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EQUATIONS OF MOTION OF A RIGID PROJECTILE 

ABSTRACT 

The basic vector equations of motion of a rigid body are described, and 

an aerodynamic force-moment system is developed. The vector forces and 

moments due to gravity and rotation of the earth are added to the system. 

Forces and moments produced by a rocket motor are included, and the re-

sulting vector differential equations of motion of a symmetric rigid projec­

tile are derived. 

An appendix is added, which describes a set of initial conditions imposed 

on pertinent parameters for rigid body trajectory simulation . 
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A (t) 
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B (t) 
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CG 
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g -
go 
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H -
h -
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Table of Symbols 

Definition 

Axial moment of inertia at time t 

Rate of change of A at time t 

Area of jet exit 

Azimuth of line of fire (clockwise from north) 

Transverse moment of inertia at time t 

Rate of change of B at time t 

Units 

2 
lb-ft 

2 
lb-ft 

sec 

deg 

2 
lb-ft 

2 
lb-ft 

sec 

Distance from nose of rocket to the center of ft 
mass 

Reference diameter of missile 

Position of missile with respect to spherical 
earth surface 

Fin cant angle 

Deceleration due to friction 

Acceleration due to gravity 

Acceleration due to gravity (surface) 

Constant used in the conversion of thrust (lbf) 
2 

to force (lb-ft/ sec ) 

Total angular momentum 

Angular momentum divided by B 

Rate of change of h. 

7 

ft 

ft 

rad 

2 
ft/ sec 

2 
ft/ sec 

2 
ft/ sec 

2 
ft/ sec 

2 
lb-ft -rad/ sec 

rad/sec 

rad/sec 
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L 

M 

Definition 

!l at end of launch (tL} 

Specific impulse per unit of fuel mass 

Total impulse at standard conditions 

Spin damping moment coefficient 

Drag coefficient 

Yaw drag coefficient 

Fin cant coefficient 

Magnus force coefficient 

Damping moment coefficient 

Lift force coefficient 

Overturning coefficient 

Pitching force coefficient 

Magnus moment coefficient 

Magnus eros s force coefficient 

Magnus cross moment coefficient 

Length of missile 

Latitude of launch point 

Mach number 
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Units 
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rad/sec 

rad/sec 

lbf-sec 
lbm 

lbf-sec 
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1/rad 

ft 

deg 
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m (t) 

N 
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t 

T* 

Definition 

Mass of fuel at time t 

Mass of missile at time t 

Rate of change of mass at time t 

Axial spin 

Static atmospheric pressure 

Jet pressure at nozzle exit 

Distance between center of earth and body 

Distance from CG (tB) to CG of fuel 

Radius of gyration of fuel mass 

Distance from CG of missile to nozzle exit 

Distance from tail to CG of fuel 

Radius of spin rocket action 

Distance from CG of missile to nozzle throat 

Distance of CG shift due to fuel mass change 
at timet 

Time 

Effective thrust 

Motor burnout time 

Time from ignition until first motion 

Time from ignition until first motion at 
standard condition 

Motor burnout time at standard condition 

Thrust factor 
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Units 

lb 

lb 

lb/ sec 

rad/sec 

lb/ft
2 

ft 

ft 

ft 

ft 

ft 

ft 

ft 

ft 

sec 

lb 

sec 

sec 

sec 

sec 
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t 
L 

TR (t) 

T 
s 

T 

u -
u -
v -
X 

X 

X -
X -
X -
y -
y -
z -
z -

CG 

CP 

z ( t ) 
- L 

(t) 

Definition 

Time at end of launch 

Thrust prodrtced by nwtor at time t 

Spin rocket thrust 

Thrust 

Velocity of missile with respect to ground 

Acceleration of missile with respect to ground 

Velocity of missile with respect to air 

Distance from nose of missile to center of mass 
at time t 

Normal force center of pressure from nose 

Position of missile with respect to ground 

Unit vector along longitudinal axis of missile 

Rate of change of x ..... 

~at end of launch (tL) 

Unit vector perpendicular to x -
Rate of change of y -
t. at end of launch (tL) 

Unit vector perpendicular to both x and y, ... -z = {x X y) ..,. - ..., 

Rate of change of ~ 

~at end of launch (tL) 

.10 

Units 

sec 

.. 
lbf 

.. 
lbf 

' 
lb£ 

ft/ sec 

ft/ sec 
2 

ft/ sec 
2 

ft 

ft 

ft 

rad/sec 

rad/sec 

rad/sec 



Term Definition Units 

a Yaw of missile deg 

i, - Angle between the x y plane and the angular deg I --
~ thrust malalignment 

~ 

r Angle between the x y plane and the linear deg --thrust malalignment 

f::J. Linear thrust malalignment ft 

0 Angular thrust malalignment deg 

A Acceleration due to rotation of earth ft/ sec 
2 -

p Air density (varies with altitude) lb/£t
3 

¢ Angle of elevation of launch deg 

lfJ Orientation of yaw deg 
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Introduction 

The purpose of this report is to present a general a.nri flexible mathe­

matical model for rigid body trajectory simulation. 

The total vector force-mornent system presentPd is based on a coEection 

of the ideas of several authors. In a basic paper published in 1920 [Ref. 1] , 

Fowler .. Gallop, Lock, and Richmond developed the basic aerodynamic the­

.:_>ry and the concise vector notation of the pre sent report. (See also Reference 

':.i. and unpublished work by A. S. Galbraith). Fowler's aerodynamic hypoth­

esis contained a logical contradiction, as was pointed out by Nielsen and 

Synge in 1946 [Ref. 2] . Kelley, McShane, and Reno in their text on exteri-

c.,r ballistics [Ref. 4] extended the work of Nielsen and Synge and developed 

the basic aerodynamic hypothesis used in the present report. 

The force-moment equations produced by a rocket motor were obtained 

by collecting the basic principles expounded in two texts [Ref. 3, 6] . 

The resulting equations were brought into logical consistency and expressed 

in the vector notation of the pi"esent report. 

The usefulness of any mathematical model 1s determined by its ability to 

closely match the results of physical experiments over a spectrum of test 

conditions. The model presented in this report has successfully simulated 

free flight rocket trajectories over a wide spectrum of test conditions. A 

limited amount of simulation has been performed on conventional spin stabi­

lized projectiles, and the results are quite encouraging. 
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BASIC LAWS OF MOTION O.F A RIGID BODY 

Consider a ground-fixed, right-handed coordinate system, whose origin 

is located at the center of mass of a rigid body, as shown in Fig. 1 below. 
2 

3 
Figure 1. 

Assume that the body can be considered a solid of revolution, and as sign 

to the axis of rotational syrnmetry a unit vector x in the chosen coordinate -
system. Since the rigid body is to represent a rocket or shell, the direction 

of x f:rorn tail to nose is defined as positive. -
The total angular momentum of the body can now be expressed as the sum 

of two vectors in the ground-fixed coordinate system: 

(a) 

(b) 

The angular momentum about x . ..... 

The total angular momentum about an axis perpendicular to ~· 

14 



The angular momentum about x has the magnitude AN, where A is the -
moment of inertia of the body about ~ and N is the axial spin or angular 

velocity about x [ 
1

] , in radians per second, hence, the total angular momen­-tum about x can be represented by the vector AN x. - -
The total angular velocity of the body about an axis perpendicular to x is -

given by the vector (~X~· where the superscript dot refers to differentia-

tion with respect to time. Since the body possesses rotational symmetry, 

every axis through the center of mass and perpendicular to xis a principal -axis of inertia. If the moment of inertia of the body about any transverse 

axis is B, the total angular momentum about an axis perpendicular to x has -
the vector representation B (~X~· 

Let H denote the total vector angular momentum of the body. The vector -
representation of His: -

( l. 1) H = ANx + B (x X x\ 
- - - ::J 

Let !l= !i/B, and divide both sides of Equation {1. l) by B. 

{ l. 2) h = ABN x + (x X x\ 
- - - :;1 

Let ~M be the sum of the vector applied moments, and set ~M equal to - -
the vector rate of change of angular momentum. 

(1. 3) li = ABN x + ABN x + (x X x\ = ~ (M/B) 
- - - - '::.1 -

[ 1] In this report a positive N is defined as rotation which would cause a 

right-hand screw to advance in the direction of~· 

15 

I , ,-·· ·' 



In addition to these basic equations, two additional expressions are needed 

for use in the force-moment system. 

(1.4) (!l.,X~=~ 

(1.5) (!l.,.~ 
AN 
B 

Equation ( 1. 3) is the basic vector differential equation of angular motion 

in a fixed coordinate system. The basic equation of motion of the center of 

mass is: 

( 1. 6) ~ = :E (l'/m), 

where ~F denotes the sum of the vector applied forces, m is the mass of -the body, and u is the vector acceleration of the center of mass in the fixed -
coordinate system. 

It is now necessary to determine the forces and moments which comprise 

~F and :EM. In the next section the basic aerodynamic forces and moments - -are considered; those of non-aerodynamic origin are deferred until a later 

section. 

AERODYNAMIC FORCES AND MOMENTS 

A force or moment is defined to be aerodynamic in origin if it is produced 

by interaction of a rigid body and its atmospheric medium. The aerodynamic 

forces and moments presented in this report are those considered necessary 

to form a logically consistent mathematical model for a rigid body possessing 

rotational symmetry. 

16 



DRAG 

Drag is historically defined as resistance to forward motion of a projec­

tile. The magnitude of drag force is represented in classical exterior bal-
2 2 

listie s as pd KD v , where p is the density of the atmospheric medium, 
0 

d is the reference diameter of the projectile, v is the forward velocity of the 

center of mass with respect to the air, and KD is a dimensionless number 
0 

called the drag coefficient. If the forward velocity with respect to air is 

represented by the vector v, then the direction of drag is - v. - -
Figure 2 illustrates the general case of a projectile with the unit vector 

~pointing along the axis of symmetry, and the forward velocity represented 

by v . The angle between v and x, denoted by a, is traditionally called the - - -angle of yaw. 

Yaw increases drag on a projectile by presenting to the air stream an 

enlarged cross-sectional area. The effect of yaw on drag is accounted for 

by allowing KD to increase with yaw squared. The yaw drag coefficient is 
0 

denoted by KD , and the increase in the drag coefficient due to yaw is then 
a 

z given by KD a . 
2 

The effective drag coefficient is (KD + KD a ), Based on 
a o a 

the above definitions, drag force is represented by the vector equation: 

{2. 1) DRAG FORCE = 

SPIN DAMPING MOMENT 

2 2 
pd (KD + KD a ) 

o a 
vv -

The spin damping moment is an aerodynamic moment produced by vis­

cous friction of the air on ths surface of a spinning shell, and is a couple 

tending to destroy axial spin. (See Figure 3.) 

17 



4 
The magnitude of the spin damping moment is given by pd K A Nv, where 

K A is a dimensionless number called the spin damping moment coefficient. 

Since the spin damping moment opposes axial spin, its direction is given by 

- x. The vector representation of the spin damping moment is given by: -
4 

(2. 2) SPIN DAMPING MOMENT=- pd KA N v ~ 

Replacing N with its equivalent from Equation ( 1. 5): 

4 
(2. 3) SPIN DAMPING MOMENT = - e~ B K A v (!l · ~) ~ 

FIN CANT MOMENT 

If a projectile is symmetrically finned, and the fins form equal non-zero 

angles with the axis of symmetry, a pure spin generating couple will be pro­

duced during flight. The fin cant angle, E, is defined as positive if it gener­

ates a positive spin. Figure 4 illustrates the fin cant moment for a positive 

fin cant angle. 

The magnitude of the fin cant moment is given by pd
3 

KE E v
2

, where KE 

is the dimensionless fin cant moment coefficient, and E is the fin cant angle. 

The direction of the moment is x for positive values of E. Accordingly, the .. 
vector representation of the fin cant moment is: 

3 2 
(2. 4) FIN CANT MOMENT = pd KE E v ~ 

LIFT FORCE 

Aerodynamic lift is created by an asymmetric air flow over a yawed body. 

The magnitude of the lift force is given by pd
2 

KL v 
2 

sin a, where KL is the 

dimensionless lift force coefficient. The lift force acts in the plane of yaw 

and is perpendicular to the direction of motion of the projectile. 

18 



Figure 5 illustrates the vector representation of the lift force. Consider 
2 

the vector [ v X (x X v)] . This vector has the magnitude v sin a, and is - - -
perpendicular to v in the plane containing v and x. The vector representa ... - - -
tion of lift force is then given by: 

2 
(2. 5) LIFT FORCE ~ pd KL [ ~X (~X Y.)] 

Expanding the triple vector product, and rewriting: 

2 2 
(2. 6) LIFT FORCE :::: pd KL [ v x - (v . xl v] - - ·-
The vector sum of the lift and drag forces can be expressed as a total re­

sistance vector. I£ the components of vector resistance are resolved paral­

lel and perpendicular to x instead of v, the axial drag force and normal force - -
result. The normal force is the component of the vector resistance that pro-

duces the overturning moment. 

OVER TURNING MOMENT 

If the line of action of the aerodynamic normal force does not pass through 

the center of mass of the projectile, an overturning moment will be produced. 

The magnitude of the overturning moment due to normal force is given by 

pd
3 

KM v
2 

sin a, where KM is the dimensionless overturning moment coef­

ficient. The overturning moment is perpendicular to the plane of yaw, or to 

both ~and~· as is illustrated in Figure 6. The vector (~X~ has the proper 

direction, and in magnitude is equal to v sin a. The overturning moment 

vector is then given by: 

(2. 7) OVER TURNING MOMENT 
3 

= pd KM v (~X :;) 

19 



If the line of action of normal force inter sects the axis of symmetry at a 

point behind the center of mass, the overturning moment acts as a restoring 

moment. This situation is met by allowing KM to be negative. The addition 

of fins at the rear of a body of revolution moves the center of pressure of the 

norrnal force to the rear, and usually results in a negative KM, or restoring 

moment. 

MAGNUS FORCE 

The Magnus force arises from the interaction of the air stream and the 

boundary layer of a yawed spinning body. The magnitude of the Magnus force 

is given by pd
3 

KF N v sin a, where KF is the dimensionless Magnus force 

coefficient. The direction of the Magnus force is perpendicular to the plane 

of yaw and is represented by the vector (~X yj for positive values of N, as 

illustrated in Figure 7. The Magnus force is represented by the vector: 

3 
(2. 8) MAGNUS FORCE= pd KF N (~X~ 

RE::placing N with its equivalent from Equation ( l. 5): 
3 

(2. 9) MAGNUS FORCE = pdA B KF (!l. ~ (~X yj 

MAGNUS MOMENT 

If the line of action of the Magnus force does not pass through the center 

of mass of the projectile, a Magnus moment will be produced. The magni­

tude of the Magnus moment is given by pd
4 

KT N v sin a, where KT is the 

dimensionless Magnus moment coefficient. The Magnus moment lies in the 

plane of yaw, and is perpendicular to x. The vector [ x X (x X v\] has the 
.. .. - :..J 

magnitude v sin a and has the proper direction, as illustrated in Figure 8. 

The Magnus moment is represented by the vector: 

(2. 10) MAGNUS MOMENT = pd
4 

KT N ( ~X (~X Y,)] 

20 
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· . . . 

Again replacing N with its vector equivalent, and expanding the vector 

triple product: 
4 

(2. 11) MAGNUS MOMENT = pd A I?_ KT (h · x) [ (v • x) x - v] -- - ---
PITCHING FORCE 

The pitching force is a force opposing any change in the direction of the 

longitudinal axis of a projectile. If the unit vector x is in motion, its rate -
of change, X. is in the plane of motion, and is perpendicular to X. If I xl - - -
represents the scalar magnitude of x, the magnitude of the pitching force is .. 
pd

3 
K

5 
v ljl, where K

5 
is the dimensionless pitching force coefficient. The 

direction of the pitching force is parallel to x and oppositely sensed, as is -
illustrated in Figure 9. The vector representation of the pitching force 

follows: 

) 0 
3 . 

(2. 12 PITCHING F RCE = - pd K
5 

v ~ 

Replacing x with its equivalent from Equation ( 1. 4): - 3 
(2. 13) PITCHING FORCE= - pd K

5 
v (h X x) - -

DAMPING MOMENT 

The damping moment is a moment opposing angular velocity of the long­

itudinal axis of a projectile, and is the aerodynamic moment associated with 

pitching force. If the unit vector x is in motion, its vector rate of change is -x, and the transverse angular velocity vector is (x X x ). The magnitude of - - -
the damping moment is pd

4 
KH v ljl. where KH is the dimensionless damp-

ing moment coefficient. The direction of the damping moment is parallel to 

(~X :i) and oppositely sensed, as is illustrated in Figure 10. The damping 

moment is represented by the vector: 

(2. 14) DAMPING MOMENT=- pd
4 

KH v (x X x) - -
21 



Replacing x with its vector equivalent, and expanding the resulting triple -vector product: 

4 
(2. 15) DAMPING MOMENT= - pd KH v [h- (h. x) x] ... - ....... 

MAGNUS CROSS FORCE 

The Magnus cross force is a magnus force arising from a transverse 

angular velocity of the shell axis. The magnitude of the Magnus cross force 

is pd
4 ~F N l.il• where KXF is the dimensionless Magnus cross force co­

efficient. The direction of the Magnus cross force is parallel to the vector 

(x X :X), and has the same sense for positive values of N, as shown in Figure - -
11. The Magnus cross force is represented by the vector: 

(2. 16) MAGNUS CROSS FORCE = pd
4 

KXF N (~X ~ 

Replacing Nand :X with their respective vector equivalents, and expand--
ing the resulting triple vector product! 

4 
(2. 17) MAGNUS CROSS FORCE = pd A B KXF (~. ~ [~- (!l. ~ ~ 

MAGNUS CROSS MOMENT 

The Magnus cross moment is the aerodynamic moment associated with 

the Magnus cross force. The magnitude of the Magnus cross moment is 

pd
5 

KXT N ljl. where KXT is the dimensionless Magnus cross moment co­

efficient. Since the direction of the Magnus cross moment is parallel to :X -and oppositely sensed, as is shown in Figure 12, the Magnus cross moment 

is represented by the vector: 

(2. 18) MAGNUS CROSS MOMENT= - pd
5 

KXT N ~ 

22 
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·-

Replacing Nand :X with their respective vector equivalents: - d
5 

B 
(2. 19) MAGNUS CROSS MOMENT = - p A KXT (!!.,. ~ (!l X~ 

The dimensionless aerodynamic coefficients are functions of many dimen­

sionless power products, including the dimensionless shape parameters, 

Reynolds number and Mach number. Aerodynamic coefficients are defined 

with reference to a specific set of shape parameters, and may be expressed 

as functions of Mach number. Additional aerodynamic coefficients may be 

·included to account for the variation of aerodynamic forces and moments with 

yaw. 
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DRAG FORCE 

DRAG FORCE = 
2 

- - pd (KD + KD 
o a 

SPIN DAMPING MOMENT 

z -
SPIN DAMPING MOMENT = 

24 

2 
a ) v v -

X -

Figure 2. 

v -

. ' 
_t 

. 
Figure 3. 



FIN CANT MOMENT 

X .... 

/-----------~------------~ v 

z -
FIN CANT MOMENT = 

25 

.... 

Figure 4. 



LIFT FORGE 
Normal 
Force 

LIFT FORCE = pd
2 

KL [ v X (x X v)] 
.... --

OVER TURNING MOMENT 

z .... 

Nprmal 
Force F L -

OVER TURNING MOMENT = MM -26 

X -

X -

Figure 5. 

v -

Figure 6. 
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MAGNUS FORCE 

z -
MAGNUS FORCE = 

3 
= pd KF N (x X v) - -

MAGNUS MOMENT 

z -
MAGNUS MOMENT 

4 
= MT = pd KT N ( x X {x X v)] 

.... - -
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PITCHING FORCE 

PITCHING FORCE = 
3 . 

= - pd K
5 

v ~ 

DAMPING MOMENT 

\. 
z -

DAMPING MOMENT - MH -
·;t8 

X .. 

X ... 

Figure 9. 

Figure 10. 
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MAGNUS CROSS FORCE 

z -
X -

FXF - X -

MAGNUS CROSS FORCE = F XF = pd
4 

KXF N (~X ~ -
MAGNUS CROSS MOMENT 

z -
\. 

X -
MAGNUS CROSS MOMENT = M 

XT -
29 
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GRAVITY AND ROTATIONAL ACCELERATIONS 

The acceleration due to gravity is caused by the force of gravitational 

attraction between a body and the earth. The magnitude of gravitational force 

is proportional to the mass of the body, and inversely proportional to the 

squared distance between the centers of mass of the body and of the earth. 

The line of action is directed from the mass center of the body to the center 

of mass of the earth. 

It is assumed that a spherical earth is a sufficiently good approximation 

for the purpose of trajectory simulation. The position of the missile center 

of mass is specified by the vector X in the ground fixed coordinate system . .... 
The force of gravity is approximated by the vector: 

xl 

( 3. 1) 
R2 

(X
2 

+ R) ~ 
::: -g -0 3 

r 

x3 

r = [X 2 + (X + R)2 +X 2] 1/2 
1 2 3 

where g = value of gravitional acceleration at point of launch 
0 

R = radius of the earth at point of launch 

r = distance between center of earth and body 

X 
1

, X
2

• X 
3 

= components of :!i, in the ground fixed coordinate system. 

30 
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In the derivation of the force-tnoment system, all vectors have been ref­

erenced to the gronnd fixed coordinate system. Since the earth is spinning 

about an axis passing through its center of mass, the acceleration produced 

by rotation of the earth must be added to the force equation. The accelera­

tion due to rotation of the earth is represented by the vector: 

(3. 2) A - = 

* The X.' s are defined by the following equations: 

(3. 3) 

where 

x.
2 

= 2 0 sin L 

0 = Angular velocity of the earth (radians/ sec) 

L = Latitude of launch point 

A = Azimuth of fire measured. clockwise from North 
z 

u
1

, u
2

, u
3 

= Components of~· the vector velocity of the missile with 

respect to ground 

* The X.' s given are for the northern hemisphere. For the southern hemi­

sphere replace L by (-L) . 
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JET FORCES AND MOMENTS 

The simulation of free flight rocket trajectories necessitates the inclusion 

in the simulator of the forces and moments produced by the rocket motor. 

The rocket is assumed to be a rigid body, and all jet forces are assumed to 

originate at the nozzle. 

THRUST 

The thrust of the rocket motor is a vector assumed rigidly attached to 

the rocket, and is allowed to vary in magnitude as a function of time. 

Consider two thrust-time functions as illustrated in Fig. 13 below. 

THRUST 

T 

TR 
,---------

/ 
/ 

/ 
/ 

tBST 

tB 

Figure 13. 
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The relevant symbols are defined below: 

A -- Area of jet exit 
e 

F[ ] indicates "a function of" 

ISP ::: Specific impulse per unit of fuel mass 

IST ::: Total impulse at standard conditions 

m = Mass of fuel 
f 

P = Static atmospheric pressure 
a 

P = Jet pressure at nozzle exit 
e 

T* = Effective thrust 

tB = Motor burnout time 

tB M = Time of ignition 

tBMST :: Time of ignition at standard conditions 

tBST = Motor burnout time at standard conditions 

T F = Thrust factor 

T R (t) "" Thrust produced by motor at time t 

T = Thrust 

Let: 

(4. 1) 

The thrust of the rocket motor as a function of time may be linearly 

transformed, maintaining the same total impulse, by the following equation: 

(4. 2) T 
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The force due to jet pressure at the rocket nozzle is given by P A . The 
e e 

static atmospheric pressure produces a force equal to-P A • The total 
a e 

thrust contributed by pressure is then given by (P - P ) A . 
e a e 

The effective thrust of the rocket motor is the algebraic sum of the com­

ponents considered. and is given by: 

(4. 3) T* = T m ( ISP ) ( tBST - tBMST) T + (P - p ) A 
F f IST tB - tB M e a e 

The velocity-time history of a rocket during the burning period is repro­

duced in the simulator by linearly transforming the standard thrust curve in 

time, and by iteratively determining the value of TF required to match the 

observed burnout velocity. 
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Figure 14 is a diagram of the thrust vector in the missile fixed coordi-

nate system. 

I 
I 

I 

I 
I 

I 
I 

-I 

/ 

z -
Figure 14. 

y - T* -

The point 0
1 

represents the position of the center of mass, and o
2 

repre­

sents the position of the throat of the rocket nozzle. The distance from 0
1 

to 

0
2 

is rt' and is defined as a positive number. 

Two types of rocket thrust malalignments are considered in this report. 

The first is historically defined as linear malalignment, in which the nozzle 

is displaced from the axis of symmetry of the rocket. The amount of dis­

placement is denoted by f:::J., and the direction by an angle r, measured clock­

wise from the plane containing x and y. ... -
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The second type is defined as angular rnalalignment, in which the direc­

tion of effective thrust forms a fixed angle with the axis of symmetry. This 

direction in the missile fixed coordinate system is specified by two angles; 

the magnitude of angular rnalalignment, denoted by 6, and the direction angle 

y • rneasured clockwise fron1 the plane containing x and y. - -
The vector thrust force can be resolved into components along the missile 

fixed coordinate system, and the following expression results: 

(4. 4) THRUST FORCE = g T* (cos 6 x + cos 1 sin 6 y + sin 1 sin o z) 

c - - ;;,I 

Consider a vector normal to the thrust vector, pas sing through 0
1

, and 

directed frotn 0
1 

toward the vector thrust. For small values of the angle 6, 

this vector is approximated by: 

[{b.. cos r + rt cos ?' sino) .l + (6. sin r + rt sin 1 sin 6) ,!] 

The vector thrust moment is the cross product of this vector onto the 

vector thrust force. If the indicated expansion is performed, the following 

equation results: 

(4. 5) THRUST MOMENT = g T* H (D. cos r + r cos I sin 6) sin I 
c t 

- (6. sin r + rt sin y sin 6) cos y ] sin 6 x + (6. sin r + r sin 1 sin o) cos 6 y 
- t -

- (D. cos r + r t cos 1 sin o) cos o ~ 

Equations (4. 3), (4. 4) and (4. 5) represent the total vector force and mo­

ment due to the thrust of the rocket motor. 
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JET DAMPING 

Consider a burning rocket which has acquired a transverse angular veloc­

ity. In addition to a loss in mass, the rocket is also losing transverse 

angular momentum. It is assumed that the jet stream passes from subsonic 

to supersonic velocity at a point midway between the throat and the exit of 

the nozzle. The nozzle is then removing transverse angular momentum 

from the system at the rate m r r l X I' where r is the distance from the 
e t .. e 

rocket center of n~ass to the nozzle exit. The effect is analogous to a damp-

ing force and moment, and the terms are therefore called jet damping force 

and motnent. 

The jet damping force has the magnitude ( 1L - rn r ) I xl. and the direc-
rt e ... 

tion is parallel to x. The jet damping force is represented in Figure 15. -
(4. 6) JET DAMPING FORCE = (JL 

r 
t 

rU r ) X e ... 

Replacing x with its equivalent from Equation ( 1. 4): -
(4. 7) JET DAMPING FORCE =- (_!L - rn r ) (h X x) 

rt e - ... 

Figure 16 illustrates the jet damping moment associated with the jet damp­

ing force. The magnitude of the jet damping force is given by {B - m r r ) 
e t 

It is parallel to the vector {x X x ), and oppositely sensed, .. -
(4. 8) JET DAMPING MOMENT,~ - (B - rn r r ) (x x x) e t ..... 

Replacing i with its vector equivalent, and expanding the resulting triple 

vector product: 

(4. 9) JET DAMPING MOMENT = - (B - m r r } [ h - (h · x) x ] 
e t - ... ... ... 
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SPIN ROCKET MOMENT 

Spin rockets are utilized for imparting spin to a ballistic rocket after it 

has left the launcher. If a symmetric bank of spin rockets is mounted per­

pendicular to the longitudinal axis of the rocket, the result is a pure spin 

generating couple. The total thrust of the spin rockets is denoted by T , and 
s 

the radius of spin rocket action by r . The magnitude of the spin rocket ma­
s 

ment is given by g r T , where g is a constant used in the conversion of 
c s s 2 c 

thrust (lbf) to force (lb-ft/ sec ). The direction of the spin rocket moment is 

x for a positive spin (Fig. 17). The vector representation of the spin rocket -
n1orne nt is: 

(4. 10) SPIN ROCKET MOMENT = g r T x 
c s s ..... 

The thrust of the spin rockets is linearly transformed in time by the same 

method previously described for the rocket motor. 
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JET DAMPING FORCE 

FJD ... 
JET DAMPING FORCE = FJD = (! 

- t 

JET DAMPING MOMENT 

\. MJD .... X .. 
FJD -

- m r ) x e _.,. 

X -

JET DAMPING MOMENT= MJD =- (B- m r e rt) (~x ~ .. 
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SPIN ROCKET MOMENT 

y - X -

/-----------~------------~ v 

:z; -

SPIN ROCKET MOMENT = MSR = g r T x 
c s s--
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EQUATIONS OF MOTION 

In the previous four sections, the forces and moments acting on a shell 

or rocket have been derived. If these forces and moments are summed and 

substituted in equations ( 1. 6) and ( 1. 3), the following vector differential 

equations of motion result: 

( 5. 1) u .... = 

4 

+ P! ~ KXF (~. ~ [ h_- (!l_. ~ ~ + !, 

g T* 
+ A+ _c_ (cos 6 x + cos )' sin 6 y + sin /' sin 6 z) 

- m - - -

+ 1 
( ~ - rn r ) (h X ~ 

m rt e -

41 



( .5. 2) Ji ::: - ~ 
B 

+ pd4 
A 

+ 
g T* 

c 
B 

,4 
K v (v X x} - ~ KH v [ h - (h . x\ x 1 

M ..,.. - B - ..,.. ~~ 

KA v (h. x) 
..... - d

3 
2 +~ K € v X 

B E -+ 

X -
{[ ( .6. cos r + r t cos 1 sin 6) sin 1 

(A sin r + r t sin 1 sin 6) cos 1 ] sin 6 

+ (A r + rt sin{ sin 6) cos 6l-(A cos r 

+ rt cos 1 sin o) cos 6 ~ 

. 
B- r r 

- (--B-e-"---..._t) [ h - (h . x) x] - - ...... 
In addition to these two basic differential equations, the equations relat­

the (x, y, z) coordinate system and the ground fixed coordinate system 
.... --

are needed. Equation (1. 4) gives x ,,-; (h X The rates of change y and - ..... -
the ground fixed system are given by: 
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( 5. 3) 

( 5. 4) 

The position of the missile center of mass in the ground fixed coordinate 

system is represented by the vector X, and is given by the following integral -
equation: 

( 5. 5) X = - u dt -
The missile center of mass position with respect to the spherical earth 

surface is denoted by E. The vector E is related to the radius of the earth, - -
R, and to ~ by the following: 

( 5. 6) E = -

R 

R 

43 



The physical properties consisting of mass, center of n1as s, and moments 

of inertia rnust be considered functions of tilne for rocket trajectory simula­

tion, The rate of change of mass with respect to tirne is given at any instant 

by the ratio of motor thrust to motor specific impulse. The change in center - • 

of mass and axial moment of inertia are .represented by linear functions of 

time, and the transverse moment of intortia is found by applying the parallel 

axis theorem to the changing mass. The following equations and definitions 

sumn1arize the method used to account for time variation of the rocket's phys-

ical properties. 

( 5. 7) 

( 5. 8) A (t) = :rn (t) 

( 5. 9) 

(5. 10) 

( 5. 11) 

( 5. 12) 

. 
• • 
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( 5. 13) 

Where r 
1 

= Distance from CG (tB) to CG of fuel 

r 
2 

= Radius of gyration of fuel mass 

r 
3

(t) = Distance of CG shift due to fuel mass change at time t 

XCG (t) = Distance from nose of missile to center of mass at 

timet 

YAW AND ORIENTATION OF YAW 

The yaw of a projectile, denoted by a, is the included angle between the 

vectors x and v, and is always defined as a positive quantity. Since the dot - -
product of two vectors equals the product of their magnitudes multiplied by 

the cosine of their included angle, the magnitude of yaw is given by: 

(5. 14) 
-1 

a= Cos 

The orientation of yaw is the angle between the plane containing both v -and x and a vertical plane containing v, and is measured clockwise from the ... -
vertical plane. Yaw orientation is denoted by ~, and is given by the following 

expression: 

( 5. 15) .1. s· -1 
't' = 1n 

2 2 1/2 2 1/2 
x

3 
( v - v ) - v ( 1 - x ) 

3 3 3 

v sin a 
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<V becomes indeterminate when a is zero in Equation ( 5. 15). If <V is de­

fined as zero when a equals zero, Equation ( 5. 15) becomes continuous for 

all values o{ a. 

Robert F. Lieske 

IG?A/ t /jl GfE/ 
Robert L. McCoy '-ff--
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APPENDIX 

INITIAL CONDITIONS. 

The launching phase of a burning rocket is characterized by a period of 

constrained motion prior to launching into free flight. It is as smned that 

both the rocket and the launcher are rigid structures. It is further assumed 

that the rocket can acquire no angular momentum while on the launcher, and 

that the center of mass is constrained to move in a straight line on the launch­

ing rail. 

The forces permitted to act on the rocket during launching are thrust, 

drag, gravity, and rocket-launcher friction. If ¢ is the angle of elevation of 

the launcher, and F is the deceleration due to rocket-launcher friction, the 

following equations de scribe the motion of the rocket center of .. mass during 

the launching phase: 

(A. 1) u = -

g T* 
c 
m 

cos ¢ 
2 

E.£_ 
m 

2 
- g sin ¢ cos ¢ - F cos ¢ 

0 

g T* 
c 
m 

sin¢ .e.l 
m 

2 
KD v sin¢ 

- g sin ¢ - F cos ¢ sin ¢ 
0 

0 

49 

• 



If the projectile is launched from a gun tube, the launching phase may be 

omitted, and an initial velocity is assumed at end of launch. 

At time tL' the initial conditions of axial spin and transverse angular 

momentum are as signed. The direction cosines of the missile axis of sym­

metry are given by the components of x. The unit vector y is defined per-- -pendicular to x, and lies initially in the vertical plane containing x. The - -unit vector z is then given by (x X y). The initial values of x, y, and z are - -- -- -given by the following equations: 

(A. 2) 

(A. 3) 

(A. 4) 

X 
-(t ) 

L 
= 

= 

= 

h
2 

+ h
3 

are the end of launch components of !l, with respect to the shell 
1 1 

fixed axis system. The initial h used for simulation must include the effects -
of initial angle of elevation of the trajectory and initial axial spin. The com­

ponent of !l_ due to axial spin is A: ~ The initial value of !l,. at end of launch 

i.s given by: 

xz 
h2 + AN 

xl B xl 
1 

(A. 5) h h2 + AN 
= x2 -(t ) B 

L 1 

h3 
1 
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Values of _!;;(t ) are chosen so as to allow the simulator to match the ob­
L 

served initial angular momentum of the projectile . 

51 



, 



. . 

• 

• 

• < 

-, 

DISTRIBUTION LIST 

No. of 
Copies Organization 

20 Cormnander 
Defense Documentation Center 
ATTN: TIPCR 
Cameron Station 
Alexandria, Virginia 22314 

l Cormnanding General 
U. S. Army Materiel Command 
ATTN: AMCRD-RP-B 
Washington, D. C. 20315 

1 Cormnanding Officer 
Frankford Arsenal 
Philadelphia, Pennsylvania 19137 

3 Commanding Officer 
Pieatinny Arsenal 
Dover, New Jersey 07801 

1 Commanding General 
White Sands Missile Range 
Las Cruces, New Mexico 88002 

1 Cormnanding General 
U. S. Army Missile Command 
Redstone Arsenal, Alabama 35809 

l Cormnanding General 
U. S. Army Mnni tions Command 
Dover, New Jersey 07801 

1 Cormnanding General 
U. S. Army Weapons Cormnand 
Rock Island, Illinois 61200 

1 Commanding General 
U. S. Army Engineer Research and 

Development Laboratories 
ATTN: STINFO Branch 
Fort Belvoir, Virginia 22060 

l Commanding General 
U. S. Army Electronics Command 
Fort Monmouth, New Jersey 07703 

No. of 
Copies Organization 

53 

1 Cormnand~ng General 
U. S. Army Combat Developments 

Command 
Fort Belvoir, Virginia 22060 

l Cormnanding Officer 
U. S. Army Artillery Combat 

Developments Agency 
Fort Sill, Oklahoma 73503 

1 Commanding General 
U. s. Army Combined Arms Combat 

Developments Agency 
Fort Leavenworth, Kansas 66027 

l Cormnanding General 
U. S. Continental Army Corr~and 
Fort Monroe, Virginia 23351 

l President 
U. S. Army Armor Board 
Fort Knox, Kentucky 4ol20 

1 President 
U. s. Army Artillery Board 
Fort Sill, Oklahoma 73503 

l President 
U. S, Army Infantry Board 
Fort Benning, Georgia 31905 

l Commandant 
U. s. Army Armor School 
Fort Knox, Kentucky 40120 

l Cormnandant 
U, S. Army Artillery and Guided 

Missile School 
Fort Sill, Oklahoma 73503 

1 Commandant 
U. S, Army Infantry School 
Fort Behning, Georgia 31905 



No. of 
Copj_es 

1 Professor of Ordnance 
U. S. t-1UHary Academy 
Wect Point, New Yorl<: 10996 

Chief, Bureau of Naval WeapcmB 
ATTN: DLI -· 3 
Wach:i.ngton1 D. C. ~?0360 

t~ Commander 

1 

1 

1 

1 

1 

. U. S. Naval Ordnance L(\.borntory 
Wlli te Oak 
Silver Spring, Maryland 20910 

Conunanding Officer 
U. s. Naval Ordnance Laboratory 
Corona, California 91720 

Commander 
U. f), Naval Ordnance Teet f;tation 
C: hi na Lake, Cali.fornia 9 35 57 

~3uperJ.ntendent 

U. S. Naval Poutgradnate fichool 
Monterey, California 

Di.r(o<:tox· 
U. D. N<:.t·~ral Hese<u:ch I.:J.OO.t'H tor,\' 
A'f'-Fi'T: Code 49;?. 
'V'l as hington, D. C • 20 '/)0 

Commander 
tJ. f~. Naval WeaponH Laboratory 
Dahlgren, Virginia 22)+1.!-U 

Nn, o. 

j_ 

~-

10 

Organization 

John F. Kennedy Space Center, NASA 
A'I"l'J\J; Technical Library 
Cocoa Beach, Florida 32931 

A11stral:i.an Group 
c/o Military Attache 
2001 Connecticut Avenue, N. W. 
\;J"ash:Lngton, D. C. 20008 

~I'he Scientific Information 
Officer 

Defence Research Staff 
British Embassy 
3100 Massachusetts Avenue, N. W. 
Washington, D. C. 20008 

Defence Research Member 
Canadian ,Joint Staff 
~~~~-50 Massachusetts Avenue, N, vi, 
Washington, D. C. 20008 

A.:be~5.!een Proving Ground 

Chief, TIB 

Air Force Liaison Office 
.Marine Corps Llaison Office 
Navy Liaison Office 
CDC Li.aison Office 

JJ&PE Branch Library 

U. [). Army ~I'est and Evaluation 
Cornma,nd 

.. 
; 



.. 
. , .., .... ~ 

'AD Accession No---------- UNClASSIFIED AD--------- Accession No.---------- m:CIASSIFIED 
Ballistic Research Laboratories, APU Exterior ballistics-Squation~ Ballistic Research Laboratories, APG Exterior ballistics-Equatiom. 
EQUATIONS OF MOTION OF A RIGID PROJECTILE of motion EQUATIONS OF MOTION OF A RIGID PROJECTILE of motio:o. 
Robert F. Lieske, Robert L. McCoy Bodies of revolution- Robert F. Lieske, Robert L. McCoy Bodies of revolution-

BRL Report 1244 March 1964 
Equations of motion Equations of motio~ 

::iigid body trajectory BRL Report 1244 }!arch 1964 Rigid body trajectory 
simulation. sin~lation. 

RDT & E Project No. Jl.l5232.0lA231 
UNCLASSIFIED Report 

The basic vector equations of motion of a rigid body are described, ana an 
aerodynamic force-moment system is developed. The vector forces and moments due 
to gravity and rotation of the earth are added to the system. Forces and moments 
produced by a rocket motor are included, and the resulting vector differential 
equations of motion of a symmetric rigid projectile are derivea. 

An appendix is added, which describes a set of initial conditions imposed on 
pertinent parameters for rigid body trajector; simulation. 

illlT & E Project No. 1M523·601A2.S7 
UNCLASSIFIED Report 

The basic vecto"' equations of motion of '3. rigid body aYe d.escribed, and. "-ll 

aerodynamic fo"'ce-moment system is developed. The vector foc-ces and moments 6.:re 
to gravity and rotation of the earth are added to the system. Forces "l.nd moments 
prod:rced by a rocket motor are included, and the resulting vector differential 
equations of motion of a symmetric rigid projectile are derived. 

An appendix is added, which describes a set of initial conditions imposed on 
pertinent parameters for rigid body trajectory s~ulatio~. 

AD---------- Accession No.---------- UNClASSIFIED ----r-;;;n ···------ Accession No.---------- mrCIASSIFIED 
Ballistic Research Laboratories, APG 
EQ.UATIONS OF MOTION OF A RIGID PROJECTILE 
Robert F. Lieske, Robert L. ~~cCoy 

Exterior ballistics-Equation~ Ballistic Research Laboratories, tLPG ~xterior ballistica-EquatiorS 
of motion EQUI\.TIONS OF NOTION OF A RIGID PROJ3CTILE of motio~ . 

BRL Report 1244 March 1964 

!RDT & E Project No. 1M523601A287 
!UNCLASSIFIED Report 

~odies of revolution­
Equations of motion 

Rigid body trajectory 
simulation. 

The basic vector equations of motion of a rigid body are described, and an 
'aerodynamic force-moment system ~s develope·"-· The vector forces and. moments d.ue 
to gravity and rotation of the earth are added to the system. Forces and moments 
produced by a rocket motor are included, and the resulting vector differential 
equations of motion of a symmetric rigid projectile are derived.. 

An appendix is added, which describes a set of initial conditions imposed on 
pertinent parameters for rigid body trajectory sL~ulation. 

Robert F. Lieske, Robert l. McCoy 

BRL Report 1244 ~·!arch 1964 

RDT & E Project No. l!-15232-01A22-7 
UNClASSIFIED Report 

Bodies of revolution­
Squations of motion 

Rigid body trajectory 
simulatior:. 

Ttce basic vector equatiorcs of motion of a rigid bod.y are described, an:l an 
aerodyna~ic force-moment system is developed. The vector forces arrd moments due 
to gravity and rotation of the eartL are added to the system. Forces and moments 
produced by a rocket motor "ire i~cluded, and. the resulting vector differential 
equations of motion of a symmetric rigid projectile a~·e derive:l. 

An appendix is added, which describes a set of initial conditions imposed on 
pertinent parameters for rigid body trajectory simulation. 

- __ I 


