog simulation. The simulator includes an almost exact replicaof theX-15
cockpit and control-system hardware. In planning each flight, many possible emergency
conditions are rehearsed by the pilots. In the Mach number range above 2.4, a large
région of lateral-directional uncontrollability was found on the simulator for con-
ditions with lateral-directional dampers inoperative,

To obtain flight verification, during several X-15 flights, pilots were instructed
to attempt to stabilize the vehicle in the fringes of the uncontrollability region.
A comparison of the estimated uncontrollable region and the small uncontrollable
region thus far explored in flight is shown in Figure 14. The flight data indicate
the problem to exist at a somewhat lower angle of attack then was estimated. A time
history showing the aforementioned flight characteristics is presented in Figure 15
At time zerc, the pilot switched off the lateral dampers. He attempted to stabilize
the airplane but the motions tended to build up, so he reduced the angle of attack.
The motions then rapidly subsided. A second pull-up maneuver was performed with the
same results. The problem can be described as 4 pilot-airframe dynamic instability.
The basic vehicle has essentially neutral damping with control surface fixed. However,
when the pilot attempts to fly the airplane in the conventional manner by using aile-
rons to control bank angle, significant instability can be induced. A root-locus
plot (Fig.16) can be best to analyze the problem.

Figure 16 is a root-locus plot showing how the characteristics of the pilot-
airplane combination change with pilot gain. Plotted are the real and the imaginary
parts of the roots so that the right half plane (positive real part) must be void of
roots for stability. The human transfer function used to represent the pilot consists
of proportional plus derivative control (that is, Sa = -5p - 2.9 ) , which was
developed in Reference 5. As the pilot’s gain is increased, the roots of the Dutch
roll mode immediately cross the right half plane, signifying a dynamically unstable
mode. Had the ordinates of the complex zeros been less in magnitude than the complex
poles, the path would not have entered the right half plane. A useful parameter, then,
is the difference in the ordinates of these poles and zeros. The expression shown in
the figure gives this difference, and is useful in explaining the effects of the
pertinent aerodynamic and inertial characteristics, Additional information on problems

of this nature may be found in Reference 6.

At present, the fixed-base simulator, the NASA F-100C variable-stability airplane,
and the X-15 airplane are being used concurrently to develop alternate control
techniques with dampers off to allow flight in an otherwise uncontrollable region
should a critical damper failure occur.

4. PITCH-UP

The problem of pitch-up, or longitudinal instability, at moderate and high angles
of attack has plagued airplane designers since low-aspect-ratio and swept-wing
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aircraft were first introduced. Although the basic causes of pitch-up were well under-
stood from analyses of countless wind-tunnel programs, it was often difficult and
dangerous to attempt to cbtain a clesr picture of the extent of the preblem frow flight
tests because of the dynamic nature of the maneuver and the sensitivity of the motions
to piloting technique.

At the Flight Research Center, initial flight tests were always planned at high
altitlide, which greatly reduced the probability of exceeding structural load limits
in the event of unexpected pitch-up. However, there was always the possibility of
experiencing a pitch-up followed by an uncontrollable spin or directional divergence.
Many of the early experiences with pitch-up were unexpected. Figure 17 illustrates
a rather abrupt pitch-up encountered on the X-5 airplane. In this instance, at an
angle of attack of .approximately 18° the pitch-up is compounded by a violent direc-
tional divergence. Even in instances of milder pitch-up, it was often very difficult
to analyze flight data quantitatively. The same problem existed in attempting to
assess the effects of ‘fixes’ such as wing fences and chord extensions.

About 5 years after the first flight occurrence of pitch-up, digital and analog
computers were first used to interpret wind-tunnel data in terms of time histories’.
At about the same time, flight records were reduced to pitching-moment curves by
accounting for pilot control inputs, inertia and damping effects. Correlation
between wind-tunnel and flight data has, in general, been quite good and is typified
by the comparison shown in Figure 18. This generally good correlation indicated that
strong reliance could be placed on wind-tunnel data and estimated pitch-up time
histories. Thus, comprehensive simulator studies or calculations are now usually made
prior to flight tests in which moderate or strong pitch-up tendencies are anticipated.

The pitch-up region is often accompanied by separated flows; thus, there is another
factor to consider when assessing the relative merits of configurational modifications
which cannot be treated adequately in the usual simulator studies. This is
illustrated by a flight evaluation, undertaken at the Flight Research Ceiter in 1956,
of the effect of slat span on the pitch-up characteristics of the F-100A airplane. The
slats of the F-100A are composed of five free-floating, loosely connected segments.
calculations based on wind-tunnel pitching-moment curves that had been made prior to
flight tests indicated that locking the two inboard slats closed might result. in
minimizing pitch-up, which, incidentally, is rather mild on the F-100 airplanes. It
was planned to investigate the effects of successively locking the slat segments,
starting at the inboard end. The maneuvers performed consisted of wind-up turns with
varying entry rate and recovery technique. In addition, clean-configuration and
landing-configuration stalls were made for each configuration.

Figure 19 shows a comparison of the lift and pitching-moment characteristics
obtained at M = 0.88 with all slats free to float, inboard section A locked, and the
two inboard sections locked. Locking the inboard slat closed on each wing resulted
in a milder initial pitch-up than with all slats free floating; however, mild lateral
oscillations were evident just prior to the pitch-up. It is seen from Figure 19 that
the pitching-moment characteristics were most stable at moderate angles of attack
with sections A and B locked, However, in the opinion of the pilot, locking these two
sections closed resulted in heavy buffet (note the break in the CN curve) and pro-
duced ‘wicked’ longitudinal oscillations at moderate angles of attack. On occasion,
unsymmetrical slat opening was accompanied by violent roll-offs. The motions
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associated with this configuration tended to mask the pitch-up completely and were:so
chjectionable thaf the only other configuration tested was with all slats qlosed.

A most significant conclusion derived from this study is that estidiated effects of
configurational changes on pitch-up severity which neglect concommitant stall '
phenomena can be completely unrealistic.

For some supersonic airplane designs, performance or structural considerations might
dictate the use of design features, such as a high horizontal tail, which are
susceptible to pitch up at high anglé of attack. In such instances, one logical %
approach is to provide means of preventing the pilot from attaining flight conditions
that could lead to possible disaster. £

Air Forece flight evaluations indicated that the F-104A airplane had a serious pitch-

.up problem. A simulator study was made at the Flight Research Center in which the

controllability of the pitch-up, through the use of a stick pusher or a number of pitch-
damper configurations, or both, was investigated. A schematic drawing of the test
set~up is shown in Figure 20. A torque servo was used in conjunction with a control
stick to provide stick force. Pull-up maneuvers were performed at various entry

rates, with the pilot using a scope presentation of angle of attack to close the
simulation loop. A number of NASA and Air Force pilots operated the simulator and
operated the simulator and were favorably impressed with the realism ‘afforded by the
simple presentation.

For the configuration without the stick pusher, a moderate-authority pitch damper
was greatly appreciated by the pilot when attempting to control the airplane .below
pitch-up and when trying to track in regions of neutral stability or limited
instability. In even moderate-entry-rate pull-ups to instability, however, little
tangible reduction in overshoot was realized from the pitch damper.

A series of tests was made to evaluate the relative importance of a number of design
parameters which influence the design of a stick pusher, Typical stick-pusher-
activation boundaries are shown in Figure 21. When the combined signals representing
pitch rate and angle of attack exceed a boundary value, the stick pusher is
activated and remains in operation until the sum of the parameters decreases below
the specified boundary. The test technique used enabled an assessment of the
individual and combined effects of such factors as stick-pusher boundary values
(including the use of a washout circuit), pitch demping, and magnitude of stick-pusher
force for various types of operations.

The effect of force level on the ability of the pilot to deliberately override the
stick pusher is shown in Figure 22. The pilot was able to override only the 15 lb
stick-pusher force. The 30 lb force provided positive and decisive action for
preventing pitch-up. The highest force resulted in very high stabilizer rates and
violent recovery transients,

The trends relating to stick-pusher operation and pitch-up formed in the simulator
program correlated well with flight data. Thus, closed-loop simulation of similar
devices to prevent pitch-up may be optimized on the simulator. This can result in
minimization of flight development time.

A
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4.1 Recommended Procedure

On the basis of the foregoing discussion, there appears to be a logical way of
planning various types of {light investigations of critical stability and control
problems. A typical example that was formulated to guide investigations of roll-
coupling problems will now be described (see Fig.6).

The first step involving preliminary analog studies to define the critical problem
areas should be implemented during the design stage long before the flight-test
program is initiated. These studies should be rechecked, however, prior to the
beginning of a flight program. Derivatives obtained from wind-tumnel studies or
theory, corrected for aeroelasticity, should be used. When the results of the initial
calculations are available early in the design, it is assumed that necessary steps
will be taken to insure that dangerous coupling would not exist in an important
segment of the flight envelope.

Next, as early as possible in the actual flight test program, it is strongly
recommended that as complete a determination as possible be made of stability and
control derivatives from analysis of flight data. A check is thus furnished on the
validity of the derivatives used in the preliminary calculations. This is, important
where there are large aeroelastic corrections or gaps in wind-tunnel data. A number
of methods are adequate for determining the critical stability derivatives from
pulses and sideslips. FPrequently, the average value obtained from several methods -
has been utilized. The Flight Research Center has alsc been successful in obtaining .
the control parameters such as C;. , Cnsa and Cﬂsh from the initial angular

a
acceleration following an abrupt control input®.

After the flight derivatives have been obtained, representative flight conditions
should be chosen and final roll calculations made for flight correlation. General
computations of the type summarized in Figure 5 would appear to be ideal. In these
goneral calculations the sensitivity to several degrees of inadvertent stabilizer
input should be explored. .

Next, a flight check of non-critical roll maneuvers should be made and compared
with the calculated results, If the correlation is reasonably good, marginal
maneuvers can be approached with some confidence in a gradual build-up technique.

A critical aileron deflection should always be checked, first at small bank angles;
then, the bank angle may be increased in reasonable steps. Since it is believed that
there is no sound reason to roll beyond 360°, Flight Research Center studies have been
limited to this value. If unpredictable violent maneuvers develop, the pilot should
neutralize all controls. The futility of trying to control such a motion was
demonstrated earlier.

A question often raised in flight demonstrations of critical stability and control
areas is: How close can the potentially dangerous area be approached? Unfortunately,
this question has no simple answer. Many factors must be considered, such as the
possibility of exceeding design loads and the availability of simple recovery techniques.
Certainly, a potentially hazardous condition can be approached more closely and with
a relatively higher degree of safety if the problem is well understood and techniques

- that can be used in emergencies are known - such as the use of stabilizer input to
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terminate an autorotative condition. Actually, with careful planning, including
adequate analog support, sufficient data can be obtained for correlation purposes

without approaching too close to the precipice. Once adequate coriélaticn between

estimations and flight data has been established, full reliance should be placed on
the analog results.

3. CONCLUDING REMARKS

During the past 7 years, an important evolution has occurred in the manner in
which flight stability and control investigations are conducted. In the early part
of the last decade, few analog or sophisticated analytical procedures were available
by which complex dynamic motions could be predicted or reproduced following flight
occurrence, Often, wind-tunnel data were rather meager and sketchy and flight
control systems lacked even limited-authority damper augmentation. In this Report
it has been shown that, individually or in combination, the aforementioned factors
were responsible for many dangerous flight situations which, if not resulting in the
loss of an aircraft, could materially lengthen development time.

At present, with the widespread availablity of analog and digital computers and
adequate wind-tunnel derivative coverage, considerable knowledge of possible problem
areas should be available with which to plan rational flight test programs. In

addition, the trend toward stability augmentation systems should eliminate, or at least

reduce, the severity of many inherent problem areas and facilitate controlled studies

"of potentially dangerous conditions in flight.
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DISCUSSION

HJ. Allwright (U.K.): I think it would be wrong for the discussion period to pass
without a reference to this paper. I have no question to ask but consider Mr. Weil
and the N. A.S.A. should be congratulated on this excellent and very honest exposition
of the history and principles of flight evaluation in sensitive and potentially
dangerous flight regions. They have emphasized that with new configurations and in
new flight regions, complacency is out of order and that even apparently safe aircraft
flight situations may catch us out.
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Aerea

Rua da Escola Politecnica, 42

Lisboa

Attn: Coronel Joao A. de Almeida Viana

Ministry of National Defence
Ankara
Attn: AGARD National Delegate

T.I.L.

Ministry of Aviation
Leysdown Road
Mottingham

London, S.E.9

Attn: Mr. F. G. Waite

National Aeronautics and Space
Administration
Langley Research Center

.Langley Field, Virginia

Attn: Report Distribution and
Storage Unit

64, rue de Varenne
Paris 7 eme
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*Netherlands meets demands of SHAPE Air Defence Technical Centre.
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