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PREVFACE

Prediction problems frequently arise in which the regression weights
must be based on a relatively small number of ceriterion observations. In such
cases, cwrrent teehniques permit the utilization of only a very few predictors,
even though many more may be available. Unless one or more of the pre-
dictors is closely related to the eriterion, accurate predictions eannot be made.
The possibility of increasing the accuracy of predietion under such circum-
stances through the use of reduced-rank methods is investigated in this study.

On the basis of normal regression theory, o gencral reduced-rank model
is formulated m terms of prediction from factor scores. The problems of
selecting a method of factoring, of selecting an optimal subset of prespecified
size from among a given set of factors, and of selecting an optimal rank are
considered. It is shown that in the absence of eriterion observations, the
optimally chosen reduced-rank solution will be the one that accounts for the
greatest proportion of variance in the full-rank predietor matrix. Prediction
either from subsets of the original predictors, which are equivalent to tri-
angular factors, or from principal-axes factors is considered. It is concluded
that, when degrees of freedom are sufficiently limited, the most accurate
predictions obtainable will be those based on the largest principal-axes factors.
As a tentative solution to the problem of optimal rank, estimates are derived
which are intended to indicate the accuracy of prediction to be expeeted
when regression weights computed on the basis of data in one sample are
applied to data in other samples.

An empirical eomparison of five reduced-rank methods 1s carried out,
employing a variety of ranks, sample sizes, and criteria. The five methods
inciude prediction from the principal-axes factors, selected in three different
ways, and from the original predictors, selected in two different ways. The
results indicate that weights computed by the method of largest principal-
axes factors on samples with as few as 30 cases can give predictions as accurate
as those from weights computed by conventional techniques on samples of
several hundred cases.

The present monograph was submitted as a doctoral disscrtation at the
University of Washington in July 1962. The writer wishes to thank his
sponsor, Professor Paul Horst, for the invaluable blend of eriticism and
encouragement that he provided. The work for the present monograph was
largely supported by Office of Naval Research Contract Nonr. 477(33) and
Public Health Research Grant M-743(C7) (principal mvestigator: IPaul
Horst). Acknowledgment is due Mrs. Judy Goodstein and Mrs. Helen Ranck
for their work in typing and proofreading the maunuseript.

GeorGE R. BUREET
Pittsburgh, Pennsylvania
October, 1963
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CHAPTER 1

INTRODUCTION

Basic Requirements

Accurate predictions of an individual’s degree of success or failure in
such socially significant activities as a college eourse, training for some voca-
tion, or a particular job would be of inealculable utility, both to the individual
concerned and to the community. Remarkably aceurate predictions of this
naturc can be obtained with existing statistical techniques, provided that two
basie requirements are satisfied. I'irst, there must be measurements available
on a number of variables related to performance in the activity of interest.
It must be possible to obtain these measurements on any individual before
he engages in the activity. Second, such measurements must be obtained for
a large number of persons who subscquently engage in the activity.

The first requirement can almost always be met. Indeed, it is usually
possible to find many variables having at least some relation to performance
in the criterion activity. To obtain measurements on a large number of
variables may be expensive, but aceurate predietions of many activities are
of suflicient value to warrant large expenditures. The scecond requirement is
much less likely to be satisfied, since the number of persons who actually
engage in & particular activity is often limited. This is particularly true for
activities requiring a: unusual degree of ability, where accurate predictions
are apt to be most desired. Many socially significant activities are full-time
oceupations which individuals must pursue for years before their success or
failure ean be determined. If the number of persons engaging in such an
activity is too small to permit application of existing techniques, no feasible
expenditure will yield accurate predictions. We need new techniques.

The Statistical Model

A system for obtaining the best possible predictions for a given criterion
would be the following. First, determine all variables, termed predictors, not
statistically independent of the eriterion. Then obtain measurements of pre-
dictors and criterion on a sufficiently large validation sample so that every pos-
sible configuration of predictor values is represented by a large number of
cascs. Compute the eriterion mean for cach of these configurations. To make a
prediction for a particular ease, determine the configuration of the predietors
for that case. The prediction will be the eriterion mean for cases in the valida-
tion sample having that configuration,

1



2 REDUCED RANK MODELS FOR MULTIPLE PREDICTION

Such a system 1s unworkable because of practical limitations on sample
size and number of predictors. Under ecertain circumstances, morcover, a
much stmpler system could give equally accurate predictions. If, for example,
the criterion means were known to be functionally related to the predictors,
1t would only be neccessary to determine this funection. In practice, such a
functional relation is virtually always assumed. It may also happen that a
small subset of all variables statistically related to the criterion wil! give pre-
dictions as accurate as the entire set. Even where a very large number of
independent predictors is readily available, the number that may actually be
used is limited by the available sample size. This is because it is necessary
to have many more cases than there are parameters in the assumed functional
relation between predictors and eriterion mean. Otherwise one could not
obtain stable estimates of these parameters.

In least-squares or regression theory and also in correlation theory, the
mean of the criterion is assumed to be a linear funetion of the predictors. In
corrclation theory, predictors and criterion are assumed to be random vari-
ables having a joint multivariate normal distribution. In regression theory,
the criterion is assumed to be a normally distributed random variable, while
the predictors are thought of as being fixed. Anderson (1958, p. 61) recom-
mends using one model or the other depending on whether or not the predictors
may be cousidered random. NMood (1950, p. 312) states that, in practice, most
correlation problems can be nore appropriately handled by regression meth-
ods. In many cases, the two models have led to equivalent procedures; under
the null hypothesis, estimates of regression weights, test eriteria, and prob-
ability theory are all the same. Fowever, when the null hypothesis (viz., that
predictors and eriterion are independent) is not true, the probability theory
differs.

In prediction problems in psychology, the predictor variables are generally
random rather than fixed, and the null hypothesis is rarely true. Thus cor-
relation theory would appear to be more appropriate. However, since correla-
tion theory is considerably more complex and difficult to apply than regression
theory, the latter is generally used, with the hope that the praetical differences
between conclusions drawn from the two models will be negligible. In the
present study, prediction problems will for the most part be considered within
the context of regression theory.

It may prove uscful at this point to make the distinetion between actual
prediction problems and validation problems. In validation problems, the
goal is to demonstrate a systematie relationship between a number of “inde-
pendent variables” and a “dependent variable.” To accomplish this, one
formulates the null hypothesis of no relattonship and hopes to reject it at
some level of confidence. Thus, for validation problems, correlation theory
and regression theory are equivalent. In prediction problems, on the other
hand, the null hypothesis is assumed to be false. The goal is to obtain a
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regression cquation which, when applied to predictor measures in future
samples, will give the most accurate estimate possible of the corresponding
criterion values. Having obtained such a regression equation, one would also
wish to have estimates or confidence intervals indicating the aceuraecy to be
expected when the regression equation is applied to new samples. In valida-
tion problems, the multiple correlation is often used as a measure of relation-
ship between the dependent and independent variables. It is sometimes
termed a validity coefficient, or simply a validity. In prediction problems,
the correlation between the prediction and the eriterion in new samples may
be used as a measure of aecuracy of prediction. Such a coefficient may be
termed a weight-validity to distinguish it from the multiple correlation
coeflicient between the prediction battery and the eriterion in the original
sample.

Purpose of the Study

The present study is concerned with predietion problems as opposed to
validation problems. Regression theory in its current form is adequate for
those appiications in which the available number of cases far exceeds the
available number of predictors, 1.e., in which the number of degrees of free-
dom is large. In such cases, weight-validity will be very close to battery

alidity, and the least-squares estimates of the regression weights will provide

optimal predictions. But when the number of predictors available is relatively
large in relation to sample size, as is perhaps more often than not the case,
problems arise that lack satisfactory theoretical answers. One such problem
1s that of estimating an index, such as weight-validity, that will provide some
idea of the accuracy of predietion to be expected in new samples. A more
important problem is that of determining the regression weights wlhich will
give the most aceurate predictions possible in new samples.

These optimal weights will not in general be given by the eonventional
least-squares solution applied to all available predictors. I'or example, if
the number of predictors is the same as the number of cases in the sample, the
least-squares weights for an arbitrary subset of predictors will usually give
better weight-validity (though lower validity) than the weights for the entire
set. More generally, in such an extreme case, any lower-rank approximation
to the matrix of predictor values would give better predictions than the
complete matrix. As the situation becomes less and less extreme, there must
come a point where some ranks and some methods of rank reduction and not
others are preferable to the complete matrix. At a still less extreme point, the
entire sct of predictors will presumably give better predictions than any
reduced-rank approximation. Still, when predictors are discarded, the loss of
accuracy of prediction may be so slight as to be more than offset by the prac-
tical savings of not having to measure as many predictors.

Thus in any prediction problem where the number of degrees of freedom
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is Hmited, the question of rank reduection arises: can the complete predictor
matrix be improved upon, and if so, which method of reduction aud which
rank will give the greatest improvement? When its purpose is to give more
accurate prediction by increasing degrces of freedom, the much-studied
predictor sclection problem is a special case of the rank-reduction problem.
Predictor selection methods ave more often used, however, in situations where
an upper limit on the size of the prediction battery is given by considerations
of cost. The emphasis is thus on obtaining an optimal sct of predictors of a
particular size rather than on obtaining optimal predictions regardless of
battery size. Perhaps beeause of the prevalence of the former emphasis,
particularly before the advent of electronic computers, the problem of pre-
dictor sclection has received a great deal more attention than the general
problem of rank reduetion.

Most methods of predictor selection are alike in selecting first the variable
having the highest single validity, and adding, step by step, the variable
which, together with those previously seleeted, will give the greatest increase
in the multiple correlation with the criterion. These so-called aceretion
methods differ with respect to computational procedure and method of
deeiding how many predietors to use. Perhaps the computationally simplest
such method is the squarc-root (or triangular-factoring) method deseribed
by Summerfield and Lubin (1951). Horst has generalized and extended this
method for absolute (1955) and differential (1954) prediction of multiple
criterin. Horst and MacEwan (1960) have deseribed a method which is
essentially the reverse of the aceretion method. Here one eliminates at each
step the predictor contributing least to the multiple correlation. The accre-
tion and elimination methods will not in general result in the same battery,
nor will either of them neecessarily give the battery of given size having the
highest obtainable validity.

Horst (1941) has suggested two models for reduced-rank predietion. His
rationale is based npon the factor analysis hypothesis that the predictor matrix
is basie only becanse of the presence of etror or specific factors. Gue of these
models assumes the presence of specifies. Accordingly, the matrix of predictor
intercorrelations is augmented by the veetor of ertterion correlations and com-
munality estimates are placed in the diagonal prior to factoring. Teast-squares
weights are then computed for the common factors. This method was tested
by Leiman (1951) using 12 predictors and computing weights on samples of
30 cases. A rank-3 solution gave weight-validitics which were significantly
higher than those obtained with the full-rank solution. This method has the
disadvantage of being difficult to treat theorctically, since the nature of
communalities and of the factor scores (which are not unique) are not well
understood. The other model suggested by Horst accomplishes rank reduction
by attempling to remove crror factors rather than specific factors. Here the
best least-squares approximation to the predictor intercorvelation matrix is
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used, tlie principal-axes solution. One advantage of this method is that it is
theoretically straightforward. Another advantage is that rank reduction is
accomplished independently of the eriterion and thus does not ecapitalize
on the errors in the criterion.

Virtually the exact opposite of this model has beeu implicitly suggested
by Guttman (1958). Since the mverse of the predictor correlation matrix is
direetly involved in computing regression weights, one might well base pre-
dictions on the best lower-rank approximation to the inverse rather than on
the approximation to the intercorrelation matrix. The best set of factors for
approximating the mverse is, as Guttman points out, the worst for approxi-
mating the intercorrelation matrix. In view of this paradox, perhaps one
should abandon approximation as a criterion for selecting the factors to
be retained for predietion and simply use those factors giving the highest
multiple correlation, as is attempted in the predictor-selection methods.
Certainly the basie assumption of the rationale for approximating the inter-
correlation mairix may be questioned: that the reliable variance is concen-
trated in the larger princpal-axes factors, the smaller factors being composed
mainly of error. Tor example, in a study by Davis (1943) involving nine
principal-axes factors, a strict correspondence between variance contribu-
tion and reliabilitv was not found; e.g., the split-half reliability for the eighth
factor was larger than for the fourth factor.

The present study proceeds along both theoretical and empirical lines.
Tirst an attempt is made to work out some of the consequences of regression
theory for reduced-rank models. Sinee, as noted above, there is reason to
question the appropriateness of regression theory for psychological predic-
tion problems, an empirical comparison of five reduced-rank procedures is
also carried out. The methods used were predictor elimination, predictor
selection, the method of approximating the intercorrelation matrix, the
method of approximating the inverse, and the method using the prineipal-axes
factors giving the highest multiple correlation. As will be seen, both the
theoretical and the empirical evidence favors the method of approximating
the intercorrelation matrix.



CHAPTER 2

IMPLICATIONS OI' REGRESSION THEORY I'OR
REDUCED RANK MODELS

The General Linear Hypothesis

Regression theory was first worked out at the beginning of the 19th
century by Gauss and Legendre and has since, of course, been presented by
innumecrable authors from various points of view. Among recent sources, a
rigorous presentationr with geometrieal interpretations has been given by
Scheffé (1959). A simpler presentation entirely in terms of matrix algebra
is given by Kempthorne (1952). Anderson (1958) provides a generalization
to multiple eriteria. A presentation in terms of deviation scores may be found
in Cramér (1946). Some results froia vegression theory which are relevant to
the rank-reduction problem are summarized below. The derivations, which
arc for the most part omitted, may be found in the sources mentioned above.
Let

7 be a column vector of N observations on the eriterion;

z be an N X M matrix of rank 3/ < N, cach row of which represents
an observation on each of 3/ predictors;

¢ be an Nth-order column veetor of uncorrelated errors, cach dis-
tributed normally with mean zero and variance ¢°;

8 be an M X 1 veetor of population regression coefficients;

C be a covariance matrix of the variable given in the subseript.

The general linear hypothesis is that

1) y =28+ e.

The assumptions regarding e, apart from normality, may be stated as
2 I(e) =0,

(3) C. = Eee’) = ¢°1.

From these equations it follows that the eriterion has the expectation
“) E(y) = 28,
and the covariance matrix

() C, = El(y — 28)(y — 28)'] = «'I.
6
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Let

B be the 31 X 1 vector of least-squares estimates of the population
regression eoefficients;
7 be the N X 1 veetor of estimates of the criterion based on 3.

Then

6) B = (a'z) 2"y,
and
(7) § = zp.

The vector § has the property of minimizing the sum of squares of the errors
in estimating y from §. These errors will be orthogonal to the predietors and
also to the estimates themselves. The error sum of squares has the expeetation

8) Ely — 9’y — 9] = N — M)d".
Thus

e _ =9y =19
©) =5 _u

provides an unbiased estimate of o°. What is generally termed the standard
error of estimate is given by ¢. The variable ¢ is distributed independently
of B.

The estimates of the regression coeffieients have the expeetation

(10) E®) =8,
and the covarianee matrix
(11) Cs = E[B — BB — B = d"@'2)™".

The estimates of the eriterion have the same expectation as the eriterion
itself,

(12) E(y) = E@p) = » E@) = 28,
but are not independent, sinee from (7), (11), and (12),
(13) C; = Bl(xf — 26)(@f — 28)’] = 2Csx’ = o"2(x'r) " 'z’.

The canonieal form of the general linear hypothesis may be obtained
as follows. Let = be expressed as

(14) x = ub',

wherc % is an N X M orthonormal matrix of factor scores, and bisan M X M
matrix of factor loadings. Let V be an N by N — M orthonormal matrix
sueh that the N X N matrix /T in

(15) H=1{u 1]
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1s an orthonormal matrix. The matrices «, b, and v are always obtainable,
and can be determined solely from the predictors without reference to the
criterion. Then the Nth-ovder vector of {ransformed criterion values

I P
(16) 2= |2 =1y ={"Y
2, v'y |
has the expectation
(7) £E) = | P& = | VF
E(zy) 0.
and the covariance matrix
18) C, =o1.

Thus the best possible predictions for the NV — A transformed observations
z, will always be zero, regardless of the true regression coeflicients or of the
particular values of the eriterion. The least-squares estimates of the regression
weights are so chosen as to reproduce exactly the 37 transformed obscrvations
2z, from

A

(19) 2, =u'y =0b'p,
so that
(20) 8= by,

Equation (20) may also be obtained by putting (14) in (6). Thus, errors can
oceur only in estimating z,, and sinee the estimated value of 2 is zero, we have

1) by — ) — i) = 22..

Metric and the Status of the Multiple Correlation

In regression theory, the multiple correlation coeflicient and other func-
tions of the predictors such as means, standard deviations, and covariances
do not have the status of population parameters. This is because the predietors
are not assumed to be random variables but rather fixed values. Thus, regres-
ston theory does not admit of statistical inferences about such functions.
However, one can make statistical inferences about such characteristies of
future samples as depend on the criterion, provided that the relevant features
of the predictor matrix in the future samples are assumed to be known in
advance. FFor example, one can assume that exactly the same predictor matrix
will be obtained in future samples or merely that the predictor intercorrela-
tions will be the same. Using the latter assumption and scaling the criterion
appropriately, one can define both a sample and a population multiple cor-
relation coefficient.
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Ixeept where eorrelations are coneerned, no assumptions about metrie
are made in the present paper. Iowever, it should be noted that if the equa-
tions of the preeeding seetion were to be applied to data in the original units
of observation, a ecorrection for origin would be required. This correetion will
be aceomplished if a predictor is added which 1s defined to be unity for all
cases. If this is done, cquation (6) of the preeeding seetion may be shown to
be identical to the usual formulas for raw-score regression weights, whiech
are typieally expressed in terms of means and eovariances or correlations and
stundard deviations.

The question of metrie also arises in connection with defining multiple
corrclation. The assumption made here whenever correlation cocfficients are
discussed is that all measures are normalized, i.e., expressed as deviations
from the sample mean in units of the sample standard deviation multiplied
by the square root of the number of cases in the sample. We may now define
the square of the multiple correlation in the sample as

(22) R = Ja’zB = y'x(@'2) 2’y

and in the population as

(23) of = p'a’ap.

If we let » be the 37 X 3 matrix of predictor intercorrelations, (23) may be
written as

24) Pl = BB,

sinee, on the basis of the assumption about the metrie,

(25) ="z
Thus p will be a population parameter if it is assumed that the predietor
intercorrelations will be the same in all samples.

An unbiased estimate for p may be obtained as follows. The expeetation
of the criterion sum of scuaves is, from (1),

(26)  E('y) = El(x8 + 0)'(B + )] = B'x'xf + 28'2'E(e) + E('c).

Trom (23), the first term on the right is p* and from (2) the sceond term is
zero. The third term is the trace of (3). Thus

(27) Ey'y) = o + No°.
Since the errors of estimate are orthogonal to the estimates, we have
(28) Vy=§9+ @ — 5 — 9.

From (7) and (22), the first term on the right is 2°. Thus from (8) and (27),
(29)  E@®) =Ly — Ll — 5@ — ] .
=o'+ No* — (N — M)o® = p° 4+ Md°.
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Given the assumed metrie, the criterion sum of squares will always be unity,
so from (27),

(30) o=t
and (29) may be written as

M@ —
(31) ER) = p" + (—Nﬂ'

Trom (31) it is clear that the extent to whieh I overestimates p* will vary
directly with the number of predictors and inversely with the sample size.
Solving equation (31) for p° we obtain the following unbiased estimate for p*:

NR®* — M

2 = ey
(32) Be ==

Equation (32) will be recognized as the familiar “shrinkage” formula for
multiple R.

It is perhaps worth noting that R, or “shrunken R’ is not an estimate
of weight-validity or of the shrinkage to be expeeted in the correiation be-
tween the criterion and its estimate if weights computed on one sample are
applied in other samples. It does provide an estimate of the eorrelation that
would have been obtained between the eriterion and its estimate if the popula-
tion regression weights had been used instead of their ieast-squares estimates.
Shrunken R may also be thought of as an estimate of the multiple R that could
be obtained in a very large sample having the same predictor intercorrelation
matrix as the observed sample.

The Accuracy of Prediction in Future Samples

In predietion problems we wish to compute a sct of weights from a given
sample which will give the most accurate predictions obtainable when applied
to other samples. Specifically, we will assume that the sum of squares of the
errors of predietion in each other sample is the quantity to be minimized.
If we let 8 be a set of weights obtained in some fashion from a previous
sample, this sum of squares may be written (Kempthorne, 1952) as

83) (y— 2Bl — 2B = (y — =h)'(y — 2B)

+ e’z(x'z) e + 2(8 — B)'z’e + (B — B)'x’'x(B8 — B).
Ths expected value is
(34) Elly — zB)'(y — zB)] = No* + (8 — B)'a'z(® ~ ).

Now the second term on the right has an expeetation in the sample from
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which § was obtained. Assuming that the usual least-squares estimates are
employed, we have, using equation (11),

(35)  E[8— B)x'a@ — B)] = tr [E[x(B — BB — B)x']]

= tr @Cp’) = o tr [xz’z) "'z’].
Using (14), we may write the matrix whose trace we require as
(36) 2(x’x) e’ = ub’(bb") Tbw’ = ub’b b bu = .
Putting (36) in (35), we may write
(37) E[B — fva®B — B)] = o tr () = o tr (wu) = otr ({) = M2
Now if we assume that z’z, or equivalently the factor-loading-matrix b, is
the same in all samples, we would expeet the sum of squares of errors of pre-
diction to be (N + M)d*. More generally, if §is any estimate of 8 eomputed
from the original sample, we would expeet the sum of squares of errors of

prediction in future samples, provided that the factor-loading matrix is the
same as in the original sample, to be

(38) ¥ = No* + B[ — Bya'=(8 — B)].

Thus ¢z will be taken as an inverse index of weight-efficiency: the smaller
it is, the more suitable 8 will be for a prediction problem. In partieular,

(39) vy = (N + M)’

Sinee the interpretation of (38) is basic to the following development, we
will examine its derivation with some care. Certainly ¢ is not a mathe-
matical expeetation in the usual sense, but rather an expectation of an expecta-
tion. Since N, o, 8, and (by assumption) 2/z are fixed, the expeetation in
(34) is a funetion of B, and is thus fixed as soon as the original sample is
drawn. Since this quantity is a function of the criterion in the original sample,
its expectation in this sample i1s ¢ The quantity that we are directly eon-
eerned with minimizing is the one in (34). This quantity is itself not deter-
mined in advance of drawing the first sample, but its expectation is deter-
mined. Rather than minimize the quantity of direct interest, then, we attempt
to minimize its expectation.

An estimate of weight-validity may be obtained from (39). Assuming
the metrie of the previous section, and using (9) and (22),

, o _Yy—97F _ 1—R
(10) S = N_—M, " N—MN

Thus, an unbiased estimate for ¥, is, from (39)

" N M a
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For an arbitrary set of weights B, the weight-validity is

(12 W= L
VE B

The sum of squares of errors of prediction is

(43) S=(—aB){y —af) =1— 2yzB + B'x'zp.
If (42) is substituted in (43),
(44) S =1—2W~F2aB + B'z"28 .

Sinee § is the vector of least-squares weights from the original sample, under
the assumption that z'z is constant, the radieal in the second term on the
right of (44), and the third term on the right become, respeetively, B and R?
of the original sample. Solving (44) {or 11 gives

) S DR T
(45) W= T

Now to obtain an estimate of T, we substitute for S in (45) the estimate of
its expectation given by (41). Simplifying, we obtam

~ NR* — M

(46) W = RN =)

To sce the relation of the estimated weight-validity to the estimated popula-

tion multiple eorrelation as defined in the preceding section, we put (32) in
(46), obtaining

7 =B _Bep
Fan Fan

Sinee R is less than R (unless R is unity), the left-hand factor on the right
of (47) will be less than cne, so 17 will be less than Re.

Perhaps a more important application of (38) is its use as a criterion
for evaluating reduced-rank models for eomputing regression weights. An
alternate approach is indirectly suggested by Leiman (1951, pp. 3—4). There,
the assumption is made that the least-squares weights for the lower-rank
system will give better predictions than least-squares weights for the full-
rank system to the extent that they provide eloser approximations to the
population regression weights for the full-rank battery. The reason for
rejecting this position is as follows: It is well known that the optimal weights
for a subset of predictors may differ greatly from the weights of the same
predictors when the full battery is retained. A mathematical statement of
this fact is given in (104). Thus one cannot properly measure the suitability of
a reduced-rank sct of weights in terms of how closely they approximate the
full-rank weights. It scems more likely that the least-squares weights for
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a subset of predictors or of factor scores may, beeause of the inereased number
of degrecs of freedom, be so much more stable than the weights for the full
set as to give more aceurate predictions despite the loss of information. In
any case, the criterion in (38) involves no assumptions other than those
usually made in applications of regression theory to predietion problems and
Is, moreover, referred directly to the expeeted errors of predietion.

In evaluating reduced-rank solutions, a question arises as to the number
of factors to be included in the general linear hypothesis. If the full-rank
hypothesis is reiained, then the quantity No® in (38) is fixed, so that the only
way of improving on 3 will be to find a 8 for which the second term is less than
M. If, however, a smaller sct of, say, L predictors (cither the original ones
or factor scores) is hypothesized, both terms change. The variance of the
errors, o, will of course increase in proportion to the systematic variance
in the eriterion accounted for by the discarded predictors. If we denote this
larger variance by o; and the least-squares weights for the reduced battery
by 8, then

(48) ¥; = (N + L)oi,

as will be seen in the next seetion. Thus the 8 for any subset of L predictors
for which (N + L)o} is less than (N 4 M)o® will be an improvement over J.

Another possible application of (38) would be in obtaining a eriterion
for how many predictors to retain in the standard predictor-seleetion pro-
cedures. If we denote by R, the multiple correlation obtained with a set of
L predictors, this eriterion is obtained direetly from (41):

“ .LNV IJ 2.
(19) =L a - R,

Onc would retain those L predictors for which ¢7 is the smallest. We use §;
rather than 17 since weight-validity is an indication not of the actual crrors
of prediction but of the errors which would have heen obtained if the predie-
tions could themsclves have been weighted after the criterion had been
observed. In other words, a corvelation coefficient between two variables is
independent of differences in location and scale, whereas actual errors of
prediction are in part determined by such differences.

The General Reduced-Rank Modcl

The reduced-rank solution will first be developed in terms of a general
factor model. Predictor seleetion and predietion from principal-axes factors
will then be considered as speeial eases of this model. Let

(50) 2’z = bV’
he any complete factoring of 2’z. Then

(51) u = z(b")”"
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will be the orthonormal matrix of factor scores. The matrices x, u, and b are
the same as those in (14). Now we partition « and b after the Lth column so
that, from (14),
o by | 7 ,
52) x = [u, ) = u, b + w,bi.

Lbs]

We will assume that the eolumns of © and b have been permuted so that the L
factor seores retained for prediction arc given by u,, or (if one prefers to
think of prediction from a rank-L approximation to x) by ,b]. We will now
show that the two assumptions are equivalent for prediction problems. Note
first, however, that in future samples the weights must be applied to the
predictors rather than to the factor seorcs or to the lower-rank approxima-
tion. The latter must be obtained as a row transformation of the predietion
matrix, sinee a prediction equation must be applicable to individual eases.
Let the inverse of b be conformably partitioned and denoted by B’ so that

f i l— ’ 7 r —
53) B'b = ‘B1 [blbg] = lBlbl Blb2] - I 0 |
LBz “Bib, Bibd L0 1)
Then
(54) U, = ;‘;Bl

1s 2 unique solution for u; as a transformation on the rows of 2. To sce this,
we let v be any other such transformation, and let

(55) E =+ — B,.

Then

(A6) w, =2y =B, + 2F = v, + zF
so that

7 ol = 0,

which, sinee z is basie, implics that E is zero. Now let 8, be a set of least-
squares weights for u,. Sinee u, is basie, 8. 1s unique. Let 3, be a set of least-
squares weights for «,b?. Since w,b] is nonbasie, 3, is not unique. If

(58) ulbl,Bb — Y =&
and
(59) wh. — Y = e,

the sums of squares of €, and of e, will be minimized by 3, and 3,, respectively.
The former sum of squares ean be no less than the latter, for we could always
take

(60) B. = biB.
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The two sums of squares will be equal if we let

(61) B, = Bib..

Therefore, a set of least-squares weights for (58) will be given by §, in (61)
and

(62) ele, = €le,.

But sinee 3, is unique, b?3, must be unique, and (60) holds for all least-squares
solutions B, of (58). Thus, (58) and (59) ave identieal, and beeause of the
uniqueness of B, in (54), we have

as a unique set of least-squares weights for « under the assumption of redueed
rank.

If it is assumed that the eriterion depends solely on the subset of L
faetors retained for predietion, the general linear hypothesis takes the form

(64) y = zBB. + ey,

where @, 7, and e, are defined in the first seetion of this chapter. All of the
results of that seetion may be obtained for the present hypothesis if we
replaee x by 2B, and 8 by B, in (1) through (13). In like manner, (48) may be
obtained from the derivation of (39). Thus, from (6) and (54) the least-
squares estimate of 8, is given by

(65) B = (i) uly = uly.
It has, from (10), the expeetation

(66) E@.) = 8.

and, from (11), the covarianee matrix

{67) Cs, = oruu)™ = o7l.

An unbiased estimate of the veetor of weights to be applied direetly to the
predictors is given by § as defined in (63), sinee

(68) E@) = E(B.3.) = BER) = Bip..

The eovariance matrix for these weights will be

®9)  Cp = E[(B,A. — BiB)(B:B. — B8] = B.CyBi = o1B,BI.

The estimates of the eriterion will now be, from (7),

(70) §. = 2B,3, = 8.

The expected sum of squares for the errors of estimate becomes, from (8),
(71) Elly — §2)'y — §)] = (N — L)o%.
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The matrix I for transforming the criterion observations to canonical
form may take exactly the same form as in (15):

(72) IT = (u, us, v).

The matrix [, t] is now arbitrary to the extent that only » was arbitrary
before. It will be convenient, however, to define IT as in (72). Partitioning
the transformed observations somewhat differently from the way it was done
in (16), we let

z ﬂtiyl
|
(73) z =z |=Hy=luy i
23 v’y

The clements of 2, and 2, will all have expected values of zero, while the
expectation of z, will be

(74) B@) = Euy) = E@.) = B..
The unbiased estimate for ¢; may be expressed in terms of 2, and 2, as

(75) 2 2323+ 2323
'] g, = i
! N -L

The implications of using a reduced-rank solution instead of the con-
ventional solution can perhaps be better understood if the full-rank hy-
pothesis of (1) is retained, rather than the rank-I hypothesis of (64). We
first observe that §is a biased estimate of 3, since

76) E@) = E(Buly) = Bulag = B,biB.

Jts covariance matrix, which will now be proportional to ¢° instead of to o7,
is given by

77 Cs = E[(Buy — Bbip)(Buly — BibiB)’] = BiE(ufec'n,)B]

since premultiplying (1) by ] gives

(78) uly = biB + ule.

Continuing, with (3) in (77),

(79) Cs; = BuL(ee"w,B, = ¢'B,\Bj.

The first and second moments about 8 will be

(80) E@ —B8) =Bb8—8=—(—Bb)B = —B:bis
and

®1) BB - BE - 8]
= C3 + [E@ — BIEG — )Y = o’B.B] + B:biBs'b.Bi.
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Equation (11) may be written as
(82) Cy = o’(x'2)” = ¢’BB = ¢’B\B] + ¢'B.Bj.

Thus, from the standpoint of relative cfficiency (Mood, 1950, p. 149) in
estimating 8, 5 and § may be compared in terms of the diagonals of the
rightmost terms of (81) and (82). If the trace of the former is smaller, on
the average the reduced-rank estimates will be more efficient than the full-
rank estimates.

The expeeted value of z as given by (73) will now be

[uzg]  [0i8]
(83) BE) = |wap | = | big 3
v’ - 0|
We recall from (19) that 3 is computed <o that
(89 [=]=[ %1
2] LbiB
But § is computed to reproduce only 2,
(85) 2 = uly = biBady = biB.
We have
(86) biB = biBuly = 0.

Thus, the reduced-rank solution, in effect, predicts a value of zero for 2z,
rather than a value of 3. If the clements of b8 are smaller than o°, then
the prediction of zero would have the higher relative efficiency.

The statistic 7 will be an overestimate of ¢°. To see this, first note that

(87) Ezizs + 2i2) = tr [E(2,25)] + tr [F(z:29)]

tr (°I + B3B3’ b)) + tr (¢°])

= (M = L)o* + g'bbiB + (N — M)
= (N — L)¢* + 8'b,b38.

It

Then from (75),

(88) Bl = o + S22

Next, we deseribe the effect of hypothesized rank on our inverse index
of weight-efficiency, 3. We will denote this index and its estimate by a5 and
3, where the full rank 3 isassumed, and by .5 and {5, where the reduced-
rank, L, is assumed. Mathematical expeetation under the hypothesis of full
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rank will be denoted by E,( ) and under the hypothesis of reduced-rank
by E.().

The reduced-rank index ;y; was given by (48). To obtain the full-rank
index, we first evaluate the rightmost term in (38). Using (81),

(89)  Eu[B — BY2'z(8 — B)] = ir [EE — B)E — 8)J']

o tr (@B.Bja’) + tr (xB,biB'b,Biz")
o tr (wul) + tr (ubiBR boub)

o tr (uju,) + B'bulubl

La® + 8'b,bi8.

Substituting (89) in (38), we obtain

(90) ws = (N -+ L)o® + 'b,b38.

An unbiased estimate of L¢3 is, from (75) and (48),

I

I

I

O = V + L) = 2l + 2t + o (s + 7).

An unbiased estimate of ;5 1s, from (87),

2‘,23 .

L
(92) w5 = 2z + 2z + — I

The latter will also be an unbiased estimate of .y, sinee

(93) E <N et i [> ol

It would not, however, be as stable an estimate as ¥, since the rightmost
term of (91) is based on more observations than the rightmost term of (92).
If 5 were used to estimate iz it would have a positive bias, since, from
(88) and (90),

09 Buldp = v + Do+ ZEEE) oy g 2 g,

In practice, it would often be convenient to express these estimates in
terms of the multiple eorrelation cocfficient. If the metrie of the third seetion
is assumed, the clements of z, and z will be the corrclations between the
factor scores and the criterion, or factor validities. Sinee the factor scores
are uncorrelated, the squared multiple eorrclation between the first L factors
and the eriterion will be

2
(95) P =2z =1 — 2z, — 2z,
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Henee (91) and (92) are equivalent to

" 2L(1 — Rj
(96) s =1—RL+ _—Z(\’——Ll)’
and

] 2L — R}
90) w¥s=1—Ri + H

Equation (96) is, of course, equivalent to (49). Although .y and 5 will
in general differ only very slightly, the former is to be preferred in applica-
tions, since 12, will be less inflated by overfit than will R,,.

In theoretical comparisons of different factor solutions, ,¢; will be most
useful, since it is a function of the loadings of the discarded factors. The
optimal factor solution would be that which minimized the rightmost term
of equation (90).

Some Particular Reduced Rank Procedures

Of the five particular rank-reduction procedurcs considered in the
present study, three involve prediction from principal-axes factors, and two
involve prediction from a subset of the original predictors. Summerfield and
Lubin (1951) have shown that a subset of predictors is equivalent to a subset
of orthogonal triangular (or square-root) factor scores. The first factor is
simply the first predictor. The sccond factor is that portion of the sceond
predictor which cannot be predicted from the first. The third factor is that
portion of the third predietor which cannot be predicted from the first and
sccond. The remaining factors are similarly obtained. Each factor will thus
be independent of the earlier factors and of the predictors corresponding to
them, and will therefore have zero loadings on those predictors. Accordingly,
the factor-loading matrix will be a lower triangular matrix, i.c., its supra-
diagonal elements will all be zero.

The predictor-sclection and predictor-elimination methods may be
thought of as procedures for placing the predictors in the approximate order
of their contribution to the multiple corrclation with the criterion. Since the
triangular factors are determined by the ordering of the predietors, the first I
factors will tend to give the highest multiple correlation obtainable with a
subset of I predictors.

Prediction from the principal-axes factors giving the highest validity is
similar to these methods in that the subset of factors to be retained is entirely
determined by the characteristics of the sample from which regression
weights are to be computed. Under these circumstaneces, none of the indices
of validity or weight-validity is directly applicable, since all are based on the
assumption that, for given L, the subset of predictors to be retained is deter-
mined in advance of observing the criterion. A detailed analysis of the con-
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sequences of choosing factors on the basis of the observed y will not be
attempted. Clearly, however, the fewer the degrees of freedom available, the
larger will be the variance of the sample validities, and the smaller the
probability that the subset of L factors having the largest true validity will
give the largest sammple validity. Moreover, the true validity for the subsect
chosen would tend to fall short of the true validity for the optimal subset,
and the sample validity for the chosen subset would tend to overestimate its
true validity, in inverse proportion to the degrees of freedom. Still, it seems
that subsets of predictors scleeted in this way would usually have higher true
vahidities than would arbitrarily chosen predietors.

Although the foregoing discussion is not conercte enough to lead to
precise conelusions, it does suggest the desirability of having a method of
factoring that would provide an a priori expeetation as to the contributions
to validity of the individual factors. The suceess of using approximation to
the intereorrelation matrix or to its inverse as a criterion for seleeting pre-
dictors will in part be determined by the extent to which eontribution to the
approximation is related to contribution to vahdity.

In describing the two particulur factor methods in terms of the general
model of the preceding seetion, we will consider first the triangular faetors.
For the general factor-loading matrix, b, we substitute a lower triangular
factor-loading matrix, /. But where b was partitioned only after the Lth
column, we will partition ¢ also after the Lth row, so that

o 01

(98) t=1[h b]= [ |

lya  loa-

We will partition the inverse of ¢ similarly, and denote it by 7”. It may be
readily verified that

I_TI"I t;l O- S0
(9()) T/ = I 1 —_ E l= i,
L) L=ttty 2]

Tt will also be convenient to partition the predietor matrix z after the Lth
column, and to partition the regression veetors 8 and 8 after the Lth element.
We first note, from (52), that

(100) z = [r, 2] = wt] +witi = [l wdi] + [0 Upts].
Thus

(101) wtl = [¥ wi]
and
(102) Ty = Wiilis + Usiis.

The first term on the right of (102) is that portion of 2, which can be predicted
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from z;, while the second term is that portion of z, which is indenendent of z,.

Thus the “redueced-rank approximation” of x on which predictions are based

is from (101) eomposed simply of the retained predictors augmented by the

portion of the discarded predietors that is determined by those retained.
From (63) and (653), the estimated regression weights will be

(103) 5= Tuly = P(th)‘lu{ﬂ _ [Ef!‘
0 B..
Their expected values, under the full-rank hypothesis, will be, from (76)

r -1 I 7 \N=1,7 g nig=3
(109 E@) = T\48 = ’_(t“) }[th tz’llrﬁ ' J = Bt ) E(‘B‘)}
_ 0 L8, 0 7(B.)

The value for F(8,) in (104) may be thought of as an expression for the
optimal weights for a subset of predietors in terms of the optimal weights
for the entire set. The original weights for the retained predictors are altered
as a function of the original weights for the discarded predictors. This illus-
trates the point made in the section on aceuracy of predietions, to the effect
that weights for a subset of predictors cannot be properly cvaluated in terms
of how elosely they approximate the weights for the entire set. The eovariance
matrix of the sample regression weights, obtained from (79), is

=1y g1
(105) Cs = o°T\T! = Ua[(tu )i o}
0 0

S

The expected values of the transformed eriterion observations will be,

fromn (83),
RIS |
(106) E@) = |EG) | =|t8| = ‘ s |-
e Lol L o |
Trom (90), the inverse index of weight efficiency yy; is given by
107)  w¥s = (N + D)o* + 8638 = (N + L)o* + Bitastiafs.

To obtain the principal-axes solution, we first express the predictor
matrix z in terms of its basie structure (Horst, 1961, eh. 17):

(108) z = PAQ'.

Now, in plaee of the general faetor-score matrix u we have the prineipal-axes
factor-score matrix P. The prineipal-axes factor-loading matrix, corresponding
to the general b is given by QA, where @ is a square orthonormal and A a
diagonal matrix. Equation (50) now takes the form

(109) r'r = QA'Q’,

8+ 18,
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The cigenvalues and cigenveetors of 2’z will be given by the clements of A
and the eolumns of @ respectively. We may partition the factors on the right
of (108) to obtain

z = [P, Pz][A’ 0rer]

0 ALQL
(110) — Py Py ]
LALQ)

= PIAIQ{ + PzAzQS-

As before, both the factor-score and factor-loading matrices are econsidered
to be partitioned after the Lth column. For the inverse of the factor-loading
matrix, B, we will now have

AT'QT
ANQ; .

(11]) [QIAI QzAz]_l =

The sample regression vector is, from (63) and (653),
(112) B = QA 'Ply.

Under the full-rank hypothesis, the lower-rank sample regression weights will
have the covarianee matrix, from (79),

(113) Cs = " QAQ].

From (83), the canonical form of the criterion will have the expectation
B [a0i8]

(114) B = | e | = | 808 &
E(zs),I 0

Equation (90) will now take the form

(115) w¥s = NV + L)y + 'Q.A2Q48.

The specific reduced-rank prediction models may be obtained from the
foregoing development by assuming appropriate permutations cither of the
predictors, in the case of triangular factors, or of the columns of I’ and @,
and of the clements of A, in the case of principal-axes factors. We note from
(73) and (83) that cach element of z, and #, is determined by only one factor:
the observed value by the factor scores, the expeeted value by the factor
loadings. In predictor selection, each time a predictor is seleeted, a factor,
and hence an clement of z,, is determined. At cach step in the procedure,
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that predictor is seleeted which will make the next element of z, as large
(in absolute value) as possible. In predictor elimination, a factor and henee
an clement of z, is determined each time a predictor is climinated. At each
step, that predietor is climinated which will make the next element of 2, as
small (in absolute value) as possible.

In the method of predieting from the factors giving the best least-squares
approximation to the predictor intercorrelation matrix, the elements of A are
placed in order from largest to smallest, so that the largest are in A, and the
smallest in A,. If the inverse is to be approximated, the clements of A are
placed in the opposite order, 1.c., from smallest to largest. (When we speak
of ordering the elements of A, we assume, of course, that the columns of P
and Q are permuted correspondingly.) In the method of predicting from the
principal-axes factors giving the highest validity, the factors are permuted
so as to place the elements of 2, and z, in order of absolute value from largest
to smallest, with the largest values in z,, the smallest in 2.

The Problem of Finding an Optimal Reduced-Rank Solulion

There are three major problems involved 1n obtaining an optimal reduced-
rank solution. The first concerns the method of rank reduction: whether
subsets of the original predictors, of the prineipal-axes factors, or of factors
obtained by some other method will give the most accurate prediction in
future samples. The second problem is, having obtained the factors, to
specify the subset of a given size that may be expected to provide the greatest
aceuracy of prediction. The third problem i1s, having specified the subset
which would be used for any given rank, to determine the particular rank
that will tend to lead to the most accurate predictions.

The cstimate of the inverse index of weight-efficieney given in (91) and
(96) provides a solution (or a potential solution) to the third problem. It
does not, however, enhance our ability to deal with the sccond problem, sinee,
as can be scen from (96), it merely indieates the traditional approach; namely,
to attempt to sclect that subsct of predictors of given size having the highest
multiple correlation with the eriterion. The drawbacks of such an approach
when degrees of freedom are limited were discussed in the preceding seetion.
Siee a reduced-rank solution is indicated only when degrees of freedom
are limited, a sclection method that is independent of the eriterion might
well be preferable. Some evidence favoring this view is provided in the
cmpirical portion of the present study. In the present seetion we assume that
view to be correet and accordingly consider only methods of seleetion which
are independent of the criterion.

If the present analysis is correet, an optimal solution will be one which
minimizes ;5 as given in (90). In the absenee of observations on the criterion,
nothing can be said about 8 or ¢°, so our only course is to seck a value for
b, which will minimize 80,058 for gencral 8. The quantity to be minimized
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may also be expressed as the sum of squares of the expected values of the
2, s given in (83):

(116) B'0:b18 = [E(z)]'[E(22)].

Minimizing this quantity will be equivalent to making the elements of F(z.)
as small (in absolute value) as possible. We let the sth clement of

(117 5= |¥ @‘)}
4 (22)

be denoted by Z,. If we knew these values, the second of the problems stated
above would be solved by discarding those factors for which z; was smallest.
Denoting the column of factor loadings for the ith factor by b ,, we have,
from (83),

(118) 2, = bl.B.

Let D be a diagonal matrix whose 7th element is given by
(119) D= Vb

Let

(120) W = bD™".

Denoting tlie ¢th column of W by W ., we have

(121) waw.,= Z::—Z: =1,

The cxpected values of z, and 2z, can now be expressed in terms of D and TV as

(122) z = '8 = DWW,
or
(123) 5 = DW'.8.

Since we have assumed that nothing is known about 8, and since (121) holds
for all 4, we can have no a priori expeetation as to the magnitude of W’ 3.
Thus our only basis for predicting the rank order of the z; in the absence of
criterion observations will be the magnitudes of the D;. A tentative solution
for the problem of which factors to retain for prediction, then, will be to dis-
card those faetors having the smallest values of D,. From (119), we see that D?
is the sum of squares of the loadings for the ¢th factor, or the variance ac-
eounted for by that factor. Thus, for a rank-L solution, we wish to retain those
L factors giving the best least-squares approximation to the predictor matrix.

It is well known that the principal-axes factors will give a better least-
squares approximation to the predietor matrix than will factors obtained



GEORGE R. BURKET 25

by any other method. Thus, as a tentative answer to the first of the above
problems we obtain the prineipal-axes solution.

Now, given the restriction that the factors be selected independently of
the criterion, we can state that the best prediction possible with a reduced-
rank solution will be obtained from the principal-axes factors giving the
best least-squares approximation to the eorrelation matrix. We note that, for a
principal-axes solution, D and TV become the A and Q of the preceding section.
Thus we can also state that the method of approximating the inverse will give
the worst possible predictions, since with that method one diseards the factors
corresponding to the largest elements of A.

We have showr that, with appropriate assumptions, the principal-axes
factors making the largest contribution to the variance of the predictors (or
simply, the largest principal-axes factors) are optimal with respeet to our
index of expeeted aceuracy of predietion. It may be shown that the factors
arc also optimal with respeet to the variance of the sample regression weights.
The sum of these variances will be smaller than for any other method of rank
reduction. From (69) (or (79)), this sum will be proportional to the trace of
B,B!. We lct

(124) ¢ = Bw = Byl + B,

so that

(125) ¢’ — Byub = Bjuf.

It is well known that

(126) tr (,B{B]) = tr (B,BY)

will be a2 minimum when B, is composed of the largest principal-axes factors of
(127) ¢'g = BB = (z'r) ' = QAT*Q".

Equivalently, the above traec will be a maximum when b, is composed of the
largest principal-axes factors of z'z.

The major conclusion of this seetion is that, in the absence of criterion
observations, the best index to use for scleetion of predictors or factors will
be the amount of variance accounted for in the predictor data matrix. In the
case where a subset of the original predictors is to be used, one would climinate
those predictors for which the trace of £y, in (107) is a minimum. Where
a factor solution is feasible, the largest prineipal-axes factors would be re-
tained. The important question of how many degrees of freedom must be
available before the eriterion observations can be used to advantage in the
selection process has been left open. Thiis a sound basis for deciding whether
to use the methods above or to use methods which atiempt to maximize the
sample multiple correlation with the eriterion is still lacking.



CHAPTER 3

AN EMPIRICAL COMPARISOXN OT FIVE
REDUCED RANK PROCEDURES

The Data

A typical application of regression methods is to the problem of predicting
academic sucecess as measured by eollege grades. The data for the present
comparisons were taken from a reeent study of academic prediction by
Shanker (1961). Twenty-nine predietor variables and five separate eviterion
variables are used. Fifteen of the predictors are those composing the Uri-
versity of Washington Entrance Batiery. These have been in use for predicting
college grades since 19533, and include age, sex, test scores, and high-school
grades. The remaining predictors are taken from the Edwards Personal
Preference Schedule (EPPS). The 15 variables of the EPPS are ipsative; i.c.,
any one can be computed exactly from the remaining 14. Accordingly, only
14 are used here, sinee the 15th would be completely redundant for purposes
of predietion. The EPPS variables are deseribed by Edwards (1954). Deserip-
tions of the IEntrance Battery variables are given by Shanker (1961). Since
the speeific nature of the predictors is not of immediate interest in the present
study, we simply list them here.

Edwards Personal Preference Sehedule Variables

1. Achievement 8. Suecorance

2. Deferenee 9. Dominance

3. Order 10. Abasement

4. Exhibition 11. Nuwrturanee

5. Autonomy 12. Change

6. Affiliation 13. Endurance

7. Intraception 14. Heterosexuality

High-Sehool Grade-Point Averages

15. English 18. Social Seience
16. Mathematies 19. Natural Scicnee
17. Toreign Language 20. Llectives
Test Seores
21. Vocabulary 235. Mathematies
22. Mechanical Knowledge 26. Social Science
23. English Usage 27. Quantitative Reasoning

24. English Spelling
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Other Variables
28. Age
29. Sex (coded 0 for male, 1 for female)

The eriterion variables consist of grade-point averages in various college
course areas, The five criteria chosen for the present study were those having
500 or more cases available, as listed below.

1. All-University, 973 cases 4. Chemistry, 526 cascs
2. Mathematies, 541 cases 5. Psychology, 307 cases
3. English Composition, 804 cases
The cases used were 973 students who entered the University of
Washington as freshmen between 1953 and 1958, Ouly those students were
included for whom measurements on all predictors and at least one eriterion
variable were available. Scores on the eriterion variables and on the Entrance
Battery (predictors 15-29) were obtained from the files of the University of
Washington Division of Counseling and Testing Services, The EPPS data
(predictors 1-14) were obtained partly from Edwards, partly from Wright
(1957), and largely from the Division of Counseling and Testing Services files.

Method

The five reduced-rank prediction methods chosen for comparison were
the following,.

1. The predictor-climination method (Horst and MacEwan, 1960)

. Predictor sclection by the accretion method (Horst, 1955)

The method of largest principal-axes factors (IHorst, 1941)

. The method of smallest principal-axes factors (Guttman, 1958)

. The method using the principal-axes factors giving the highest
multiple correlation.

oo 1

S}

As noted in the introduction, we can be virtually certain that, for sufli-
ciently small samples, one or more of these methods will give more aceurate
predictions than will the standard full-rank method. And as shown in the
last seetion of Chapter 2, there is reason to belicve that method 3 will be
superior to the others for samples below some critical size. Similarly, method
4 would be cxpected to give the poorest predictions. We would expeet also
that the statisties Lx/?,; as given by (91) and T as given by (46) would give
some indication of the accuracy of prediction in future samples obtainable
from a particular set of weights.

The method used for the empirical comparisons consisted essentially of
replications of the following proeedure. All cases with measurements available
on a particular eriterion were taken as the statistical population. From this
population a random sample was drawn. Regression weights were computed
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for each reduced-rank method for each rank from 1 to 29. Thus 29 sets of
weights for each method were computed. The sets of weights for rank 29
were, of course, the same (aside from rounding crror) for all methods. Irom
the cases remaining in the population after the original sample was removed,
a new random sample was drawn. Each set of weights computed in the
original sample was then applied to the new sample, and measures of accuracy
of prediction were computed. Ior all computations, predictor and criterion
variables were normalized as deseribed in the sccond section of Chapter 2.
In cffect, then, means and sums of squares were equated for all variables
on all samples. Differences in these values, therefore, do not show up in the
total squared errors of prediction.

Tor each of the five criterion variables, this design, using all five reduced-
rank methods, was replicated for six different original-sample sizes: 255, 210,
165, 120, 75, and 30 cases. The new samples consisted of 252 cases for all
replications. Weight-validities were used as measures of accuracy of prediction.

An additional set of replications was carricd out for criterion 1 (All-
University) only, and omitting method 4. Here the estimates of weight-
validity and of total squared errors of prediction were also computed from
the original samples. A wider range of original-sample sizes was used: the six
sizes above and also sizes of 435, 390, 345, and 300 cases. A second new
sample was randomly drawn for each replication from the cases remaining
in the population after the original sample and the first new sample were
removed. Both new samples again consisted of 252 cases for all replications.
As measures of accuracy of prediction when the original sample weights were
applied to cach of the two new samples, total squared errors of prediction
as well as weight-validities were computed.

All phases of the above procedures were carried out on the IBM 709
computer, using programs written especially for this study. The mcthod of
drawing the samples was as follows. The cases in a particular erilerion popula-
tion of, say, N7 students were assigned sequential numbers from 1 to N7
A sequence of random numbers was generated nusing a procedure deseribed
in the WDPC Users Manual (Western Data Processing Center, 1961, see.
9.2.4). The original sample of sizc N, consisted of the cases corresponding to
the first N, distinet numbers modulo NT from the sequence of random
numbers. The remainiug N7 — N, cases were renumbered sequentially from
1 to N7 — N,. The new sample of size N, consisted of the first N, distinet
numbers modulo N7 — N, from a second sequence of random numbers. In a
similar way, all other samples were obtained, using a new sequence of random
numbers for each sample.

After obtaming the original sample, the matrix of predictor intercorre-
lations and the veetor of the corrclations between the predictors and the
criterion were computed. Retaining the notation of the preceding chapter
and recalling that the variables in 2 and y were normalized, the predictor
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intercorrelation matrix was computed by (25) and the vector of predictor-
criterion correlations by

(128) r. = 2'y.

Next the predictor elimination and predictor seleetion procedures were carried
out and the corresponding regression weights computed, using the procedures
deseribed by Horst and MacEwan (1960) and by Horst (1955), respectively.
The matrix » was then factored as in (109). The regression weights for the
three principal-axes methods were computed as follows. We let 2z, denote the
Lth clement of 2, Q.; denote the Lth column of @, and A; the Lth clement
of A,.
Tirst the vector of factor validities 2z, was computed from

(129) 2 = Al_lQ:rr.'
Equation (129) is equivalent to (73), since, from (108), (110), and (128),"
(130) AV'QIr. = Al_lex/U = AI_IQ;(QlAlP; + Q.4.P)y = Ply.

The regression vector for rank L was computed by
L

(131) Br= QA" = 2 Q.ATz,

i=1
which, it may be noted, is equivalent to (112). Thus the regression vector
for rank L 4+ 1 was obtained from the vector for rank L by

(132) I§L+1 = EL + Q.L+1AZ}AIZL+1-

The weights for methods 3, 4, and 5 were all computed in the same way, the
only difference being in the order of summation.

The new sample was drawn and the various correlations computed as
for the original sample. The weight-validity and total squared errors of
prediction obtained with a particular vector of weights were computed
respectively by

1B

133 W= —EE
(39 \/E’LTBL

and

(134) y=1- QT:EL S E'LTEL-

Equations (133) and (134) are, of course, equivalent to (42) and (43). Note
that 7 and 7, in (133) and (134) are computed on the new sample while 8,
was computed on the original sample.

Results and Discussion

The weight-validities obtained with methods 1, 2, 3, and 5 on all five
criteria are given in Table 1. The six pages of Table 1 correspond to the
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36 REDUCED RANK MODELS FOR MULTIPLE PREDICTION

six original-sample sizes used, ranging from 255 down to 30 eases. This size
is denoted by N, In cael instance, the uew sample eontained 232 cases.
An original sample and a new sample were independently drawn for eaeh
size and eaeh eriterion, for a total of 30 original samples and 30 new samples.
Since for rank 29, all methods are equivalent (aside from rounding error),
the eorresponding weight-validity is listed only under method 1. The full-
rank (rank 29) multiple correlations for eaeh sample are also listed under
method 1, the subseripts 0 and 1 denoting the original and new samples,
respeetively.

Although the weight-validities using method 4 were computed on the
basis of the data given above, they are not presented. For all ranks, eriteria,
and sample sizes, these weight-validities were substantially lower than those
for any other method or for the full-rank weights. They were frequently
negative, rarely greater than .10, and virtually always less than half as large
as the weight-validities obtained by any of the other methods. Our expeeta-
tion that the method of smallest prineipal-axes faetors would give less aeeurate
predietions than the other methods is thus unequivoeally eonfirmed.

To assist in eomparing the other four redueed-rank methods, Table 2
was prepared from Table 1. For eaeh original-sample size and caeh criterion,
two eomparisons are made. In caeh of the first five columns, the number of
ranks for whieh eaeh method was superior to the other three methods is given.
In making the eounts, ties were divided equally among the methods sharing
the high value for a particular rank. In eaeh of the seeond five eolumns of
Table 2, the number of ranks for whieh a partieular method was superior to
the full-rank weights is given. When for a partieular rank a methed had the
same weight-validity as the full-rank weights, the count was inereased by one
half.

Of the four methods, the method of largest prineipal-axes {actors most
often gave the highest weight-validities in 26 of the 30 samples. This trend
was most marked when the weights were eomputed on smaller samples,
partieularly samples of size 30. The only execptions oeeurred for samples of
210 and 255 eases. The superiority of method 3 was most pronouneed for
Psyehology and Mathematies and less elear-eut for English Composition and
Chemistry. Method 3 was also more often superior to the full-rank weights
than were the other methods. Thus it appears that our expectation as to the
superiority of method 3 is also eonfirmed, but with the qualifieation that,
for larger samples and for eertain criterion variables, one or more of the other
methods may be preferable.

Another possible basis of eomparison would be the number of samples
for whieh a partieular method gave the highest weight-validity for any rank.
Of the 30 samples, method 3 gave the highest validity in 12.5, method 5 in
8.5, method 1 in 5, and method 2 in 4 samples. The comparisons of Table 2
would appear to be more meaningful than this eomparison, however, sinee
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the outeome of the latter would presumably be much more subject to random
variability of weight-validities from rank to rank.

In Table 3 are presented data from ten additional original samples from
the eriterion-1 (All-University) population, with sizes ranging from 435 down
to 30 casecs. Iere all scts of weights from each original sample were eross-
validated on two new samples, where again cach new sample consisted of
252 cases. Total squared errors of prediction are presented as well as weight-
validities for each of the 20 new samples. Method 4 was omitted from this
phase of the computations. At the bottom of each page of Table 3 arc given,
in addition to the original sample size N, the full-rank multiple correlations
for the three samples represented by that page; these are denoted by R,, R,
and R, for the original sample, first new sample, and second new sample,
respectively.

Since the criterion variable (as well as the predictors) was normalized
before the computations were carried out, the total squared errors of pre-
diction are comparable from sample to sample as well as from method {0
method and rank to rank. Expressed in normal deviates, the eriterion mean
is zero and the sum of squares is onc. Thus if a prediction of zero were made
for cach case, without ever going to the trouble of computing regression
weights, the total squared errors of prediction would be one. Since, for
example, the total squared errors of prediction using the full-rank weights
from an original sample of size 75 are greater than one in both new samples,
it appears that this particular regression equation is worse than useless. Yet
for this same sample the rank-1 errors for method 3 of .737 and .655 are
actually lower than either of the full-rank errors obtained for the sample
of 390 cascs, which were .767 and .745. In general, it may be seen that the
lower-rank crrors obtained with method 3 using small original samples com-
pare favorably, or at least not unfavorably, with the full-rank errors obtained
using large original samples. A similar trend may be noted, though not so
clearly, with regard to weight-validities.

Table 4 was prepared from Table 3 in a manner analogous to the prepara-
tion of Table 2 from Table 1. Here, of course, only one criterion variable
is involved, and the eomparisons are made with respect to total squared
crrers of predietion as well as to weight-validities. For the larger original-
sample sizes, the outcomes of the comparisons are not appreciably affected by
the index of aceuracy used. For the smaller sizes, however, the total squared
crrors of prediction tend fo faver method 2 over the other methods and the
lower ranks over the higher to a greater extent than do the weight-validities.
In the present series of samples, just as in the preceding series, method 3
appears to be definitely superior to the other methods. And cven for the
Iargest original-sample sizes, method 3 appears preferable to the full-rank
system.

It appears that method 3 could be used to considerable advantage in
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Comparison Between Four Reduced-Rank Methods With Respect to Weight-Validities

and Total Squared Errors of Prediction for a Single Criterion

Number of ranks for which

index is superior

Number of ranks for which

index is superior

Sample to other methods to full-rank method
Size Methods Index IVl P2 ]I"z Y IV[ Y1 Wz o
1 2.33 2.33 .25 0. 6.5 6.5 10.5 11
435 2 3.33 3.83 .25 0. 3.5 5. 8.5 10
3 21.5 21. 26.75 27.5 18. 20. 27.5 28
5 .83 .83 75 .5 0. 0. 17.5 19.5
1 1.33 1. 0. 0. S. 7.5 2. 2,
390 2 2.33 2. .33 .5 18.5 18.5 6.5 S.
3 19. 20.5 14.33 15.5 24, 24.5 20.5 22.5
5 5.33 4.5 13.33 12. 19, 17. 24, 25,
1 83 .5 2.5 1.5 12 10. 20. 24.
345 2 3.83 3.5 3.5 4. 10. 9.5 20. 22,
3 20.83 21.5 20.5 22, 18. 21. 27. .
5 2.5 2.5 1.5 .5 5. 4. 20.5 21.5
1 1. 1. 28 2. 6.5 5. 6. 6.
300 2 0. 0. 3. 3. 12.5 12. 11.5 11.5
3 24, 24 18. 18. 27. 27. 20. 20.
5 3. 3. 5. 5. 20.5 20.5 16. 16.5
1 1. 1. 2.5 o 11.5 13.5 16.5 14.
255 2 24, 2. 10.5 8. 13. 14.5 19.5 20.5
3 23. 23. 4. 6.5 24. 24. 8. 21.
5 2 2 11. 11.5 14.5 145 21.5 27.
1 33 .33 2. 1.5 3. 5.5 8. 13.5
210 2 33 1.33 2. 1.5 5.5 9.5 9.5 14.5
3 21 22. 21.5 22.5 24, 24, 25. 26.
5 6.33 4.33 2.5 2.5 18.5 21.5 145 14
1 4.33 4.5 0. 0. 7. 8.5 18.5 20.5
165 2 3.83 5.5 i. 1. 4. 6.5 19.5 24
3 11.5 14.5 265 206.5 15. 21. 27. 27.
5 8.33 3.5 .5 .5 22.5 22, 6.5 S.
1 1. 1. 1.5 0. 15. 19.5 19.5 20,
120 2 0. 0. 2.5 2 11. 13. 14.5 16.
3 26.5 26.5 22,5 24.5 27. 27. 24. 26.
5 .5 .5 1.5 1.5 16. 17.5 23.5 25.5
1 5.33 0. 0. 0. 18. 27.5 26 23.5
75 2 e il 195 0. M7 B P8f 28.5
3 18.5 26.5 26. 27.5 20.5 27 28. 28.
5 .83 .5 .5 .5 12. 25, 28. 26.5
1 0. 0. 0. 0. 27. 28. 27. 28.
30 2 9. 0. 2. 0. 28. 28. 28. 28,
3 17.5 26.5 25. 26.5 28. 28. 28. 28.
5 1.5 1.5 1. 1.5 25.5 25, 24. 26.
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cither of two situations. The first would be where, for a given original-sammple
size, one wanted the greatest accuracy of predietion obtainable. The other
would be where, for a given accuracy of prediction, one wanted to use the
smallest possible original sample. In order actually to compute the coeflicients
for a reduced-rank prediction equation, however, one has, of course, to seleet
the partieular rank to be used. To provide some indieation as to how satis-
factory the statisties 7" and § would be for this purpose, they are computed
for the original samples of Table 3 using (46) and (96), respectively. They
were computed only for method 3, sinee the other methods are dependent
on the criterion observations for order of selection, contrary to the assump-
tions used in deriving the above statisties. These estimated values for weight-
validities and total squared errors of prediction are given in Table 5. To
facilitate ecomparisons, the obtained values from Table 3 are reproduced in
the adjacent columns. At the bottom of cach page are given the original-
sample size and the full-rank multiple correlations for the two eross-valida-
tion samples. The multiple correlation and the estimated population eorrela-
tion, from (32), in the original sample are given for cach rank. The column
headed @ is anr estlmule of the standard error of ¥, and may be derived as
follows. We let a be a column veetor composed of the clements of z, and z;
in (91). Then we may write

(135) ¥ =
where the clements a; of a are independently distributed with mean zero and
varianee ¢, The variance of a’a will be

(136) Var (a’a) = E{(a’a)’] — [E(a’a)]’.

Under the reduced-rank hypothesis, a’c will be simply the error sum of
squares in the original sample, so that from (71), the sccond term on the
right of (136) will be

(137) [E(@a)]* = (N — L)g** = (N — L)%".

Expanding the first term on the right of (136), we obtain

(138) E[(a’a)’] = (N — L)E(a}) + (N — L)V — L — DE(a’d), R
Since the a; are indenendent we have

(139) E(d®a?) = E(@)E(@}) = ¢, 1 # j.

If the elements of the eriterion veetor, ¥, are assumed to be normally dis-
trtbuted, the elements of @, being linear eombinations of the criterion observa-
tions, will also be normally distributed. Thus we have (Cramér, 1946, p. 212):

(140) E@}) = 30"
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TABLL 5
Estimated and Obtained Meusures of Accuracy of Prediction Using
Method of Largest Principal-Axes Factors
B, R & N R A ¥ R
1 539 338 048 536 582 488 712 663 763
2) 540 516 048 513 596 487 705 647 76+
3 5149 515 048 540 596 487 708 647 765
4 550 514 048 538 599 491 711 643 760
5 558 551 048 513 603 499 705 638 753
6 559 550 048 542 608 5003 707 633 749
7 568 558 048 518 619 513 700 619 738
8 568 556 048 545 620 513 703 617 738
9 568 555 048 543 20 515 706 617 737
10 568 554 049 510 620 516 709 618 736
11 571 535 049 540 613 514 709 625 738
o 12 571 554 019 537 613 514 712 625 738
& 13 571 552 049 534 613 514 716 625 738
é’ 1 571 551 049 532 614 511 718 624 741
15 578 557 049 536 613 507 714 625 747
16 583 561 049 539 617 518 711 620 T34
17 584 561 049 538 617 514 713 619 739
18 590 566 049 543 624 525 708 611 729
19 593 568 049 543 622 526 707 613 728
20 504 567 049 512 629 521 709 604 734
21 609 582 048 556 614 491 693 623 776
22 611 583 048 557 619 500 693 617 767
23 615 586 048 558 317 496 691 620 774
24 617 587 048 558 621 492 692 616 780
25 619 588 048 558 615 488 692 623 787
26 619 587 048 556 615 486 695 624 789
27 622 589 048 557 610 478 694 630 797
28 625 590 048 558 608 472 693 633 805
29 626 591 049 5567 613 472 694 626 806
No = 435 I, = 684 R, = 582

Decimal point preceding each entry has been omitted.
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Method of Largest Principal-Axes Factors

TABLE 5 (Cont.)
Estimated and Obtained Measures of Aceuracy of Prediction Using

Ro R. & woow W, & h v
1 515 544 051 542 481 502 706 770 749
2 554 550 050 547 507 516 701 743 734
3 554 549 050 544 506 514 704 744 736
4 562 555 050 549 518 535 699 732 714
5 562 55+ 050 546 519 535 702 731 714
6 568 539 050 550 530 518 698 720 700
7 571 560 050 550 519 533 698 731 716
8 578 565 050 553 518 535 694 733 715
9 585 571 050 558 518 516 689 733 737
10 586 571 0350 556 516 514 692 737 740
11 587 571 050 555 514 508 €93 740 747
- 12 587 569 051 552 517 510 697 736 746
4 13 588 568 051 549 518 510 700 736 746
é 14 588 567 051 546 518 500 703 736 746
15 591 569 051 547 522 518 703 731 738
16 592 568 051 545 516 523 705 738 732
17 595 570 051 546 528 536 704 724 717
18 605 579 051 554 532 542 695 730 713
19 607 579 051 553 525 540 697 728 715
20 610 582 051 554 502 535 696 755 722
21 611 581 052 552 495 533 699 763 723
22 611 579 052 550 497 532 702 761 725
23 614 582 052 551 496 530 701 762 727
24 615 581 052 549 497 525 703 761 733
25 619 583 052 550 496 515 702 766 745
26 616 582 052 548 495 516 705 767 743
27 619 581 052 545 492 517 709 771 743
28 619 579 053 542 491 516 712 72 743
29 619 578 053 539 495 515 715 767 745
No = 390 Ry = 646 R, = 638
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TABLE 5 (Cont.)
Istimated and Obtained Measures of Accuraey of Prediction Using
Method of Largest Principal-Axes Factors
R, R. @ A | ¢ 2 Ve
1 598 596 049 595 511 531 616 747 723
2 601 598 049 595 524 535 646 732 718
3 605 600 049 596 518 530 645 741 724
4 622 616 048 610 516 524 628 753 735
) 625 618 048 611 523 530 627 742 727
6 627 618 048 610 527 536 (629 735 720
7 628 618 048 608 530 536 630 e (720,
) 630 618 049 607 534 535 632 726 722
9 630 617 049 604 535 533 636 726 722
10 633 619 049 605 537 532 635 721 727
11 634 619 049 603 536 531 637 727 730
]2 641 624 049 608 534 513 631 735 756
= 13 643 625 049 607 531 506 633 738 768
é 14 643 623 049 604 530 505 636 739 768
15 652 631 049 612 549 516 628 716 759
16 654 633 049 612 546 507 627 722 771
17 658 635 049 613 543 510 626 726 766
18 659 635 049 611 541 513 628 728 762
19 659 633 049 609 511 512 632 728 763
20 661 634 049 609 553 519 632 712 752
21 664 636 049 609 547 521 632 719 750
22 666 637 050 610 550 518 632 716 756
23 666 636 030 607 552 519 635 712 755
24 668 637 050 607 548 518 636 717 757
25 673 641 050 610 535 509 632 732 769
26 673 639 050 607 535 509 636 732 769
27 674 639 050 606 535 503 638 732 778
28 675 639 051 604 532 497 640 737 788
29 676 638 051 602 533 502 42 736 782
Ny = 345 Ry = 649 By = 630
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using
Method of Largest Principal-Axes Factors
Re R @ | R ¥ W
1 493 490 062 487 561 542 762 691 710
B 524 519 060 515 556 545 733 692 704
3 524 517 060 511 557 548 740 691 701
4 525 516 061 506 538 546 744 689 702
5 552 541 059 531 564 540 719 682 708
6 553 540 059 528 560 539 722 636 710
7 553 538 060 523 562 540 727 685 709
S 559 512 060 525 560 554 725 686 694
9 559 510 060 521 560 551 730 636 694
10 563 542 060 521 517 565 730 701 682
11 564 510 061 518 551 566 734 697 681
- 12 566 540 061 515 548 569 737 700 677
= 13 568 510 061 513 47 566 739 701 681
é 14 568 538 062 510 531 563 743 696 683
15 577 545 062 516 54 571 738 704 675
16 579 546 062 515 546 574 739 702 671
17 583 548 062 515 547 580 739 701 665
18 590 554 062 520 568 585 735 677 659
19 593 554 062 519 560 578 736 686 666
20 503 553 062 5iH 5h7 575 741 690 670
21 595 5513 063 513 554 571 743 694 674
22 595 550 063 509 553 573 748 694 672
23 596 519 064 506 553 570 752 694 675
24 598 549 064 504 548 572 755 701 673
25 598 546 065 500 547 572 760 702 673
26 G604 552 064 504 525 559 755 720 688
27 606 552 065 503 529 551 758 721 697
28 607 550 065 499 529 516 762 722 703
29 608 519 066 496 527 550 766 723 698
No = 300 I = 664 Re = 664
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TABLE 5 (Cont.)

Estimated and Obtained Measures of Accuracy of Prediction Using
Mecthod of Largest Principal-Axes 1"actors

i R. @ W W, W 2 21 ¥a
539 557 061 555 501 473 692 687 780
593 588 058 584 592 443 659 650 820
593 587 059 580 590 143 663 632 820
593 585 059 376 590 443 669 652 819
595 584 060 573 597 446 672 644 817
596 583 060 570 596 139 676 645 825
599 583 061 568 612 146 678 627 817
599 581 061 564 611 146 683 627 818
601 581 062 562 612 146 6386 626 821
601 579 062 557 612 447 691 62 821
601 577 063 553 614 149 696 624 818
» 602 576 063 530 608 441 700 631 827
e 604 575 064 547 607 436 704 633 832
E 605 574 064 545 616 435 707 622 834
607 573 065 542 612 438 711 625 832
608 572 065 539 608 141 714 630 830
612 575 065 540 608 435 714 631 826
618 579 065 542 620 412 711 616 828
623 582 065 544 602 431 710 638 811
623 580 0066 540 600 135 71 640 840
626 581 066 539 599 435 717 642 839
639 593 065 551 600 443 704 640 833
640 593 065 549 589 149 707 654 828
641 591 066 545 591 449 712 652 829
614 592 066 545 581 452 713 667 828
645 592 067 543 573 457 716 676 821
645 590 067 538 572 157 722 678 822
646 587 068 534 569 456 727 682 823
646 586 069 531 576 448 732 673 832

-1

Ny =225 Iy =

17 Ry = 563
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Aceuraey of Prediction Using
Method of Largest Principal-Axes Factors

R, R, & W W, W ¥ W W

1 528 525 071 522 498 571 728 733 676

2 537 530 071 524 506 566 26 745 6%0

3 538 528 072 519 507 563 731 744 684

4 538 525 072 512 508 563 738 743 683

5 546 531 072 515 498 565 736 75: 681

6 583 566 069 550 525 572 699 727 673

7 601 582 067 56-L 510 570 633 740 677

8 607 586 067 566 522 576 682 736 670

9 607 583 068 561 521 575 688 737 671

10 608 581 069 556 522 573 694 735 673

11 609 580 070 552 521 571 608 737 677

& 12 611 57¢ 07 549 526 559 702 732 679
'E 13 616 581 070 549 520 552 703 740 701
E 14 616 579 071 544 519 554 710 743 699
15 632 594 070 558 500 560 604 T62 695

16 633 503 071 555 514 561 698 756 695

17 639 596 071 557 500 554 606 77 705

18 647 603 070 562 499 530 601 773 725

19 647 601 071 558 499 538 697 774 727

20 647 598 072 553 499 54 704 772 725

21 651 600 072 553 501 532 704 766 732

22 653 599 073 550 507 542 708 762 720

23 653 597 074 545 506 542 715 76+ 722

24 658 599 074 546 500 542 714 775 724

25 660 60O 074 545 488 539 716 795 730

26 664 602 074 546 490 523 716 794 754

27 665 600 075 541 486 519 722 798 759

28 665 597 076 536 486 520 729 797 758

29 670 600 076 538 403 524 798 789 757

No = 210 R1 - 605 Rz = 653
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Aceuracy of Prediction Using
Method of Largest Prinecipal-Axes Factors

R,y R, & W Wi We " 1 ¥a
1 544 540 078 536 587 540 712 658 709
2 544 536 079 528 588 541 721 657 708
3 549 537 080 525 581 543 725 665 705
4 563 548 079 533 591 537 716 652 712
5 582 564 078 546 579 539 703 665 710
6 590 569 078 548 578 534 701 666 716
7 593 569 079 545 582 547 705 661 702
8 608 581 078 535 584 537 695 660 716
9 618 588 078 560 573 538 690 676 717
10 618 585 079 553 574 541 GOS8 675 714

11 639 605 077 573 563 527 677 696 73
o 12 645 609 077 574 557 522 675 707 743
= 13 645 606 078 568 559 523 683 704 741
é 14 646 603 079 562 555 522 691 710 744
15 648 691 080 558 555 529 697 712 735
16 648 598 081 532 551 529 705 713 735
17 648 594 082 545 550 528 713 719 736
18 649 591 08+ 539 550 529 721 719 735
19 649 588 085 533 552 534 729 717 729
20 650 585 086 527 538 538 737 708 722
21 651 583 087 522 550 536 744 721 725
22 657 586 087 523 543 532 744 733 731
23 657 582 089 516 543 532 733 733 731
24 658 580 090 511 544 527 761 732 741
25 659 578 091 506 539 528 767 740 740
26 659 573 093 499 539 528 V7T 740 740
27 659 569 094 492 538 529 787 741 738

28 665 573 091 49+ 551 499 786 727 77,
29 666 570 096 487 555 502 794 723 777

J\'u = 165 Rl = 679 Rz = 646
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TABLL 5 (Cont.)

Lstimated and Obtained Measures of Accuracy of Prediction Using
Method of Largest Principal-Axes Factors

R R. & W W, W ¢ ¢ Ve

1 551 510 001 543 546 514 705 703 738

% 582 572 0SS 563 536 513 681 718 706

3 582 568 090 553 536 545 695 718 T4

4 582 563 002 543 531 545 706 720 704

5 582 537 004 533 531 515 718 721 704

6 507 568 003 510 541 535 711 713 717

7 508 563 005 531 542 533 723 712 720

8 607 569 096 533 541 501 721 713 7O

9 637 398 092 561 512 503 691  75L 752
10 638 594 091 553 516 504 701 750 753
11 647 60C 091 556 500 490 609 759 770
. 12 647 595 096 547 500 490 711 759 770
2 13 647 500 008 537 500 490 723 730 770
S 1 660 601 097 547 520 503 713 752 758
15 660 596 099 538 522 502 725 719 760
16 671 609 098 519 506 480 714 775 790
7 678 608 099 546 196 487 720 789 7S3
18 683 610 100 514 479 479 723 816 795
19 683 605 102 536 4790 473 731 81 802
20 609 622 100 553 481 474 716 817 810
21 609 617 102 44 485 473 728 816 812
22 703 617 104 511 475 480 733 835 809
23 712 624 103 547 178 454 728 838 832
24 713 622 105 511 482 150 736 833 s62

25 725 633 104 553 466 432 724 863 895
26 726 630 106 516 462 128 734 870 905
27 735 638 105 554 418 431 726 004 921
28 737 635 107 518 411 140 735 917 917
29 737 630 110 539 443 4n 748 914 916

Ny =120 Iy = 638 Ry = 642
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TABLE 5 (Cont.)

Estimated and Obtained Measures of Accuracy of Prediction Using
Alethod of Largest Principal-Axes Factors

R I & W " h e

1 520 510 122 501 513 502 740 737 655

2 536 317 123 199 407 301 752 753 656

3 563 537 122 512 485 566 710 768 680

4 604 573 117 514 482 586 707 783 660

5 606 567 121 531 484 588 724 782 657

0 615 560 122 527 491 591 730 774 651

7 634 584 122 537 456 570 720 822 684

3 635 576 126 522 450 568 710 830 68T

9 635 567 130 506 431 568 760 830 686
10 637 561 134 194 458 56D 777 820 686
11 655 575 134 505 411 557 767 84T 703
G 661 574 136 199 432 566 777 863 695
£ 13 689 601 132 520 426 560 745 900 716
£ 14 763 698 108 638 388 532 609 1031 792
15 763 692 112 627 388 533 626 1034 791
16 767 691 115 622 3890 520 634 1036 816

17 797 72T 105 663 400 537 578 1027 799
18 797 722109 653 400 536 501 1027 S0l
19 708 716 112 613 404 510 611 1023 797
20 799 712 117 634 410 543 624 1013 701

21 799 706 121 624 411 543 642 1011 790

22 807 712 121 629 300 510 637 108t 813
23 S18 723 120 640 390 514 623 1101 809

24 826 731 120 616 381 516 615 1111 872
25 827 725 124 636 376 512 33 1123 883
26 850 738 113 676 381 504 573 1228 084

27 850 752 118 666 384 504 550 1230 989
28 850  TI6 123 655 385 505 609 1226 0S8
29 854 748 125 655 380 401 111251 1030

Noe=75 R, = 608 Ry = 681
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Aecuracy of Prediction Using
Method of Largest Prineipal-Axes Faetors

Ry R & woow W ¢ 2 ¥
1 593 573 176 855 429 411 694 817 838
2 593 552 191 514 429 411 742 817 837
3 662 613 180 567 . 503 545 687 754 709
4 681 617 187 560 492 537 701 766 718
5 690 610 199 539 467 529 733 791 725
6 722 634 199 557 426 479 718 836 779
7 732 628 211 538 412 473 747 850 786
8 744 626 222 526 424 477 770 846 790
9 759 629 232 520 432 509 786 852 758
10 803 683 215 581 347 413 712 984 909
11 823 701 215 597 336 442 605 1015 865
o 12 824 682 237 564 337 440 750 1012 867
= 13 30 671 256 542 317 427 780 1036 878
;{% 14 837 661 275 523 321 427 825 1045 887
15 843 650 297 501 279 403 866 1117 938
16 845 623 332 459 270 400 938 1126 943
17 848 592 372 413 264 419 1018 1152 0933
18 853 566 411 375 257 387 1088 1181 980
19 872 589 418 398 205 447 1067 1169 957
20 906 682 364 513 222 411 802 1547 1169
21 911 660 409 478 196 301 950 1648 1237
22 015 625 473 426 198 376 1057 1708 1326
23 952 7i3 336 627 138 279 712 2427 2056
24 964 805 317 672 164 274 634 3041 2310
25 972 820 321 602 143 287 600 4042 3290
26 978 824 345 694 134 215 598 493+ 3873
27 088 875 281 775 209 164 445 6529 5785
28 995 916 219 844 196 092 310 0073 8519

29 999 975 081 951 —085 —077 099 & e

Ny, =30 B, =619 R, = 672

* Value greater than ten.
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Putting (139) and (140) in (138), we obtain

(141) Elaa)’) = (N — )N — L + 2)c".
Then, putting (141) and (137) in (136), we may write
(142) Var (a’a) = 2(N — L)¢*.

From (135) the variance of 4 will be

2 2N + L)ga"“
“TT NI

Tor an unbiased estimate of o we use (141) and (93) to obtain

o _ 20 — RN 4+ L)
(144) C=W-DWN-L+D

The values for & given in Table 5 were computed from the square root of (144).

In discussing Table 5, we will consider first the 16 new samples corre-
sponding to the original-sample sizes of 120 and up. With a few exceptions,
the estimated errors of prediction did not differ from the obtained values by
more than one or two times the standard error of the estimate. In the full-
rank case, for example, the difference between ¢ and f was less than 4 in
eight samples, between @ and 24 in six samples, and between 2@ and 34 in
two samples. Ten of the obtained values fell above the estimated and six
fell below. Estimates for the lower ranks tended to be more accurate. The
weight-validities and their estimates evidently were less variable than the
errors of predietion. Though no estimate of the standard error of W is avail-
able, its accuracy is apparently comparable to that of . Taking into con-
sideration the variability of the obtained measures of accuracy, both statistics
appear to be fairly good estimates of the corresponding expected values,
though their standard errors are rather larger than one could wish.

Of perhaps more significance than the absolute magnitudes of the
expected values for ¢ and W are the relative magnitudes from one rank to
another. As a rough indication of how feasible it would be to base the choice
of the rank to be used on ¥, we may compare the values of ¥ corresponding to
the rank for which ¢ was smallest with the full-rank . Again considering
only the 16 new samples corresponding to the original-sample size of 120 and
above, we see that in 15 of the 16 instances, the reduced-rank weights so
chosen gave more accurate predictions than did the full-rank weights. Some
of these improvements were, of course, very small. For example, in only 8
of the 16 new samples was the reduction in total squared errors of prediction
as large as 4 per cent. The largest reductions were 22.9 per cent and 21.4 per
cent, both for weights from the original sample of 120 cases. Just how large
the reduction would have to be to attain practical significance is, of course,
debatable.

(143)
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In an cffort to evaluate the suecess of ¥ as an indicator of the rank
corresponding to the lowest expeeted error of predietion, two eomparisons
were made. IYirst, it would seem reasonable to require that the total squared
errors of prediction for the seleeted rank be eloser to the lowest value obtained
in a given sample than to the highest. This is the case, however, in only 9 of
the 16 samples. A second comparison, mntended to control for variability in
the obtained errors of prediction, was made on the basis of the rank orders
(from lowest to highest) of these values in the individual samples. For each
member of each pair of samples corresponding to a particular original gample,
the rank correspouding to rank-order 1 was determined. The rank ovder in
the opposite member of the pair of the error of predietion corresponding to
the optimal rank in the first member was ‘rhr\rx obtained. The average of
these 16 rank orders was 7.4, suggesting a £air degree of stability in optimal
rank. In contrast to this valic, the average rank order of the errors of pre-
dietion eorresponding to the selectod ranks was 12.4. Sinee, if the ranks had
been selected at random, the expoeted rank order would be 15, it appears
that ¥ does not provide a satisfactory basis for sclection. However, a better
basis dees not appear to be available.

We consider now the results of Table 5 for the originai-sample sizes of 75
and 30. For the higher ranks, both estimates appear to break down com-
pletely. For the lower ranks, taking into account the large standard errors,
the two estimates appear to do about as well as in the larger samples. Beeause
of these large standard crrors, however, § and IV are not very helpful as
guides to the absolule magnitude of the eorresponding expeeted values. If
taken as an aid to judgment rather than as an index to be applied blindly,
¥ in particular might be of value in arriving at an optimal rank. In the original
sample of size 30, the lowest value of  for ranks below 2+ oceurred for rank 3.
Very little judgment is required to select a rank-3 solution m preference to a
sohution of rank 24 or more on a sample of 30 eases. As it turned out, the
optimal rank was in fact 3 in both eross-validation samples. In the original
sample of size 75, the alternative to a rank~4 solution would be one of rank 14
or more. I'or samples of 75 eases an optimal rank of 14 is eertainly possible,
though unlikely. In any cvent, it appears that, providing unrealistically low
values for higher ranks are ignored, ¥ is potentially of some value in deciding
what rank to use for small samples as well as for large ones.

Tt will be recalled that in deriving ¥ and ¥, the assumption was made
that the factor loadings of the predictor matrix would be constant from sample
16 sample.-Thus the very Hmited success of these statisties may be due to
the failure to take sampling variation of the factor loadings into account.
This, of course, could not have been done within the context of regression
theory, sinec there only the eriterion variable is considered random. The
regression model was scleeted for this study largely on the basis of its sim-
plicity, but also on the grounds that it is the model generally used in con-
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nection with predietion problems. However, it seems likely that an analysis
of predietion problems in terms of the multivariate normal model of correla-
tion theery or in terms of some other model where the predictor variables
arc considered random would lead to more successful estimates of accuracy
of prediction than those obtained using regression theory.



CHAPTER 4

SUMMARY AND CONCLUSIONS

The primary eoncern of this study has been with the possibility of using
reduced-rank solutions for regression weights to increase the aceuracy of
prediction obtainable in future samples. Using regression theory, a general
faetor model for reduced-rank prediction was developed. It was shown that,
if errors in the eriterion observations are not to be capitalized upon, the
optimal basis for determining a lower-rank solution will be the amount of
varianee accounted for in the predictor data matrix. Thus the best alternative
to reduced-rank methods that seek to obtain the maximum multiple correla-
tion with the eriterion would be the method of largest principal-axes factors,
as suggested by Horst (1941). Estimates of the weight-validities and total
squared crrors of prediction to be expeeted when a particular set of weights
is applied in future samples were also derived.

An empirical comparison of five particular reduced-rank methods was
carried out, using 29 predictors and with partial replication on five eriteria,
Weights were computed on samples ranging from 30 to 435 cases. As expected,
the method of largest principal-axes factors was markedly superior to the
other methods tested. This superiority was quite gencral, appearing in all
samples for some eriteria, and in some samples for all eriteria. The above
finding, together with the very poor showing of the method of smallest
prineipal-axes factors, supports the conelusion regarding the importance of
predictor variance aceounted for by the lower-rank system. The faet that
the largest principal-axes factors tended to give more aceurate predictions
than d'd the prineipal-axes factors having the highest multiple correlation
with the eriterion suggests the desirability of selecting predictors indepen-
dently of the eriterion observations. The exeeptions to this trend for the
larger original-sample sizes on some criteria indicates the desirability of
developing some sort of statistical test for deciding when the predietor-
selection methods using the eriterion observations may be advantageously
applied.

Alhough their standard errors were rather large, especially in small
samples, the estimates of weight-validity and of total squared errors of pre-
dietion to be expeeted in future samples appeared to be reasonably serviecable
as regards absolute magnitude. As to relative magnitude from one rank to
another, however, it may be questioned whether a rank chosen on the basis
of these estimates would be preferable to a rank chosen at random. As csti-
mates of cither absolute or relative magnitude, it scems likely that the

64
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statistics derived here could be substantially improved upon if variation in
the predictor variables or in their factor loadings were taken into account.
Without such improved estimates, the large potential advantages of reduced-
rank methods demonstrated here cannot be fully realized. Thus it would
scem well worthwhile to undertake an analysis of prediction problems using
a statistical model which, unlike regression theory, treats the predictors as
random variables.

Until more efficient methods are developed, it is suggested that a regres-
sion equation based on the subset of largest principal-axes factors for which
J is smallest will be the best available. For samples with less than, say, 56
degrees of freedom, this procedure must be supplemented by a subjective
process to the extent of ignoring low values of 4 for ranks of say, ten or more.
Although this procedure leaves considerable room for improvement, the
relevant evidence seems sufficiently favorable to warrant further empirical
research. At any rate, the strong possibility has been raised that the con-
ventional full-rank weights ean almost always be improved upon even in
samples of several hundred cases. Such weights, moreover, may give predic-
tions only slightly more accurate than those made from weights obtainable
with samples of as few as 30 cases.
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