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ABSTRACT

The linearized angular motion of a symmetric missile is developed in some

detail with some consideration of the rolling motion, drag, aerodynamic Jjump

]

and the effect of varying coefficients. The tricyclic motion of a mis

Var mmmeee 1

with misaligned control surfaces is briefly considered. This linear theory is,

d
then, applied to the analysis of ballistic range data.

Next, simple cubic nonlinearities in static moment and Magnus moment are
treated by a quasi-linear analysis and these cubic coefficients obtained from
tic range flight data. More generalized relations for arbitrary symmetric
nonlinear terms are derived and their use in the construction of "amplitude"
planes indicated. These amplitude planes have proven to be quite useful for the
prediction of missile flight performance. Finally, the influence of strongly

static moments is determined by e perturbation method which makes use
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a book, The Theory and Application of Ballistic Ranges, which is being written
under the joint authorship of G, V. Bull and C., H. Murphy for publication by

-y TERaD oY Faserm o AAaman] o
N C. H. Mul‘phy and form a complete

]
s’

were writte

1]

Prentice-Hall. These chapter
treatment of the angular motion of symmetric missiles acted on by both linear
and nonlinear forces and moments with an emphasis on the analysis of ballistic
Although most of the results have appeared in various BRL

publications, this unified form is felt to be sufficiently useful for ceparate

publication 'as a BRL Report.

Each section is numbered by & decimal which indicates its chapter and
position in that chapter. Thus section 6.2 is the second section of Chapter
VI. Each equation could then be identified by its section and position in
that section. Equation (6.2.4) is the fourth equation in section 6.2. For
simplicity, however, the number identifying the chapter has been omitted from

all equation numbers except when a reference is made toc en equation in a
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5.1 Introduction
Historically, the first interest of the ballistician was the drag force

exerted on his projectile by the air. Thus, the first measurements made on

ballistic ranges were drag measurements. These measurements also have the
attractive characteristic of being direct and conceptually very simple. Since
the rolling motion has a similar data analysis, it will also be considered in

this chapter.

5.2 The Drag Equation

The drag force, D, is usually expressed in terms of a drag coefficient by

manemea ~AF +ha PATTArvedrney AAaPFdrmidd A
ficaldlo Ul Vil 1 ULLUWLILL UCL LIlL LlLUlle
_ 2~ 1N --2.-,.-1 L~ =N
D = (1/2)pV bbD (2.1)
where p 1is air density
V 1is velocity
S 1is reference area and
CD is the drag coefficient
Mha velnarity nf +ha miceila munet then caticfv +the ennagtinn
1 11T YV OV L \IJ 4L Véi. Al 2] &) e e AMAMD W VédN\rdd e VT A J han. \y‘\a.uv.n.v‘.‘.
__1.7 _ /1 /ﬁ\-irznﬂ /o o\
mv = = (i1/c)jpv DbD \2.2)

In most ballistic range work, distance is a more convenient independent
variable than time. For pitching and yawing motion, it also introduces an
important simplification in the equations of motion (see Chapter VI). If £

L - [ | P A aen A - Al o o Asad L 2 oo [P W, T = AL e N mnam Y a1 e m = La
15 useQ L0 aenove a CnEI'B.CtEI'J.S'ClC 1ENELIl, 8 QLIUICNS51001E55 aAlCLCIELIL IiaYy De
defined by the relation
t
1 /‘
s = 3 J V dt (2.3)
<+
9
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where prime denotes derivative with respect to s.

~AQ 2
The factor, gﬁ- s Will appear a number of times in later chapters. Since

the volume of the missile usually varies from (2/3)Sf¢ for a sphere to 10S£ for

a missile with high fineness ratio, the inverse of this factor is a measure of

the model mean density relative to that of air. The relative density of plastic
t

is lOD and that of steel is 8 x 105. Thus this relative density fa
p)

0
ct
o}
3
3
D
n
D

11GD

meximum of 10 ° for a plastic sphere and is usually of the order of 10~

C*
- S
Veve ? (2.5)
(o]
Integrating Equation (2.5), = distance-time relation results
c*
s
ﬂ,nD - 1)
t=t o+ A (2.6)
ve
oD

selected as the midpoint of the timing stations so that the linear and the

quadratic coefficients are related to well determined velocities and retardations.

There are two approaches to the data analysis problem. One is that of the

5-1

engineerD-D and the other 1s that of the mathematician Fortunately, the
+

he two methods are pr i1cally identical. In the first wmethod, the
engineer makes use of his love for plotting data and exercising his personal o-
pinion as to the best fit. This is done by use of Equation (2.4). He plots the

logarithm of the average velocity between a pair of timing points versus the

. 4L U =

he interval. He then draws a straight line through

o+

he points and computes the drag coefficient from its slope.

10



The mathematiclan displays his characterlstlic fear of plotted data and

human decision making. He fits his time-position data by a cubic least squares
process. For the usual flat trajectories, s can be well approximated by xl/

where x, is distance .easured downrange.
<

. . 2 3
tos oty agX) +agx) +agx] (2.7)
where

& 7 Vo-l

- _PS
2 =T
. = /L{n\ ,2\ (2 8)
D™ \es/ \a/

The cubic coefficient absorbs any Mach number variation in C_ as well as errors

P

D
in the expansion of the exponential in Equation (2.6). 1In those cases where the

cubic fits well, the resulting C_ differs very little from that obtained from the

D
first approach.

The accuracy of a measured drag coefficient may be estimated statistically
when & least squares reduction has been performed or determined by the physical

ize of the drag "disturbance". Since the velocity is so much better determined

S
than the deceleration, the error in CD is directly proportional to the error in
as alone. This error may be estimated from the corresponding diagonal term of

the inverse matrix formed from the least squares normal equations.

C A
D 33
=2 -2 (2.9)
Cﬁ a2 /
where € = /3y(At)
\//E;:—ﬁ_

11



At = t -
calc. tmeasured

n = number of measurements and
A55 is the diagonal element corresponding to

a5 of the inverse matrix of the normal equations.

The use of the size of the measurable effect of drag introduces physical
insight into this error analysis which is sadly lacking in the sbove cold
statistical formula. If drag were not present, the mlssile would travel at
constant velocity indefinitely. The drag changes the time of passage of the
model at the various observation points. The maximum drag-induced time
decrement with respect to constant velocity flight at the average velocity,
VO, occurs at the ends of the range. If VO is measured at the midpoint of the
range* and the range length is fL, the endpoints are located at s = ~ (L/2).

Maximum time decrement may then be computed for Equation (2.6)

=5 C.L (2.10)

The engineer can now make the reasonable assumption that the percentage
error in CD is given by the ratio of measurement error to the maximum time
decrement, e/dt. Usually, the time measurements are less accurate than
distance measurements and maximum estimsted error in time can be used. Should
the range survey be the limiting factor, the distance error can be converted

to an equivalent time error by division by VO and the result compared with dt'

The presence of length squared in the time decrement shows the value of
long flight paths. Exploitation of this property is limited, however, by the

presence of Mach number dependence in the drag coefficient. It is also

The midpoint is not the point at which the actual velocity is exactly equal
to the average velocity. A small correction can be employed to eliminate this

:_1
minor difficulty”’ ~. 2
1



interesting to note that higher velocity tends to degrade drag accuracy. In
any event, it is the common expericnce that ballistic ranges with lengths of

one thousand calibers can attain better than 1/2 percent accuracy in CD at

high supersonic velocities.

The question of 'n optimum distribution of timing stations for a given

=

-

length can be ecasily answered. Since the drag appears in the quadratic ternm
of a parabola, it is determined by the curvature of the time-distance curve

with respect to the midrange point. Thus, one half of the observations should
be at the center and one half at t 5=k

that this distribution of 1/4 - 1/2 - 1/h4 will yield 15 - 20 percent less error

he ends. It can be shown theoretically

in C, than a symmetric distribution. Such a small improvement is of little

If the angular motion is not small, variations in the drag coefficient
are observed. Usually this functional dependence on angle is well represented

by a quadratic function.

S 82 .
"D CDO N CD62° (3.1)
where

62 = a2 + 32

a = angle of attack

B = angle of sideslip

As will be shown in the next chapter, the variation of 62 for a symmetric

missile is described by the equation

cribe
- Ki + Kg + 2K K cos P (3.2)

where K, = Kjoe)‘js
|
¢j = ¢jo + ¢js
AJ ]
¢ =Fh -5

and A, and @, are constants.

b 4
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an be integrated once

.V {ose) roo o\
In =— = - |5= C.s +C 5 dr 3.5
V0 K;m ) & Do D62 5/ ) ( )

95220 pSlec
» / D D.2
pet b s (o) 24 8 )
o] VO \ 4V m / zvom =¥ i

q (3.4)

S
where I(s) = [ f 62 dr dq
g
The distance over which drag deceleration is measured is at least several times
2
longer than the period of & amd, hence, the influence of the periodic part of
2 - . < .
8 on I(s) can be neglected. If the effects of damping are also neglected,

I(s) assumes the simple form

2
1) 25 (G + Ko (3.5)
,Bin'\ 'f?’ ‘ = (‘(2 R !2 \ - \
e {\"S) (al) i CDo i CD52 ‘M0 7 f20/ (3.6)

At first gleance, it seems that Equation (3.6) could have been directly

derived by replacing the constant CD in Equation (2.8) by the average value of

CD, i.e.,

C =C + C gg

D average D, D.2

L/2 (3.7)

2 1 2

where & = = 5 ds.
L J
-L/2

1k



It scem:s intuitively obvious that fitting a cubic to the time-dictance date
should have this effect of "averaging" the drag coefficient in this way. It
is clear that for the case of no damping this is correct. As we shall sece,

it is not correct for large damping.

The least squarcs process includes in a, the "best" quadratic approximation

~ [t

of I(s). Thus an averageVBa is defined by the requirement that

o)
2 ~n
[I(s) - = 62] ds is a minimum.

A relation for 5 may be obtained by differentiating the above with respect to

-2
g?) setting the result equal to zero, and solving for & .

-~ e L/2 N
52=__5__5{ / SQI(S)aS}
(L/Q) \-L/’Q J
(3.8)
5L2 2 2,2
- L /v “1 v \
= Ko + Koo *Ep MKyg * Aofog) e
The mean squared angle defined after Equation (3.7) has the expansion
-2 2 ~ 1° 2,2 2,2
= .. ( )
5 Kio"éo"%’ MKy * Aal) + oo (3.9)

Thus, the proper average value of 52 is not the same as g§ and the more precise

form of Equation (3.6) is

bm / 85 \ - _ .
~c bl - =C + C 5.10
pS \ 8 / Drgxge Do qug ( )

ot

According to Equation (3.10), the drag coefficient obtained from the range

data reduction is a linear function of &~ . Thus, if CD is plotted versus

range

2. L
& = Kio + Kgo for different model tests at the same Mach number, the points

15



should fall on a straight line. This technique has been used for a number of

ycars to determine CD and CD o for a large variety of symmetric configuration:s

o o)
with complete success.

P

In Figure 5.1, the data for a large angle of attack program” 7 is plotted
as an illustration of this technique. 1In this program, a 20mm bullet was
tested at angles up to 250 and a good linear correlation of C_ and & was

D
obtained. C was determined from the slope of the line to be 4.

value agreed very well with a wind tunnel measurement of 4.71.

3

o P {z Q FRION
As can be seen from a comparison of Equations {3.8) and (3.9), the

D O

distinction in the proper average &  1s rather minor. The determination of
2

the proper average & 1s much more important for other angle dependent

aerodynamic coefficients. It is for this reeson that the concept of & was

introduced here.

5.4 Experimental Results

The first systematic ballistic range drag measurements were of spheres.
= &
Charters and Thomas” = tested 9/16" spheres at Mach numbers varying from 0.3

to 4.0 in the BRL Aerodynamics Range. By tests in the NOL Pressurized
>-7
t

Ballistics Range, May and Wit were able to vary the Reynolds number by

more than a hundred for a fixed Mach number. The results of this program are

shown in Figure 5.2, which 1is a contour plot of C_ on the Mach number - Reynolds

D
number plane.

The presence of a saddle point 1n the vicinity of M = 2.0 and Re = 30,00

o

is clearly shown in this figure. In passing along the line Re = 30,000 a
maximum is found near this point, while a minimum is encountered on the line
M= 2.0.

The influence of wall temperature on the skin friction has been studied in
e Q
a quite elegant manner by Sommer and Short” " . The test vehicles were spin-
stabilized hollow cylinders with fineness r

ios of either 1.4 or 1.8. The
nose contours were either a double wedge or a double circular arc. (See

Figures 5.3 and 5.4) Similar cylinders with a fineness ratio of 0.4 were used

16



as tarc models. The difference in drag coefficlents of the test models and

the tare models is

; €xcept for small corrections, a meacure of the average

7
skin friction drag of the added length of the test model. Boundary layer

dra,
trips were used to ensure the presence of turbiilent boundary layers.

The tests were made in the Ames Free Flight Wind Thwminel at Mach number
of 2.8 and 3.9 in still air and 7.2 in a Mach number 2 air :trean. 3Since
the model flight time was less than .02 sec, its wall-temperature hrat rise
was less than h5OF. Thus, the ratio of wall-temperature to boundary-layer-edpge
temperature, TU/T1, was determined by the local temperature in the tunnel,

W' 1l

i.e., 1.05 for 5till air and 1.3 or 1.7 for air flow. Since calculated recovery
temperatures were two and a half to six times greater than the estimated wall
tempvratures, considerable heat transfer was in process. In Figure 5.5, the
results of the program are plotted and compared with & curve based on zero heat
transfer wind tunnel data. It can be seen that the presence of heat transfer

can increase the skin friction by over 30 percent.

By a somewhat similar approach, base pressures have been extracted from
ballistic range drag data. Charters and Turetskyﬁ-9 determined the base pressure
for 20° cones and cone cylinders by computing head drsg and skin friction drag
and subtracting the results from the total drag. The base pressure may also
be determined by a measurement of the wake angle from a spark photograph. The
pressure outside the wake is computed by characteristics and assumed to be the
same as at the base of the model. A comparison of ratio of base pressure to
free stream pressure, PB/P as obtained from these two methods, is given in

Table I.
TABLE I

P_/P. for M = 1.8k
B 1

Fineness Total Drag Wake Angle
Model Ratio Method Method
Cone 2.9 0.50 0.49
Cone-cylinder 3.2 0.53 Q.50
Cone-cylinder 5.0 0.61 0.59

17



A final example of ballistic range drag date 1s shown in Figures 5.4 and

seen that the separated flow over the nose spike of this fin-

o
e}

5.7. It can
stabilized round can assume two different configurations. The model with the
larger separated flow has one-third less drag than the identical shape with the
smaller separated region! This low drag flow occurs when the initial launch
angle is less than two or three degrees. For larger angles, the high drag flow

is established and persistss-lo.

5.5 The Roll Equation

The aerodynamicist usually writes the roll moment due to control deflection

and aerodynamic damping in the form

My = (1/2)pv% [saclgaf +8,Cy gg ] (5.1)

1

where b is span

S. 1s profile area of deflected fins

&

S is total profile area of fins

5. fin deflection angle for pair of
differentially canted fins

Equation (5.1) has two reference areas and two reference lengths, b and b/2.
If the test missile possesses surfaces with two different spans, the decision
as to which is the reference length becomes quite difficult. In ballistic

range work, it is quite convenient to use one reference area, S, and one

reference length, £. With this in mind, we can redefine the roll moment sas
2 pL ] ' .
g 29 /AN _vsC an PO p /
= (1/2 5 .+ & C .
Me = (L/2)pV &5 [°f°£5 7 ‘pj (5.2)

Conversion relations for the aerodynamic coefficients mey be obtained by a

5 1) an AT ~11

compariscen of Equation (5.1) and (5.2). All ballistic range data should contain
ar

i
a specification of the reference ea and reference length which were used.

[



The equation for rolling motion is

If drag can not be neglected, Equation (5.3) is linear with variable
coefficients., Tor constant drag coefficient, transforming the indepecndent
variable from time to distance will provide us with a linear equation with
constant coefficients. Sin-~= distance is the natural variable for ballistic
ranges, this transformation is doubly attractive. We therefore introduce

the variable s, which was defined by Equation (2.3).

td¢ agat gz
b= T (5.4)
c 2
"a%g (g [« oSt v “ 1
?=—5=l7) P& 3 OF (5:3)
ds \ L .
Substituting Equation (5.4 - 5.5) in Equation (5.3), we have the roll equation
in the form

" ]

¢ +Kf - K =0 (5.6)
pS2 [ -2 1

where K = - 52= Lka c, +cDJ

b
L
5 ~ 21T £72
X o}
I
K, fv/ -~ eaxial radius of gyration
m
The solution to Equation (5.6) is
' -Kps
=@, +8.s +Aale - 1) (5.7)

19
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o

?4'

where ¢; is the steady state roll.

o]

>
"

: s -1 i -2
@ - 9,) K- = (K - B K) K

]
$ , @ are the conditions at the middle of
® * the observed flight.
If Kps is small enough, the exponential in Equation (5.7) can be expanded

8s a cubic

2\

' a / 52 Kps
=0, +8s + (K) (E_T) (5.8)

which hes a2 test
quite difficult .
volded by att

separately. KP can be determined fairly well from the quadratic term when
K5 =0, i.e., for spinning bodles of revolution or missiles with uncanted fins.

Next, the influence of Kp can be eliminated from the gquadratic term by causing
the model to reach zerc rolling velocity near the center of the observed flight
path.
At K {(5.9)
. p B )

This can be done by properly prespinning the model in a direction opposite to
steady state spin through the use of a rifled gun.

. lar he exponential character of Equation (5.7) is manifested
and both Ki and KB can be determined. The usual least squares fitting process is



t

A set of initial values of ¢o’ ¢n, A and 5 are required for thic process,
o

To obtain these values, we differentiate Equation (5.7) and combinc the result

with Equation (5.7) to eliminate the exponential term.

1
¢ can be computed by first differences and Equation (5.10) fitted by leact
1 1]
4 s /

squares since it is linear in the parameters K , K@ , and KA - K@ - .
p’ "ps D p o S

z

Values of these parameters plus the measured v;lue‘of ¢o provide the required

set of initial numbers.

o’ 7s
computed for each measurement point. The difference between these numbers and
the actual measurements will be denoted b = - ¢ . f the
' y o8P ¢m,easured ¢observed I
data is reasonably good, these residuals of fit, A¢'s, should be less than ten
degrees (0.2 rad.). Assuming that they are due to small errors in ¢o’ 2, A,
T ~ o L — L. ’ 5 e s S
and Kp, we differentiate Equation (5.7) with the result:
' =Kbs aKps
Pt a¢o + sQ,aSS + (e - 1)M - Ase A“p (5.11)
Equation (5.11), for measured @ and s, are linear in the unknowns éﬁo,

Ad;, M, and AKb. These equations may be solved by least squares and new

parameters computed from the old by adding the corresponding changes, i.e.

ago, _,;, etc. If the corresponding residuals are smaller, the process is
1

1l
;

successful and mey be repeated until no further improvement is obtained.

Probable errors in fit of less than 0.5O are common.

5.6 Experimental Results

For a spinning body of revolution, Charters and Kients'l‘L have derived a

simple relation between the roll damping moment Cz and the skin friction drag
D
coefficient C,;, . For a basically cylindrical body and a reference length
L
st

which is the cylinder diameter, the relation is

~~
[2Y
}_r

N”

C = LC
Dsf £

n
E -4

21



The derivation may be summarized by the following steps:

(1) For a spinning body of revolution, the local velocity of the

surface relative to free stream is

S’
—~
L
N
~—

(2) The local skin friction force has the direction of V. and

therefore is inclined at an angle of arccos %— to the axis of rotation.
r

(3) The skin friction drag coefficient and the roll damping moment

may be written in terms of the integrals

2
« N 2 /v

2 , / o .
(1/2)evsC, = (1/2) oV C,(nd)dx (6.3)
Dsf r \ r) £
, 2 o /RN
(l/2)pV28£C£n (%) = (1/2) f —= (%) Co(na)ax  (6.4)

3 £o 1 <+
where C_ is the local skin friction cocefficient.

il
(4) For constant 4 = £, Equation (6.1) follows directly from

Equations (6.3 - 6.L4).

The roll damping moment has been measured for shell and other bodies
es, k C, is negative but one-third the size of

the drag coefficient. Thus, for these shapes the roll per distance actually
increases, (Kp < 0). C, can be measured to an accuracy of better than 10 percent
5-12, 5-15‘

n
and relation (6.1) has been verified by a number of investigators

The rolling motion of finned missiles was first studied on a ballistic range
5-1k

by Bolz and Nicolaides The test vehicle was & cone cylinder of fineness

retio ten with square-plane form cruciform fins. The fin chord to body diameter



was one. As can be seen from Figures 5.8 and 5.9, the experimental resultc

verify the prediction of the linearized theory. 1In this program, Cz and

P
Cz were determined to an accuracy of better than 2 percent. (Reference
5 2
area was body cross sectional ares, E%— and reference length was hody

diameter, d.)
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CHAPTER VI
LINEARIZED THEORY COF MOTION (F SYMMETRIC MISSILKO

6.1 Ipt;pdgct%pn

All the early stability tests on ballistic ranges involved spinning bodies
of revolution which might be used as shell., In 1947, 5Tmm models of the General
Electric Dragonfly missile were fired at the Ballistic Researcn Laboratories6'l.
Since that time the number of nonspinning missiles tested has increaced.
Although static stebility was initially obtained by the use of fins, in recent
times statically stable bodies of revolution which could be used

cones have dominated this area of ballistic range testing. Traditionally, all
stabllity tests have Iimplied the assumption of linear moments, but this

the theorstically simpler case of a nonspinning missile. WNext, nonzero spin
and the associated gyroscopic and Magnus moments will be introduced. This
work will not be linearized until very late In the development so that the

results can be used in Chapter VIII on the analysis of nonlinear data.

plitude Pitchin
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ct
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(o]
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o]
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=
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thrust line in the vertical plane of symmetry. The yawing motion is then the
motion of the thrust line perpendicular to this plane of symmetry. When

a
ave to be altered

missile in free flight 1s considered, these definltions hav .
Since most misslles have rotationally symmetric bodies, the thrust line can

be replaced by the axis of symmetry. Unfortunately, a missile can possess s

number of planes of symmetry and none of them may be vertical. In this case,
£ the plane of pltching motion is arbltrary.

We leave the definition of pitching motion for a missile without a plane

ineer who designed such an unusual configuration. If a
basically syﬁmetric missile is either accidentally deformed in some minor way
or has intentlonal asymmetries due to control surfaces at a small angle of

TR Tre Yo ha
n can, however, be

terms of its original

symmetric shape. The influence of the asymmetries is incorporated into the total
aerodynamic force and moment by the introduction of small constant force and
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Betore concentrating on the simple problem of pure pitching motion we must

first consider two coordinate systems: a missile-fixed system and an carth-
tixed system. The missile-fixed coordinate axes, X, Y, and Z, are defincd in the
~
LUlegl

rollowing way X - centerline of symmetricel body, positive forward; Y -

perpendicular 1.0 plane of symmetry, positive to the right when looking forward#*;
7 - perpendicular to both the X and Y axes and directed according to the right

hand rvle, i.e., downward. In a similar manner, earth-fixed axes may be defined:

Xe - perpendicular to the gravity vector; Ye - perpendicular to Xe axis and

gravily vector, positive to the right when looking in the positive Xe direction;

4+1
Ll

Ze along the gravity vector, positive downward.

These two axis-systems are shown in Figure 6.1. The relative position of
the aves can be described by the Eulerian angles V¥, 8, §. The velocity vector,
V, is alsv shown in this figure. Its coordinates in the missile-fixed system
are u, v, w and its orientation determined by the angle of attack, a, and the
angle of sideslip, B. Notice that positive ¢ and B are measured opposite to the

positive directions of the Z and Y axes respectively.

The aerodynamic force acting on a missile in flight is usually expressed in

the missile-fixed system with coordinates FX’ FY’ FZ’ From these force components

Fy = (1/2) esV7Cy (2.1)
2

Fy = (1/2) psv Cy (2.2)

hwl — I E W) —‘—2— -

F, = (1/2) psv Cy (2.3)

Tne aerodynamic moment has components MX’ MY’ M7. To distinguish the corresponding
coefticients the subscripts £, m, n are used. In conflict with aircraft design
practice but in accordance with cur remarks of Section 5.5 we will use only one

reference length.

If the plane of symmetry is not exact1y vertical, 1t 1is possible to place
yourself on the axis of symmetry in a forward facing position in the plane
of symmetry so that your head is above your feet. Once this is done the
selection of the positive direction of the Y axis is easy. If the missile
is rolling, this selection must be made at some instant in time and the

direction fixed with respect to the missile thereafter.
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(1/2) pveszci (2.4)
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These quantities are shown in Figure 6.2. The angular velocity, which ic not
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shown there, has components p, q, r with positive senses which are the same as

those shown for sz Cmj and Cn, respectively.

For a nonspinning missile undergoing pure pitching motion, the functional

d. For small angles, C, is essentially

(19

dependence of CXj CZ, and Cm must be stat X
the negative of CD. It is not unreasonable to expect the lateral force and
pitch moment to depend on the actuael motion in addition to the flow parameters,
Mach number and Reynold's number. Although the motion can be described
completely by o, q, and all their time derivatives at some given time, we will
only consider a, q, and &. For small amplitude motion, a further assumption of

linear dependence can be made and the explicit relations for CZ and Cm follow.

{ a2\ / xe\
C, =C, +C, cx+C \%:) (;;—”) (2.7)
o q d
Vi z\ ‘dz.\
C. =C +C_a+ C (fL-\ +C (.- (2.8)
m %) mCx \V / md \v /
where CZ and Cm are due to asymmetries.
o o

The various important angles are shown in Figure 6.3. The equations of
motion are the drag Equation (5.2.2), the force equation* along the inertial
axis Ze and the moment equation about the Y axis.

w = - D~ F_ ' (2.9)

R

F, cos @ - F, 8in © + mg (2.10)

This force equation neglects a small Coriolis force term due to the earth's
rotation. This term will be introduced in the more complete analysis of
Section 6.9.
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where I is th: moment of inertia about the Y axis.
Yy

From Figure 6.3 it is clear that

z,=-V sin (¢ - a) (2.12)
This, together with the agsumption of & smell angle of attack and a flat
trajectory (8 < < 1), allows us to revise Equation (2.10).

T ha |
-m!_v(e-éz)+\'/(e-a)J| = F, -F,0 +mg (2.13)

Equations (2.7, 9) and the relation § = q can now be used to simplify

Equation (2.13).

[l+CZJ%£= [l'ch%'é'(Cz +C)a-C, - el S (2.14)
q & (o] o

*

where C. = £8£ ¢
Z 2m Z
i i
Qirmma +he Aoancity Poantan ng! 4a mon +ha -3 * anA n* Ao vmelathd o b
WLl C Uil UTLIO L U 4 Gl UWUL H -] lCDD Ullm’l lo b} CZ alll UZ Lall PJ. (848 UJ.\y ue
&

g

neglected in comparison with unity and Equation (2.14) can be written in an

even simpler form.

-2

k.
i
153
[]

* *
+ cD) a-C, -8l (2.15)

a o

[N 3

(c

o
<3
o
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From this form we see that a good first approximation for q is &. The remaining
terms in Equation (2.15) can have a measurable effect and so should be retained.

Equation (2.15) is now used to eliminate ® = 4 and q from Equétion (2.11) with



where ﬁ = = |"C% + C* k'2 /C* C* \1/1’_\
TR L2y D"y \mq+ mulJ\_l./
ool L v e ] (Y

2
?x.l=[1<_'2 ol -c; (x2 ¢ +c;)w%\
Ly m, 2,y omy I\t
2
= *
~x2 ¢ (1)
Yy mo\ 2]
- * *
N c_ - cp) (%\
" \£/
1
ky = —ZE is radius of gyration about the Y-axis.
mﬂ

i L

The starred aerodynamic coefficients contain the density factor and, hence,
are quite small. Products of starred coefficients are omitted in comparison
with a starred coefficient#®.

Equation (2.16) is linear but with variable coefficients. This variation
in the coefficients can be removed by replacing time by distance as the

independent variable.

Lo ' v -2
S +Hla'MLa=Al+G(\-I;) (2.17)

* The products of starred coefficlents are important for the angular motion
gf lighter than air ships, submarines and topedoes. For these vehicles,
M, can be negative when C_ 1is positive! See Reference 6-10.

A il
04

39



* ¥ -5 ¥ *
where H, = - |C, +2C, + Kk (cm +C )
- Yy Y qQ & -
-0 x
Ml = ky Cm
Ko
A, = C
1 y m
A -2 ¥ * -2
G =- (ky Cm -CD) (g‘evo)
q
The solution to this equation for a statically stable missile (Cm < 0) is
a
/v \ 2 -(1/2)8,s
a=a +a, \?Z; + age cos (ws + ¢0) (2.15)
C
m
where a_ = - =—>
a c
m
07
Cm - k2 CD
fes C 2
L = 1V
2 Hﬁ pS4
= - - ~ = e
@ Ml N 21 m
Y Qa

a, and ¢o are determined by initial conditions. By definition the influence of
this initial disturbance will damp out if the missile is dynamically stable

(H, > 0). For such a missile the angle of sttack will eventually reach an
eq;ilibrium angle G, * ag. The serodynamic part of this angle, Q,, can easily
be interpreted as satisfying the requirement that the aerodynamic moment

coefficient must vanish for equilibrium, i.e., Cm Q¢ Cm = 0. A similar
[0 o]

Lo



interpretation for ag is possible when it is noted from Equation (2.1%) that
-2, X . N e . _—
g8V ~ is the curvature of the trajectory due to gravity. This angular velocity

=2
has a moment whose magnitude is determined by Cm g4V ~., 1In addition to this

there is a change in the curvature due to decrease in velocity. This angular

2 -2 Sy
acceleration due to drag gives rise to the quantity k C.gfV ~. For equilibrium
JU
the sum of these two terms must be matched by the moment coefficient C_ « .

For models as big as 6 inches, glV-2 is always less than 6 x 1077

this gravity-induced, steady-state angle of attack is not directly measurable.

» can be quite large and is measurable.

The aerodynamic induced angile, Qy

ile can now be obtained from Equation (2.10).

The vertical motion of the mis

m

The usual change of independent variable is made to absorb the velocity variation,

and small angles are assumed.

Ze % * * /qi\ * 1 2/v -2
7 =C, + (CZ + CD) a + CZq kv—) +C, @ + gl WZ;) (2.19)

N
&

, '
According to Equation (2.15), %— can be replaced by @ in Equation (2,19) since

the remaining terms of Equation (2.15) yield products of starred coefficients

* (Hl 2)Sl
+ (C + CD) a, u/\lr cos (wsl + ¢O) ds ds,

8
(C* C* ) ad
+ + s
Z, " 2y, 8[ 1
5 5 2c_

[ . *
+ ngvo + (cz +Cr o) @ J a/ 3/ dslds2 (2.20)

L1



The Uirst two integrals in Equation (2.20) yield linear functions plus demped
cosines. The cosines do, however, differ in phase. The third integral can be

approximated by Ei . Thus, the vertical motion is essentially a parabola in s
2
plus damped cosines which arise from the pitching motion.

Equation {(2.20) indicates a measurable influence of ag. During firing-
table tests of finned bombs during World War II, it was found that times of
6-3

ight were higher than expected - In fact, negative drag ccefficients were

L}
'._J

i

required to fit the observations by a theory in which only the drag force ic

considered. The definition of ag shows that it is positive for Cm negative and,
q

hence, the missile will fly in an equilibrium position with its nose slightly

above its flight path. For almost all missiles the aerodynamic force is in the

direction of the angle of attack and, therefore, C is negative. Thus

Z

% * a

(C7 + Cn) ag opposes gravity and increases the flight time. For short flights
4(1 N,

in a ballistic range this effect is too small to measure. Gravity-induced

equilibrium angles do, however, cause measurable effects for missiles with

high spin rates. These effects are described in Section 7.2.

6.3 Combined Pitching and Yawing Motion of a Nonspinning Missile
Except for the absence of gravity the analysis for t

1.

hat for the pitching motion:

o]
&
@)
n
ct
}_J
u
@
o
ct
’_A
o
[l
[
ct
Q
ct

my, = Fy cos ¥ o+ Fy sin ¥ (3.1)
¥ = z n)
IZ‘U M, (3.2)
¥, =V sin (¥ +p) (3.3)
re éz
c, =C, +C, B +C (—-) +C (—) (3.4)
Y Yo YB Yr v YB A
re) { B2\
C. =C_ +C_ pB+¢C (g +C = (3.9)
n ng ng n \V } n \V/
In Figure 6.4, the positive senses of V and B are indicated and the correctness
of Equations (3.1-3) directly verified. Note that the definition of B is

consistent with that of ¢ in that it is positive when the missile's nose is

| 'l
4



away from the positive direction of the corr
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&4 [0
positive direction in accordance with the right hand rule. Thus for pure
arrrl e st 3 A \11 ~a
Qw.il I UL:.LUU., = L.
The relation between r and 8 is quite similer to Equation (2.15)
.
rt BZ /7 * *\ ﬂ* rz 7\
— = - =— + (C + C + C 3.6
v

' &3 N
B" + Hf - M8 = A, (3.7)
R N S S
where H, = - L Y + 2 D + KZ (Lnu - Cn;)
B B
. -2 *
M, = -k Cnn
B
-0 %
Ay = -k, Cf
o
frz 17 1/2
kz = —52 is radius of gyration about Z-axis.
me

It follows immediately from the right-hand rule that for a positive Cn , &

B
positive B induces a rotation in the negative B direction. Thus yawing motion

is statically stable when Cn is positive.

'~

p

With the exception of Chapter X, we will consider throughout this book
basically symmetric bodles. This symmetry must apply to mass distribution
as well as exterior shape, i.e., Iv = Iz' With the present restriction to

zero spin and neglect of the small asymmetry terms (CZ =Cy =C, =C =0)
[e] (o] (o] (o]

it should not be possible to distinguish pitching or yawing motion. This

slightly metaphysical argument will be replaced by a more explicit algebraic

one in Section 6.5. For either approach, relations between various coefficients

can be obtained.
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Cy =Cp =-C € =€ =-C
“(1 xua “B b, s Aé

The new symbols introduced above are used to indicate the coefficients of a

symmetric body. Equations (2.17) and (3.7) can now be combined by the simple

device of multiplying the first by 1 and adding to the second.
- v\
E" + HE - ME = 1A + 1G | = (3.9)
\
where ¢ = B + ix
H=H =1}
1 2

M=M =N
1 e

k, =k = ky is transverse radius of gyration.

The solution to this simple equation in the complex variable § is

£ = K'_lei¢l + K’Qei¢2 + K_ﬁei¢50 + & (3.10)
1 2 2 g
XJS
where Kj = KJOe J = 1,2



. i¢§0 o 0
K,e =
3 Oy
(04
2
1(CM - K, CD)gl/V2
E = g _
g C

Qa
@..and K,. for j = 1,2 are determined by the ini*tial angles and angular

The various terms in Equation (3.10) can represent two dimensional vectors
in the opf plane. &, then, is the sum of these vectors (Figure 6.5). A sample
motion, which is shown in Figure 6.6, is a damped elliptical motion; the
semi-major axis of the ellipse is K, + K, its semi-minor axis is IKl - Kél,
and its center is located atK5e f50+§g; Equation (2.17) for the pitchin
can be obtained from the imaginary part of Equation (3.9). This use of
complex variable, which introduces a minor elegance in the problem of a
nonspinning missile, forms an essential feature of the analysis of the motion

of a spinning missile.

6.4 Exact Equations of Motion for a Spinning Missile

The motion of a rigid body may be described by a pair of vector equations
oV = P + mg (k.1)
F-% (4.2)

where T is velocity of center of mass
=
F is aerodynamic force
-,
g is acceleration due to gravity
K is angular momentum
M is aerodynamic moment.

The components of the vector derivatives in Equations (4.1-2) may be calculated
by the well-known relation

(U Uy Ug)” = (B, Ty, G5) + 3K (U, Uy, Uy) (4.3)

=
i



wvhere

-, . .

w is the angular velocity vector of the coordinate system
with respect to an inerti:. system.
For the missile-fixed axes previously defined, the vectors in the above

dlootitib=1 LAC M

cquations may be given in component form

V= (g, v, W) (4.1)

F = (F,, Fy, F,) (4.9)

2= (g sin®, g cos © sin @, g cos 6 cos ¢f) (L.6)

éi: ( Ip + Ixyq * Lt Iyq * Ixyp * Tyz“’ Lo+ TPt Iyzl)(‘*-7)

M= (M, My, M) (1.5)

o =(p, q, r) (4.9)

where Ixy’ Ixz’ and IyZ are products of inertia.
If we assume that the plane of aerodynamic symmetry (the XZ plane) is also &
plane of mass symmetry, two of the products of inertia vanish. (Ixy = Iyz = 0)
and H reduces to the form applicable to an airplane ( + I,T, qu, ILr+I Zp).
For an aircraft the X-axis can be defined as the thrust line or the zero lift
line. A third choice could be that direction for which Ixz vanishes (principal
axis of inertia). If this is done and mass rotational symmetry assumed (Iy = IZ),
the angular momentum vector has the simple component form (I p, I q, I r)

If the aerodynamic force and moment can be defined in terms of u, v, w, p,
g, and r, and the effect of gravity neglected, Equations (h.l-2) yield a
complete set of six first order differential equations in these six dependent
variables. In those cases where gravity has a measurable effect, relations
between the Eulerian angle defining the orientation of the missile-fixed axes

and earth-fixed axes* and the components of angular velocity are

In ballistic range work, the influence of the earth's rotation can normally
be neglected and the distinction between earth-fixed axes and inertia axes
thereby vanishes. One exception to this is the deflection of subsonic models

R Rpag I

due to Coriolis force. This effect is discussed in Section 6.9.
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p = ¢ -V sin ® (4.10)

q=06cos @ +V¥cos @ sin ¢ (4.11)
r=-06sing + V¥ cos 8 cos ¢ (4.12)

Equations (4.10-12) now increase our set of differential equations to nine

first order equations in nine dependent variables. Finally, if the location

of the missile (xe, Yo ze), which is indirectly present in the aerodynamic
force and moment through air density, air temperature and wind structure, varies
enough to cause measurable effects, then the velocities must be integrated and

our set of equations becomes twelfth order.

Fortunately, in ballistic range tests, 8 < < 1 so that Equations (k.10-12)
can be linearized and absorbed into Equations (4.1-2) without increase in order.
The axial angular velocity component of the roll equations can be solved
independently of the other component equations and the rotational symmetry
assumption reduces the system to a quite simple fourth order system. This
simplicity is exploited through the use of a nonrolling coordinate system and

complex variables.

For this nonrolling coordinate system, the missile's velocity vector is
(u, ¥, W) and its angular velocity vector is (p, 4, T) while the angular

velocity of the coordinate system is © = (0, Y, ¥) where

qcosa—r sinag?'/:vcos'a-—w sin P (4.13)

Bl
I

vsin® +wcos @ (4.14)

t
= fpdt (4.15)
(¢]

The angular momentum vector has the simple form (pr, I

= qsina+rcosa;‘v7

AV

v Iyr); its
transverse components transform in the same way as those of the velocity

and angular velocity (Equations (4.13-1L4))

He = (Iyq) cos @ - (Iyr) sin § = I&H (4.16)

By = (Iyq) sin @ + (Iyr) cos @ = I&? (4.17)

L7



symuctry retains its simple form while derivatives of vectors computoc
Equation (4.3) are much simpler. For example, the angular momentum vector

and its derivative are
= (ILp, 1.3, L) (boi)
X }7 y
N - . ~ - ~ ) ¢
)i (1,0, Iy?{ + pr?’, Iyr I59) (4.19)

3 4 3 3 " Fey >y 3 > Yol et
The simplicity of Equation (4.19) and the corresponding equation

P
velocity vector maekes the nonrolling system a very attractive one.

mi.
LI

[¢4]

reduce to

2
¥ + uT (DSXI > CY + g; (4.20)
o - ug = /DSVC Cy + 8 (4 21)
TR \ 2m / 7z " {
I 2

';_‘ /lx ~) OSV .e v /& ~a N
P\ ¥ E % o

AN A y
. /I N\ 2,
~ ~ SV
T - | T§ ) ¥ = 021 2 Cor (4.23)

\y / y

where tilde superscripts denote components in the nonrolling
coordinates.
the second equation of each pair is multiplied by i and added to the
first, the independent variable changed to distance, and dimensionless variables

introduced, Equations (4.20-23) assume the simple form

~, Hore co~ ¥ *

£ - cD_E, - i) = c?. + iCz. 4 (g,37 + ig,z)z/vz (4.24)
~at *"\i . =2

o - CDp - ilY = (C"ﬁ + iC?!) kt_ (4.25)



where

—;_‘{F+iﬁ’
- v
NF!§+1?E.£
o= v
= 4
7‘v
I
b - _A(P_‘)
= 3 v
y \ [/

The complex variable T locates the plane which contains the velocity
vector and the missile's axis. TIts magnitude is the sine of the angle between
the velocity vector and the missile's axis and this angle will be called the
resultant angle of attack, a&. From this it is clear that y is cos ar. Since
PE is the gyroscopic moment, P is a measure of the gyroscopic effects. When
the force and moment are specified in terms of E; 3 and their derivatives, |
can be eliminated between Equations (4.24-25) and a second order equation in

E results.

6.5 Linear Force and Moment Expansion

The proper linear terms will first be derived in the more natural missile-

fixed coordinates and then transformed to nonrolling coordinates. The variable

»

tE = (v + iw) vtois quite similar to the angles of attack and sideslip. Indeed,
for small angles € = B + i, Coefficients of this variable will have the
subscript g for this reason.

1 1
Our object is the most general linear expression in &, u, &€ , u for the

force and moment acting on a symmetric missile. In components form, Y-force

expansion would be

1
+ 36(W/V) + 67(q£/V) + es(ré/.) (5.1)
A similar expansion would apply for C,. Since v/iV = (8 + E)/2 and w/V = (¢ - E)/2i

and similar relations exist for the other quantities in Equation (5.1), the force

coefficient expansion can be written in terms of complex quantities.
. . N ' t : i
U - - —
y* 0 = Ak A+ AL v AL + BT 4B T+ BT 4B (5.2)
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If we now consider & new missile system which differs in roll angle, @,
from our original gsystem and identify quantities in this system by a circumfiex
superscript, it is clear that

A A i A
Ty (CY + ch)e = AE + A+ A

A
We now select @ to be an angle of rotational symmetry. In other words, when

A
the missile is rotated through the angle ¢ its relative appearance to a fixed
observer is unchanged. 1Its force expansion then should be un gff ected. Eut the
2i
coefficients of the conjugate variables are multiplied by e ¥, We, therefore,

have the important result that if a missile has an angle of rotational symmetry
of 120° or 1le ss, the coefficients of the conjugate variables must be zero. 1In
other words, the linear force expansion of a symmetric three-fin missile is the
same as a body of revolution and terms which express their different nature

must be second order or higher! The reasoning is identical for the moment.
For a rotationally symmetric missile

Cy +1C, = Ak + Aju + AEE' + A (5.4)

The coefficients in Equations (5.4-5) are complex quantities. The character

'.h

of their real and imaginary parts can be determined by & consideration of their
dependence on roll for a missile with a plane of mirror symmetry. If the
XY-plane is taken to be the plane of symmetry and the coordinate system is
transformed by a reversal of the Z-axis (Z = - Z), & missile with mirror symmetry
would be unaffected and so would be the form of its aerodynamic force and moment
expansion. Under such a transformation the velocity and force vectors reverse
their Z components but the angular velocity and moment vectors reverse their

X and Y components. This is due to the fact that the sign of a component of
angular velocity or moment is directly related to the right- or left-handedness

of the coordinate system through their definitions as cross products. For

-

Y-axis toward the Z-

example, a positive p rotation rotates t axi axis, a positive

he
q rotation rotates the Z-axis toward the X-axis and a positive r rotation rotates
the X-axis toward the Y-axis. A reversal of the Z-axis then has the stated
effect of changing the sign of p and q. The results of this transformation can

be summarized.
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§=§ ﬁ: -u (9 7)
Al 1 Al -t )

£ =¥ Ho= -y (5.7)
A LA _ __.A - A —_ Al - Al

Cy +1iC, = Cy - iC, = Al§ Ap + A5§ - Apu (5.9)
9,_ .’,\._ C L e 2‘6 - A — Al +'6.A.'

Ca + i, = - m + lbn = - ng + 02u - C5§ L+ (5.10)

Since mirror symmetry requires that it be impossible to distinguish a

14

change in the aerodynamic force and moment from this transformation, th
coefficients in Equations (5.9-10) must equal those in Equations (5.4-5). If

the coefficients are constants, this means that the imaginary parts of Aw, Az,

C2, and Ck and the real parts of Ag, Ag, Cl and C5 must be zero. The pr;sen;e

of non-zero roll should affect the force and moment, and so we make the assumption
that the coefficients are functions of p. With this assumption the quantities
which previously had to vanish must now change sign with p. This means that

they are ggg functions of p. (A power series expension in p would contain only
odd powers.) The remaining real and imaginary parts do not change sign and,
therefore, are even functions of p. When p is zero, the odd functions are zero.
In order to make this explicit, we will write these odd functions as products of

p and even functions of p.

) ) - -LE - —-p_l -
CY+1CZ _al+i(v)bl-§+[(V)b2+ia2]u
(5.11)
- -L“ < ' r pl - '
+—a3+i(v)b3- 3 +l_(v—)bh+iah_|“
fal UIE e | - F-/p‘e\ A 2 -1 » . /'DE\ -]
Cpt 1€, = L\V_l d, + lcl_ g + ch + I\T)dEJ v
(5.12)
", 2\ h R r i 1 .
+_(\§-)d3+1c5-§ +|Lc"*+i('2_)dh_!u



The b, and dl cocfficients are called Magnus coefficicntc and denoto
o
interaction othc*" between spin and cross-flow induced by one of the four
complex quantities. Simple examples of a Magnus effect are the curving of a

bascball and the hooking or slicing of a golf ball6 2

Equations (5.11-12) ure not in the proper form for use in the equation.
ol' motion. We need to convert to the nonrolling coordinates by multiplicat.ion
by exp if. This will transform the transverse force and moment variablec F

and u properly but not € and pu

A S LA
P’ _ % 1\v) E (5.12)
ci¢ul ] :l . (\_};_l) : (5.14)

This follows from the fact that derivatives of vectors in rotating systems
do not transform in the same way as the vectors themselves. A second

~complication, which follows from this; is that a spinning missile flying at

[oV]
[}
O
5]
4]
(-*-
0
5
ct
5
®
}._J
m
Lav']

™~
attack in the nonspinning system (£ = 0) has a non-zero
?
€ . The non-Magnus coefficients of € are usually taken to be non-steady

damping force and moment coefficients - CN and C Cy. - For & body of revolution
~ a &
Tlying with constant &, it is very hard to see why a damping force or moment
s 7z
o-6 sy s : s .
should be present and it is difficult to explain such a force and moment
Tor a symmetric finned missile. ¥For this reason we will rearrange the terms
in Equations (5.11-12) so that the variables are &, p, and their derivatives
in the nonrolling coordinates. The coefficients are then identified so that
they reduce to the quantities as defined in Sections 6.2 and 6.3 for the case

of zero roll and small angles.

(B£)
v N N

c + iC_ = - [C“ + i(%—\ - ]

Z ‘-CZ \

I———'l

L ' 2o Y
- :(5£) chq + iCqu [p' + 1 (%ﬁ) p} (5.15)



q] [u' +j.(££) p} (5.16)

F
[
g

One last task remains before returning to the equations of motion. This
is the determination of the variation-of the coefficients defined above with
center of gravity location. To do this we will compare the force and moment
for two models with identical motion but different center of mass locations.
The difference in c.g. location will be denoted s = (x_ - X )z'l where
ircumflex superscript identifies quantities a
with the second c.g. location. Under our assumption that corresponding
points have the same motion, the angular velocity is unchanged but the linear

is defined to be the velocity of the center of gravity, is

s walch < g

AAAAA

affected.

[T >4
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P Al 'J.l (5.18)
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In a similar fashion the force is unaffected but the moment, which is defined
with respect to the c.g. location, does change. If we assume that the change
in & is small enough to leave the total velocity, V, invariant, the relations
for force and moment coefficients are the same as for the force and moment
themselves. This means that the resulting c.g. relations are good for small

‘angular velocities.

EY + iéz = Cy +1C, (5.19)

L 1 =C +1C - 18 4 : 2= A
m T 10, = Cp 10 Lucg\CY + iCZ) (5.20)

Q2>
>

Equations (5.15-18) are substituted in Equations (5.19-20) and the scught-for
c.g. transformations are found. These are listed in Table 6-1.
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This table reveals a number of interesting facts. Note that if C,, and

”d
GM are not zero, Lhen CN and C must be non-zero for most c.y. positions.
. & MA
8 b )
Thus the omission of these coefficients in previous articles would yield

incomplete expansion under c.¢. transformations. C.. and CM have no measuratle

$ P - Y F A . 4
have no measurable effect on motion. The Magnus coefficients

involving & and § also have no measurable effect, do not appear in c.g. rela‘ion
for other coefficients, and, therefore, can be completely dropped at this time**.
The final form of the linear force and moment expansion in nonrolling coordinates

is, therefore,

C, +1iC, = - | C + i[&])C £ - iC o
N
oo B fa, o (B o) v
T (5.21)
- Oy, § '
a
E+fé=|'(-$—z) Cy -icM-|§+cMZ
m S A A o q
~t 5
- 10y, & (5.22)
[0 4

Equations (5.21-22) contain considerable information which is not
immediately obvious due to the unfamiliar complex number notation. It should

be noted that g 2 B+ 1a has components whose algebraic sign is the reverse of

the corresponding forces and moments. This can be seen from Figures 6.3 and ©.h4.

¥
In wind tunnel measurements of damping in pitch derivatives by means of

forced-oscillations the coefficient CM can have a measurable effect quite

K

similaer to the static moment coefficient C

IS

M
*¥ a
The various statements about certain coefficients having no measurasble effect

may be verified by retaining these quantities in the analysis of the next
section. It would then develop that through the small size of the density

factor g%i these coefficients would have little effect on the pitching

and yvawing motion or the c.

RIS m (7 ¢ e

that motion

g. transformat

Sh

ion of coefficients which do influence



Thus, the normal force, - C ?, is a force proportional to the sine of the

N
Qa
angle cf attack and acting in the same direction as the angle of attack when

CN is positive. (With the exception of very low fineness ratioc configuration
a

C,, 1is always positive.)
N
a

The Magnus force for a spinning body of revolution is at right angles
to the normal force and proportional in size to the product P |E|. Its
usual direction can be inferred by consideration of the Magnus force which
causes a baseball or golf ball to "hook" or "slip”. (Figure
figure we can see that the circulation induced in the f
he spin and viscosity causes an asymmetric pressu
This pressure distribution then gives rise to a side force. The same
theoretical model may be used for a spinning body of revolution. For this
purpose we assume that Figure 6.7 is a cross sectional view of the flow field.
The cross flow is induced by the angle of attack and has a magnitude Vo Ei.
This simple picture predicts a Magnus force with direction obtained by a 900

rotation from the normal force against the spin. Since multiplication by ip

. o} .
rields a 90~ rotatiocn in the direction of spin, the usual sign for CN is
negative.

The interpretation of the damping force coefficients Cy @and C. is

iy ive

q
somewhat more difficult. This 1s not unexpected since the coefficient CN

is a linear function of c.g. location. Indeed since both coefficients have
not been directly measured and have only importance for their effect on the
dependence of their moment coefficients on c.g. location, we will interpret
them in terms of the c.g. transformation of the moment coefficients and move

on to consider these coefficie
a N/ AT 2T S R P ASY Y L e b N AL W LT U W B WO S

The form of the moment expansion was obtained by multiplying the force

s -
coefficients by i and re the N subscripts by M's. Thi

by the convention the orientation of a moment is the axis about which it tends
to cause rotation and this axis 1s perpendicular to the corresponding moment.

1ored
oreq.

As each coefficient is discussed its influence on stability will be ex

25



The most important moment coefficient is that associated with the normal
i

force, i.e., the static moment coefficient, CM . This moment causes rotation

[0 4
about an axis at right angles to the angle of attack. Since a negative
coefficient corresponds to a moment opposing the angle of attack, a negative
coefficient is stabilizing.

The Magnus moment coefficient, C , has an axis of rotation in the plane

MM
ML
of the angle of attack and, therefore, causes the missile's nose to rotate
around the trajectory. For a positive CM this motion is in the direction
oo
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d
moment coefficient with the others and will be examined later.

The damping moment coefficients CM and CM cause rotation about the
q &
2 ~ 1

same axes as the corresponding angular velocities p and £ . Their moments

. : :
both oppcse their angular velocities when they are negative and, hence,

With linear expansion of the force and moment defined, the derivation
and solution of the equations for pitching and yawing motion can proceed.

*
Equations (5.21-22) are substituted into Equations (4,24-25) and C ‘s

neglected in comparison with one.

i * 3 * w T )
E - iyi= -(CN - C + i (%i\ Cx ) B+ |g~ + igE] AY (6.1)
a \V / e Ly
~l _2 1 — O\ E. 3 E 3
w2 [ (B o -l |
L\Y / “pt -
- B * -2 ¥ et .o
+ (kt CM + CD) 0 - ikt CM. E (6.2)
q
The expression, CN - CD’ has a special significance which we can derive here.
a

Figure 6.8 shows the model at a fixed resultant angle of attack, &_, and the

a
resolution of the aerodynamic force into axisl and normel components, F, and
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+ sin arF (6.3)

L =sin @ F, + cos arFN (6.4)

]

where cos ar 4

le] = &

sin ¢
bo

The definitions of the corresponding aerodynamic coefficients can be

inserted and common factors cancelled

C,=-7,+8¢C (6.5)
C. =9C. +C (6.6)

Cy cen be eliminated from Equation (6.5) by the use of Equation (6.6)

¥, =C. = C (6.7)

Thus, this combination, C

Na
coefficient. Equation (6.5) also expresses the usual relations for induced
on an a wialla P 4 \ oM 7 Jo~
drag. For constaent C, and CNa his yields cD82 = l,Na + {1/2) Cy = LLa +(1/2

Equations (6.1-2) can be combined to eliminate ¥ and Y .
1

Te@E-2-1p)T - (m+ipm) T (6.8)
* * "2 , * * N
where H = 7CL - CD - kt (CM + 7CM )
a q &
‘-2 * 1...* \'
M 7Kt CM - (CL )
[0 04
I 1
* -2 * *
T=7'—CL * kg Cy ‘]'(Tz) (Cy )
L O jeo | VX jo.04
(&y + 1) 2 ' _ [ (ay + igs)2
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Equation (v.8) is exact and has no linear approximations other than those
which are implicit in the definition of the force and moment expansions. The
retention of derivatives of the 1ift coefficient and the Magnus force
coefficient allows these coefficients to be variables and, therefore, could
represent a nonlinear force. Since the moment coefficients were not
differentiated in the derivation their derivatives do not appear. They are
not necessarily constants and can represent a nonlinear moment. This equation

can and will be used in the chapter dealing with nonlinear forces and moments.

In this chapter, however, Equation (6.8) will be linearized by the approximations
1Y P ’ \ /

1 '
y=4, 7 =C =C =0 (€.9)
a jod
By + gy = ig (flat trajectory) (6.10)
SR TS P
Lz, =|P-i(k“¢c. - g v (6.11)
S G & ik, -Mq CD)_I gl (6.11)

For high spin rates P can be as large as .05. The imaginary part of G is the
same as that given in Section 6.2 for no spin. Since it was found there that
this term has no effect on the motion which can be measured during the
relatively short flight in a ballistic range, it will be neglected and G

approximated by szv’z.

—
[o)N

SOE s (H - iP)'E" - (M +1P)E = G

~—

where H = (%%f) {C -c, - k2 (c, +cC )J

L,~ D t MM,
5
. pS2
M= 57— Cy
fose\ T -2 1
T\ ) | * ¥ Cv
L a Jeo M
G = szv’2 : szv'2



Although Equation (6.8) is a fourth order system in the variables y end
2

TI=y

w it is written as a simple second order system in the complex variable .

This symmetry allows us to express the solution as a constant plus two complex

exponentials.
~ ~ 1¢ i¢9 .
- = - [ (A.
£ ég +Ke T +Ke (6.13)
where ég = LM " 1PTJ g 'o
A .S
K. =K, e J
J Jo
= -+ -.
g, =8, + By
b
xJ+1wJ=(1/2) i—-H+1yivuM+n - P+ 2iP(2T - )}

The actual size of ? is barely measurable but its influence on the trajectory

can be measured for subsonic tests in ballistic ranges. Since M usually is

T
,>g
this equilibrium angle due to gravity curvature of trajectory causes the

missile to point to the right of its flight path. The 1lift force associated

er that PT and is positive

:
g wat PT ar positiv is & smell negative real number. Thus

(=3

Q
=

with this angle causes a drift to the right. This right deflection

K]

characteristic for all artillery sheil. For most supersonic tests, Sg will
be neglected in any consideration of Equation (6.13) but its associated drift

will be computed when the swerving motion of the c.g. is discussed.

The other terms in Equation (6.13) describe the missile!s response to
initial conditions. The amplitudes of the disturbances due to initial
conditions (K, ) can either grow or decrease exponentially while the orientation
changes at constant rates (¢; The resulting motion is known as a damped

epicycle. As has been shown previously a nonspinning statically stable

missile (P = O, M < 0) has a damped elliptical pltching and yawing motion
when H is positive, and an undeamped elliptical motion when it is negative. The

damping rates are equal and the frequencies are negatives of each other. If
the same missile is spun slowly, the frequencies shift a little and the

elliptical motion starts to precess. This is shown in Figure (6.9a). At



higher spin rates the damping exponents change as well as the frequenciec and
more complicated motion w
that maximum angles occur when the modal vectors add (Ki + Ké) and minimum

angles occur when they subtract (IK1 - Kél).

For a statically unstable missile such as a rifle bullet the motion is

quite differcent. If the missile 1s not spun, the modal fregquencies are zero,

r
one modal amplitude is strongly damped A\, = |- H - JiM + ; ] /2 where the
- L .

r
other amplitude is strongly undamped A, = |- H o+ UM + E ] /2. This motion
< L

is quite unstable.

For a spinning missile as well as & nonspinning missile the predominant
aerodynamic effect is the static moment coefficient. If the other aerodynauic
coefficients are neglected, the frequencies and damping exponents become

. PN F, + . 21 L .
Ay 1¢J. = (1/2) | 1P =ViM - P (6.14)
The presence of spin in the square root indicates the possibility of
stabilizing a statically unstable missile by spin. When spin is large
enough, the right side of Equation (6.14) is a pure imaginary number. The
damping exponents become Zero, and the envelope of the motion will nct grow.

The necessary condition on the spin rate 1s the inequality

2

W - P~ <0 (6.15)
For a statically unstable missile, M is positive and Inequality (6.15)
may be written in the form
°
m > L (6.16)

The ballistician has for many years made use of a gyroscopic stability factor
Sg which 1s proportional to the ratio of sq
moment coefficient and is precisely Pz/hM. Thus s8 must be greater than unity
for a statically unstable missile to perform periodic motion and not quickly

tumble. This is the condition for a sleeping top.

h nodes is produced as shown in Figure (6.9b). Note



Since the sign of M is not essential for Inequality (6.15), we will
define a missile to be gyroscopically stable when that inequality is satisfied

or equivalently

<1 (6.17)
(24

R Lo

Thus a statically stable missile (M < 0) is always gyroscopically stable.

represented by the sum of two complex numbers with constant magnitude and

rotating with constant angular velocity.

¢; = 1/2 [P *JFF -MM] ' (6.18)

We will call these numbers modal vectors. If Cy 1s positive, they rotate in

[0/
the same direction as the spin and the usual epicyclic motion associated with

the motion of the axis of a top results. If C is negative, the square roots

M

Py

a
dominate in Equation (6.13) and these modal vectors rotate in opposite directions.
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......... or oscillatory
wtion but does not guarantee that initial conditions will not grow. This
requirement of dynamic stability which reduces to a need for positive H for a
nonspinning missile is satisfied when the exponential coefficients are both
negative. The pitching and yawing motion for a dynamically stable, gyroscopically
stable, but statically unstable missile is shown in Figure 6.10. For a

statically stable missile the frequencies differ in algebraic sign and the

nodes are on the outside. For this case the frequencies have the same sign

of initial conditions. Equation (6.13) and its derivatives may be evaluated
~ ~ f
at s = 0 to yield ¢ and o in terms of these quantities.
ig. i@,
i " 40 t el
S0 T Kppe T+ Ko (6.19)
g = (A + lo ! a 20 £ oan N
o= (A + 1)K e + (4 18,0500 (6.20)



1
~e
These relations determin §o and Eo in terms of quantities measurablc {rom

ballistic range tests. 1In design studies it is sometimes important to computc
~ N'
initial values of the modal vectors from specified values of §O and Eo. Thiz

can be done by inverting Equations (6.19-20).

~f i ~
i¢ § - (Xn + i¢n) g
K. ¢ 10 _ O [ =4 [0} (6.21)
10 r, + (8 - @)
MoT A -9
; oy ATy Y
= {3 i
l¢20 SN T i S AN
Koo = ” d' (€£.22)
Ay m a0, - 9)

The amplitude of these disturbances due tc initial conditions will grow
exponentially for a dynamically unstable missile (i

4+

1
Tne relations for Aj + i¢J are convenient for computing the freguencies
and exponential coefficients when the aerodynamic coefficients are known. In
vallistic range work it 1¢ is known from the data analysis and the aerodynamic

cocfficients are unknown. The necessary equations can be easily derived from
1

the fact that in Equation (6.12) the coefficient of £ is the negative sum of
' ~d

the roots of the characteristic equation ( + i¢,) and the coefficient of £
J

is their product.

S P = ¢1 + ¢2 (€.23)
H=- [Xl + XE] (6.24)

1
M= @ g, - M), (6.25)
R 1 T - /
T = - -¢2Xl + ¢1X2 (6.2'“)

6.7 Dynamic Stability Criteria

Cue of the primary uses of range data is the determination of proper
dynamic stability for a proposed configuration. The usual dynamic stability

requirement, is that. the damping exponents are nonpositive throughout the flight

62



of the missile. We will fi
requirement, Then the more

the angular motion does not

shall see, then, unde¢ . this

rst consider a generalized version of this stringent
moderate conditions of & realistic designer that
become excessively large will be analyzed. As we

criterion the damping exponents may become positive

or "shor portions o he flight.
Equations (6.2L4) and (6.26) may be solved explicitly for the damping
exponents
r, . r, -
-l goH - FT - g0 -
Xl= Ln Pe 1 = = L= = (7el)
l- T 2 -P
g - o, N
dd'y - pr =|n(’u'_
e Tl PN ,IAL_L.L
S -SRI (7.2)
2 1 [] t y
- 20, - P
g - 9! g
The indicated divisions in Equations (7.1-2) may now be performed
/N T pror - @) I P(2T - B) |
- - _ _u___L - - = r\cl
me- (3) [F-BEEE L (g) |- EER )
N7 2¢ -P \ I ¢--¢.
L 170 X 17 %
., -~ F ’ « M . —~ . —
1 P(eT - H 1 P(2T - H
ro=- (2)|m-HE-B | (1) ]y, RET (7.1)
2 \c/| 2¢'-P \2/ ¢l_¢l
L 2 4 L 1 2
According to Equations (7.3-4) the damping exponents for a nonspinning missile
are bouheﬂ/E. If H - 2T 1s not zero, one of the damping exponents will be less
than H/2 and the other greater than H/2. From Equation (6.18) which is a good
da' - 4l - .
approximation* for the frequencies we see that rlpl - pej has a magnitude

which is less than one for

* ~
Although Equation (6.18)
approximation when aerody
equivalent to the assumpt
greater than the product

ynamic

statically stable

missiles and greater than

is exactly correct for H =T = 0, it is an excellent
damping is present. Use of this equation is

armp
t AP +ha FPrams Cies is ‘xﬁuc‘:h

the product of the iregquen

of the damping exponents in Equation (6.25).

ion that

|9}

-
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for statically unstable missiles. Thus, the H/2 in the second term of
Equation (7.4) dominates the first term for e statically unstable missile
and one damping exponent must be positive if the Magnus and 1ift coupling

term T is zero.

We will now obtain precise stability conditions on T as a function of
spin. The usual dynamic stability requirement is that the exponential
oth negative. These conditions are somewhat more
restrictive than necessary for a missile designer. His primary concern
is that the initial conditions do not have an adverse effect during the
f1light. What constitutes an adverse effect depends on the mission and
trajectory of the given missile. In some cases Wwe would want initial angles
to damp to half their values in 1,000 ft; in other cases if they doubled in
10,000 ft., the performance would be unaffected. To include this flexible
criteria in our analysis, we will introduce a level of damping, A, which is
_set by the designer and require that the damping exponents be less than thi

S
value. The resulting generalized criteria reduce to the conventiocnal cne when

A = 0. If the frequencies are approximated by Equation (6.18), this requirement

of generalized dynamic stability assumes the form

r PP |
T | (11 y 3 i-—_:aﬂlgﬁ PN
Ay - h=3 L\n + 2N J Pz - hMJ =0 {7.9)

Inequalities (7.5) are equivalent to the following inequalities

v
o

H+ 20

1H+2x12i_(2T_fill
| Jp° - I

The second inequality in (7.6) can be squared, solved for spin squared, and

—

~l
(o)

S

reduced to a simple form by the introduction of a generalized dynamic stability

factor, S4

LM 1
=S, -sy) (7.7)
P
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The relation between the spin and the various types of stability are
summarized in Figure 6.11. To these relations must be added the single
inequality H + 2\ 2 0. Three comments of great importance may be derived

from an inspection of this figure.

R L T

(1) A dynamically stable missile must be gyroscopically stable.
(2) If s, lies in the interval (0,2), a statically unstable
missile may be stabilized by sufficiently high spin and a statically stable

missile is always dynamically stable.

d

(3) 1If s, lies outside this interval, a statically unstable missile
pin-stabilized and statically stable missile may be made dynamically

cannot be s

unstable by a sufficiently high spin.

rarious coefficients for a variety of configurations
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will be given in the next chapter. From these data it can be shown that most

of the ways & symmetric missile can theoretically become unstable have been

the assumption that s, is not a function of spin. The bounds on s _ indicated

o

in the figure may theg be converted into bounds on spin.

Frequently the spin variation of tﬁe Magnus moment can not be ignored.
When this is the case S4 is a function of spin and Figure 6.11 can not be
used to determine spin boundaries for dynamic stability for a given missile.
Inequality (7.7), however, is still valid. The equality sign in (7.7) yields
an equation in spin whose roots are endpoints of intervals of spin for which
the missile 1s either dynamically stable or dynamically unstable. I

(o)
ot
iy
0
n
ho]
fr
3

stable for spin in that interval and conversely.

e negative throughout
the flight is much stronger than necessary in a number of applications. This
can be seen by the following example. Consider the case of a specific shell

whose exponential coefficients are strongly ne

3y
2.0 except for the



Mach number interval (0.9, 1.1) where both exponents arc positive. Exact
numerical integration showed that an initial maximum angle of attack of four
degrees for the launch Mach number of two will decay to a tenth of a degree
before the Mach number decreases to 1.1. The dynamic instability associated
with the transonic velocities then will cause the maximum angle to grow to
approximately one degree and then decrease a second time when subsonic s

is established. Thus the "dynamically unstable" shell has maintained a small
angle of attack over the entire trajectory*.
The effect of slowly varying coefficients can be treated by means of the

WKB methodé-i. The exact algebra, however, will make considerable use of the
epicyclic solution associated with constant coefficients. We will assume the
solution for varying coefficients can be written in the form

- i¢l i¢2

P ke T ke (7.8)

t
wliere the ¢J are not necessarily constants and the Kj are not necessarily

exponential functions. Differentiating Equation (7.8) twice, we have

~T t i¢l 4t l¢2
E = (1 +ig)Ke T+ (0, 4 if,)Ke (7.9)
':'" r ' - ;J'\2 ;IJ" 1'\-] i¢l
£ = Lxl + ki - (@l) + 1(¢l + 2xl¢l)J Kle
1 2 t.D . " [] i¢2
+ [xg +hp - (B5)7 + 18, + 2x2¢2)} K,e (7.10)

where ). = [Zn(K./K. )] = =d
J L J'Jo KJ
Equations (7.£-10) are now substituted in the homogeneous form of Equation (6.12)

and the result grouped as to mode

Precisely this behavior occurred during the development of an important shell.
As a result of ballistic range tests the shell design was stated to be
unsatisfactory by the experts. Fortunately, the project engineer who had not
studied the mathematical theory of this chapter was able to get approval for
full range firings. The shell gave one of the best dispersion patterns ever
observed and the "experts" learned from bitter experience.
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{(951)2 - Py o+ M-y +H) - - i [(2951 - P, + @ + HE - I’I‘-!J}

| = I

o {(¢;)Q'P¢;+M'X2(X2+H) -

1 " ¢ N -iQ
-i[(2¢2 - P, + ¢2 + H¢2 - PI'U (K2/Kl)e L (7.11)

where

“>
|

1
If Xj and ¢J vary slowly in a period of %, Equation (7.11) can only be satisfied

by both expfessions in braces vanishing. Since the ). terms in the real part of

J 1D
each of these expressions is usually much smaller than (¢j » the frequency
equations for varying coefficients are essentially the same as those for constant
coefficients.
[ 2
! P o+ P
Bs=5 - Vi -M (7.12)
The logarithmic derivatives, xj, are somewhat different s can be seen from
the imaginary parts of the expressions in braces.
1 "
Hf. - FT + @,
J H
2¢, - P
oJ
1 1
o ‘|r Al Al -‘ -
Eal i . . rl
=X -5 Iln(d*/a*n)l = At (7.13)
J = L JooJdv )4'
1
o

was L rJ
1
7. m
% HWJ - FL
XJ = - —S—==
2¢J - P
A *
For constant frequencies and spin-to velocity ratio, XJ reduces to XJ.
The definition of A, can be used to yield a prediction on the size of
J
the modal amplitudes for slowly varying coefficients.



N P
o 1/4 (M, = =7 ) ds
M - um(o)] Y/ Jod 8
. | 0 o
KJ’Kjo = e - (7.1h)
l_P -uM(s)_|
Since the major concern of a designer is the growth of initial disturbtances,
this can be controlled by a restriction on the ratios Kj/Kjo. The actual

value of these ratios may be computed throughout flight and compared with the
restriction. Clearly strict dynamic stability will satisfy this, but these
considerations allow a certain amount of dynamic instebility over part of the
flight. Thus a much weaker type of stability has been formulated. This
stability includes the necessity of gyroscopic stability throughout the flight.
An interesting application of these equations is that of a missile with
constant aerodynamic coefficients and spin which is entering or leaving an

exponcntial atmosphere*

p=pe (7.15)

If ¥(s) is the angle the flight path makes with respect to the vertical, z can

lated to our independent variable s by the equation

S
Z = = \/F £ cos V (sl)dsl (7.16)
0
where 0 < ¥ < 900 — entering the atmosphere

90O < ¥ < 180° - leaving the atmosphere

e} - .
o = 0 cos vV =7 (7.17)
For this case it is easy to show that
* 3
Ay = N, - p—— (7.18)
J J 4\L - 5 )
g
where s _ = 4M
24
¥
For the earth a good value for o is 1



the density gradient. These predictions are only good at altitudes for which
A~
the changes in the coefficients are small in a period of @, the nutational

frequency.

©.5 Angular Motion of a Slightly Unsymmetric Missile

Since no actual missile is exactly symmetric, the study of the effect
of slight asymmetries is very important for & missile designer. It is also
quite possible that lifting surfaces may be slightly deflected so that they
may induce a trim angle of attack. These aerodynamic asymmetries which may
be either intentional or unintentional have the effect of introducing constant
nonzero 1ift and moment when the angle of attack with respect to the basic

symmetric missile's axis of symmetry is zero. This introduces a constant

C, + iC, into Equation (5.15) and & constant C, +1iC_ into Equation (5.16).
s %o o} e
The corresponding linear differential equation for the pitching and
yawing motion is
~ _ ~t ~ i¢
€ + (H - iP)E - (M + iPT)E = iAe (8.1)
I
ost [ -2, .\/(y\j\ N
where A = 5=~ 1k (C_ +iC_) 4P { = }j-1) (c, =+iC, )
2 R N N U G- A R R
S
g = f ¢dsl and
Q
| 2
g’ B2
vy
For constant spin rate the aerodynamic asymmetry introduces an exponential
forcing function. A particular solution to this inhomogeneous equation can
be obtained by assuming & solution of the same form
i
wh —

o\
O



This particular solution can easily be found by direct substitution and the
esult added to the epicyclic solution to yield the general soluiion of

Equation (8.1)

T - K, e + Kye + Kie (.7)
ig
where K5e %0 5 — 1A -
A 5 e 1A \
g) - + M- i(f )

. 9]
The Jdenominator of K,e 50 is usually dominated by the real part. This real

part is the quadratiz expression for the epicyclic frequencies. Therefore it
will become zero when the spin rate equals one of these frequencies. By
definition the magnitude of the slow rate is less than ('IX/Iy )1g'| and, hence,
for most missiles this resonance phenomena occurs when the spin rate equals the
rast rate. The usual value of Ix/Iy is less than a tenth and, thus, the Pr,é' term
5

1.2
uck smaller than (@ )° and the spin rate may be directly compared with the

=

is
zero-spin pitch frequency, v- M, to determine whether concern about resonance

is reasonable.

In most ballistic range tests for which asymmetries are present, the spin
rate is usually not constant. If it is not near resonance Equation (8.2) is a
nce it is

d i 3 N oot vy P P
geed approximation but for roll rapidly varying through reson

a
definitely a very poor approximation. This special case can be handled by

the method of variation of parameters.

If varying spin is assumed, Equation (8.1) is a linear equation with
verying coefficients with a specified forecing function. Although the particular
solution for this forcing function is quite sensitive to roll rates near
resonance, the complimentary solution for the homogeneous equation is relatively
insensitive. 1Indeed, for roll rates near resonance P is usually quite small.
This means that we can either neglect P on the left side of Equation (8.1) or

replace it by a constant average value. The
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=Ae * T+ Ae (7.4)

J
EA is the particular solution due to asymmetry for
zero initial conditions. (£, =E, =0)
“o “o
Equation 8.4 is now differentiated.
' '
o A (n +18))s . ' (hy + 18,)s
= ! i A_e + (Ao + 1 A€
gA ‘,X'l + lrl,..le Ao ¢2) 2
| ] | ]
, (xl + i¢l)s . (X2 + i¢2)s
+ Ae +Ae (8.5)
IT the lsst two terms are set equal to zero
1 § ]
(r, + if.)s (h, + 18.)s
- 1 1 Y 2 2
Ae + Ae =0 (8.6)
and '
A + i"("" "(Xl ' i¢l)s + (A, + i'*.)l‘\ e(k2 ' l¢2)s (8.7)
WA M S Ko | Vg T HWplh :
Differentiating again we obtain the following:
ol 3 N~ (X’I + i¢1)S ) (X,, + l¢2)S
o= (0 +1if))7 Aje + (g + 1¢2 Ae
. 8.8
v (0 # 1¢l)s ' (xe + i¢2)s (8.8)
+ (n, + i )A_e + (Lz + 1¢2)A2e

~e Y

If Equations (8.4, 8.7-8) are substituted in Equation {8.1) and it is recalled
that terms without A

rmust cancel, the following equation can be obtained.

come from the solution of the homogeneous equation and

. ' rd AJ'\
(n, +if))s v (0 +18)s

(xl + i¢1)Aie + (xe + i¢;)A2e = 1Aei¢ (8.9)

-
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o -(n, + i¢i)s + 1d
Ay =S —— (5.10)
by - ) 1 -
' J
(v * i¢2)s + i@
.
A, = 2e (£.11)

SEENRRORY

Equations (8.10-11) may now be integrated, the integrals substituted in

Equation (8.4), and the general solution for arbitrary rolling motion @(s)

derived
§ = Ke + Kye + 5, (8.12)
where ; - 1 '
/ (Xl + l¢l)(s = Sl) (X2+ l¢2)(s = Sl):] i¢(S )
. e - e e 1’ ds
~a lA o - 1
§A =

i A - Ay (8] - B))

~
As was noted in the definition of £,, its initial values are zero and; hence,
E23
the relations between the initial values of the modal vectors and the angle

and angular velocity are precisely those of Equations (6.21-22). Since the
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reiationship with the initial angles and angular velocity. The correct

relations, however, may be quickly derived if necessary.

6.9 Swerving Motion

Once the pitching and yawing motion is known and the linear aerodynamic
force is determined; the motion of the center of mass may be computed. A

first approximation to the actual trajectory is the so called particle
trajectory. This is the trajectory determined by gravity and zero-lift drag

and is followed by a missile which maintains zero angle of attack. The motion
of the center of mass of a missile perpendicular to this trajectory is called
the swerving motion. This motion is quite important in ballistic range work
since direct determination of the amerodynamic force 1s possible from measurements
of this motion.

T2



approximated by a horizontal straight line. Thus the swerving motion i:
primarily the projection of the three-dimensional motion on a plane perpendicular
to this line. If the X - axis of the earth fixed coordinate is dirccted along
this line, the variation of the Ye and Ze coordinates of the center of motion
provide us with the swerving motion. The differential equation controlling

these quantities is

m(y  + iie) =F, + iFZ + img + ma, (9.1)

earth's rotation, can be specified in terms of the latitude of the range, 6

2’
and the azimuth of the line of fire*, 6_,
vV
__9° 2
8 =71 c
VVo r Qf )
= - — -2 V; (sin 8, +1 cos 8, sin Ga)J (9.2)
where (0 = 21 radians per day
= 7.3 x 16° rad/sec
The force components along the Ye and Ze axes are given by Equations (2.10)
and (3.1). For small angles these equations may be combined with Equations
(2.12) and (3.3) to yield:
/ je-kize\
FYe+iFZe=FY+iFZ-FX (g-—v——) (9.3)

For a slightly unsymmetric missile with a linear aerodynamic force, then,

¥
The BRL Aerodynamics Range, for example, is located at Aberdeen Proving
Ground, Maryland and fires due East. For this range 6, = 39° 26' and

Ga = 90°.
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- (1/2)(pv2)s C..

F, = D

- iy ,- /2\ 2 rr /P__!:\ 7T ~

Fy + iF, = - (1/2) Vs 'HCN +1(v ) Cy | €
- a v pal (9.9)

i Y

- (c, + ic, )ei¢ L

X Y4 J

@]

+ iCN,ﬁ + CN
q &

Equation (k.24) may be used to eliminate Y in Equation (9.5) with the usual
The derivatives with respect to time may

neglect of squared density terms
be replaced by derivatives with respect to arclength by the relation
2

" 7" /‘e\
Yo *+ iz, = (ye + 1ze) (if) - (ye + 1ze) v
2
= (¥ i¥ ) /_{\ T & _{\ fe 7\
(ye + 1-e/ \V/ + (Je 1‘- V/ (7.0
These equations may now be used to write Equation (9.1) in a much more
convenient form
| 1"
y + iz x * ~
e e _ _ . 2&) 1
= - [CL + 1 (v ) Cx 3 (9.7)
L o v joo
+ o
v

* * % . ¥ * i
- (cN + cNd)g + (CY + 1cZ e
o] o]

Th



Yo iz, * / pol\
7 = Bo + Bls - CL Il -1 (17- ) C
[0 \ o /
»* »* * »*
- (cN0 * Oy ) Iz (cY + iCZo )
r QC*S » 1
/,\leD -ECS-ll
+ 1 ( Eé \ | T g I
\ve/ L (2c;) _J
[ 1
| &°  » I
R e - CDs -1
+ a
L D Jd
where
A of2
Il = u/ u/ 3 dsl d52
o o
n -1 s s,
(2 [T (R) ¢
I, - (‘V;) j J/ (\7) ¥ s, ds
o o
S
I5 =] JF E‘ dsl
o
I§ I§2 1¢
Ih = U/ U/ e dsl ds2
o o

Bo’ Bl are complex constants and

2

g— is a good approximation for the coefficients of gzv;e

A
and a_.
o

Note that if the spin to velocity ratio is a constant, I2 reduces to I

(9.8)
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For low spin the integrals provide the same frequencies that urc presoent
~
in £, Thus the lateral motion of a symmetric missile with cpicyclic angular

motion is represented by a parabola plus an epicyclic motion, The relative

amplitude and phase of the two motions are determined by C and CN + CN .
v /‘./

(o3 4L

A slightly asymmetric missile has a tricyclic angular motion and its lateral

motion is also a parabola plus a tricyclic motion. The relation between the

i
two three-mode motions is determined by the relative magnitude and phase of

the asymmetric force and moment terms as well as the values of CL and CN + 0
o7

q
For high spin the lateral motion is much simpler. This is due to the fact that
e

N,
97

the magnitude of an integral of a circular constant freguency motion i

requenc e
magnitude of the motion divided by its frequency. Thus the integrations in
Il’ T2, and I3 have the effect of reducing or eliminating the influence of
high frequency terms like ¢l and ¢ and retaining only the slow mode ¢2. Thus
the lateral motion of a missile with high spin is essentially a parabola plus
& spiral with the slow mode frequency. The relative magnitude and phase is
determined by CL and CN .
a x

te sufficiently controlled so that the range instrumentation does not suffer

damage. A simple calculation shows that the periodic part of the motion does
h

We are, therefore, interested in the average direction of the flight

The parabolic deflections due to gravity and Coriolis acceleration are easily

o]
predicted and, thus, we are primarily concerned with the average effect of the

aerodynamic forces.

It should be noted thaet there are other causes of dispersion of models, i.e.,
muzzle whip, blast effects. These are usually small with the exception of effect

of gun blast on finned mis

199



are flowing forward over the rear fin surfaces, they can impart a large
destabilizing angular momentum to the model and a much smaller linear momentum.
This initial angular velocity can generate an angular motion which will give
rise to a large displacement. This displacement is precisely the quantity we
want to study in general. It is of great importance that the 1ift of fins in

this reverse flow be kept as small as possible.

We will now study in detail this average effect of the aerodynamic force.
This effect will, of course, be related to the initial angles and angular
velocities present at launch. These initial conditions may be caused by bore

clearances, sabot separation, or by blast effects. This average deflection is

o Er R l rr = . PA’-* -] - In.* —g* \ -
aero., Jjump = tl‘lm- = ] LCLG + 1(—V—-}L,NMJ ll + &L,Nﬂ + LN& ) J.5
S—® ~ xx q a
S (¢ +16,) T, (10.1)
o] o] .r

In order to take the indicated averages of Il and I, we can solve Equation (8.1)
3 1

for E;

T+ (- 1P - 1nelf

5 M + iPT (10.2)
S

A r -]-l [ =X Ry r .I e = ' —1

LI = LM+iPI‘J t -E—?s+[ﬂ-1PJ Uéds‘—és

(o] (o] L (o]
& -

o

But for a dynamically stable missile € and its integral are both bounded.

lim =T, = - LM + 1pr_| {[?o + (K - 1P) 'EOJ
1 Y
sS—®8 4
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No dircet measurements of CN + C have been made in ballistic range troto.
q N | . B .
is quitc recasonable, therefore, to omit this term in our consideration of

T4
a v

acrodynamic Jjump.

% 7 54\ * 7 r -1 or,
S aero. jump = |C. + i (22) Co | M+ iPT | |IO
L Ly \WV/ B L bt
+ (H - iP) E_| (10.%)
CJ
+ JA o}
-1
* ¥* ¥* ¥*
where I [Cv + 107 ] + 1 [CT + i (%1£) C,y 1 [M + 1PT1 A
A i u‘o_j L .ua \ V’ / l‘m_]
= C* C* ic [C 1-1 {C C ]
= + i + + 1
I y m n
¥ N o - L% o4
. 1
¢ = ’-:le“ _s [Ih-l
Sy ™ = el

Equation (10.5) shows the sensitivity of the aerodynamic Jump to initial

conditions. Usually & is small and a good approximation to the symmetric

o)
[

r 2 ~S
part of the jump is L kt CL /C%l] §O . The asymmetric part depends very
[0 04

much on the roll history. For constant roll,

o = (10.6)

&_lr-‘-

If the roll is varying in accordance with Equation (5.5.6), & can be computed
as a function of two parameters6-9. One special case of some importance is
that where the spin producing moment is large in comparison with the spin
demping moment over the one or two periods of the pitching motion and the
initial roll rate is zero. Since the aerodynamic Jump is an average over this

periodic motion, the roll equation for use in ¢ assumes the very special form

=~
co



2
= Ky m (10.7)

For this constant roll acceleration,

x4

L Y= ™
6= 12 o ¢ K. >0 (10.6)

JK ©

5

125 % %« Eo
P = = 5 S .

-K6

It is interesting to note that the aerodynamic Jjump is at right angles to J

for constant spin and a h5 angle for constant acceleration from zeroc spin.

.|

Note that neither (10.5) or (10.8) show any spec effect of & resonant roll
rate. This is due to the fact that although the resonance angular motion

amplitude can be quite large, 1ts average influence on the trajectory is not

o0 ;

exceptionally large. The increased induced drag can, however, affect the

gravity drop along the Ze - axis.

6.11 Spin Lock-in and Catastrophic Yaw

Although spin-pitch resonance can yleld large trim angles; the probabil-
ity of a steady-state spin rate exactly that of the pitching rate is quite
small. Moreover, aerodynamic damping usually keeps the trim angle to be a
reasonably small multiple of asymmetry angle. By the introduction of roll
orientation dependent moments, J. D. Nicolaildes 6-11 has demonstrated the
possibility of spin pitch lock-in and large multiplying factors for the asym-
metry angle. In this section, we will outline the work which has very suc-
cessfully explained the rather high incidence of resonance and the large

trim angles associated with 1t.

The complex angle of attack in missile fixed coordinates, &, can be
described by an amplitude, &, and an orientation, €. 8 1s the angle between
the plane of the angle of attack and a fixed plane on the missile such as one
containing a fin. Nicolaides' model then was that there 1s both a roll moment
and a side moment depending on angle of attack and 9. The revised form of
Equation (5.5.2) is



(pt

5] P a
If the missile has an angle of rotational symmetry, Gs’ then C£ is periodic
o'
witi period @ . Now the presence of differential cant, &_, excludes ti.e possi-

S
bilit: of a plane of mirror symmetry. If the missile with no differential

cant (Sf = O), has a plane of mirror symmetry, the roll moment due to orienta-
tion must be zero when the plane of the angle of attack lies in the plane

of s;mmetry. This is clear from the fact that if we measure 6 from a plane

of mirror symmetry and transform coordinates by a mirror reflection, the

wissile maps into itself, roll moments are reversed but otherwlise unchanged.
" Cz (9) 6) = - Cz ('9; 6) (11.2)
a a

A rotationally symmetric missile with n similar f

2

ns has a symmetry angle
ar Bﬂ/n and is an odd periodic function of 2n/n. This means that it can usually

te represented by a Fourler sine series.
(oo

w

<
C, = Y & sinnke (11.3)
4

a = & 6\
K Sk V7

Th.e simplest form of Cz for an n fin missile 1s, therefore,
(04

CZN = al sin né (11.4)
- 6-1
Maple and Synge = assume that all forces and moments are analytic func-

tions of the transverse velocities in missile fixed coordinates (v,w). This

means that these forces and moments must be at worst infinite power series in

[Ta 2
3

£ and
But

In order for 602 to be analytic in v and w, then, akﬁsin nk@ must be a poly-
Q
nomlal or a convergent infinite series in & and .
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a Bsin nko = (akal - mky l—> (e7K _ gnk) (11.6)

21
The last term in Eq. (11.6) is a polynomisl in £ and & and, hence, & polynomial
- o 2\1/2,.. )
in v and w. & 51 nk is a function of & = (v2 + W )l' /V and would satisfy

k

the Maple-Synge requirement if it were represented by a power series in 82.
«K
. 1l - nk k_ 2‘2 7~ RN
. e ak5 = _Abkzb (11.7)
£ =0
and _
3(5)=? b 524 + 0k -1 (11.€)
k - k£

0

)/
Thus, the simplest expression for an n fin missile under the Maple-Synge
analyticity assumption 1s

o=p 8" sin r
i 10
o

C 16 (11.9)

For the general roll moment, (11.1), the roll equation of the last

chapter (5.5.6) assumes the form

4 1 - 1o ‘A i 3
gr + Kpp' -Kg - K, (6- ¢ 8) =0 (11.10)
p
= E_S__ an
where Ka )
X (04

1

A
6 = 6 + @ is orientation of plane of angle of attack with respect to
a fixed plane,

During conventional resonance, & missile performs a circular yawing motion
At

at constant frequency 8 . For a missile in circular constant frequency motion,
A
Equation (11.10) predicts a constant rolling motion when 6 - ¢ =6, a con-

stant, and
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A A 2NN
8'= g'= 7 . (11.11)

Wiien tlits vccurs, the roll motion is "locked" to the circular pitching mo-
*
tion and the missile performs a lunar motion . This can occur whenever trere
¥*
exists a 9 which satisfies Equation (11.11) and this equilibrium value of

*
@ 1is a stable value.

\
O

Thus, for many pitching motions which are near circular, lock-in can occur

and a resonance situation can exist. The gccurence of lock-in depends on

b

the rolli fregquency and the pitch frequency being close to each other at some

r.

point of the flight since widely different frequencies will make Cz vary
a

rapidiy with a zero average and, hence, it will have no influence on the

motion.

If we now consider the possibility of a side moment dependent on orienta-
tion, a Magnus like moment could exist for very small roll rate. If this

term and an asymmetric moment term are added to Equation (5.22), we have

oy ey o, 69 [y o () :
c, +1iC_ = (cm + 1cny)e + | Coy * (& Cy - 1iCy §
(e} [ [04 N/ ho 04

o]
e 'é"
+ Cy b - 10y (11.13)
q @ A
where CSM is a function of 8 - ¢ and o, and has the same symmetry
[0
properties as those of CZ .
[0/

* This motion 18 so named since it is quite similar to the moon's rotating
about the earth in such a way that it presents the same face to our view.
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Our differential equation (8.1) becomes

e . ve! \ B 1¢
§ + (H-4P)§ - [M + 1(PT +M_)]€ = 1he
1 . (o5t -2 . (11.14)
where g =7 ka‘) kt SM
N 0%
For circular motion which 1s "lock-in" with the rolling motion:
J'\2 ! . ; -
9 ) - +M =0 (11.19)
10k
§ = K5e (11.16)
where ¢5 = ¢IS + ¢,n
if
K_e %0 = — A =
2 $H-PT-M(s,K,)
CARE

If we have an unfortunate value of Mq which mekes the denominator of tne

expression for K, quite small, a very large amplification factor 1s possible

s
~ivi 4 n ~ 211e ratantmnmhd o' vaw b N5 -
giving rise to a si tion which 1s called "catastrophic” yaw by M
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FIG. 6.1 MISSILE FIXED AND EARTH-FIXED COORDINATES



FIG.6.2 MISSILE AXES SHOWING DIRECTION AND SENSE OF
FORCES AND MOMENTS
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FIG. 6.3 MISSILE IN PITCHING MOTION
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LOW PRESSURE
MAGNUS FORCE

FIG. 6.7 PHYSICAL MODEL OF MAGNUS FORCE

FIG. 6.8 RELATION BETWEEN LIFT AND NORMAL FORCE
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FIG.6.9 ROLLING STATICALLY STABLE SYMMETRIC MISSILE
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FIG. 6.10 ROLLING STATICALLY UNSTABLE SYMMETRIC MISSILE
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CHAPTER VII

RANGE MEASUREMENT OF LINEAR COEFFICIENTS

7.1 Geometrical Considerations

The basic information acquired from a ballistic range test is the

cosines of its axis of symmetry. These measurements are taken in the range

coordinate system for which the x, axis points downrange along the intersection

of the horizontal plane and the virtical plane conteining the gun, the X5 axis
lies in the horizontal plane pointing to the left and the x5 axis points up.
The theory of the preceding chapter made use of an earth-fixed system, a
missile-fixed system rotating with the missile; and a missile-fixed system

with zero roll rate. The range system is essentially the same as the earth-

fixed system after a rotation of 180° about the x

1 axis
.o. Xe = Xl (l-l)
Ve = = x2 (1.2)
R (1.2)

In order to relate the direction cosines to th
sideslip in the non-rotating frame of reference yet another coordinate system
must be introduced. (yl, y2, y3) This coordinate system is so defined that
the ¥y axis is along the missile's axis, the y, axis is in the horizontal plane
pointing to the right and the y3 axis points down. Since the Yo axis is
constrained to lie in a plane, these coordinates are called fixed plane
coordinates. They are approximately the same as the missile-fixed non-rolling
coordinates but are much simpler to use. To Vverify this statement we will first

compute the roll rate of these coordinates.

l

- o
un vect e e., e
) l’ 2’ 5’

along the fixed-plane axes. Since the ¥y axis lies along the missile's axis,
its components in the range axis system are precisely the direction cosines
of the missile's axis:

This can be done through th

e = (nl, n,, n;) | (1.4)
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_’ _ . iR} . - .
The requirement that e, be in the horizontal plane forces its third component

to vanish. Since it is & unit vector, perpendicular to E: and points to the

right, its remaining components are completely determined.

- 2 1
€, = I —_— , 0 \ 1€
Pz ELE ) (1.9)
n ot it
According to the right hand rule,
€, =€, x e
3771 2
/ n1nz. 1'121'1z r—é-——2—\
- = 2 , 2 , - Jnl + 15 (1.6)
2 2 \[ 2
n; + n_ n; + n.
\ 1 c L a /

The angular velocity vector W5 Wy w3) for the fixed plane axes is

defined by the relations

;) = = i) {1 7\

= BA . By = = B~ . €4 .
7% % 2 ©3 \he
;) - - -—) 1 \
= e, . €, = =€, . e. 1.8
@ 3 i 3 1 ( )
‘.—) - - .—) & \

=e, .e.=-=-¢€. .c¢ 1.
wB 1 2 1 2 (1.9)

Equation (1.7) can be reduced to the following relation

Thus the fixed plane coordinates dc have & non-zero roll rate. For small

pltch and yaw angles and small pitch and yaw angular velocities,
1 |} 1

Ny, n5, Dy, Ny, n5 are first order quantities and n, is essentially unity.

1

Therefore, w,£/V is a second order quantity and for small amplitude motion
4

the fixed plane cocordinates are

4]

gquivalent to the missile fixed non-rolling

system.



The components of the velocity vector in the non-rolling system may

be computed by the relations
— 11 . :.’ r 17 11\
u = ul = cl \l (L4l
~ e - e d
Viu, =e, .V (1.12)
Viu o =e .V (1.13)
w o= u_3 = e5 . .

-
» are the components of V in the fixed plane system and

where u,, u.,, u
1’ 72’ 73

s
-

V is the velocity vector for the missile's center of gravity.

If (xl, X5) xz) are the coordinates of the missile's center of gravity, its

velocity vector in range coordinates is (il, i?’ *5)
u n.x, - n.x
. 2 271 172
ST e + no Jr(i )2 + (% )2 + (% )2 e
i > 1 2 X3
- . 2 L
up  nyngk) +ngngk, - (n1 + n2) %5
n, + n, J ii + X5 + 13
For small amplitude motion V = il, ny =1, and ne..3 can be neglected
Yo+
~ v
¢ = v
. A A o
.. - 3\
Soin,4dn, - (=2 412 (1.16)
e 5o\d&xy Ty

The slope of the trajectory in the X, Xo and XXz plene can be easily computed
[ 4 = 7
from measurements and & obtained by use of Equation (1.16). For large

amplitude the exact Equations (1.14-15) must be used.



Equation (1.16) may seem obvious to the reader as a small angle

approXimation and he may wonder about the introduction of the fixed plane

HLU A
coordinates and the lengthy vector analysis. In answer we can only say that
a careful engineer should always be suspicious of an "obvious" result. As

we shall sce in the next chapter although this "obvious" result is correct,

a similar intuitive feeling that the fixed plane coordinate oscillates about
the non-rolling coordinates (i.e., (wi) = 0) is not true.

7.2 Analysis of Motion of Symmetric Missiles

According to the theory of Chapter VI, the pitching and yawing motion of

8 symmetric missile acted on by linear coefficients 1s described by the equation:

ig@. id,
T-F +Ke T +Ke ° (2.1)
g 1 K2
where £ & - (P/M)gZV;_
A,s
K. =K, e J
J Jo

A"
l
_
[
[¢]
AN
0

?g is measurable for missiles with high spin rates and low velocities.

+

Gravity-induced curvature of the trajectory usually places a lower tound of
500 ft/sec on range tests although special tests have been made at lower
velocities over a fraction of the total range length. With this velocity
bound, a statically stable missile would have to have an unusually high spin
rate so that Eé could be measured in a ballistic range test. These spin rates
are, however, required for stabilization of bullets and shell. Since P/M may
be expressed as Us /P we need only consider this ratio to determine the effect

41T Ll |9

of model shape, mass distribution, and spin on § . For most spin stabilized
7-1

projectiles

l.1<s <4
g

I
1/30 < == < 1/10 (2.2)
Ty

.25 < $£ < .65

where £ is maximum missile diameter,
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High values of the stabllity factor occur with high values of the moment of
inertia ratio and spin rate and conversely. Thus the best maximum estimate
of P/M may be found by combining the low values of the above inequalities.

.o . -2
S !ggl < 500 (etv_7) (2.3)

-1 _,
According to Inequality (2.3) a spinning missile with a diameter 10 ~ ft and

a velocity of 500 ft/sec could have a

~

f six milliradians. This angle of a

("\

o
5
ecreagses very rapidly with increased

3
third of a degree can be measured but 4

velocity. A transonic test of the same missile would produce one-fourth this

value of'ég. A larger missile would, of course, have & proportionately larger

~o © ~o

gg. In any event gg is quite small and can be neglected in the analysis of the
~o

angular motion of supersonic missiles. If it is necessary to consider Eg, it

can be estimated and subtfacted from the measured ?'s so that the motion to

be fitted is a simple epicycle

E-¢ = K.e + Kye (2.4)
After the frequencies of the epicycle have been determined, & better value of
E; may be computed by use of Equatlons (6.6.2.3,25) "
' -
o (8, + 8,)(ev™)
T (2.5)

If the estimate was quite poor, the better value of Eé may be subtracted.

from the measurements and the epicycle fit repeated. At most, one such

Turning now to consider the epicycle of Equation (2.4) we see that there

ohd v1nm)

ght unknown parameters. our of these are the initial

o0
’..J
m

'.-l-

amplitudes and orientations of the modal vectors and four are the modal
frequencies and damping exponents which are related to the aerodynamic

coefficient through Equaetions (6.6.23-26). If the spin is zerc, the modal

a - Ly =4

s
frequencies and damping exponents are essentially the same and there are only

8



six unknowns. For this case the angles of attack and sideslip are uncoupled
f

and each are described by damped sine waves which differ only in amplitude and

)

phase. T lysis of this special motion is quite simple and will not he
discussed here. The more general eight unknown data reduction will, of course,

handle this case and presence of zero spin only introduces two consistency

ed frequencies and damping exponents.

Pin . S

checks on the deriv

graphical-analytic method which can be

by
Initial determination of frequencies and damping exponents from plots of phase

and amplitude at these sections versus position of the section.

(2) Refinement of these initial estimates by an iterative least

squares technique which can be done by a digital computer.

Over a short flight path, the damping may be neglected and the frequencies
determined from estimates of the spin and static moment coefficient. The

approximate slow rate may then be used to reduce the epicyclic motion to a

much simpler circular motion by the transformation

1
- ify,(s - s)  if 1
/?=?\e 2a Oz"el-i-"ee (2.6)
\ 5 bg’ Ny ) \c£.0)
where ¢j = ¢jo + ¢2as + (g, - ¢2 ) s and

under analysis.

If the approximate ¢, is close to ¢

2a 2’ 72 oAy ) }
v
. 20 .
confined to a circle with radius K and center at K.e (Figure 7.1). Since

this transformation is the rotation of each measured complex angle of attack

through the angle - ¢é(s -8
1

better values of ae determin %10

from the angular location on the circle of the complex angle for s = Sq and

), it can be easily done by use of a compass and
d

nd error. Note that @, can be found

(=20 Vie VUL i

1
¢1 from the angular location of the other transformed angles. The frequencies
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are, however, much better determined from a comparison of phases at consecutive
ions which are some distance apart. Fi modal
amplitudes at the midpoint of each section are plotted versus position on

semi log paper and the slopes used to determine the kj's.

improved by a least squares technique. A direct least squares is not possible

mp - S ot =) =R

If these graphicul values are felt to be too inaccurate, they may be
i

~ : Y ~ PRI s . '~ . - . Y A 2 . e .
due to the fact that Equation {(2.4) is nonlinear in the $ and Aj's. he

relations of the differentials of these quantities is, of course, linear

~ [~ A.S 1] ldl
dt = |e = aK,. + sK,an, + iK (af,. + sag.) | e
L 10 & < L L\ l =

" A,S . 7 id,
+]e Ay + sKydhy + 3K, (a0 + 8d8,) | e < (2.7)

~ P .
The differentials of £ are selected to be the residuals of the fit of

Equation (@.4) to the experimental data

~ ~

;N .

£ éobserved = Scomputed
Thus we have n equations of the form of Equation (2.7) for the differentials of
the unknown parameters where n is the number of observations. This set of n
linear equations in eight unknowms can then be solved by the usual least sguares
process and the resulting differentials adding to their corresponding first
estimates. If the new residuals for the improved set of parameters are smaller

the process has converged and may be repeated until the residuals reach

<lill < Cpettbicia WL - <

15 of flight path. This change in frequency is usually due to varying
P for a spin-stabilized missile although a strong Mach number variation of the

static moment coefficient sometimes is the culprit. The frequencies do vary in

at worst a linear fashion so that this phenomena may be handled by the
introduction of quadratic expressions for the phase angle
: 2
11}
$, =0, +8,8+ (2/2) ¢ s (2.9)
J Jv J J

and the use of a ten unknowns least squares routine.
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When it is necessary to use Equation (2.9), the relations between the
frequencies, damping exponents and aerodynamic coefficients must be revised
in accordance with the results of Section 6.7. According to that section,
the frequency relations are unchanged and apply for the local values of P and M.
Experimentally, the frequenciles are best determined at the midrange point
(s = 0) and hence values of P and M and their derivatives can be obtained for

flight conditions at this point.

P=015* %0 (2.10)
M = ¢io¢;o - Mg (2.11)
P'- gy« @ (2.12)

- ¢ 195+ ¢"¢ (2.13)

The expressions for the damping exponents, however, are changed.

According to Equation (6.7.13)

A= N % (2.11)
AR L '
2¢J
* H¢3 -
where A\, =
2¢.

The x at the midrange point can easily be computed from the range measurements
of frequencmes and damping exponents and H and T obtained from the k 's by the

usual relations.

H=- (x; + x;) (2.15)
- (Bory +
T - 20 ?10 2 (2.16)
P10 * oo
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enough to affect the damping exponents, their derivatives
often can be independently measured or estimated and used in Equetions (2.12-13)
to obtain sufficiently accurate ¢3's for use in Equation (2.14). This approach

9

naturally depends on the Jjudgement of the program engineer.

Although the angular motion can be analyzed to obtain directly the static
moment coecfficient, it does not yield values of the damplng and Magnus moments
but only combinations of these coefficients with the drag and lift coefficients,
i.e., Hand T. The drag and 1lift coefficients must, then, be measured or
estimated so that the damping and Magnus moments may be obtained. The drag
coefficient may be easily obtained while the 1lift coefficient may be measured
in two ways: (1) indirectly from the static moment coefficients of two models
at the same Mach number but with different centers of gravity (Table 6-1 and

Equation (6.6.7) ); and (2) direct

g

from the swerving motion (Equation (6.9.8) ).

The analysis of the swerving motion of a symmetric missile is quite simple
because Equation (6.9.8) is linear in its two complex unknowns, B and B, and its

three real unknowns, CL P CN , and C,, + CI « Since the coefficient of
[0 4

N N
P q &
CN + CN is a single integral and the coefficients of Cr and Cy are double

q Q a joo]
integrals, CN + CN has a much smaller effect on the swerving motion which has
q &
not as yet been observed. Thus the swerving motion of a spinning missile is

< L.

linear in essentially six unknowns and the measured values of Ye and z, may be

-

fitted by a direct use of the least squares method. If the missile has small
or zero spin, the Magnus force has no measurable effect and the problem reduces

to five unknowns.

For a nonspinning missile the components of the swerving motion are
essentially damped sine waves about & line. The amplitude of the wave is

proportional to the 1lift coefficient and could be obtained graphically. If
spin is non-zero, the integrals and least squares solution are much more

suitable for calculation by digital machine than by an individual engineer.
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7.5 Analysis of Motion of Slightly Asymmetric Missiles

For & rolling motion with a constant or "nearly" constant roll rate,

the angular motion of a slightly asymmetric missile is described by the

v
1]
~
0]}
+
1)
+
<
[/
W
~~
N
[

¢5=¢50+f (\’,;z) dsl.

When K, is large enough to affect the measured angular motion, Equation (3.1)
P
nust be fitted.

Figure 7.2 shows a tricyclic angular motion for which K.3 is 20 milliradians.

this quite complex motion is almost impossible without knowledge of
the roll orientation. 1In some range tests K% is intentionally induced through
control surface deflections in order to measare control effectiveness but in
most tests it appears through the presence of slight manufacturing errors. Thus
it is good policy to determine the rolling motion of all finned missiles
undergoing ballistic range tests so that the effect of manufacturing error may
be eliminated and the desired static and damping moment coefficient may be

obtained.

be used to transform the motion tc missile
T o

b
fixed coordinates by rctation of each angle through its corresponding roll

te 7 = K.e + K€ + Ke 77 (3.2)

in{
The result should be an epicyclic motion about the point Kye 730, Ky and fy
are easy to determine since they are the polar coordinates of the center of this
epicyclic motion. The origin may be moved to this point and the epicyclic
graphical reduction described in Section 7‘2 performed. The point could be
rotated back through the angle ¢ about the new origin and a somewhat simpler
epicycle obtained (Figure T.4).
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The least squares iteration mey be performed for the differentialc of

the unknowns.
Xls '
dt = [e K, + sKjar, + iK1(d¢ln + sdf.) | e

A3 e
[ . ] d
+
+ [e dKy + sKydh, + 1Ké(d¢2o sd¢2)J e
i¢3
+ (dK5 + iK5d¢5O) e (3.2)
Equation (3.3) can be simplified by the fact that the trim amplitude decays
ravidly with increased spin rate and at low spin rates the sum of the frequencies
is almost zero. For moderate Magnus moment coefficients, the difference of the
damping exponents 1is also quite small for low spin., If the graphical analysis
indicates that both of these quantities are small, the differential corrections
can be reduced to an eight unknown problem by requiring them to be exactly zero.
A,S i@

(e = dK, + iKld¢lO) e

1
4

dg

Xls i
(e © Ay, + 1K4B,) e
R 8
(dx3 + iK3d¢30) e 7
i@,

19
+ S(Kle + Kye ) dry

%

+

+

i g,
+ is(Ke - K,e ) d¢l (3.4)

The assumption of constant or "almost" constant spin rate is a grave

limitation to all of the tricyclic reductions discussed up to this point.

A . -2
ach to the reduction process was investlgated7 .

In 1954 an entirely new appro
1 differential equation for E (Equation 6.8.1) with

In this approach the actua
T = O was programmed for an analog computer. The four initial conditions and

four real parameters contained in H, M and A could be varied by changing

~

ai
> - . i - = ~
potentiometer settings. Experimental values of o and B were plotted versus

105



s and a scries of solution curves for different values of the cight parametorc
caleulated. A trial and error process could then be developed to obtain quite
good fits of the data (Figure T7.5). An experienced operator could obtain good

results in three or four ho

After our only experienced operator was lost due to the intervention of
the stork, the possibility of a completely mechanized reduction was re-examined.
In Section 6.8, a closed form solution was derived under the minor approximation

that the variation of P in the £ of Equation (6.8.1) could be neglected.

~
14 r
S

= I\,le + nze + E,A (5-5)
5 (g +18)s & -y + 180)s, + 16(s))
where EA =3B [e /N e dsl

L

5

N =_.1'\ o ,J' o« 2
(xe + 1¢2)s ‘jr -(Xg + i¢2)sl + 1¢(sl) ]
e ds
1
6}

B = 1A Lxl Ay +i(d - ¢;)]

-1

The corresponding equation for the differential corrections is

A, 8 i@

1 1
it = (e K, + iKld¢lo)e
oS g,
+ (e dK'2O + iKéd¢20)e
+ (&,/B)dB
1¢l agA
+ (SKle + Bt ) dxl (5.6)
oAy 1
i@ ok
+ (SKEQ 2 + T‘: ) d}\.e
i ot
+ (isK e ¢l +—2) d¢;
P,
N i¢9 agb < .t
+ (isKée + -:? ) d¢2
S ;
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Jo

3 E1 4+
in and estimasted static moment coefficient

sucssed value of B a sequence of iterations may be, then, computed by a
digital computer, and convergence sought. Usually not more than three guesses

of the complex number B are necessary tc obtain successful convergence. A

2

comparison of these two methods showed better fits (one milliradian standard

(
error instead of two milliradians) but essentially the same values of M, H and

A. The differential corrections method has the principal advantage of eliminaling

o

the need for a highly trained machine operator.

+3

he

i

%)
£

erving motion can be handled in & fashion quite similar to that for
a symmetric missile. Two more unknowns must be considered in Equation (6.9.8),

Cy and C, and the integrals I, computed. Either Equation (3.2) or Equation (3.5)

Y, Z, . J

may be used for & and indicated integrations taken. These integrations and the
least squares solution are extremely laborious for hand computation but can

easily be programmed for a digital computing machine.

7.4 Criteria for Quality of Results

The various aerodynamic parameters, M, H, and T, are related to the
frequencies and damping exponents of the angular motion. These in turn may
be assigned statistical weights through the least squares differential

corrections process. If A, .'s are elements of the inverse matrix obtained

A T e - 3 mam e N s
from the least squares normal eqguation, the error in a function of two

» X.) may be computed by the statistical formula

[ 2PN

2
2 _ { of \ SF f /af \ b 2
2~ [(yi) Mt & At (\&3) Ry e
2
Tk

where e2 = =

k is the number of unknowns in the reduction.
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Although Equation (k4

bintha =20 §

.1) has the attractive feature of
standard error for the aerodynamic paremeters, it is a relatively blind

calculation based on statistical assumptions which are hard to verify. 1In
the drag analysis an alternate approach was used which considered the size
of measurable effect of the drag force in comparison with the experimental
accuracy. A similar but much more approximate criteria may be derived for

the angular and swerving motion.

Since the static moment coefficient may be obtained from the frequency
of one modal vector when the spin rate is known, essentially circular motion
with amplitude at least three times the measurement error is sufficient.

When the spin rate is not known both modal amplitudes muct exceed three times
the measurement error. These criteria assume that at least two revolutions

of the given modal vector are observed and at least ten individual angles

have been measured. Good values of the static moment coefficient may need less
data but the amplitude requirements must be made larger. These amplitude
requirements must be upped for reascnable determination of the damping
exponents. With the amount of data specified above, both modal amplitudes
should exceed five times the experimental accuracy in E for good measurements

of the damping rates.

The swerving motion of a symmetric missile is usually a spiral motion

with amplitude determined by CL and phase by 55 CN The asymmetric lift
o
term adds another spiral with amplitude proportional to ]Cv + iCZ . The
] "o o
average amplitude of these terms may be defined by the equations
*| i .
R, = Cp |1 (+-2)
a] T | average
R, = (H%i 11,1 (L.3)
MF vV /°N l zl )
b X average
* *i 1
= i L,
R, = [Cy *1iC, I, (L.4)
o} o] average

If the average radius exceeds three times the distance error, the corresponding

force coefficient should be reasonably well determined.

[
(@)
(@]



.5 Experimental Results
Since the 1947 firings of the G. E. Dragonfly, a wide variety of

configurations have been tested. These extend from simple pgeometriceal chapes

(.1

of spheres, cones and cone cylinders to precision scaled models of miscile

['v

such as the Nike Zeus, from 20mm bullets to models of the Jupiter and Atla

1d from the Bolz -Nicolaides finned cone-cylinders to five inch

PO H U V) §Lwy

5

nose cones
models of a delta wing Jjet fighter. From this wealth of experimental work
we will select four programs which not only illustrate the capabilities of
ballistic range stability measurements but alsc contain results of intrinsic

aerodynamic importance.

(1) static Stability of Ring Airfoils.

Since the static moment and normal force are usually easily measured
by wind tunnel tests, few ballistic raenge programs are initiated with the static
stability as the primary obJjective. Of course, when the Reynolds number and/or
the Mach number can be better simulated by a ballistic range test, exceptions to
this rule are made. In addition to this, some shapes are difficult to mount
properly in a wind tunnel and, therefore, may require range tests. A recent
test of a series of ring sirfoils was made for this reason.

These airfoils had a simple double wedge cross section and the wedge
angle was varied from 20° to 550 (Figure 7.6). For all models the center of
gravity was located at the midchord point and the maximum diameter, 4, was

4.75 in. The other dimensions were

6 deg. c in. §/c
20 1.17 0.18
25 1.81 0.23
35 - 1.70 0.35

These models were tested at supersonic Mach numbers up to 3.7 and were found
to be statically stable for Mach numbers in excess of 1.7. Below this Mach

number, the internal flow choked and the gs tumbled.



The linearized supersonic theory for thin ring airfoils is quite

similar t

0 that for thin two-dimensionsal girfoils and was developed by
-4 . . L, , .
H. Mirels' ' in 1948. According to this theory, the center of pressure is

located at the midchord point and the 1ift coefficient, C. , is 2/B where
L
a

B =NM - 1 and the reference area is one half the wetted area. Thus the

theory predicts that the models actually tested should be neutrally stable.

This discrepancy from the thin airfoil theory may be due to the
finite thickness of the models. The static moment coefficient is, therefore
plotted versus thickness ratio for M = 3.1. As can be seen from Figure 7.7

the moment coefficient is a linear function of t/c. These values of C

0
. . . . o . .
greater than its thin airfoil value, the 35 wedge would possess a static margin

an
of almost 30 percent. (Re th was the chord of the airfoil.)

(2) Dynamic Stability of Cone Cylinders.

Tr4 41 41
o one

PR

current emphasis on the glamorous hypersonic speeds, the
appearance of severe subsonic or transonic problems is especially unpleasant
for the aerodynamic engineer. Unfortunately, a manned re-entry vehicle must
fly at these pedestrien velocities and the blunt ICBM nose cones have subsonic
impact velocities. Ballistic range tests of a variety of low fineness ratio
bodies of revolution similar to shapes used for re-entry have revealed an

important subsonic dynamic stability problem. The linear danm

prob ping moment

coefficients have been positive at high subsonic velocities for certain center

-4é+

g result was first obtained for cone cylinders with
fineness ratio of five' <. (Figure 7.8) The actual dependence of the damping

moment coefficients on c.g. location was given in Table 6-1.

A A r. R 1 2 c (

CM_ +Cy = cM + CM. -5, |(CN + Cw!) - CM | - sgg N 5.1)
q o Q a = L q Q al a

A A 2

CN + CN. = CN + CN + scg CN (5.2)
q a q & a
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According to Equation (5.1), the sum of the damping moment coefficients is a
quadratic function of c.g. location. This equation may be simplified for

ballistic range use by the introduction of a modified damping moment coefficient

&)
W
g

A A - A A
c +c'l=6 +C, -s_C (
. . c
[ Mq Mad Mq Ma g Ma
This quantity is directly computable from the directly measured quantities

CM + CM and CM and the distance to the c.g. from some reference c.g.
q o4 o

location. For this modified damping coefficient sum the c.g. dependence is

linear and the damping force coefficient sum at the reference point is the slope

A

A
of a line fitting experimental points in a [CM + Cy ] versus s plot.
q

b ¢ - C C (c C. ) 4
[ch + M&] = Mq + My - Seg Nq + Nd (5.4)
Three c.g. locations were used in the tests of the cone cylinder model.
These were the centroid, 0.40 caliber forward of the centroid and 0.45 caliber
rear of the centroid. The centroid was taken as the reference point and
modified damping moment coefficients were plotted against c.g. location for

two Mach numbers (Figure 7.9).

At M = 1.26 the scatter of data is rather poor but the subsonic points
have very little scatter and are definitely linear with c.g. location. Since
the modified damping moment coefficients at the centroid reduce to the unmodified

coefficients, we see that CM + CM 1s definitely positive at the centroid for
a &
M = .8. Indeed the further information that CM at the rear c.g. is 3.7 can be
0’

used to show this sum to be positive at the rear c.g. as well.

These values of CM + CM are sufficient to make H negative and the
q (o
missile with the middle or rear c.g. location must, therefore, be dynamically
unstable. To add insult to injury, it was found that spinning cone cylinders
at M = .8 were dynamically unstable for all c.g. locations. This state of

affairs is caused by the Magnus moment. In Figure 7.10, the Megnus moment
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cocfficient is plotted versus c.g. location. As can be scen from thic fipurc,

the center of pressure of the Magnus moment changes radically with Mach number

while the Magnus force coefficient which is the slope of the line: in this plot

is relatively unaffected. The large negative values of CM make T nepative
Yy
204
and, thus, the dynamic stability factor, S will be negative when H is positive,

According to the stability analysis of the preceding chapter, dynamic instability
will therefore occur for any spin rate. This simple configuration displays two
of the three ways in which a statically unstable missile can not be made
dynamically stable by spin. The fourth illustrative program will include the
third way (sd > 2).

(3) Magnus Characteristics of Finned Missiles.

A symmetric finned missile with a reasonable stability margin does
not require spin for stability and, therefore, a knowledge of its Magnus
characteristics is unnecessary., Unfortunately, perfectly symmetric missiles
are impossible to manufacture and the aerodynamic asymmetries possible with

when the spin rate is zero. Usually this spin rate required to reduce dispersion

due to asymmetries is not large enough to encounter Magnus instability although
care is required to avoid resonance. It is important to know what are the spin

bounds for Magnus instabllity if any so that tco high & spin rate is not induced.

rocket with short burning time with respect to the pitching period. 1In order

to avoid dispersion due to rocket jet misalignment, several revolutions during

}_l

burning should be induced and quite large spin rates are possible. A knowledge

of the Magnus characteristics of a et shape of this type would

Hh
JPe wowl O

essential to prove the feasibility of

H-
o
4]
0
o
C”'
et
4]
H,
o)
Q
pir
o]
H
<
[oF
[{]
0
[N

A brief examination of the theory of Sectlion 6.7 shows that Magnus
instability is impossible if the dynamic stability factor is between zero and
two. This bright possibility of no spin upper bound is considerably dimmed by

the fact that

s.
d
been measured ha

for every finned missile whose Magnus charscteristics have

S 213168 Al oo LT BT Jdasgheed

s been found to be outside this interval. Thus, an upper bound

on spin for dynamic stability is always present.

’_J
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and a feeling for the effect
of these coefficients on the spin bounds. These missiles -- the Basic
Finner!~* =7 ana the 127/60mm Anti-Aircraft “issile7‘8 -- are shown in

5 7.1l and 7.12 and some of their physical properties are listed below.

TABLE
1~ b o /T
2 =4 LZD c.g.* fzﬁ Lx/Ly
Basic Finner 79" 10 3.90 2.4 .024
127/60mm Missile 2.36" 17 8.25 3.9 .011

4+ A+ e e V=N -2 2 Ve s T~ Lacewn
Ltouta CUlLIC a.ug,le- 1L 1

chord equal to the body diameter, d, and have & thickness ratio of .08. This
missile has been tested with various c.g. locations and at various Mach

7-9

numbers both with and without fins .

The 127/60mm missile was the longest finned missile tested in a

»*
e, I+e 1297mm anan fine

1 o 1Iintad
Vo 4L (Ul SRl 1410 O

body whose maximum body diameter is 60mm. This missile is fired from a
smoothbore 127mm gun by use of a center ring sabot.

The various aerodynamic coefficients for these missiles are plotted
versus Mach number in Figures 7.13-15. Since several c.g. locations were used
in the flight tests of the Basic Finner, the normal force coefficient could
be measured both directly from the swerving motion as well as indirectly from
the static moment coefficient for different c.g. locations. C for the

127/60mn missile could only be obt

o~ “ad P
i/ ol u VillLy Lo < i L

1e swerving motion. The normal
force is essentially the same for both missiles. The greater effective area
of the Basic Finner fins does provide slightly more lift. These fins actually

deliver four times the 1lift of the body as can be seen from the body only curve.

From base in body diameters.
** Recently the 45.5 inch long five inch high altitude gun probe was tested in

7-1%

the Transonic Range and established a new len

‘h record
LR et



damping moment and Magnus moment data for the 127/60mm micoile
are much poorer than those of the Basic Finner. The 127/f0mm fins werc usually
at least slightly damaged by sabot fragments. This damaire introduced
acrodynamic asymmetry. Since the spin
a tricycle reduction could not be employed. The epicycle reductions which were
used had average to poor fits and corresponding poorer determination of the

damping and Magnus coefficients.

The much larger C,, + C,, for the 127/60mm is due to the fact that
M

Q

its fins have twice the leveg arm that those of the Basic Finner have and,
therefore, the same angular velocity will induce twice as large a cross velocity.
This would lead us to expect damping moments four times larger and t
expectation is surprisingly well verified by Figure 7.1lh.

The Magnus moment coefficient behavior for t 0 missiles is
completely unexpected. The moments are even opposite in algebraic sign! A
simple physical model can be constructed to explain the positive Magnus moment

but not the negative moment.

The 127/60mm missile increases its spin rate throughout its flight
through the range. Thus, each fin has a associated force in the direction of
rotation. Normally, these forces cancel each other and provide no yaw moment
tut only a roll moment. The fins, however, are partly in the boundary layer

e

separated flow of the body and it is not unreasonable to expect the lee sid

<

fin of a missile at angle of attack to have less effective area and hence less
1ift force than that of the windward side fin, This unbalanced force will cause
the missile's nose to rotate in a direction of the spin and, thereby, generate a
positive Magnus moment coefficient.

Since the Basic Finner does not have its fing in a separated flow and

EYS 20 Loy A et aial i

[~

has its spin rate at the steady state rate for most of its flight, it is not
surprising that its Magnus moment is quite different. An explanation for its

negative coefficient is not possible at this time.

These radically different Magnus moments provide essentially different

for the Basic Finner is negative while for the

dynamic stability factors. 84 1e Basic Finner is n 1

Lo -~

127/60mn it is positive and greater than two. The dynemic stability factors
and their sssociated upper bounds for spin are plotted in Figure 7.16.
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ect of Body Length on C and C + C .
M
Mg © g T
Immediately after World War II, the linearized theory of pro,jectile

motion was reasonably well-understood but few actual values of the damping

")

na ol coetfice
L & A S ~

. . s s
rat 1ahl A Srint A Jaivs nrarram trac
1a Yagnus ¢ ients were available, A Joinuv AT -l\iuVJ program wags

E

initiated to f£ill this void. Since at that time these measurements could
a

only be made by a ballistic range and the only available range was the BRL

i A 1 h +h
Aerodynamics Range, the Army agreed to construct, measure, and launch the

models while the Navy provided its data analysis facilities at MIT. The

different cylinder lengths. The rad

4142 C2Cas

a tangent ogive and was so selected for minimum drag. The total lengths of

these models were five, seven, and nine diameters. Three center of gravity

s
ests were made

locations were used for each bodv lencth and

af e
R = R A v L) wnT L™ ) SwAA Wil ARl A

ar
Tavil

configuration at three different supersoni numbers. Thus, twenty-seven

his ambitious program!™".

ﬁ t
Q
& o

c
sets of linear coefficients were obtained from

From this mass of data we will extract several interesting results.

In Figure 7.17 the Magnus moment coefficient for the various total
a

all i,

lengths and center of gravity loceticons is plotted for a Mach number of 1

=Yy
The scatter of the data is clearly small enough to allow & good determination

of the Magnus force coefficient and its center of pressure.

A rather simple model for the Magnus force on a cylinder has been

obtained by J. C. Martin' -0, According to this theory the boundary layer

thickness on a cylinder at angle of attack

grows as one moves from th

vwin ide to the lee side. If the cylinder is spinning, the spin will

A wes am o
wlrawara sida

(4]

cause the plane of symmetry of this boundary layer configurations to rotate

to a position out of the plane of the angle of attack. The pressure distribution

for the resulting effective shape can, then, be found by the usual slen

e
ct

er body

ot
approximations and integrated to yield a force component normal to the plane
of the angle of attack. For a laminar boundary layer Martin shows that the

Magnus force coefficient has the fo
&1 Torca coefficler as the jorm

by



.. = AL® (,.0)

A
where L is the cylinder length in calibers
* - -~ - - - . - n ] B I3 ~ = .
5 1is the boundary layer displacement thicknecs in diamcters

and
ana

=

. . . .
is a parameter which is independeni of length.

The actual boundary layer, however, was partly turbulent and the actual shape
was not a cylinder. The displacement for either a laminar or turbulent boundary

layer can usually te expressed as a power of the length whosc exponent ig 1/2

for laminar flow and approximately 1/5 for turbulent flow. If we assume a nth

power variation, the c.p. for the Megnus force can be computed.
A
L dCN
1 A A
C.P., = — L — 47
M CN J A
x o] drL,
- A
- (% n) L (5.6)
- n

where 3/5 < § - =~ < 9/14 for 1/2 >n > 1/5.

The presence of the nose may be incorporated in the theory by
d

ength L - Ln

where L 1s the same for all models at the same Mach number. Equation (5.6)

replacing the total model length, L, by an effective cylinde

Lo
=

assumes the form

/2 - n\
C.P.M = ?rfrj;) (L - Ln) (5.7)

The possible range of the coefficient in Equation 4.7 is between .600 and .643
and, hence, this CiPiM dependence on type of boundary layer is quite small.
The C.P.M is plotted against length in Figure 7.18 and lines fitted with slope
.64, The accuracy of this predicted dependence of C.P.,, on length is much better
than our approximations deserve. -

In Figure 7.19, the modified damping coefficients are plotted versus c.g.
location. This figure also shows that the force coefficient at the centroid

4

and damping moment coefficient of the centroid are reasonably well determined.
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Slender body values of these coefficients have been computed For hodir: of

revolution whose reference length is base diameter and referencc areca is the

base areu then these slender body values reduce to simple expressions
A 19
Cy =2x (5.%)
N cg
q
8 a ,
Ch. =3V (5.9)
N. n
Q
A2 8 Ny /A A ’ \
C = - 2 v + - 4! DY - ¥ L) 10
M g TR\ )(Acg Xo/ { )
a
8 A A
n — - 2 MuY(e - 580 /5.11\
M. 7 VI\Keg = X ( )
Q
A 3 % P - D 4 _ L3
where Xcg is the distance from the base to the center of gravity

in diameters

<>

is body volume in cubed diameters
and ﬁc is distance from the base to the centroid in diameters.

According to these relations C + C at the centroid is a complicated function

N N,
q a
of added cylinder length, but CM + CM at the centroid has an exceptionally
q &
simple form.
(C. +C.) =-2%° (5.12)
M M."¢c c .
q
= ~ 2 . = ]
In Figure (7.20), the ratio of (bM + Cy )c to X is plotted for the three body
q L4
lengths and three Mach numbers and compared with the predicted value of -2. The

dependence on length is good but the coefficient should be decreased

A Fal S

A study of the dynamic stability of the nine caliber long models shows
that the third possible form of linear instability is actually physically
realizable (sd > 2). At a Mach number of 1.8 the forward center of gravity
models have a 53 of 2.5. Thus, all three combinations of aerodynamic
coefficients for which & body of revolution can not be made dynamically stable

by spin (sd <0, 83 > 2, H > 0) have been observed.
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ANGULAR MOTION OF ASYMMETRIC MISSILE WITH VARYING ROLL
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SHADOWGRAPH OF BASIC FINNER
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CHAPTER VIII
RANGE MEASUREMENT OF CUBIC COEFFICIENTOS

3,1 Introduction

In Section 5.5, we considered the effect of a drag coefficient which was

1.~ | 1

a linear function of the squared angle of attack. In that case, it was found
that the usual drag analysis yielded a "range" value of the drag coefficient

which corresponded to an "average" &°, i.e. F.

The analysis of the pitching and swerving motion up to this point has been

i
limited to linear forces and moments. Thus, the corresponding coefficients were

1

ngle of attack program involving

3 A MToarren
assumed to be independent of angle. The large

o+
=
(4]
n
(@]
g
&+ o

ang
ullet which was mentioned in Section 5.3 included complete reductions
of the pitching and swerving motion. Although angles up to twenty-five degrees
ed and these angles were outside the linearity range for the forces and
moments, reasonably good fits of the observed motion were obtained. The
derived values of the various coefficients did vary with the amplitude of the
pitching motion. Thus, it should be possible to correlate these "range" values

gles.

In this chapter, the angular motion of missiles acted on by a cubic static
morent will be analyzed in detail. This will be done first by neglecting the
. . :
influence of geometric nonlinearities (y =0, y = 1). Then moderately large

geometric angles, a cubic Magnus moment and linear lift force, and damping

moments will be inserted and relations betwee

"
the "range" values and the proper

»

average angles derived. Finally, a similar analysis will be developed for
swerving motion with cubic 1lift and Magnus forces. The utility of these relations
will be demonstrated by comparison with certain exact solutions, and application

to actual range flight tests.

Vilale

8.2 Cubic Static Moment: Quasi-ILinear Solution
The simplest possible nonlinearity in th odynamic moment 1s a cubic

static moment. The usual symmetry consideration requires that it assume the

following form

Um + iCn = - iCM g



The delfinition of Ui in Bquation (.1) is essentially different from Lhat sed
Y
Ly most acrodynanicists. O, 1o detfined here as the coef'Uicicent of Lhe angdo

\J e . e

attack in an expansion of the static moment, nol the derivative of Lhe stotic
moment. This distinction vanishes tor a linear moment but, 1o Lmportant,

otherwise.

The assumpt fon Lhat only a cubic static moment (s acting reduces

BEquation (« ...12) to a very simple form

~_ ~f . 2.~ _

EY - iPE - “VE = 0.0
3 ipk (M, + M8 )E =0 (v.2)
where M = o5t k_g c

0 2m t 0

pSL | -2
M, = == k+ Ch
[ fos [9) fas

1 i
> . 1 “¥o s
£ = K,e + K.e (2.9)
[ P2
where d. =@ + I-E t /(2 - M s
3 TJo |2 J\2 o}

Our objective is to find an approximate solution to the nonlinear Equation (2.

which has a form similar to that of Equation (2.3). This solution would then

v,y

S
supply relations between the observed frequencies, the observed damping

1e TV
exponents, the static moment coefficients, cyr 5 and the modal amplitudes,

Ky Ky

The technique used will be an extension of the Kryloff-Bogoliubofi
.1 00
equivalent linearization method ©2°, This method is a generalization LT Lhe

method used in Section ©-7 for variable coefficients and can be u

nonlinear damping as well. Somewhat more accurate analyses of the cubic
ping

static moment motion are possible from a consideration of the exact elliptic

integral solutions but these analyses lead to essentially the same relations

when applied to ballistic range data . We will make use of the exact
or

[44)
4]

solution to determine the err implicit in our approximations.
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We asswne that the Kj and ¢J'u of' Equation (2.%5) urce functions of o and
dirferentiate that cquation twice.

~1t . N i¢1 ) ] i¢0
3 (x, + i¢lKl)e o+ (K2 + i¢2K2)e - (o.h)

ig,

Yn r. 2 . LI " 1 e
3 LKi - (¢l) K, + 1(2¢lKl + ¢l Kl)J c

D T e ] i¢2 (2:2)
* [Kz - (82)7 Ky v 1(28K, + By k) | o

Equations (2.3-2.5) may now be substituted in Equation (2.2) and the result

divided by Kle l.
K" K,
L) ' ' 1 .
O S A e
- - 1 1 -
»] K\ 4¢K
- - < _E oY
= - M8 (1+Kle ) (2.¢

. - { [(¢;_)2 - P¢; + Mo] Ky - K3 - 1 {(2¢; - p)K; + K:E"%-J] } Kile-i'g})

8-t T

A, A

] |, -]

- Ki * Kg * “lKE Le - te (2.7)
A,

= Ki + Kg + 2K.K, cos @

A
vhere § = §. - ¢

For a linear static moment, the left and right sides of Equation (2.6) x

are quite similar in form with the exception of the presence of factor K:le_l¢.
t L
If ¢j and Kj vary slowly in a period of %, the linearized Equation (2.6) could

only be satisfied by requiring that both sides vanish. Another way of saying
this would be that the periodic term on the right of the linearized Equation (2.6)

has no effect on the almost constant terms on the left side. Indeed, the average

iod of § is essentially zero. The influence of the
fluctuating nonlinear term will, therefore, be obtained by computing its average
over & period of %.
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A }(_'j _ A Mr) VoA K2 -LA.
[ %6 (1 + Ki e l¢)| = 5; 5 (1 + EI o ¢)da
av. o
2
M, - A ~
_ 2 2 i
© 2x f !Ki YooKy + KiKe
o)
}{2 -r\ -2A A
+ (QKi + KS) ?I e i + Kgﬁ l¢} ag

Equation (2.6) may now be averaged with the aid of Equation (2.8), the small
t

damping term in the real part may be neglected in comparison with the squared

frequency, and a pair of real equations formed from the real and imaginary parcs.

1.0 i
(8,)° - By + M+ M2521 =0 (2.9)

H?:' =
N
ASS
I 1
o
—~
no
-
O

> o
where 1= KE + 2K§

Similar relations for the other mode may be obtained by multiplying Equation (2.u)

LA
by (Kl/Ké)el¢ and averaging the result.

(¢;)2 - P¢; + Mo + M25§2 =0 (2.11)
"
K, ¢, /
'—KES’ - (2.12)
2¢2 - P
where §2A = 2K- + K-
el 1 2

1k



According to Equations (2.10) and (2.12), damping of the modul amplitud: s can

be caused by frequency chanpges. These changes may be cuwiicd by Maeh number
dependence of the coefficient, change in air density cuch as occurs for an

exiting or entering missile or changes in the spin to velocity ratio, P. The
relations for these variations are exactly the same as those derived in Cection
6.7. The nonlinear frequency equations, Equations (2.9) and (2.:1), shuw =
fourth cause of a frequency change. This would be caused by a change in modal
amplitude and would entail a coupling between the frequency and damping equations.
For constant coefficients and no aerodynamic damping, thc modal amplitudes and
frequencies are constant and this complication is not present. Whenever linear

aerodynamic damping is considered, this coupling effect must be considered.

For the analysis of range data acquired from missiles with cubic static
moments, the frequency equations with the average or mid-range values of the

proper equivalent squared amplitude, 523 need only be considered.
ey

e
+ha Pras = .
vie 1reguencles now

Fh

A <+
or the sum and products o

S
eliminating M_ between Equations (2.9) and (2.11) and then eliminating P

between these equations.

o
+
AN
\) .o
il
lae]
+
>
TN
ool filg 8
[}
gt INgY
S———

(2.13)
g. -
1 1 2 ,
By - By =My My (2.14)
' _ g’
rere 12 o 102 ~ Fole1
where Be = 5 ¢,
¢1 -2
1 ]
- Kg N ¢1"1 B ¢2"2
- ™M -t T

According to Equation (2.14), the product of the measured frequencies should
be plotted versus the effective squared angle, 82 and a line fitted. The
intercept of the line 1s proportional to the linear term in the static moment

while its slope is proportional to the cubic term.

=
4



N. ' Jublc Static Moment: Exact Solution

In order to obtain the exact solution of Equation (2.2), it is necessary to
~t

climinate the coupling term 1PE ., For the case of no aerodynamic damping and a

constant roll to velocity ratio, this can be done by transforming coordinates 1o

a coordinate system which 1s rolling with roll rate P/2

T g‘ei(l/E)Ps

(3.1)

S R 2 (3.0)

SOt Mo(l+m25)§-0 (3.C
where M_ = M_ - P/

g
nf
oz>

uation (3.2) has a very nice property of possessing an exact solution.

This property is not shared by the other nonlinear equations to be studied in
this chapter. Since a comparison of the exact solution with the approximate

solution of Section 8.2 will estaeblish confidence in this approximate method,

we will now derive this solution.

)t - 0 (5.3)

A
7 € , and adding, we have

"AT ATAt A 2,/\4\—"‘ T/:l\ t P
EE +88 - (M +MB)(EE +EE)=0C =0 (3.4)
4
MAT A o MB
where C, = £ £ - (M & + )
1 0 2

~

>y is twice the sum of the kinetic and potential energies and is constant for
the conservative cubic moment. A second first integral may be obtained by

eliminating the static moment between Equations (3.2) and (3.3).

1" t

uwd

vwd|
L]

uw)J

ured>
1

ATA A
where C, = i(EE - &



In order to interpret this constant of the motion polar coordinates are

introduced.

£ -5’ X (5.6)
: M5
. e o av2 a2 D ]
sy =(®) () - (M +5—) (2.7)
Cy = 2578 (3.8)

Thus C, is twice the flight path component of angular momentum. These equations

may be combined to yield simple relations for & and 8

(62)' LN Cg + 40182 + Mﬁo6h + 2M265 (3.9)
8' = (1/2) c25‘2 (3.10)

The solution to Equation (3.9) is an elliptic function of the first kind8-5.

igns for M and Mz, three correspond to
s

5
periodic motions. These three are illustrated in Figure 8.1 and may be identified

by the following types:

(b) Stable at small angles; less stable at larger angles
(M, <o, M, > 0).

(c) Unstable at small angles; stable at larger angles

A
(Mo > 0, M2 < 0).
These periodic solutions may be written in terms of the sine amplitude
function.

type (a) moment

2 2 ;2 2 2,
=8 ~ (8 ~ &) sn"(ws, k) (3.11)
type (b) moment
2 2 2 2 2 /e
5 = 21 + ('2 - 51) sn (0}51 “) (3-12)
w? >0
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type (¢) moment

o 2 2 2
8T = b, - (82 - 61) sn (ws, k)
(5.1%)
/ 2 2\ \ /
A / 61 + 5?\ <
Mo+ M, \\;2__;/) )

vhere 5, is minimum value of B

Bn is maximum value of B

2 A c 2 2
w =-M - (51 + 252)
“\2 - o CI - N‘2 /2&2 + e2\
w = My 5~ \e0y 02}
i 108 20
2 M2k62 - bl) U 2 Y
kKT = = — ) LYpes \u) ana {(¢)
20
2 2
M s - \
=22 61} +vne (b))
> - Lype \9y
~
aw

The inequalities associated with Equations (3.12-13) are quite important

in themselves. Three interesting observations mayv be made:

1. For type (a) static moment, periodic motion of any amplitude is

possible.

2. For type (b) static moment, symmetric planar periodic motions

—~

P=0, B = 0) are possible for all amplitudes for which the moment does not

1
(

hange sign; circular motion {

Q

8, = “2), however, is possible only when the

nonlinear part of the moment is not greater than two-thirds of the linear part.
3. For type (c) static moment, possible periodic motions are those
=
for which the median value of & ylelds a stable moment. The variables B, and

1
5, may be approximately related to the modal amplitudes Kl and K_2 by the

equations
2 2 o
8 = (K - K,) (3.14)
&2 = (K, + K,)° (3.15)
2 17K .
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The period of the elliptic sine function in Equations (3.11-12) corresponds to

half the period of a in Equation (2. 7) since that equation can be put in the
form

2 2 2 2 2
8 =5, - (5, - &) sin (3/2)
R (3.16)
=5 + (5, - 8]) sin“(§ + n)/2
T +! 41 W ) ;s ;s
SPs P1-% = xm types (a) and (c)
- (3.17)
w

03] type (b)

where K(k) is the complete elliptic integral of the first kind.

29
B may be computed from the quasi-linear f

and (2.11) for two special motions; circular (ai = 52-
2
(8] =0; K) = Ky).

For circular motion

\ !

» I~ o,
B, - By = g-M (2 +m) + J-P(1+2m)

(3.18)
and for planar motion
1 1] A
¢ -8y =2 J-h+ (30 (3.19)
M2‘2
where m = m26§ = S 2
L'LO

m is the ratio of the cubic part of the static moment to the linear

ne part.
£

amazingly good agreement of the approximate curve and the exact one.

This motion is called planar altlough except for zero spin it is not planar

in range coordinates. In other words, planar epicyclic motion is motion which
includes zero total angle of attack.

(-]
¥
\0



il

. Brtect of Large Angles on Epicyclic Frequencies

When large angles* are considered; two quite different effects hecome
important. First the simple geometric relations of Section 7.1 between the

direction cosines and the angles of attack and sideslip must be re-examined

—
[¢]
Q
L]
D
—+
—~+
D
2
x
<
3
9]
ot

and then the derivative of the cosine of the total ang

be retained in the equations of pitehing and yawing motion.

Althowsh Equations (7.1.14-15) must be used to calculate the transverce
components of the velocity vector in the fixed plane coordinates, the exact
transformation between these coordinates and the non-rolling coordinates seems

to be quite formidable, our geometrical intuiticn may

nrovide
****** b MMJ t}& Ao BV L

V cme help. The
motion of the 2 and 3 axes of the fixed plane system is direetly related to the
missile's periodic pitching and yawing motion and, therefore, the average roll
rate of the fixed plane system should be zero and frequencies measured
Tixed-plane coordinates the same as those measured in non-rolling coordinates.
To verify this conjecture for our cubic analysis we must, therefore, show that

at least the second order approximation in average angular velocity of the

fixed plane axes is zero.

2 Lguatloll \

Since wlz/v as given by Equation (7=l.lO) is at most second order we can

use the first order approximations for n, and ns (Equations (7.1.16))

’
n, = - 4 2 (4.1)
e vV £ N /
1
~ X
v 3
1'15 = v + 7 ()42)
When the higher order terms in Equation (7.1.10) are omitted, it reduces to
1 1
wlﬁ i n3(nln2 - nyn))
v 1 =4:2
e ..5
L n§n2 (u-B)

%]

Angles are usually thought to be large when the approximations

© = sin © = tan 6, cos ® = 1 are not very well satisfied. A glance at a
table of trigometric functions shows that angles in excess of fifteen
degrees cause these relations to be in error by more than % and could be

fn NP,

considered to be large.

1 EA
4



Equations (%, 1-%) may now be combined.

(L. h)

The trajectory terms in Equations (4.1, 2,4) arise from the 1lift force and
are mrich smaller than the first terms in each of those equations and, therefore,

will be neglected. A good approximation for the transverse velocities iz our

familiar epicycle
v
- = (4.5
7 = Kjcos ¢l + K,cos ¢2 (4.5)
v . (4.6)
7= K151n ¢l + K251n ¢2 (4.6)
wlz hd - . . . N ! N 4 , 1 . PR
- = - (K;sin ¢l + K, sin 0,)(K,@, sin ¢, + K8, sin §,)
1.2 '
- _K§¢1 " K§¢2]
lrv" i 21 ]
+ 5 _K§¢l cos 2¢l + K§¢2 cos 2¢2J
(¢i + ¢2) KX, sin ¢l sin ¢2 (L.7)

According to Equation (k4.7) aii/v has a non-zero average! This set back
to our geometrical intuition may be overcome by the realization that Equation (k.7)
allows us to state the relation between frequencies in the range's fixed plane
coordinates, ¢3r, and frequencies in the theory's non-rolling coordinates, ¢3.

Since the measured frequencies are actually averages

' ' wlz
P= 9 +(“—v')av (4.8)
' ' 2 1N "‘\
P = bor +('v_> (+.9)
av
' d' = Q" -k i_Kzof' + d'-i (L 10
“1 iy 2 L"l’l era4 \%.1U)
LA 10 2,0 2 1]
b < bor - 3| KL + Fo | (4.11)



The differential equation for a cubic static moment and large gcometrical

angles can be obtrined from Equation (6.6.8)

T -( %1 + iP) T oM =0 (4.12)

-, P82 -2,
T Tom v m
04

T
Mo M2b
_ pSE -2
MO_Fkt Co and
ost -2 [ /1y ]
MHoommm ke |27 3) %)

Note that the definition of M2 differs from that following Equation (2.2). This
difference arises from the retention of the cosine in the definition of M. If
the numerical effect of this difference is large, this means that the non-
linearity in M is primarily a geometrical nonlinearity rather than an

aerodynamic nonlinearity.

]
Since y = (1 62)1/2, the y term can be quickly computed
' 2.1
.1 ()
¥y 2 2
Y
2.1
1 (
- -3 49_1_2 (4.13)
1-25
3 1,2
-5 (8)

From Equations (2.7) and (4.13) we see that if damping is neglected in comparison

with frequency

1)
1
@
1
-~
&
S
(]
(WS
=]
=1
—~
=
[
=
~—

These equations may now be substituted in Equation (4.12), solved for the
damping and frequency of the first mode, and averaged over a cycle of the
difference frequency. The resulting equation for damping is the same as

before but the frequency equation for the first mode becomes



. 1
LI t n 4 4 .¢2
($)7 - By + M, + M5, + €(¢l -#) = =0 (h.10)
Similarly, the frequency cquation for the second mode becomes

L I 1 1 ¢1

LAY ; 2 2 1, 1
(¢2) - B, + M)+ MB , + Kf(¢2 - ¢l) = =0 (h.16)
Equations (4.15-4.16) differ from Equations (2.9) and (2.11) by the presence
of the last terms. Equations similar to Equations (2.13-14) may now be derived
\
]

—J.
- Q. N - . L. s - . . - Ia) L= o s O ST S
by first eliminating M_ between Equations (4.15-16) and then eliminating P.

; 2 2 N

PURSURES N - ST RS0 Y A T
g, + 0, + 5 nl¢l + 52¢2] =P M| 7 | (4.17)

B \Wl-)"z /
1 1 [~ 1.0 .
¢l . ¢2 + l LK?_( l) @ ¢ ] m + M 62 ()-l».ld)

measured, however, are the frequencies in range coordinates. If Equations
(4.10-11) are used to eliminate the non-rolling frequencies and fourth powers

we have the following

Kye I 5
] 1 1 ] a's - Kg \
¢lr + ¢2r - % (K§¢lr + K§¢2r) =P+ M ('8_____87_ ) (4.19)
\ P1r ~ For /

¢ir . ¢;r - (%‘-) (IC_O{ + lé) ) =M+ M26§ (4.20)

The second term in Equation (4.18) comes from the cosine of the total angle

of attack and could be quite large in comparison with ¢' . ¢é since it involves

oA

igher frequency and this frequency could be much larger than

111l O 4 -

P T P

the lower frequency. The modification of Equation (

v
A 1LY Qiia A amos
c.l4) aue vO range

frequencies and the cosine terms is Equation (4.20) and it can be seen that

this modification is quite small. The two effects mentioned at the beginning

t - 4-\-. aaaaaa ol ot h

ion, therefore, almost cancel each o should be either both

retained or both omitted from the relation for the product of the frequencies.
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The left side of Equation (4.20) contains an additional offect of the
cosine of the total angle of attack through the definition of M,.

3
2 pS2 2 2
M, + M8, = 2T {co(l - (1/2) ??) + czse] (4.21)
y _ )
r zﬂ
If FEquation (4.20) is multiplied bvlps |(l + (1/2) & ) and fourth powers of
y

the modal amplitudes neglected, the following very convenient form results.

zA'l r / A' "2 ,.l \1
oS’ ¢ ' P1r™ ~ P2 r
R y L \' Flir "2r J
-+ czsi (4.22)

Thus the range value of the static moment coefficient, [C" ] y 1s essentially
JYS
a

i
T

the product of the range measured frequencies and a set of

ICM T 's for the same Mach number and a cubic static moment should yield a
L al, )

straight line where plotted versus § The intercept is ¢, the zero amplitude

e’ o
static moment derivative, and the slope is c., the cubic coefficient in

an
2, vile L\l oeiilc Lii Gl

expansion of the static moment.

6.5 Cubic Magnus Moment

As could be seen in Section 8.4, the effect of large geometric angles is
rather small and will be neglected in the remainder of this chapter. Equation (4.20)

is quite simple to apply and will be used in the data analysis. It now remains

laul

o include the aerodynamic damping terms. The only damping nonlinearity which
has been measured in a ballistic range has been a cubic Magnus moment and we
will restrict our study to this nonlinearity. It is a simple exercise for the

reader to incorporate any other type of nonlinearity he may prefer. The

1.

he next chapter.

ct N

i 7 N Aasedar F
ressions for arbitrary nonlinearities will be derived in
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For cubic static and Magnus moments Equation (6.6.12) assumes the form

11t a Pt I>) a
~ ~T 2 . P _ [
E + (H - 1P)E - [MO + M5 4 1P(TO + T8 )}'E =0 (5.1)

1§
N>
+
n>
lo/]

where CM
oo

m = —e k ¢
2 2m "a 2
The quasi-linear analysis of previous section results in t

e he same frequency
.9-11) ] but different damping equations

' _ r + Jr -4 mo + I Oel} (R -
1 = 2 5 o Jel
2 2
o P B h(M My ,)
¢2 = - P (5'3)
t i f t 2
K. -¢. -|@g.H-P(T +T,5 \]
ﬁ - Xl - 1 L1 ) o 2 el (5.4)
2¢l - P
) " ' o "|
K, -¢--[¢-H-P(T + T.5°,.)
2 _ A = 2 2 o] 27e2’ | (5.5)
Ké 2 1
2¢2 - P

HLTL .

The damping equations are affected by the derivatives of the frequencies but

these derivatives in turn involve the damping. If Equation (5.2) is differentiated,

- /’Il2 112\
Pl My (KN + 2K05)
1 LM M8 )
J? - WM+ M.80))
= by b
_ 24, (Khg + 2Khs) (5.6)
(2¢: - p)
L + 7
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"
Equation (9.0) and a similar equation for ¢2 may be used to eliminate the
. . -
i

ct
j
(44}

law}

requencies from Equations (5.4-5)

MY 2“2*2] 2

1 o
P | = *10 * 2% (9.7)

A
[

20 * Mapdep (5.8)

| —

where A, = = —5———

M2 can be obtalned from the measured frequencies and the left sides of above
equation can then be computed for each test. In most cases, however, the M2
term is quite small and will, therefore, be omltted in the remainder of this
discussion. Equations (5.7-8) show that for a series of tests of the same
configuration at the same Mach number the measured damping exponents should

be plotted versus 621 . If the points fall on lines whose slopes are negatives
of each other, the Magnus moment is cubic with cubic coefficient determined by

the slone

wile ST .

In most range tests, this plot is not made but the linear formulas
(Equations 6.6.23-26) are used to compute range values of the damping in
pltch and Magnus moment coefficients. If these formulas are applied to

Equetions (5.7-8), and the static moment is assumed to be linear, the
following relations result

.—J
\un
o



~ A 2
CM 1 = Gyt Cd (v.9)
L pa_r
c. +c. | =c. +cC. +%A
- . 2 .10
M Mdl M, My (5.10)
- /¢' AR
I + @
where A = - =¥ % ? (K? - KS)
I d - 1
X\P1 7™ 72/
L] . S Fal C2 Tn 4 ~-<17 13 PR Iy 1 A
It is interesting to note the reappearance of B+ This should not be too

~
surprising since the Magnus moment is the imaginary coefficient of § while the
static moment is the real part of the same coefficient. Equation (5.9) contains
a warning that a dependence of the range-measured damping moments coefficient on

amplitude of motion does not necessarily imply a nonlinear damping moment. A

nonlinear Magnus moment can have this effect.

8.6 Cubic Lift and Magnus Forces

The swerving motion for linear aerodynamic forces has been discussed in
some detail in Section 6.9. For simplicity, we will neglect

the asymmetry force, gravity and Coriolis acceleration. These quantities may
be easily incorporated in the nonlinear analysis as additive terms. In range

coordinates then, Equation (6.9.7) reduces to

X, + ix
2 iry . rd = %
7 2. £ (6.1)
* pi *
where £ = C +1is=2C
Hz v Npa
If the 1lift and Magnus forces are cubic in &, f has t%e form fo + f262=
Integrating 6.1 with the excellent approximation s = Ii s We have¥
N S S
Xy ¥+ 1x3 r 1 o ¢ )
———= =B, +Bs +u/ (fo + 1,8 ) ds,ds, (6.2)
o o

»* .
Note that B, of this equation are the negatives of B, of Equation (6.95.8).
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If f were linear, this reduces to the form

X2 + 1x5
ﬁ———=Bol+Bus+fH (6.3)
/f /21
= _d:
where Il J 3 dse_sl
(o] (o]

Now motion caused by nonlinear forces has been well fitted by Equation (6.3)

and provided a range value of f.

f =f + 1.6 (6.4)

where 525 is an effective value of 62 for the swerving motion.

. - 2
It remains to determine this effective value of 8 . To do this we will assume

that £ is well approximated by an epicycle without damping.

o I =C,+Cyys + 1T, (6.5)
r 1¢1 i¢2 1
I K. e Kﬁe l
where Ll = - I 7;7_2- + 7:T—§‘ I
| (#;) (®,) _I
and
X5 * ix3 A A
——F==B_, + B s +f011 (6.6)
A
where B, , =B, , + £ C, .
ir 1r o 12
But
S S:L
A - -
J ] B 3 dsydsy = C + Cys + I (6.7)
(o] (o]
where , ig. o if, 5 1(28, - 4 > 128, - 607
K5 KyBep® K K e |
I = - - + + : + -

F
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Thercefore the equation for the cubic forces becomes

X~ + ix.
2 2
r]

1
x>

+Bs+ LI, +f.I (£.8)
4 o %

)/ [¢] Z C

A
where Bi = Bi + focii + f2Ci

In order to reduce Equation (6.8) to the form of (6.6), the effective 8 would
have to satisfy the equation

CI,-1 =0 6

Bes £ ¢~ (6.9)
Except for certain special cases, Ic is not proportional to I ,
constant 62 will not satisfy Equation (6.9). Our experience in data analysis

es 5

. The key

e}
es
to the solution lies in the fact that the data analysis is based on a least

implies that it shoﬁld be possible to select a constant value of

makes the integral over the observed trajectory of the squared magnitude of the
left side of Equation (6.9) a minimum. This approach is quite similar to that

used for a quadratic drag coefficient in Section 5.3.

Sis is, therefore, defined by the requirement that

L/2
(521 -I)(azI-T)asisaminimun
’ es™ L c es £ c
-L/2
We differentiate the above, set the result equal to zero and solve for 52 .
L/2 es
I ]
1/L J (I.I, +I.I,)ds
& = -L/2 (6.10)
es L/2
, r =
2/L J I,I,ds
-L/2



+ I I, and the

[
~

c c
2
4 6es can be quickly computed and

For large L the numerator is the average value of I I

denominator is twice the average of sz

L 2 LI 2
=+ )G

-
-

> 2 1
effective 3 reduces to the simple form
2
®es = Be2 (6.12)
This is one of the special cases which directly satisfies Equation (6.9). A
] ]
second important case is that of a nonspinning missile (¢l = - ¢2). For this
condition
L L
K + )s }’é L v
2 1T TM1re T e
5, = (6.1%)
2 K
1 2
2
In any event the range values cof CL and CN should be plotted versus Ses and
a o0

the existence of a cubic force dependence on & determined.

8.7 Experimental Results

As can be seen from the preceding analysis, the cubic coefficients can
only be obtained from a set of tests of the same configuration at the same
Mach number but flying at different effective angles of attack. These
considerations lead to a need for at least three and preferably five tests in
each set. Although the analysis has been applied to the data obtained from
finned missiles these programs were not large enough to allow cross checks of
the results and no good wind tunnel data was available.

8-6

The ogive-cylinder program of Section 7-4 (4) included tests of
identical models with three different center of gravity locations at the same
Mach number. This redundancy of data can and will be used to determine the

validity of the cubic analysis., In a second progranm the large angle
behavior of & 20mm shell was specifically studied. Some of the results of
this program can be used to increase further our confidence in the cubic
analysis.
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Wind tunnel measurements of the Magnus force and moment for the seven
3 9] ’
8-6 ati > and moment for the 20mm shell’ 9
are available and will be compared with the results of the nonlinear reduction

at the same Mach numbers with different center of gravity locations. 1In

ue of C is plotted versus the effective zquared
[0/

angle of attack for the nine caliber long models at Mach number of 1.&. As

can be seen from this figure, the points for each center of gravity location

fall on lines with well determined slopes.

f the twenty-seven possible combinations of length, Mach numbers, and

@]
frr

center of gravity location, the data was sufficiently good to determine sixteen

values of the cubic coefficient, c (Table 8 -1) For some of the Mach numbers

o
. .
end length, wind tunnel measurements of the static moment were available. These

were fitted by cubics and the cubic coefficients are listed in Table ©-1. At

all seven points of comparison the agreement is good.

Since models with three different center of mass locations were tested,
a second check is possible. If the normal force is expanded as a cubic section

of &, the usual center of gravity relation (Table 6-1) provided that

C

C‘(scg) =, - 8.8, (7.1)
e (s )=c, -5 (7.2)

where Cy =8, + &252 and %.(ch)
are the moment coefficients for a center of mass located sCg calibers forward

of that for the c¢

s for different center of mass locations are linear

functions of location. In Figure 8.5, the slopes and intercepts of Figure 8.4
are plotted versus center of gravity location. The fact that the cubic

II—'

coefficients as well as the

,,,,,,,,,,, t inear coefficients fall on a straight line is

another point in the favor of the cubic analysis. The slopes of these lines

are a, and a, respectively. The c.g. intercept of the ¢ line is the location

2
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of the center of pressure and the c.g. intercept of the &, line is the c.g.
location for which the cubic coefficlent 1s zero and the moment is exactly

linear. This point is rear of the rear center of gravity tested.

For a total of seven of the nine combinations of length and Mach number
it was possible to determine a. from the variation of ¢, with c.g. location.
The wind tunnel measurements of normal force may be analyzed to yield cubic
coefficients as well as linear coefficients. These are tabulated in Table 8-2

and the agreement with the range values is seen to be reasonably good.

If the 1lift force is cubic in angle of attack, it can be written in the

fornm
2
= + .
Cp =&, 8,8 (7.3)
a

From the relation connecting the 1lift, drag, and normal forces (Equation (6.6.7)),
the coefficients of the normal and 1lift forces satisfy the following equations.

ao = am + CDA (7-"4)

a, = a, - (1/2) ay *+ CDBE (7.5)

in 3ection 8.6, it is shown that the range value of the 1lift coefficient of a

spinning missile should be plotted versus 639 and the cubic coefficient can be

obtained from the slope of a line through the data. This technique is
‘1llustrated in Figure 8.6. Values of &, and 32 could be computed for eight

from rCM | and wind tunnels in Teble 8.2.
I al
Finally, in the 20mm shell program it was possible to study the influence

of quite large angles. In Figure 8.7, the range static moment coefficient is
plotted versus effective squared angle of attack and we see that the data is

essentially bilinear. Each line corresponds to & cubic segment in the moment
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to form a smooth moment plot. (Figure 8,8). An examination of the sp&rk shadow-

\

5

graphs reveals that flow separation occurs at about 21° and

sudden change in the moment curve at this point, In Figure 8.9 [

J
—

versus 640 and the corresponding 1lift force is shown in Figure £.1

F

Since wind tunnel measurements were available, a further verification is
possible. The data were divided into that for angles less than 21° and that
for angles greater than 21° and pairs of cubics fitted. The resulting
coefficients are given in Table 8.3. The agreement for such different

experimental conditions is quite good¥*.

In view of this success with cubic static moments, our interest turns
quite naturally to cubic Magnus moments. According to Equations (5.9-10) the
range values of damping in pitch and Magnus moment coefficients are both affected
by the presence of a cubic Magnus moment. Thus values of this cubic coefficient
may be computed from a plot of rCM ] and rCM + CM 1 versus 6?
L "pal . - S o

respectively. (See Figures 8.11-12) Eight cubic Magnus coefficients were

and A

determined for the ogive cylinder and these results appear in Table 5-L. 1In

-y e . . s - s 2 . A
four cases A had a wide enough range to determine ¢ and

-
5 from IC + C

5
M * O, |
) L e aj.,
the pairs of values of 62 are all within their combined probable errors.
Unfortunately, with the exception of the one value for the nine caliber long
models these probable errors are quite large. Thus, the measurements of cubic

Magnus moments ar

H
o
f{e]
fw
fte
ct
]
u
[
[
(=N
Q
]
C“-
[0

.

influence of a cublc Magnus force. In only two out of the six combinations of

length and Mach number wes this effect large enough to measure and these two

cases are shown in Figure 8.13. The cubic Magnus moment coefficients given in
Table 8 -4 for different center of gravity locations could be analyzed to yield

. A
four indirect values of the cubic Magnus coefficient, R The agreement of these

coefficients is reasonably good.

*
Additional examples of the analysis of cubic static moments are supplied
by References 8-10 and 8-11.
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TABLE &1

CUBIC STATIC MOMENT COEFFICIENT, c,, FOR OGIVE CYLINDERS
S =nd2/h; L=4d
Mach Forward c.g. Middle c.g. Rear c.g.
Number Range Wind Tunnel Range  Wind Tunnel Range Wind Tunnel
L/d = 5
1.3 -5 -822 0 2.525 8
S - 36 - 18 g8 X2 0
L/a = 7
1.3 55 23 -13 23 185 13
1.8 3113 - 28 - 8 s 8
2.5 -71 X3 - 66 - 28
L/d =9
1.5 -89 23 0.3 % .03
1.8 -76 £ 10 41 i3 -9.5% .8
2.5 -76 X 5 2.52%1.5

o]
<+
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v @

[
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TABLE 8-2

LINEAR AND CUBIC NORMAL FORCE COEFFICIENTS FOR OGIVE CYLINDERS
ao 32
r c.g. Swerve Wind Tunnel c.g. Swerve  Wind Tunnel
L/d = 5
2.50 2.52 2,34 17 13%o0.5 12
2.88 2.88 2.80 - 255 17
v/a4a _ =
L/G = |
2.60 2.50 - 51 252X 3 -
2.88  2.88 2,74 31 232X 19 25
3,08  3%.06 3,08 46 69 ¥ 10 46
L/da = 9
2.70  2.72 45 43 iz
2.90  3.13 3621 382%s
3.33 3.06 87 76 I 5
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S €2 %10 %12
Wind Tunnel 2.10 -2.8 2.57 10.2 y  before separation
Range 2.11 -2.5 2.52 9.2 f 5 = sin 21°
Wind Tunnel 1.86 0.0 3.69 0.0 }. after separation
Range 1.8%* 0.3 3,64 1.0 4 & = sin21°

v _ . . o
Evaluated at separation angle of 21, The 20mm shell flying at an angle of
25" with separated flow is shown in Figure 8.1k,

=
[e))
O\



TABLE 3-4

cUBIC MAGNUS FORCE AND MOMENT COEFFICIENT FOR OGIVE CYLINDERS

1/4 = 7
b Al t
A A A A A
2 2 ‘2 B2 8
Mach No. f.c.g. m.c.g. r.c.g. c.g. swerve
1.3 [CM ] woliz 1313 -- -3  -h2Xz
K.
‘-Cu + Cu _] 20 - 36 == ==
I L'lq l'l(-xl =
1.8 [c 1 90 < ko -- 0is - 56 --
2o I
- +
Cy + CM'| 65 I 36 - -
I S <
2.5 [ey ] % X 13 - 1538  -u8 --
L 2]
- - +
CM + CM. 70 - 10 - -
- q a r
L/a =9
1.8 [C ) s - 13%f5s5 .= -
R
3 +
Cy + CM_] 66 = 8 --
q af .
* a, for Mach number 1.3 was given in Figure 8.13 as - 19 e



8-4

8-7

8-8

8-10

8-11
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CHAPTER IX
PREDICTION OF NONLINEAR MOTION

3.1 Introduction

In the last chapter, we considered the measurement of certain nonliner
forces and moments by analyzing the motion induced by these quantities an.
observed on a ballistic range. In this chapter, we consider the inverse
provlem of predicting the motion caused by known nonlinear forces and moments.
The actual expression for this force and moment may be either measured

11t bkt A wanoa i

experimentally in a ballistic range or wind tunnel or computed from a

theoretical model.

The problem will first be attacked by a generalization of the gquesi-linear

method of Section 8.2. This method provides effective values of frequencicc

and damping exponents in terms of "averages" of the linear and nonlinear
aerodynamic terms but is limited by the assumption that the motion for ai licast

a number of nutations is epicyclic. The behavior for a large number of cyc.es

is determined by the consideration of the modal amplitudes alone and the use

O

f sn "amplitude plane”. Finally, the limitation to epicyclic motion is
removed for the special case of a strongly nonlinear cubic static moment. 1In

this case, the trigonometric functions of the epicyele are replaced by elliptic

become extremely complex when applied to general real fourth order differential
systems. We have already seen that the linearized motion of a rotationally
symmetric missile can be described by & very simple fourth order system -- one

n be written in the form of a second order equation in one complex

ysis will, therefore, be limited so that this symmetry
is preserved. This is the reason symmetric direction cosines (u/V, v/V, w/V)

and not nonsymmetric Eulerian angles were used to locate the velocity vector

(J

~ +m ommanmDamen o d o
with respect to the le axls system. In this chapter, the aerodynamic
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coefticicnts are assumed to be functions of the complex £, and its derivative,
£, which are independent of roll orientation. Clearly, the magnitude of these
two two-dimensional vectors and the orientation angle between them possess this
property. Now the angular velocity can be resolved into a radial component
along the complex angle of attack and circumferential one perpendicular to the
complex angle of attack, and one of these plus the magnitude of the angular
velocity is sufficient to determine this orientation angle. With these remarks
in mind, we will introduce the rotationally invarient quantities

& = | e 2T, |t |2=er T, ena

(52)' = 285" = (EEr + &'T),

and assume that aerodynamic coefficients are at most functions of these

quantities.

The actual quasi-linear analysis initially parallels that of Section 6.7
for varying coefficients. (Equation (6.7.8-10) ). As in that section we assume
that the solution can be written in the form of an eplcycle whose freguencies are
not necessarily constants and whose amplitudes are not necessarily exponentially
varying.

_‘A
ig

ig
o~ 1 o .
£=Ke ~ +Kge (2.1)

Differentiating Equation (2.1) twice we have

. i . i
' —
€ (xl + i¢l)K1e + (LE + 1¢2)Kée
(2.2)
r a ~ - ” e ﬂ id
o _ c .2 N ' 1
£ = [ay 2] - (@B)° 1d) vy ¢1)} K e
r, o 1.2 " A 1 ']" 1¢2
+ !_)\,2 + }\.2 - (¢2) + i(¢2 + ¢)\,2¢2)J K,e
' (2.3)
K,
where A, = Vi
J Ky

8



Since Equation (2.1) is the solution to thc: homogeneous linearized
equation of pitching and yawing motion, we will apply this quasi-linear mc’r
to the homogeneous exact equation:

t
~lt

E +(m-L-1p)F - (M+1PT) T =0 (=.1)
/

where H, M, and T may be functions of

(8,)° - B + - A (v +H) -

H
4
- - (6] L £

[

1 " t
- {(2¢l SB) A +dh s E G - pwo]

]

3—] [(xl + i¢;) + (n, + i¢;) % e-ia]

u
—
=
)
'

r - w7

. [(M - M) + iP(T - To):] [1 + KE e-ia]

~~
N

\n

g

For the linear equation, the right side of equation (2.5) is fluctuating

o zero and the left side is &t most slowly varying.

In Section 6.7, the frequency and damping exponent for the one-mode were
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obtained by setting the left side of Equation (2.9) equal to zero. In

Section .2, the quasi-linear solution for no damping, small geometrical

angles and cubic static moment was derived by averaging the right side of
1

Eguation (2.5) with T =H =y = To =H = 0. 1In order to incorporate these

previously excluded terms, we will take the average of all the terms on the
right under the quasi-linear assumption that these averages are good approximation:

of the effect of "small" nonlinearities. The small terms involving A. in the real

v

part of Equation (2.5) will be omitted in comparison with M_.
o

t D ' ' ' "
(¢‘|) P¢l + MO -1 ll:(2¢l - P) Xl + H0¢l = PPO + ¢ljl

-

o\J o x\l
(2.6)
2n A
1 K2 _i¢ A
"é?f [(M-M)+1P(T-To):][l+qe }dgf

It was shown in Section 8.4 that y /7 is well approximated by an odd function
of ¢ and, hence, only affects the frequency. With this in mind, we separate

Equation (2.6) into real and imaginary parts.

) ' 1 2;\( rr 7' s 7 KI?\) A
()" - 8, - 5 g/ {{®-3) 4, - (\ﬁ/ sin @
K (2.7)
r - -
X, A A
- M |_1 + K_—l cos ¢J}d__r =0
,{"
* wl y PN ~
M o= A s —— (2.8)

b}
)

|



. ¥ -1 (ol Ko A Al
where A, = T - v, + 9 — CO5 y
17 ned -p J U2 K
1 o]
Crr |14 B eos B| 4w o2 sin B} o
RS s I
Similar expressions apply for the other mode except the algebraic sign in front
A
of the sine ¢ term in k* is reversed due to the oddness of the sine funct.oun.

2 s VoLl we L j L= 4 Ii0 o140

[] "
Equatlon (2.7) can be solved for ¢ and differentiated to obtain ¢

Since ¢l depends on amplitude when nonlinearlties are present ¢l will contain
xj's. Thus, Equation (2.8) is not solved for A, since ¢l also has \; as well
as X2 in it. An important simple relation for frequency is that derived in
Section 8.2 for cubic static moment, small geometrical angles, and no
aerodynamic damping. The same relation may be obtained from Equation (2.7) if
the no aerodynamic damping condition were replaced by the requirement that the
average of (H - PT) sin a is zero. This would occur, for example, if H and ¥

were only functions of 62. Under these conditions then
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A similar equation can be derived for the other mode.

2
2u n -
A 1 + A 1+ 272
N - 2,1 e [ 2 21
(2] m(e 1) | | 2|1+ my(a + )|
r-" _.' J' ' IA_2 _2\ ]
R R iR N Ul INRN- -
= /\,2 - I ADA‘ + ll»Mo L.L + m.ekdﬁl Kz
L & [*8

[« v ] [ ] (v w]
* o * o
A, =& A, - — | + 8 Aoy - — | + e, —_— - —
J j1 | 1 . | Je | 2 A | IA M. I
v ¢ v LM 2

L el L of % J

2

+ a
&
o)

where the %ﬂ:'s are defined in Table G.1

S

|
-4

(2.13)

One important occasion for which Mo and M2 are varleble is that of a

missile entering or leaving the eartht's atmosphere.

this missile's static moment coefficients are constants,

] ]
M M ! ~
o _ 2 _p _ a
M M P
! ] /
M M /M ~
and =O = o 9o -
- A 1 -5 l-s
i g g
1
where T = fo cos ¥, 0 = 35000 Tt and
’ .

vertical.
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(See Section 6.7).

V is the angle the trajectory makes with a downward pointing

If
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9.5 Th

Two distinctive properties of & nonlinear homogeneous system are the

o
Z>
s
}—.—l
b

dependence of the type of motion on initial conditions and the existence of
limit wotions. A linear second order complex system, for example, will have

essentially the same tion for any initial condition since
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limit motion is the trivial one of the zero amplitude motion

***** h coefficients which are independent of the
independent variable, the phase plane is the best method for studying these
properties. In a phase plane, the dependent variable is plotted versus its
derivative and sclutions appear as trajectories through each point. With the
exception of singular points, every point has only one curve through it. The
initial values of the variable and its derivative locate the particular

trajectory which is the sclution for those initisl values. Thus, a

whi the values, Thus, & look at

the phase plene immediately reveals the relationship between initial conditions
and the various possible motions and yields boundaries on these conditions for
particular motions. The existence

revealed by this two dimensional phase space.

A fourth order svstem
I 1 orger gystem

One selection of these four coordinates would be the magnitudes and orientation
angles of the initlal complex angle of attack and initial complex angular
velocity. Since rotationally symmetric missiles should have a rotationally
symmetric phase space, thelr phase space is egsentially three dimensional. Its
coordinates could be the magnitudes of the initial angle of attack and the
initial angular velocity and the angular orientation of one with respect to the

cther.

A three dimensional phase gpace is, however, quite difficult to use.

3 Jd = 1,2 (3.1)
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indicatr a possible two dimensional space which mlight be used. This simplizity
in dimensionality is paid for by the assumption that the actuel nonlinear
motion can be described by epicycles whose frequencles and amplitudec vary
throughout the missilets flight. Since the general behavior of the moticn 3Ind
the existence of limit motions are revealed by Equations (3.1), the frequency
ecaations may be neglected and only the two equations for the modal amp:)tudgs

x
2enaidered.

As wus previously noted, phase planes are used for equations which dc oot
contain functions of the independent veriable other than the dependent ‘rariab i
appearing in the phase plane. For this reason, we require'that'the ?d‘; pe
functions on only the modal amplitudes themselves, i.e., Mo = M2 =P =0, etc.
Fromr basic symmetry, we see that the squares of amplitudes should appear in the

xj's. We, therefore, rewrite Equation (3.1) in the form

()" = 2y (4, ) 3,3)
()" = 28, (€, ©) (3.3)

The independent variable, s, may now be eliminated by dividing Equation (3.3)
by Equation (3.2)

i‘ﬁ B K’i"z (K:2L’ Kg)
dKi ) Ki’“l (’é’ ’é)

Equation (3.4) describes the angular motion by means of & point moving in the

Kf - Kg Plane which we will call the amplitude plane. For any point in this

plane, the quasi-linear freduencies and damping exponents may be computed from

(3.4)

Equations (2.7-8) for the one-mode and similar equations for the two-mode and
except for the phase angles, ¢Jo; the motion is completely determined.

Although Equation (3.4) is & nonlinear equation, it is first order aund,
therefore, much simpler than the fourth order Equation (2.4). The amplitude
plane could be generated by numerically integrating Equation (3.4) for a
variety of initial modal amplitudes. Equations of this form, however, have

* A rigorous Justification for the quasi-linear treatment of limit motions is
given in Reference 9-13.
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been extensively studied by H. Poim:zlreg“2 who showed that the basic behavior
of the amplitude plane trajectories is fixed by the location and type of
Equation (5.4) singularities. (Singularities are points for which both the
numerator and denominator of the right side of Equation (3.4) vanish.) A
consideration of Equations (3.4) indicates the existence of three categories

of possible singularities:

(1) the origin (Ki = Kg = 0)

(2) the Ki intercepts of the one-mode zero damping curve (Kg = 0, A o= 0)

(3) the Kg intercepts of the two-mode zero damping curves (Ki =0, Ay = 0)

(4) the intersection of the zero damping curves (xl = 0, Ay = 0) .

According to Poincare's classification, there are four possible types of
first order singularities: nodes, saddles, spirals, and centers. In Figure 9-2,
a node and a saddle are shown while a spiral appears in Figure 9-3c and a
center in Figure 9-3d. The particular curve along which the actual motion
moves is determined by the initial modal amplitudes as specified by initial
conditions. If the coordinates are translated so that the singularity is at
the origin, Equation (3.4) has the form

_ax + by + P(x,y)
g% T tx + dy + Q(x:Y7 (3.5)

where* ad - bc # O and P and Q vanish to at least the second order at the
origin. The criteria for the type of singularity may now be stated in terms of
the coefficients a, b, c, d and thelr discriminant D = (b - c)2 + L4 ad. (See
page 44 of reference 9-3.):

(1) The singularity is & node if (a) D > 0 and ad - be < 0 or (b) D = O.
(Note that if ad = 0, it is & node if bc > 0.)

(2) The singularity is a saddle if D > 0 and ad - bc S O.

(3) The singularity is a spiral if D<O and b + c # O.

»*
If ad - bc = 0 and the origin is a singularity, a8 = b = ¢ = d = 0 and the
singularity is at least second order.
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(4) The singularity may be & center if L. <0 and b + ¢ ~ U; otherw: s,
it is a spiral*.

1
For the linear case, the A, arc constants and the origin ic the only
o

singular point. If the spin is zero, kl = xe, end all the trajectories v,
eithor toward or away from the origin which is & node. (Cee Figure Y-tuj

The particular curve which describes a given motion is specified by initia-
values of Kj and the direction of motion along the curve by the sign of the

X;b. For positive x;s, the motion undamps away from the origin. When .pin

is not zero, the damping exponents are not necessarily equal and may even . '{er
in sign. The origin can, therefore, be either a node (Figure 9-2a) or a saddl.:
(Figure 9-2b). All these figures display an important characteristic of linear

systems -- i.e., the type of motion is indevendent of initial corditio.s.

Amplitude planes will now be constructed for two simple nonlineariti :=
and one fairly general nonlinearity. 1In the first example, the efrect o1

quadratic dependence in & of C,, + C,, on the motion of a nonspinning missiizs

LYY r

q &

will be considered while in the second the effect of a cubic Magnus moment on
the motion of & spinning missile will be described. 1In both of these exuwup ..
small geometrical angles (y £ 1, y = 0) and a linear static moment will bLe
assumed. In the third example, the effect of a cubic static moment and a very
general nonlinear aerodynamic damping moment on a nonspinning missile will bLe

studied in detail.

= o o 9-11
9.%a Zero Spin - Quadratic C + C
—_— M M
q &
For thils case, the damping in pitch ceoefficients have the form
C + C =d +d82 '(.)
M M. o 2% - (5.6
q &
1" 2 T
and E + (H, + K8 Y& - ME =0 (.7)

3

If P =Q = 0, the singularity is a center. 1In reference 9-4, the condit.ions
for a center are given when P and Q are quadratic functions of x and N

Since equalities seldom occur in practice -- only inequalities, the distinction
between a center and a very slow spiral is purely academic.
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_ pSe 2
where Ho = B [CEj - CD ke dol
. pSEt -2
L= % %

From Equation (2.8) and the corresponding equation for the two-mode,

L { S~ .
Mo \§) Hy * HyRy (5.8)

n
'
N

I
S

+

jas)

)\-2

The amplitude plane for the interesting case where the damping changes

< 0) is shown in Figure 9-1b. The zero damping curves are vertical

sign (HOH2
and horizontal straight lines with intercepts (-Eo/ﬁg, 0) and (0, - HO/HE). The
tests of this section show that both of these singularities are saddle points.
These lines intercept at a plenar singularity point (-Ho/Hg, -HO/Bé) which is a
node.

If Ho is positive, the origin is a stable node and Figure 9-1b shows e
characteristic nonlinear dependence of t /pe of motion on initial conditions.
For initial modal amplitudes which are inside the square formed by the axes and
the zero damping lines, the motion will damp to zero amplitude; for modal

amplitudes outside this square; the motion will grow intc an undamped spiral

If B is negative, the origin becomes an unstable node and the planar node
becomes a stable node. For any initial conditions, the eotion will become a
R N VI
planar motion with maximum amplitude Kl + Ké = 2|HO/H2|*". This limit motion

is another property of nonlinear systems. It is interesting to note that had

i I
we restricted ourselves to plenar motion & = B 90, the corresponding differential
equations would be that for the van der Pol oscillator.

" 2 [] ’ \

e}

—
\O
(o)



This planar singularity is precisely the limit cycle predicted by the cne- .proc-
of-f'reedom theory. This example is, therefore, a generalized van der Pol

equation.

9.5b Cubic Magnus Moment.?~1l

For this example, spin is constant but non-zero, demping in pitch anc

A A2
CM__A_ = CO + 025 (/l])
P
YAl ~ 2 ~
€ + (H - iP)E - |M + iP(To + T,8 Y E=0 (5.12)
[ = o _

Equation (3.11) is precisely Equation (8.5.1)

b3}
jag
[}
2}
(1]
>J
n
L]

When spin is not zero, the origin is either & node (xloxeo > 0) or a
saddle (Xlokeo < 0). These two possibilities are shown in Figures 9-2a and

9-2b for a linear Magnus moment. For & cubic Magnus moment, the intercepts and

intersection of the zero damping lines must be studied.

Mo * lg(x‘i + 2}@)

Mo - )‘12(2K.2L * Kg)

1}

o} (3.15)

L}
(@]

(3.16)



. - rs .t
Singularities exist at the intercepts, ( XlO/XlE’ 0) and(0, xzo/xl2), and &

. . Mot By g g
the point of intersection \ 5 » 35 . The type of
12 12
singularity at the intercept (- XlO/XlE’ 0) can now be found by substituting

Equations (3.13-14) in Equation (3.4) and translating the origin to this circular
singularity.

5 y [Exlo *dop = Mo (2x + y)]
'5% = (‘ X - )( + v (5.17)
ax Mo M) (x +2Y)
A A
where x = Kf + \_.9-

D = (b- c)2 + 4 ad
. + 2 0 8
(Org + M) > (3.18)
ad - be = M(@rg, + M) (3.19)

For these relations and the conditions given after Equation (3.5), we see that

we will have a 1 - mode circular singularity in the first quadrant if *10*12 < 0.

This singularity is s saddle if klo(eklo + xzo) > 0 and 1s a node otherwise.
Similarly, a 2 - mode circular singularity exists if X20X22 = - k20kl2 < 0. This
singularity is a saddle if A, (A, + 2A,,) > O and is a node otherwise.
The character of singularity at the point of intersection (a mixed mode
singularity) can be found by transferring the origin to that point.
dx (Alo + 2A20)(x + 2y) + 5%12(x + 2y Ix

)
)

no



. 2 2
. = ~A + ~A
S D 33)‘10 + 78)‘10>‘¢u 33xcu

k [ 1
- 22 rﬁ + 1.812 20,4 552 (3.21)

R | %20 I

Mo L < L J
ad - be = 3(x,4 + 2x55) (2a 4 + App) (3.22)
b+ =300 + hyg) (3.23)

(1) A mixed mode singularity exists if xlz has the opposite sign to

Mo
XlQ a‘n'd - 2 < AA"_ < - 050
20
(2) This singularity is & node if
xl" . . Aqn
-2« i—‘i $.-.1.812 or - .52 T = <-.5
20 M0
(3) This singularity is a spiral singularity if
A A
- 1.812 < Tig <-lor-1<2c- .55
20 M0
(4) This singularity is a center* if
0,
M0
5

To prove that it must be a center, the relations of Reference 9-L4 are
required.
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Most of the possible amplitude planes are shown in Figure 9-Ja-d. 1In

Figure 9-%a, the curve terminating at the singular point is called the
separatrix and for a missile with stable small amplitude motion it divides

all initial conditions into two families: these which yield a motion tending
to zero amplitudes and those which yield motion which grows without bound.
Figures 9-3b and 9-3c demonstrate the existence of circular limit motion and
epicyclic limit motion respectively while Figure 9-34 shows the very special
case of epicyclic motion with periodic variation of the amplitudes. The
predictions of the separatrix, the limit circular motion and the limit epicyclic
motion have been tested by numerical integration of the exact differentiel

equ_tions with great success . This success reinforces our confidence in

For this case, we will study a

with the approximation p = - 1§

—~~~

N
n
=~

~

where d d(62) is & function of 5° and

_ - 24!
c* = c*((5”) ) is a function of (&)

1
To define c_ uniquely, we will require that c*(o) = 0. The presence of (62) in
c* indicates that this term probably affects the damping as well as the more

t
conventional amplitude dependent damping term d&

The simplest nonlinear form of 4 and c¥* can be obtained by assuming them

to be linear in 62 and (8°) respectively.

.co .{ [ +c, 62 + 02(5 ) ’ E + [d

These two nonlinear damping terms have different directions and so depend on

o
"o
N
N
—
Camn Y
W
N
S
S’

the eccentricity of the quasi-linear elliptic motion. For circular motion,
t

€ = BOeie and £ is perpendicular to .

—~~

\N
n
[oN)

g

. '
C_ +1iC_ = - ia_eie [c_ + CA62 +10 (a_+ 1,52)|
m n 0 o 270 o} 2707 |
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i9 '
For planar motion, however, & = Be ° and & has the same direction as &

ie r ¢+
! (3.27)

Cm + iCn = - ie IL(c0 + 628 )5 + [do + (d2 + 232)5 I8

Thus the damping moment depends on the shape of the motion. This result casts
some doubt on the standard wind tunnel method of measuring aerodynamic damping
by forcing planar oscillation and determining the net energy required to maintain
the oscillation. If the actual damping moment has the form of Equation (3.25),
these wind tunnel measurements could lead to quite erroneous predictions of
actual flight behavior.

Returning now to the more general Equation (3.24), we derive the corresponding

equation of pitching and yawing motion for small geometrical angles
" ] »* 2 ] 2
£+ H(&)E - M ((87) )8 - (i + M,87)E = 0 (3.28)
2 pSe -2
where H(8") = e [CL - Cp - Ky d]
L @
* pSt. -2 *
M o=2m K ¢
For Equation (3.28), the quasi-linear damping exponents can be obtained
from Equation (2.13).
M = E-t Ll + mE(Kz + 2K§) 2 + mz(hxi + 5K§)!Xl
(3.29)
2mt |+ w2 + 1) g
-2 { & b
M =3 \'2"‘2@_[1““2(’(:21*2 )’le
(3.30)

o[1 e m@l + )] [2 + myod 4 ) hi}

[



2 2 2 b 2.2 L
= b+ Lmy (K + K) + mo(12K] + 21KKS + 12K))
-
2n r iy ] ]
- - = H ll + ¢2 K2 cos + M K2 sin ) L da
e S TR I T i 4 K o
o | L ™1 ] 1™ J
an [ [ ¢' ¥ ] X ]
3 A A A
k* - - /~ < H ll + 3 ?} cos @1 - .f E sin ¢ L ag
2 bn J ¢' ¢' s
s | > K | > Ko
2 A
5 = K? + Kg + 2K1Ké cos ¢
2.t ~t Ca)
(57) ;-21{11(.2!,5 sin ¢
At ' '
¢_¢l-¢2
[ N [ r 5 o
N [ AT [N )
Equations (3.29-30) are symmetric in the modal amplitudes and, hence, only
half of the amplitude plane need be studied because the line K? =K, is a

line of mirror symmetry. We will, therefore, consider only the lower pie shape
part of the amplitude plane bounded by the KE - axis and the line Kg = Kg and
L L

obtain the upper helf by symmetry.

It is important to note that singularities on the boundaries of this
region represent simple types of motion: circular and planar, We will,
therefore, study the implications of Equation (3.29~30) in the vicinity of
these boundaries, i.e., for almost circular motion and for almost planar

»*

motion. Throughout this work we will assume H and M to be differentiable



2 2 y
H=H, + {:%-} (8" - 5.) (3.21)
L S
C
r ¥ 7 2.1 ,
- | = | () (5.32)
Lda{d ) J
o
57 o2
where H = (Bc)
aH aH
f7] [—z] and
Lee J Lee J 2 2
e = &
_ay [
laed ] lad' ]
L““’J I. AV
o (5) =0

Equations (3.31-32) may now be substituted into Equations (3.29-30) and the
results simplified for almost circular motion (Ké < < Kl).

(1L +m) ' o
M 1R | S| - 5c)]f (5.33)
[ Lua_j e
2 + 5m + hm
*2 = 2(1 + m, 5(1 + ém ) X
1 [ [ m.c rag 7 r 1+ mc 1 - de ] 1.K?
A o TR s a2 :
(3.34)
vhere
2 Mt
mc = mebc = Mo
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A singular point exists on the Kﬁ axis at K, = Bc when

1
i =0 (3.39)
c
Smaller circular motions (Kl < 5c) grow toward Kl = 5c and larger circular
motions decay when
dH ;
[—5 >0 (3.36)

This singularity represents a true limit cycle if almost circular motion tends

to become more circular near the singularity. (,\.2 < 0)

r 2
Mag | Jll +om, | af ] ( )
+ 11+ 3 < O for <<K =25 3.37
daeJc [ T+m [d(ae) J | K2 17 %
B - o

Inequelities (3.36-37) are precisely the conditions that the circular singularity

be a stable node. A somewhat more convenient form of these inequalities is

[di; >0 (3.36)
a8

roaM /raxn -1 (5.38)
—rr = < ; .
l.d(8 ) ]o / daa]o' 1 + ﬂ

/ 1 j

J1 +m
Cc

A positive xe would make the singularity a saddle. If we define an unstable

saddle as one for which trajectories on the origin side of the saddle are

; 1s an unstable

8) are satisfied. Finally,
a negative [EEE] has the effect of reversing the stability of the singularity.

directed away from the origin, we see that the singularit
p ,
( 3

-'
3.36) and not Inequality (3

These conditions are summarized in Figure 9-4.

The prediction of a circular limit motion when conditions (3.35-36, 38) are
satisfied can be verified by direct numerical integration of the actual

s been done for M*

and H linear in (52)' and 52 respectively and motions like that of Figure 9-5

have been obtained.

differential equations of pitching and yawing motion. This ha
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One very interesting result can be obtained from the Fipure and the
various Inequalities. If the damping moments are only functions of BQ(M* = 0),
every circular singularity must be a saddle! This was shown in our first
examples to be the case when H was quadratic in 5 and we now see that this is
true whenever H is a differentiable function of 62 and the aerodynamic moment
is a function of only 8. Under these conditions, a circular limit motion is
impossible. Since circular limit motions have been observed in ballistic range
tests, a more complicated moment such as one containing terms like c¢ € must be

present.

Turning now to the question of almost planar motion (Kl = Ké) we will

consider motion in vicinity of the planar motion Kl = Ké = Kn'

= &

. 53 - QKi(l + cos @) (3.39)
(). ¢ - 212 §' sin @ (3.40)
3 P I3
where
]
¢p = J-M (B + Om )
o
m = hMQ}(T-'\
n 2 p
o}

The nature of the almost planar motion near this planar motion can be
+
ps

conveniently studied by use of the varlables 1 and e2 which are defined by

m

Ky = K(1+¢) J=1,2 (3.41)
Since only motions near this planar motion are of interest, the ej's will be

assumed to be small in comparison with unity and, hence, higher powers of the
61'8 will be neglected in comparison with their linear powers or unity.

n

>

-

\v]
~—

Therefore, the variations of 8, § and (& can be computed as & small
2 A 2.t
perturbation of the corresponding variations in &, ¢ eand (& )D .
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1t

Si + exi(l + cos a)(el + ee)

[ .
ﬁ% iJ/-MO [!i-rmp(5-r2€l-’-1&€2)-}
| )
LT |
+ o JN [h + mp(} + ke + 2€2)] I
.
N
p ) |
o |t TE T E |
L L
N 2 [ 8+ 9m
(59 = () -ga;sma\mm_) (e, + )

H and M can now be expanded about the planar motion.

with the result
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(3.42)

—

N

=
AN
—

(3.44)

(3.45)

=
\N

Fao 7 M » Al
H=Hn+l—a““ |87 - &)
£ dsJ L. ¥
»*
fam 1 r 1
* * ) 1 o1
M =M + | 727 | (82)' - (s ) |
p Lato ) | o |
p
T 1t m o et S A AP cz e /eg\' 3 s L L.
p subscript on a function of & or (& j denotes that function
2 2 ( 2)' ( 2.3
or (8§ =
D, Dy

tion

of

S~

8 )_. Relations (3.42-46) together with the
proper expansion of @, Ké/¢'K, and K2/¢ K, may be placed in the defini

*
A
1



* *x 1 f‘rH [ 4+ 2m \ A
)‘lz)‘p-m{u/ﬁv\\‘ﬁ+5mp} (€) - &) cos §
o
[an ] 2 A
+ 2 |9E | ICQ(e- +€,) sin“ ¢
P 2

w [ 7 A
2Mp Lh(l + mp)c—::L - (4 + mp)e2J sin ¢

r
¢n(1+ + an)

Fad ?/8+9mp\ \ 5l
_2|._2.._., = K;)\h_3_—+ m/(€l+€2) sin ¢?d
Latg ) 15 - P
(3.47)
2n T 3
* 1 r A * 2 sin 2\ | A
where )‘P = - I u/ (Hp)(l - cos @) + (MP) (\_Tﬂl) I ag.
s L P 7]
The terms involving r-d—H:I and M* may bhe integrated by parts and the
(=4 2 p v (=4 v F -4
Las] |
results combined with the other terms.
g (s
A, = Xp - W il_( + 5mp)el +m €2J
- |.’!‘. €, + (16 + 11m )e Ir
L'pl P’ 2] 0
+|(16+_7m e, + Tm e-lr_L (3.48)
L p’l pej 2
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where [- dM

L2}
Cse
it
—
==t
—d
[
fl
o
.
n

[ p—

I
i

Al

A similar relation for X\

1 ay be obtained by interchanging e, and €, in
Equation (3.48).

1 2

The numerical subscript on the outside of the bracketed expressions in
M
quite surprising that the influence of H on A, is completely determined by

1
*
its first order Fourier cosine coefficient. The influence of M , however,

identifies that term as a particular Fourier cosine coefficient. It is

is specified by the zeroth and second order Fourier cosine coefficients of

its first derivative. These coefficients are computed for fixed modal amplitudes

-
’
C

Kj’ and are thus functions of these amplitudes.

%
3

For a planar singularity A_ vanishes and the A, are linear in the €,. Thus,

p J J
only planar value of the coefficlents of Equations (3.29-30) are needed to
calculate the kj's.

A A A (3.49)
= a +a :
VIS S TR - ’
2(4 + 3m_)(8 + Tm )
vhere &)1 = 8 = T8+ 5u_)(B + 55.)
p P
- hmb(h + 3m_)
810 = 853 = T 9. J(5 + o
Jo p
[é] . bel + aea}
' = - —— (Z2 an\
.o Ll §T3—:-§;i)(b L 9mb) \J.2U)
[H] L aey + b"—a]
2= 28 + 5w )(6 + om) (3.51)
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2
where a = - mn(8 + Bmp) + (128 + 200m_ + 75m_) r,
£ P-4 r
2 R [0 4 R -
'r)m\u‘r51)1‘
p p’ "2
b= 6L+ 96m + 33m° + 3m (8 + 5m ) r
b p b p o
2
+ (128 + 248m_ + 105m") r,
b p’ =
The differential equation for sclution curves in the vicinity of

oy

<o
<

2
1

[of]

€

According to the usual

node. It is a node if

2

a

- b2

Note that if r, and r. both vanish

5 2
a -

almost planar motions near a plan

singularity in the amplitude plane is

b2 is negative. Thus

criteria, the singularity

2

a - b2 1s negative and a

(a + b)(a - b)

- 4(8 +5m )(8 + 9m_)
P P

r '
x Lz(e +m) 4 (r) o+ 1) (8 5mp)}

and m
b

Ui

aerodynamic moment coefficient
]

is outside the interval (- 2, - 8/9),

» 8l planar singularities are nodes and
singular motion will tend to that planar

singular motion if neighboring planar motions tend to the planar singular

= =220

motion.

*
Another interesting special case is that for which H and M are linear in

24!

E)



H = H, o+ S (3.54)
M= My (e%) (3.55)

A simple calculation shows that

(1), = 28K (3.56)
Ty T (3.57)
2
r, = 0 (3.58)
¥*
The amplitude of the planar singular motion is fixed by the condition xp =0 to
be
u2 — w frr ,.“.*\"l 1 o -l ~ \"l R ~ fo -\
K, = - B,(H, - 24,) -HH, (1-2r ) " >0 (3.59)
2 [
For r, = 0, a~ - b reduces to a simple form. A planar singularity,
therefore, will be & node if
(8 + 5mp)(8 +9m J{4 + 3m ) (1 - 2r )
r B
X lh +2m_ +r (8 + 5m*)J S0 (3.60)
L D o b

When m, is excluded from the interval (- 2, - 8/9) and r, is replaced by

its actual value, this Inequality can be written in a very concise form.

rh + Z2m ] M;
1
- |57 | <®, <z (3.61)
n 2
L TR

According to Inequalities (3.61), (1 - 2ro) has to be positive and, hence,
Equation (3.59) shows us that H  and H, must have opposite algebraic signs.
A negative Ho causes small amplitude motion to grow and, hence, the planar

node will be a stable node if

H <0, Hy>0 (3.62)
....... an aval Anssaaed Ba s z
The various possibilities are summarized in Figure 9-6.



9.4 The Perturbation Method

The work of this chapter has assumed that epicyclic motion which is
essentially a linear combination of trigonometric functions is a good
approximation of the actual motion. The value of this approximation should
diminish as the static moment becomes strongly nonlinear. In Section 8.3,
the exact solution for & cubic static moment was derived in terms of elliptic
functions. 1In this section, we will use this solution rather than the epicyclic
solution as our basic solution and consider the effects of both linear and
nonlinear damping to be perturbation of this elliptic function solution¥*. The

discussion will not contain all the necessary details but will be more in the

> the geomet ms y /7, assume all

coefficients to be independent of arclength**, and require constant spin.
The approach will be to manipulate Equation (2.&) to obtain differential

equations for the energy and angular momentum, First; we transform Equation (2.4)

J

by the relation

~ Al(1/2)ps ,
Tt (4.1)
R - at | . H |
. s-[mo+1v120]s=-Hs +i—M +1P(T-§)]E (4.2)
where M = M - P
o I
M =M-M - M262
The conJjugate of Equation (4.2) is
a [ 2] % X H |7
E - ILMO + M5 _} £ =-mt + {_ - 1p(T - 3)] £ (4.3)

W
The effect of varying coefficients 1s considered in Reference 9-8,
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]
, Equation (4.3) by g , and adding, we have

A L * 2
c,=-H [ 1 t2MBT + MB ] + (M) (87)
+ B(T - 3) ¢, (4.4)
lA‘Ie A 2 5’+
where C, = 3 M3 -M, = total energy
ArA AR
Cy = 1(e & - & E) angular momentum

The equation for the variation of angular momentum may be obtained by
A 2
eliminating M_ + M,8" from Equations (4.2-3).

2 o=
C, = = HC, + 2P(T - g) 8 (4.5)

When damping is zero (H =T = M 0), the amplitude variation is given by

Equation (8.3.9) which is repeated here

R

+ 2 2 A L
== / - Cy + bCiB” + UM BT + 2M,5 (4.6)

Section 8.3. The requirement of rotational symmetry once again leads us to'

ct

hat the a rouynamlc coefficients are functions of 5 (6 )
]
and & |°. But (5°) and |§ | are functions of C,, C, and &° through
Equation (4.6) and the definition of C, respectively. Thus Equations (L.L-5)
£

' 2
cJ = f,(Cl! C,y 87) J=1,2 (4.7)
For a conservative system fj = 0, and Equation (L.6) applies. We assume
that the damping functions, fJ, represent small damping and, hence, Cl and 02

vary very little over a period of the nutation. If this is the case, it is

£3
-
"
n ]

2
reasonable to use the no damping solution for & in fj and to assume that o
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~~
=
0

g

* 2
P 1s a period of & .

e £ s TR U e < B 52 - = A PR - . PO Yy 2 [ . | A e o [
olnce tne SO4LUT1O0IlS 10r O are usu&lJ.y gliven 1 verms Ol Uulle exXxurene vaiues
I} N 2} o
5 and 5, this average function will contain 87 and & as well as C. and C,.
., L= e — e —
These two sets of variables are related by Equation (4.6) and the fact that
Ioa\' v el mn Ly msdiamas mre Josm o a L Q2
(0 ) Vanisnes 10T eXiremum va.iues o1 o .

4o 55 + 4l 8¢ 4+ M50 = ¢
173 0 J 2

e j=1,2 (4.9)
fed

Thus, either set could be eliminated in favor of the other. 1In view of our

previous work with the amplitude plane, a third set is much more convenient.

Ada

mn 1 amnls
DOGaL GQlipil

L . L . R 2
so that the sum of their square roots is the maximum amplitude, & , and the

ot

difference is the minimum amplitude. Instead of using the previous symbols

K., e in Equations (8.3.14-15); we will use new symbols , so that
37 q (3.3 ) s sy s, x;, so that
any possibie confusion with the epicylic model ampiitudes can be eliminated.
& = W Jx,)? (4.10°
= X - X .
oo 1 1 2) ( )

o~

< o=
&, = N x, ++ X5) (4.11)
Ammmaedlon o b Tmacondd anae 1 1A 171\ 1. .. A m A AV 8 T A dm o md memd o] A,
ACCOIGLIOYE LU BQUALLIUILS (Y4edU=dil), UL Lo colls Lalu &mplltu(le

uasi-linear method.

Ne)

0
circular motion in the same way as the K: axes did in the
in

Equations (4.9-11) may now be combined to relate the xy's and C,%s.
c. - Fzﬁ , N . M2 ,_ 2 + 10 + % 2.1 L
1=- L (%) + %)+ 5 (5x) X, Xy XQ)J (k.12)
Cy =2(x; - x53) /- M - M‘2(xl + x,) (L.13)



According to Equation (4.13), the angular momentum is zero when x, = X, and,

)

hence, this line retains the locus of planar motion*. Equation (4.13) indicates
a second possibility for

h , xe f Lo Y N I -
My + M%) +Xx5) =0 (L.14)

An inspection of the various solutions of Section 8.3 shows that this can occur

PN

moments and represents oscillations about the trim equilibrium

~—

for the type (c
angle of A~  For the type (c), the line given by Equation (4.14) is also
/- MO/M,Z,

the locus of planar motions.

If Equations (L4.12-13) are differentiated and sclved for x

AL =

[_ o + (v & R \j ' n r G RV { e N £X -\ [ I e A1
< 12 * Y Xy 3“2’J ST e I o ”‘2)J J- My - My (%) + x50,
i R 2.0

- 808 (4.15)
rzﬁ M (Bx 4 c! raﬁ N 5 ( '
! =M M oy xz’J 1° L o t My Oxy # 5x2)J J- ¥y - My (x) + x50,
2 3
_ 8&?&?
(4.16)
2x, + 2 X. + 3%
2 A 1 172 2
where @ = - Mb - M2 N ) i
2 n 3%, - 2 Jb?l‘x_2 + §x27
@ == M2 % and
L p—
C;" are given by Equation (4.8).

As an example of this perturbation method, we will consider the special case
of Section 9.3c.

¥
This motion is planar in the roofed coordinates specified by Equation (4.1).
Only when spin is zero will the motion be planar in the eyes of a nonspinning
observer.

n
o
(o)}
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l
o
-
=
=
O
~—

Equations {4.8) reduce to

( I PURPER b
C-=-l[H + (H, - 2M,)8" | 12C. + 2M B +}‘§J - M2 (4.20)
LLo 2 27 |71 ol 2 Jé Mo

r -
i 2
Co =~ lLHo * HESa.] €2 (k.21)

Before using these equations in Equations (4.15-16), we must compute the average
; 5« In general, this is quite tedious since it invelve:

2
. 2n . e s
the calculation of integrals of sn  ws. This can be done numerically, however,

value of 62n for n = 1,
1 t
and Equations (4.15-16) may then be integrated to construct a generalized
amplitude plane for particular values of the coefficients. To derive general
conditions on the coefficients for the various limit motions, it is necessary
to locate singular points and calculate the Sin's in their vicinities. For
two special cases - circular singularities and planar singularities - the
necessary algebra is not excessive. From this pertial informaticn about the
complete generalized amplitude planes, it is then possible to infer the general
form of these planes and select interesting sets of values of the coefficients

for numerical construction of specific generalized amplitude planes. For

almost circular motion (xl S S x2), it can be shown that -2
.‘2n - =3 Il-l / mC \
&, =X, +nx; X, k n - 2—1—35; ) (4.22)
Equations (4.20-22) may now be placed in Equations (4.15-16).
ot 2(1L +m )
i A S SO .23
x, © 0 weEmy %t RN (v.23)
c
1
*2 ., -2 [ 2 V2 X
-_— = - (o S [an £+ 0m + 6bm \r o - T nln -
x2 e + ,mc) l\w 9“c 6mc)no [mcn2 + 2ic + gmc) MEJ xl J.
(b.2k)



Equation (4.23) is exactly the same as Equation (53.33) which was derived
from the quasi-linear method. The symbols of that equation may be easily
related to those of Equation (4.23) by a consideration of the coefficients

defined by Equations (3.31) and (4.17) respectively

an 7 2
H - H ‘——J 5 . o
(o] C <d52 c c ( J)
[ } (4.26)
= .2
H2 ad ¢

Equation (4.24) and the corresponding quasi-linear Equation (3.34) do differ
markedly. The importance of this difference can be most conveniently evaluated
by comparing the two sets of conditions for a circular singularity which is =a

node. The quasi-linear conditions may be written in the form

2
8 = - H/H, >0 (4.27)
H, >0 (4.28)
¥*
Eg < =1
Hg ,l_f + émc (!*’ 29)
1'4_J1 +m
o]
Relations (4.27-28) are the same as those derived from the perturbation method.
The perturbation method form of Inequality \4.¢y) can be derived by setting
1 1
x, = 0 and x;, <0, and eliminating H  between Equations (4.23) and (4.24).
¥*
M, - (1 + mc)
ﬁe- < —E‘m;— (4.30)

For a linear static moment (mC = O)3 Inequalities (4.29-30) are the same.
Their asymptotic values - (1 + ) "< ana (-1/3), however, differ by 35%. For
a type (b) moment, the quasi-lin ar expression limits m, to the interval

the perturbation expression is valid for the complete range

218



in m  for which almost circular motions are possible (- 2/3 < m, < 0). These
differences and others may be seen in Figure 9-4 where both upper bounds ars

plotted as functions aof m, .

The algebra for almost planar motion* is more lengthy and will only bLe

outlined here. If the common value of x, for planar motion is identified Ly

J
xp, the maximum amplitude of the motion is 2‘J}p.0ur generalized definition of

m_ is
P v
o hx - -
p— MA ('/)
Q
and our generalized ej's of Equations (3.41) are defined by**
Xg = xp(l + 2ej) j=1,2 (4.52)
For these variables, the average values of Gcn can be determined
2n n
8, = [Azn + 2an(el + 62)] (hxp) (4.3%)

where Azn and an are combinations of complete elliptic integrals

of the first and second kind which in turn are functions of m_. These quantities
-4

are explicitly derived and defined in Refercnce 9-10.

The amplitude of the planar singular motion 2-J§; is fixed by the condition

t
x, =0 to be
J

- HOA
xp = (k.34)
By - oM,
where - )
- 2 + nt - 2A2 - m.PALL
A = Alm = '
P 4 |(2 + m.p)A2 - Eﬁh - mpA6]
J

L

*
Only the symmetric planar motion for which x, = xB will be considered here.

Planar motion about trim is studied in Referénce §-10.
* , \ 2
The 2 appears in Equation {4.32) because x4 corresponds to hJ and 1 + EeJ is
Y . - N L s . » ']
the first order approximation of (1 + eJ)‘ .

219



The corresponding equation for the quasi-linear method is Equation (5.59)

which differ

wn
rH
ry
Q
=]
ct
>y

*
is that for certain values of H2 H s M2/H2,
and.Ng/M and a type (c) moment, it has two roots. The m_'s for the members

G b
of such a pair lie in the intervals (- 2.535, - 2,16L4), and (- 2.164, - 2)

..... and (- 2

respectively. If we omit consideration of the second member of these pairs

(mp < - 2.164, m_> - 1), the conditions for a stable node may be quickly
2

stated.

HO < O; "ﬂ2 > U (h'BS)
1-Mps M
p—— — < '}'{_:' <$ (4.36)

The lower bound in Inequality (4.36) differs from that of Inequality (3.61).

\ v

vy A3 w4
The two lower bounds are compared in Figure 9-6.

Now that we have considered the implications of singularities on the

the remeinder of the generalized amplitude plane can be inferred. First, it
is necessary to combine the various boundaries for M;/H2 in one plot. To do

this; we must compute m in terms of m

/ \ oA M H

a -(2) - 2o (.37)
\l.l.ol llol
Y / Ma \ . hMQHOA

m = a—— = -

P (\ Mo) P M (H, - 2?*..2) (4.38)

2*
m
P P 2 AR o
% T\ \B)

By means of Equation (4.39), Figure 9-6 can be replotted in terms of m, and

superimposed on Figure 9-4. The result is Figure 9-7.
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This figure has & number of interesting features. For a Type (b) moment,,

L

can be seen that as M2/H2 is increased a circular node and planar saddle
change to a circular saddle and a planar saddle which in turn change to a

circular saddle and a planar node! This disappearance of the node from the

Xy - axis and later appearance on the line X) = X5 implies its motion through

the generalized amplitude plane and the possible existence of a limit motinn varying
between two nonzero modal amplitudes. This conjecture was checked by the

numerical calculation of the generalized amplitude plane for m, = - .95 and

M;/ﬁ2 = - 1. (Figure 9-8). This figure demonstrates the existence of the

stable node. The differential equations of pitching and yawing motion for

2]

these parametric values Werethen calculated on an analogue computer and it wa:
und that the motion quickly went to a 1limit motion with constant maximum and
ninimum amplitudes. (Figure 9.9a) These maximum and minimum amplitudes are

those assigned by the location of the node in the generalized amplitude plane.

Finally, we note that the dotted region of Figure 9-7 appears to be
quite interesting due to the presence of two stable limit motions. A sample
generalized amplitude plane 1s shown in Figure 9-10 and a plot of the angular

motion approaching the planar motion is given in Figure 9-9b. The ability

1
of the perturbation method to predict fairly unexpected motions is very

}_4

impressive.

221



REFERENCES

Nonlinear Mechanics.
es

N. and Bogoliuboff, N. B. Introduction t
d S Princ s, 1947.

.O
: ; P
. Lefschetz, Princeton University P

Q-2 Poincarez H. Sur les Courbeg Definies par une Fguation Differentiellc,
Ocuvres,(Gauthier-Villars), Paris, Vol. I, (1592)

9-3 Stoker, J. J. Nonlinear Vibrations in Mechanical and Electrical Systems.
Interscience Publishers, New York, 1950.

9-4  Frommer, M. Uber das Auftreten von Wirbeln und Strudeln (geschloszencr
und spiralj_ger Integralkurven\ in der Umgebung rationaler

SLNLLINCLL L11 QUllls 48 L1Ullal

Unbestimmtheitsstellen. Math. Ann. 109 (193h) 395-424 .

9-5 Cohen, C. J. and Hubbard, E. C. Unpublished NORC Computations, Naval
Proving Ground. May 1956. (See BRL Report 995)

9= Thomas, L. H. The Theory of Spinning Shell. BRL Report 839, November 19’
9-7 Reed, H, L., Jr. The Dynamics of Shell. BRL Report 1030, October 1957

9-5 Murphy, C. H. Effect of Varying Air Density on the Nonlinear Pitching
and Yawing Motion of a Symmetric Missile. BRL Report 1162, February 1962.

G- Murphy, C. H. The Effect of Strongly Nonlinear Static Moment on the
J » &
ombined Pitching and Yawing Motion of a Symmetric Missile. BRL Report

9-10 Murphy, C. H. and Hodes, B, A, Planar Limit Motion of Nonspinning
Symmetric Missiles Acted on by Cubic Aerodynamic Moments. ERL
Memorandum Report No. 1358, June 1961.

9-11 Murphy. C. H. The Prediction of Nonlinear Pitching and Yawing Motion of
Symmetric Missiles. Journal of the Aeronautical Sciences, Vol. 2k,
ep. 473-L79, July 1957.

9-12 Murphy, C. H. Quasi-Linear Analysis of the Non