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ABSTRACT 

In this investigation the general solution is derived for the 

prohlem of the optimum linear estimation of a sampled stochastic 

process, when the transition and output matrices of the model of the 

process are random parameters that are independent from one sample point 

to the next with known mean and covariance. The resulting estimate is 

optimum in the sense that it minimizes the trace of the covariance matrix 

of the error (a generalized mean-squared-error criterion). 

The notation used in the following discussion is based on the state- 

transition approach to linear estimation developed by Kaiman,,  In this 

approach the stochastic process is represented as the output of a 

linear (possibly time-varying) dynamic system with an independent random 

input. 

For current estimation and prediction of ^he state vector, the 

optimum estimate is implemented by a linear dynamic filter with a 

matrix-valujd gain the only undetermined coefficient. This matrix- 

valued gain, as well as the covariance matrix of the error in the 

optimum estimate, is determined iteratlvely for each sample point from 

a nonlinear difference equation involving the covariance of the error 

at the previous sample point. 

The configuration of the solution for linear interpolation with 

delay is a linear dynamic filter similar to the one used for prediction. 

For each sample period the estimate is delayed, an additional weighting 

matrix and delay element must be added to the filter. 

All of these results are derived from the sampled version of the 

Wiener-Hopf equation, and they apply without modification to stationary 

and nonstationary statistics and to growing-memory and infinite-memory 

filters. 
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I.  INTRODUCTION 

A,  STATEMENT OF THE PROBLEM 

This investigation concerns the linear estimation of a sampled 

stochastic process when certain parameters of the process must be treated 

as random variables that are' independent from one sample point to the 

next.. These random parameters may be due to multiplicative noise that 

is corrupting the observed samples, to random variations in the sample 

period, or to other uncertainties in the a priori knowledge of the pro- 

cess. The stochastic process is represented (for average statistical 

properties up to second order) as the output, of a linear dynamic system 

excited by independent gaussian processes. This model of a stochastic 

process is very general, and In particular it includes the important 

special case of stationary statistics and rational power spectra as well 

as a large class of nonstationary processes.  Both the stochastic process 

and the random parameters may be stationary or nonstationary, and the 

linear estimation Includes the case in which the number of observed 

samples is growing. 

By way of example, consider the following problem.  A satellite is 

telemetering data to a distant ground station .  The original data are 

continuous, but they must be sampled before they are transmitted-  Noise 

in the electronics or random fading in the transmission characteristics 

of the atmosphere can introduce multiplicative noise.  The time between 

successive sample points may vary in a random manner because of jitter 

or missed samples in periodic sampling resulting from imperfections in 

the equipment, jamming, or natural interference.  On the other hand, the 

data may be transmitted at random intervals intentionally because of the 

random character Of the quantity being measured or in order to counter- 

act jamming-  In other words, the ground station may be operating on 

randomly sampled data with multiplicative noise. From these observed 

samples it is desired to obtain a continuous estimate of the original 

data or to predict the value of the data at some future time. 

The output of a communication system such as the one described here 

can be represented as a stochastic process-  A realistic model of the 
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etochastic process must include all the sources of random variation. In 

this investigation the model of the stochastic process is based on a 

combination of the Bode-Shannon representation of a random process and 

the "state-transition" method of analysis of dynamic systems introduced 

by Kaiman [Ref. 1]- The output matrix and the transition matrix of the 

sampled model are matrix-valued random parameters because of multiplica- 

tive noise and random variations in the sample period. The random para- 

meters have a knovn probability distribution (not necessarily stationary) 

independent from one sample period to the next. 

The optimum estimate of the state variables is the linear estimate 

which minimizes the trace of the covariance matrix of the error. This 

is a natural extension of the linear least-squares estimate discussed 

extensively in the literature [Ref. 2].  If the stochastic process is 

actually generated by gaussian random excitations of a linear dynamic 

system, and if the probability distribution of the random parameters is 

unimodal and symmetric about the sxpeoted value of the parameters, then 

the optimum linear estimate gives the conditional expectation of the 

desired state variables.  Sherman [Ref. 3] has shown that this condi- 

tional expectation minimizes the expected value of a large class of loss 

functions, Gunckel [Ref. U] has proved that, when the state variable is 

not known exactly, its conditional expectation can be used in the solu- 

tion to the general problem of control with a quadratic loss function. 

Therefore, one is led to the conclusion that the conditional expectation 

is the best estimate in the general control problem as well as in the 

estimation problem.  On the other hand, the optimum linear estimate 

requires only the average statistics of the process up to second order, 

and if only the mean and the covariance of the process are known, then 

it is the best estimate that can be made with this information. 

In addition to estimating the current value of the state variables, 

it may be necessary to predict the value of the state variables at some 

time in the future, or it may be advantageous to interpolate some past 

values of the state vector from more recently observed random variables. 

The interpolation with delay should reduce the trace of the covariance 

of the error because more random variables have been observed during the 

delay. 



mum 

B.  PREVIOUS WORK 

The early work of Wiener [Ref, 5] showed that, for a continuous 

stochastic process, the problem of linear estimation leads to the 

Wiener-Hopf integral equation. For the practically important case of 

stationary statistics and rational power spectra, he demonstrated that 

the solution to the integral equation could be obtained by spectral 

factorization. Under the same conditions of stationary statistics and 

rational power spectra, Franklin [Ref, 6] solved the problem of linear 

estimation using periodically sampled data, and Amara [Ref. 7] general- 

ized this work to include multivariable systems. 

Concurrently, there has been considerable interest in the literature 

on the analysis and stability of systems with random parameters [Ref. 8, 

9].» although not much work has been concerned with the design of "filters 

for these systems. Kaiman [Ref. 10] considered the optimum control of 

a linear system that is randomly sampled using a quadratic error cri- 

terion and a step input.  Gunckel [Ref. U] has extended more recent work 

of Kaiman [Refs. 11, 12] to provide a general solution to the problem 

of the control of a linear system with random parameters.  In particular, 

he shows that, if it is desired to minimize the expected value of a 

quadratic loss function, the conditional expectation of the state 

variables should be used in the optimum control procedure. Gunckel's 

work separates effectively the problem of estimation of the state 

variables from the problem of control of the state variables.  His 

results are especially important because under the conditions discussed 

in the previous section, the optimum linear estimate derived in the 

present investigation is the conditional expectation of the state 

variable and therefore can be used in the optimum control procedure. 

For a randomly sampled, stationary stochastic process, Bergen 

[Ref. 13] has determined the spectral density from a convolution inte- 

gral that can be evaluated in some cases by the method of residues.  A 

synthesis procedure to determine the best linear time-invariant continu- 

ous filter for these cases is based upon the standard Wiener factoriza- 

tion of the sampled power spectrum [Ref. lU], 

Buetler [Refs. 15, l6] has generalized the Wiener theory to include 

- 3 



stochastic processes with randorn parameters for continuous stationary 

systems. He obtained practical solutions for two cases—the optimum 

linear filter when the prediction time or lag time is a random parameter, 

and the optimum linear estimate when the system gain is a random para- 

meter (multiplicative noise).  Shaw [Ref, 17] has considered the problem 

of dual-mode filtering for a continuous stationary stochastic process 

when the instantaneous model of the process varies randomly between two 

possible models. 

Kaiman [Ref. 1] has formulated the whole problem of linear estima- 

tion from sampled data in matrix notation in terms of state-transition. 

The problem is approached from the paint of view of conditional expecta- 

tions rather than from the sampled version of the Wiener-Hopf equation. 

Kaiman and Bucy [Ref. 18] have extended this formulation to the linear 

estimation of a continuous stochastic process when white noise is added 

to the measurements.  In this extension the results are derived from the 

continuous Wiener-Hopf integral equation. 

The work in this investigation represents a generalization of this 

approach to the problem of linear efetimation in the presence of random 

parameters. 

C.  OUTLINE OF NEW RESULTS 

The solution to the general problem of the optimum linear estimate 

of a sampled stochastic process with random parameters is derived in 

this investigation.  Chapter II is a review of the state-transition 

approach to linear estimation using matrix notation, with appropriate 

examples of random parameters included. 

In Chapter III the optimum filter for the current estimation and 

prediction of the process described in the previous chapter is derived 

from the sampled Wiener-Hopf equation; the desired weighting coefficients 

and the covariance of the error in estimation are determined iteratively 

for each sample point from the covariance of the previous estimate. 

These results are extended in Chapter IV to the problem of optimum 

Interpolation with delay (at time t  the optimum estimate is desired 

of the state vector at time t where t < t ).  Chapter IV presents 
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the first thorough investigation in the literature of optimum interpola- 

tion with delay for a nonstationary stochastic process. 

Chapter V applies the ideas developed in this investigation to the 

estimation of a stationary stochastic process with a random sample 

period, and for a simple example the optimum filter is compared with the 

best linear time-invariant filter. 

For current estimation and prediction, the optimum estimate is 

implemented by a linear dynamic filter. The only undetermined coeffi- 

cient of the filter is the matrix-valued gain, which is determined 

iteratively for each sample point. When the statistics of the process 

are stationary, the matrix-valued gain approaches a steady-state value 

as the number of sample points approaches infinity. 

The configuration of the optimum solution for linear interpolation 

with delay is shown to be a linear dynamic filter similar to the one 

used for prediction; but, for each sample period the estimate is delayed, 

an additional weighting matrix must be determined. 

In order to relate this investigation to the conventional approach 

to linear estimation, all of these results are derived from the sampled 

version of the Wiener-Hopf equation. 



II.  DESCRIPTION OF THE SYSTEM 

A.  INTRODUCTION 

This chapter will provide an introduction to the state-transition 

approach to linear estimation. The state of the system is some quanti- 

tative information (such as a set of numbers) which is the minimum amount 

of data necessary to predict the future behavior of the system.. When 

applied to estimation, the state is the data necessary to predict the 

expected value of the future behavior of the system. The state transition 

specifies the dynamics of the system--how the state at one instant of 

time is transferred to the state at a later instant of time. 

This paper will consider only those stochastic processes which can 

be represented (for average statistical properties up to second order) 

as the output of a linear dynamic system excited hy independent gaussian 

processes,.  Therefore, at any instant of time, the state of the system 

can be represented by an r-dimensional vector, and the state transition 

is an r x r matrix with the properties enumerated in Section II-C  This 

representation is a very general one, and in particular it includes the 

important special case of stationary statistics and rational power 

spectra, as well as a large class of nonstationary processes.  In 

Sections II-B and III-C this representation is presented for two common 

stationary processes. 

The sampled stochastic process is represented in Section II-D as a 

linear-difference equation with random parameters and random excitation. 

Examples of random parameters are discussed in Section II-E for the 

output matrix (caused by multiplicative noise) and the transition matrix 

(when the sample period is an independent random variable).  It should 

be emphasized that the random parameters are not the only source of 

noise; both correlated and uncorrelated noise can be included in the 

vector representing the state of the system. 

Finally, in Section II-F are discussed the reasons for restricting 

the optimum estimate to a linear combination of the observed random 

variables. 
T 

In the notation convention followed here, A  is the transpose of 
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A, and E [A] is the expected value of A. When v is an m X 1 
T 

vector, then v v is the scalar product resulting in a scalar, and 
T 
w  is the vector product resulting in an m X m matrix. The elements 

of the A matrix are denoted by a . and the components of the vector 

"by v^ 

B. MODEL OF THE CONTINUOUS PROCESS 

The model of the stochastic process is based on the Bode-Shannon 

representation of a random process and the "state-transition" method of 

analysis of dynamic systems introduced by Kaiman [Ref. 1].  A linear 

dynamic system can be described by the following ordinary differential 

equation, 

— x(t) = F(t) x(t) + G(t) v(t) 
dt 

y(t) = M(t) x(t) (1) 

where 

x{t) is an r X 1 vector that is the state of the system, 

v(t) is an m X 1 vector that is the input t,o the system, 

y(t) is a p X 1 vector that is the output of the system, 

F(t) is an r X r matrix representing the dynamics of the system, 

G(t) is an r X m distribution matrix representing the constraints 

on the input,   

M(t) is a p X r output matrix. 

The components x.  of the state vector x are called the state 

variables, while the components of the output y are linear combinations 

of these state variables. The matrix F may be nonsingular and repre- 

sents the dynamics of the system.  In stationary systems the matrices 

F, G. and M are constants. 

The matrix block diagram of the system is presented in Fig. 1. The • 
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v(t): 

F(t) 

FIG MODEL OF THE CONTINUOUS STOCHASTIC PROCESS. 

thick lines indicate vector-signal flow, and the transfer function l/s 

actually stands for r integrators such that the output of each is a 

state variable. The dynamics matrix F(t) indicates how the outputs 

of the integrators are fed hack into the inputs of the integrators. 

Thus f  (t) is the coefficient with which the output of the jth 

integrator is fed back to the input of the ith integrator. 

This linear dynamic systeai represents a stochastic process when the 

input to the system, v(t), is a random process.  In the model used in 

this investigation, the input v(t) is an m X 1 vector-valued random 

process with zero mean and with the m X m covariance matrix 

E[v(t) v^s)] = V(t) &(t - s). (2) 

where &  is the Dlrac delta function. The defining property of the 

delta function is, for any function V(t) bounded and continuous at s, 

5(t - s) = 0    t / s 

V(t)&(t - s)dt = V(s). (3) 

This definition is satisfactory because only the integral of the covar- 

iance in Eq. (2) is ever required-  Because the input  v(t)  is an inde- 

pendent random variable with zero mean, 



E[v(t) xT(t0)l = 0 t > t^ GO 

When the stochastic process is stationary with a rational pover 

spectrum S (s), the transfer function H(s) of the linear dynamic 

system representing the process is obtained by factoring the power 

spectrum 

S (s) = H(s) H(-s) (5) 

where H(s) contains all the poles and zeros in the left half plane. 

For example, consider the first order stationsiry Markov process 

with the power spectrum and autocorrelation function 

>) = 
2ß 

.2   2 
i    -  s 

%      (T) = e 
xx 

-ßkl (6) 

The power spectrum is the Fourier transform of the autocorrelation 

function [Ref. 19]; therefore, both functions give the same information 

about the process.  In this example the transfer function of the linear 

system is 

W2 
H(s) (2ß)J 

+ s 

The linear differential equation describing the process is 

^M= - ßx(t) + v(t), 

(7) 

(8) 

with the input v(t) an independent random variable with zero mean and 

covariance 

E[v(t) v(s)] = v  &(t - s) = 2ß &(t - s). 
11 (9) 

The model of the stationary Markov process is presented in Fig, 2. 



v(t) s um iiii 

is 

FIG. 2. MODEL OF A STATIONARY MARKOV PROCESS. 

The general solution to the ordinary differential equation, Eq. (l). 

C(t) = $(t,t0)x(t0) +J  i(t,T)G(T)v(T)dT     t >t0,       (10) 

where } (t,tn) is an r X r matrix called the transition matrix of 

the system.  From Eqs. (h)  and (lO), it is easily seen that 

E[x(t)xT(tn)] = l(t,tn) E[x(tn)x
T(tn)]    t > t0,      (11) 0'  v 0' 

since xC^p.)  is independent of V(T)  for T > t . 

C.  TRANSITION MATRIX 

Tue pertinent information about the transition matrix is presented 

in this section.  For a more complete treatment see Coddington and 

Levinson [Ref. 20]. The transition matrix is a nonsingular matrix 

satisfying the differential equation 

— f = F(t)i , 
dt 

(12) 

made unique by the requirement that 

10 
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I  (t0,t0)   =   I, 

where I is the identity matrix. 

Two properties of the transition matrix are 

(13) 

i(t3,t2) i(t2,t1) = «(t^) 

l"1^,^) »»(t^tg). {ik) 

t 

If the matrices F(t) and / F(T)dT commute, then the transition 

matrix can be written 

f (t,t0) = *XpfJ  F(T)dTj (15) 

where the definition of 

exp(B) = I +/   — 

k=l 

(16) 

For a discussion of the properties of commuting matrices see Gantmacher 

[Ref. 21].  In particular, the two matrices commute If F(t) is diagonal 

or If F Is a constant. When the F matrix is constant, the transition 

matrix * Is stationary, and it can he written 

9  (t0 + T,t0) = f (T) = exp(FT) = e 
FT 

(IT) 

where exp^Fr) Is called the exponential of the matrix FT. 

When the characteristic roots of F are distinct, then the matrix 

F is similar to a diagonal matrix A with diagonal A,,A-,...,X , so 
L    d r 

that 

F = DAD'1, 

- 11 
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where D is a nonsingular r X r matrix and the characteristic roots 

A. may be complex. Therefore, the transition matrix is 

$(T) = exp(FT) = D • exp(AT) • D 
-1 

(19) 

This is readily seen to be the case because 

-^ exp(DATD ) = I 

k=l 

(DAD-1)kTk    f   ^ (AT)
1 

k! k=l 
kl 

•D-1. (20) 

This method of taking the exponential of a matrix is very satisfactory 

when F is already diagonal or nearly so, but sometimes in actual prac- 

tice this diagonalization may be difficult to perform, and an alternate 

method may be more efficient. 

An alternative method for taking the exponential of a matrix, 

given by Friedman [Ref. 22], is based on the following theorem in his 

chapter on Spectral Theory of Operators: 

"If A is a matrix whose eigenvalues, arranged in order 

of Increasing absolute value are X. ,X_,...,A  and if g(A) 

Is an analytic function of A in a circle around the origin 

with radius greater than  |A |, then g(A) equals r(A), 

the polynomial of degree n - 1 for which 

g(Ak) = r(Ak)    k = 1,2,...,n." (21) 

In particular, this means that If A Is an n X n matrix with distinct 

characteristic roots An,A„,...,A , then 
1 2     n 

At 
= 0.1+) a. (At)1, 

o  o i ■ 
1=1 

(22) 

where the a  are evaluated by the set of equations 

12 



When 

e   =Qb + 

14 

K — x^£-^»«>^n* (23) 

i=l 

\ = \ 

so that A  is a characteristic root of multiplicity v for A, then 

Eq. (21) is modified as follows: 

J (K)  = fJ(\,)    J = 0,1,2,...,v-l 

d\)    = r{\) k = v+1, v+2, ...,n. (25) 

Thus Eq.   (23)  is modified to 

.At        d1 

Jlt^e v    = 

V e       =a0 + 

v    ^        i=l J 

n 

1   a^\^ 

j  = 0,1,2,...,v-l 

k = v+1,v+2,...,n.       (26) 

1=1 

To illustrate this method, the exponential will he taken of the 

arbitrary 2X2 matrix At where 

all  a12 

a21  a22 

(27) 

The characteristic roots are determined from 

A - XI = 0 

(all - A)(a22 - A) - a12a21 = 0 

13 - 



A = i(a11 + a22) ± i >/(a11 - a^)^ + ^^ (28) 

The two characteristic roots A., and Ap are distinct if 

(ail - a22) + U12a21 ^ 0 (29) 

For the    2X2    matrix Eq.   (23)  is 

At 
e        = a0 + ^A^ 

A2t 
6        = "O + ai.A2t' (30) 

with the solution 

At At 

v   -v 
uo - 

\-\ 

\t        A2t 
e         - e " 

alt- 
\-\ 

(31) 

Thus,   when the characteristic  roots of the    2X2    matrix    A    are 

distinct,  the exponential of the matrix    At    is 

At 

At At 
A e " A

2
e L      0 

A1-A2 0       1 

e - e 

A1.A2 

a a 11 12 

La21      a22j 

(32) 

If the characteristic  roots are not distinct,   then from Eq,.   (26),   the 

exponential of the matrix    At    is 

At V e       =  e 

ail + 1 -  A^    a12 

21 a22 + 1  -  A^ 

(33) 
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As an example, the exponential in Eq. (32) will be used to calculate 

the transition matrix of a stationary stochastic process with two state 

variables.  Consider the process with the following power spectrum and 

autocorrelation 

S x^Cs) 
(ß + s)(ß - s) L 

[(ß + s)2 + 7
2][(ß - s)2 + y2] 

KX^^T) = e-ßlTl  Los yr - äz^llll 

L = 

cos 7-, - - p - 
2ß + 7 

hß{ß2  + 72) 
2        2 

2ßÄ: + 7 
(3M 

The transfer function of the dynamic system is 

H(s) -   &  + S) Ll/22 
(ß - s)2 + 7

2 
(35) 

The model of this stochastic process is presented in Fig. 3> where the 

two state variables are x-^t), the observed random variable and the 

output of one integrator, and x (t), the output of the other integrator. 

The two linear differential equations describing the system are 

v,(t) 

+/T\ ,            X2 
(t)         /I + 

,    »i(t) 

V! ■J i 

1       1 

L i 

1    -1 
1-^1 1-P| 

* 72 

FIG. 3. MODEL OF A PROCESS WITH AN EXPONENTIAL COSINE AUTOCORRELATION 
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dx1(t) 

dt 
= - ßx1(t) + x2(t) + v1(t) 

and 
dx2(t) 

dt 
7\it)  -  ßx2(t). (36) 

The input v (t) has zero mean and covariance 

E[v1(t)v1(s)] = v;L16(t - s). (37) 

For this system the 2X2 dynamics matrix F is 

F = 

ß   1 

,2 -P 

(38) 

and the characteristic roots are complex with 

\ = - ß - J7 

ß + Jr (39) 

where 

,3 is the imaginary unit number. 

Froji Eq. (32) the exponential of the matrix Ft is 

s u.        Ft   -ßt 
f(t; = e  =e COS yt l/y   sin /t 

- 7 sin yt COS yt (ho) 

where the sum of the complex conjugate exponentials has been written in 

terms of sines and cosines 

- 16 
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sin 7t ~ i i{e'i7t  -e4"^) 

cos 7t = i (e-i7t  + e+i7t) (41) 

The model of the first-order stationary Markov process in Fig. 2 and the 

model of the process with exponential cosine autocorrelation in Fig. 3 

will he used in the numerical examples calculated in the following 

chapters. 

D. MODEL OF THE SAMPLED PROCESS 

In many cases, a linear dynamic system, such as that shown in Fig. 1, 

sampled at points in time t^t , ...t , ...t  called the sample 

points, where the subscript k indicates the kth sample. The time 

between s 

given by 

is sampled at points in time t^t , ...t , ...t  called the sample 

indicates the kt 

between successive samples is called the sample period T , which is 

Tk = \+i - v w 

It is assumed that all the switches in the sampling operation operate 

synchronously and that the sampling operation can be represented as 

the result of modulating an impulse train &T(t) with the output of 

the system y(t) so that 

y*(t) = y(t) BT(t), (U3) 

where the impulse train 6m(t) is given by 

00 

&T(t) =^ &(t - tk). (MO 

k=0 

When a linear system with an impulse rssponse h(t) follows the sampling 

operation, then the output of the linear system at time t is 

17 - 



•.(t)=y h(t -tk)y(tk)   tri<t<tn+1.       (45) 
k=0 

If a clamp or zero-order hold follows the sampling operation, then the 

output of the hold at time    t    is    y(t  )    with    t    < t < t    ,. v n'       n      n+1 
When the state of the system is considered only at the sample 

points, the stochastic process is said to he discrete, and the model 

under consideration becomes 

x(t . ) =f (t -,t ) x(t ) + u(t ) v n+1    v n+1' n'  v n'   v n' 

y(tn) = M(tn) x(tn), ik6) 

where 

t  is the time of the nth sampling instant, 

x(t ) is an r X 1 vector which is the state of the system, 

u(t ) is an r X 1 vector which is the effect of the random v n 
inputs to the system, between the a    and n+1 sample 

po_nts, 

y(t ) is a p X 1 vector which is the observed random variable, 

$(t ,,t ) is the r X r transition matrix, v n+1' n' ' 
M(t ) is the r X p output matrix. 

A matrix block diagram of the sampled system is presented in Fig. h. 

The element marked DELAY permits the state of the system to change only 

at the sample points. 

For a discrete stochastic process the properties of the sampled 

excitation u(t ) may be given directly, but they can also be derived 

from the properties of the random input to the continuous system v(t). 

By comparing Eqs. {k-6)  and (10) it is seen that 

t 
n+1 

u(tn) =J     «(
t
n+l'

T) G(T) V(T) dT- (^T) 
t 
n 

Thus, the sampled excitation u(t ) also has zero mean, and the 
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«(tn) 
y(M 

FIG. 4. MODEL OF THE SAMPLED STOCHASTIC PROCESS. 

delta-function property of the covariance of the random input v(t) in 

Eq. (2) means that the covariance matrix of the excitation is 

r Vl 
E[u(t )u (t )] = E 

n+1 

•i(tn+1,T)G(T)v(T)dT  /    VT((T)G
T(cT)«T(tn+1,a)dCT 

"-t 

n+1 

9  (t  1,T)G(T)V(t)G
T(T) f

T(t    ,T)dT. (I48) 

The sampled excitation is an independent random variable, so from 

Eq. (10 

E[u(t )x (t)l =0    t > t. (^9) 

In this investigation, the output matrix M and the transition 

matrix f of the model in Fig. k  are not known exactly, hut they are 

considered to be matrix-valued random parameters of the model with 

known probability distribution independent from one sample point to 

the next. The matrices M and i will be random parameters if, for 

instance, the observed random variable has been corrupted by multipli- 

cative noise or if the sample period is a random variable. 
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More precisely, it is assumed that a kno-wn cumulative distribution 

function F [C,n] is defined over the components of M(t ), and a 

different known cumulative distribution function Fx[D,n] is defined 

over the components of * (t  ,t ). When PR[A] is defined as the 

probability that an event A occurs, and B < C, where B and C are 

matrices, is defined to imply that b. . < c. . for all i and ,i, then 
ij - ij 

PR[M(tri) < C]     = FM[C,n] 

PR[$(tn+1,tn) <D] = Ff[D,n], (50) 

where F [C,n] and Fft[D,n] are the known cumulative distribution 

functions. These distribution functions are not necessarily stationary, 

but the random parameters must be statistically independent from one 

sampling instant to the next so that 

PR[M(t ) <A; |(t ., t ) <B; M(t ) < C| i (t . ,t ) < D] 
n+1' n' 

= FM[A,m] Fs[B,m]  FM[C,n] F,[I>,n] 
ML (51) 

Finally, it is assumed that E[M(t ) >r(t )], and E[$(t  ,t ) 

9    (t ,,t )1 exist for all n. 
* v n+1 n/J 

The expected values of the two matrices M and i will always exist, 

also, by the previous assumption, and this expected value will be denoted 

by a superscript bar. 

E[M(t )1 = M(t ) 1  n      n 

Eff(t  ^t )] = $ (t ,,t   ), 1 x n+1 n' J    v n+1 n (52) 

The difference between the actual value of the matrix and the expected 

value will be denoted by a superscript tilde, so 
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M(t ) = M(t ) + M(t ) 
n'    v n'    v n' 

(* ,-!>* ) = f(t  ,,t ) +1  (t , t ), (53) 

In this investigation it is not necessary to know the probability 

distribution of the random parameters. The only information which is 

needed is the mean of the parameters, M(t ) and i(t  ,t ), and the 7  v n       v n+i n" 
covariances 

E[M(t )x(t )x (t )M(t )] ■- v n' x n'  v n' v n' J 

and 

E[f(t ,,t )x(t )x (t )  «(t .,t   ) L,x n+1 n   n'  v n' *^  n+1 n 

E. EXAMPLES OF RANDOM PARAMETERS 

The probability distribution of the random parameters M and i 

in the sampled model in Fig. k  may have any form, but there are some 

common probability distributions which can be used to approximate situa- 

tions occurring in actual practice.  In this section the mean and the 

covariance of the random parameters will be determined for five of these 

situations; two cases of multiplicative noise (amplifier noise and 

exponential noise), and three cases of randomness in the sample periods 

(periodic sampling with Jitter, periodic sampling with independent 

misses, and purely random or "Poisson" sampling).  For a complete dis- 

cussion of the probability laws used to approximate these situations 

see Parzen [Ref. 23]. 

In the first two cases a single state-variable is corrupted by 

multiplicative noise and the results can be extended to the multivariable 

case.  Let e be an independent random variable with normal distribu- 

tion. The cumulative distribution function is 

Fe(p) = j   fe(v)dv 
/27 c 

2 0- 
dv W 



where f (v) is the probability-density function. The random variable 
€ 2 

e has mean zero and variance a  and 

2^ 2 ,„ 
E [e  ] = e   ' (55) 

One source of multiplicative noise occurs when the state variable 

passes through an amplifier with noisy gain. Then 

yl(tn) = A(l + O x1(tn), 

where A is a constant.  Tne mean and covariance are 

E[M(t )] = E [A(l + c)] = A 

E[M(t )x(t )xT(t ^(t )] = A2 E[€2\  E[x?(t )] 1 x n'  n  v n'  v n/J      L  -f <- i^ n'J 

= A2cr2E[x2(tri)] (56) 

Another source of multiplicative noise is the result of taking the 

exponential of a state variable with added white noise.  In a communica- 

tion system in which the range of the state variable is several orders 

of magnitude (such as the reflected pulse in a radar system where the 

energy is inversely proportional to the fourth power of the distance), 

it may be desirable to transmit the logarithm of the state variable and 

then convert this at the receiver to the estimate of the original state 

variable.  In that case, 

log y1(
t
n) = 

l0S x1(
t
n) + 

6 

y^tj - ee ^(tj (57) 

and the mean and covariance are 
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. 

E[M(tn)] = E[0 = e' ^. y/2 

E[M(tn)x(tn)xT(tn)Mr(tn)l  =fE[e2e]  -  (E[ee |2j Efx^)] 

= e 
2      2 

cr / a (eu     - 1) E[x^(tn)] (58) 

In the remaining three cases, the transition matrix  (t i>* ) is 

the random parameter because the sample period T  is an independent 

random variable.  It will be assumed that the dynamics matrix F is 

constant or can be satisfactorily approximated by a constant over the 

sample period T , but the constant and the probability distribution of 

T  can change from one sample point to the next, so the sample period 

is not necessarily stationary. The transition matrix  (t i^t ) is 

an r X r matrix-valued random variable given by 

FT 
(t ,,t ) v n+l' n' (59) 

The exponential of the matrix FT  is composed of terms of the form 

A.T A.T        _    \T A.T inm      inm2      in mv      in e ,Te ,Te ,o..,Te '     n n '       '     n 

where A.  is a characteristic root of F of multiplicity v. The 

powers of T  occur when A.  Is a multiple characteristic root, as in 
n . i 

the 2 X 2 matrix in Eg., (33), 

In order to determine the expected value and the covariance of the 

transition matrix, It is necessary only to know 

AT 
E[e n] 

for all values of A both real and complex.  If that expected value is 

known, the other expected values can be calculated by the relationship 

A.T    d     AT 
E[T Vein] =— E[e n] 

n 
dA 

A = A. 
i 

(60) 
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The three situations in which the sample period can be considered 

as a random variable, and their associated probability distributions, 

are as follows: periodic sampling with jitter (normal distribution), 

periodic sampling with independent misses (geometric), and purely 

random or Poisson sampling (exponential). The pertinent information 

concerning these three probability laws is presented in Table 1, and 

their characteristics are discussed in the remainder of this section. 

TABLE   1. THREE  PROBABILITY   LAWS   FOR   RANDOM   SAMPLE   PERIODS. 

Probability 
Law Nomal Geometric Exponential 

Sample 
Pattern 

Periodic   with 
Jitter 

Periodic   with 
Independent 

Mi sses 

Purely   Random 
or 

Poi sson 

Parameters 
of Probability 
Distribution 

0 < So- < T < <» 
0 < T < oo 

0  < p   =   1-q 5 1 0   <  /X  <  03 

Probability 
Density 

f     (T) 

exp[-(T .   T  )2/20-2] 

/2TT a 

pq11"1   for T  =  kT 
k   =  0, 1,2,... 

0    Otherwise 

jj-e-f^ for  T >0 

0  Otherwi se 

Mean 
E[r] T T/p 1//U 

Vari an ce 
E[T2]  -  E2[T] o2 qTVp2 

l/M2 

E[e^] eT\e>4A2 
pe^/d-qe^) iVi^) 

Jitter occurs when the sample period is neatly constant, but varies 

slightly from period to period.  In certain anti-jamming applications 

the sample period is varied randomly in this manner, or the variation 

may be unintentional due to imperfections in the equipment.  An approxi- 

mation to the effect of jitter is given by the normal distribution of 

sample periods. 

F  [ xj = T + 
f2n J 

-v /2 a dv 0 < 3o < T < (61) 
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or, alternatively, 

T    = T + €, (62) 

where T is the mean of the sample period, and e is the normal random 

variable with mean zero and variance defined in Eq. (5^)'  In the normal 

distribution in Eq, (6l), there is a finite probability that the sample 

period will be negative; therefore, one might argue that a better 

approximation would be to truncate the distribution so that it is zero 

outside the region 

0 < T < 2f. 
n 

This is a valid argument, but in Eq, (6l) the standard deviation is 

constrained to be less than one-third of the mean of the pample period 

T and, under this constraint, the area of the normal distribution that 

must be truncated is less than 2.6 X 10 ;  therefore, the original 

approximation should be valid. 

Periodic sampling with independent misses results when the intended 

sample period is constant but at each sampling instant there is a fixed 

probability q that the random variable will not be observed. This 

situation may arise when the receiver rejects the signal unless the 

signal-to-noise ratio is above some threshold value. The probability 

distribution of the actual sample period is a geometric distribution 

given by 

fT (kT) = pq
(K"x)    k=l,2,...    0<p=l-q<l 

n 

= 0 otherwise (63) 

When the number of sample points in a given interval of time has a 

Poisson distribution, the samples are being received at purely random 

points in time. The samples may be transmitted in this way intentionally 

to avoid jamming, or because of the random character of the quantity 

being transmitted.  For this case the sample period has an exponential 

distribution 
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FT (T) = ^ e 
n   =0 

-^T 
T > 0    0 < ^ 

otherwise 

< 00 (610 

F. THE OPTIMJM ESTIMATE 

The purpose of the design procedure presented in this paper is to 

estimate the state vector of a stochastic process from information 

obtained from the a priori knowledge of the process and the observed 

random variables. The difference between the actual value of the 

state vector and the estimate is the error, which is written 

x(t + a/t ) = x(t + a) -  x(t + a/t ), 
n   ' n'   v n   '   v n   ' n (65) 

where 

x(t + a/t ) is the  (r X l) vector that is the error in the v n   ' n 
estimate of the value of the state vector at time 

t + a, given the observed random variables 
n   ' 

y(tn),y(tn_1),o.^ y(t0)j 

x(t + a)    is the actual value of the state vector, v n   ' 
x(t + a/t   )    is the estimate of the value of the state vector 

n   '   n 
at time t + a, given the observed random variables 

The best estimate is the one which minimizes some function of the error. 

For a    positive the operation of estimation is called prediction; and 

for a negative, it is called interpolation or smoothing. 

In this paper the estimate will be confined to linear combinations 

of the observed random variable, and the opt.imum estimate will be the 

linear estimate that minimizes the trace of the covariance matrix of 

the error.  The covariance of the error is an r X r matrix defined as 

p(t + a/t ) = Efxft + a/t )xT(t + a/t )1. vn   '   n ln   ' n    n   '   n'' 
(66) 

The trace is the sum of the diagonal terms of the matrix,  The trace 

of the covariance is the expected value of the sum of the squared error 
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in the estimation of the individual state variahles, so the optimum 

estimate is a natural extension of the "linear-least-squares" estimate 

that is discussed extensively in the literature. 

The question naturally arises as to which is better—a linear esti- 

mate or a nonlinear estimate= Doob [Ref. 2k]  proves rigorously that the 

estimate of a quantity that minimizes the expected value of the squared 

error is the conditional expectation of the quantity with respect to the 

given information. For a linear dynamic system excited by random 

variables with normal distribution, the conditional expectation of the 

state vector is indeed a linear combination of the observed random 

variables and the linear-least-squares estimate will be better than any 

nonlinear estimate in minimizing the expected value of the squared error. 

Sherman [Ref. 3] has proved that the conditional expectation can 

minimize the expected value of a still larger class of loss functions. 

In particular, when e is the random variable representing the error, 

and the loss function L(e) is a positive function, symmetric and non- 

decreasing about zero, so that 

0 ^ L(e) = L(-e) 

L(e1) = L(e2) when 0 = e1 = e^ (6?) 

and if the conditional distribution of the quantity being estimated is 

symmetric and convex about its conditional expectation, then the condi- 

tional expectation minimizes the expected value of the class of loss 

functions included in Eq. (6?)  This class of loss functions includes: 

^(e) 2 = e 

L2(e) 
h 

= e 

I^e) =   |e| 

Ve) = 1 - b < e < b 

= 0 otherwise. (68) 
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In this investigation, Sherman's results mean that if the stochastic 

process is the output of a linear dynamic system with a gaussian input, 

and if the random parameters have a symmetric convex probability distri- 

bution, then the optimum linear estimate will be better than any other 

estimate, linear or nonlinear, in minimizing the expected value of the 

class of loss functions in Eq. (67). 

The optimum linear estimate has the additional advantage that only 

the first- and second-order statistical averages are required.  In 

practical situations it is often very difficult to measure more than 

this, and any nonlinear estimate would require more information than 

just the first- and second-order statistical averages to improve over 

the optimum linear estimate. For these reasons, in this investigation 

the optimum estimate will be the linear estimate that minimizes the 

trace of the covariance matrix of the error. 
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III.  GiTIMLTM FILTERING AND PREDICTION OF RANDOM-PARAMETER PROCESSES 

A.  INTRODUCTION 

In Chapter II the sampled stochastic process was represented as a 

matrix-difference equation with random parameters. The optimum estimate 

was defined as the linear estimate that minimized the trace of the co- 

variance matrix of the error.  In this chapter it will be proved that 

the optimum estimate of the current value of the state vector at the 

current sample point Is a linear comhination of the optimum estimate at 

the preceding sample point and the random variable observed at the 

current sample point. The optimum estimate is Implemented by a linear 

filter with the only undetermined coefficient being a matrix-valued 

gain. This matrix-valued gain as well as the covarlance of the error 

in the optimum estimate is determined by a nonlinear difference equation 

that can be solved iteratively for each sample point, The optimum 

current estimate becomes the optimum prediction of a future value of 

the state vector when it is matrix-multiplied by the expected value of 

the transition matrix.. 

These results are obtained from the solution to the matrix-valued 

sampled Wiener-Hopf equation, derived In Sec. III-C, but first the 

Markov property of the optimum linear estimate will be discussed. 

B.  MARKOV PROPERTY OF THE OPTIMUM ESTIMATE 

For a Markov process, the probability functions relating to the 

future depend on the present state, but not on the manner in which the 

present state has emerged from the past [Refo 25]. The model of the 

stochastic process developed in Chapter III has the Markov property, 

and in Sec, III-D it will be proved that the optimum linear estimate 

has the Markov property because the optimum estimate of the current 

value of the state vector at the current sample point is a linear combi- 

nation of the optimum estimate at the preceding sample point and the 

observed random variable at the current sample point-  In other words. 
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x(t /t ) = $" *(t ,t  ..^(t  ,/t ) + K(t )y(t ) 
n' n       n n-1   n-1' n'   v n        n' (69) 

where $ (tn>ta_1)    and K(t ) are r x r and r x p linear 

weighting matrices.  (Note that $  (t ,t  ) is an arbitrary- 

weighting coefficient different from the expected value of the transi- 

tion matrix * OV.^.TL which does not have the asterisk.) This sec- 

tion will explore the reasoning which might lead one to the hypothesis 

of Eq. (69). 

First, assume that at time t  n  the exact value of the state n-1 
vector Is known; therefore, 

x(t ,/t J = x(t J. v n-1' n-l'   x n-1 (70) 

If the transition matrix in the sample period is equal to its expected 

value $ (t ,t  ) and if there are no random inputs to the system 

during the sample period, then the next state will be 

x(t ) = $ (t ,t n)x(t _), x n     x n n-1   n-1 (71) 

and the best estimate 

x(t ) = 0 (t ,t Jx(t J = x(t ) v n      n n-1   n-1     n (72) 

will be the exact value of the state vector. If the output matrix is 

also equal to its expected value M(t ), the observed random variable 

will be 

y(t ) = M(t )x(t ) = M(t ) $ (t ,t .)x(t  n). 
•/vn    vn/vn    vn'vn, n-l' v n-1' (73) 

and no new information about the process will be gained by looking at 

it, because its exact value is already known. This is not a very 

interesting problem, and, naturally, in actuality things are not so 

simple. There will be errors in the estimate of the state at the pre- 

varlous sample instant, x(t ,/t , ): there are random excitations to 
n-1' n-1 

the system u(t  '), and variations in the transition and output matrices 

$ (t ,t . ) and M(t ). v n n-1       v n 
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The only vay one discovers these random variations is by comparing 

the observed random variable y(t ) with its expected value which is 

given by Eq. (73)' All the new information about the process comes from 

the difference between y(t ) and its expected value 

y(t ) - M(t ) $ (t ,t . )x(t "  ). v n'   x n'  v n n-1 v n -i' 

Because the estimate is restricted to linear operations, it is reasonable 

to weight Me  new information with some linear matrix-valued coefficient 

K(t ) and add it to the previous estimate in Eq. (72), so that 

x(t /t ) = $ (t /t . )x(t , /t ., ) x n' n      n' n-1 v n-1' n-1 

+ K(t )[y(t ) - M(t ) $ (t /t JSc(t Jt    . )].    (7^) x n"-''^ n'   v n     n n-1   n-1 n-1 J        ' 

Combining terms in Eq. (7^-) gives 

x(t /t ) = [I - K(t )M(t )] $ (t ,t , )x(t Jt    .) +  K(t )y(t ) v n' n'   L    N n' x n/J   v n n-1' x n-1' n-1    v n v n' 

where I is the identity matrix and 

[I - K(t )M(t )] $ (t ,t  n ) L     
v n'  n'J   v n' n-1 (t ,t  .), 

n n-1 (75) 

the arbitrary r x r weighting matrix in Eq. (69). 

This reasoning started with the assumption, in Eq. (70), that at 

time t ,  the exact value of the state vector was known, but all the 
n-1 

ideas still apply if only the expected value of the state vector is 

known. The key idea in this discussion can be summarized as follows: 

Wh m  the stochastic process can "be represented as an r -order linear 

Markov process, the optimum linear estimate of the state vector of the 

process can also be represented as an r -order linear Markov process. 

This approach to the linear estimate of a stochastic process was 

first developed fully by Kaiman [Ref. 1] for a process with deterministic 

parameters.  He used conditional expectations and the projection theorem, 

and considered in detail the linear estimate 
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*(WV -* K+v^KK.J + *KM\)'        <76> 
where 

**(K^>K)  =$(t^^tJ -A*(t )M(t ). (77) 

He proved that any other estimate x(t + a/t ) for a positive could 

be derived from the one in Eq. (76) by the relationship 

x(t +a/t ) = *(t +a,t )[*(t ,,t )r1x(t Jt  ), (78) vn 'n'   vn 'n1^ n+l' n/J   v n+l' n" 

where A~  represents the inverse of A. 

The quantity that in this investigation, is analogous to the quan- 

tity in brackets in Eq. (78) is 5" (t  ,t ), which may be singular 

and does not always have a unique inverse..  Therefore, for the stochastic 

process with random parameters this approach must be modified to the 

linear estimate in Eq- (69). 

C.  THE SAMPLED WIENER-HOPF EQUATION 

Any linear estimate of the state vector will be a linear combination 

of the observed random variables so that 

n 

(t^WtJ = )^ A(tn+a,tv)y(tv), (79) 

v=0 

X 
n   n 

where x(t +a/t   ) is an r x 1 vector that is the estimate of the v n ' n' 
state vector x(t +a),   given the observed random 

variables y(tn),y(tn_1),...,y(t0 ), and 

A(t +a,t ) is an r x p matrix which is the vth set of v n   v 
weighting coefficients of the estimate. 

The sampled Wiener-Hopf equation is a matrix-valued linear equation 

that is satisfied by the weighting coefficients A(t +a,t ) when the 

linear estimate is optimum. 
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The error in the linear estimate in Eq. (79), as defined in Eq. (65), 

is 

x(t +a/t ) = x(t -KK) - x(t +a/t ) = x(t +a) - ) A(t +a t )y(t ) 
n'n'   vn'   ^n'n'     n' /_,     vn, y   v 

v=0 

(80) 

Substituting the error in Eq. (80) into the covariance of the error 

defined in Eq. (66) gives 

p(t +a/t ) = E[x(t +a/t )xT(t -Kü/t )] 
n ' n n'n  'n'n' 

E[x(t -wOx^t +a)] 

- ) A(t +a,t )E[y(t )xT(t +a)] 
i_i        n ' v l  v  x n 'J 

v=0 
n 

- ; E[x(t +a)yT(t )]A'r(t +a,t ) 

v=0 
n  n 

+ )  /  A(t +a t ) E[y(t )y,r(t )] AT(t +a,t ) 

v=0 u=0 

(81) 

The trace of the covariance matrix in Eq. (8l) is the sum of the 

diagonal terms, so that 

TR[P (t +a/t )1 = ) p,,(t +a/t ) = 
iiN n ' n' 

1=1 

J. 

) x?(t +a/t ) 
/,  iv n ' n' 
i=l 

(82) 

which is the expected value of the sum of the squared error in the 

estimation of the individual state variables.  From Eq. (8l) it is seen 

that all the components of the covariance matrix are quadratic functions 

of the elements of the weighting coefficients a (t +a,t ), so the 
JK n   v 

trace in Eq. (82) is minimized when its derivative with respect to each 

of the elements a„ (t +a,t ) is zero, 
jkx n   v 
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d TR[P(t +a/t )] 

d a., (t +a,t ) 

j - 1,2,...,r 
= 0    k = 1,2,...,p 

v = 0,1,o.,,n 
(83) 

Because the trace is a quadratic function of the elements, there will 

be at least one minimum, and the resulting equation for the optimum ele- 

ments will be linear. After performing the operation indicated in Eq. 

(83) and combining the linear equations, the result is 

n 

E[x(tn-K*)y
T(tp)] - )^A(tri+a,tv)E[y(tv)y

T(tp)] =0    p = 0,1,...,n, 

v=° ' (810 

which is the sampled Wiener-Hopf equation. This result yields a 

minimum because 

d TR[p(t +a/t )] 
 -Ü ^-=E[y2(t )]>0 
dV(tn^tv) 

(85) 

the second derivative with respect to the elements is positive. The 

optimum weighting in Eq. (84) not only minimizes the trace, but it also 

minimizes all the components of the covariance matrix, as can be seen by 

carrying through the operations in Eq. (83) for the off-diagonal compo- 

nents of the covariance matrix.  Substituting the estimate in Eq. (79) 

for the equivalent expression in Eq. (8U) gives 

E[x(tri+a)y
T(tp)] - E[x(tn40;/tn)y

T(tp)] =0    p = 0,l,...,n (86) 

as a compact way of writing the sampled Wiener-Hopf equation. When the 

weighting coefficients are optimum and satisfy Eq, (86), some of the 

terms in the expression for the covariance matrix in Eq. (8l) are 

identically zero, and the covariance of the error can be written. 

p(t +a/t ) = B[x(t +a)xT(t +a)l - E[x(t +a/t )xT(t +a)l \ n / n/    
L x n  '   n  /J    L v n  ' n' x  n     /J 

(87) 
where x(t +a/t ) Is defined in Eq. (79). 
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D. DERIVATION OF THE OPTIMUM ESTIMATE 

The sampled Wiener-Hopf Eq. (86) must be satisfied by the weighting 

coefficients of the optimum linear estimate for any stochastic process 

with any statistics. In this section it will be proved that, when the 

process can be represented by the model developed in Chapter II, the 

optimum estimate has the Markov property discussed in Sec. III-B. The 

assumption is first made that the optimum estimate of the current value 

of the state vector x(t /t ) can be written in the form 
n n 

x(t /t ) = [I - K(t )M(t )] i (t ,t . )x(t ,/t J + K(t )y(t ), 
n' n'   L    N n x n'-1 * v n n-1   n-1' n-1      n   n" 

(88) 

where x(t ,/t ., ) is the previous optimum estimate and K(t ) is an v n-1' n-1 r r \   n' 
r x p weighting matrix. Next it is shown that, if the weighting coef- 

ficients of the previous estimate x(t  /t  ) satisfy the sampled 

Wiener-Hopf Eq. (86), the weighting of the current estimate in Eq~ (88) 

will satisfy Eq. (86) for a particular r x p weighting matrix K(t ). 

Finally, the weighting matrix K(t ) is derived in terms of a priori 

known quantities and the covariance of the error of the previous optimum 

prediction P(t /t ,), which can be calculated iteratively at each 

sample point. 

The random inputs to the system have zero meanj therefore, from 

Eq. (ll) for a positive, 

E[x(t +a)yT(t )] = E["$-(t +a,t )x(t )yT(t )]= $(t +a.,t )E[x(t )yT(t )]. 1 v n  /J v o J    l   n  ' n  v n'"7 v p/J   v n  ' n' l x n'  v p J 

a > 0 

p < n (89) 

Substituting Eq. (89) into Eq. (86) for a positive gives 

0(t +a,t )E[x(t )yT(t )] - E[x(t +a/t )yT(t ) 
n   n  L   n    p J    l   n  ' n    p 
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0 a > 0 

p = 0,1,...n 

(90) 



as the condition for optimum prediction. It is otvi-ous from Eq. (90) 

that, if x(t /t ) is the optimum ci v n n r 

that equation for a equal xo zero. 

that, if x(t /t ) is the optimum current estimate and hence satisfies v n n r 

x(t +a/t ) =$ (t +a,t )x(t /t )   a > o 
n ' n     v n   n  v n' n'      - (91) 

must satisfy Eq. (90) for a positive. Thus, the optimum prediction 

is obtained from the optimum current estimate by matrix multiplying the 

current estimate by the expected value of the transition matrix. Now, 

the optimum current estimate will be uetermined. 

Assume the previous optimum estimate is 

n-1 

x(t ,/t , ) = /  A(t nJt )y(t ), v n-1' n-1   i_j       v n-1' v   v 
0 

(92) 

and therefore it satisfies Eq- (93); 

E[x(tn_1)y
T;tp)] - E[^(trl.1/tn_1)y

T(tp)] =0    p = 0,l,...,n-l, . 

(93) 

From Eqs. (9l) and (92), the optimum prediction at the previous sample 

instant of the current value of the state vector is 

x(t /t ,) = $ (t .jt )x(t ,/t J, x n' n-1     v n+1 n  ^ n-l' n-1 (9M 

and "From Eq, (87) the covariance of theerror of this prediction is 

P(t /t J = Erx(t )xT(t )] - $(t ,t -)E[x(t Jt    ,)xT(t )], 
n n-1    l  n'  x n/J   v n n-1 l  n-1' n-1  x n'J 

The trial estimate in Eq. (88) can be written 

c(t /t ) = * (t ,t 1 )x(t ,/t .) v n n       n n-1   n-1' n-1 

+ K(t )[y(t ) - M(t )$ (t ,t,  n)x(t  ,/t  Jl. 
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For the estimate x(t /t ) in Eq. (96) to "be optimum. It must satisfy 

Eq. (97). 

E[x(tn)y
T(tp)] - E[x(tn/tn)y

T(i;p)] = 0  . p = 0,1,.. .,n.   (97) 

Substituting the trial estimate in Eq. (96) into Eq. (97) gives 

E[x(tn)y
T(tp)] - * (tn,tn.1)E[x(tn_1/tn_1)y

T(tp)] 

" K(tn)[E[y(tn)y
T(tp)] - M(tnj *(tn,tn_1)E[x(tri.1/tn_1)y

T(tp)]j = 0 

p=0,l,,..,n (98) 

as the condition for optimum estimation. 

Equation (98) will be examined first for p less than n.  In that 

case, 

E[x(tn)y
T(tp)] = ^(tn,tn_1)Erx(tn_1)y

T(tp)] 

E[y(tn)y
T(t )] = M(tn) 5"(tn^tn_1)B[x(tn_:L)y

T(t )]  p < n 

(99) 

Substituting Eq. (99) into Eq. (98) for p less than n yields, 

[I - K-(tn)M(tn)] ^(VV^Efx^y^y] - E[x(tn_1/tn_1)y
T(tp)]| = 

p = 0,1,...,n-l (100) 

Comparison of Eqs. (lOO) and (93) shows that the quantity in braces in 

Eq. (lOO) is the same as Eq, (93), which is identically zero for p 

less than n. Thus, the trial estimate in Eq, (95) satisfies the condi- 

tions for optimum estimation in Eq= (98) for p less than n„ The 

remaining condition in Eq. (98) for p equal to n will be used to 

determine the r x p weighting matrix K(t )j this condition is 
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E[x(tn)y
T(tn)] - ^(tn,tn_1)E[x(tn.1/tn„1)y

T(tn)] 

" K(tn)^[y(tn)y
T(tn)] - M(tn)?(tn,tn_1)E[x(tn.1/tn.1)y

T(tn)]V 0 

(101) 

Fro^i the model of the process in Eq. (^6) and the properties of the 

random parameters in Eq. (53)^ the ohserved random variable y(t ) can 

he written 

y(t ) = M(t )x(t ) = M(t )x(t ) + S(t )x(t ),        (102) J n    x n   n    v n   n     n   n v   ' 

where    M(t   )    is an independent random variable with zero mean,   so that 

E[x(t   )yT(t   )]  = E[x(t   )xT(t   )] SfCt   ) L   v  n'J       n   J ^   v  n'     v n   J       v n 

E[x(t    Jt    JyT(t   )]  = E[x(t    Jt    JxT(t   )] M^t   ) L   v n-1'   n-1       v n   J L   v n-1'   n-1       v  n   J       v  n 

E[y(tri)y
T(tn)]  = M(tn)E[x(tn)xT(tn)]MT(tn) 

+ E[M(tn)x(tn)xT(tn)MT(tri)] 

= M(t   )E[x(t   )xT(t   )l#?(t   )  + R(t   ). vnLVn'     vti'J n n' (103) 

In the third equation of Eq. (103), the substitution has been made that 

R(t ) = E[M(t )x(t )xT(t )ST(t )]. \ n /    L ^ n' v n'  x n'  v n'J (10^) 

Substituting Eq. (103) into the remaining condition for optimum estima- 

tion in Eq. (lOl) and combining terms yields 

[I -K(t   )M(t   )]<E[x(t   )xT(t   )]-<l'(t  ,t    jE[x(t    Jt    JxT(t   )]\if{t   ) v  n'   v  n/Jl   L   v  n'     x  n'J     x  n    n-l'   '    v   n-1'   n-l'     x  n'JJ      v  n' 

K(t  ) R(t  ) = 0 n'     v  n (105) 

The quantity in braces in Eq. (105) is equal to Eq. (95) which is the 
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covariance of the error in the optimum prediction at the previous sample 

instant. Replacing that quantity by P(t /t .) in Eq. (95) yields 
n n—x 

P(t /t . )i^{t   )  - K(t )<M(t )P(t /t ? ^(t ) + R(t ) \ =0, 
n' n-1  x n    v n I v n   n n-1    n     n'j 

(106) 

where R(t ) is defined in Eq. (lOU), When the r x p weighting matrix 

K(t ) satisfies Eq, (106), the trial estimate in Eq, (96) ic indeed the 

optimum estimate because it satisfies the sampled Wiener-Hopf Eq. (97). 

The only quantity in Eq. (106) that is not known a priori is the covar- 

iance matrix of the error P(t /t ,)o The covariance p(t  ,/t ) can 
n' n-1 n+i' n' 

be determined iteratively at each sample point from the covariance 

P(t /t ,) at the previous sample point. 

From Eq. (91) the optimum prediction x(t  /t ) is 

x(t ,/t ) = i{t    ,,t   )x(t /t ), v n+l' a     n+1 n  v n' n 
(107) 

From Eqs. (87) and (89) the covariance of the error in this prediction 

is 

P(t Jt   ) = E[x(t n)x
T(t -)] - E[x(t Jt   )xT(t .)] v n+l' n' l v n+l'  v n+lyj   L v n+l' n    n+l7J 

= E[x(t    , )xrr(t    J] - i(t ,,t  )Erx(t /t )xT(t )] ^"(t , t )• 1 v n+l'  v n+l/J    v n+l' n'       v n' ii'  v n/J   v n+l, n' 

(108) 

The form of the optimum estimate x(t /t ) is given by Sq. (96) and, 

using Eq. (9I+)> this can be written 

x(t /t ) = ?(t ,t  .)x(t Jt     n)+K(t )[y(t )-M(t )*(t ,t  Jx(t  ^t  J v n n      n n-1' ' n-1 n-l'  s n/l v n  x n  x n n-1'  n-1' n-1 

= K(t )y(t ) + [I - K(t )M(t )lx(t /t  .). 
n   n   L      n   n/j x n' n-1 (109) 

Substituting Eq. (109) into the covariance in Eq. (108) gives 
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^WAn^^^V^-^Vl^-^W/a^^^^^n)^^^)^^!'^) 

+ *(t ^t )[I-K(t )M(t )]E[x(t /t _1)x
T(t )] f'it^t) n     x n n' n-1' n+1' n' 

(110) 

From the model of the process in Eq» (1+6) and the properties of the 

random parameters in Eq- (53); the state vector x(t  ) can he written 

x(t , ) = $Ct in,t )x(t ) + u(t ) v n+l'   v n+1' n' x n'   v n 

= $ (t .,t   )x(t ) + $(t n,t )x(t ) + u(t ),    (ill) 
n+l n   n'  ^^ n+l n' v rr    ^  nJ v   ^ 

Therefore, the covariance of x(t ., ) is v n+l' 

E[x(t , )xT(t _)] = $(t ,,t )E[x(t )x'r(t )] ^(t n,t ) + Q(t ). v nj-i '  v n+l -1   v n+l' n L  n  v n/J * v n+l n'   v n' n+l' 

(112) 

vhere the substitution has been made that 

Q(t ) = E[$(t ^t )x(t )xT(t ) ^(t n,t )] + E[u(t )uT(t )1. K  n L v n+l n   n   ^n/v n+l n'J    L   n' ^  n''' 

(113) 

and the cross terms in Eq. (112) are zero because ^(t , ,t ) and u(t ) 
n+l n'       v n' 

have zero mean and are independent of x(t ). 

Substituting Eq. (112) into the covariance in Eq. (llO) gives 

P(t ,,t ) = J(t ,,t )[I - X(t )M(t )] x v n+l n      n+l n -      n'  n 

rE[x(tn)x
T(tn)j-Erx(tn/tn_1)x

T(tn)]| ̂ (tn+1,tn) + Q(tn)      (UU) 

The quantity in braces in Eq. (ll+) is the covariance of the error 

p(t /t   ) in Eq. (95).  Replacing that quantity in Eq. (ll^-) by 

P(t /t ,) yields as the iterative equation for the covariance of the 
n n-1 

error 
- 1+0 - 



p(t .,t  ) = «oft ,,t )} 1 K(tn)M(tn)j P(ttl/tn.1) #( t  .,t ) + Q(t ), 
n+17 n'   v n ' 

(115) 

where Q(t ) which is defined in Eq. (113) and the two expected values 

M(t ) and l>(t ^t ) are known a priori. The covariance of the error 

for the current optimum prediction is given by Eq. (115) when P(t /t  ) 

is the covariance of the previous optimum prediction and the r x p 

weighting matrix K(t ) satisfies Eq. (106) [which is repeated as 

Eq. (116)]. 

P(t /t  JMV ) - K(t )<M(t )P(t /t .^(t ) + R(t )l = 0. 
n' n-l'  ^ n    v n' 1 v n' v n' n-1  v n      n'f 

(116) 

If the quantity in braces in Eq. (ll6) is nonsingular, then it has 

a unique inverse, and the weighting K(t ) Is determined uniquely by 

K(t ) = P(t /t  , ^(t ) | M(t )p(t /t  n ^(t ) + R(t ) I  . x n'    v n' n-l'  v n' 1  v n'  n' n-l'  v n    v n' ( (117) 

^/ Both M(t )p(t /t  )M (t ) and R(t ), which is defined in Eq. (10^), 

are positive semidefinite from their definition as the expected values 

of the covariance of vector-valued quantities, so, if either of these 

two matrices is positive definite, the whole quantity in braces in 

Eq. (112) will be positive definite and therefore nonsingular. 

The matrix M(t )P(t /t ., )M (t ) will be positive definite if the v n' v n' n-l'  v n' 
rows of M(t ) are Independent and If the covariance P(t ft     ., )  is 

n n' n-l 
positive definite. The covariance p(t /t , ) is positive definite 

n' n-l 
unless there is some x.(t ) that is known exactly: if it were known 

in 
exactly; It wouldn't have to be estimated, and the estimation problem 

could be reduced by one dimension. When the rows of the output matrix 

M(t ) are dependent and there is no multiplicative noise on the 

measurements, there is no Information lost by reducing the number of 

observed random variables until the rows of M(t ) become independent. 

If there is independent multiplicative noise on all the measurements, 

the covariance R(t ) Is positive definite and the quantity in braces 

in Eq- (ll6) will be positive definite.  Therefore, even if the quantity 
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in braces in Eq. (ll6) is not nonsingular to start with, it should be 

possible to restate the estimation problem so that the quantity will be 

nonsingular in the new statement of the problem. 

If for some reason the weighting K(t ) must be chosen when the 

quantity in braces in Eq. (ll6) is a singular matrix, the weighting 

K(t ), that satisfies Eq. (ll6) and has the minimum norm of all the 

weighting functions that satisfy Eq. (ll6), is given by 

K(t ) = P(t /t , ^(t ) | M(t )P(t /t jM^t ) + R(t )\ . v n'   ^ n' n-l'   n \   n   n n-1    n n't 

(118) 

where the matrix A'  is defined as the psuedolnverse of the matrix A. 

A particularly concise explanation of the properties of the psuedolnverse 

is given by Gunckel [Ref. k]  in an appendix, but more complete explana- 

tions can be found elsewhere [Ref. 26],     For this investigation, it is 

sufficient to say that the psuedolnverse gives the solution to a set of 

underspecified equations which has the minimum norm of all possible 

solutions to the set of equations.  In the remainder of this paper it 

will be assamed that the matrix in bruces in Eq. (ll6) is nonsingular 

and has a unique inverse.  If this matrix is singular, it is necessary 

only to replace the expression for the inverse of this matrix by the 

psuedolnverse of the matrix, and all the equations will still be valid 

and the solution will have the minimum norm of all possible solutions. 

E.  SUMMARY OF RESULTS 

The procedure developed in this chapter yields an iterative solution 

to the problem of the optimum filtering and prediction of a sampled sto- 

chastic process that can be represented by the model developed in 

Chapter II.  The optimum estimate of the current value of the state 

vector x(t ) given the observed random variables y(t. ),y(t n ),..., n ^ x rl/ /^ v n-l 

y(t0) is 

x(t /t ) = fl - K(t )M(t )] 5(t ,t  . )x(t Jt    .) + K(t )y(t ) v n' n        v n' x n J  v n n-l   n-l' n-l     n'ü s  a 
(119) 

k2 



where x(t .. /t  ) is the previous optimum estimate and the expected 

values M(t ) and aft ,t ,) are known a priori. The r x p n' v n    n-l' —  
weighting matrix   K(t  )    is given "by 

K(t   ) = P(t /t    jMpCt  )| M(t   )p(t /t    ,)lf{t  ) + R(t   ) \     , n' v n'   n-l'     v n' 1    v n'   ^ n'   n-1 n' n   J 

where the covariance 

R(t ) = E[S(t )x(t )xT(t )Mr(t )] 
n   n   n   n 

(120) 

(121) 

is known a priori 

The covarian 

calculated by the recursion relation 

The covariance matrix of the error in prediction P(t -i A ) is 

xrT/ 
P(t  ./t ) = *(t  n,t )[I - K(t )M(t )lP(t /t  J* (t , ,t ) + Q(t ), v n+1' n'   v n+l' n/L    v n' v n/J v n' n-l'  v n+1' n'   v n ' 

(122) 

where the covariance 

Q(t ) = E[0(t n,t )x(t )xT(t )«,T(t n,t )] + E[u(t )uT(t )1     (123) v n'    L v n+l' n' v n'  v n'  v n+l' n/J    L v n'  v n J 

is also known a priori. 

Substituting Eq. (120) into Eq. (122) gives the nonlinear difference 

equation that determines the covariance of the error as 

P(t .,t ) = ö(t ,,t   )ll -  P(t A -, ^(t )[M(t )p(t A ^^(t ) n+1 n'   v n+1 n' 1     v n' n-l    n/L v n' K n'   n-l'     x n' 

+ R(t )r1M(t )\p(t A  n)*r(t ^,t ) + Q(t ).       (121+) v n/J   v n' |  v n' n-l'  v n+1 n    v n'        x   ' 

It is interesting to compare Eq, (12^) with the equivalent expres- 

sion for the covariance of the error in the optimum prediction when the 

parameters of the process are not random. When the parameters are not 

random, 
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M(t ) 

M(tn) 

-» M(t ) 

- 0 

(l>(t n,t ) - >5(t ,,t ) 

*(t ,,t ) - 0 v n+1 n 

R(t ) -. 0 

Q(tn)     "* Q(tn
) = E[u(tn)

u ^n)^ 

so that the expression equivalent to Eq. (12^) is 

(125) 

P(t    n,t   ) v  n+1    n' *(t    n,t x  n+1 )fl  -  P(t  /t     J^Ct   )[M(t   )p(t  ft     jMT(t  )T'1 
n  \ n1   n-1'     v n/L   v n        ir   n-1'     ^  n/J 

)] P(t  /t    . )«.T 
n' J    N n'   n-1 

P(tn+1/t ) in Eq. (124) is included 

•(t  ,,t ) + Q(t ). v n+1 n'   x n' 

Equation (126) is the same as the nonlinear difference equation derived 

"by Kaiman [Ref. 1] for the estimation problem when the parameters of the 

process are known a priori, instead of random parameterso  The effect 

of the random variations in the parameters on the covariance of the 

error in the optimum prediction 

in the covariance matrices R(t ) and 
n 

When the parameters of the process M and t are a priori known 

constants, Kaiman [Ref. 1] says it can "be shown that the optimum estimate 

in Eq. (119) hecomes a stationary dynamic system in the limit as the 

number of observed random variables n approach infinity. When the 

matrices M and $ and the covariances R and Q are a priori known 

constants, the optimum estimate in Eq. (119) should also become a 

stationary dynamic system in the limit.  The reasoning behind the latter 

statement is as follows: 

The trace of the covariance matrix of the error in Eq, (124) is 
bounded from above by E[x(t )xT(t )]  (which would result from 

an estimate that the state vector is identically zero) and from 
below by zero.  The trace for the optimum estimate should not 
increase from one estimate to the next, because if identical 
weightings are used for consecutive estimates, the trace of the 
covariance matrix of the error will be the same for stationary 
statistics. 

UK 



Thus, the trace is a bounded nonlncreasing sequence, so it must 

approach a limit as n approaches infinity. This same argument can be 

used for the trace of the covariance of the error in the optimum esti- 

mate of any linear combination of state variables; therefore, the indi- 

vidual elements of the covariance matrix must all approach a limiting 

value. The limiting value of the weighting matrix K(t ) is obtained 

from Eq.. (120), therefore, the optimum estimate in Eq. (119) becomes a 

stationary dynamic system. 

The matrix block diagram in Fig. 5 represents the linear filter 

that implements the optimum estimate in Eq. (119). The element marked 

DELAY relates the state of the filter at time t. 
n+J 

to the state of the 

filter at time t • The covariance of the error in the optimum current 
n 

estimate in Eq. (119) is given by 

P(t /t ) = [I - K(t )M(t )] P(t /t J v n' n'   L     v n' v n'J  x n' n-l' (127) 

so that from Eq. (12^), 
OPTIMUM 
PREDICTION 

OBSERVED 
RANDOM 
VARIABLE 

V(tn) ^H K(t„) 

•M(tn) 

rl ^v^tn) 

DELAY 

*(tn.tn-|) 

*(tnTa./tn) 
I 

*(tn/tn) 

OPTIMUM 
CURRENT 
ESTIMATE 

FIG. 5. MODEL OF THE OPTIMUM FILTER. 
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P(t ./t ) = *(t ,,t )p(t /t ^(t n,t ) + Q(t ). (128) 

The optimum prediction of the state vector is 

x(t +a/t ) = «(t +a,t )x(t it ) a > o       (129) n ' rr   x n ' n' x n' n'      - \ ^/ 

This optimum prediction can also be used to interpolate between sample 

points when the a is time varying so that 

a = t t < t < t , . 
n -  — n+1 (130) 

The initial condition of the linear filter with no observed random 

variables and no other given information is the expected value of the 

state vector, which is zero, i.e.. 

x(to/0) = 0. (131) 

The covariance of the error in this initial estimate is 

P(to/0) = E[x(to)x
1(to)]. (132) 

The weighting K(t ) is determined iteratively at each sample point 

from Eqs. (120) and (12U) and the initial conditions. 

The examples in the following section will illustrate the ideas 

of this chapter. 

F.  EXAMPLES 

The procedure for estimation and prediction derived in this chapter 

uses the model of the stochastic process developed in Chapter II, where 

the stochastic process and the random parameters can have nonstationary 

statistics.  The purpose of this section is to illustrate and clarify 

this procedure; therefore, the examples will be limited to stochastic 

processes and random parameters with stationary statistics-  For the 

second-order process with exponential cosine autocorrelation, a digital 
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computer was used in the iteration of the equations vhich determine the 

weighting function and the covariance matrix of the error at feach point. 

For a stationary, stochastic process the derivatives of the covar- 

iance of the state vector is zero. This fact leads to the relation 

between the covariance of the state vector E[x(t)x (t)] and the 

covariance of the input V where F and G are matrices defined in 

Chapter II. 

F • E[x(t)xT(x)l + E[x(t)xT(t)]F,r + GVG1 = 0.       (133) 

The covariance Q(t ) can be determined from the stationary version of 

Eq. (112), which is 

E[x(tn)x
T(tri)l = ♦(Tn)E[x(tn)xT(tn)]*r(Tn) + Q(tn).    (13^) 

The solution to Eq. (13^) is given by 

r r 

i=l k=l 

1. Exponential Autocorrelation 

The first example concerns the stationary first order Markov 

process which was presented in Fig. 2  and discussed in Sec, H-B. The 

autocorrelation function of the process is 

^(T) = e-ßlTl. (136) 

In this example the subscript 1 can be omitted because all the vectors 

and all the matrices are scalars. The linear differential equation 

describing the system is 

dt   - ßx(t) + V(t). (137) 
dx(t) 
dt 

Therefore, the transition matrix is a scalar given by 
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* (T ) = 0(T ) = e  n. (136) 

The expected value of the transition matrix *(! ) will be abbreviated 

$,  so that 

^= E[0(Tn)l = E[exp(-ßTn)]. (139) 

From the autocorrelation function in Eq. (136) the covariance 

of the state vector E[x(t)x(t)] is given by 

E[x(t)x(t)] = «^(0) = 1. (140) 

Substituting Eq.s. (139) and (l^O) into Eq. {13h)  gives the covariance 

Q(tn) as 

Q(t ) = q(t ) = 1 - ^. (l^D 

The multiplicative noise has a mean of unity and a variance 

of r, so that 

M(t ) = E[m(t )1 = 1 v n    L  n J 

R(t ) = r = E[m(t )x(t )x(t )m(t )] v n'       L x n' v n x n' v n'J (U2) 

The model of the optimum filter for this example is presented in 

Fig. 6. The weighting k(t ) is a scalar given by Eq. (120) as 

k(t ) = {lk3) 

with the covariance of the error In prediction p(t -, A ) calculated 

Iteratively from the nonlinear difference Eq. (12^), which is 

p(t Jt  ) = 0 
^ n+l' n'  ^ 

1 - 
p(t A J ^2, 

p(tnAn_1)^ + (1-0"). (ihk) 
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FIG. 6. MODEL OF OPTIMUM FILTER FOR A STATIONARY MARKOV PROCESS. 

The covariance of the error In the current estimate is given by 

Eq. (127), as 

p(t. /t . )r 
/, /, \      n' n-1 

P(t A ) =  ■ = 
n n   p(t /t , ) + r 

n n-l 

(1^5) 

For a nonstationary Markov process with the parameter ß and the 

covariances 0    and r time-varying quantities, Eqs. (l'+S), (iW-), and 

(1^5) would still be valid, but ß, 0,  and r would have different 

values at each sample point.  For a stationary process, the covariance 

of the error p(t  /t ) will approach a steady-state value as n 

approaches infinity. 

lim p(t ./t ) = lim p(t /t n) = p(t ./t ). 
n+l' n' n n-l'  ^v n+l' n 

(1^6) 

The steady-state version of Eq. (l1^) is a quadratic in p(t  /t ), 

^9 



^2 r p(t      /t   ) 

n+l'  n' p(t     ./t   )  + r n+l'   n 

(1^7) 

which r .3 the solution 

^VA) = I ^ - ^) 
/ M2) 

(1^8) 

(The square root in Eq. (1^8) has a positive sign because p(t ,/t ) 

mast always be positive,) 

Three common proabability laws for the sample period T  were 

discussed in Sec, II-E.  The pertinent information for these three 

laws for particular numerical values of the parameters of the proba- 

bility laws and for periodic sampling is presented in Table 2. The 

expected value of the sample period is normalized to unity, and the 

variances of the sample period have the values stated. The expected 

value of the transition matrix 0 is listed for 

= 0.1. (1U9) 

For all numerical calculations this value of ß will be used; therefore, 

the system will have a time constant of ten seconds.  Notice how 

increasing the variance of the sample period increases the expected 

value of the transition matrix 0, 

The steady-state values of the covariance of the error p(t /t ) 
n' n 

and p(t ./t ) are presented In Table 3 for the same expected values 

of 0 listed in Table 2 for two cases--with no multiplicative noise and 

with the variance of the multiplicative noise equal to one. 

Notice that with optimum estimation the variation in the proba- 

bility distribution of the sample period has a smaller effect on the 

covariance of the error than does the variance of the multiplicative 

noise.  The two covarlances p(t /t ) and p(t .,/t ) are plotted in v n n'        n+l n 
Fig. 7 as a function of the variance of the multiplicative noise r 

for 
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TABLE 2. NUMERICAL VALUES FOR FOUR PROBABILITY LAWS. 

Purely   Random   or   Poiason   Sampling 

Periodic   Sampling   with   Independent «iaaes 

Exponent!al 

Periodic   Sampling   with   J itter 

Geometri c 

Periodic   Sam pling 

No rmal 

Probability 
Distribution   of 
Sample   Period Con st an r 

Parameter»   of 
Probabi1i ty 
Di a tri bu ti on 

f-1 
T-l 

a-i 
3 

H 
p-q«i 

2 

At-1 

Mean   Sample 
Period 
E[Tn] 

f-l T-l T/p-1 1/M-l 

Variance   of 
Sample   period 
E[Tn

2]-(E[Tn])
2 

0 a2.i 
9 

a.T2-i 
p2        2 

1/M2-1 

0   =   E[exp(--£)] 0.9048 0.9053 0.9070 0.9091 

TABLE 3. COVARIANCE OF THE ERROR FOR EXAMPLE 1. 

Pro babi1i ty 
Distribution 

of 
Sample   Period Con st an t Normal Geometri e Exponen ti al 

T 

0«E[exp(--a ) 
lu 0.9048 0.9053 0.9070 0.9091 

P(tn/tn)    with 

r = 0 

0. 0 0.0 0.0 0. 0 

p(t   +l/t    )    with 

7 = 0 

0. 18 13 0. 1804 0. 1773 0. 1736 

p(tn/tn)    with 

r=l 

0.2986     j       0.2982 

i 
1 

0.2962 

i 

! 
0.2927 

p(tn+l/tn)with 

r=l 

!                                                               : 
0.4258     i       0.4247                   0.4211        ,            0.4167 

i                                                                1 
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FIG. 7. COVARIANCE OF THE ERROR FOR EXAMPLE 1. 

3  = 0.9091, (150) 

whicn is the case where the sample period has an exponential probability 

distribution (purely random sampling). 

2. Exponential Cosine Autocorrelation 

The second example concerns the stationary process with the 

exponential cosine autocorrelation 

X1X1 

, ,   -ßl-rl /       ßy sin rlrl 
(T; = e  ' ' I cos 7T - —-1—l 

2   2 (151) 

that was. presented in Fig. 3 and discussed in Sec. II-C. The linear 

differential vector equation that describes the system is 

d 
x^t) - ß 1 x^t) 

+ 

v1(t) 

dt 
x?(t) 2 

- 7 -  ß x2(t) 0 
- L      J _ 
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The transition matrix is given by Eq. (^0) as 

-?T 
$ (T ) = e  n 

cos 7 T     - sin 7T 
' n-   7    ' n 

-7 sin 7T   cos 7T 
'    ' n      ' n (153) 

When the sample period has a geometric distribution, the expected value 

of the transition matrix can be calculated by changing the sines and 

cosines to complex exponentials, so that 

-ßT 
E[e  n cos 7TJ = RE[exp (-ßT + J7T )] =  ^ +^ n n 2 2 

(u + ß)    +7 

-ßT 
E[e      n sin 7TJ  =  lM[exp  (-ßTn   - jyTj]  =  =2L- _ (15^) 

(n + ß) + 7 n   ' n 

where RE and IM represent the real and imaginary parts, respectively. 
T 

The covariance of the state vector E[x(t)x (t)]  is determined 

from Eq. (133).  For this example the solution to Eq. (133) is 

E[x1(t)x1(t)]  =!Rx x (0) = 1 

E[x1(t)x2(t)]  = E[x2(t)x1(t)l = - ß 72/(72 + 2ß2) 

E[x2(t)x2(t)]  = yh/{7
2 +  2ß2) 

E[v1(t)v1(t)]  = v11 = ^ ß (7
2 + ß2)/(72 + 2ß2).       (155) 

The covariance Q(t )  is determined directly from Eq. (135)• The 

multiplicative noise has a mean of unity and a variance of r, so that 

E[Mi(t )1 = 
1 
0 

R(tn) = E[M(tn)x(tn)x
T(tn)M

r(tn)] = r E^t^x^tJ] 
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The numerical values of the transition matrix o(T ) and the 
  m n 

covariances Q(t ) and E[x(t)x (t)] are presented in Table k for a 

geometric distribution of the sample period (purely random sampling) 

with 7=1, so that 

H = 1.0 

ß = 0,1 

y  = 1.0. (157) 

TABLE 4. NUMERICAL VALUES OF MATRICES FOR EXAMPLE 2. 

^Jjj 
0.4977                          0.4525 

-0.4525                          0.4977_ 

Q(tn) 

0.5956                      -0.08964 

-0.08964                       0.4886 

E[x( t)xT(0] 
1.0                               -0.09804 

-0.09804                      0.9804 

The expected value of the transition matrix ^(T ) and the covariance 
n 

Q(t ) are needed for the iterative calculation of the covariance of the 

error P(t  /t ) from the nonlinear difference Eq. {l2h).     The initial 

condition for the covariance of the error P(t /o) with no other 

information is 

P(to/0) = E[x(t)x
i(t)]. (158) 

Because the observed random variable is a scalar, the quantity in Eq. 

(121+), which must be inverted, is also a scalar. 

^ 
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For this example the steady-state covariance of the error 

P(t ,/t ) was obtained by iteration of Eq. (12U) on a digital computer. 

The steady-state value of the covariance P(t ,/t )  and the weighting 

matrix K(t ) are presented for the numerical values of the matrices 

in Table 5 when the multiplicative noise has a variance of one-tenth, 

r = 0.1. (160) 

TABLE   5.    DESIGN   RESULTS   FOR  EXAMPLE   2. 

P^n+l^n) 

K(tn) 

K(t0) 

K( tj) 

0. 7564 

0.0411 

0.0411 

0.6700 

0.8832 

0.0480 

0.9091 

■0   0893 

0.8905 

0   1190 

K( t2) 

«(13) 

0. 8856 

0,0656 

0   8837 

0.05121 

The weighting matrix    K(t   )    is also presented in Table  5 for the first 

four  sample points  to  show hew fast the  iterations  converge to  a steady- 

state value. 

From Eq.   (127)  the  steady-state value of the  covariance    p11(tn/tr|) 

is 
11v V n' 

p^W = 
gii^WV r 

Pll^n+l^n) + ?" 

(161) 

11k V n' In Fig. 8 the steady-state covariances of the error P-i-^t /t ) and 
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FIG. 8  COVARIANCE OF THE ERROR FOR EXAMPLE 2. 

p^(t ./t ) are plotted as a function of the variance of the multi- 
11v n+1' n    _ 

plicative noise r for a geometric distribution of the sample period 

for the value of the matrices in Table h.    Notice how much the cosine 

term in the autocorrelation has increased the covariance of the error 

in Fig. 8 over the corresponding covariances in Fig. 7. 

3» Nonstatlonary Process 

The third example concerns a first-order Markov process with a 

particular kind of nonstationarity. The linear differential equation 

describing the system is 

^M= - ß(t)x(t) +v(t) 

with ß(t) time varying so that 

ß(t) - 31    2k < L < 2k + 1 

= B2    2k + 1 < t < 2k    k = 0,1,2, 
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Given the value of the process at time 2k + T with 

0 < T < 2, 

it is desired to predict the value of the process at time 2k + T +1. 

From Eq. (l29) the prediction is obtained by multiplying the current 

value of the process x(2k +T) by the transition matrix 0(2k+T+l,2k+T) 

x(;2k+T+ l/2k+T) = 0(2k+T+:l,2k+T)x(2k+T) 

-B T  -B T 
= e 1 1 e ^ x(2k+T) 

where 

T = 1-T   T2 = T   for    0 < T < 1 

T =T -1   T = 2-T for    1 < T < 2 

If v(t) has unity variance, the mean squared error of the estimate 

is 

-2B T       -2B T 
-2B2T2 1 - e    ■"  1 - e 

e  ' '■   +  :  

2Bn 2B^ 

These examples have showed problems in prediction of random processes 

.,hat can be solved by using the method developed in Chapter III. 

- 57 - 



IV.  OPTIMUM INTERPOLATION WITH DELAY OF RANDOM PARAMETER PROCESSES 

A.  INTRODUCTION 

In Chapter III the matrix-valued sampted Wiener-Hopf equation was 

derived, and the optimum estimate of the current value of the state 

vector was shown to he a linear combination of the previous optimum 

estimate and the newly observed random variable at the current sample 

point.  In this chapter it will be proved that any optimum estimate that 

satisfies the sampled Wiener-Hopf equation can always be written in an 

iterative form similar to the one derived in Chapter III. The exact 

configuration of this iterative form is worked out for the general pro- 

blem of interpolation with delay (at time t   the optimum estimate 

is desired of the state vector at time t where t < t ), and the 
n" 

Iterative nonlinear difference equations are derived for the matrix- 

valued gain of the optimum filter with delay up to  (n - d) sample 

periods. The reason for delaying the estimate is that the trace of 

the covariance matrix of the error of the optimum estimate can be 

decreased when the estimate is delayed until additional random variables 

are observed, 

B.  ITERATIVE SOLUTION TO THE SAMPLED WIENER-HOPF EQUATION 

In this section it will be proved that at any sample point t 

the optimum estimate x(t +a/t )  can be written in the iterative form 
n   n 

x(tn+a/tn) = xCV^Vl) 
+ ^V^V^V^n^rAi-l^ 

(162) 

where x(t +a/t   )  is the optimura estimate at the previous sample point 

and K(t +a,t )  is an r x p weighting matrix.  When a is positive, 

the estimate  x(t +a/t )  Is called prediction, and when a    is  negative, 

it is interpolation with delay. The proof in this Gection is a general- 

ization of the proof in Chapter III that, when a is zero, the optimum 

current estimate can be written in the form of Eq, (l62)- 
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Because the two estimates x(t +a/t n) and x(t /t ,) are x n ' n-l/        n' n-l' 
optimum, they satisfy the appropriate versions of the sampled-Wiener- 

Hopf equation which are 

E[x(tri40()y
T(t )]-E[S(tn-K3(/tri_1)y

T(to)] =0   p = 0,1, •• .>n-l 

(163) 
and 

E[x(tn)y
T(t )]-E[5c(tn/tn_1)y

T(t )] =0    p = 0,1,... ,n-l. 

It will be proved that there is an r x p weighting matrix K(t +a,t ) 

for which the estimate in Eq. (162) satisfies Eq. (165), 

E[x(tri-W!)y
T(t )l-E[x(tn+0(/tn)y

T(t )]  =0    p = 0,l,...,n. 

(165) 

Suhstituting the trial estimate in Eq. (162) into Eq. (165) gives 

Erx(tri4«)y
T(t )l-E[x(tn^/tn_1)y

T(t )1 

-K(t +a t )< E[M(tri)x(tn)y
1(tp)] 

-M(tn)E[S(t nK-1^^] 0 p = 0,1,...,n. 

(166) 

For p less than n, Eq. (l66) is equal to Eq, (163) minus 

K(t +a,t )M(t ) times Eq. {l6k).     Both these equations are identically 

zero for p < n, so Eq, (l66) is identically zero for p < n. 

For p equal to n, Eq, (l66) can be written 

Eix(t +a)xT(t )]-E[x(t. +a/t  1)x
T(t )! 1   n    v n J  L v n ' n-l'  x n'J ^(t ) v n7 

-K(t +a,t )<M(t )P(t /t .^(t )+R(t )\ n   nM v n7 v n' n-l'  v n'   n | 0, 

(167) 
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where the substitution has iDeen made that 

E[M(t   Mt   )yT(t   )l-E[Sc(t /t    1)yT(t   ) L       n        n '       n/J     L       n'   n-1 J   v n' 

1 

= M(t   )p(t /t    .^(t   )+R(t   ), n'   v n'   n-l'     v n       v n 

with the covariance matrix of the error    P(t  /t    ,)    defined as n' n-l' 

(168) 

P(tn/tn-l) = E[x(tri)x
T(tn)l-E[x(tn/tn_1)x

T(tr)],      (169) 

and the covariance matrix R(t ) defined in Eq. (10^) as 

R(t ) = E[S(t )x(t )xT(t )SF(t )] v n'   L x n' v n'  s n'  v n'J (170) 

Therefore, when the rxp weighting matrix K(t +a,t ) satisfies 

Eq. (167), the trial estimate in Eq= (162) is indeed optimum and satis- 

fies the sampled-Wiener-Hopf equation (165). When the quantity in 

hraces in Eq, (167) is nonslngular, the weighting matrix K(t +a,t ) 

is determined uniquely as 

K(t +a,t  ) = <E[x(t -Ki:)xT(t )1-E[x(t +a/t JxT(t )] l wFCt ) - n   n'  I L x n    x n J  L x n ' n-l'   n J j   v n 

M(t )p(t /t ^^(t )+R(t )] "1. n' v n' n-l'  v n' s n   j (171) 

The conditions under which the second quantity in braces is nonsingular 

are discussed in Sec. III-C. When a is equal to zero, the weighting 

K(t ,t ) for the optimum current estimate from Eq. (171) is 

K(t  ,t   ) =   / E| s  n'   n'        I    ' x(t )xT(t )i-E[x(t /t  .)xT(t )]] jfct ; v  n'     v  n'J     L   v  n'   n-l'     v  n'J J        v  n 

t )p(t /t   jjfct )+R(t )] -1, n'   v  n'   n-l'     v n'     v n   J        ' (172) 

which is the same as    K(t   )  in Eq.   (120), 
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It is also desirable to know the covariance matrix of the error of 

the optimum estimate P(t +a/t ), which is given by Eq- (87) as 

P(tn+oi/tn) = E[x(tn+a)x'
r(tn+a)] - E[x(tn+a/tn)x

T(tn+a)]. 

(173) 

Substituting the optimum estimate in Eq. (162) into Eq. (l?^) gives 

P(t +a/t ) = E[x(t +a)xT(t +a)l - E[x(t +a/t JxT(t +a)] 
n'n'   Ln/Vn'-    l   y n    '  n-1  v n  ' 

- K(tn40(,tn)M(tn)|E[x(tn)x
T(tn4a)]-E[S(tri/tn_1)x

T(tn+a)]| 

(175) 

The first two terms in the expression for the covariance P(t +a/t ) v n ' n' 
in Eq, (175) are equal to the previous covariance P(t +a/t ); thus, 

the covariance matrix of the error of the optimum estimate can also be 

written as 

P(tri4a/tn) = p(ta+a/tn_1)-K(tn+a,tn)M(tn)|E[x(tri)x
T(tn+a)] 

- E[x(t /t 1)x
T(t +a)A L v n' n-1    n '' ? (176) 

When a is equal to zero, the covariance P(t +a/t )  in Eq. (176) is 

equal to the covariance P(t /t )  rin Eq, (127). 

In the next, section the iterative nonlinear difference equations 

determining the weighting matrix K(t +0!,t ) in Eq» (172) and the 

covariance matrix P(t +a/t   ) in Eq. (176) will be derived for inter- 
n   n 

polation with delay (when a is negative). 

C.  DERIVATION OF THE OPTIMUM ESTIMATE 

To simplify the derivation of the optimum estimate for interpolation 

with a delay of  |a| sec, the notation used in the preceding section 

will be changed slightly. The time t +a    can be written 

bl 



ta + a = td + B        o < 5 < Td (177) 

so that, for a negative. 

t < t + a < t,, . 
- — n      d+l a < 0 

d < n. (178) 

Using the new notation the optimum estimate x(t +a/t ) in Eq. (l62) 

becomes 

x(td^/tn) = Ht^+b/t^ +  K(td+6,tn)[y(tri)-M(tn)x(tn/tn_1)].   (179) 

Making use of Eq. (l62) once more the optimum estimate x(t 46/t  ) in 

Eq. (179) can he written 

^^An-l) = ^td46/tn.2
)+K^'tn.l)f^tn.l)-^tn.l)^VA~2)l- 

(180) 

Continuing this process  for     (n -  £■)    times the  expression for the 

optimum estimate,   x(t +&/t   )    becomes 

n_ 

x(td+6/tn)  = x(td+&/ti)  +   2     K(td+6,tk)[y(tk)-M(tk)x(tk/tk_1)].(l8l) 

k=i+l 

For a delay of  (n-d)  sample points, it is necessary to calculate  (n-d) 

weighting matrices K(t +6,t. ), 

The matrix block diagram in Fig 9 represents the linear filter 

which implements the optimum estimate in Eq. (l8l).  The elements marked 

DELAY relate the state of the filter of time t  to the state of the 
n 

filter at time t .. That part of the filter within the dashed rec- 
n+1       -^ 

tangle duplicates the model of the optimum filter for prediction in 

Fig. 5, which was derived in Chapter III, and calculates the optimum 

prediction x(t/t   )  in Eq. (l8l). 
K  K -1 

The weighting matrix K(t.+5,t ), where n represents any number 
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FIG. 9. MODEL OF OPTIMUM FILTEH WITH DELAY. 

greater than d,, must satisfy Eq. (l67) with t +a replaced by 

td+6j i.e., 

|E[X (t,+5)x
i(t )] - E[Sc(t,46/t n-1  v n'J j ̂ (tn) 

K(t,+&,t )[M(t )p(t /t jM^t )-rR(t )] = 0. 
d   n'L v n' x n' n-l'  v n'  v n/J 

(182) 

The covariance of the error p(tk/
t
k-i ) irl E(l' (l82) can be determined 

iteratively at each sample point by Eq. (12^); thus, only the first 

term in braces in Eq. (l82) remains unknown.  This term is composed of 

the sum of two quantities Erx(t,+6)x (t )] and Brx(t,+6/t -, )x (t )]. 1  d     n J       ^ x d ' n-l    n J 

This sum will be determined first for the case where there is a delay of 

only one sample point, so that n is equal to d+1. A method will then 

be derived for calculating this sum in the general case where there is a 

delay of (n-d) sample points. 

From the solution to the ordinary differential equation representing 

the system in Eq. (lO), the state vextor x(t +6) can be written 
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x(td-^) = «(td+5,td)x(td)+u(td+6,t(i). (183) 

where u(td45,td) is an r x 1 vector defined as 

td+6 

u(td-l6,td) =J   *(td-i6,T)G(T)v(T)di (184) 

to represent the effect of the random inputs to the system between 

time  t  and time t.-HJ. From the model of the process and the 

properties of the random parameters in Eq. (53) the state vectors can 

he written 

x(td-t€) = «(td-t€,td)x(td) + u(td+B,td) 

= *(td+6,td)x(td) + *(td+6,td)x(td) + u(td-^,td)        (185) 

and 

^V^ = ^Vi^d^V + u(td+i'
td) 

=  ^Vi^d^^d) ^(Vi^d^^d^^Vi'^^      (l86) 

Substituting Eqs. (185) and (l86) into the quantity E[x(t 46)x'r(tH  )] d+l^ 
gives 

E[x(td-^)x
T(td+1)] = *(td^,td)E[x(td)x

T(td)] i
T(ta+1,td)+Q1(td-^), 

(187) 

where the expected values of the cross terms are zero, and the substi- 

tution has been made of the r x r matrix Q (t +€>) defined as 

^(t^) = E[0(td+6,td)x(td)x
T(td)*

T(td+1,td)]+E[u(td^,td)u
T(td+1,td)]. 

(188) 
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The quantity   E[x(t -fß/t  )x (t    ,)]    can be written 

E[x(t^/ti1)xT(tHx1)] = *(td46,td)E[x(td/td)xT(td)] ^(t^, d+lJ d+r dy 

Thus, ty substituting Eqs.   (l87) and (189),  the sum of the two quantities 

E[x(td+6)x (td+1)]    and    E[x(t 4^/t  )xT(t      )]    can be written 

E[x(td46)xT(td+1)]  - E[x(td^/td)xT(td+1)] 

= i(td46,td)E[x(td)xT(td)]fT(td+1,td)4§1(td-f6) 

-ö(td+&,td)E[x(td/td)xT(td)]*T(td+1,td) 

*(td-fß,td)P(td/td) *i(td+1,td)+Q1(td^),       (190) 

where the substitution has been made that 

P(t,/tJ = E[x(td)x
T(td)]-E[Sc(tH/tJx

T(tJ] 
d' d' d' d' (191) 

Returning to the general case with the first term in braces in 

E^. (l82) composed of the sum of E[x(t +e))x (t )] and E[x(t +6/t  ) 
x ("t )]> the substitution of Eq. (l8l), for x(t -ng/t  ) gives 

|E[x(td+5)x
T(tri)] - E[x(td^/tn_1)x

T(tn)A 

=E[x(td4-&)x
T(tn)] - E[x(td+&/td)x

T(tn)] 

k=d+l ^ ^ 

(192) 

For k less than n, 

T 
E[y(tk)x

i(tn_1)] -M(tk)E[x(tk/Vl)xT(tn)]) 

= M(tk)/'E[x(tk)x
T(tk)] - E[$(tk/tk_1)x

,r(tk)] j ^itn)tk) 

= M(t. )P(t, /t, , ) ^(t ,t, ) 
k v k' k-1     n' k (193) 
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where the covariance of the error ^i\/\  T) ^S been substituted into 

Eq. (193)- For d less than n 

E[x(td +5)x
rr(tn)] - E[x(td-f6/td)x

T(tn)] 

= ^E[x(td^)x
T(td+1)].E[S(td+5/td)x

T(td+1)]j ^(t^t^) 

= [*(td^.td)P(td/td)J
,r(td+1,td)+Q1(td46)j Fitn >td+1) (194) 

where Eq. (l90) has been substituted into Eq. (19^). 

Finally, substituting Eqs. (192 - 19^) into Eq. (l82), which must 

be satisfied by the optimum weighting matrices, yields 

[ö(td46,td)p(td/td)^(td+1,td)+Q1(td^)]*
ir(tri,td+1)#

:(tn) 
^    n-1 J 

k=d+l 

- K(t,+8,t ) /M(t )P(t /t n)i?(t )+R(t ) > = 0. v d ' n' 1 v n' v n' n-1'  v n  x n'f (195) 

where Q/t,-*) and R(t ) are defined in Eqs. (l88) and (167). First, 

set n equal to d+1, and Eq. (195) becomes 

*(td+6,td)p(td/td) ^(t^,^)^^ ^ iF(tn ) 

-^V^d-J (^^^^(Vi^d^^d+i^^Vi)} = (196) 

The optimum weighting matrix K(t +&,t, 1) is determined from Eq. (196) 
d+1' 

to be 

^d) 

(197) 

Because the delay 5  is known, the expected value ö(t +5,t ) and 
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Q (t 46) can be calculated directly; thus, all the quantities in Eq. (197) 

are known a priori except for the covarlances of the error P(t ./t,) 

and P(t /t ), which can be determined iteratively at each sample point 

by Eqs. {l2h)  and (127). The conditions under which Eq. (197) uniquely 

determines the weighting matrix K(t +B,t  ) are discussed in 

Section III-D. 

Next, set n equal to d+2 in Eq. (195) and the result is 

[*(td^,td)p(td/td) *
T(td+1,td)+Q(td+&)j ^(WV^t^) 

- ^'Vi^Vi^WV ^WW^W 

- ^^^d^^pVa^^Va/Vi^^W^^d^)) = 0- 

(198) 

The optimum weighting matrix K(t +6,t „) is determined from Eq. (198), 

to be 

K(td+B'td+2
) = [*(td^'td)P(Vtd) ^<td+2'

td)#(td+2
) 

+\{t^)  ^(td+2>td+1)jf(td+2) 

-K(V5,td+1)K
r(td+1)P(td+1/td)/(td+2,td+1)#(td+2jJx 

Ü^^äJ^+l^^W^ (199) 

with K(td+&,td+1) given by Eq, (198). 

To calculate the optimum estimate x(t,+6/t ) in Eq. (l8l) with 

delay up to (n-d) sample periods, it is r_-;essary to determine  (n-d) 

weighting matrices K(t-,+&,t ). The weighting matrices K(t +6,t  ) 
u,    K Cl    Cl+X 

and K(t,+6,t, „) have already been determined from Eq. (195) as 

given by Eqs. (197) and (199) respectively. The matrix K(t +B,t  ) 

is obtained from Eq. (195) with n equal to 3> an(i this iterative 

procedure is continued until all the  (n-d) weighting matrices have 

been obtained. 
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These calculations will be rather tedious if the optimum estimate 

has been delayed fc- many sample points and there are a large number 

of weighting matrices to be determined. When the optimum estimate is 

obtained from a stationary dynamic system (as discussed in Sec. III-E), 

these weighting matrices will not change from one sample point to the 

nextj thus, the tedious calculations must be performed only once. 

These ideas are illustrated in Sec. IV-D, where examples are worked 

out for the optimum estimate with a delay of one sample period and with 

a delay of two sample periods. For a delay of up to one sample period 

the covariance of the error P(t +5/t  ) is given by Eq. (175), with 

t +a and 
n 

replaced by t +& and t    respectively, so that 

P(t,+B/t, .) = E[x(tH+6)x
T(t,45)]-E[x(t.,+8/tJxT(t,+6)] d+1 d w  v d 

-K(t+5,t 
d+l' v d+l' 

|E[X (W*^» 
-E[x(td+1/td)x

i(td46)] (200) 

By using Eq. (185) the covariance E[x(t +6)x (t +5)] can be 

written 

E[x(td+&)x
T(td+6)l = *(td+&,td)E[x(td)x'r(td)] 5

T(td+6,td)+Q2(td+5), 

(201) 

where the expected value of the cross terms is zero, and the substitution 

has been made of the r x r matrix Qp(t +&) defined as 

(t,+&) = E[^(td^,td)x(td)x
T(td)^'

r(td+5,td)]+E[u(td+6,td)u
T(td4«,td)] l2v d 

(202) 

Both the quantity Q2(t +&)  in Eq. (202) and the quantity Q (t +&) 

defined in Eq, (168) are equal to zero when t, + 5 is equal to t . 
d ' d 

Substituting Eqs. (187) and (201) into Eq. (199), and using the 

covariance P(t /t )  for the equivalent quantity given by Eq. (191) 

yields as the covariance matrix of the error P(t,+6/t  ) 
cl   d+1 

- 68 - 



pCt^/t^) = *(td
+6>td)p(Vtd) ^C^-te,^) + Q2(td+B) d u' d+l' 

+ Q ̂td+B)] , 
{■ iT/ 

- «(V^d+iMViM ^Vi^d^^V'^) * ^^d^ 

(203) 

where K(td+6,td+1) is given by Eq. (197), and Q-^t^) and Q2(td46) 

are defined by Eqs. (l88) and (202) respectively. 

For a delay of up to two sample periods the expression for the 

covariance of the error P(t,46/t.  ) can be derived from Eq. (176) 

by the same procedure used to derive p(t 4f)/t  ) from Eq. (176). 

-Efx^^/t^Jx^t^)]  • (204) 

Everything in Eq. {20k)  has already been determined except for the 

quantity in braces.  From Eq. (l62) the optimum estimate x(t, ,,/t, n) 

can be written 

^WW = *(td+2'
td+l^(

td+l
/td+l

) 

D = ^d^Vi^P^A^^ViM y(td+i)-
R ^d.i^^Vi^ 

(205) 

{ '••')] 
Substituting E4. (205) into the quantity in brackets in Eq. (204) gives 

S[x(t4+?)x
T(td+B)]-E[x(td+2/td+1)x

T(td4e)! 

= »(WWf1  " ^Vl^Vl^ x 

') 

E[x(td+1)x
T(td+&)l-E[x(td+1/td)x

T(td+6)' 
) 

(206) 

Substituting Eqs. (206) and (187) into Eq. (20U) gives as the covariance 

of the error 
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[I-K(td+1)M(td+1)l[ ^(td+1,td)p(td/td) ^(^5,^)^(^)1, 

(20?) 

where I is the identity matrix and P(t 4§/t  ) and K(t +5,t  ) 

are given by Eqs. (203) and (199) respectively. 

For a delay of up to (n-d) sample periods the general expression 

for the covariance matrix of the error is given by Eq. (176), and, by 

repeating the same procedure used to obtain Eq. (205), this covariance 

P(t,+B/t ) can be written 
d   n 

n-1 

P(Vs/tn) = P(td^/tn_1)+K(td+&,tn)  n   Ö(tk+1,tk)[I-K(tk)M(tk)]x 

k=d+l 

[ *(td+l'td)P(td/td) ^(^'^^^d4«)!- (208) 

Therefore, the covariance of the error P(t +B/t ) can be calculated 

by starting with Eq. (203) and using Eq. (208) iteratively. 

In conclusion, when considering estimation with delay, it must 

be decided if the improvement in the estimate is worth the delay in 

receiving the estimate and the Increased complexity of the optimum 

filter.  The examples in the following section will serve to illustrate 

some of the ideas of this chapter. 

D.  EXAMPLES 

The procedure for optimum interpolation with delay developed in 

this chapter is intimately related to the technique for optimum filtering 

and prediction derived in Chapter III.  In order to clarify this rela- 

tionship, the examples in this section will be concerned with the same 

two stationary stochastic processes that were used in Section III-F. to 

illustrate the ideas of Chapter III. For the first-order Markov process, 

the optimum interpolation will be determined for a delay of one sample 

period and two sample periods. For the stationary process with 
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• 

exponential cosine autocorrelation, the optimum interpolation will be 

determined for a delay of one sample period. With a delay of a vhole 

number of sample periods B is equal to zero, and from Eqs. (l88) and 

(202), 

¥v*) 

1>(V6) 

6=0 

6=0 

= 0. (209) 

1. Exponential Autocorrelation 

The stationary first-order Markov process has the autocorrelation 

5\     (T) = e 
xx ' 

•ßT (210) 

The subscript 1 will not be used on the variables in this example, so 

the expected value of the transition matrix will be denoted ^ with 

^ = E[exp (-PTjl (211) 

and the variance of the multiplicative noise will be denoted by r. 

The model of the optimum filter for interpolation with a delay of 

both one and two sample periods is presented in Fig. 10. That part «f 

the filter within the dashed rectangle duplicates the model of the opti- 

mum filter for prediction presented In Fig. 6 and discussed in Section 

III-F. The weighting k(t t ) Is a scalar which is determined from 

Eq. (197) to be 

^Wi) (212) 

The weighting k(t ,t 2) Is determined from Eq. (199) as 
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^ 

K(td.2.td) 

kCtj.,,^) 

^  1^©- 
4> 

OPTIMUM ESTIMATE 
WITH DELAY 

x(td.(/td) 

/ DELAY\ 

\ 

i   ÜLilid) 

DELAY 7 ; OPTIMUM 
I CURRENT 
I     ESTIMATE 

FIG. 10. MODEL OF THE OPTIMUM FILTER FOR ESTIMATION WITH DELAY FOR 
EXAMPLE 1. 

^.^. _^vv_. «vw) ^wv    (si3) d' d+2' 
^+2K+l

)+r P^d^/Vl^5 

and after substituting Eq. (212) for kCt^t^ ) in Eq. (213) this 

can be written 
d' d+1' 

^^2) 

rp(t,/tj 
d' d' 

^WVi^ 
{21k) 

The covariance P(tn+1/tn) and vitjtj    are given by Eqs. (11+1+) and 

(lU5) as 

P(t  ,/t ) ^v n+l' n' 

^ 
■2 - 

p(t /t ,)+r 
n' n-1 

+ 1 - ^2 

p(t A ) =   
p(t A   ,) v n n-l' 

+r 
(215) 
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The steady-state value of the covariance of the error with a delay of 

one sample period p(t  /t ) is determined from Eq. (203) after 

substituting Eq. (212) for k(t /t  ) and the result is 

p(t ,/t ) = p(t /t ) x n-1 n - r^ n'   n 
1 - 

p(t ,/t )+r 
^v n+l' n' 

(216) 

The steady-state value of the covariance of the error with a delay of 

two sample periods p(t  /t ) is determined from Eqs. (207) and (2l6) 

after substituting Eq. (1^3) for k(t ) and Eq. {2lk)    for k(t /t  ) 

and the result is 

p(t Jt  ) = p(t /t ) 
'rv n-2' n'  ry  n'   n 

fv(t/t) fait/tfr2 

1 - 
r\3 p(t Jt  )+r  (p(t Jt  )+r) 

•rv n+l' n' V-FV n+l' n'  ' 

(217) 

The steady-state value of the three covariances p(t /t  ), 

p(t Jt  ),  and p(t „A ) are plotted in Fig. 11 as a function of 

the variance of the multiplicative noise r for 

0 = 0.9091, (218) 

which is the expected value of the transition matrix when the sample 

period has an exponential distribution (purely random sampling) with 

the parameters given by Eq. (219). 

|i = 1.0 

ß =■■ 0.1. (219) 

Notice how delaying the estimate decreases the covariance of the 

error- 

2. Exponential Cosine Autocorrelation 

The second example is the stationary process with exponential 

cosine autocorrelation 
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FIG.    11.    COVARIANCE  OF  THE   ERROR  FOR  EXAMPLE   1. 

.ß|T|/ ßysln7\r\ 
,, , (T) = e  'I cos 7T ^ 5— 
Vl \ (2ß2 + r

2) 
(220) 

which was discussed in Sect. II-C and III-F.  For a delay of one sample 

period, the weighting matrix is determined from Eq. (197) to he 

^lAlW + ^12 W 

^\/\^ 
Pll^d+l^d^1" 

$11*21^^ +  ^l^ W 

^ll^+lK
)+r 

(220) 

The elements of the covariance matrix P(t /t ) can be determined 

from Eq. (127) as 

7^ 



wv 

p^^d^a) = ^W 

P22(td/td) = iWWV 
^^W^^ai^d+A5 

pn^d+A^^ 
(221) 

The steady-state covariance of the error p.,, (t , /t ) for a delay of 
llv n-1 n 

one sample period can be obtained in terms of the elements of the 

covariance matrix P(t ,/t ) by substituting Eqs. (220) and (221) into 

Eq. (203), and the result is 

pn,(t       /t   )  = - 
llv  n-1'   n'      — 

p-n(t    ,/t   )r 
•^11v  n+l'   n' 

-2 
r 

p,n(t    n/t   )+r      [pin(t    n/t  )+rl2 

■^11 *■ n+l'   n' L^llv  n+l'   n'     J 

2    2 

11 hi hi vnK+iK^uKJ^ 
i=l j=l 

(222) 

The steady-state value of the two covariances p.,., (t /t ) and 
11 n' n 

p (t -i A ) are plotted.in Fig, 12 as a function of zhe multiplicative 

noise when the sample period has a geometric distribution (purely random 

sampling) with the parameters given below, in Eq. (223) 

H = 1.0 

ß = 0.1 

7 = 1-0, (223) 

which means that the values of the matrices are given by Table k  in 

Sect. III-F.  Delaying the estimate for one sample period decreases 

the covariance of the error, but not quite as much as in the previous 

example. 
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FIG. 12, COVARIANCE OF THE ERROR FOR EXAMPLE 2. 
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V.  STATIONARY STOCHASTIC PROCESSES WITH RANSOM SAMPLE PERIODS 

A.  INTRODUCTION 

The purpose of this chapter is to show how the technlcjues developed 

in this investigation can be applied to a problem which has been con- 

sidered in the literature. A stationary ßtochastic process with a 

rational power spectrum is sampled so that the sample period is a 

stationary random variable with a known first-order probability distri- 

bution. There is no multiplicative noise; therefore, the only random 

parameter of the process is the randomness in the sample period.  It is 

assumed that the sample points are being observed in real time; there- 

fore, although the sample period T  is a random parameter, the value 

of the random parameter T  can be determined exactly as soon as the 

sample points t  and t ,  are observed. 
n      n+1 

In Sect. V-B, the continuous optimum estimate of the process is 

presented when the sample period can be considered as a known time- 

varying parameter. This optimum estimate is generated by a linear 

dynamic filter with a time-varying matrix-valued gain.  If the optimum 

estimate can be delayed until an on-line computer iteratively determines 

the gain at each sample point, then the optimum estimate can be 

implemented, 

When it is not practical to recompute the gain at each sample 

point, the linear filter that generates the optimum estimate Is modified 

so that the matrix-valued gain is a constant. The constant value chosen 

is that value which minimizes the trace of the covariance matrix of the 

error in the limit, as the number of observations n approaches 

infinity. 

In the approach to the problem that has been considered in the 

literature fRefs, 13,1^1 transform techniques are used to design the 

linear time-invariant filter that minimizes the mean square error of the 

continuous estimate.  In Sect, V-C this time-invariant filter is com- 

pared with the optimum filter for the case in which the stochastic pro- 

cess is a stationary first-order Markov process. 
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B. THE OPTIMUM ESTIMATE 
i 
i 

When the sample period of a stationary stochastic process is a 

time-varying parameter that is knovm exactly, the optimum current 

estimate is given by E-i. (119) which can be written 

^W = ^n-l^^n-A-l^^^n^^^n^^^n-l^^n-A-l^ ^ 

where the transition matrix * (T) is given by Eq,. (IT) as 

* (T) = e FT (225) 

The matrix block diagram in Fig. 13 represents the linear filter that 

implements the optimum estimate in Eq. (224), That part of the filter 

within the dashed rectangle duplicates the model of the process and has 

the impulse response $ (T).  The switch on the left, representing the 

sampling operation, and the synchronous switch in the feedback loop of 

SAMPLING 
OPERATION 

SYNCHRONOUS 
SWITCH 

K(tn) Ä^ 
0(a) 

OPTIMUM 
PREDICTION 

x(tn+r+a/tn) 
.   I 

J 

x(t„+T/tn) 
1 

OPTIMUM 
CURRENT 
ESTIMATE 

FIG, 13. MODEL OF THE OPTIMUM FILTEH. 
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the filter close simultaneously, so that the sum of their outputs is 

zero except at a sample point t  when the sum is an impulse with area 

y(t ) - mil    n)x(t Jt    .). 
^x n      n-1   n-1 n-1 

(226) 

The weighting matrix   K(t   )    is determined from Eq.   (120), which 

is 

K(t   ) = P(t  /t    JM
T
/M P(t /t    .) MT V   "1 v n v n'   n-l'     \        v n    n-1' (227) 

The covariance p(t /t .,) is calculated iteratively from the nonlinear s n' n-1 
difference equation (125), which can be written 

p(tn+1/tn) = «T^i - P(tn/tn_1)Kr
[M Htjt^yy1 MJ    x 

P(tri/tn_1)?
T(Tri) +J  ö(Tn-a)GVG

T 0T(Tn-a)da,    (228) 

o 

where the substitution has been made from Eq. (48) that 

f Q T T 
Q(t ) = /  'D(T '■cr)GVG * (T -(j)dCT. 

n'  /    x n        ^ n (229) 

From Eqs. (227) and (228) the covariance of the error of the optimum 

estimate during any time in the sample period is 

P(t +T/t ) = * (T) | I - K(t )M ) P(t /t . ) ■IT(T) 
n ' n'      I      n' J v n' n-1'   v ' 

+ I $ (T-O-) GVGT ■t>T(T-CT) dtr. (230) 

The weighting K(t ) for the optimum estimate In Eq, (227) can 

be determined in real time by an on-line computer if a slight delay is 

permitt.ed in the estimate. The following procedure must be repeated 

at each sample point: 
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1. Determine the sample period Tn as soon as the sample point 
^n+l is observed. 

2. Calculate and store the oovariance of the error P(tn+i/tn) from 
Eq. (228) using the known sample period Tn and the stored 
covariance P(tn/tn.i). 

3. Calculate the weighting matrix K(trl+i) and set the gain of the 
filter accordingly. 

The idea of using an on-line computer to calculate the weighting 

matrix at each sample point did not originate from this investigation. 

In particular. It follows directly from the work of Kaiman [Ref. 1] 

when his results are carefully applied to this problem. The advantage 

to this procedure is that the optimum estimate is obtained, but the 

corresponding disadvantage is that an on-line computer must be available, 

and the optimum estimate must be delayed until the computer has com- 

pleted the necessary calculations to determine the weighting matrix. 

Sometimes it is impractical to recalculate the weighting matrix 

at each sample point.  It would be desirable to find some constant 

value for the matrix that would minimize the average value of the trace 

of the covariance matrix of the error. The constant value of the matrix 

which minimizes the average value of the trace in the limit as the 

number of observations n approaches infinity can be determined by the 

techniques developed in Chapter III. 

Assume that the sample period T  is an unknown random parameter, 

rather than a known time-varying parameter. The series of weighting 

matrices K(t ) can be determined to minimize the average value of the 
n 

trace of the covariance matrix of the error.  In Sect. III-E it was 

shown that when all the statistics of the processes were stationary, then 

the optimum estimate would become a stationary dynamic system in the 

limit.  This means that in the limit the weighting matrices K(t ) 

will approach the desired constant value K 

The weighting matrix K(t ) is determined from Eq. (227); thus 

K(t ) = P(t A , ) MM M P(t /t , ) MT > "1.     (231) v n      n n-1    I   v n n-1'    I \ -J / 

The average value of the covariance P(t A i ) ■'•s calculated iteratively 

from the average value of Eq- (228) which can be written 
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MHMÜim 

P(tn/tn_1)E[* 
T(Tn)l+E[$ i^itjt^l  T(Tn)]+E[Q(tn)]; 

(232) 

where the covariance Q(t ) is given by Eq (229) and all the expecta- 

tions in Eq. (232) are with respect to the sample period T . The 

limiting value of the covariance 

Lim P(t ,/t ) = Lim P(t /t ,) = P (233) N n+1 n'       v n n-1 v  ' 
n-K» 

can be obtained by iterating Eq. (232) until a steady-state solution 

is obtained, or it can be obtained directly from the steady-state 

solution of Eq. (232). The desired constant value of the weighting 

matrix K is obtained by substituting the limiting value of the 

covariance P into Eq. (231). 

The filter in Fig. 13 with a constant gain K is not the optimum 

filter, but it is the best filter from a sub-optimum class of filters. 

In the following section the filter in Fig. 13 is compared with another 

filter from a sub-optimum class of filters—the linear time-invariant 

filter. 

C.  COMPARISON WITH THE TIMS-INVARIANT FILTER 

When it is desired to design the time-invariant filter with infinite 

memory that minimizes the mean square error of the estimate, transform 

techniques can be used to gfet a solution to the problem [Refs. 13, l^-]- 

In the transform approach, the spectral density of the power spectrum of 

the sampled stochastic process is first determined from a complex convo- 

lution integral, which can be evaluated by the method of residues in 

some cases. Then, the synthesis procedure is based upon the standard 
■ 

Wiener spectral factorization of the sampled power spectrum. The 

resulting filter is continuous and time-invariant and gives the minimum 

mean square error for all time of any linear filter that is time invariant. 
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Even with a constant gain, the filter discussed in the previous 

section and shown in Fig. 13 is not time invariant. It contains a syn- 

chronous switch that closes at the sample point, so that the character- 

istics of the filter depend upon the sample period. A simple example 

will serve to show the difference between the two filters. The perfor- 

mance of these two filters will be compared with that of a pure stretcher 

or time varying hold. 

Consider the stationary first-order Markov process discussed in 

Sect. II-B with the autocorrelation function 

*xx^ 
-ßM 

The process is sampled, the sample period is a stationary random 

variable, and it is desired to reconstruct the original process from 

the observed random variables in order to minimize the mean-square error. 

The optimum filter for this process is presented in Fig. 1^. The 

gain of the filter is unity for any probability distribution of the 

sample period. The filter is not time invariant because of the 

synchronous switch. The output of the filter is 

+T^ 

SAMPLING 
OPERATION 

+ ^ 
«(VWtn) n T' 

1 
? + v 

\ 
\ 

\ 
N 

SYNCHRONOUS 
SWITCH 

/ 

1    ' 

■ -ß 

OPTIMUM 
ESTIMATE 

FIG  U. OPTIMUM FILTER. 
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x(tn+T) = e-
ßTx(tn) t  <t  +T<t, , 

n — n      n+1 (23M 

so that at each sample point the error in the estimate is zero. During 

the sample period, the error is due to the random input to the process. 

The mean-squared error due to the covariance of the random input is 

obtained from the one-dimensional version of Eq. (229), which is 

T 

^VT/V =/e"ß(T-a) 2ße-ß(T-CT)da = 1 - e2ßT tn<VT<tn+1    (235) 

where the substitution has been made from Eq.     (9) that 

v11 = 2ß (236) 

From Eq. (235) the average over all time of the covariance of the error 

(or the mean-squared error) is 

E p(t +r/t   )dT v n ' n 
fE[Tn] = E (l-e-2ßT)dT 

-2ßT 
1 - E[e   n] 

2ß E[Tn] 

fE[Tn] 

(237) 

The linear time-invariant filter for the stationary first-order 

Markov process is presented in Fig. 15. The impulse response of the 

filter g(T) that minimizes the mean-squared error is dependent on the 

probability distribution of the sample period so that a different g(T) 

must be determined for each distribution. The best time-invariant 

filter and the corresponding mean-squared error have been determined in 

closed form for two probability distributions of the sample period—the 

geometric and exponential distributions.  The probability laws governing 

these two distributions have already been discussed in Sect. II-E, and 

the pertinent information concerning these laws is summarized in Table 1, 
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SAMPLING 
OPERATION 

X(tn+T) 
/ 9(r) 

ESTIMATE 

LINEAR 
CONTINUOUS 
NETWORK 

FIG. IS. TIME-INVARIANT FILTEB. 

For the geometric distribution of the sample period (periodic 

sampling with independent misses) the mean-squared error of the time- 

Invariant filter is given by Eq. (238) 

Mean-squared error = 1 
(l-a)(e2ßT-l) 

2ßT 
(238) 

where er is 

a = |(l-e-2ßT)(1 - äT) + 1 J" n _ 2ßT ,;>,., (l-e'^yd - ^)d+ h 9E(l.e^) 
P     P       ' 

(239) 
and p, q, and T are parameters of the distribution. 

For the exponential distribution of the sample period (purely- 

random sampling) the mean-squared error of the time-invariant filter is 

given by Eq. (2hO). 

- ß +fß2 + 2ßn 
Mean-squared error (2if0) 

where \i    is a parameter of the dlstrlhutlon. 

It is Interesting to compare the optimum filter and the time 

invariant filter with a simple time varying hold. The output of the 

time varying hold is 
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X(t +T) = x(t )      t  < t  + T < t  . 
n  '   v n     n — n      n+1 

The mean squared error of an estimate at time t +T would be 
n 

2(1 - e^) 

and the average over all time of the mean squared error is 

s 

T 

2(l-e^T)dT 

2-2 ß E[T ] 

In Table 6 the mean squared error of these three filters is compared 

for period sampling, periodic sampling with independent misses, and 

purely random sampling for ß equal to one-tenth. The expected value of 

the sample period is normalized to unity and the value of the other para 

meters of the probability distribution are listed in Table 6, 

TABLE  6.   MEAN-SQUARE   EHBOB  FOB OPTIMUM   AND TIME-INVAHIANT  FILTEBS. 

Purely   Random   or   Poisson   lavplinf 

Periodic   StBpling   with   Independent   Uiaiea 

Exponenti al 

Periodic   Sampling 

Geometric 
Probability   Distribution 

of   Sample   period Constant 

Parameters   of 
probability   Diatribution 

T-l T-1/2 
p-q-1/2 

M-l 

Mean   Sample   period T-l T/p-1 l/fi'l 

Variance   of   Sample   period 0 1/2 1 

With    /3-0.1 
Mean-Square   Brror 
fo r   Optimum   Fi 1 ter 

0.0S37 0.1311 0.1667 

With     ß'O. 1 
Mean-Square   Brror 
for   Tine-lDT«ri an t 
Filter 

0.0937 0.2458 0.35B3 

With     ß'O. 1 
Mean-Square   Error 
for   Time   Varying   Hold 

0.0967 0. 1400 0.1818 
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For periodic sampling the optimum filter and the time invariant 

filter are Identical, hut as the variance of the sample period increases, 

the mean squared error of the time invariant filter increases much more 

rapidly than that of the optimum filter» The mean i.^uared error of the 

simple time-varying hold is only slightly greater than that of the opti- 

mum filter for periodic sampling and also when the sample period is a 

random variable. In this example, the time invariant filter does not 

approximate the true optimum very well for large variance of the sample 

period, while the simple time-varying hold does approximate the true 

optimum. This shows that sometimes a "non-optimum" time-varying filter 

is better than the best time invariant filter. 
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VI.  CONCLUSIONS 

A.  SUMMARY 

In this investigation the general solution has been derived for 

the problem of the optimum linear estimation of a sampled stochastic 

process vith random parameters that can be adequately approximated by 

the model presented in Chapter II, The random parameters are independent 

from one sample point to the next with Known mean and covariance. The 

solution can be implemented by a linear dynamic system with a matrix- 

valued gain (or gains) calculated iteratively for each sample point. 

For high-order complex systems these computations are most easily per- 

formed by a digital computer. 

B.  SUGGESTIONS FOR FUTURE WORK 

The ideas presented in Chapter IV represent the first thorough 

investigation of optimum interpolation with delay for a nonstationary 

sampled stochastic process. As yet, no completely satisfactory theory 

exists for the optimum linear interpolation with deTay for a non- 

stationary continuous process.  It should be possible to extend the 

technique developed in Chapter IV to the interpolation with delay of the 

continuous stochastic process with white noise added to the measurements. 

For filtering and prediction, this problem was formulated by Kaiman and 

Bucy [Ref. 18], 

Another possibility is concerned with the area of adaptive systems. 

The optimum estimate in this investigation is implemented by a linear 

dynamic system that uses the expected value of the random parameters» 

The only place the covariance of the random parameters is needed is in 

the iterative calculation of the matrix-valued gain,,  If only the 

expected value of the random parameters were known, then the techniques 

of adaptive systems could be used to adjust the matrix-valued gain to 

react to measured variations in the covariance of the random parameters. 
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