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SUMMARY

Analytic equations were determined for the ferce and moment coeffi-
cients and stability derivatives of various shapes in Newtonian flow. Thése
results follew from an application of the genefal method presented in the "First
Quarterly Technical Report”.

Equations for all the impertant damping derivatives of the cone at
zero sideslip and reoll have been detefmined as a function of angle of attack.
The constants in these simple equations can be determined numerically for any
C.G. location and any coné angle. For slender cones, with certain restrictions
on the C.G. location, the constants in the stability derivative equations have
also been determined analytically. Similar results have been obtained for the
delta planforim with diamond shape crossssection perpendicular to the longitudinal
axis. A preliminary investigation has also been conducted on the elliptic cone,

and equations have beer. established for the longitudinal force coefficients.

A preliminary investigation has been made of the effects of bluntness
on the constants in the stability equations. These results have been applied
to the determination of analytic equations for the longitudinal force coeffi-
cients of the blunt cone.

An initial investigation has been undertaken into other hypersonic
theories, besides Newtonian,; for predicting surface pressures. This investi-
gation is continuing. Based on these preliminary results, a method has been
outlined for determining the variations of the hypersonic stability derivatives
with Mach number. The method will be checked against experimental results

during the next quarter.
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A1l symbols not shown heire are defimed in the "First Quarterly Technical Report".

Ay Base area of the bottom half of a spherical cap segment.
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e Ratio of horizontal to vertical axes of & cone of elliptic cross=séction

fB Bluntness factor defined in Eq. (5.4)
K Pressure coefficient constant

¥ Mach number

Radius of spherical cap

Radius of the base of a spherical cap segment

i A

Radius of the base of a cone

SB Planform area of a spherical cap segment

S c Planform area of a truncated cone

B = Nwa
Also angle of sideslip

7 Gas constant

) Angle between the free stream flow and the plane tangent to the surface
at a point. Also compression angle

8e Expansion angle

A leading edge sweep angle

Subscrigts

B Refers to the bottom hall of a body
Also the blunted portion of a body

C Refers to the cone portion of a body
BC Refers to a blunted cone bLody

T Refors to the top half of a bLody
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1.0 Introduction : ‘

Much of the basic groundwork for the application of simple Newtonian
theoty to the determination of the forces and moments, and stability derivatives
of various wing and body shapes is presented in the "First Quarterly Technical
Report"”. It has been demonistrated there that reasonably simple analytic equations
are possible for all the important aerodynamic stability derivatives as a function
of angle of attack.

In the "First Quarterly Technical Report"”, the methods developed were
applied te the coné. Only the static forces and moments, and the static
derivatives were determined during the first quarter. During this second quarter,
the methods have been applied to the determination of the important damping deri-
vatives of the cone, and the results are included in this report.

Several other shapes have been looked at in the same detail. Analytic
expressions have been derived for the force and moment coefficients and stability
derivatives (boti: static and dynamic) of the delta planform with diamond shape
cross-section. Similar results have been obtained for the segment of a spherical
cap. One of the objectives has been to apply the spherical cap results to the
determination of the stability derivatives of a blunt cone. Some work has also
been done on the determination of static forces and moments and their derivatives
for the delta planform with elliptic cross-section.

Several methods are outlined for the determination of analytic equations
for the longitudinal force coefficients of blunted surfaces. These methods have
been applied to the blunt cone. The use of hMunt bodies in the hypersoric
region is often mandatory, and the stability derivatives of such surfaces are
therefore of special interest,

Pressure distributions computed using simple Newtonian theory are
generally applicable only for a limited class of aerodynamic shapes and limited
Mach number and surface angles of attack (n8 »1.0). A beginning has been made
into an investigation of other hypersonic theories for computing surface pres-
sures. The purpose is to extend the methods developed for computing Newtonian
stability derivatives to lower Mach numbers and angles of attack.
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Throughout this report reference will be made to equations, seéctionms,
and figures in the "First Quarterly Technical Report™. An equation, séction
or figure number followed by the letter F refers to the equation, section, or
figure in the "First Quarterly Technical Report".

2.0 Analytic Equations - The Circular Cone

2.1 General Discussien
7 The general methods developed for determiring analyti¢ eguations for
the stability derivatives were applied to the cone in the "First Quarterly
Technical Report". During the first quarter, only the static coefficients and
static derivatives had been determined. The damping derivatives have sirce been

evaluated and are presented in this report.

At the outset, it should be stataed that the stability derivatives are
computed under the special conditions of zeru 11 ( 4>= 0) and zero sideslip
(3 = 0) of the hody. Ths analytic equations dirived for tha “amning derivatives
are therefore a function of only angle of ~ttack for a gaven N slape. For the
present. the derivatives are compuied assuming simple ev i | theery. | prelim-

inary consideration of Nach number effects is discussed in 3¢l on 6.0,

For cach damping derivative, the damping of a half body with f7at side up
at positive angles of attack 1s f1-st determined Taese results ave then gener-
alized to apply to full bodies «ti all angles of atiuck,

2.2 Damping in Pitch - Cm
q
As shown in Scctren 6.1F, the eyquation of a cone in rectangular co-

ordinates can be expressed as

2 £

F(x, 7:3) :('fan&a) s -4 =0 (6.1F)

The axes system used, and the positive diveclivn ol torees moments, and angular

rotations are indicated on Figure (1.0F)

1.
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As showh in Séction 5.2F, the damping in pitch of any body can be
expressed in oére of two ways

C’”g = (ng)‘, cos & + (k”,?) 2 Sine (5.17F)
Cmg = mg 5in (Omy # ) (5.18F)

The constants (Kfnq)l and (Kmq)2 are determined from Eqs. (5.15F) and (5.16F)
by integrating over the body surface. The partial derivatives appearing in
these equations are determined from the equation of the surface, Eq. (6.1F).

The constants mq and emq in Eq. (5.18F) are defined by Egs. (5.19F) and (5.20F),
and are repeated here for convenience,

Mg = \/(K.'ng)f + (ng_)zg (5.19F)

<t (Komg -
Emg = tan ’{/?Iﬁ& - sin "(K"’ﬁ)’ - (5 20F)
malz ’\/(sz)‘; + (ng)z

The constants (K ). and (K )
mg 1

circular cone with flat side up under the assumption that the angle of attack
1s positive so that the complete bottom always

, have been determined {for a half

"sees" the flow.

P
(Kmg)s = '”[F £52)+ (%) ]hmg) - e[,

3\

le

—xaﬂ-] \il)&@ -
= [/ -2( Zcﬁ)av\ 4(3@—)2] tan@ sin%e - 35—(-%2-) tan'e e -

-wtan® sin’s (2.1)
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(Kmg )z = = %[/ - §(Ze)+ Z(Ec“)z} %77(%)/' (% )] tan & -

[asam |

- §[-2%e)’s a( e )sin"e - st yean & sin's-

-8 tan 9 sine ©(2.2)

In these expressions, & is the cone half angle, and X, and z,, are the horizontal
and vertical C.G. location along and perpendicular to the cone axis respectively.
The damping in pitch (Cmq\ of the half cone is based on the planform area of the
cone and the cone length (c¢). The symbols used here are the same as those in the
"First Quarterly Technicn1 Report", and one can refer to this report for definitions
of terms.

For any given cone angle ( 8 ) and C.G. location (xo, zo) it is possible
to evaluate (Kmq)‘l and (Kmq),_, numerically. The damping in pitch as a function
of angle of attack can then be determined from Eq. (5.17F). A more useful ex-
pression for the damping in pitch is given by Eq. (5.18F). The constants m
and emq can be evaluated numerically from ( Kmq) 1 and (qu)ﬂ' It thus bLecomes
evident that as long as all of the conical surface "sees" the flow, it is possible
1o derive a simple analytic oxpression for the damping in pitch. 1t is interesting
te note that based on Newtonian theory, 311 shapes can be cast in the same analytac

form, and their relative damping qualities compared,

1t wvould be very useful if mq and emq in Bq. (35.18F) could be evaluated
aralytically in terms off the geometric parameter of the surface { 8 ), aud the
C. G location (x, 7}, Fxamination of Fgs. (2.1) and (2.2} substituted in
Fas. (3.19F) ard (§.20F) indicates that the analytic expressions wi1l he very in-
volved and therefore of little practical use, Considerable simplitication s

possible if one limils the discussion to cones off small angle. 1t is then

DY

-

Necessary {o retain only the first tomms in the expressions for (limq\l and U\m]\
p Hit

Damping derivatives or small cone angles will Do discussed shortly,

1 becomes ovident from oxamining Pgs. (2.1) and {(2.2) that the damping
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in pitch is a rather involved function of €.G. location. Ne smple relationships
cafi bé established for transferring the damping in pitch from one €.G. to another,

as is the case for the static derivatives of the surface.

The pitch damping censtants in Egs. (5.18F) for a half cone are plotted
as a function of cone half angle and C.G. location, béth vertiéal and herikontal,
in Figs. 1, 2, and 3. It becomes evidént from the figures that the damping in
pitch is an especially strong function of horiontal C. G. The figures indicate
that the damping is large about the nose and small about a point 2/3 of the cone
length aft of the nose. As long as the C. ¢. remains in the cone, the damping
is not a strong function of vertical C. G. location except at large cone angles
and horizontal C. G.'s aft of the 2/3 point. The v.~tical C. G.'s chosen
are rather extreme and represent the limit the C. G. can move verti¢ally and still

remain within the envelope of the cone.

It is instructive to look at the damping of a half cone under the
assumption that the cone angle is small, and the vertical C.G. location (zo/c)
is also small. This will be true if the C.G. is located inside the cone en-

velope so that lﬂ,/\,‘ <tan &. Retaining up to first order terms of small

quantities, Fgs. {2.1) and {2.2) reduwce to
p £
(tmg) = -7~ §3) r2t) " Je (2.9)

(e =-§[- 4R+ 2 ("] (2,2)

Substituting in Fgs. (3.19F) and (3.20F) and retaining up to first order torms
in @ results in the following

my = § [7~ () 2(-’%-)1] (2.3)

8w 27 9;7‘2 v %here Q;@ B %1!"@

O




Thus for a half cone of small semi-angle ( &), the damping in pitch equation,
Eq. (5.18F), is o ‘

Gy = - §11- § (2)+ 22 in (0 w0 (2)

It is interesting to note that the damping in pitch of a slender cone is only

a function of longitudinal C. G. location. Egs. (2.5) and (2.86) should be com=
pared to the exact results of Figs. 1, 2, and 3. Eg. (2.7) will give reasonably
good results up to cone angles of about 8 degrees. It is possible to derive m
and qu with higher order terms in small quantities. This will increase the
range of validity of the pitch damping equation and also show the effects of
vertical C. G. location. ‘

Fg. (2.7) indacates the strong effect of longitudinal C. G. location
on the damping in pitch of 2 cone. Egs. (2.3), (2.4), (2.5), and (2.¢) are
plotied as a function of longitudinal C. G. position in Fig. 4. It becomes
obvious that the damping varies widely with C. G., and is a maximum for the
C. G. at the nose and a minimum for the C. G. at 2/3 of the cone length aft of
the nose.

Up 1o now, e dascussion has been voncerned with the damping in
piteh of a half cone with f1at side up at positive angles of attack. The de-
rivation of analviae oxprossions for the damping in pitch of a complete cone at
All angles of afiack ¥ill now de discussed in some detail.

1o order to Jdoterware the damping in pitch of the tep hall of the
Cofa, 1T i mecossary 1o ovajuate the constants ixﬂq‘l and ‘qu)a of Eq. (3.27F)
for the Top Raifh  Thix may bo Jome fallowdng the integration procedure ouwtlined
i Recfzen o.0F o 1o methad in the same one used for the bottom, oaly the
Timita of mzegtation are Jafferont, These constants will be valid at negatawe
anglon of atfach fov a half vone with f3at side down.  Following this provedare,

Ihe camnfanis Qo ihe o o the cone hedome

o
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(Kmgly = -7[1- § (Be) + 2(3e) Jean 0+ 2 (2e)]/- 2128)] 5in"0 -
-17’7"[/:-2(?%1)2+ 4(—2@-)2 ]%tam-é S/ﬂzé + '—’é—‘z(;T")ta.nz o 5,‘”29 -

- rtand sin’o (2.8)

mgle = 41~ £ 02) + 2426)°] = $ o)1~ 4 ()] eano +
[I .z(-’—‘l) +3(%—) ]SIn o - ¢ﬂ’( Xf') tan @ sinse +

+ § tan"6 sin®e (2.9)

These constants are identical to those for the bottom half of
the cone, except for some important differences in signs of tte various terms.
Ingpection shows that (Kmq) 1 for the top can be obtained from (K q) for the
bottom by substitution -z, for L The second constant, (}\ ) of the top can
Le obtained {rom (I\ ) of the bottom by first substa.tutlnq -z for L and
then changing the \mn ol‘ ever) term.

The constants m_ and Gm for the top are obtained by substituting
t mq)l and (K )‘, in Fgs. (3,19F) and (5.20F). As long as the top and botton
of the cone emplvetel\\* see the {low, the damping in pitch of the full cone

<an be written as

™~

i.mi

H

Cmy)

* (Cm

R 8 2T

11

(0&) a S @y, +x)+ ("33)1 sin (Q,,,?r +x) (2.10)
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The subseripts B and T refer to the bottom and top of the cone
respectively. ‘

The Origy and aan shown in Eg., (2.10) are not in gefieral
a¢ute angles as determined from Egq. (5.20F). Methods of obtaining the acute
angle form are discussed in some detail in Section 5.2F. In general, for the
bottom half of the cone, (Kﬁq)l and (Kmq)2 are both negative. For the top
half of the cone, it follows from the previous discussion that in general
(Kmq)l is negative and (Kmq)2 is positive. Under these conditions it be-
comes apparent that ¢9qu is in the third quadrant, and equ
is ir the fourth quadrant. In terms of acute angles, the angles for the
bottom and top can then be written as

9,,,35 = e+ 0,"36
amgr = 2 - 9‘p’r

vhere the primed values are acute angles. By substituting in Eq. (2.10), the
damping in pitch of the full cone becomes

Crmg = = () sin(Omg, *=) - (mg)_sin (6mg = =) (2.11)

1t should be of interest to note that Fgs. (2.10) and (2.11) will
apply whether or not the top and bottom surface are of the same shape. It is

A
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only necessary that the constants for the top shape and bottem'shape be Gomputed
separately.

If thé C.G. is lecated ih the horizental plane of symmetry of the cone
(zo = 0), then the damping of the complete cone assumes an especially simple form
since

0”@05 b(”%ﬂi

mg

s 7 _ ) Vs

éb”ge = é%”?r = 65#3

Eq. (2.11) now becomes

C”’g z- mg[s}n (9;,,9 +o) + sin (9;7,9 - o()] (2.12)

This equation could have been arrived at from simple physical reasoning since it
says that the pitch damping of the top of the cone at negative angles of attack

is no different than the damping of the bottom at positive angles of attack if the
C.G. is in the horizontal plane of symmetry.

The {irst and second terms of Eq. (2.12) apply to lower and upper sur-
face respectively. The maximum positive and negative angle of attack for which
this equation is exactly true is determined as the minimum positive and negative
angles of attack for vhich the normal componeni of free stream is always inward
at any point on the complete cone surface. For the damping in pitch, this can
be determined from Eq. (5.12F) for the condition (17-;?3 > 0. But this con-
dition is no different than that for the static forces and moments and their
devivatives as determined from Fgo (3012F). vhen Eq. (3.12F) is appled to e
complete cone, the angle of altack range Por vhich ¥g. (2.12) is exactly valid
in-@ s <8,

11 wiil now prove instructive to oxamine Eg. (2.12) o terms of a
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specific exanple and determine the relative magnitude of the two terms at angles
of attack. If one selects as an example a 5 degree cone, Eq. (2.12) is exaetly
valid for the angle of attack range -5 £ & £ 59, Also for a 5% cone it is
sufficiently accurate teo use the small cone angle form of the pitch damping
constants, Eq. (2.5) and (2.6). Eq. (2.12) now becomes

8L 8(ZN e (2N Mein( Bt o\ w cio (3T S - o\ ] o 1a
Cmg == § [~ 3(&)+ 2()" [[sin(FFr6 +)+ sin (Fo-)]  (2.29)
At plus 50 angle of attack Eq. (2.13) is still valid for a 5° semi-angle cone,
and the relative maghitude of the contribution of the top and bottom to the

damping can be determined from the following ratio.
.. (37 L
sin (56 -a) _ sm(:.ao%ﬁ; = SN0 - | ,g2s
sin (34 +t) s/in (5.90°+5°%) = Sin(J6.90°)

Thus at 5° angle of attack the contribution of the top of the cone is only about
8 percent of the bottom. At 5° negative angle of attack just the reverse is

true, the bottom is only 8 percent of the top.

Obviously only a maximum of 8 percent error is introducted if the
contribution of the top is neglected after 5 degrees angle of attack and the
bottom is neglected after angles of attack less than -5°, The error will be
considerably less if the top and bottom terms are retain.d until the angles of
attack are equal to the absolute value of the "effective" surface angle Z @
For the 5° cone this effective angle is 5.90 degrees. These same argumenfs hold
for even larger cone angles and a wider variety of shapes than the simple cone.
On the basis of these and similar results it is possible to write reasonably ac-
curate results for the damping in pitch throughout the angle of attack range
from Eq. (2.12) by dropping appropriate terms. Ve can thus write,

’
o S - é]}??

Cmi = ‘m? sin (Qm;.; - "‘) (2.1-1)

10
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(;m52 = ~my "[gm{(g,’nﬁ +x) + Sin (9,;,9_— o<)] (2.15)
C’”Q_ == my sin (9,’,,2 # &) (2.16)

For any full cone, the constants in Eqs: (2.14), (2.15), and (2.16) ¢an bé determined
numerically as diséussed previously. For a siender cone the analytic forms of the
constants are especially simple and the damping of a full slender ¢one throughout

the angle of attack range can be written as follows:

27

x < -%86

Cmg: —S{/‘ $(Z) {_z(_aég)z]s;n (%?Ze - ) (2.17)
-y Ty

Cmg.: -%[/- g(—%ﬁ-) (—%ﬁz][sin(ég +ot)+ sm( o~ o\)] (2.18)
o 2 %”-'9

cmg:-g[;-g(—’g-) +z(2‘g—)z]s}n(%-”efd) (2.19)

The damping in pitch at zero angle of attack for a slender cone becomes
from Fq. (2.18),

~

: 2
ng = "2?)’[/' -‘3—(—’?— + &{58) ]9 (2.20)

I the C.6. is not located in the horizontal plane of symmetry (zs 4 0),

I
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then the‘constants for the top and bottom of the come are not identical and the
more gereral form of the damping in pitch equation of the complete cone, Eq. (2.11),
must be used. The constants fer the top and bottom must ther be evaluated separate=
iy. From Eg. (2.11), good approximate eXpressions for the damping in pitch through-
out the angle of attack range can be derived using the same procedure that was

used for the slender cone. From Bq. (2.11), these équations becone
X < =86},
T

C’”gz 2 = (mg)y s (9;7,37— ) (2.21)

’

~Omg S X < Omg_

Cm2 = - (mg)g Sin (9;”33* «)- (mg), sin (9;,,91_— ) (2.22)

o 2 é;ngr
Cm;"(”’z)a sin (‘9'”935 +) (2.23)

Although the discussion here has been concerned with the full cone, the
form of the results will be the same for any shape surface in Newtonian flow. In
fact, the upper and lower surface need not be the same shape for Egs. (2.21), (2.22),
and (2.23) to be applicable. It is only necessary that the constants in these
equations be determined separately for the top and bottom shape. Similar results
for the damping in pitch have been determined for other shapes and these will be

presented in subsequent sections.

The other damping derivatives can be determined following essentially
the same procedure, and these will be discussed in the sections that follow.

1”
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2.3 Damping in Yaw - Cny

It is demonstrated im Sestion 5.3F that the damping ifi yaw of an aefo-

dynamie shapé can be eXpresséd as

Ch,. = (Knr), CoS0t + (Knp)p S/ne (5. 28F)
Cn,-.= Py Sin (Bpp +o) (5.31F)
where
= kel + (el (5..328)
Bpr = tan "{;{ﬁﬂ-r%L = s (f”’)’ — (5.33F)
nrle V&nr); + (Knr

The constants (I\nr )1 and (Km_ )2 are determined from Eqs. (5.29F), and

(5.30F) using the equation of the surface, Eq. (6.1F).

For a half cone with flat side up at positive angles of attack, the
following expressions for the constants have been evaluated.

((n,./:-v-[ £(Ze) 4 2(%0) ]tang-

—97[/ -2 (-’Et)"+4(%-)‘]tan 8 sin"@ - m tan®® 510 S {2 2N

Knrde = - $[- $(3)+ 2(Z8)*]- $[- 256 () ] wn"s -
- 3 tan'd sin*o (2 23)

For any cone half angle (&) and .6, location (x,y ¥, ), it is possible to
ovaluate pumerically (K Y, and (X ), and aim the constanls m - and
o Tas. (5, 28F) and (o 31‘(’) will ihom wive the damping in yaw as a fanclicn «f

angle of atfack for positive angles of attack.

13
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The damping in yaw is a function of both longitudinal and lateral C.G.
location. No simple C.G. transfer relationships ¢an be derived as they were

for the static derivatives.

The yaw damping constants in Eq. (5.31F),with the acute angle form for

8, o are plotted for a half cone as a function of cone angle and ¢.6. location
in Figs. 5; 6, and 7. The yaw damping is an especially strong function of longi-
tudinal C. G. positien and variés little with lateral C. G. location for moderate
cone angles, & < 15°, The damping is large about the nose and small about a
point 2/3 of the cone length from the nose. Only lateral C. €. locations that
lie within the cone envelope have béen considered in these figures, |yo/x0| <
tan 8 .

It is interesting to look at the damping in yaw under the assumption
that the cone half angle is small, and the lateral C. G. location is small,
|yo/xo| < tan € . Retaining only up to first order terms in small quantities,

the constants can be written as

(knr), =-7[r-§(3) « 258)" )0 (2.26)
(Knrde == $[/-§ (30) + 2(%2)"] (2.27)
map = 4 [ 4030) ¢ 2(%Y) (2.2
Bpr =T+ 6pr » viere g, = g (2.29)

For sufficiently small cone angles, Eq. (§.31F) thus becomes
e V2T "
Cop =~ $[1- $2)+ 2(22)" ] sin (6 +) 20

Fgsy (2.28) and (2.29) showld be comparved to the exact solutions of Figs, 8, ¢,
and T, These comparisens indicate that Fge (2,30) will give reasonably good

14
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results for coné semi-angles less than about 10 degrees. The strong effect of
longitudinal C. G. location en the damping in yaw i. indicated by the plot of
Egs. (2.26) through (2.29) in Fig. 8. The figure indicates that the damping in

yaw is a minimum for the C.G. located at 2/3 of the cone length from the nose.

The tiafnping in yaw of the full cone is now fairly e@éy to evaluate for
all angles of attack. If the constants ’(Knr)l and Knr )‘2 for the top half
of the full cone are determined, it will be found that the ( Kn.r )1 of the top
and bottom half are the same, and the ( Knr )2 of the top is oppositeé in sign to
the ( Kpp )‘2 of the bottom. This same relationship existed for the ( K . )y
and ( Kmq )2 of the top and bottom with the C.G. in the horizontal plane of sym-
metry. It therefore follows that the damping in yaw for the complete cone is

analogous to Eq. (2.12) and can be written as

Cn, = -m,,r[sin (Bpr +o) + sin (5, —o<)] (2.31)

The damping in yaw throughout the angle of attack range can now be determined
by simple analogy to the damping in pitch equations.

D(S‘e;)r

Cp,p = =mp, S0 (€ne =x) (2.32)

-Ipp Sx £ Onr

o2~ P [sm(&,’,,.+«) +sin(@pp- ot)] (2.33)
14
* 2 @nr
Cn, 2 =My SIN(Epy +) (2.3

15
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If the upper and lower surface are not of the same shape, then the
constants for the upper and lower surface must be detérmined separately as
indicated in Section 2.2 when discussing the damping in pitch. In such a case,
the yaw damping equations will be analogous to the pitch damping Egs. (2.21),
(2.22), and (2.23), and they cah be written as follows:

o £ ~8nr,
Ch,. == Mnr, 30 (91‘:»,, = o) (2.35)

-9;, S < Ohnry

C”r= - m"'e sin(a,'»,,.s +x) - Mpy,, Sin (9;,,7_- ) (2.36)
o« 2 Opr,
- 4
Cn,‘ Py 510 (9"'3 + ) (2.37)

The subscripts T and B refer to the constants for the top and bottom sw lace
shape respectively.

For a full slender cone Eqs. (2.32), (2.33), and (2.31) assume an
especially simple form,

b

Cn,. == '3’[" §$(%) + 2(36"‘):] S'ﬂ(g? 2 - x) (2.38)

14
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C, =- ._‘g;[/_ .Q(_’t.‘:a.) +2(—’2—)z][5m 1;29 #o) + Sin (—i{r & —\\‘] (2.39)

S [1- $(2) + 22Y |sin(Z o+ ) (2.40)

At zero angle of attack,; the damping in yaw of a slender cone can be derived from
Eq. (2.39): The result is identical to the damping in pitch at zero angle of
attack.

Co,= 27 [’ -§(%) - l(—’%ﬂ 6 (2.42)

2.4 Damping in Roll - Cl
P
From Section §5.4F the damping in roll of a surface assuming Newtonian

flow can be expressed as

Cf,a = (Kyply cos ot +{Kpple S (5.43¥)
Co = 7ep 1 (Sgp + (5.44F)
%" Tip (Bep +)
where
e
Tpp :J{}lf)l + (’fef): (5.15F)

(K ), - (f( } )
t?lf = ta.n‘i{'Al/‘ = Iy ey e w*-w;;{t;‘l"w;,m (5‘461“)
X, TR £y
Ll V’Vflﬁ)r + (Kenl2
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4p1

determined as indicated in Section 5.4F. For a half cone with flat side up,

Using the equation of the surface, the constants (K ) and (K;ep)",z* can be

at positive angles of attack; these constants become

(K,e-p)/ = =27 [(%_)z + (_Zg_)z ] $1n O éos O (2.42)
(K,zp)z =-42 [Z(JC&)Z'P (—%ﬂ-)z] cos 0 (2.43)

For any cone angle ( & ) and C.G. location (yo, zo), the constants
can be evaluated numerically, and the damping in roll of a half cone can be
determined as a function of angle of attack from Eq. (5.44F). It is interest-
ing to note, that with the C.G. on the cone axis (y0= z, = 0), the damping in
roll is always zero, as one would expect.

For those cases where the lateral displacement of C.G. is zero,

Y, [c = 0, the coastants assume an especially simple form

(KIP» z -2w (zcﬁ)k SN P Cos O

2-2 2’(1@-)‘E tan @ + 2or(d2) 220 6 51" (2.49)
R
<-4 $14) s (2.45)

I{ the further assumption is made that the conv angle is small, and only up to
first order torms in ¥ are retained, then the comstants assume the following

vaiuesy

13
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(/(zf); = ??7 ( Zé’ )29 o - (2.48)
(Aep)e=~ % () : (2.47)
= |
Mep = $(22) (2.48)
’i{f’:”‘f‘a‘(lf ’ where aj;f: %’a (2_49)

The roll damping constants determined using Eqs. (2.44) and (2.45)
are plotted as a function of cone angle in Fig. 9. These results compare quite
well for & < 10° to the small angle expressions, Eqs. (2.48) and (2.49).

For a slender half cone, the damping in roll as a function of angle of
attack and vertical C.G. position thus becomes

sz. =~ %‘(%): sir (3 5 +x) (2.50)

The damping in roll of the full cone is easy to determine once the

constants, (Rlp)l and \}':lp!:, for i fug Radf of the cone are evaluated.

Analysis shows that these comstanis ¢an be derived from those for the bottom

half by first substituting - 2 for 2+ and then changang the sign of all the
terms in (]Et P ), .+ It will b¢ rerembdered that the same procedure applied to
the damping in pitch comstants. By amalogy to Egs. (2.21), (2.22), and (2.23),

the damping in roll eguations becere
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& £ =8
XE s
1 Z < 7, , -ox) ‘ ' (2.51)
C;e,,‘ Meps :m(;;b% o) (2.51)
~gy Sx%0,
%= %= Y,
o, =y, S0(8,, +a)= 511 (8, =o 252,
C:Zf /;k%so(ai(féfa() /{)(fr sm(@lfr ) (2.52)
X 2 byp,
C, =-m,_ sin(6,, + (2.53)
IR TR 7S )

The subscripts T and B refer again to the constants for the top and
bottom surface, and these constants are generally different because of lack of
symmetry of the upper and lower surface with respect to a C.G. outside the hori-
zontal plane of symmetry. Of course these same equations will apply if the upper
and lower part of the body are different in shape provided the constants are
evaluated Tor each shape. In the case of the cone, the damping in roll constants
happen to be an even function of the vertical and lateral position «f the C.G.,
see Eqs. (2.42) and (2.43), and therefore the constants will be identical for the
top and bottom.

For the slender cone, using the results of Egs. (2.48) and (2.49), the

damping in roll of the full cone assumes an especially simple analytic form
throughout the angle of attack range.

20
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G2 =5 (B sin (o) (2.54)

Cp® - 88 [sm(Zgra)s sin (226 -x)] (2.55)
x2Zo

G, = 2(%2)sin (Z g +x) (2.56)

The damping in roll for a slender cone at zero angle of attack, with
no lateral C.G. displacement, can be obtained from Eq. (Z.55)

oo —ar(o Yo (2.57)
‘i

2.5 dampine in Yaw :me to Rolling - Cn
- p
fhe general analytic form of the danping in yaw due to rolling is

presented in Nection §.8F and repeated heve for convenience,

-

‘.,‘f‘ . ‘k’ . )! COE N - (L *; \«) BN (5.5"“‘)

¢
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C, hp : Mipp S/ﬂ(g/},o # ) (5.55F)

where
Mpp = \[ /(,,,,), (K f,) | (5.56F)
9,;’9 = tan K ne): z S/ﬂ;/ - __;_»(_’fn-p)/ (5.57F)

{an)z V— f?) "

The constants have been determined for a half cone with flat side

up at positive angles of attack as explained in Section 5.5F. The results are

(K,;f,), -g— [/— —7,5_9- ]tan g+ 8(—19—) sin*g -
-277(—"52-)(-%&) tan 8 sin*é (2.58)

(Kngle= - 4 (@) [1- ()] +2m () tan 6-

-4 (%ﬁ)(%‘l) sin'g - Zﬂ’(—’é’-)ztan g sin*s (2.59)

For any cone angle ( & ) and C.G. location (xo, Yg zo), the constants
can be evaluated numerically. The C , asa function of angle of attack will then
be defined by Eq. (5.54F) or (5.55F).P

For a slender cone, assuming ,\‘O/c = 0, and retaining only up to first
order terms in the cone angle, considerable simplification is possible.

1o
to
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(an)/ == zf"(‘%‘)’[’“ 5(—?)]9 | | | (2.60)
(Knplz= - 4 (@[~ £ (3] | (2.61)
Mpp = *’é(—%’—“)‘[/" £ (%29) (2.62)
Onp= T+ 6np where &,z 28 (2.63)

Thus for slender half cone at positive angle of attack, Eq. (5.55F)
becomes

Ch

=~ R 5] 9 (F s+ .00

The constants for Cnp have been computed as a function of cone angle
(&), Ffor fixed longitudinal C.G. locations (xo/c), and zero lateral C.G. dis-
placements (y,/c = 0). The constants mp, and &pp are plotted as Figs. 10, 11,
and 12. The results show that Cnp is a linear function of vertical C.G. position,
and varies widely with longitudinal C.G. position. The damping is a minimum for
the longitudinal C.G. located 2/3 of the cone length from the nose, and it will
even change sign depending on the C.G. location. The results also demonstrate
that Eq. (2.64) will give good results for half cone angles less than about 10
degrees.

The Cnp of the complete cone can be found once the constants (l(np)l

and (Knp)g of the upper half are determined. These were evaluated following
the procedure in Section 5.5F. It was established that the (Iglp)l of the top
can be obtained from (Kpp)y of the bottom by first substituting -z o for 2z,

[
w
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and then changing the sign of all the térms. The CKn p)z of the top is obtained
from the bottom value by simply substituﬁing,azoyfor'zo, The procedure to be
followed invobtaining‘the-onp‘throughout the angle of attack range is similar to
that used for the other derivatives.

2.6 Damping in Roll Due to Yawing = Cﬂur

The damping in roll due to yawing (sz_ ) for the cone is the sate as
the Cnp since the c¢onstants are identieal,

(kﬁyﬂ)l (ﬁézr)/

(’S(r)z

It is also true that (Kh_)1 and (X ,Zr)

(Kﬁpk
2 for the top half of the cone bear
the same relationships to the constants for the bottom half as that shown for

/
(Kinp)1 and (th)Z' Tbe alternate form of the C,  constants, (nhtr) and (é}r),
are also presented in Figs. 10, 11, and 12,

3.0 Analytic Equations - Delta Planform with Diamond Shape Cross-Section
3.1 General Discussion

Another aerodynamic shape that has been studied in some detail is the
delta planform with diamond shaped cross-section in planes perpendicular to the
longitudinal axis. All the surfaces of such a shape are flat planes. The im-
portant stability derivatives, both static and dynamic, have been determined for
this shape. In the next quarter, the shape will be studied in some detail with
controls added for purposes of trim at angle of attack. Stability derivatives
will then be determined under trim condition, a primary goal in this whole study.

Results are presented for only a half body with the flat side up
at positive angles of attack so that only the bottom surfaces "see" the flow.
No discussion of analytic results are included here for the complete surface,
top and bottom, at all angles of attack as was done for the cone. The procedure
to be followed to obtain the derivatives of the whole body is essentially that
discussed for the cone, and the cone results may be referred to for these
details.
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In the derivation of all the stability derivatives, the partial deris
vatives of the eguation or equations of the surface are required. The body
orientation and general shape, as well as the surface equations, will be shown
here for convenient reference. | |

Surface (2)

Surface (1)
Surface (1)
F(2:4.3) =2 +(tan L)y + (cotB)3 = 0 (3.1)
Surface (2)
F(%,4:3) =% - (tanA)y + (cot 8)3=0 (3.2)

3.2 Longitudinal Forcerandrquent Equations

The forms of the longitudinal force and moment coefficient equations as
derived in Section 3.0F are repeated below. The analytic equation for each co-
efficient can be written in either of the two basac forms.

23
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C, 2{ky), Cos’x + {&a)2 sy # (Ka)g Sroencosc  (3.18F)
Gy, +a, sm(a, +«)  (a.199)
(ﬁ_‘” - ‘(,}(M),, Cos o + (*n) 2 Sin'x% + (K”)s Sme&x Cosk  (3.31F)
Cyz oty S/ﬂz(aﬁ # ) (3.35F)
Crnz(Km), cos'o + (Km)e 510" + (Km)s Sina cas o (3.40F)
C,, = my +m, 5/02(9,,,4-«) (3.44F)

The integral relationships and equations for evaluating these con-
stants are presented in Section 3.0F. These integral relationships are used

in conjunction with the equations of the surface, Eqs. (3.1) and (3.2).

For the half body at positive angles of attack, the constants have
been evaluated and are shown below.

2
K ) = "wia R,z 0
( ATl 1+ sin*9tanA °
(K) . _RS/NB cesd a = o tan$
= > = = by - —T——-——
Alz 145109 tan®A ‘T 1a5n'@ ten's
2
s - -———?——s—'—o—e-———— =
(Ka)g = 1+ 510" tan®r bas 6
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250779
(&l 1+ 5100 an? 079
(K)p = ~=— Reos®O o . S
e = 7RG e V2 S tanh
(KN, = 2508058 ny
(Ka)s = 1+517% @ tan2A én=#
N PR T
(ky), = — 3 San85m 6 m = o
MU =17+ 35:n% @ tann O
(o) = —— 2576 e Btan®
miz = /2 S5n%8 tand A ' Ve sen B9 tan s

- % tand sm'9
!/ +35in %@ banA

(km); =

’
Em = ‘7—{-4-9”, » where 9,',,:9

The more useful form of the analytic expressions for the longitudinal
force and moment coefficients are expressed by Eqs. (3.19F), (3.35F), and
(3.44F). In ter . of the evaluated coefficients these equations become,

2tanb 2
= — Sin + 3.

Ca 7+ 3in %9 taniAr (9 d\) (3.3)
2 2z

- — Stn 3.4

Cwn: oo Y (6 +a) (3.4)
- &—t&nla 2

Cpp = ——I— s +k (3.5)

M= tesin20 tan’A (9 )

[ 3]
-1




Eq. (3.5) is evaluated for a €. G. located 2/3 of the body length aft of the
nose on the longitudinal x axis.

It is dinteresting to note that in all cases the "effective" body
angles ( ea, 8, a'm) are équal to the geometric angle & . When these expressions
are used in determining the forces and moiients of the full bedy throughout the
angle of attack range, the resulting equations afe exact since complete masking
or unmasking of the bottom and top occurs precisely at angles of attack - @ and
+ @ respectively. The completé surfacé résults ¢an be obtained in 4 manner

identical to that shown for the full cone in Seétion 6.1F.

3.3 Lateral Directional Static Stability Derivatives

The static lateral-directional stability derivatives for a surface
can be defined analytically in the following forms as demonstrated in Section
4.3F.

(s = (Kyg), cose + (Kyg), s (4.28F)
Cys® Ye sin(6yg +) (4.32F)
Cl/f (Kpg) cosat + (Keg)e Strret (4.35F)
ij = Lg sin (Qm+o<) (4.38F)
C,,ﬁ= (Kng), cos & + (Kpa), St (4.43F)
Crg= P sin(6pg + ) (4. 46F)

The integral relationships and equations for evaluating these con-
stants are shown in Section 4.3F. The equations of the surface that must be
used are Eqs. (3.1) and (3.2). For the half body, the following values of
the constants were obtained.
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(K ) = oftenb $1028 tan?a
YBI1 - /r SR ban®ta

.= 2 . ’ 4
Y. = —#Sm Btan A Oz 4 O where ns &
(KYﬁ )Z ” Srn 29 t‘a,n'?/fs ' B Y3 gYp

- 3 5in'9{1= tanotan™s[tan 6 ¢ 3(38)] )
!+ 51070 tan"A

(Kge), =

- g- sinfcosd {/— tanOtanA [tan o+ 3(;5“)] }

IrSin @ tana

(Kep)e=

_ s {/- tan@tan"A[2an 0+ 3(3)])

I Sim ‘0 tan®dL

s

91ﬁ =7 9;,9 ? where alﬁ:—“@

$tang sin'g{i+2eanU[i- )] )

PR N Ear A

i(Knﬁ)f =

Fere{reeenil 3]}

(Xnﬁ)z = 7 S/ﬁ‘Q fay é-ﬂ-

Ny
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o Srengsng{iszeans [1- 3]
B 7 * 507528 tan*A.

9,),9 2 9»‘/;/37 =4

The more useful form of the laterals=directional static stability

especially sinple in terms of the evaluated constants:

. . y 2 .
CY,,« = W_ Sin(@+() (3.6)

- -3. sma(l- tan*o tan&)
= : sin(f+ (3.7)
C’P 1+ S 9 tanA (6+=)

C,, = $ tang 500

= - sSin(6 +at (3.8)
!’ resin‘otana ( )

The effective body angles eJYﬁ ) 9“&3 , and e'n @ e auain equal
to the geometric angle & . The latoral-directional static stability derivatives
for the complete surface can be obtained in the mapner indicated {or the full
cone in Section 8.2F,

3.4 Danping in Pitch - Cmq

The derivation of the damping in pitch vguations are shown in Sectien
3.2F, The damping in prich can be oxpressod in one of two ways,

Cm? = (fkmg)] cos oA + (Km?)é N (5.17F)
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C},,,_-? = /g Sun (g + ) (5.18F)

The method for evaluating the constants in thesé equations is also shown in
Sectlon 5. ZF.

For the half diamond shape body at positive angles of attack, the

constants assufie the following form:

~#[- §8) +2(3) tane B (L) )]s

7+ Sin* tan”A / * s’/n‘to tana

(Kmg), =

_8[88° § (o) - (%) |tano s

2
tesin 0 tan*A

-? (%-)tanta s’ - i tan’® sin'e

74 Snt® tan®A 7+ SIN%9 tan’t

-ol-§0C2) o] | RE[-FE]tens

(kmg)z - 2+ 5% tan*4 s+ Sin 2@ tant A

_ o[ 33 - ]sm |

/- sin2& tan*d

ff('{") [/-3 (%‘)] tan@sm @ $¢an'o s’
* 7 #5020 tan'A - e sinte CandA
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Mg = O (/. Sike), 2(%) ]+ & (%)[/- $(Z0))eano +

74 S0 Btan 24

4 3’- tan @ Sinzé}

i
®

9”7? 2T+ 9,’,,$ s where 9,;)?

The pitch damping constants are rather involved functions of the
longitudinal and verticalC. G. location. These constants can of course be
evaluated numerically for any C. G. location and values of the angles &
and A . In the case of small @'s, if tan A is of the order of one or less,

2
and the vertical C. G. is located within the body (l ;2 | < tan &), considerable
Xa

simplification is possible. Retaining only up to first order terms in & and

Zo/c» Eq. (5.18F) becomes

c,ng;-,[/-g(-’fca)u(lcm)z]sm(e vx) (3.9)

Equation (3.9) should be compared to Eq. (2.7) for the half cone. In the limit,
as & approaches zero, kq. (3.9) becomes the damping of a flat plat: delta

surface at angle of attack. .

3.5 Lateral-Directional Damping Devivatives - Op, Cops C“p, Cep

The form of the lateral-directional damping derivativer are determined
in Sections §5.3F, §.4F, 3.8F, and §.0F. The integral relationships and equations
Tor evaluating the constanis in the damping derivative cquations are also pre-
sented in these sections. For convenience, the two forms of sach damping de-

rivative equation are shown again below,

-
e

P

12
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Chiyp = (Krp)s cosak + (Knile st (5.28F)
Ca,. = Mnp 51(Onr +) (5.31F)
Qf = (Kep)y Coset + (4 Pz 517X (5.43F)
Ct,, = Myp 511 (8pp+K) o (5.44F)
Cr, = (Knpl cos% + (Knpla Sin & (5.54F)
C’Zf, = Mpgp Stn (9,,'9 +a() (5.55F)
C:lr =(/f(r)l Coso + (’Ser)z sn & (5.64F)
Cp, = 7t 7 (G2 * %) (5.65F)

The constants in these equations for the half body at positive angles
of attack have been evaluated. It was discovered early in the integration pro-
cess for determining the constants that some simplification was possible. For
the shape under consideration, the following relations hold:

(Knr)l =tan o(knr)z mppr = — Sec a(&r)z Opr= ¥+ o;'_ ’
where &p,=6
) k4
('5(’), = tMO(Ig“,)g Map =- 38 9(&’,)& &fﬁ ”*‘Qlf’
where 9},3 =P
Knply = 220 9Knp)z Pinp= sec 8 (Knp)a Ong = Ohps 8
. , .
(#erh = tan 8(Kep)2 nigy = oo RlKer)e Bop = 8¢, =¥ |




R~63-011-109

An examination of the damping in pitch, and the lateral-directional
static stability derivatives discussed in Sections 3.4 and 3.3 shows that
similar relationships held for these derivatives. Listed below are only the
values of ('Khr)é:’_‘(‘“K,ep)‘z’ (K?np)'z"' and ‘(K;er)zzf" sincé from these the other cons
stants ¢an be easily détermined:

Un)p = 2300l 3 58) + 2(42) ) o [r- §(Z0) o2 Jewne 4 cotlt)

/4 S "a tan A

aple= s (Lo 4 vetBf] - sy o -

- [/46(%‘-)th.‘. + Cot A+ 6(—%’—)2] sm‘a +

+ 4(18) [/ + tMJ.] tand sin'G+ ten A tand sza}

(khf)l :(K‘,.)t= 7*—3’—”120—&:52 {[/‘ % ("’cl) + §‘ Cotfl. + 4(‘%)‘] ten O -

-$(@)[-20+ Bt sm'e -

- 3 {1*3(1"-)‘- (—%‘)(I- tanf.()+ % tanfd + i» col :(] tané Sm‘&},

It is of interest to note thatl the cross-~damping derivatives, C,,p

and Gy |, Will be identical since (Rx\p}‘:: and (X,,), are equal,

Considorable simplification is possidle in the egquations for evalvating
the constants if one assame that the &, Iies on he X axis (z‘),»"c. a, y“/c = 0,

RE
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Under thié assumption the constants become

2
N = tEmE
(Knrle 145170 ¢anA

{"[/a %(—’—‘g—)] + [f— £(Zo)s+ z(l‘g-)z] tan A + 4ot ZA}

Keple = 75

;&,‘Ji{“tf" a[/ + cotf,t]s'mzé + tan A ten'd 3/029}

(an)zz (Klr 2 = 7s Sm;t‘nfl. {[/*— 5.(2‘&9.) + —‘3?- Cotfd.] tan -

- §[I- (—7—2“)(!- tanf&) + % tan'A + 3’ cotzﬁ.]tcnasmza }

If the further assumption is made that & is a small angle, and tan A is of

the order of 1 or less, then further simplification is possible in the constants.
Retaining only the lowest order term in & for each constant we have

Wane = =2 {[- %(%')]% [ §(—’2‘)*2(3§)2] tants § oot 51}91
(Keple= - § cot™

(%np)a = (Kep)z = 2 [ -3+ % «:at‘st] e

With these assumptions, the vonntants m

' ’_ ' ™ ml’x’-‘ nnp“ and mlr av
identical ta Wm\‘;n (I\,(p) i3 (i\w\;\‘ and (K ”\3 respeetively,
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New, for the half diamorid shape body at positive angles of attack, the

lateral-directional damping derivatives assume the following simplified ferm.

Gy = =4{[1- 2E] 4 [/- £ (2) 4228 Ytan s L et Wy sm(ore)  (3.10)
7). ERYS 3 (c c

¢, 26%606‘?)1; s1n(6 + o) (5.11)
Lp
C,,f'; Q(,*z[”’%‘(%‘) + %ot ) o sin(@+e) (3.12)

In the limiting case of & = 0, Egs. (3.10), (3.11), and (3.12) become
the damping derivatives of a flat plate delta surface with sweepback A . For
this case

9 :-g-cot'_?,t sIN (3.13)
f
Cn, = C"f: Qr =0 (3.14)

1t is possible to look at other limiting forms of the surface with
diamond shape cross-section. I one assumesthat cot A - tan & , then the
shape is one that can be inscribed in a ¢one. One can then make interesting
comparisons between the derivatives of this shape and those of a cone.

4,0  Analy rtic Equations - The Elliptie Cone

4.1 General Dis.ussion

An aerodynamic shape of some interest upon which some initial investi-
gations have been made is the elliptic cene. Only analytic equations for axial
and normal force coeffiecients have been determined wp to now and the results are
presented here, Ihe moments and the lateral-direetional stability derivatives

RIS
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will be determined in the next quarter.

The results for only a half body with flat side up at positive anglés
of attack are presented. The equations for the complete surface at all angles
of attack can be eéasily obtained using the procedure discussed for the cone in
Section 6.1F. |

A sketch of thé half ellipti¢ cone body and the equation of the surface
required in the analysis is shown below.

- surface

Equation of the surface:

Flx.q:3) = 2% (tnnf()qz- (cotza)j 20

4.2 Longitudinal Force Equationy

The general form of the longitudinal force equations are derived
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in Seéction 30F and presented in Section3.2. The integral relationships and

equations reéquired to determine the constants in these equations are shown

in Seection 3.0F. Por the half elliptic cone body the constants become

(Ka); = reosA tan &s1n &

(Kq)z = 27.COSA Sin G038
4'Z CoSA+sSind

&%
(kl) - 2sme__ Lo HH[IT,( izz-i ] I i’-'lj-{— </
3= ’__——2 21 7% cos
-2 -~ (22291
-¢+sn° . & Ay (Y]
(£9)3 = ‘['s_,“—‘ EW ] {‘”t [¢ cos ) ! ] } il
cos.A.
- tA
(Kll)l= 25::;& 2% tan {w’mtm‘ﬁ‘[l tan 9) ] } ::n é </
tanA[s-(255)"]
2 Yo
(K ) sné lfSinOtanJ-[(hm 9) ’J cotA >/
2/ o [(«tw;e) }jd /- smO2anA mg_ ‘/]& tan @

38




sin*(tanA=cot®8) | 56 Veun"h - cols

(ky)z = = ksl . '[/-‘ ' ~~5’7-~45~ec~2-4‘-- — tan (s/ngm ).];

cgﬁd
. ¢éan® <!
.
()p= 2050 [, snlpsecit | 1+sm0det ot
NI2 ™ sin%g(cot?s - tan'A) ZomoNeotZo tanth 4| (- SnG\colD-tan'h |
cot A
tané >

(Ky)g= —LZ 2028
Wis3 CSCE + sec A

For any values of the angles A and & , numerical evaluation of
the constants in Eqs, (3.18F), (3.19F), (3.31F), and (3.35F) become obvious
following the procedure outlined in Section 3.0F.

It should be of interest to examine slender elliptic cones of
various fixed ratios of the two axes of the ellipse. From the previous sketch,

the ratio of horizontal to vertical axes of the ellipse (e ) is obviously

ex g2t

If the assumption is now made that the angle & is small, and ¢ is of the
order of one, it is possible to obtain quite simple analytic expressions for
the constants in terms of ¢ and the angle & . If the value of e is fixed,
then the constants become only a function of @ . For small &'s, the con-
stants are listed belovw for three e¢llipses.
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,,_“,é L= 2 ;,Q‘ _‘g,_: 1,0

a 1.86429°% 595193

(o]
a4 2.09446 1.5708¢ 1,0472 6
e, 1,452 6 1.2732 8 | 1.15478
n .394462 .148862 .04925 62
ny 1.6528 1.3333 .9455
6, 1.26710 1.17846 1.10756

The constants for e = 1.0 (the circular cone) are taken from Section
6.1F. These results will be studied in more detail to determine the range of
6 's over which they are reasonably valid. The pitching moments and some of

the damping derivatives for the elliptic cone will also be evaluated.

5.0 Analytic Equations for the Stability Derivatives Considering Bluntmess

5.1 Introduction

All the body shapes that have been analyzed up to this point have
had surfaces whose shape can be expressed by a single equation. It has also
been stated elsewhere in this report that the methods are still applicable if
the top and bottom of the body can each be expressed by different egquations,
since the top and bottom of the body are analyrzed separately. These general
relationships also hold for bodies whose surfaces are composites of two or
more shapes, such as a spherical cap and a2 cone. The only details to be studied
are hov the results for the different shapes are to be combined io obtain the
aerodynamic characteristics of the completcs body.

Surfaces of special interest at hypersonic speeds are those with
blunted roses and leading edges. Some preliminary investigations have been
made of the application of the general methods shown in the "First Quarterly
Technical Report” to a blunted cone, and these results are presented in this

section.

A0
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5.2 Analytic Fquations - The ,,Spher:ica.i Cap

In order to analyze the aerodynamic characteristics and stability
derivatives of a sphérically blunted cone, it is necessary first to deteriine
the propertiés of the spherical cap. Analytic equatioens for the force and
moment coefficients, and the stability derivatives of a spherical cap can be
determined in the same manner as that used for the coneé or any other surface..
The basic methods are presented in Sections 3.0F, 4,0F, and 5.0F. The basic
equations will fiot be Tepeated; only the values of the constants in these
equations are tabulated below for the bottom half of a cap at positive angles
of attack.

Equation of the Spherical Cap Segment
2 2 2 2
‘()C‘R) -,J _? +R =D

Tongitudinal Force and Moment Cocofficient {onstants for C,‘, Ty and Cm

(k‘n% b~ S/.”/Eﬁ

B
EEY




R-63-011-109

(Ka)z = 4 cos’s
. (1=£6) LY
(€45 = cos’ 2m (1~ £4)

(r- £06) { £Sin2O Sint8 ]
K; R vt el VAR L
( ,v)z cos'0 3m(s- éa) em(s- _:;o)

(Kn)z = cos'®

(Km), = (km)g = (Km)z =0

Lateral-Directional Static Stabilaty Constants for Uy Q" Cnﬁ and C ﬂs

(Kyg): = -cos’®

(K ) - "(-" ;:0) L X3mRe _ _ Sined
Y32 = T coste ar{i- £8) (- 29)

(’fﬂs): = (Km)a = ("‘"q&)f = (*'nﬁh =0
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Longitudinal Damping Constants for Cmg'

(A’mg) -2[(s- Y+ 20 2)(Z)+ 282"+ £~ Z¥2e)(0-t2n 6)-
-8(d8)[/- Z)+ (do))ten's + 2 (1= ) )(26+tan6)tand-
~#(1- 2X22)tan'6 + £(1- Z3)(dg)6 tan"s

(Kmg)e = - H1- 2)4) - 2[20- )+ (2 ) {1- Zo-

[f(l‘%)'('%')] ‘ctan0+2t¢-09 _tamg..
[2(-Z)« (2] 7

2 3 . *
-;tw 8 + tan 9—%9 tano}

Lateral-Directional Damping Constants for Chp- C‘p_\ Cnn“ and C‘r

(Knr) ==20-3) - #(%8) - 8(4) tan’s

(Knrlz = ~2[(1- %')2* sL(z&)l]{)“ #6- 3« %) - -%g‘)) } 3 b+

+2tn'@-Lotans - Bengrrany-£9 m’e}

RR
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(Ko p), = -2 e+ (2]

(kepde = -2[2(F+ (e ] {1- $0- g ang r2000%0 -

= -;;4-6 tan"g - -‘727 tan’y + tan'g = 24 tnn46’}
(K =(Kg,), = = 20- 200+ 28" (1= 204 2 o0 +
+ 2t @ - £ tan'g - £ tan'g + tan’d -
- %9 fm,’g}
(knple = (g )g = 2000 2(- VD (1= £6 - 22 ewno

+ 2!@:7‘& - -,%‘9 (’»2:“9 - -ﬁ t‘anse + tan'y -

- *ﬁ* & f&nié}
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A1l the static moment constants arve zero since the center of moments
is taken at the center of radius of the spherical ¢ap. The -simple €.G. trans-
fer relatie ' ips of Section 3.2F and 4.2F can be used to obtain moments and
momént derivatives about any other .G, locatioh. The force and monent coef«
ficient constants are based on the base area ( Ap) and base radius (Ry) of the '

bottom half of the spherical cap segment.

It is interesting to note that for a ¢.G. located at t’he.éjent‘ér of
radius of the spherical cap (X, = R, z, = 0) 211 the damping constants are
zero as theéy should be. Since simple C.G. transfer relationships do not exist
in general for the damping derivatives, the consitants must be éxpressed in

terms of the C.G. position.

For the case of a half sphere (& = 0), the static force coefficient
constants assume an especially simple form

(Ka), = (Ka)z = (kw)o= (Kn )52/
(Kade = (Kw)i = #

(KY/i)/ = (Kygle = =7

From these constants, it is possibie to write an equation for C‘\,
C\?‘ and Cy of the bottom of the hall sphericai cap at positive angles of
attack,

Gy = ii-{z + $4F 31:3‘5(66.28"*\0:) (5.1)
(\Nﬁ i-’—;'iﬁ- + ;f—\(? -\‘.:’?& (“’i IR 73‘;;&) B
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Cyy = ~VE o (#5 +o) 69

From these equations it is easy to show that at & =0 , Cy = <C

L N,
not unexpected result. A s

5.3 Longitudinal Force Coefficients of a Blunt Cone

For the present, only equations for the lengitudinal ferce coeffi-
cients of a blunt cohe have been derived. The moments and damping derivatives,
both longitudinal and lateral-direction, will be treated in the next quarter.
In many respects thé procedure is basically that which will be showr below.

The primary additional complication is that static moments and damping deriva-
tives of various parts of a composite configuration are a function of arm

lengths or distance from the center of moments (C.G.) of the total configuration.

In order to derive the longitudinal force coefficients of a blunt
cone, certain area relationships are required. These relationships are presented

and explained with an appropriate diagram below.

Diagram of a Riunt Carcular fHaif Coanc
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The bluntness factor fB; ) of the cone will be defined in terms of

the base radius of the cone ( RC ) and the base radiius of the spherical<cap
segment (RBv)'

r’a (22 ) (5.4)

The total planform area of the blunt cone ( § ) is composed of the truncated
cone planform area (S_C ) and the planform area of the spherical cap ( Sp ).

S=5c+Sg (5.5)

The cap force coefficients are based on the cap base area ( AB ). The truncated
cone force coefficients are based on the truncated cone planform area f SC ).

If the blunt cone force coefficients are based on the total area ( S ), then
the important area ratios, expressed in terms of the bluntness factor and the
cone angle, are found to be the following:

F
Ag _ F(7E) 0 (5.6)
-3 /+ :24:(,_’:3_{;) éand secza [/ - % (0 + E’- :/nfﬂ)]

Se _ o /7 ~ )
s l+ g—(—é‘%;) tan g secza [ - ,—‘;(9 + é ) 29)] (3.7

Based on total planform area, the axial force coefficient (C‘) and
normal force coefficient (C\) of the blunt cone can be written as

=(Ca)a (58)+ (Cade (5)

- “ . A - S
Sw 2 (CWa(=8)+ ovle (55)
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The subscripts B and C refer to the spherical cap and triuncated cone respect-
ively. In terms of the constants derived for the coné and the cap these

équations become
> _Tiwe N . cnc2e idf cnler o4 (W «im 1 7.A8
Ca= [(KA)IB cos'x +(Kp)zp 17 + (Ka)sg S1n & cosix ] (=2)+
[(KA Yic cos KX + (Kp)ze Sin" o + (Ka)zc Sind Coso(](—g—)
N . . 2 2 . o = A,A
Cw= [(Kyhia cos & +(Kyleg Stma + (Ky)zg Sind cos'o(](—;-) +
S

+H(Kndic cos'x + (Ku)ze 51’k + (Ku)se stmet C"’“]("s&)

One may define the composite or blunt cone constants as follows:

(Ka)rsc = (Ka)6(2) +(k0)sc () (5.8)

(Kadesc = (Ka)2e(B8) + (Kp) 2c (35) (5.9)

(KA)ssc = (KA)ae(ég’-) + (KA )3c (-S;—C) (5.10)

(<v)rgc =(kadre (f‘s'-) + (ke (%f—) (5.11)

(<m)2ac =(Kidos ) + (Kn) 2c (3) (5.12)

48
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(Kw)zac = (Ku)s8(A8) + (Ku) 5¢(39) (5.13)

The~CA and‘CN equations now become,

Ca = (K4 )sac cost + (Ka)zoc Sn zé( * (sz)gg-c Ssriof cosex (5.14)

2 2 ‘ o
Cw=(Knac €os o +(Knw)zac Si1n & + (Ky)zge Sina cosk (5:15)
These equations for the blunt cone obviour.v take the same form as the
equations for the sharp cone, or any other aerodynam.c shape. The only differ-

ence is in the values of the constants. Egs. (5.14) and (5.15) can also be ex-

pressed in the alternate and more useful form discussed in Section 3.3F.
2
CA = (ao)ac *(a-/)ec swn [(Qa)sc + o(] (5.18)

C = (70)ac + (7)sc 52" [(Onse +«] (5.17)

where

(@2))ac = ﬂ(&):x - (Ka)lacm);ac

(20)ac= 5 [(Kn)wc + ("A)zac] - ‘;{‘ (2))ac

-4 ("A )3ac

: 4 on ———
PR [( ,{.)‘“‘(KA)IBC] ‘(Kﬂ);BC

(%4) s8¢

(Ka)zoe (%2 )y 8c

(Gadac = tan”

49
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e ~{Frens ~Goorad ™ Ve

(76)ac = f[(KM)’/Bc +‘(k’~)zec];‘ = (y)ge

VAP (KM)-*BC .

-t (%w)zgc »
=™V llzse- Karac ] ntiac

(6n)ec = z¢ (% )eac = (Kn)ssc

It can easily be shown that the truncated cone constants based on
planform area are the same as the constants for the sharp cone and can be ob-
tained from Section 6.1F. The constants for the spherical cap are those shown
in Section 5.2. Obviously it is possible with the procedure outlined to deter-
mine equations for CA and CN.with numerical constants for any blunt half cone
at positive angles of attack since the complete cone surface will "see" the
flow. The procedure to be followed for the blunt full cone at all angles of
attack is the same as that for sharp cones as discussed in Section 6.1F.

It is possible to obtain reasonably simple analytic expressions for
the constants in Eqs. (5.16) and {5.17) if it is assumed that the half cone
angle ( & ) is small, and the bluntness factor ( fp ) is also small. Re-

taining only up to third order terms in 8,f B? and their products we have
3
(Qo)sc'(”“%)é’ *{-fa 9(/+;3-f8 - %9) (5.18)

(@)ac = K[+ - 96" )-F 4607155 -1 6] (5.19)

a0
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(Gac= 2 ;—E,a + £l S+ 26 + £3 {;4 §f89-(%‘§ - f )9‘33 (5.20)
(No)pe = 2(1- -33_2”_'2)9‘,, g. fg 9‘:[/4;@, = iéf-g] {5.21)
()ec = $(1+F - 0]~ F ta0li+4a- 75:6] (5.20
(6n)gc = %Iﬁ[/*(% - %z)éz]-r 3% 4o 0] /445 - 2Z 6] (5.23)

The initial terms, involving only the angle O , are the values of the
constants for the sharp cone. The terms containing f p are the contributions of
bluntness. These equations for the constants can be compared to the exact values
computed numerically using Eq. (5.8) through Eq. (5.13). The exact values are
plotted as a function of the cone half angle ( 4 ) in Figs. 13 and 14. The ap-
proximate expressions for the constants will give good results for fB <.,16 and
8 < 120,

It should be possible to develop similar expressions for the moments
and damping derivatives of the blunt cone. This will be discussed in some de-

tail in a future report.

6.0 Hypersonic Pressure Relationship§,-Vngiations from Newtonian

6.1 General Discussion

All of the work that has been done on stability derivatives up to
this point has been based on the simple Newtonian pressure coefficient rela-
tionship at a point Cp © 2 sin"§ , where & is the angle between the free
stream flow and the plane tangent to the surface at the point. Under the as-

sumptions of Newtonian flow; this equation applies only as longas & > 0.
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For negative §'s , the pressure ceefficient is assumed to be zero. In the
strictest semse, thHe Newtonian pressufe relationship applies only as ¥ == s,
and the gas constant ¥ is assumed to be one. TIn a practical sense, the New-
tonian relationship appears generally to give reasonable results for the total
forces as long as M & > 4.0, and the body is highly three-dimensional, such as
a cone. For the negative pressure region of the body M & |> 4.0, the negative
préssures are less than 5 percent of the Newtohian positive pressures, and

therefore <can be safely neglected.

An alterhative to the Newtonian constant 2 has beén suggested which
gives better results for the pressures on blunt noses. The relationship is of
the form

Cpz K sin“8 (6.1)

Where the constant K is taken as the stagnation pressure coefficient behind a

normal shock.

Any pressure relationship of this form, that can be assumed to apply
for the entire body at all values of M §, leads to no special problems. All of
that wvhich has been done on the stability derivatives assuming the Newtonian
constant 2, is equally valid for any other value of K. The only requirement is
that the equations for force and moment coefficients and stability derivatives
must be multiplied by the ratio K/2.

It has been established that the pressure coefficients of similar
bodies can be related to one another at hypersonic speeds through the similarity
parameter M § . But for different body shapes, no such simple relationship
exists. In a strict sense, the constant K in Eq. (6.1) that is applicable at
any point on the body is not only a function of the local value of M §, but is
also a more complicated function of the general body geometry. The pressures
behind a blunt nose, for example, are a function of the bluntness as well as
the local value of M& . A flat plate delta wing at angle of attack with con-
stant free stream M &, has a pressure coefficient vhich in general varies

along the span.

]
t>
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Obviously the preblem of compuling pressures at hypersonic speeds on
surfaces, and integrating the results to obtain the stability derivatives, is
an extremely complex ome. A first approach to this preblem is to consider those
¢onfigurations which obviously have unifermm pressures everywheétre, and try to ess
tablish the proper pressure relations as & functien of only the hypersenic sifii-
larity parameter (M §). One such configuration is the circular cone at zers
angle of attack, another is the two-dimensional flat plate at angle of attack.
For the present, only thosé conditions with nose and leading edge shocks attached
will be considered. The Newtonian pressure ceefficient relationship, Eq. 6.1),
and the combined hypersonic-supersonic similarity law suggest that the form the

pressure coefficient might take is

Cf = g(Bsina) : (6.2)

sin
where

S - angle between the surface and free stream

PO Ly

For sufficiently high Mach numbers and small & 's, Eq. (6.2) will reduce to the
form

C

_8:; = 9(M8§) (6.3)
Obviously the assumptions of Newtonian flow, ¥ 1.0 and 4 —» oo, are such that

3(ﬁsin J5) - 2.

Eq. (6.2) has some interesting implications in the light of the force
and moment coefficient and stability derivative equations that have been derived
assuming Newtonian flow. All of these results have shown that the force and mo-
ment coefficients are a Function of a parameter of the form sin’ ( 9_\ +ot), and

the derivatives arve a function of sin (Qx*'s(), The angle 9\ can be considered
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to be an average integrated surface angle, or the "effective" surface angle
which varies with the surface shape and the force coefficient or defivative
being evaluated. In the light of Eg. (6.2), it may be possible to consider
that for the entire surface being analyzed, the average & is (G +&). If
this is possible, then the surface average pressure law that is applicable is

obtained by simple substitutionr in Eq. (6.2)

TGy ey = LA (6 + )] (6.

If evaluation of Eq. (6.4) results in a number different than the Newtonian 2,
the implication is that the computed Newtonian results for the force and moment
coefficients and stability derivatives at ( @y + o ) should be multiplied by the

following ratio:

3B sin(6x + )]
2

0f course this procedure is all predicated on the fact that Eq. (6.2) is appli-

cable on the average to the shape under consideration.

At~ some Hypersonic speeds and angles of attack, negative pressures on
a body are far from negligible. If an applicable equation, similar to Eq. (6.2
can be derived for expansion angles ( & ¢ ), then it may be possible to account
for the negative pressures that are neglected in the simple Newtonian theory.

For negative pressures Eq. {6.2) becomes

!
'g;;r%—e‘ = g (Bsinde) (8.5)

It has been established that within limits, the function g' { Bsin 8, ) ecan
certainly be evaluated for Prandi Meyer expansion on a two-dimensional flat
plate at hypersonic velocities. TVhether simiiar relationships are possible on

other shapes has nmot as yet beon detlermined.
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Eq. (6,5) aise has inleresting implications in light of what has been
done in Newtonian flow. When the angle ¢ @ + % ) for the bottom surface or the
angle ¢ &x - ) for the top surfaces becomes negative, the procedure has been to
drop the negative angle term completely in determining feorce and moment coeffici-
ents and stability derivatives. Eq. (6.5) establishes a possible method for con-
sidering such negative pressures following a procedure identical to that used for
positive pressures. Thus the possibility exists that the Newtonian results can
be corrected, at least approximately, to acecount for negative pressures on the

basis of the "effective"” negative angle (6 £&) of the surface, where
Se =(0x +«) for the bottom when X < =-Ox
Se = (6x - X) for the top when K> By

The procedures suggested above for correcting the Newtonian stability
derivatives is by no means a rigorous one. It will of course be checked by com-
paring results with actual experimental data. For this procedure to be fruitful,
appropriate relationships of the form of Eq. (£.2) and (6.5) must be found. This
approach is only a beginning, and as the program progresses other methods will

also be investigated.

6.2 Pressure Laws at Hypersonic Velocities

The present discussion will be concerned with methods available for
establishing the fuactional relationships indicated by Eq. (6.2) and Eq. (8.3)

at hypersonic velocities.

For the two dimensional case. oblique shock andPmndtl -Meyer expansion,
the functional relationships of Eqs. (8.2) and (8.5), with certain restrictions,

have been established and appear in the literature in various analytic forms.

Under the assumption that the shock angle and wedge angle ( § ) are
small, say & < 10°, and ¥ >4.3. it i: possible to establish a very simple

expression for the pressure coefficient of the wedge. vhich takes the form

'S
75t
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Assuming ¥ to be constant, the only variable on the right hand side of the
equation is the hypersonic similarity parameter, H§ . Eg. (6.6) can be ex
panded in various power series that give goed results for particular ranges of

M & . These expréssions are shown below,

MEL /.40

¢ 2z e 2TR% -
’SF:Z = M§ + (7;/) + (;/) MSE (6.7)

[0 SMSE <2.60

c 2z ; 2
£ = ; + (7’;/ )+ }LJ'Z(!-;L) M8 (6.8)
7 S )
MSE>2.0
c
&% ( (7’+/)(M8)Z

A1l of these equations give results vwith less than about 2 percent error in the
ranges specified. and can be checked by comparison with the plot of Eq. (6.6) on
Fig. 153. It is obvious from this plet that two-dimensional pressures are much
higher than those predicted by the simpie Newtonian equation at the lower values
of 1 &.

Similar expressions can be established for Pradtl -Meyer expaasion at
hypersonic speeds. For expansion {rom fiee stream Mach Number (M) through a
negative angle Jp .| the pressure coefficient in two-dimensional flow can be

expressed as

R
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Z " T(Me) {[’ + (Fhmse)] /} (6.10)

The only imiportant assumption required for Eq. (6.10) to be valid is that the
free stream Mach Number be reasonably large, say M > 4.5. Various simplified
expressions can be derived from Eq. (6.10) that are valid over lifiited #anges
of the expansion similarity parameter (M §,). These expressions are listed
below.

[MBe| < - 50
C.
nd A 2td Y+l
52 = el +(ZF1) + (FF) mse (6.11)

<#0 < |MBe|< 2.2

C
_81;: = - (';‘;5)1 + /-:;7 + .885 + ./640(MSe) (6.12)
e (S e
|m&e| > 2.0
C 2
g A S 6.13
8e2 7{M8e)* ¢ )

It is interesting to note that Eq. (6.11) differs only slightly from
Yq. (6.7). The constant in the last term is about 10 percent larger for a 7
of 1.4. Eq. (6.10) is plotted as Fig. 16, and the accuracies of Egs. {(6.11),
{6.12), and (6.13) can be determined by direct comparison.

Comparison of Figs. 15 and 16 indicates that at small values of M§ ,
qd = ]1150] .10, expansion and compression ¢ffects are cqually as important
in detemmining forces and moments on a body, At M &= ‘[3\’(.’5‘@{ 1.0, compression
offects are approximaiely three times as great. At 038 & 1 5.0, the

i
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expansion effects are negligible.

The relationships discussed so far are two-dimensional, and mest
shapes of interest in hypersonic flow are in general quite three-difmiensional.
A three=dimensiohal shape that has beea analyzed in some detail at zero angle
of attack is the cone. Cone pressure coefficients computed by the Taylor=Maccoll
theory have beén tabulated by Kopal (Ref. 1). This data, for cone semi=angles
of less than 10° is plotted as a function of the similarity parameter B& in
Fig. 15.

Several explicit analytic sélutions for the pressures on a Coné have
been determined and exist in the literature., A simple solution for a slender

cone in supersonic flow is

C
—L£ _ 2 .
82 —21” ﬁa 7/

(5.11)
This has only very limited applicability. A comparison of Eq. (6.14) with the
results of Fig. 15 show that it is applicable only for B34 < 0.1. A second
order approximation for the pressure on a cone at zero angle of attack was de-
termined by Broderick (Ref. 2).

>

- ,2 - 2 2 - 2 , ~7
(.Pz -85 + £Z28 én (—m +D(ﬂ7‘/)é [!ﬂ——-——wt——]

2 ¥ > -

For small angle cones { & < 10°), and ¥ larger than 2, the above equation can
be simplified and made a funciion of only the similarity parameter ( (3.5 ).

T AXEA N asY - 5 A N 2p L £ 318
& =[(2ZHY(E8) -]+ [2-5(38) + 5(@e) & gl onisy o)
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This equationi can be compared to the kKopal results of Fig. 15. The comparison
is good for 38 <.50.

Cole's hypersonic slender body theory makes it pessible to determine
second order approximations to the surface pressures on slénder bodies. The
second order approximation is essentially a correction to the first order approxi=
mation, which consists of simple Newtonian plus centrifugal forces. The second

order hypersonic solution for the pressure on the cone at zero angle of attack is

¢ ..
8% 2(r+7) * 2(M8)* (6.17)

Eq. (6:17) checks quite well with the Kopal results shown in Fig. 15 for
pBo > 1.5.

It becomes obvious from the two-dimensional and cone results presented,
that geometry has an especially strong influence on the magnitude of the pressures
experienced by a body in hypersonic flow at low values of the similarity parameter.
At B8 or M § of 0.1, the pressure on a slender cone is only 1/4 of the two-
dimensional value. At higher values of M & , say ¥ & = 5.0, the cone pres-
sures is only 13 percent less than the two-dimensional result. It is also true
that under these conditions both cone and two-dimensional pressures do not differ
greatly from simple Newtonian.

The cone pressure results shown here will be used to determine Mach
Number corrections to force and moment coefficients and stability derivatives
for the cone that have been determined assuming simple Newtonian theory. By
comparing these results to experimental data, the degree of validity of the ap-
proach sugpested in Section 6.3 will be established.

An investigation of other body shapes is obviously required in order
to bridge the gap between the pressures on a two-dimensional wedge and a three-
dimensional cone. But second order solutions on other than bodies of revolution
at zero angle of attack are difficult to obtain., A second order solution has
been obtained on a delta planform with diamond shape cross-sectien (Ref. 3),
and these results will be investigated further,

{9
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The discussion up to this point has been concerned with corrections
to the Newtorian results for small angles of attack with attached shocks. A
similar problem exists at larger angles of attack where the shock may actually

be detached. The investigation of this problém will also be undertaken.

7.0 Projected Work - Third Quarter

Buring the next guatrter, many of the résults shown in this report for
the force and momént coefficients and stability derivative equations in Newtonian
flov will be extended. Specifically the invéstigation into the stability deriva-
tives of the sharp ellipti¢ cene will be ¢ontinued. The work on the stability
derivatives of the blunt cone will also be exténded. As explained in the "First
Quarterly Technical Report", the purpose in these investigations is to show the
application of the general méthods derived rather than a detailed investigation

of specific families of shapes.

A beginning has been made in this report on the application of other
hypersonic theories to the prediction of stability derivatives. This investi-
gation will continue., In Section 6.1 a tentative procedure has been outlined for
extending the Newtonian results to lower hypersonic Mach numbers. This procedure
will be applied to the cone, and possibly other shapes, and the results compared
to existing experimental data.

During the next quarter, a concentrated effort will be made to develop
methods for computing the stability derivatives under trim conditions, a primary
goal in this whole hypersonic stability investigation. The basic methods and
procedures presented in this and the previous quarterly report lay the ground-
work for this investigation. The first shape to be investigated under trim con-
ditions will be the delta-planform with diamond-shape crossesection, since this
will be easiest to treat. The controls to be used for trim will probably be a
irailing edge deflected flap. To the degree possible, stability derivatives
with trim will also be investigated on the circular and elliptic cone.
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‘ The discussion up to this point has been concerned with corrections
$0 the Newtonian results fof small angles of attack with attached sh‘oc.k:sa 4
similar problem exists at larger angles of attack where the shock may actually

be detacked. The investigation of this preblem will also be undertaken.

7.0 Projected Work - Third Quarter

During the next quarter, many of the results shown in this report for
flow will be exténdéd. Specifically the investigation into the stability deriva=
tives of the shafp elliptic coné will be continued. The work on the stability
derivatives of the blunt cone will also be eéxtended. As explained in the "First
Quarterly Technical Report", the purpose in these investigations is to show the
application of the general methods derived rather than a détailed investigation
of specific families of shapes.

A beginning has been made in this report on the application of other
hypersonic theories to the prediction of stability derivatives. This investi-
gation will continue. In Section §5.1 a tentative procedure has been outlined for
extending the Newtonian results to lower hypersonic Mach numbers. This procedure
will be #vwplied to the cone, and possibly other shapes, and the results compared
to exis.ing experimental data.

During the next quarter, a concentrated effort will be made to develop
methods for computing the stability derivatives under trim conditions, a primary
goal in this whole hypersonic stability investigation. The basic methods and
procedures presented in this and the previous quarterly report lay the ground-
work for this investigation. The first shape to be investigated under trim con-
ditions will be the delta-planform with diamond-shape crossesection, since this
will be easiest to treat. The contruls to be used for trim will probably bte a
trailing edge deflected flap. To the degree possible, stability derivatives

with trim will also be investigated on the circular and elliptic cone.
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SIMILARITY PARAMETER ~ M5

FIGURE 16. PRESSURES DUE TO PRANDTL - MEYER EXPANSION AT
HYPERSONIC VELOCITIES .
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