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NONCOMMUNICATICN EXPENDABLE JAMMER INVESTIGATIONS
VOLUME 2 - OMNIDIRECTiONAL ANTENNAS

Charles F Hummel

1 INTRODUC T1ON.

Adequate electrornagnetic coupling between antennas 1s essantial to the successful
tactical operation of a microwave )ammer against a target. In an idealized case,
whnere reflecting surfaces are very r: note from the antennas (or where the
surfaces are near but have reflect.cn co. fficients which are negligible at
microwave frequencies). electromagnetic (oupling between antennas can be
readily estabiished from free-space radiation patterns and the distance between
antennas, Coraplications arise, however, when the antenras are in relatively
close proximity to a large reflecting surface whose reflection coefficient is not

ne sligible. Such is the situation usually encountered in various practical
4.phcinons and, 1n particular, 1n the case of tactical deployment of ar expendable
microwave jammer whose antenna 1s in relatively close proximity to the earth’s
s-rface &nd the target 1s near the horizon (t.e., at a very low elevation angle).

The type cf reflecting surface, such as irregular terrain, its moisture content,
snow cover, etc, . add further complications to the general electromagnetic
couphing problem particularly when various types of obstructions and vegetation
are invclved. The heart of the antenna coupling preblem, however, centers
around one 1mportant antenna-system parameters: antenna height above ground

The follewing discussion has a two-fold purpose.

(a) to present engineer:ng data related to the development of
an 8-db (relauve to isotrop:c) omnidirectional (in the azimuth
plane) antenna breadboard model and 1ts measured free-space
radiation-pattern cha:acteristics,

ib) to presert data 1n graphical form. based upon thecretical
ground-effect considerations, whichk show the important
effect that height above ground has ubon the antenna's etfective
radiated power at low elevation angies

The data presented herein do not include eifects due to irregular terrain.
obstructions. or vegetation. Only flat terrain 1s assumed and the data should
be ¢ onsidered repressntat.ve only of the idealized terrain condition. This
was de-e 1n urder tu exnlore the magnitude of the ground effect w:ithoul undue
complhication  Actual conditions encountered in the fie'd can be expected to
cause quite wide variations.
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2 PRELIMINARY INV ESTIGATIONS.

Early 1n the program it appeared desirable to consider an azimuth omnidirectional
microwave antenna configurationr which could be an inteqral part of the structure
of the expendable-jammer vehicle {such as a cavity-backed slotted array, or

as a portion of the tail structure} For a description of the expendable jammer
the rcader is referred to ©DL-M622.* [t soon became apparent that the
expendable jammer's microwave antenna performance would be quite dependent
upon the vehicle's vertical «ttitude and the antenna height after impact. The
vehicle's inability to control its penetration depth (over wide variations 1n type

of terrain such as hard soil tc loosely packed sand) means that a relatively

larg< vaeriantion i. 2ntenna-to-ground height must be considered.

Another problem pertairang to environment presented itself during the preliminary
investigations Under typical field conditions, ‘he orientation angle, off vertical,
that the longitudinal axis of the vehicle and antenna can be expected to assume
after impact could not be predicted or controlled. A realistic solution to this
problem was deemed impcrtant since a relatively large off-vertical angle of
mcidence could seriously reduce the effective radiated power by a directive
antenna whose beam 1s narrow in the elevation pattern.

Also considered 1n the preliminary investigations were various types of azimuth
omnidirectional antennas which conld be developed, separate from the vehicular
structure, that would lend themselves to being elevated from the aft portion

of the vehicle after impact Briefly considered was the possibility of utilizing

a gimbal-type assembly to maintain vertical or near-vertical antenna
orient:tion regardless of the vehicle's orientation with respe t to the terrain;
for the case where the vehicle might impact on the s:de of a hiil, however. the
gimbal assembly could not be expected to orient the beam of the antenna toward
the target

The need for a suitable microwave elevation direction-finding device to solve
elevation orientation problems when using a high-gain antenna became apparent
The only simple and practical alternative was to consider an antenna which had
a brocader heamwidth and then to compensate for the corresponding reduction

in antenna gain by increasing the antenna height above ground A solution to
the lattor approach was deemed less complex and possibly more rehable in
cperation. so breadboard developmental work was initiated

] See list of references in Section 7
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3. OMNIDIRECTIONAL ANTENNA TYPES CONSIDERED.

Initial electrical design effort centered arvund variovs types of omnidirectional
in azimuth, vertically polarized, S-band antennas which weculd provide free-
space directive ga:as ot at least 6 db over the frequency range of 2.7 to 2. 85
Ge with antenna power handling capabilities of 2-kilowatt peak {20 watts
averagej

The first antenna type considered was a curved-siurface radiator of the tapered
moncpole variety with a dielectric~ring type of lens above a metallic ground
plane.? Preliminary tests of this type of umnidirectioral antenna contiguration
disclosed, however, that the dielecinc ring's beam-shaping effect in elevation
was not as pronounced as was expected.

The next antenna type considered was a siniple series-fed collinear array nf
four dipoles.® Seemirgly identical breadbcasd riodels exhibited rather
pronounced variations tn electrical characternstics; the relatively small
cylindrical configuration was fcund (o be critical witk: regard to alignment,
spacing, tolerances, etc. In addition, test results at these microwave
frequencies could not be repeated readily with routine handling of the breadboard
models. A parallei-fed collinear dipole array with a coaxial-within-coaxial

feed offe red hope of improvement over the series-feed arrangement, but proved
to be quite complex in ferd arrangement.

The last antenna type considered was aa indivicdualiy fed staicked-discone
array consisting of four radiating eler.ents connected via spiraling coaxial
cable routings to a power divider.®* -  When this configuration was
breadboarded and tested electrically, .\ was found to be much less critical
to physical misalignments and other nonumformaities than the other antenna
types investigated.

The last configuration, the stacked-discone array, appecared to satisfy the
need for a relatively simpie, inechanicaliy reliable structure which could
lend 1tself to modular construction (the radiating elements are individually
fod from separate ports of the power divider). The modular aspect was
considered desirable for vaiious reasons. For instance, in later radiation
measurements. patterns could be obtained for a single element as well as
for the array of four riements and comparisons could be made conventently
between wide-beam and relatively narrow-beam effects over terrain at differeat
orientation angles. Consequently, a breadboard model was designed and
constructed in the modular ¢ ‘nfiguration for system testing within the
taboratory.

It snould be noted that the antenna breadboard effort centered around electrical
charactenistics physical requirements relating to size. weight, vibratica,
shock. and other environmental factors were not stressed in the treadboard
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4. DEVELOPMENT OF THE STACKED-DISCONE ARRAY ANTENNA.

The radiation pattern of a discone element is similar to that of a dipole; the
energy is radiated in patterns which form a solid of revolution with a figure-
eight cross section. The operationas frequency range of a discune, however,
exceeds that of a dipole. With the discone's axis oriented vertically, the
radiating element provides vertically polarized patterns which are, for

the idealized case, perfectly omnidirectional in azimuth. (Slight deviations
in the omnidirectional characteristic were encountered in this application,
due to slight aperture blocking by feed lines. This is discussed later.)

4.1 Discone Geometry.

The discone consists of a cone (i. e., a conducting conical surface) and a coaxial
_feed line that is coincident with the axis of the cone. The outer conductor

of the coaxial is connected to the cone and the inner conductor of the coaxial

is permitted to pass through the slightly truncated apex of the cone and connect
to the center of a relatively small conducting disk. The disk is positioned
perpendicular to the cone's axis and at a predetermined spacing.

The cone's flare angle and slant height are based upon electrical requirements
{relating to such characteristics as bandwidth, impedance, and desired radiation
pattern characteristics) in addition to physical requirements which relate to
maximum oveys all size. Disk size and disk-to-cone spacing are chosen for
optimum impedance match to the coaxial-line feed.

With reference to Figure 1, the geometry of a discone can be expressed thus:

(ry - 1)

——

X
> 7 tan
¢

where v = total flare angle (as measured from the truncated apex
o! the cone),

r. © maximum radius of the cone,
r H minimum radius at the slightly truncated apex,

h - height of the cune (as measured from the truncated apex).

Optimum -ralues for disk size and disk-to-cone spacing were established
experimentally; disk radius (ry) was set at 70 percent of the maximuwa cone
radius (r; ), and disk-to-cone spacing(s) was selected on the basis of minimum
impedance micimatch over the operational frequercy range. The cone's

slight truncated apex forms a part of the antenna feed; a value was assigned

-5 .
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4 1 - - Continued

to r,, the mimmum radius at the truncated apex, such that it would be
essentially negligible in the geometrical relationship expressed above (. e. .
a value of approximately 10 perceut or less of the maximum cone radius).

With reference to Figure 1, design compromises were neeeded in the geometncal
liyout of the discone to achieve desired radiation-pattern characteristics and
simitable impedance matches consistent with physical requirements relating

to maximum permissible size i.e., interms of flare-angle (¥) and height (h )

Geometrical values selected for the application were as follows:

he = 1. 62 inches (0. 372 to 0.390 » over the operational frequency
range)

¥ : 59 degrees

r, 1. 00 inch

rq - 0. 70 inch

s = 0.122 inch

r, ¢ 0. 100 inch.

One of the discone elements, prior to assembly, is sown in Figure 2. The
three large dielectric disks (with slotted edges) provide support for the cone

and small disk and provide a guide for the coaxial cable routing of other

discone clements after assembly. The dielectric rods serve as spacers
between decks Figure 3 shows the modular, discone element after assembly
witin1ts individually fed coaxial line which connects to one of the ports in & power
divider

Electrnical measurements made upon the single element disclosed a VEWR of
1 25 20 2 over the operational frequency range, with elevation-pattern haif -
power beamwidth approximately 50 degrees {i. e . in frec space). The frec-
~pace directive gain was 3 | db relative to isotropic at the midband frequency
ot 2 75 Ge

42 . Stacked-Discone Array,

Frgure 4 shows the assembled, stacked-discone array. Four ideatical discone
modules are stacked. ovne above the other, with their tndividual coaxial feed
hines #piraling downward and connecting to the power divider. The radiating

-7 -
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63100703

Figure -i. Asscmbled Stacked Discone Array with Rademe Removed
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eclements are 270 electrical degrees apart and are fed 1n phase by equal
lengths of coaxtal line. The lengths of coax for the lower elemcents are wound
around the base support of the power divider. The larger dielectric disks, in
addition to serving as guides for the spiraling coaxial lines, also serve as
guides for mounting the radome {shown to the right in Figure 4)

The tour-element stacked-discone array antenna with radome assembled s
shown in Figure 5. This antenna array has an overall height of 20 inches
including the power divider. The height of the radorme is 15-5/8 inches
with an outside diameter of approximately 5-1/16 inches. Maximum
overall diameter at the base of the assembly 1s 5-3/4 inches. Total weight
of the antenna array 1s 6. 25 pounds. (No attempts were made to restrict
weight in this breadboard model. The experimental discone eiements were
constructed of brass, which 1s very easy to machine.)

4 3 Radiation Paitern.

For a vertical array of discone elements, maximum free-space radiation
occurs in the horizontal direction when all of the radiating elements are
operated i1n phase. The elevation pattern characteristic of a vertically
discone array may be expressed thust*.

(%]

. 5 & .2
amn(z sin 8 Z)

FB) =~ cos B

o
| sin (S—Z- sin P - %")

where B - elevation angle
n number of discone elements
(8] .
> - spacing (eiectricai degrees) between discones

phase difference between adjacent discones.

£

The individual feed of this antenna array makes :t convenient to shift the axis of
the miain beam shightly (1. e. ., up or down 1n elevation) by altening the 1indiva-
dual lengths of coax:al line  The electrical phase difierence hetween

adjacent discones {¢}. as expressed i the above relationship, can be vanied

in accordance with the following relationship

194
T - 3 sma,

where 8, - the desired angle of beam ult

- 11 -
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63100702

Figure 5. Four-Element Stacked Discone Array Antenna with

Radome Assembied.
-12 -
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r

Equal iengths of coaxial line were used to {eed the discone elements in
phase for imtial syvstem festing. A problem was encountered in the precise
placement of the separate coaxial transmission lines in order to achieve

the least disturbance in azymuth pattern charactenstc As 1n most
verhcally oriented ommdirectional structures, the supporting mast or.

in this case, the multiple transmission line feeds have currents induccd

in them by the radiating clements; these induced currents (and their
resultant reradiated energy) cause 3lightly distorted or scalloping effects

in the omnidirectional radiation pattern. In this application. pattern
distortion was minimized by spiraling the coaxial lines past the discone
apertures to spread the effects of aperture-blocking more evenly in asimuth.
The radome ensures that the rather critical positions of the coaxial cables

will not be disturbed by handling the model. Radiation-pattern measurements

disclosed that maximum deviations from omnidirectional approvimated
2to2 54db

Typical free-space radiation-pattern measurements are shown in Figwres
& and 7 Figure 6 shows the free-space elevation pattern at midband:for
the stacked-discone array. Half-power beamwidth is about 17 degrees;

di rective gain relatlive to isotropic is approximately 8 db.  Typical devia-
tions from the perfectly omnidirectional characteristic are shown in the
azimutha! radiation pattern of Figure 7 Here. a deviationof | 5 db

can be observed at a nidband frequency of 2. 75 G.. Cross-polanzation
approximates minus 12 5 db maximum.

Over the frequency range of 2. 7 to 2. 85 Gc, free - space directive gain
of the four-element stacked-discone array is abou: 7 5 to 8 db with an
average beamwidth ot 17 degrees Maximumn side tobe Jevel over thes
trogquaeney range ts nunus 9 db

VSWR values over the uperational frequency range are about 1 32 0 2 dor

the array.  Figure 8 provides a comparison of VSWR values the array
ot four elements and for a single element.

5 GROUND EFFECTS

5
—

Tneorctcal Considerations

The tnportant effect that ho ght above yround has upon the radiated power
level! of a microwave antenna can be described mathermatically using the
lollowing theoretical concepts.  For an antenna's free-space radiation v
pattern it is assumed that a relocting surface (or surfeces) i< rnfintely tar

- 13- .
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away from the antenna or that the surface's reflection cuefficient 13
negligible. In the presence of perfectly flat earth infinite 1n extent and
at a distance of many wave-lengths from a microwave antenna, field
intensity (relative to that in free space) may be expressed thus

E ia '
= =]14% e T+ .
L]
E .
where F field intensity relative to thar in free gpace
0
ot ot magnitude of the reflection coefficient

- phase difference between the incident and reflected
waves

Other terms are considered to be negligible here (i.g. . surfice wave.
secondary ground effects, induction field, etc ).

In this generalized relationship, the first term (which has a value of
unity) represents the direct wave; the second term represents the reflected
wave Rewriting the expressior, in terms of relative power level we

obtain
>~ E 1 e«
o 0

c -0 {l‘lp; {cos 4 ¢+ ) s1n i) ]l
v

The term countained within the brackets 13 known as the ground effect and
tends to #lter the antenna’s {ree-space radiahhun-paltern power level (P )

in accordanc:: with the magnitude of the reflection coefficient (] p1) and v

the diffcrence in phase which exists between the inciden'. and reflected waves
(L)

- 17 -
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¥
-%

“t+ p? - 2]picos (180°-3)°

Figure 9. Vector Relationship.

From the vectur relationship shown in Figure 9, the ground-cffect term is
the vector sum or resultant of the incideat and reflected waves, as establ -

ished by the law of cousines: “

l -

v r4
4
L8

= [re0- 4210 cost .

(F +131* - 21 d cos (180°-,2} 2

| SCASRR— )

il+|;§ (cusc’.i»jsini.)]

a

The difference in phase (A) which exists between the incident and reflected
waves can be expressed thus:

':3:(&-6)'

where v = phase angle of the reflection covfficient fi. e. . the
phase change uccurring at reflection)

£ = phasc angle assyuciated with the effective change in
path length (i.c¢., betwecen the antenna's dircct wave
and the reflected wave, as eapressed in wave-length).

-1 -
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-
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OFA$EE DIFFERENCE
ANTENNA IN PATH-LENGTH
BETWEEN DIRECT & REFLECTED WAVES
(2 h €05 6)
[6 = ELECTRICAL LENGTH - (%")(z h €OS @) = m;o_se]

Figure 10, Geometry of a Microwave Antenna and its Mirror Image.

Difference 1n path length bLetween the direct and reflected waves can be
conveniently determined by assuming a2 mirror-image bencath the antenna
as shown in Figure i10. Expresscd in clectrical length:

n |

& = (2hcous € (-ZA—)
= 17 h cus ¢
)
where v = antenna height above the ground plance
Zh = distante between the intennd and 1its murror-image

32
\

= angle of the antennd’s direct wave as measured with
respect to vertical

" = operating wavelength (in free space).
Hence,

- 47 hceous € l
. A ) .
A |

i~
n
Q
]
o
~
"
2
1
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Subst:tuting this term 1into the generalized relationship.

a1
-‘mhcos:.-j
Al

P=P° [l+52+3] ol cos.‘..i'-po [l+c°+2ip| cos (g =
J
From this relationship 1t will be noticed that P _, the power level of the
antenna's free-space radiation pattern, 1s modfhied 1n accordance with a
cosine function involving antenna height above ground, expressed :n terms
of wavelength Maxima and minima are introduced within the ground-
etfect term A maximum occurs when the direct and ground- reflected
waves are in phase, a mimimum occurs when the reflected wave 1» 130
degrees out of phase or nearly so, with the direct wave

5 2 Compuiation Results

The results of computations based upon theoretical concepts presented in
Section 5 | are shown graphically in Figures 11 through 16 The data

do not include effects due to 1rregular terrain obstructions, or vegetation
Only flat terrain 1s assumed; the data should be considered representative
only for the 1dealized-terrain condition. Actual conditions encountered

in the {icid will vary widely from this basic assumption.

In these comiputations, values assigned to the complex reflechion coethi -
cient i ¢ for average ground ' j ranged from U 995 /_1_8_9_0 1o /0 77° at
elevation angles between 0.05 and 2. 0 degrees. respectively A frequency
of 2 75 Gc 1 e , midband) was assumed throughout the c2’culations It
should be noted that all calculations involving the antenna array and its
ground effect were based upon the measured free-space elevation-pattern
charactenstic shownin Figure 6 Therefore, a free-space directive

gamn of 8 db (relative tc 1sotropic) serves as the basis upon winch compar-
suns may be made with radiated power levels over flat terrain

Elevauon angle .. e , 90° - @) versus power level as a function of antznna
heigh* above ground 1s shown in Figure 11 for vertical antenna-ariay
onentation At a very small elevation angle, say 0 05 degree, the radiated
power level can be increasad 6 db by doubling the antenna height. For
instance, & power level of minus 8 db at an antenna height of 5 feet can be
increased to minus 2 db by doubling the height to 10 feet  As c¢levation
angle 15 perimitted to 1ncrease, the radiated power levels gradually increase
and {for this, the theoretically flat-terrain case! eventually reach manimae
between plus i2 9 and plus 13.8 db for antenna heights of 2-1/2 and 12-}/2
feet respectively. First maximum and first mimmum can be recdily
oboerved in Figure 1) for the vertically oriented case A maximum leve?
of only plus 8 db can be expected 1n situations where variations i1n terrain

.20 -
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5.2 ~~ Continued.

contour are almost coinparable to that of the antenna's height.

Figure 1? shows radiated power-level characteristics for an antenna-array
orientation of 5 degrees off vertical. A radiated power level of minus 9.3
db now exists at an antenna height of 5 feet; minus 3.3 db exists at 10 feet
for 0.05 degree elevation. Therefore, a 1.3-db reduction occurred between
+ ertical orientation and 5 degrees off vertical. Tilting the beam upward
and downward produces an appreciable difference in radiated power level
in the vicinity of 3 10 5 degrees in elevation. When the beam is pointed
downward 5 degrees at an antenna height of 2-1/2 feet a null in excess of
minus 10°db exists at 4 degrees elevation; when the beam is pointed upward
5 degrees, however, the level of the null increases to plus 4.5 d". At
elevation angles less than 2 degrees, upward and downward beain tilts
produce no noticeable difference in radiated power level.

Figure 13 shows the case of a stacked-discone array oriented 10 degrees
off vertical. Since the free-space half-beamwidth is 8.5 degrees, much
less power now radiates at small elevation angles. For an antenna height
of 5 feet, for instance, a radiated power level of minus 14.5 db now exists
at 0.05-degree elevation; correspondingly, at 10 feet, a radiated power
level of minus 8.5 db exists. A reduction of 6.5 db has occurred between
vertical orientation and 10 degrees off vertical orientation. Tilting the
beam upward and downward produces a difference in radiated power level
above i-degree clevation, as can be seen iu Figure 13. P 2low l-degree
elevation, upward and downward beam tilts produce no noticeable difference
in radiated power level.

A composite zet of curves for an antenna-array height of 5 feet at various
orientations appears in Figure i4. At an elevaiion angle of 0 28 degree.

the radialted power level for vertical orientation is plus 6.5 db; for 5 degrees
off vertical, the radiated power level is plus 5 db; and at 10 degrees off

- ertical, the power level is 0 db relative to isotropic.

Figure 15 shows 1 set of curves for a singlc-discone radiating element In
free space the single element's half-beamwidth is 25 degrees; orientation
angels for vertical to approximately 15 degrees off vertical do not signifa-
cantly affect the power level near the horizon and are, therefore, accomm-
odated in this set cf curves. Measured iree-space directive gain of the
single-discone element is approximately plus 3 db {or 5 db down from the
four-element array's free-space gain of plus 8 db). This reduction in radiated
rower level can be readily observed from tne curves in Figure 15 For
instance, at an antenna heighe of 5 feet and at 0. 05 degree elevation, th:
radiated power of a single-discone element is minus 13 db for any orientation
from verg "1l to about 15 degrees off vertical.




EDL-G220
Volume 2

IS T T T 1 1 T 1 F LR BRAR L} T ¥ LR
SEAN
TILTED
"~ UPMARD
10 é = %
—_ sean /5
S Y TILTED %
g s SANE 3
| \Q by e
2 X 4 :
Y LS | 1SOTROPI C :
= LEVEL .
3 :
wl . [ 3
= T .
8 v :
-s‘ * -
¢ i :
2 ) T
> . e o
w " s
« .' S
fnd -lo -e
2
Q
-15 /
-20 1 2 11 1 1 1 L1 1 3 § 2 B} R 2 %
0.0S 0.1 0.5 1.0 5.0

Antenna Heigh*.

ELEVATION ANGLE -- DEGCREES

Figure 12. Power Level as a Functicn of Elevation u;~el and



POWER LEVEL -- db (RELATIVE TO 1SOTROPIC)

EDL-G220

Volume 2
,A
° BEAN
TILTED
UPMARD
’ &
3 ey
Y .—-.“...
. ®
. I </& ISOTROPIC [ eee
. LEVEL 7
\6“ </ & BEAM
Y. TILTED
DOMMRARD
-5
y ]
D
|
]
-10 } <
“
L J
o,
.]s
-20 l
0.05 0.1 0.5 5.0

ELEVATION AMGLE -- DEGREES

Figure 13. Power Levcl as a Function of Elevation Angle and Antenna

Height.




POWER LEVEL -- db (RELATIVE TO ISOTROPIC)

EDI1-G220
Volume 2

=

ANEAN

"2 o5 0.1 0.2 0.3 0.4 0.5 1.0

ELEVATION ANGLE -- DEGREES

Figurc 14, Power {ovel as a Function of Elevation Angle and

Antenna Orientation.

- 25 -



i

EDL-G220

Volume 2
10—
HE.GHT OF SINGLE >
.| RADIATING ELEMENT
SL_h = 12% FT
()
a
2
= .
2 0 V. f
= !
;
[,
< . |
P t
- |
2 l
-V / I
-0 - ‘
Fr]
-t "
= [
=
4

t
—
w

7
|4 ~

0.05 0.1 0.5 1.0 5.0
ELEVATION ANGLE -- DEQGREES

Figure 15. Power Level of a Single Element as a Function of
Elevation Angle and Antenna IHeight,

- 26 -




EDL-G220
Volume 2
AT
ELEVATION
ANGLE
0.2°
<
a
o
o
[
[=]
w
=
>
- AT
< ELEVATION
i ANGLE
F-] 0 .0'5o
-4
1
(]
-
w
@
-d
S
=
£

6 7 8 9 10
ANTENNA HEIGHT -- FEET

w
£
W

Figure 16. Power Level as a Function of Antenna Height and Antenna
Orientation for Low Elevation Levels (Flat Farth).

- 27 -



EDL-G220
Volume 2
5. 2 --Continued

For final compariscns, Figure 16 has been plotted for two small cicvation
angles only, 0.03 and 0.20 degrees. Here the graphical data have been
plotted such that the solid lines represent characteristics of the four element
array (i.e for various orientations discussed earlier) and the dashed

lines represent characteristics associated with the single-discone element.
It should be noted that 1n this 1llustration antenna height, instead of elevation
angle, has been plotted along the abscissa Perhaps the most sigmficant
feature to observe 1n this set of curves 1; that a compromise must even-
tually be reached betwevn maximum allowable antenna height above ground
and minimum elevation angle for a specific radiated power level. For
example. from Figure 161t can be seen that the radiated power levels for
cither an array or a single element at 0. 2-degrec elevation and 2 5 -foot
antenna hcaight are cornparable to the radiated level which occurs at the
reduced elevation angle of 0 05 degree and co “respondingly increased
antenna height of 10 feet

O RESULTS OF INVESTIGATION,

A compromise must be reached betweern various system requirements to
achieve a specified effective radiated power output from a microwave
ommnidi rectional fin azimuth) antenna which 13 1n relatively close proximity
to flat earth If maximum effective radiated power 18 required at the
lowest possible elevation angle. anfenna height above ground must be

inc reased accordingly

Should maximum an*enna orientatioa ff verticel pose serious problems n
radiated power level for a particular clevation angle and antenna height,
directave gain of the antenna may have to be sacnficed for broader beam
width 1o help solve the antenna-ormentation problem. From the foregoing
data approximately 5 db 1n rzdiated power Jevel must be sacrificed

whenat appears desirable to substitute a broad-beamwidth single -discone
clement for ¢ vertically oriented four element, stacked-discone array .
However. for 10 degrees off-vertical orientation, 2 dbin radiated power
level ran actuallv be gained by substituting the single-discone element fur the
four-element array

The heart of the antenna coupling problem 1s the important effect that heigin
abuve ground has upon the antenna's radiated power level at low clevation
angles For the successful tactical operation of @ microwave ‘ammer
againgt 4 ta 'get near the tonzon, antenna coupling problems essentially
reduce to o sermes of compromises 1n antenna and system reguiremeats
under varmous environmental conditions
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