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ABSTRACT

In this investigation the general solution is derived for the
problem of the optimum linear estimation of a sampled stocnastic
process, when the transition and output matrices of the model of the
process are random parameters that are independent from one sample point
to the next with known mean and covariance. The resulting estimate is
optimum in the sense that it minimizes the trace of the covariance matrix
of the error (a generalized mean-squared-error criterioﬁ).

The notation used in the following discussion is based on the state-
transition approach to linear estimation developed by Kalman. In this
approach the stochastic process is represented as the output of a
linear (possibly time-varying) dynamic system with an independent random
input. o

For current estimation and prediction of the state vector, the
optimum estimate is implemented by & linear dynamic filter with a
matrix-valued gain the only undetermined coefficient. This matrix-
valued gain, as well as the covariance matrix of the error in the
optimum estimate, is determined iteratively for each sample point from
a nonlinear difference equation involving the covariance of the error
at the previous sample point.

The configuration of the solution for linear interpolation with
delay is a linear dynamic filter similar to the one used for prediction.
For each sample period the estimate is delayed, an additional weighting
matrix and delay element must be added to the filter,

All of these results are derived from the sampled version of the
Wiener-Hopf equation, and they apply without modification to stationary
and nonstationary statistics and to growing-memory and infinite-memory
filters.
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I. INTRCDUCTION

A. STATEMENT OF THE PROBLEM

This investigation concerns the linear estimation of a sampled
stochastic process when certain parameters of the process must be treated
as random variables that are’ indépendent from one sample point to the
next. These random parameters may be due to multiplicative noise that
is corrupting the observed samples, to random variations in the sample
period, or to other uncertainties in the a priori knowledge of the pro-
cess. The stochastic process is represented {(for average statistical
properties up to second order) as the output of a linear dynamic system
excited by independent gaussian processes. This model of a stochastic
process is very general, and in particular it includes the important
special case of stationary statistics and rational power spectra as well
as a large class of nonstationary processes. Both the stochastic process
and the random parameters may be stationary or nonstationary, and the
linear estimation includes the case in which the number of observed
samples is growing.

By way of example, consider the following problem. A satellite is
telemetering data to a distant ground station. The original data are
continuous, but they must be sampled before they are transmitted. Noise
in the electrecnics or random fading in the transmission characteristics
of the atmosphere can introduce multiplicative noise. The time between
successive sample points may vary in a random manner because of jitter
or missed samples in pericdic sampling resulting from imperfections in
the equipment, jamming, or natural interference. On the other hand, the
data may be transmitted at random intervals intentionally because of the
randca character of the quantity being measured or in order to counter-
act jamming In other words, the grournd station may be operating on
randomly sampled data with multiplicative noise. From these observed
samples it is desired tc ottain a continuous estimate of the original
data or to predic*t the value of the data at some future time.

The output of a communication system such as the one described here

can be represented as a stochastic process A realistic model of the




gtochastic process must include all the sources of random variation. In
this investigation the model of the stochastic process is based‘on a
combination of the Bode-Shanznon representation of a random proéess and
the "state-transition" method of analysis of dynamic systems introduced
by Kalman [Ref. 1]. The output matrix and the transition matrix of the
sampled model are matrix-valued random parameters because of multiplica-
tive noise and random variations in the sample period. The random para-
meters have a known probability distribution (not necessarily stationary)
independent from one sample period to the next.

The optimum estimate of the state variables is the linear estimate
which minimizes the trace of the covariance matrix of the error. This
is a natural extension of the linear least-squares estimate discussed
extensively in the literature [Ref. 2]. If the stochastic process is
actually generated by gaussian random excitations of a linear dynamic
system, and if the probability distribution of the random parameters is
unimodal and symmetric about the z=xpected value of the parameters, then
the optimum linear estimate gives the conditional expectation of the
desired state variables. Sherman [Ref. 3] has shown that this condi-
tional expectation minimizes the expected value of a large class of loss
functions. Gunckel [Ref. 4] has proved that, when the state variable is
not known exactly. its conditional expectation can be used in the solu-
tion to the general problem of control with a quadratic loss function.
Therefore, one is led to the conclusion that the conditional expectation
is the best estimate in the general control problem as well as in the
estimation problem. On the other hand, the optimum linear estimate
requires only the average statistics of the process up to second order,
and if only the mean and the covariance of the process are known, then
it is the best estimate that can be made with this information.

In addition to estimating the current value of the state variables,
it may be necessary to predict the value of the state variables at some
time in the future, or it may be advantageous to interpolate some past
values of the state vector from more recently observed random variables.
The interpolation with delay should reduce the trace of the covariance

of the error because more random variables have been observed during the
delay.

-2 .
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B. PREVIOUS WORK

The early work of Wiener [Ref. 5] showed that, for a continuous
stochastic process, the problem of linear estimation leads to the
Wiener-Hopf integral equation. For the practically important case of
stationary statistics and rational power spectra, he demonstrated that
the solution to the integral equation could be obtained by spectral
factorization. Under the same conditions of stationary statistics and
rational vower spectra, Franklin [Ref. 6] solved the problem of linear
estimation using periodically sampled data, and Amara [Ref. 7] general-
ized this work to include multivariable systems.

Concurrently, there has been considerable interest in the literature
on the analysis and stability of systems with random parameters [Ref. 8,
9], although not much work has been concerned with the design of ‘filters
for these systems. Kalman [Ref. 10] considered the optimum control of
a linear system that is randomly sampled using & quadratic error cri-
terion and a step input. Gunckel [Ref. L] has extended more recent work
cf Kalman [Refs. 11, 12] to provide a general solution to the problem
of the control of a linear system with random parameters. In particular,
he shows that, if it is desired to minimize the expected value of a
quadratic loss funetion, the conditional expectation of the state
variables should be used in the optimum control procedure. Gunckel's
work separates effectively the problem of estimation of the state
variables from the problem of control of the state variables Hié
results are especially important because under the conditions discussed
in the previous section, the optimum linear estimate derived in the
present investigation is the conditional expectation of the state
variable and therefore can be used in the optimum control procedure.

For a randomly sampled, stationary stochastic process, Bergen
[Ref. 13] has determined the spectral density from a convolution inte-
gral that can be evaluated in some cases by the method of residues. A
synthesis procedure to determine the best linear time-invariant continu-
ous filter for these cases is based upon the standard Wiener factoriza-
tion of the sampled power spectrum [Ref. 1h].

Buetler [Refs. 15, 16] has generalized the Wiener theory to include

-3 -
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stochastic processes with random parameters for continuous stationary
systems. He obtained practical solutions for two cases--the optimum
linear filter when the prediction time or lag time is a random parameter,
and the optimum linear estimate when the system gain is a random para- h
meter (multiplicative noise). Shaw [Ref. 17] has considered the problem
of dual-mode filtering for a continuous stationary stochastic process
when the instantaneous model of the process varies randomly between two
possible models.
Kalman [Ref. 1] has formulated the whole problem of linear estima-
tion from sampled data in matrix notation in terms of state-transition.
The problem is approached from the peint of view of conditional expecta-
tions rather than from the sampled version of the Wiener-Hopf equation.
Kalman and Bucy [Ref. 18] have extended this formulation to the linear
estimation of a continuous stochastic process when white noise is added
to the measurements. In this extension the results are derived from the
continuous Wiener-Hopf integral equation.
The work in this investigation represents a generalization of this
approach to the problem of linear eStimation in the presence of random '

parameters.
C. OUTLINE OF N&W RESULTS

The solution to the general problem of the optimum linear estimate
of a sampled stochastic process with random parameters is derived in
this investigation Chapter II is a review of the state-transition
approach to linear estimation using matrix notation, with appropriate
examples of random parameters included.

In Chapter III the optimum filter for the current estimation and
prediction of the process described in the previous chapter is derived
from the sampled Wiener-Hopf equation; the desired weighting coefficients
and the covariance of the error in estimation are determined iteratively
for each sample point from the covariance of the previous estimate.

These results are extended in Chapter IV to the problem of optimum .
interpolation with delay @t time tn the optimum estimate is desired

of the state vector at time t where t < tn). Chapter IV presents

b




the first thorough investigation in the literature of optiwmum interpola-
tion with delay for a nonstationary stochastic process.

Chapter V applies the ideas developed in this investigation to the
estimation of a stationary stochastic process with a random sample
period, and for a simple example the optimum filter is compared with the
best linear time-invariant filter.

For current estimation and prediction, the optimum estimate is
implemented by a linear dynamic filter. The only undetermined coeffi-
cient of the filter is the matrix-valued gain, which is determined
iteratively for each sample point. When the statistics of the process
are stationary, the matrix-valued gain approaches a steady-state value
as the number of sample points approaches infinity.

The configuration of the optimum solution for linear interpolation
with delay is shown to be a linear dynamic filter similar to the one
used for prediction; but, for each sample period the estimate is delayed,

an additional weighting matrix must be determined.

In order to relate this investigation to the conventional approach
to linear estimation, all of these results are derived from the sampled

version of the Wiener-Hopf equation
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II. DESCRIPTION OF THE SYSTEM :

A. INTRODUCTION ’

This chapter will provide an introduction to the state-transition
approach to linear estimation. The state of the system is some quanti-
tative information (such as a set of pumbers) which is the minimum amount
of data necessary to predict the future behavior of the system. When
applied to estimation, the state is the data necessary to predict the
expected value of the future behavior of the system. The state transition
specifies the dynamics of the system--how the state at one instant of
time is transferred to the state at a later instant of time.

This paper will consider only those stochastic processes which can
be represented (for average statistical properties up to second order)
as the output of a linear dynamic system excited by independent gaussian
processes. Therefore, at any instant of time, the state of the system
can be represented by an r-dimensional vector, and the state transition
is an r x r matrix with the properties enumerated in Section II-C. This N
representation is a very géneral one, and in particular it includes the
important special case of stationary.statistics and rational power
spectra, as well as a large class of nonstationary processes. In
Sections II-B and III-C this representetion is presented for two common
stationary processes.

The sampled stochastic process is represented in Section II-D as a
linear-difference equation with random parameters and random excitation.
Examples of random parameters are discussed in Section II-E for the
output matrix (caused by multiplicative noise) and the transition matrix
(when the sample period is an independent random variable). It should
be emphasized that the random parameters are not the only source of
noise; both correlated and uncorrelated noise can be included in the
vector representing the state of the system.

Finally, in Section 1I-F are discussed the reasons for restricting
the optimum estimate to a linear combination of the observed random -

variables.

In the notation convention followed here, A? is the transpose of
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A, and E [A] 1is the expected value of A, When v isan m X1l

e M ‘ﬁli .~

vector, then vTv is the scalar product resulting in a scalar, and
va is the vector product resulting in an m X m matrix. The elements

of the A matrix are denoted by a and the components of the vector

iJ
by vy

B. MODEL OF THE CONTINUOUS PROCESS

The model of the stochastic process is based on the Bode-Shannon
representation of a random process and the "state-transition" method of
analysis of dynamic systems introduced by Kalman [Ref. 1]. A linear

dynamic system can be described by the following ordinary differential
equation,

d
— x(t)
dt

F(t) x(t) + 6(t) v(t)

y(t) = M(t) x(t) - (1)

is an r X 1 vector that is the state of the system,
isan m X 1 vector that is the input to the system,

t)

t)

t) is a p X1 vector that is the qutput of the system,'

t) is an r X r matrix representing the dynamics of the system,
t)

is an r Xm distribution matrix representing the constraints

on the input,

M(t) isa p X r output matrix.

The components X, of the state vector x are called the state
variables, while the components of the output y are linear combinations
of these state variables. The matrix F may be nonsingular and repre-

sents the dynamics of the system. In stationary systems the matrices

F, G, and M are constants.

The matrix block diagram of the system is presented in Fig. 1. The

-7 -




x(t) y(t)
M(t)

x(t)

v(t) G6(t)

ol =—

F(t)

FIG. !. MODEL OF THE CONTINUOUS STOCHASTIC PROCESS.

thick lines indicate vector-signal flow, and the transfer function 1/s
actually stands for r integrators such that the output of each is a
state variable. The dynamics matrix F(t) indicates how the outputs
of the integrators are fed back into the inputs of the integrators.
Thus fij (t) 1is the coefficient with which the output of the jth
integrator is fed back to the input of the ith integrator.

This linear dynamic system represents a stochastic process when the
input to the system, v(t), is a random process. In the model used in
this investigation, the input v(t) is an m X 1 vector-valued random

process with zero mean and with the m X m covariance matrix

E[v(t) vi(s)] = V(t) 8(t - s), (2)

where § 1is the Dirac delta function. The defining property of the

delta function is, for any function V(t) bounded and continuous at s,

8(t -s) =0 t #s

(203

[ V() (t - s)at = V(s). (3)

=00

This definition is satisfactory because only the integral of the covar- -
jance in Eq. (2) is ever required. Because the input v(t) 1is an inde-

pendent random variable with zero mean,

-8 -




Blv(t) X'(t,)] =0t >t (%)

When the stochastic process is stationary with a rational power
spectrum § (s), the transfer function H(s) of the linear dynamic

system representing the process is obtained by factoring the power
spectrum

$ (s) = H(s) H(-s) (5)

where H(s) contains all the poles and zeros in the left half plane.
) For example, consider the first order stationary Markov process

with the power spectrum and autocorrelation function

g (r) = e Pl (6)

The power spectrum is the Fourier transform of the autocorrelation
function [Ref. 19]; therefore, both functions give the same information
about the process. In this example the transfer function of the linear

system is

1/2
H(s) = {28) (1)

B + s

The linear differential equation describing the process is

dx(t .
L) - px(s) + v(t), )

with the input v(t) an independent random variable with zero mean and

covariance

E[v(t) v(s)] = vy 8(t - 8) =288(t - s). (9)

The model of the stationary Markov process is presented in Fig. 2.

-9 -




v(t) x(t)

FIG. 2. MODEL OF A STATIONARY MARKOV PROCESS.

The general solution to the ordinary differential equation, Eq. (1),
is

t
x(t) = ;(t,to)x(to) +f 3 (t,T)G(T)v(r)dr t >ty (10)
tO
where i(t,to) is an r X r matrix called the transition matrix of
the system. From Egs. (4) and (10), it is easily seen that
E[x(t)xT(t )] = ¥(t,t.) E[x(t )xT(t )] t >t
0 ’70 0] 0 -~

o (11)

since x(to) is independent of v(t) for T > tor

C. TRANSITION MATRIX
The pertinent information about the transition matrix is presented
in this section. For a more complete treatment see Coddington and

Levinson [Ref. 20]. The transition matrix is a nonsingular matrix

satisfying the differential equation

d

— 3% =r(v)8§, (12)
at

made unigque by the requirement that

- 10 -




¥ (tyty) = I, (13)

where I is the identity matrix.
Two properties of the transition matrix are

3(t,t,) 8(tpt) = 8(tg,ty)
¥ ,t) = Ot ,t,) (14)
2771 1’72’
t
If the matrices F(t) eand \/. F(+)dt commute, then the transition
%
matrix can be written
t
¢ (t,ty) = eXP<#[ F(T)dT> (15)
%

where the definition of

k

I o

exp(B) = I +-§é

k=1

(16)

"

For a discussion of the properties of commuting matrices see Gantmacher
[Ref. 21]. In particular, the two matrices commute if F(t) is diagonal
or if F 1is a constant. When the F matrix is constant, the transition

matrix ¥ is stationary, and it can be written

o+ Trtg) = 8 (1) = exp(Fr) = &', (a7)

§ (t
vwhere exp(Fr) is called the exponential of the matrix Fv.
When the characteristic roots of F are distinct, then the matrix

¥ 1is similar to a diagonal matrix A with diagonal %l,%2,...,%r, so
that

F = DAD'l, (18)

- 11 -



where D 1is a nonsingular r X r matrix and the characteristic roots

Ai may be complex. Therefore, the transition matrix is

] -1

$(7) = exp(Fr) =D - exp(AT) - D . (19)
This is réadily seen to be the case because

pAD ™)K~ < (n
exp(nATD’l) =1+ ( AL =D<I +-Z: v pt (20)

This method of taking the exponential of a matrix is very satisfactary
when F 1is already diagonal or nearly so, but sometimes in actual prac-
tice this diagonalization may be difficult to perform, and an alternate
method may be more efficient.

An alternative method for taking the exponential of a matrix,
given by Friedman [Ref. 22], is based on the following theorem in his
chapter on Spectral Theory of Operators:

"If A is a matrix whose eigenvalues, arranged in order

of increasing absolute value are A ,A,,...,A  and if g(n\)

is an analytic function of A in a circle around the origin

with radius greater than l%nl, then g(A) equals r(A),

the polynomial of degree n - 1 for which

g(7\k = r(x, k=1,2,...,n." (21)

In particular, this means that if A is an n X n matrix with distinct
characteristic roots K sNyseeesN , then
2 n

Eg a (At (22)
i=1

where the ak are evaluated by the set of equations

- 12 -

RO R R




I

n
o L °b’*§2 ai(xkt)i k=1,2,...,n0. (23)

When

s0 that xv is a characteristic root of multiplicity v for A, then
Eg. (21) is modified as follows:

SJ(')\V) = 1‘3(7\‘,) J 0,1,2,...,v-1

g(%k) = r(%k) k = v+l, v+2,...,n0. (25)
Thus Eq. (23) is modified to
At ad 2
1pd, Vv i .
JitYe = 3 oy +§‘ ai(7\vt) J=0,1,2,...,v-1
an ~
v i=1
Oy \ :
e = °b'+§5 ai(xkt) k = v+l,v+2,...,0.  (26)
i=1 :

To illustrate this method, the exponential will be taken of the
arbitrary 2 X 2 matrix At where

811 %12

A = . (27)

821 8y

The characteristic roots are determined from
A - a1 =0

(all = 7\)(8.22 - ) 0

B V-~

- 13 -




= L L - e
A Z(all + a22) +3 (a.ll a22) + halgagl (28)
The two characteristic roots kl and Xg are distinect if
(a.. -8,.)° + k. 8. 0 (29)
11 22 12721
For the 2 X 2 matrix Eq. (23) is
?\lt
e = ao + al)\lt
?\21:
e = Uy + 01?\21:, (30)
with the solution
?\et At
A e - A& 1
1 2
ao =
}\l - ?\2
7\lt ?\2t
e -e
alt = —— (31)
?\l - ?\2
Thus, when the characteristic roots of the 2 X2 matrix A are
distinct, the exponential of the matrix At is
ALt At At At
2 1 1 2
At Ale - Age 1 O e - e 85, 85
e = +— . (32)
N 0 1 N 8 a

21 22

If the characteristic roots are not distinet, then from Eq. (26), the
exponential of the matrix At 1is

a +1 =Nt a
At .\lt 11 1 12

e = e . (33) [

| 221 a22+l-)\lt

- 14 -



As an example, the exponential in Eq. (32) will be used to calculate
the transition matrix of a stationary stochastic process with two state

variables. Consider the process with the following power spectrum and
autocorrelation

(B+s)(p-s)L

- $ x,x%,(s) =
PR e 8P A0 - 8)F 4 57
Rxlxl(f) = e-BITI cos yT - B 2sln 2T
B+
kg (6% + 7°) -
= 3
262 + 72

The transfer function of the dynamic system is

1/2
H(s) = B+ s) L7 (35)

(6 - s)° +9°

The model of this stochastic process is presented in Fig. 3, where the
two state variables are xl(t), the observed random variable and the
output of one integrator, and xe(t), the output of the other integrator.

The two linear differential equations describing the system are

V|(t)

N xa(t) *; xy(t)

-'}’2

FIG. 3. MODEL OF A PROCESS WITH AN EXPONENTIAL COSINE AUTOCORRELATION.
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dxl(t)

dt

= axl(t) + xz(t) + vl(t)

and
dxa(t)

dt

2
= - 7% (8) - Bxy(t). (36)
The input vl(t) has 2zeroc mean and covariance

Blv, (t)v,(s)] = v}, 8(t - 5). (37)

For this system the 2 X 2 dynamics matrix F is

F = (38)

and the characteristic roots are complex with

>
i

1 -B - Jy

>
"

o= - B+ 3y (39)

where

J 1is the imaginary unit number.

Fron Eq. (32) the exponential of the matrix Ft is

3(t) = et = Pt [cos 7t 1/y sin yt
- v sin 9t cos 7yt ()+O)

where the sum of the complex conjugate exponentials has been written in

terms of sines and cosines
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sin yt j(e-'ht - e+d7t)

j-~

[V

cos yt (e-j7t + e+37t) (k1)

The model of the first-order stationary Markov process in Fig. 2 and the
model of the process with exponential cosine autocorrelation in Fig. 3

will be used in the numerical examples calculated in the following
chapters.

D. MODEL OF THE SAMPLED PROCESS

In many cases, a linear dynamic system, such as that shown in Fig. 1,
is sampled at points in time to’tl""tk’°"tn called the sample
points, where the subscript k indicates the kth sample. The time
between successive samples is called the sample period Tk’ which is

given by

T, o=,y - e (k2)

It is assumed that all the switches in the sampling operation operate
synchronously and that the sampling operation can be represented as
the result of modulating an impulse train 5T(t) with the output of
the system y(t) so that

y (8) = y(t) bg(t), (43)

where the impulse train 5T(t) is given by

00

oplt) = ) Bt - t,). (1)

k=0

When a linear system with an impulse z2sponse h(t) follows the sampling

operation, then the output of the linear system at time t is
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z(t) =z h(t - tk) y(tk) t, <t <t .- (45)
k=

w4

If a clamp or zero-order hold follows the sampling operation, then the
output of the hold at time t is y(tn) with t <t <t ..
When the state of the system is considered only at the sample
points, the stochastic process is said to be discrete, and the model

under consideration becomes

x(tn+l) =2 (tn+l’tn) x(tn) + u(tn)

y(t,) = M(t)) x(t)), (146)

it 1s the time of the nth sampling instant,
x(tn) is an r X 1 vector which is the state of the system,
u(tn) is an r X 1 vector which is the effect of the random
inputs to the system between the n and n + 1 sample
po.nts,

y(tn) is & p X 1 vector which is the observed random variable,

Q(tn+l,tn) is the r X r transition matrix,

M(tn) is the r X p output matrix.

A matrix block disgram of the sampled system is presented in Fig. k.
The element marked DELAY permits the state of the system to change only
at the sample points.

For a discrete stochastic process the properties of the sampled
excitation u(tn) may be given directly, but they can also be derived
from the properties of the random input to the continuous system v(t).
By comparing Egs. (46) and (10) it is seen that

i
n+l

ateg) = [ 8,007 60 v(n) . (47)
t

Thus, the sampled excitation u(tn) also has zero mean, and the
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l(tn) Y(tn)
- met,)

o(t,*1, t,)

FIG. 4. MODEL OF THE SAMPLED STOCHASTIC PROCESS.

delta-function property of the covariance of the random input v(t) in

Eq. (2) means that the covariance matrix of the excitation is

tn+l tn+l
E[u(tn)uT(tn)] = E L/ t!(tn+l,T)G(T)v(T)dT \/ vT(G)GT(U)iT(tn+l,G)dG
" L
tn+l
T T
=\]- Q(tn+l,T)G(T)V(t)G () & (tn+l,T)dT. (48)
t

n

The sampled excitation is an independent random variable, so from

Eq. (&)
E[u(tn)x¢(t)] = 1§ £ >t | (49)

In this investigation, the output matrix M and the transition
matrix $ of the model in Fig. 4 are not known exactly, but they are
considered to be matrix-valued random parameters of the model with
known probability distribution independent from one sample point to
the next. The matrices M and & will be random parameters if, for
instance, the observed random variable has been corrupted by multipli-

cative noise or if the sample period is a random variable.

- 19 -

R 2 Sy




More precisely, it is assumed that a known cumulative distribution
function FM[C,n] is defined over the components of M(tn), and a
different known cumulative distribution function F;[D,n] is defined
over the components of ¢ (tn+l’tn)' When PR[A] 1is defined as the
probability that an event A occurs, and B < C, where B and C are
matrices, is defined to imply that bij < cij for all i and Jj, then

PR[M(tn) <) = FM[C,n]

PR[ Q(tm_l,tn) < D]

FQ[D)n]} (50)

where FM[C,n] and FQ[D,n] are the known cumulative distribution
functions. These distribution functions are not necessarily stationary,

but the random parameters must be statistically independent from one
sampling instant to the next so that

PROM(t ) < A; ®(t ., t ) <B; M(t ) <C;8(t ,,5 ) <D)

= FM[A;m] FQ[B,m] FM[C,n] FQ[D:H]' (51)

Finally, it is assumed that E[M(tn) MT(tn)], and E[Q(tn+l,tn)

T(tn+l,tn)] exist for all n.

%
The expected values of the two matrices M and ® will always exist,

also, by the previous assumption, and this expected value will be denoted
by & superscript bdar,

EM(t )] = M(t )
E[Q(tn+l’tn)] =0 (tn+l’tn)' (52)

The difference between the actual value of the matrix and the expected

value will be denoted by a superscript tilde, so
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#

M(t ) = Mt ) + ﬁ(tn)

— 3 ” ,
§ (tn+l’tn) B i(tn+l’tn) = (tn+l,tn)' \53)
In this investigation it 1s not necessary to know the probability
distribution of the random parameters. The only information which is
needed is the mean of the parameters, ﬁ(tn) and i(tn+L’tn)’ and the

covariances

B(Hi(e )x(t, )x" (¢ (e ) ]

and

~ T ~
Blg(t ot )x(e )x (e )) alt ot )]
E. EXAMPLES OF RANDOM PARAMETERS

The probability distribution of the random parameters M and @
in the sampled model in Fig. 4 may have any form, but there are some
common probability distributions which can be used to approximate situas-
tions ocecurring in actual practice. In this section the mean and the
covariance of the random parameters will be determined for five of these
situations; two cases of multiplicative noise (amplifier noise and
exponential noise), and three cases of randomness in the sample periods
(periodic sampling with jitter, periodic sampling with independent
misses, and purely random or "Poisson" sampling). For a complete dis-
cussion of the probability laws used to approximate these situations
see Parzen [Ref. 23].

In the first two cases a single state-variable is corrupted by
multiplicative noise and the results can be extended to the multivariable
case. Let € be an independent random variable with normal distribu-

tion. The cumulative distribution function is

2
1%
P 1 r p - 5 2
F (p) = / £ (v)dv = ——— } e 7 v (54)
:w 2N o :w
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where fe(v) is the probability-density function. The random variable
€ has mean zero and variance 02 and

2.2
E [exe] =7 /2 (55) )

One source of muitiplicative noise occurs when the state variable
passes through an amplifier with noisy gain. Then

¥ (5.) = AL + €) x (¢ ),

where A 1is & constant. The mean and covariance are

E[M(tn)] E[A(L +€)]=A

E[M(e )x(e_)x' (5 ) (v )]

A% E[ee} E[xi(tn)]

A%o"E [ (6 )] (56)

Another source of multiplicative noise is the result of taking the
exponential of a state variable with added white noise. In a communica-
tion system in which the range of the state variable is several orders
of magnitude (such as the reflected pulse in a radar system where the
energy is inversely proportional to the fourth power of the distance),
it may be desirable to transmit the logarithm of the state variable and

then convert this at the receiver to the estimate of the original state

variable. In that case,

log yl(tn) log xl(tn) + €

y (¢ ) = e x () (57)

and the mean and covariance are
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02/2

E[M(t )] = E[e] = e
B(H(e, )x(t, )% (6 (v )] ={:E{e2€1 - (E[eei%} B(x5(t,)]
0'2 0'2 2
=e” (7 -1) E[x{(t )] (8)

In the remaining three cases, the transition matrix (tn+l’tn) is
the random parameter because the sample period Tn is an independent
random variable. It will be assumed that the dynamics matrix F is
constant or can be satisfactorily approximated by a constant over the
sample period Tn, but the constant and the probability distribution of
Tn can change from one sauple point to the next, so the sample period
is not necessarily stationary. The transition matrix (tn+l’tn) is

an r X r matrix-valued random variable given by

FTn
(bt ) =e ™ (59)

The exponential of the matrix F Tn is composed of terms of the form

where Ai is a characteristic root of F of muitiplicity v. The
powers of Tn occur when Ai is a multiple characteristic root, as in
the 2 X 2 matrix in Eq. (33)-

In order to determine the expected value and the covariance of the
transition matrix, it is necessary only to know

E[e "]

for all values of A both real and complex. If that expected value is

known, the other expected values can be calculated by the relationship

E[T " e ® = —E[le P (60)




The three situations in which the sample period can be considered
as a random variable, and their associated probability distributions,
are as follows: periodic sampling with jitter (normal distribution),
periodic sampling with independent misses (geometric), and purely
random or Poisson sampling (exponential). The pertinent information
concerning these three probability laws is presented in Table 1, and

their characteristics are discussed in the remainder of this section.

TABLE 1. THREE PROBABILITY LAWS FOR RANDOM SAMPLE PERIODS.

Probability
Law Normal Geometric Exponential
Sampl e Periodic with Periodic with Purely Random
Pattern Jitter Independent or
Misses Poisson
Paramet.er‘s - 0<T<®
of.Prol'mbx)‘.:Lty 0<3<T<® 0<p=1q<1 0 <upu<®
Distribution - -
Probability k-1 gor 7 = kT e HT
- = for 720
Density exp [- (T - T )2/202] qu =0,1,2,... H -
£ (n Vor o 0 Otherwise 0 Otherwise
Mean _
E(7] T T/p 1/
Variance
E[r?) - E2[7] o? qT?%/p? Vu?
T 2
E[N] eTAHTN pMT/(1 - gehT) W/ ()

Jitter occurs when the sample pericd is nea®ly constant, but varies
slightly from period to period. In certain anti-jamming applications
the sample period is varied randomly in this manner, or the variation
may be unintentional due to imperfections in the equipment. An approxi-
mation to the effect of jitter is given by the normal distribution of

sample periods,

1 o2, 2
FT[T]=T+_fe'V/20dv 0<30<T<w (61)
n Yor o ¥
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or, alternatively,

T, =T+e¢ (62)

where T is the mean of the sample period, and € 1s the normal random
variable with mean zero and variance defined in Eq. (54). In the normal
distribution in Eq. (61), there is a finite probability that the sample
period will be negative; therefore, one might argue that a better

approximation would be to truncate the distribution so that it is zero
outside the region

0<T <@2F.
n
This is a velid argument, but in Eq. (61) the standard deviation is

constrained to be less than one-third of the mean of the =ample period

T and, under this constraint, the area of the normal distribution that

must be truncated is less than 2.6 X 10-3; therefore, the original
approximation should be valid.

Periodic sampling with independent misses results when the intended
sample period is constant but at each sampling instant there is a fixed
probability gq that the random variable will not be observed. This
situation may arise when the receiver rejects the signal unless the
signal-to-noise ratio is above some threshold value. The probability

distribution of the actual sample period 1s a geometric distribution
given by

S

]

fn (xT) = p

n

=1,2,... 0<p=1-g<1

=0 otherwise (63)

When the number of sample points in a given interval of time has a
Poisson distribution, the samples are being received at purely random
points in time. The samples may be transmitted in this way intentionally
to avoid jamming, or because of the random character of the quantity

being transmitted. For this case the sample period has an exponential

distribution
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Fp (1) = u e HT T >0 O<u<w (64)

La} =0 otherwise

F. THE OPTIM/M ESTIMATE

The purpose of the design procedure presented in this paper is to
estimate the state vector of a stochastic process from information
obtained from the a priori knowledge of the process and the observed
random veriables. The difference between the actual value of the

state vector and the estimate is the error, which is written

Xt + o/t ) = x(t_+a) - x(t_ +a/t ), (65)

where

i(tn + a/tn) is the (r X 1) vector that is the error in the
estimate of the value of the state vector at time
tn + , given the observed random variables
y(t, 1yt 1)y y(tg)s

x(tn + Q) is the actual value of the state vector,

Q(tn + a/tn) is the estimate of the value of the state vector
at time tn + Q, given the observed random variables

Y(tn)} Y(tn-l)’ ceey Y(to)'

The best estimate is the one which minimizes some function of the error.
For @ positive the operation of estimation is calied prediction; and
for  negative, it is called interpolation or smoothing.

In this paper the estimate will be confined to linear combinations
of the observed random variable, and the optimum estimate will be the
linear estimate that minimizes the trace of the covariance matrix of

the error. The covariance of the error is an r X r matrix defined as
/ _ z ~T
P(tn + a/tn) = E[x(tn + a/tn)x (tn + a/tn)], (66)

The trace is the sum of the diagonal terms of the matrix. The trace

of the covariance is the expected value of the sum of the squared error
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in the estimation of the individusl state variables, so the optimum
estimate is a natural extension of the "linear-least-squares" estimate
that is discussed extensively in the literature.

The question naturally arises as to which is better--a linear esti-
mate or a nonlinear estimate. Doob [Ref. 24] proves rigorously that the
estimate of a quantity that minimizes the expected value of the squared
error is the conditional expectation of the quantity with respect to the
given information. For a linear dynamic system excited by random
variables with normal distribution, the conditional expectation of the
state vector is indeed a linear combination of the observed random
variables and the linear-least-squares estimate will be better than any
nonlinear estimate in minimizing the expected wvalue of the squared error.

Sherman [Ref. 3] has proved that the conditional expectation can
minimize the expected value of a still larger class of loss functions.
In particular, when e 1is the random variable representing the error,

and the loss function L(e) 1s a positive function, symmetric and non-
decreasing about zero, so that

0 S 1Le) = L(-e)

WA
WA
WA

L(el) L(e2) when 0 =e =e, (67)
and if the conditional distribution of the quantity being estimated is
symmetric and convex sbout its conditional expectation, then the condi-
tional expectation minimizes the expected value of the class of loss

functionsincluded in Eq. (67). This class of loss functions includes:

Ll(e) o 2
L2(e) = eh
L3(e) = |e|
Lh(e) = -b<e<b
=0 otherwise. (68)
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In this investigation, Sherman's results mean that if the stochastic
process 1is the output of a linear dynamic system with a gaussian input,
and if the random parameters have a symmetric convex probability distri-
bution, then the optimum linear estimate will be better than any other
estimate, linear or nonlinear, in minimizing the expected value of the
class of loss functions in Eq. (67).

The optimum linear estimate has the additional adventage tha* only
the first- and second-order statistical averages are required. 1In
practical situations it is often very difficult to measure more than
this, and any nonlinear estimate would require more informstion than
Just the first- and second-order statistical averages to improve over
the optimum linear estimate. For these reasons, in this investigation
the optimum estimate will be the linear estimate that minimizes the

trace of the covariance matrix of the error.
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III. CZTIMUM FILTERING AND PREDICTION OF RANDOM-PARAMETER PROCESSES

A. INTRODUCTION

In Chapter II the sampled stochastic process was represented as a
matrix-difference equation with random parameters. The optimum estimate
was defined as the linear estimate that minimized the trace of the co-
variance matrix of the error. In this chapter it will be proved that
the optimum estimate of the current value of the state vector at the
current sample point is a linear combination of the optimum estimate at
the preceding sample point and the random variable observed at the
current sample point. The optimum estimate is implemented by a linear
filter with the only undetermined coefficient being a matrix-valued
gain. This matrix-valued gain as well as the covariance of the error
in the optimum estimate is determined by a nonlinear difference equation
that can be solved iteratively for each sample point. The optimum
current estimate becomes the optimum prediction of a future value of
the state vector when it is matrix-multiplied by the expected wvalue of
the transition matrix.

These results are obtained from the solution to the matrix-valued
sampled Wiener-Hopf equation, derived in Sec. III-C, but first the

Markov property of the optimum linear estimate will be discussed.

B. MARKOV PROPERTY OF THE OPTIMJM ESTIMATE

For a Markov process, the probability functions relating to the
future depend on the present state, but not on the manner in which the
present state has emerged from the past [Ref. 25]. The model of the
stochastic process developed in Chapter III has the Markov property,
and in Sec. III-D it will be proved that the optimum linear estimate
has the Markov property because the optimum estimate of the current
value of the state vector at the current sample point is a linear combi-
nation of the optimum estimate at the preceding sample point and the

observed random variable at the current sample point In other words,
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R(tp/e)) =8 (et IR(6 /6 ) + K(s )y(s,) (69)

where ® *(tn,tn_l) and K(tn) are rxr and r x p linear
weighting matrices. (Note that o (tn,tn_l) is an arbitrary
weighting coefficient different from the expected value of the transi-
tion matrix ® (tn,tn_l), which does not have the asterisk.) This sec-
tion will explore the reasoning which might lead one to the hypothesis
of Eq. {69).

First, assume that at time tn-l the exact value of the state

vector is known; therefore,

x(e o/t 1) = x(t ). (70)

If the transition matrix in the sample period is equal to its expected
value & (tn,tn_l) and if there are no random inputs to the system

during the sample period, then the next state will be

x(t) =0 (t,t )x(t 1), (1)

and the best estimate

x(t)) =8 (t,t _)%(e 1) = x(t) (72)

will be the exact value of the state vector. If the output matrix is

also equal to its expected value ﬁ(tr), the observed random variable
will be

y(t,) = Mt Ix(x ) = M6 ) & (6,5, )x(e_ ). (13)

and no new information about the process will be gained by looking at
it, because its exact value is already known. This 1s not a very
interesting problem, and, naturally, in actuality things are not so
simple. There will be errors in the estimate of the state at the pre-
various sample instant, i(tn_l/tn_l); there are random excitations to
the system u(tn_i), and variations in the transition and output matrices
) (tn’tn—l) and ﬁ(tn).
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The only way one discovers these random variations is by comparing

the observed random variable y(tn) with its expected value which is i
given by Eq. (73). All the new information about the process comes from

the difference between y(tn) and ite expected value
y(e ) - M) o (vt )x(e ).
Because the estimate is restricted to linear operations, it is reasonable
to weight Lhe new information with some linear matrix-valued coefficient
K(tn) and add it to the previous estimate in Eq. (72), so that
A = N
x(tn/tn) =9 (tn/tn_l)x(tn_l/tn_l)

L X )Dy() - M) § (e /5 OR(e /6 O] (Th)

Combining terms in Eq. (T4) gives

®(t /) = [T - k(e Mt D)o (bt )%(e, 1/t () + Kt Iy(t)

where I 1is the identity matrix and

[T - k(e D6 )] T (st ) =38 (6, ), (75)

the arbitrary r x r weighting matrix in Eq. (69).
This reasoning started with the assumption, in Eq. (70), that at
time tn-l the exact value of the state vector was known, but all the

ideas still apply if only the expected value of the state vector is

known. The key idea in this discussion can be summarized as follows:
When the stochastic process can be represented as an rth-order linear
Markov process, the optimum linear estimate of the state vector of the
process can also be represented as an rth-order linear Markov process.
This approach to the linear estimate of a stochastic process was
first developed fully by Kalman [Ref. l] for a process with deterministic
parameters. He used conditional expectations and the projection theorem,

and considered in detail the linear estimate

= Yl



(b0 /e) =0 (6, L )R /e )+ AT (1 )y(E ), (76)

where

°*(tn+l’tn) =:q’(t’n+l’t'n) - A‘*(tn)M(Jr’n)' (77)

He proved that any other estimate §(tn + a/tn) for a positive could
be derived from the one in Eg. (76) by the relationship

-1~

:Ac(tn+a/tn)=¢(tn+a,tn)[¢(t >t,)] X(tn+l/tn), (18)

n+i
where AT represents the inverse of A.

The quantity that in this investigation, is analogous to the quan-~
tity in brackets in Eq. (78) is & (tn+l’tn)’ which may be singular
and does not always have a unique inverse. Therefore, for the stochastic
process with random parameters this approach must be modified to the

linear estimate in Eq. (69).
C. THE SAMPLED WIENER-HOPF EQUATION

Any linear estimate of the state vector will be a linear combination
of the observed random variagbles so that
n
X = t o+
x(t +a/t ) Z Al ot )y(t)), (19)
y=0

where g(tn+a/tn) is an r X1 vector that is the estimate of the
state vector x(tn+a), given the observed random
variables y(tn),y(tn_l),...,y(to), and
A(tn+a,tv) is an r x p matrix which is the vth set of
weighting coefficients of the estimate.

The sampled Wiener-Hopf equation is a matrix-valued linear equation

that is satisfied by the weighting coefficients A(tn+a,tv) when the

linear estimate is optimum.
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The error in the linear estimate in Eq. (79), as defined in Eq. (65),
is

e

;c(tn+a/tn) = x(t_+a) - ?c(tnm/tn) = x(t +a) - A(tnw,tv)y(tv)

Il
o

1'%
s (80)
Substituting the error in Eq. (80) into the covariance of the error
defined in Eq. (66) gives

P(tn+a/tn) E[i(tn+a/tn)§¢(tn+a/tn)}

E[x(tn+a)xT(tn+oz)]

T

Attt JE[y(t )X (¢ +0)]

<
o

sl

]

E[x(tnm)yT(tv) (6 st )

<
1l
o

e
s

A s ) Ely(e, )57 (x )1 A7 (e vt ) (51)

<
I
o
§ =
Il
o

The trace of the covariance matrix in Eq. (8l) is the sum of the
diagonal terms, so that

Ir
pii(tn+a/tn) =E ‘Eg ii(tn+a/tn) (82)
1 i=1

gl

TR[P(tn«a/tn)] =
i

which is the expected value of the sum of the squared error in the
estimation of the individual state variables. From Eq. (81) it is seen
that all the components of the covariance matrix are quadratic functions
of the elements of the weighting coefficients ajk(tn+a’tv)’ so the
trace in Eq. (82) is minimized when its derivative with respect to each
of the elements ajk(tn+a,tv) is zero,
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4 TR[P(tn+a/tn)] i=12,...,r
= k =1,2,...,p (83)
a ajk(tn+a,tv) v =0,1,...,n

Because the trace is a gquadratic function of the elements, there will
be at least one minimum, and the resulting equation for the optimum ele-
ments will be linear. After performing the operation indicated in Eq.
(83) and combining the linear equations, the result is

n
T T .
Blx(s @y (¢ )] - ) Al raut JBIy(e (2 )] =0 o =0,15...,m,
V=O (8’4)
which is the sampled Wiener-Hopf eguation. This result yields a
minimum because
2
a TR[P(tn+a/tn)] 5
= E[y;(t )] >0 (85)

d ajk(tn+a,tv)2
the second derivative with respect to the elements is positive. The
optimum weighting in Eq. (84) not only minimizes the trace, but it also
minimizes all the components of the covariance matrix, as can be seen by
carrying through the operations in Eq. (83) for the off-diagonal compo-

nents of the covariance matrix. Substituting the estimate in Eq. (79)

for the equivalent expression in Eq. (8L4) gives
T a T
Elx(t +a)y (¢ )] - E[x(t +a/t )y (t )] =0 p=0,1,...,n (86)
as a compact way of writing the sampled Wiener-Hopf equation. When the
weighting coefficients are optimum and satisfy Eq. (86), some of the

terms in the expression for the covariance matrix in Eq. (81) are

identically zero, and the covariance of the error can be written,
P(t_+a/t ) = E[x(t_+)xt (t +a)] = E[&(t +a/t )x (¢ +a)]
n n n n n n n

(87)
where %(tn+a/tn) is defined in Eq. (79).
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D. DERIVATION OF THE OPTIMUM ESTIMATE

The samplied Wiener-Hopf Eq. (86) must be satisfied by the weighting
coefficients of the optimum linear estimate for any stochastic process
with any statistics. In this section it will te proved that, when the
process can be represented by the model developed in Chapter II, the
optimum estimate has %he Markov property discussed in Sec. III-B. The
assumption is first made that the optimum estimate of the current value

of the state vector g(tn/tn) can be written in the form
(e /t) = [T - k(e WM(s D) o (6t Ix(t /e 1) + K(e Dy(e))s

(88)
where g(tn-l/tn-l) is the previous optimum estimate and K(tn) is an
r X p welghting matrix. Next it is shown that, if the weighting coef-
ficients of the previous estimate g(tn-l/tn-l) satisfy the sampled
Wiener-Hopf Eq. (86), the weighting of the current estimate in Eq. (88)
will satisfy Eq. (86) for a particular r x p weighting matrix K(tn).
Finally, the weighting matrix K(tn) is derived in terms of a priori
known quantities and the covariance of the error of the previous optimum
prediction P(tn/tn_l), which can be calculated iteratively at each
sample point.

The random inputs to the system have zero mean; therefore, from

Eq. (11) for a positive,

B{x(t +a)y" (£)] = BIB(¢ vt )x(e )y ()1 Bt et JELx(e, )y (£ )]-

o >0
p<n (89)
Substituting Eq. (89) into Eq. (86) for «a positive gives
- T ~ T
ot +oot JE[x(t )y (¢ )] - E[x(s +o/t )y (¢)] =0 axo0
= 0,1,...n
(90)
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as the condition for optimum prediction. It is obvious from Eq. (90)

that, if x(tn/tn) is the optimum current estimate and hence satisties
that equation for Q equal to zero,

x(t 40/t ) = 3 (¢ ot )R(c_/t ) a>0 (91)

must satisfy Eq. (90) for « positive. Thus, the optimum prediction
is obtained from the optimum current estimate by matrix multiplying the

current estimate by the expected value of the transition matrix. Now,

the optimum current estimate will te determined.

Assume the previous optimum estimate is

n-l
RS ) =Y A e ), (92)
0
and therefore it satisfies Eq. (93),
E(x(t_.) Ty )] - B[x(t_ L/t ) T )] =0 = 0,1 n-1
n-ly‘p n-1/‘n-1 Y o p=Uylseen, ’ .
(93)

From Eqs. (91) and (92), the optimum prediction at the previous sample

instant of the current value of the state vector is

K(e /e ) = (6,00 )%(e 1/t ) (94)

and Trom Eq. (87) the covariance of theerror of this prediction is

P(s_/o 1) = BIx(t )x (1 )] - Bt ,t  RIR(t /o )% (5 )]

(95)
The trial estimate in Eg. (88) can be written
§(tn/tn) =9 (tn’tn-l)i(fn—l/tn-l)
& y(e) - WMo (vt x(e /v )] (95)

-3 -

e




For the estimate ;(tn/tn) in Eq. (96) to be optimum, it must satisfy
Eq.' (97)1

E(x(t,)y (¢ )] = BIR(e /6 (k)T =0 . p=0,1,m  (97)
Substituting the trial estimate in Eq. (96) into Eq. (97) gives
Blx(t, )y (6] = (6,6, JRIR(, (/e 1)y ()]

- K(e, By (e, W (£ ))] - Wt ) a(tn,tn_l)E[;(tn_l/tn_l)y%p)]} =0

0=0,1,...,n (98)
as the condition for optimum estimation.

Equation (98) will be examined first for o 1less than n. In that
case,

Blx(t )y (6 0] = B(e e ) Ex(e, )y (¢ )]

I}

Bly(t, v (e )] = B(e ) Ble ot JEIx( ;) (¢ )] o <n

(99)
Substituting Eq. (99) into Eq. (98) for p 1less than n yields,

[T - %t () $<tn,tn_l){e[xun_l)yT(tp)1 - Em(tn_l/tn_l)yT(tp)} 0
p=0,1,...,n=1 (100)

Comparison of Egqs. (100) and (93) shows that the quantity in braces in
Eq. (100) is the same as Eg. (93), which is identically zero for o

less than n. Thus, the trial estimate in Eq. (95) satisfies the condi-
tions for optimum estimation in Eq. (98) for p less than n. The
remaining condition in Eq. (98) for p equal to n will be used to
determine the r X p weighting matrix K(tn); this condition is

- 37 -




E[x(tn)yT(tn)] - $(tn,tn_1)E[i(tn_l/tn“l)yT(tn)]
. . o . T, 17
: K(tn){%[y(tn)y (¢ )] - Me Je(e st E[x(t /v )y (tn)]) =0
(101)

From the model of the process in Eg. (46) and the properties of the

random parameters in Eg. (53), the observed random variable y(tn) can
be written

y(t ) =Mt )x(t ) = Mt )x(v ) + Mt )x(t ), (102)
where ﬁ(tn) is an independent random variable with zero mean, so that

B[x(t )y (t,)]

B(x( )x (¢ )] B ()

I

BIx(t, /6, W (8 )] = BIX(s__ /e )%t (s )] M (x)

Ely(s_)y' (£ )] = M(x_)E[x(t_)x" (£ ) ] (x_)

+

B[M(t )x(e_)x" (5 )i ()

- T p -
M(t JE[x(t_)x (£ )M (t ) + R(t_ ). (103)
In the third equation of Eg. (103), the substitution has been made that
R(v_) = B[M(t_)x(t )x(t WM (t_)]. (104)
n n n ‘'n n

Substituting Eq. (103) into the remaining conditiocn for optimum estima-

tion in Eq. (101) and combining terms yields
[I-K(tn)ﬁ<tn)1{%[x<tn)xT(tn)1-6(tn,tn_l)Erﬁ(tn_l/tn_l)x?<tn)i}ﬁT<tn)
- K(t) R(t_ ) = 0 (105)

The quantity in braces in Eq. (105) is equal to Eg. (95) which is the

1
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covariance of the error in the optimum prediction at the previous sample

instant. Replacing that quantity by P(tr/tn 1) in Eq. (95) yields
A
-5 — -
Pt /t, H (6 ) - K(t ) M(tn)P(tn/tn_l)ﬁT(tn) + R(tn)} = ©)

(106)
where ﬁ(tn) is defined in Eq. (104). When the r X p weighting matrix
K(tn) satisfies Eq. (106), the trial estimate in Eq. (96) ic indeed the
optimum estimate bezause it satisfies the sampled Wiener-Hopf Eq. (97).
The only quantity in Eq. (106) that is not known a priori is the covar-
iance matrix of the error P(tn/tn_l)a The covariance P(tn+l/tn) can
be determined iteratively at each sample point from the covariance
P(tn/tn_l) at the previous sample point.

From Eq. (91) the optimum prediction g(tn+l/tn) is

X(e 0 /t) = e ot )R /8 ), (107)

From Egs. (87) and (89) the covariance of the error in this prediction
is

P(tn+l/‘c'n) = E[x(tn+1)X'T(tn+1)] - E[;\((tn+1/‘c'n)X'T(tn+l)]

BLx(t,, 08 (6 0)] = Bt 008 ETR(s /8K (8)) B (e, v,).

n+l n+l, n

(108)
The ferm of the optimum estimate g(tn/tn) is given by Zq. (96) and,
using Eq. (94), this can be written

(e /t ) = B(s ,t  x(e /e )4K(e ) [y(e )M(e (et )R(e /e )]

K(t Jy(t ) + [T - K(t M(s )]x(t /t ) (209)

Substituting Eq. (109) into the covariance in Eq. (108) gives
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ks

P(tn+l/tn) = E[x(t’n+l)xT(tn+l)]‘s(t’n+l,trl)K(tn)E[y(tn)X'T(tn)]G’I.I(tr&l’tn)

+ 5(tn+l,tn)[I—K(tH)ﬁ(tn)]E[Q(tn/tn_l)x¢(tn)] 5T(tn+l,tn).

(110)

From the model of the process in Eq. (46) and the properties of the

random parameters in Eq. (53), the state vector x(tr+l) can be written
x(tn+l) = ¢(tn+l,tn)x(tn) + u(tn)

= ¢ (tn+l,tn)x(tn) - 5(tn+l,tn)x(tn) + u(tn)o (111)

Therefore, the covariance of x(tn+l) is

E[x(t’n+l)X'T(tn+l)] = 6(tn+l’tn)E[x(tn)xT(tn)] 5T(tn+l’tn) * a(tn)'

(112)
where the substitution has been made that

qt,) = B3, b x(e )x (8 ) F(b 1t )] + Bla(e T (x )],

(113)

and the cross terms in Egq. (112) are zero because E(tn+l,tp) and u(tn)

have zero mean and are ind>pendent of x(tn).
Substituting Bq. (112) into the covariance in Eq. (110) gives

P(t ) =2t ot )T - K(tn)ﬁ(tn)] x

n+l’tn
{%[x(tn)ir(tn)j—Ef%(tn/tn_l)xT(tn)i};;T(tn+l,tn) + Q) (114)

The quantity in braces in Eq. (114) is the covariance of the error
P(tn/tn_l) in Eq. (95). Replacing that quantity in Eq. (11L4) by
P(tn/tn l) yields as the iterative equation for the covariance of the

error
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P(t,0t,) =& (tn+l,tn){1 - K(tn)ﬁ(tn)} P /o) Bt ) + Qb ),

(115)

where E(tn) which is defined in Eg. (113) and the two expected values
ﬁ(tn) and 3(tn+L,tn) are known a priori. The covariance of the error
for the current optimum prediction is given by Eq. (115) when P(tn/tn_l)
is the covariance of the previous optimum prediction and the r X p
weighting matrix K(tn) satisfies Eq. (106) [which is repeated as

Eq. (116)].

P(tn/tn_l)ﬁm(tn) = K(tn) {ﬁ(tn)P(tn/tn_l)ﬁT(tn) + ﬁ(tn)} = 0.

(116)

If the quantity in braces in Egq. (116) is nonsingular, then it has

a unique inverse, and the weighting K(tn) is determined uniquely by
=T = L = -1
K(t ) = P(t /t, M (t )y M(e )P(t /v M (t ) + R(t )p . (117)

Both M(tn)P(tn/tn_l)ﬁT(tn) and ﬁ(tn), which is defined in Eq. (104),
are positive semidefinite from their definition as the expected values
of the covariance of vector-valued quantities, so, if either of these
two matrices is positive definite, the whole quantity in braces in

Eq. (112) will be positive definite aud therefore nonsingular. .

The matrix ﬁ(tn)P(tn/tn_l)ﬁ¢(tn) will be positive definite if the
rows of ﬁ(tn) are independent and if the covariance P(tn/tn_l) is
positive definite. The covariance P(tn/tn_l) is positive definite
unless there is some xi(tn) that is known exactly; if it were known
exactly; it wouldn't have to be estimated, and the estimation problem
could be reduced by one dimension. When the rows of the output matrix
ﬁ(tn) are dependent and there is no multiplicative noise on the
measurements, there is no information lost by reducing the number of
observed random variables until the rows of ﬁ(tn) become independent.
If there is independent multiplicative noise on all the measurcments,
the covariance ﬁ(tn) is positive definite and the quantity in braces

in Eq. (116) will be positive definite. Therefore, even if the quantity
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in braces in Eq. (116) is not nonsingular to start with, it should be
possible to restate the estimation problem so that the quantity will be
nonsingalar in the new statement of the problem.

If for some reason the weighﬁing K(tn) must be chosen when the
quantity in braces in Eq. (116) is a singular matrix, the weighting
K(tn), that satisfies Eq. (116) and has the minimum norm of all the
weighting functions that satisfy Eq. (116), is given by

T
K(t,) = P(tn/tn_l)ﬁT(tn) ﬁ(tn)P(tn/tn_l)ﬁ¢(tn) + §(tn{} '

(118)
where the matrix Af is defined as the psuedoinverse of the matrix A.
A particularly concise explanation of the properties of the psuedoinverse
is given by Gunckel [Ref. 4] in an appendix, but more complete explana-
tions can be found elsewhere [Ref. 26]. For this investigation, it is
sufficient to say that the psuedoinverse gives the solution to a set of
underspecified equations which has the minimum norm of all possible
solutior=s to the set of equations. In the remainder of this paper it
will be assumed that the matrix in braces in Eq. (116) is nonsingular
and has a unique inverse. If this matrix is singular, it is necessary
only to replace the expression for the inverse of this matrix by the
psuedoinverse of the matrix, and all the equations will still be valid

and the solution will have the minimum norm of all possible solutions.

E. SUMMARY OF RESULTS

The procedure developed in this chapter yields an iterative solution
to the problem of the optimum filtering and prediction of a sampled sto-
chastic process that can be represented by the model developed in
Chapter II. The optimum estimate of the current value of the state

vector x(tn) given the observed random variables y(tn),y(tn_l),...,
y(to) is

;(tn/tn) =1 - K(tn)ﬁ(tn)] [ tn,tn_l)§(tn_l/tn_l) + k(e Jy(t,)
(119)
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where &(tn_l/tn_l) is the previous optimum estimate and the expected
values ﬁ(tn) and E(tn,tn_l) are known a priori. The r X p
weighting matrix K(tn) is given by

-1
K(t,) = P(tn/tn_l)ﬁr‘"(tn){ﬁ(tn)P(tn/tn_l)ﬁr(tn) + 'ﬁ(tn)} )
(120)
where the covariance
R(t,) = BlH(e )x(e )" (6 (e )] (121)

is known a priori.

The covariance matrix of the error in prediction P(tn+l/tn) is

calculated by the recursion relation

P(t,,0/t,) = Bt ot )T - K(8 (e )IR(s /e 0, ot 0) + Q)

(122)
where the covariance
Q(t,) = E[E(tn+1,tn)x(tn)xi(tn)ET(tn+l,tn)] + E[u(tn)uT(tn)] (123)

is also known a priori.

Substituting Eq. (120) into Eq. (122) gives the nonlinear difference

equation that determines the covariance of the error as
B(t L5t ) = Bt ot )T - B(v /v (2 )[F(e )p(s /e I (¢ )
+ R(t ndﬁ@) P(t_/t ﬁmh t )+ Q(t.) (124)
N\ n n’ “n-1 n+l’'n n’’

It is interesting to compare Eq. (12L4) with the equivalent expres-
sion for the covariance of the error in the optimum prediction when the

parameters of the process are not random. When the parameters are not

random,
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'N'l(tn) - M(tn)
M(tn) -0

a(t bt ) = ot

n+l n+l’tn)

m(tn+l’tn) -0

§(tn) -0

'd(tn) - Q(tn) = E[u(tn)uT(tn)], (125)

so that the expression equivalent to Bq. (124) is

Be_, 6 ) - @(tml,tn){x SR jo WG )DNCe )R(s_ /e (e )T

< M(tn)} P(tn/tn_l)¢T(tn+l,tn) + Qe ). (126)

Equation (126) is the same as the nonlinear difference equation derived
by Kalman [Ref. 1] for the estimation problem when the parameters of the
process are known a priori, instead of random parameters. The effect

of the random variations in the parameters on the covariance of the
error in the optimum prediction P(tn+l/tn) in Eq. (124) is included

in the covariance matrices ﬁ(tn) and a(tn)'

When the parameters of the process M and P are a priori known
constants, Kalman [Ref. 1] says it can be shown that the optimum estimate
in Eq. (119) becomes a stationary dynamic system in the limit as the
number of observed random variables n approach infinity. When the
matrices M and @ and the covariances R and Q are a priori known
constants, the optimum estimate in Eq. (119} should also become a
stationary dynamic system in the limit. The reascning behind the latter

statement is as follows:

The trace of the covariance matrix of the error in Eg. (124) is
bounded from above by E[x(tn)xT(tn)] (which would result from

an estimate that the state vector is identically zero) and from
below by zero. The trace for the optimum estimate should not
increase from one estimate to the next, because if identical
weightings are used for consecutive estimates, the trace of the

covariance matrix of the error will be the same for stationary
statistics.
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Thus, the trace is a bounded nonincreasing sequence, so it must
approach a }imit as n approaches infinity. This same argument can be
used for the trace of the covariance of the error in the optimum esti-
mate of any linear combination of state variables; therefore, the indi-
vidual elements of the covariance matrix must all approach a limiting
value. The limiting value of the weighting matrix K(tn) is obtained
from Eq. (120), therefore, the optimum estimate in Eq. (119) becomes a
stationary dynamic system.

The matrix block diagram in Fig. 5 represents the linear filter
that implements the optimum estimate in Eg. (119).
DEIAY relates the state of the filter at time +t

The element marked

N4 to the state of the

4.

filter at time tn. The covariance of the error in the optimum current
estimate in Eq. (119) is given by

P(t /t,) = [T - K(t M(t )] P(t /v ;) (127)

so that from Eq. (124),

OPTIMUM
PREDICTION

T(tpralty)
oty ta, t,) |

OBSERVED
RANDOM
VARIABLE

Y(tn) +

' N Rt/ ty)
= K(ty) s K 3
) +

DELAY OPTIMUM
CURRENT
ESTIMATE

'i(tn) sltnitn-l)

FIG. 5. MODEL OF THE OPTIMUM FILTER.
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P(t_, /¢ ) = $(tn+l,tn)1>(tn/tn)E'I‘(tml,tn) + Qe ). (128)

The optimum prediction of the state vector is
x(tn+a/tn) = ¢(tn+a,tn)x(tn/tn) a>o0 (129)

This optimum prediction can also be used to interpolate between sample

points when the «a is time varylng so that

a=t -t t St< ‘tml. (130)

A

The initial condition of the linear filter with no observed random
variables and no other given information is the expected value of the

state vector, which is zero, i.e.,

%(t_/0) = o. (131)

The covariance of the error in this initial estimate is

P(1,/0) = E[x(t, )< (t,)]. (232)

The weighting K(tn) is determined iteratively at each sample point
from Eqs. (120) and (124) and the initial conditions.

The examples in the following section will illustrate the ideas

of this chapter.

F. EXAMPLFS

The procedure for estimation and prediction derived in this chapter
uses the model of the stochastic process developed in Chapter II, where
the stochastic process and the random parameters can have nonstationary
statistics. The purpose of this section is to illustrate and clarify
this procedure; therefore, the examples will be limited to stochastic
processes and random parameters with stationary statistics. For the

second-order process with exponential cosine autocorrelation, a digital
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computer was used in the iteration of the equations which determine the
welghting function and the covariance matrix of the error at each point.
For a stationary, stochastic process the derivatives of the covar-
iance of the state vector is zero. This fact leads to the relation
between the covariance of the state vector E[x(t)x?(t)] and the

covariance of the input V where F and G are matrices defined in
Chapter II.

F - E[x(t)x(x)] + E[x(t)x (t)]F* + GVG~ = O. (133)

The covariance Q(tn) can be determined from the stationary version of
Eq. (112), which is

Ex(t )x ()] = (T )E[x(t ) (£ )T (T ) + Q). (13b)

The solution to Eq. (134) is given by

r Tr
T () = Bl () (6 )] - D By (T8 Dy (6 ) (6 ) B (7). (135)

3=1 k=1

1. Exponential Autoccrrelation

The first example conzerns the stationary first order Markov
process which was presented in Fig. 2 and discussed in Sec. II-B. The
autocorrelation function of the process is

plel

R (1) = e (236)

In this example the subscript 1 can be omitted because all the vectors

and all the matrices are scalars. The linear differential equation
describing the system is

= (137)

ax(v) gx(t) + v(t).
Therefore, the transition matrix is a scalar given by
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©()-p)-c O (236)

The expected value of the transition matrix E(Tn) will be abbreviated
@, so that

- g = E[8(r,)] = E{exp(-pT)]. (139)

From the autocorrelation function in Eq. (136) the covariance
of the state vector E[x(t)x(t)] is given by

E[x(t)x(t)] = }_(0) = 1. ' (140)

Substituting Eqs. (139) and (140) into Eq. (134) gives the covariance
Qt,) as

e ) =3 =1 -7 (141)

The multiplicative noise has a mean of unity and a variance
of ;, so that

ﬁ(tn) E(m(t )] =1

R(t,) = T = E[@(t )x(t_)x(t_Ja(t )] (142)

The model of the optimum filter for this example is presented in
Fig. 6. The weighting k(tn) is a scalar given by Eq. (120) as

p(t /t. )
x(t ) = (143)

p(t /t, )+ T

with the covariance of the error in prediction p(tn+l/tn) calculated

iteratively from the nonlinear difference Eq. (124), which is

p(tn/+n-l

Pt /t) =P |1 - = ot /o 0B + -F0). (1ub)

p(in/tn_l) +T
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OPTiMUM

PREDICTION
~ :
X(tn+'ltn) :
¢
,OBSERVED !
. RANDOM
VAR ABLE
y(ty) + + X(t,/t,)
/i;\* k(ty) i 2
B OPTINUN
DELAY CURRENT
ESTINATE

FIG. 6. MODEL OF OPTIMUM FILTER FOR A STATIONARY MARKOV PROCESS.

The covariance of the error in the current estimate is given by
Eq. (127), as

p(t_/t__|)r
p(t, /t, ) = e (145)
p(tn/tn_l) +T

For a nonstationary Markov process“yi§h the parameter £ and the
covariances @ and T time-varying quantities, Egs. (143), (14k), and

(145) would still be valid, but B, @, and T would have different

values at each sample point. For a stationary process, the covariance

of the error p(tn+l/tn) will approach a steady-state value as n

approaches infinity.

lim p(tn+l/tn) = lim p(tn/tn_l) = p(t

N T»c0

/t ). (146)

n+l’ n

The steady-state version of Eq. (1LL) is a quadratic in 5(tn+l/tn),
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D = o
p(t“+l/t“i + (- 3. (147)

) +r

p(t

n+l/tn) =

p(tn+l tn

which p..s the solution

— 1 2 = -2 Ly
P(tm_l/tn) sz @ s 2°)| (1-r) +‘/ (1-r)” + (:3—2—)'
(148)

(The square root in Eq. (148) has a positive sign because 5(tn+l/tn)
must always be positive.) ‘

Three common proabability laws for the sample period '1‘n were
discussed in Sec., II-E. The pertinent information for these three
laws for particular numerical values of the parameters of the proba-
bility laws and for periodic sampling is presented in Table 2. The
expected value of the sample period is normalized to unity, and the
variances of the sample period have the values stated. The expected

value of the transition matrix 5 is listed for

B = 0.1. (149)

For all numerical calculations this value of B will be used; therefore,
the system will have a time constant of ten seconds. Notice how
increasing the variance of the sample period increases the expected
value of the transition matrix 6,

The steady-state values of the covariance of the error E(tn/tn)
and 5(tn+l/tn) are presented in Table 3 for the same expected values
of @ 1listed in Table 2 for two cases--with no multiplicative noise and
with the variance of the multiplicative noise equal to one.

Notice that with optimum estimation the variation in the proba-
bility distribution of the sample period has a smaller effect on the
covariance of the error than does the variance of the multiplicative

< oy o tt
noise. The two covariances p(tn/tn) and p(tn+l/tn) are plot,ei in

Fig. 7 as a function of the variance of the multiplicative noise r

for
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TABLE 2.

NUMERICAL VALUES FOR FOUR PROBABILITY LAWS.

Purely Rsndom or Poisson Sampling

Periodie Sampling with Independent Miases

Periodie Sampling with Jitter

Periodie Sampling

Probability
Diatribution of
Sample Period Constant Normal Geometrie Exponential
- - 1
Parameters of - T=1 T-E
Probability T=1 M=l
Distribution o=l p=q=l
3 2
Mean Sample _ _
Period T=1 T=1 T/p=1 1/u=1
E(T, )
Variance of
Sample Period 0 o2al 3—T2-l 1/#2'1
Elr,2]-(E[T,])? ’ pt 2
T
¢ = E[exp(-T%)] 0.9048 0.9053 0.9070 0.9091
TABLE 3. COVARIANCE OF THE ERROR FOR EXAMPLE 1.

Probability
Distribution
of

Sample Period Conatant Normal Geometrie Exponential
L

¢=Elexp(--B) 0.9048 0.9053 0.9070 0.9091
p(t /t,) with 0.0 0.0 0.0 0.0
r=0
p(t +1/t.) with 0.1813 0.1804 0.1773 0.1736
=0
plt,/t,) with 0.2986 ¢ 0.2982 0.2962 0.2927
r=1 j

|
- . . B
ple,*1/¢ ) with 0.4258 0.4247 0.4211 0.4167

r=1
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FIG. 7. COVARIANCE OF THE ERROR FOR EXAMPLE 1.

g = 0.9091, (150)

vhich is the case where the sample periocd has an exponential probability
distribution (purely random sampling).

2. Exponential Cosine Autocorrelation

The second example concerns the stationary process with the

exponential cosine autocorrelation

- 7 si
8, () = eI e 5o . EEt 7S] (51
171 2B+ 7
that was, presented in Fig. 3 and discussed in Sec. II-C. The linear

differential vector equation that describes the system is

dt 5 *
x,(t) -7 =B | x,(t) 0

(152)
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The transition matrix is given by Eq. (40) as

1
-BTn cos vy Tn- = sin 7Tn
¢ =
(T) =e
-y sin yT ~ cos 9T c (153)
When the sample period has a geometric distribution, the expected value

of the transition matrix can be calculated by changing the sines and

cosines to complex exponentials, so that

-BT
B
Ele ™ cos 4T ] = RE[exp (-pT_+ 3y7 )] - —{BEB)
n n n (= B)2 + 72
8 ] = Wexp (- )] = —t (154)
Ele sin 9T ] = 1M[exp (-BT - jiT )] = —"dLe— 4
o " o (w+8)°+ 72

where RE and 1M represent the real and imaginary parts, respectively.
The covariance of the state vector E[x(t)xT(t)] is determined

from Eq. (133). For this example the solution to Eq. (133) is

Bl (8 (1)) =Ry, (0) = 1

Elx, (t)xy(t)] = E[xy(t)x,(8)] = - B 77/(5° + 28%)
Elx(t)x()] = 767 + 2°)

Blv, (6)v, (6)] = vy, = 4 B (7 + 85)/(° + 28%). (155)

The covariance a(tn) is determined directly from Eg. (135). The

multiplicative noise has a mean of unity and a variance of ;, so that
1
0

E[ﬁ(tn)x(tn)xT(tn)ﬁT(tn)] =T E[x, (¢, )x (v )] = T.  (156)

E[MT(tn)'I

ﬁ(tn)
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The numerical values of the transition matrix o(T ) and the

i
covariances Q(t ) and E[x(t)x (t)] are presented in Table 4 for a '

geometric distrlbutlon of the sample period (purely random sampling)
with ¢ =1, so that

u=1.0 i
B = 0.1
y = 1.0. (157)

TABLE 4. NUMERICAL VALUES OF MATRICES FOR EXAMPLE 2.

_ 0.4977 0.4525-W
&1, '
L:0.4525 0.4977__
0.5956 -0.(}8964_-1
QCe)
-0.08964 0.4886__
—-1.0 -0.0980;7
E[x(t)xT(t)]
-0.09804 0.9804
L_ —

The expected value of the transition matrix 5(Tn) and the covariance

E(tn) are needed for the iterstive calculation of the covariance of the
error P(tn+1/tn) from the nonlinear difference Eq. (124). The initial

condition for the covariance of the errcr P(tO/O) with no other

information is

P(t, /o) = x(t)x (t)). (158)

Because the observed random variable is a scalar, the quantity in Eg. ’

(12h4), which must be irverted, is also a scalar.
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[ (¢ )P(t /6 OB (6 ) + Rt )1 ™0 = 1/(p) (6 /8 ) +F]  (159)

For this example the steady-state covariance of the error
§(tn+l/tn) was obtained by iteration of Eq. (124) on a digital computer.
The steady-state value of the covariance §(tn+l/tn) and the weighting
metrix K(tn) are presented for the numerical values of the matrices

in Table 5 when the multiplicative noise has a variance of one-tenth,

r = 0.1. (160)

TABLE 5. DESIGN RESULTS FOR EXAMPLE 2.

_ 0.7564 0.0411
Pty 4/ tn)
. 0.04211 0.6700

b

- 0.8832 |
K(tn)

L0.048q_

, 0.9093 |
K(to)
-0.0893_|

—_
0.8905
K(ty)

| 0.1190_|

0.8856 ]
K(tg)

| 0.0656

0.8837 |
K(ty

0.05121]

The welighting matrix K(tn) is also presented in Table 5 for the first
four sample points to show hcw fast the iterations converge to a steady-
state value. “

From Eq. (127) the steady-state value of the covariance pll(tn/tn)
is _ _
2. (t /t ) = pll(tn+l/tn) i

11" n n

(161)

pll(tn+l/tn) T
In Fig. 8 the steady-state covariances of the error Ell(tn/tn) and
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FIG. 8. COVARIANCE OF THE ERROR FOR EXAMPLE 2.

Ell(tn+l/tn) are plotted as a function of the variance of the multi-
plicative noise r for a geometric distribution of the sample period
for the value of the matrices in Table 4. Notice how much the cosine
term in the autocorrelation has increased the covariance of the error
ir. Fig. 8 over the corresponding covariances in Fig. 7.

3. Nenstationary Process

The third example concerns a first-order Markov process with a

particular kind of nonstationarity. The lirear differerntial equation

describing the system is

) . p(e)x(e) + vit)

with B(t) time varying so that

o}

B(t) = N 2k <t

IA
2
+
}_l

1
=]
o
<+
-
A
ct
IA
w

kK = 0,1,2,...



Given the value of the process at time 2k + T with

0<1<?
it is desired to predict the value of the process at time 2k + T + 1.
From Eq. (129) the prediction is obtained by multiplying the current

value of the process x{(2k +T) by the transition matrix @(2k+T+1,2k+T)

R(2k+T+ 1/2%+T)

B(2k+T+ 1, 2k+T )x(2k+T)

BT, =Byl
e x(

= e 2K4T)

where

T =1l-71 T. =1 for 0<1T<1

-1 - i
Tl =T -1 1‘2

2-t for lf_T<2

If v(t) has unity variance, the mean squared error of the estimate

is
-2B.T -2B.T
171 22
-2B2‘1‘2 l-e 1l - e
e +
2Bl 2B2

These examples have showed problems in prediction of random processes

-hat can be solved by using the method developed in Chapter III.
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IVv. OPTIMUM INTERPOLATION WITH DELAY OF RANDOM PARAMETER PROCESSES

A. INTRODUCTION

In Chapter IIT the matrix-valued sampledWiener-Hopf equation was
derived, and the optimum estimate of the current value of the state
vector was shown to be a linear combination of the previous optimum
estimate and the newly observed random variable at the current sample
point. In this chapter it will be proved that any optimum estimate that
satisfies the sampled Wiener-Fopf equation can always be written in an
iterative form similar to the one derived in Chapter III. The exact
configuration of this iterative form is worked out for the general pro-
blem of interpolation with delay (at time tn the optimum estimate
is desired of the state vector at time t where t < tn), and the
iterative nonlinear difference equaticns are derived for the matrix-
valued gain of the optimum filter with delay up to (n - d) sample
periods. The reason for delaying the estimate is that the trace of
the covariance matrix of the error of the optimum estimate can be

decreased when the estimate is delayed until additional random variables

are abserved.

B. ITERATIVE SOLUTION TO THE SAMPLED WIENER-HOPF EQUATION

In this section it will be proved that at any sample point tn

the optimum estimate ﬁ(tn+o/tq) can te written in the iterative form
x(tn+a/tn) = x(tn+a/tn_l) + K(un+a,tn)[y(tn)vM(tn)x(tn/tn_l)]

(162)

where i(tn+a/tn_l) is the optimum estimate at the previous sample point
and K(t +a,tn) is an r x p weighting matrix. When « is positive,
the estimate ﬁ(tn+a/tn) is called prediction, and when « is negative,
it is interpolation with delay. The proof in this section is a general-
ization of the proof in Chapter III that, when & 1s zero, the optimum

current estimate can be written in the form of Eq. (162)

=0




Because the two estimates x(tn+a/tn_l) and x(tn/tn_l) are
optimum, they satisfy the appropriate versions of the sampled-Wiener-
Hopf equation which are

E[x(t #0)y" (¢ )-B[R(t v/t 1 )y (e )] =0 p=0,1,...mL

(163)

and

Blx(t, )y (6,)1-E[R(e /5, 0 (6 )] =0 o= 0,1l

(164)
It will be proved that there is an r X p weighting matrix K(tn+a,tn)
for which the estimate in Eq. (162) satisfies Eq. (165),

I a I

E[x(tn+a)y (tp)]-E[x(tnm/tn)y (tp)] =0 p=0,1,...,n.
(165)

Substituting the trial estimate in Eq. (162) into Eq. (165) gives

Elx(t +a)y () 1-E[R(t w0/t )y (2 )]
“K(t, 0 t) {E[mtn)x(tn)y”-‘(tp)]

_ﬁ(tn)E[&(tn/tn_l)yT(tp)]} =0 p=0,1,...,0.

(166)
For p less than n, Eq. (166) is equal to Eq. (163) minus

K(tn+a,tn)ﬁ(tn) times Eq. (164). Both these equations are identically
zero for p <n, so Eq. (L66) is identically zero for p <n.
For p equal to n, Eq. (166) can be written

E{x(t_ta)x (v )]-E[R(t_+a/t__)x (¢ )| B (¢ )

-K(tn+a.,tn) {ﬁ(tn)P(tn/tn_l)ﬁT(tn)+§(tn)} = 0,
(167)
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where the substitution has been made that

E(M(e, )x(t)y" (6 )1-BIR(e /o, )y (v,)

= (e )R(t /t )W (2 )+R(x ), (268)
with the covariance matrix of the error P(tn/tn_l) defined as
B(t /v, 1) = Elx(e ) (6 )]-BIR(s /v, )% (6 )] (169)
n’/ "n-1 n n n’ "n-1 RIIY
and the covariance matrix §(tn) defined in Eq. (104) as
= ~ T
R(t ) = B[M(x_)x(t_)x" (t )W (¢ )]. (170)
Therefore, when the rxp weighting matrix K(tn+a,tn) satisfies
Eq. (167), the trial estimate in Eq. (162) is indeed optimum and satis-
fies the sampled-Wiener-Hopf equation (165). When the quantity in

braces in Eq. (167) is nonsingular, the weighting matrix K(tn+a,tn)

is determined uniquely as
K(t_+0,t ) = {E[x(tnm)xT(tn)]-E[%(tnm/tn_l)xT(tn)]} Mt ) -

= =T = -1
{M(tn)P(tn/tn_l)M (tn)+R(tn)} . (171)
The conditions under which the second quantity in braces is nonsingular

are discussed in Sec. III-C. When «a is equal to zero, the weighting

K(tn,tn) for the optimum current estimate from Eq. (171) is
K(t,,t,) = {E[x(tn)xT<tn)]-E[?«(tn/tn_l)xT(tn)]} H(e,) -
{ﬁ(tn)p(tn/tn_l)ﬁf(tn)+§(tn)} 3 (172)

which is the same as K(tn) in Eq. (120).
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It is also desirable to know the covariance matrix of the error of

the optimum estimate P(tn+a/tn), which is given by Eq. (87) as
. T N A : T
P(tn+a/tn) = E[x(tnm)x (tn+a;] - E[x(tnm/tn)x (tn+a)].

(173)
Substituting the optimum estimate in Eq. (162) into Eq. (174) gives

P(tnm/tn) = E[x(tnm)xT(tnm)] = E[s‘c(tnm/tn_l)xT(tnm)]
- K(tnm,tn)ﬁ(tn){E[x(tn)xT(tnm)]-E['}‘c(tn/tn_l)xT(tnm)]}

(175)

The first two terms in the expression for the covariance P(tnm/tn)
in Eq. (175) are equal to the previous covariance P(tn+ojtn_l); thus,

the covariance matrix of the error of the optimum estimate can also be

written as
P(tn+a/tn) = P(tnm/tn_l)-K(tnmgn_)ﬁ(tn) {E[x(tn)xT(tnm)]
- E[’;‘c(tn/’tn_l)xT(tnw)]} (176)

When « is equal to zero, the covariance P(tn+a/tn) in Eq. (176) is
equal to the covariance P(tn/tn) in Eq. (127).

In the next section the iterative nonlinear difference equations
determining the weighting matrix K(tn+a,tn) in Eq. (172) and the
covariance matrix P(tnm/tn) in Eq. (176) will be derived for inter-

polation with delay (when « is negative).
C. DERIVATION OF THE OPTIMUM ESTIMATE
To simplify the derivation of the optimum estimate for interpolation

with a delay of |a| sec, the notation used in the preceding section

will be changed slightly. The time tn+a can be written
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bt o=ty B 0<s <Ty (177)

so that, for a negative,

2 t < <
St +a td+ a<o

1 —
- a<n. (178)

Using the new notation the optimum estimate %(tn+a/tn) in Eq. (162)
becomes

R(eg#0/t)) = R(egeo /e ) + K(ege,t )y(e )-M(e )%(t /e )1 (179)

Making use of Eq. (162) once more the optimum estimate %(td+6/tn_l) in
Eq. (179) can be written

R(rgro/t ) = R(tgwo /v K(tg,t Iy(e _)-Me  x(t /v o))

n-
(180)
Continuing this process for (n - £) times the expression for the

optimum estimate, &(td+6/tn) becomes

n

(eg1o/ty) = %(eg/t,) + ) K(tg#0, 5, ) [y (6, )M(e )R (6, /5y ;)] (181)
k=2+1

For a delay of (n-d) sample points, it is necessary to calculate (n-d)
weighting matrices K(td+6,tk).

The matrix block diagram in Fig. 9 represents the linear filter
which implements the optimum estimate in Eq. (181). The elements marked
DELAY relate the state of the filter of time tn to the state of the
filter at tiame tn+l' That part of the filter within the dashed rec-
tangle duplicates the model of the cptimum filter for prediction in
Fig. 5, which was derived in Chapter III, and calculates the optimum
prediction i(tk/fk_l) in Eq. (181).

The weighting matrix K(tdfs,tn), where n represents any number
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eg+die,)

-:1_‘“: vat, | :’i\

FIG. 9. MODEL GF OPTIMUM FILTER WITH DELAY.

greater than d, must satisfy Eq. (167) with t +0 replaced by
td+5; i.e.,

{E[x<td+a)xT<tn>1 - E[fc(tdm/tn_ng(tnn} W (t,)
- K(td+6,tn)[ﬁ(tn)P(tn/tn_l)}_dm(tn)fﬁ(tn)] =.0.

(182)
The covariance of the error P(tk/tkll) in Eq. (182) can be determined
iteratively at each sample point by Eq. (léh); thus, only the first
term in braces in Eq. (182) remains unknown. This term is composed of
the sum of two quantities E[x(td+5)xT(tn)] and E[ﬁ(td+5/tn_l)xT(tn)].
This sum will be determined first for the case where there is a delay of
only one sample point, so that n 1is equal to d+l. A method will then
be derived for calculating this sum in the general case where there is a
delay of (n-d) sample points.

From the solution to the ordinary differential equation representing

the system in Eq. (10), the state vextor x(td+5) can be written
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x(tg40) = (L 46,1 )x(ty Jrult+8,t4), (183)

where u(td+6,td) is an r x 1 vector defined as
tdfﬁ

u(t +8,ty) =ft o(t 46, 7)G(T)v(7)dr (18%4)
a

to represent the effect of the random inputs to the system between
time td and time td+6. From the model of the process and the

properties of the random parameters in Eq. (53) the state vectors can
be written

x(tdfs) ®(td+6,td)x(td) + u(td+6,td)

Bt g0,y )x(ty) + E(td+s,td)x(td) + u(t #0,t,) (185)

and

x(tguq) = oty rt)x(ty) + ulty ),ty)

3(td+l,td)x(td) + 5(td+l,td)x(td)+u(td+l,td). (186)

Substituting Eqs. (185) and (186) into the quantity E[x(tdﬁﬁ)x$(t

d+1)l
gives

B[x(6,#8)x (t,,1)] = B(tg8,8)B[x ()% (2)] 3 (5,6, )4 (8,46,

(187)

where the expected values of the cross terms are zero, and the substi-

tution has been made of the r x r matrix al(td+6) defined as
T (6.48) = B[3(t 46,1 )x(t. )t (¢ BT (t, ot ) ]+E[ult 46,6 Jut(t, ,t.)]
1'd a’’d d d a+l’"a a°’"a d+1’a’t
(188)
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The quantity E[i‘c(td+6 /td)xT (t can be written

d+l)]
E[R(ty#0 /6% (8,101 = Bt 46,5 B[R, /o )x" (6,)] F (£, ,t5).  (189)

Thus, by substituting Egs. (187) and (189), the sum of the two quantities
T & T
E[x(tdm )x (td+l)] and E[x(td+5/td)x (td+l)] can be written

T & T
E[x(td%)x (td+l)] = ,E[x(td%/td)x (td+l)]
= Bt 46, JE[x(t. )X (4, ) T (b, ot )4, (t.48)
a>’7d d d d+l’ "a’ " ™M‘\a
by ~ T —T
- B(t 45,1y JE[R(t /6y )x (£ ) 187 (6, 1ot,)
= Bt 40,1, )B(t, /) T (t, ,t,)4Q (t,46), (190)
a ">’ a a’-a a+1’7a’ 1vate
where the substitution has been made that
P(t,/t,) = E[x(t,)x (t,)]-B[R(t,/t,)x (t,)]. (191)
a’"a -a d a’"a d
Returning to the general case with the first term in braces in

Eg. (182) composed of the sum of E[x(td%)xT(tn)] and E[')‘c(td+5/tn_l) .
xT(tn)], the substitution of Eq. (181), for ’}E(td%/tn_l) gives

{E[x(tdm)x%nn - E[i(tdw/tn_l)x'r(tn)]}

“E[x(t,+8)x (t_)] - E[R(t 4/t )x (¢ )]

n-1

) Koty {E[y(tk)x%n_ln-ﬁ(tkmﬁ(tk/tk_l)x%nn}

k=d+1

(192)

For k less than n,
{E[y(tk)xT(tn_ln - ﬁuk)E[ﬁ(tk/tk_l)xT(tn)]}

- ﬁ(tk>{(E[x(tk>xT<tk)1 - E[ﬁ(tk/tk_l)x%kn} T (t,t,)

= (t, )Tt /v, ) 3 (x ) (193)
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where the covariance of the error P(tk/tk_l) has been substituted into
Eq. (193). For 4 1less than n

B[x(ty #6)x (t))] - B[R(tg#/0,)x (£ )]
- {E[X(tdﬁ I (b, )1-E[R(b 46 /6 )x (v, ) ]} 3 (6 tg,,)
- {«T(tdm,td)P(td/td)ST (td+l,td)+al(td+s)} 3t pt,,,) (194)
where Eq. (190) has been substituted into Eq. (194).

Finally, substituting Egs. (192 - 194) into Eq. (182), which must
be satisfied by the optimum weighting matrices, yields

{a(tdﬁ,,td)p(td/td)# (td+l,td)+§l(td+s)} B (t b, ()

n:—l

- ) Kt (e IP(t oy 1) B (o, 8 R (1)

 k=d+1

- K(tg#5,t ) M(tn)P(tn/tn_l)ﬁT(tn)+ﬁ(tn)} = 0. (195)

where §¥td+6) and ﬁ(tn) are deflned in Egs. (188) and (167). First,
set n equal to d+l, and Eq. (195) becomes

{6(£d+a,td)P(td/td) W(o 1084, (5, m)} w(s )
K(tg#6,t4,;) {ﬁ(td+l)P(td+l/ td)ﬁm(tml MRty )} = 9 (196)

The optimum weighting matrix K(tdfs,td+l) is determined from Eq. (196)
to be

K(tg#*,ty,,) = {E(td«»a,td)P(td/td) Em(td+l,td)+al(td+6 )} F'lm(td)

* {ﬁ(td+l)P(td+l/ LGV O )} E (197)

Because the delay & is known, the expected value S(td+5,td) and
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ai(td+6) can be calculated directly; thus, all the quantities in Eq. (197)
are known a priori except for the covariances of the error P(td+l/td)

and P(td/td), which can be determined iteratively at each sample point

by Egs. (124) and (127). The conditions under which Eg. (197) uniquely
determines the weighting matrix K(td+6,t
Section III-D.

d+l) are discussed in

Next, set n equal to d+2 in Eq. (195) and the result is
- =T = T
{(b(tdﬁ’td)P(td/td) ® (td+l’td)+Q(td+6)} T (gt W (g,0)

-K(td+6,t W(t. . )P(t ET(t )ﬁr(t

d+l d+1 d+l/td) d+2’td+1 d+2)

- K(td%’tme){ﬁ(tme)?(tme/ tan )ﬁm(td+2)+§(td+2)} = 0.

(198)
The optimum weighting matrix K(td+6,td+2) is determined from Eq. (198),
to be

K(td+6,td+2) = {E(tdﬁ),td)P(td/td) $r(td+2,td)ﬁT(td+2)

4q (b448) (s B (¢

d+2’td+l d+2)

{M(tme)P(tme/ a1 )ﬁr(tme)*ﬁ(tme)} N (199)

with K(td+5,td+l) given by Eq. (198).

To calculate the optimum estimate %(tefa/tn) in Eq. (181) with
delay up to (n-d) sample periods, it is rc2essary to determine (n-d)
weighting matrices K(td+6’tk)' The welghting matrices K(td+ﬁ,td+l)
and K(td+5,td+2) have already been determined from Eq. (195) as
given by Egqs. (197) and (199) respectively. The matrix K(td+5,td+3
is obtained from Eq. (195) with n equal to 3, and this iterative

procedure is continued until all the (n-d) weighting matrices have

)

been odbtained.
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These calculations will be rather tedious if the optimum estimate
has been delayed fcr many sample pnints and there are a large number
of weighting matrices to be determined. When the optimum estimate is
obtained from a stationary dynamic system (as discussed in Sec. I1I-E),
these weighting matrices will not change from one sample point to the
next; thus, the tedious calculations must be performed only once.

These ideas are illustrated in Sec. IV-D, where examples are worked
out for the optimum estimate with a delay of one sample period and with
a delay of two sample periods. For a delay of up to one sample period
the covariance of the error P(td+5/td+l) is given by Eq. (175), with

tn+a and tn replaced by td+6 and t respectively, so that

d+1

P(td+6/td+l) = E[x(td+5)xT(td+5)]-E[Q(td+5/td)xT(td+5)]
K(tg#0,ty,1 Mty ) {%[x(td+l)X$(td+5)]
_E[ﬁ(td+l/td)x¢(td+6)i} . (200)

By using Eq. (185) the covariance E[x(td+5)x?(td+5)] can be

written
B[x(t596 )% (t440)1 = B(ty38, 8 Bx(t)x (£4)] B (1448,14)+T,(t540),

(201)
where the expected value of the cross terms is zero, and the substitution

has been made of the r x r matrix Qé(td+5) defined as
Q. (t.+6) = E[B(t +5,t )x(t )xT(t )6T(t +6,t ) ]+E[u(t +5,t )uT(t +©,t.)]
2 d a’"a d d a*v’"a a°-’"a a’v’a

(202)
Both the quantity ﬁz(td+6) in Bq. (202) and the gquantity Ql(td+5)
defined in Eg. (188) are egual to zero when ty * 5 1is equal to td.
Substituting Eqs. (187) and (201) into Eq. (199), and using the
covariance P(td/td) for the equivalent quantity given by Eq. (191)

yields as the covariance matrix of the error P(td+5/td l)
+
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P(tg46/ty,1) = 3(t 6,8 )B(t, /1) B (L +0,t,) + Qoltys)
= K(tdm,td+l)ﬁ(td+l){3(td+l,td)P(td/td) ¥ (tg40,t,)
+ af(tdm)} , (203)

where K(tdfs,td+l) is given by Eq. (197), and Ql(tdfs) and Q2(td+5)
are defined by Eqs. (188) and (202) respectively.

For a delay of up to two sample periods the expression for the
covariance of the error P(td+5/td+2) can be derived from Eq. (176)

by the same procedure used to derive P(td+6/td+l) from Eq. (176).

P46 /ty,,) = Pt /v, )K(t 36,8, o i(t,, ) {Blx(t, o )x (t,46)]
-E[?c(td+2/td+l)xT(td+s)]} . (204)

Everything in Eq. (204) has already been determined except for the

quantity in braces. From Eq. (162) the optimum estimate X(t

d+2/td+l)
can be written

R(tgp/tan) = Megipta ¥t /tg,)

= oty 00%,0) [i(td+l/td)+x(td+l) {Y(tdu)'ﬁ (tgq) ?‘(td+1/td)}]

(205)
Substituting Eg. (205) into the quantity in brackets in Eg. (20h)gives

{%[x(td+2)xT(t@+6)]-E[ﬁ(td+2/td+l)katd+6)i}
= Bty prtaey [T - K(tg, ) Mty )] x
{E[x<td+l)xT(td+s)1-E{fc(td+1/td)xT(td+s)]} : (206)

Substituting Egs. (206) and (187) into Eq. (204) gives as the covariance
of the error
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P48/t 0) = Pltgt /vy,  )K(t 40,0, Mty ) F(t

a+2/ "\ a2 a2 ban) ¥

[TK(tg, Wloy, )10 Bty b )B(6,/t,) BT (540, +Q) (£,46) 1,

(207)

where I is the identity matrix and P(td+6/t d+2)

d+l) and K(td+5,‘c
are given by Egs. (203) and (199) respectively.

For a delay of up to (n-d) sample periods the general expression
for the covariance matrix of the error is given by Eq. (176), and, by
repeating the same procedure used to obtain Eq. (205), this covariance

P(td+6/tn) can be written

n-1
P(tg#/t, ) = P/t | FK(tg#e,t ) I B(ty, 6 ) [I-K(t, (¢, )] x
k=d+1
[ 6(td+l,td)P(td/td) E'T(tdﬁ,td)\«'d'f(tdm)]. (208)

Therefore, the covariance of the error P(td+6/tn) can be calculated
by starting with Bq. (203) and using Eq. (208) iteratively.

In conclusion, when cdnsidering estimation with delay, it must
be decided if the improvement in the estimate is worth the delay in
receiving the estimate and the increased complexity of the optimum
filter. The examples in the following section will serve to illustrate
some of the ideas of this chapter.

D. EXAMPLES

The procedure for optimum intergpolation with delay developed in
this chapter is intimately related to the technique for optimum filtering
and prediction derived in Chapter III. In order to clarify this rela-
tionship, the examples in this section will be concerned with the same
two stationary stochastic processes that were used in Section III-F. to
illustrate the ideas of Chapter III. For the first—order.Markov process,
the optimum interpolation will be determined for a delay of one 'sample

period and two sample periods. For the stationary process with
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exponential cosine autocorrelation, the optimum interpolation will be
determined for a delay of one sample period. With a delay of & whole

number of sample periods § 15 equal to zero, and from Egs. (188) and
(202),

Q, (£ +0) =0

Se0) | =o. (209)

1. Exponential Autocorrelation

The stationary first-order Markov process has the autocorrelation

% (1) = eBl7l (210)

The subscript 1 will not be used on the variables in this example, so
the expected value of the transition matrix will be denoted a with

= E[exp (-8 T)] (en1)

and the variance of the multiplicative noise will be denoted by T.

The model of the optimum filter for interpoletion with a delay of
both one and two sample periods is presented in Fig. 10. That part ef -
the filter within the dashed rect;hgle duplicates the model of the opti-
mum filter for prediction presented in Fig. 6 and discussed in Section
III-F. The weighting k(td’td+l) is a scalar which is determined from
Eq. (197) to be

 p(ty/ty)
Kby, ty,,) = ————— (212)
L CRAN

The weighting k(td,td+2) is determined from Eq. (199) as
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OPTIMUM ESTIMATE
WITH DELAY

k(tg_ g1 tq)

R(t

alty)

OPTIMUM
CURRENT
ESTIMATE

FIG. 10. MODEL OF THE OPTIMUM FILTER FOR ESTIMATION WITH DELAY FOR
EXAMPLE 1.

2

Boltglty)  Kltgrty,y) Polty,,/ty)

k(td,t —
P(tgsp/taa T Pty o/tqn T

d+2) = (213)

and after substituting Eq. (212) for k(td,td+l) in Eq. (213) this
can be written

Fp(t. /¢
d+2) = o d/ d) — 1 - Effgiifzng: . (21k)
Ptayp/ta 17 Pty /ty 1+

k(td,t

The covariance p(tn+l/tn) and p(tn/tn) are given by Eqs. (144) and
(145) as

(t ./t ) = 2
t t ) s ————— -
P n+l’ n P(tn/tn_l)+; e & 5

-~

p(t /t,)

"

p(t /6 )T 2
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The steady-state value of the covariance of the error with a delay of
one sapple period f(tn_l/tn) is determined from Eq. (203) after
substituting Eq. (212) for k(td/td+l) and the result is

- - Fop(t,/t)
Pty 1 /t,) = Bl /e ) (1 - —————] - (216)
p(tn+l/tn)+r

The steady-state value of the covariance of the error with a delay of

two sample periods 5(tn_2/tn) is determined from Eqs. (207) and (216)

after substituting Eq. (143) for k(td) and Eq. (214) for k(td /td+2)
and the result is
_ _ o fr ) Bl fr )
p(t_ o/t ) =p(t /t )| 1 - = — - — —
p(t ./t )+ (p(t ,/t )+T)
(217)

The steady-state value of the three covariances E(tn/tn),

p(tn_l/tn), and p(tn_z/tn) are plotted in Fig. 11 as a function of

the variance of the multiplicative noise T for

£ = 0.9091, (218)

which is the expected value of the transition matrix when the sample
period has an exponential distribution (purely random sampling) with
the parameters given by Eq. (219).

1.0
- 0.1. (219)

™ T
] 1

Notice how delaying the estimate decreases the covariance of the

error.

2. Exponential Cosine Autocorrelation

The second example is the étationary process with exponential
cosine autocorrelation
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FIG. 11. COVARIANCE OF THE ERROR FOR EXAMPLE 1..

_ By sin 7|T|
R (1) = e BITl cos yT =
X, X

—s—— 2
171 (252 + 72) (220)

which was discussed in Sect. II-C and III-F. For a delay of one sample

period, the weighting matrix is determined from Eq. (197) to be

r~ —

B11pyy (65/%5) + B oty /tg)

Py (b1 /tg ¥

K(td/td+l) =
819 (t4/t5) + B o2on(ta/t,)

Py (tgu1/tg )T

(220)

L

The elements of the covariance matrix P(td/td) can be determined
from Eq. (127) as
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Py (tg,0/tg T

P, (t/t2)
1'%/ =
Py (bg4y /b )*T

P (g /)T

y = A Q.
P1o(ta/ta) = Poy(ta/ty) =

Py (tg 0/t )+

P1o(tq,1/% )P (£a40 /ta) -
= = 0 l
Poolta/tq) = Poplty,/ta) oy (e fo o (221)

The steady-state covariance of the error 5il(tn-l/tn) for a delay of
one sample period can be obtained in terms of the elements of the

n+l/tn) by substituting Egs. (220) and (221) into
Eq. (203), and the result is

covariance matrix P(t

Py (b /%) = L i - -3 *
P (e /e HT [Pyy (B /5 )47
2 2
25 2: Bry Pry Pry (o /o0m (0 0 /o) B (222)
i=1 j=1

The steady-state value of the two covariances Ell(tn/tn) and
5ll(tn-l/tn) are plotted in Fig. 12 as a function of the multiplicative
noise when the sample period has a geometric distribution (purely random

sampling) with the parameters given below, in Eq. (223)

p =10
B =0.1
y = 1.0, (223)

which means that the values of the matrices are given by Table 4 in
Sect. III-F. Delaying the estimate for one sample period decreases
the covariance of the error, but not quite as much as in the previous

example.

-5 -




COVARIANCE OF THE ERROR

- 76 -

0.4 |— ’ll(tn/tn)
-
Pi1(ta.i/ts)
0.3 |-
0.2 |-
L0l
0 1 I | L | 1 I | I
0 0.2 0.4 0.6 0.8
VARIANCE OF THE NOISE T
FIG. 12. COVARIANCE OF THE ERROR FOR EXAMPLE 2.

e




V. STATIONARY STOCHASTIC PROCESSES WITH RANDOM SAMPLE PERIODS

A. INTRODUCTION

The purpose of this chapter is to show how the techniques developed
in this investigation can be applied to a problem which has been con-
sidered in the literature. A stationary stochastic process with a
rational power spectrum is sampled so that the sample period is a
stationary random variable with a known first-order probability distri-
bution. There is no multiplicative noise; therefore, the only random
parameter of the process is the randomness in the sample period. It is
assumed that the sample points are being observed in real time; there-
fore, aithough the sample period Tn is & random parameter, the value
of the random parameter Tn can be determined exactly as soon as the
sample points tn and tn+l are observed.

In Sect. V-B, the continuous optimum estimate of the process is
presented when the sample period can be considered as a known time-
varying parameter. This optimum estimate is generated by a linear
dynamic filter with a time-varying matrix-valued gain. If the optimum
estimate can be delayed until an on-line computer iteratively determines
the gain at each sample point, then the optimum estimate can be
implemented.

When it is not practical to recompute the gain at each sample
point, the linear filter that generates the optimum estimate is modified
so that the matrix-valued gain is a constant. The constant value chosen
is that value which minimizes the trace of the covariance matrix of the
error in the limit as the number of observations n approaches
infinity.

In the approach to the problem that has been considered in the
literature [Refs. 13,147 transform technigues are used to design the
linear time-invariant filter that minimizes the mean square error of the
continuous estimate. 1In Sect. V-C this time-invariant filter is com-
pared with the optimum filter for the case in which the stochastic pro-

cess is a stationary first-order Markov process.
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B. THE OPTIMUM ESTIMATE

iy

il

When the sample period of a stationary stochastic process is a
time-varying parameter that is known exactly, the optimum current
estimate is given by Eq. (119) which can be written

R(e /) = (T _R(e /6 (e V(s )-M (B _%(e__ /6 )] (224)

where the transition matrix ¢ (t) is given by Eq. (17) as

o (v) = 7. (225)

The matrix bloek diagram in Fig. 13 represents the linear filter that

implements the optimum estimate in Eq. (224). That part of the filter

within the dashed rectangle duplicates the model of the process and has

the impulse response ® (t). The switch on the left, representing the i
sampling operation, and the synchronousswiteh in the feedback loop of

OPTIMUM
PREDICTION
?(tn+7+a/tn)
SAMPLING —1 ¢(a) ————
OPERATION
Co T [
y(tpt7 ' T UUR( T/t
e AN e (t) l : l Sy
\L — | 1 K -‘ P 3 - - |
\\ + \jf/ n ] sz//,
N | | | OPTIMUM
\ & F | CURRENT
N | ] ESTIMATE
L N e e e o - —— — — —
svucnnouous/
SWiTCH
-M
FIG. 13. MODEL OF THE OPTIMUM FILTER. *

*
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the filter close simultaneously, so that the sum of thelr outputs is

zero except at a sample point tn when the sum is an impulse with area

y(t,) - Mo(T )Rt /¢ ) (226)

The weighting matrix K(tn) is determined from Eq. (120), which
is

K(t_) = P(tn/tn_l)MT M Pt /t ) i S (227)

The covariance P(tn/tn l) is calculated iteratively from the nonlinear
difference equation (125), which can be written

P(tml/tn) = °(Tn){1 - P(tn/tn_l)NF[M P(tn/i',n_l)M'l\]'l M} %
T
P(tn/tn-l)¢|I(Tn) +L[‘ ®(Tn~c)GVGT oT(Tn'c)do'; (228)

vwhere the substitution has been made from Eq. (48) that

n T T
a(t,) = f (T _-0)GVG ¢ (T -0)do.
(o]

(229)

From Eqs. (227) and {228) the covariance of the error of the optimum
estimate during any time in the sample period is

P(t_+7/t ) = @(}) I - K(tn)M} P(t_/t 1) ¢T(r)

T

+ [ ¢ (7-0) GVGT'DT(T-G) do.
o

(230)

The weighting K(tn) for the optimum estimate in Eg. (227) can

be determined in real time by an on-line computer if a slight delay is

permitted in the estimate.

The following procedure must be repeated
at each sample point:
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1. Determine the sample period T, as soon as the sample point
th+1l 1s observed.

2. Calculate and store the covariance of the efror P(tn+1/tn) from
Eq. (228) using the known sample period T, and the stored .
covariance P(tn/tp-1)-

3. Calculate the weighting matrix K(tp+1) and set the gain of the
filter accordingly.

The idea of using an on-line computer to calculate the weighting
matrix at each sample point did not originate from this investigation.
In particular, it follows directly from the work of Kalman [Ref. 1)
when his results are carefully applied tc this problem. The advantage
to this procedure is that the optimum estimate is obtained, but the
corresponding disadvantage is that an on-line computer must be available,
and the optimum estimate must be delayed until the computer has com-
pleted the nece5sagxugﬁ&qulations to determine the weighting matrix.

Sometimes it is impractical to recalculate the welghting matrix
at each sample point. It would be desirable to find some constant
value for the matrix that would minimize the average value of the trace
of the covariance matrix of the error. The constant value of the matrix
which minimizes the average value of the trace in the limit as the
number of observations n approaches infinity can be determined by the
techniques developed in Chapter III.

Assume that the sample period ‘1‘n is an unknown random parameter,
rather than a known time-varying parameter. The series of weighting
matrices K(tn) can be determined to minimize the average value of the
trace of the covariance matrix of the error. 1In Sect. III-E it was
shown that when all the statistics of the processes were stationary, then
the optimum estimate would become a stationary dynamic system in the
limit. This means that in the limit the weighting matrices K(tn)
will approach the desired constant value K

The weighting matrix K(tn) is determined from Eq. (227); thus
_ - = g
K(t ) = B _/t__) MT{M B(s /t__ ) M } L (231)

The average value of the covariance F(tn/tn_l) is calculated iteratively

from the average value of Eq. (228) which can be written
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r
Ble, /v) = B[O @)1 - Ble /e ) MM B(e /e, ) WY M} x

Bt /v B0 T(T )1E[E (2 )B(v /v, ) R (T, ) EIQ(E))s

(232)
where the covariance Q(tn) is given by Eq. (229) and all the expecta-
tions in Bg. (232) are with respect to the sample period T . The
limiting value of the covariance

Lim 'ﬁ(tml/tn) = Lim 'f(tn/tn_l) =P (233)
o ] It-s00

can be obtained by iterating Eq. (232) until a steady-state sclution
is obtained, or it can be obtained directly from the steady-state
solution of Eq. (232). The desired constant value of the weighting
matrix K 1is obtained by substituting the limiting value of the
covariance P into Eq. (231).

The filter in Fig. 13 with a constant gain K 1is not the optimum
filter, but it is the best filter from a sub-optimum ¢lass of filters.
In the following section the filter in Fig. 13 is compgred with another

filter from a sub-optimum class of filters--the linear time-invariant
filter.

C. COMPARISON WITH THE TIME-INVARIANT FILTER

When it is desired to design the time-invariant filter with infinite
memory that minimizes the mean square error of the estimate, transform
techniques can be used to get a solution to the problem [Refs. 13, lh].
In the transform approach, the spectral density of the power spectrum of
the sampled stochastic process is first determined from a complex convo-
Iution integral, which can be evaluated by the method of residues in
some cases. Then, the synthesis procedure is based upon the standard
Wiener spectral factorization of the sampled power spectfum. The
resulting filter is continuous and time-invariant and gives the minimum

mean square error for all time of any linear filter that is time invariant.
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Even with a constant gain, the filter discussed in the previous
section and shown in Fig. 13 is not time invariant. It contains a syn- *
chronous switch that closes at the sample point, so that the character-
istics of the filter depend upon the sample period. A simple example )
will serve to show the difference between the two filters. The perfor-
mance of these two filters will be compared with that of a pure stretcher
or time varying hold.
Consider the stationary first-order Markov process discussed in
Sect. II-B with the autocorrelation function

RXX(T) = e-sl-r'.

The process is sampled, the sample period is a stationary random
variable, and it is deslired to reconstruct the originel process from
the observed random variables in order to minimize the mean-square.error.

The optimum filter for this process is presented in Fig. 14. The ’
gain of the filter is unity for any probability distribution of the
sample period. The filter is not time invariant because of the )
synchronous switch. The output of the filter is

SAMPLING
OPERATION
X(t, +7) X(t+7/t)
n n
44_/(’ + | "
AN - ‘\ 3
N\
AN OPTIMUM
\ ESTIMATE
‘>// -B
SYNCHRONOUS
SWITCH

FIG. 14. OPTIMUM FILTER.



5 - --BT 234

x(tn+T) =€ x(tn) tn S, ® < tn+l’ (234)
so that at each sanple point the error in the estimate is zero. During
the sample period, the error is due to the random input to the process.
The mean-squared error due to the covariance of the random input is

obtained from the one-dimensional version of Eq. (229), which is

. T .
p(t +7/t ) =\/~e-B(T-G) ope B(T-0)4s 1 _ 2BT b <t st (235)
0

where the substitution has been made from Eq. (9) that

vll = 2B (236) :

From Eq. (235) the average over all time of the covariance of the error

(or the mean-squared error) is

T T
n no o -2pT
E p(tn+T/tn)dT E[T ] =E (1-e Jar | [E[T ]
0 0
-2pT
1-Ee ™
A0l o (237}

26 E[T ]

The linear time-invariant filter for the stationary first-order
Markov process is presented in Fig. 15. The impulse response of the
filter g(+) that minimizes the mean-squared error is dependent on the
probability distribution of the sample period so that a different g(r)
must be determined for each distribution. The best time-invariant
filter and the corresponding mean-squared error have been determined in
closed form for two probability distributions of the sample period--the
geometric and exponential distributions. The probebility laws governing
these two distributions have already been discussed in Sect. II-E, and

the pertinent information concerning these laws is summarized in Table 1.
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FIG. 15. TIME-INVARIANT FILTER.

For the geometric distribution of the semple period (periodic
sampling with independent misses) the mean-squared error of the time-
invariant filter is given by Egq. (238)

(1-0)(e%"-1)

Mean-squared error = 1 - ————————— " (238)
2BT

where o 1is

_ 1, -2pT Ty . 1 -2PT,2 QTv2 , qT,, «28T
= 5{1-e M - 5 ) + 2\/(1-«3 ) (1 - o) L p—-(l-e )

(239)

and p, q, and T are parameters of the distribution.
For the exponential distribution of the sample period (purely

rendom sampling) the memn-squared error of the time-invariant filter is

given by Eq. (2k0).
- g+ 82 + 28

Mean-squared error = (2k0)
u

where u 1is a parameter of the distribution.
It is interesting to compare the optimum filter and the time

invariant filter with a simple time varying hold. The output of the
time varying hold is
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R(t =
R(t +1) = x(t)) t St o +T<t

The mean squared error of an estimate at time tn+f would be
2(1 - PT)

and the average over all time of the mean squared error is

T\
n
E J[ 2(1-62PT)ar E[T ]
0
-BT
=2-2(1-Ee M B E[T,)

In Table 6 the mean squared error of these three filters is compared
for period sampling, periodic sampling with independent misses, and
purely random sampling for B equal to one-tenth. The expected value of
the sample period is normalized to unity and the value of the other para
meters of the probability distribution are listed in Table 6.

TABLE 6. MEAN-SQUARE ERROR FOR OPTIMUM AND TIME-INVARIANT FILTERS.

Purely Random or Poisaon Bampling =

Periodie Sampling with Independent Miaaea

Periodic Sampling

Probability Diatribution

of Sample Period €Conatant Geometrie Exponential
Parametera of T=1 T=1/2 H=1
Probability Diatribution p=q~l/2

Mean Sawple Period T=1 T/p=1 1/pu=1
Varianee of Sample Period 0 1/2 1
¥ith B=0.1

Mean-Square EBrror 0.0637 0.1311 0.1667
" for Optimunm Filter

With pS=0.1

Mean-Square Rrror

for Time-Invariant 0.0937 0.2458 0.3583
Filter

With S=0.1 .

Mean-Square Brror 0.0967 0.1400 0.1818 - |- -

for Time Varying Hold
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For periodic sampling the optimum filter and the time invariant
filter are identical, but as the variance of the sample period increases,
the mean squared error of the time invariant filter increases much more
rapidly than that of the optimum filter. The mean : ., uared error of the
simple time-varying hold is only slightly greater than that of the opti-
mum filter for periodic sampling and also when the sawple period is a
random variable. 1In this example, the time invariant filter does not
approximate the true optimum very well for large variance of the sample
period, while the simple time-varying hold does approximate the true

optimum. This shows that sometimes a "non-optimum" time-varying filter

is better than the best time invariant filter. =
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VI. CONCLUSIONS

A. SUMMARY

In this investigation the general solution has been derived for
the problem of the optimum linear estimation of a sampled stochastic
proceés with random parameters that can be adequately approximated by
the model presented in Chapter II. The random parameters are independent
from one sample point to the next with known mean and covariance. The
solution can be implemented by a linear dynamic system with a matrix-
valued gain (or gains) calculated iterstively for each sample point.

For high-order complex systems these computations are most easily per- _
formed by a digital computer. . )

B. SUGGESTIONS FOR FUTURE WORK

The ideas presented in Chapter IV represent the first thorough
investigation of optimum interpolation with delay for a nonstationary
sampled stochastic process. As yet, no éompletely satisfactory theory
exists for the optimum linear interpolation with delay for a non- .
stationary continuous process. It should be possible to extend the
technique developed in Chapter IV to the interpolation with delay of the
continuous stochastic process with white noise added to the measurements.
For filtering and prediction, this problem was formulated by Kalman and
Bucy [Ref. 18].

Another possibility is concerned with the area of adaptive systems.
The optimum estimate in this investigation is implemented by a linear
dynamic system that uses the expected value of the random parameters.
The only place the covariance of the random parameters is needed is in
the iterative calculation of the matrix-valued gain. If only the
expected value of the random parameters were known, then the techniques
of adaptive systems could be used to adjust the matrix-valued gain to

react to measured variations in the covariance of the random parameters.
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