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ABSTRACT 

The basic properties of multi-variable linear feedback systems 

with periodically varying parameters are investigated. This class of 

systems is described by linear differential equations with periodic 

coefficients in the "state space."  The classical Floquet theory on 

linear differential equations with continuous, periodic coefficients 

has been extended to treat linear differential equations with piece- 

wise continuous, periodic coefficients. Ihe extended Floquet theory 

is applied to the stability analysis of modulated feedback control 

systems with continuous and piece-wise continuous carriers. 

It is shown that analysis and synthesis of many classes of linear 

feedback systems may be formulated frcm a unified point of view by 

using Volterra integral equations of the second kind. 
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I.  INTOODUCTION 

A.  BACKGROUHL OF TKIS WORK 

Today a vast number of conmunlcation and control systens are carrier 

frequency systems at least in part; that is, they contain carrier- 

frequency links which typically consist of modulators (multipliers), 

A.C. amplifiers, and demodulators (multipliers). The product-type 

modulator, which simply multiplies one time function called the input 

signal by a certain periodic time function called the carrier, nay he 

treated as a periodically time-varying gain or as a parameter. Symbol- 

ically, this type of circuit is represented as shown in Fig. 1, where 

m(t) is the product-type modulator. 

In many communication and control systems the frequency spectra of 

the information-bearing signals are several orders of magnitude below 

the carrier frequency; i.e., the ratio of the carrier frequency to the 

highest input signal frequency is very high.  Under this condition, 

the carrier-frequency link shown in Fig. 2 can  be approximated by an 

equivalent time-invariant linear network [Ref. 1, pp. 60-66].  By ex- 

perience, such an approximation has proven to be adequate for the 

analysis and design of carrier-frequency systems which satisfy the 

condition stated above.  In this case, a linear system with periodic 

parameters is reduced to an equivalent stationary linear system,   so 

«(t) 

.(t + T)  = .(t) 

X|(t)   + x2(t) 
-(t) ,(t) = -(t)x(t) 

= »(tKct) -   «(tjXjCt) 

FIG.   1.      TOE PHODOCT-TTPE MOOXATOB  (WXT1PLIER). 
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y(t) 
-(t) 

«l(t) »3(t) 

FIG.   2.     A TYPICAL CARRIEB-FBEOUENCY  LI!«. 

that one can make use of the frequency domain methods developed for 
stationary linear systems. 

Such a simplification cannot be obtained,  however,   in cases where 
the external input is changing at a rate casparable with the  carrier 

frequency—that is to say,  when the upper limit of the frequency range 
of the input  signals is  comparable with the carrier frequency.    For 

example,   consider the design of a carrier-type D.C.  feedback aapllfier 
with a high performance index (a figure of merit).    Kie perfomaace 

index of interest in this  case is the largest gain-bandwidth product 
obtainable with specified solid-state electronic  conponeats.     Asraae 
also that the  carrier is  supplied by the photo-conductor chopper and 
the upper limit of its fundamental frequency is fixed by the  current 

state of technology.    Under this condition,  the upper 11=1-:  of the 
signal frequency range becomes  comparable with the carrier frequency 
because of the wide bandwidth requirement. 

The  carrier frequency system is a special case of  s linear sys~es 

in which one or more  system parameters vary periodically vi-i: -ire. 
The well-known modulated control systems such as  carrier servo systeas, 

chopper modulated D.C.  feedback amplifiers,   and mijili dl ilml»   systems 
are typical modem engineering examples of linear systsas vi-h periodic 

parameters. 
Not only the modulated control systems  and modem c.irruai csticr. 

systems using sinusoidal or pulse-amplitude :iodula-ions, but also 
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oscillations of locomotive mechanisms [Ref. 2],   two-dimensional motion 

of a pendulum suspended on a spring [Ref. 3]/ coupled pendulums «1th 

oscillating supports [Ref. k],   and perturbed motion of two spring- 

coupled masses [Ref. 5] In an orbiting space satellite provide physical 

examples of linear systems with periodically varying parameters. Such 

physical systems are called in this study linear systems with periodic 

parameters, and are represented mathematically by linear differential 

equations with periodic coefficients. 

B.  STATEMEIIT OF THE PROBLEM AHD ITS FORMULATION 

In order to find a comprehensive method applicable to the analysis 

and, hopefully, applicable to the design of modulated control systems 

in general, it is desirable to treat the modulated control systems as 

a special class of periodic linear systems. Then  the problem is to 

seek a proper mathematical representation of periodic linear systems 

from which we can readily derive useful methods for the analysis and 

design of the modulated control systems.  The central purpose of this 

work is the development of simple methods for the analysis and design 

of periodic linear systems.  In order to achieve this purpose it is 

necessary to choose an appropriate mathematical representation for the 

system under study. 

The representation of a periodic linear system by a linear differ- 

ential equation with periodic coefficients in "state space" provides 

the general formulation that is sought above.  The state space is an 

abstract space defined by the "state variables" of a dynamic systex. 

The number of state variables is equal to the number of variables 

necessary and sufficient to describe the "future "s-LSte" of a given 

dynamic system uniquely, if the present values of the variables and 

the external input are known.  There are many ways of defining the 

state variables, but any set of variables having tr.e zraperties just 

mentioned are called "state variables." 

The theoretical as well as practical advantages vnlch may zoae  frzc 

this general representation of a linear system witn periodic parameters 

have not been clearly understood ani realized except in the special 

case of periodically sampled systems [Refs. 6 and 7]. ^e differential 
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equation formulation in state space allows us to take full advantage 

of the well-known Floquet theory in the stahility analysis of a linear 

system with periodic coefficients. One can obtain from the Floquet 

theory not only valuable insight into the fundamental nature of linear 

systems with periodic coefficients, such as the form of natural re- 

sponse and asymptotic behavior, but also a computational tool for cal- 

culation of the characteristic roots. 

An alternative approach to the problem of system representation 

has also been studied. It is shown In this study that general linear 

feedback systems can be represented by Volterra integral equations of 

the second kind. Well-known stationary and sampled-data feedback 

systems are described by special cases of Volterra Integral equations 

of the second kind. 

C.  BRIEF SURVEY OF PREVIOUS WORK 

Historically, the linear differential equations with periodic 

coefficients were first studied in mechanics and astronomy. Two of 

the famous early examples are the Mathieu equation and the Hill equa- 

tion [Ref. 8]. 

The most definitive work in the theory of linear differential 

equations with periodic coefficients appeared in the celebrated paper 

by the French mathematician M. G. Floquet, published In I0S3 [Ref. 9]. 

The famous memoir by the gifted Russian mathematician A. M. Lyapunov 

concerning stability of motion was published in IS92, nine years after 

the publication of Floquet's paper [Ref. 10].  lyapunov's menoir deals 

with very general problems concerning stability of linear and nonlinear 

dynamic systems. Though he followed a different path, lyapuaov arrived 

independently at the same conclusion as Floquet on the stability of 

linear differential equations with continuous, periodic coefficients. 

Täe  work of Floquet and lyapunov made fundamental contributions 

to sin understanding of the "natural behavior" and stability of linear 

systems with periodic coefficients.  Although the theories develcr-si 

by the two mathematicians were simple and straightforward, their appli- 

cations have been mainly limited to second order systecs [Ref. 11; 

also Ref. 12, pp. 59-66]. 
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It Is not necessary, nor is it even desirable, to make use of 

Floquet theory in the analysis and design of conventional carrier 

frequency systems, such as A.M. (amplitude modulation) communication 

systems, where stability problems are nonexistent because of the 

particular nature of the physical systems involved.  In these cases, 

the sinusoidal steady-state responses are obtained simply by use of 

the Fourier transform method. 

One can also use the simple frequency domain technique in the 

stability analysis of special classes of modulated control systems 

[Refs. 2 and 131« However, a complete theory applicable to the sta- 

bility analysis of general modulated control systems has not hitherto 

been developed. 

In order to develop such a general theory, it is necessary to 

extend the original Floquet theory to linear differential equations 

with piece-wise continuous, periodic coefficients.  Many modem carrier 

frequency systems use not only continuous sinusoidal carriers but 

also discontinuous, pulse-train carriers and thus give rise to a class 

of systems represented by linear differential equations with piece- 

wise continuous periodic coefficients. 

The Hill-Meissner equation [Ref. 2] is an example of a second-order 

linear differential equation with piece-wise continuous, periodic 

coefficients.  L. A. Pipes [Ref. 13] presented a matrix solution of 

this type of equation without formulating a general theory applicable 

to equations of order higher than the second. 

Traditional1y the~wo?^~of Rua^iau mQthematiciaa9--on the stability 

theory of ordinary differential equations has teen very extensive.  The 

contributions of the Russian school to the theory of linear differential 

equations with periodic coefficients up to 1956 appears to be sunaaarized 

in a paper by V. M. Starzhinskll [Ref. Ik].    Since 1956 Aizeman and 

Gantmacher, two prominent applied mathematicians In the Soviet Union, 

have made significant contributions on the stability (in the lyapunov 

sense) of periodic solutions of a nonautonomous differential equation 

[Refs. 15 and 16].  Although the part of their work concerning the 

properties of the zero solution of a linear approxiiaation contains 

some concepts related to the stability of linear systems with periodic 
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coefficients, they have not investigated explicitly the necessary and 

sufficient conditions for the stability of linear systems with piece- 

wise continuous, periodic coefficients. 

Since the development of the theory of the integral equation hy 

the Italian mathematician Vito Volterra in 1886 (see the hiography by 

E. T. Whittaker in Ref. 17, p. 11), this branch of mathematics found 

Increasing applications in physics [Ref. 18], in engineering [Refs. 19 

and 20], and in the theory of differential equations [Ref. 21; also 

Ref. 12, p. 55]. 

The representation of a stationary linear feedback system by a 

special type of Volterra integral equation of the second kind has 

recently been mentioned [Ref. 22; also Ref. 12, p. 29]. However, the 

theoretical and practical advantages that may be obtained from the 

representation of general linear feedback systems by Volterra Integral 

equations of the second kind have not been investigated. 

D.  CONTRIBUTIONS OF THIS WORK 

The classical theory of Floquet on the linear differential equatis 

with continuous, periodic coefficients cannot be applied to the stability 

analysis of modulated control systems having discontinuous pulse-train 

carriers.  The reason is that such systems are represented by linear 

differential equations with piece-wise continuous periodic coefficients. 

A proper extension of Floquet theory to linear systems with piece--<d.se 

continuous periodic coefficients is considered as the first eontributioa 

of this dissertation. 

The second contribution is a clear physical interpretation of the 

Floquet theory and its applications to the analysis of, and, to a liairec 

degree, the design of, modulated control systems. A practical coapu- 

tational method for calculation of the characteristic exponents and for 

determination of stability margins is considered particularly signifi- 

cant for engineering applications. 

Tue  third contribution is the representation of general linear feed- 

back systems by Volterra integral equations of the second kind. Kie 

transfer functions of stationary linear feedback systems and sampled- 

data control systems are derived as special cases of this representation. 
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Although the full potentialities of this method have not been investi- 

gated exhaustively, it appears that this representation may offer very 

valuable insight into the basic properties of linear feedback systems. 
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II.     EXTENSION AND  ItJTERreETATIOH OF FLOQUET THEORY 

A.  INTRODUCTION 

1,  State Vector Representation of Dynamic Systems 

A dynamic system may be described in many different ways. 

Throughout this chapter we represent a dynamic system by a system of 

first order differential equations in n-dimensional "state space." 

k±(t)  = fi(x1, ... xn, t) + b^t) ;   t > 0 , 

1 = 1, 2, ... n (2.1) 

In order to simplify the subsequent discussions, this system of 

simultaneous differential equations is replaced by a more compact 

vector differential equation. 

x(t) = f(x, t) + b(t) ;  t > 0 , (2.2)- 

where x,  b,  and f are n x 1 column vectors. 

The force-free linear dynamic system is normally represented 

by the following equation: 

x(t) = A(t)x(t) ;   t > 0 , (2.3) 

where A(t)  is an n x n matrix. 

The state vector x(t)  is defined as a set of state variables which 

determine the future state of a dynamic system uniquely if their preser.T 

values are given.  For instance, if the state at t = t ,  x(t ),  is 

known, then the state vector at any future time,  x(t) for t > t , 

Is uniquely determined by differential, equations such as Eq. (2.2) or 

(2.3). 
There seems to be no unique way of choosing state variables of 

a given dynamic system.  Such variables could be the canonical coordi- 

nates and momenta as in the Hamiltonian formulation of classical mechan- 

ics [Ref. 23], or they could be some variables and their derivatives 
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observable in a given system [Ref. 2k]. 

2. Fundamental Matrix and Impulse Response 

First we consider a stationary linear system in order to 

calculate explicitly the fundamental matrix and understand clearly 

its relation to the familiar concept of impulse response. 

x(t) = Ax(t) + b(t) ;   t < t < oo , (2.M 

where A is a constant n x n matrix and b(t) is a bounded n x 1 

column matrix. 

The solution of this equation is [fief. 25, p. ll]: 

x(t) = *(t - t )x(t ) + \  *(t - T) b(T) dx ,     (2.5) 

where <t(t) = exp At. 

The second term on the right-hand side of the above equation is a 

matrix convolution integral where the n * n nonsingular matrix 

$(t)  is called a fundamental matrix or a fundamental system of solu- 

tions. 

If the external input b(t)  is absent, we have 

xC^) = »(^ - to)x(to) , 

and transformation matrix which describes the transi- <b{t-,   - t )  is a v 1   o' 
tion of "state" from t  to t .  Because of this property,  *(t)  is 

also called the state transition matrix. 

It is very instructive to examine the properties of the 

fundamental matrix ${t)     for a general linear system. 

x = A(t)x,  0<t <t<oo. (2.6) 

where A(t)  is a time-dependent, bounded and continuous n x n matrix. 

The solution may be formally written as 
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x(t) = *it,  to)x(to) ,   »(to, to) = I (2.7) 

In this case the fundamental matrix *(t, t ) depends on the time of 

excitation t  as well as the time interval t - t .  Diis is exactly 

analogous to a time-variable impulse response h(t, T)  [Ref. 26]. For 

a stationary linear system^ we have *(t, t ) = 4(t - t ). We define 

the fundamental matrix $(t, t )  and its properties as follows* 

1. The fundamental matrix satisfies the homogeneous matrix differen- 
tial equation associated with the vector equation (2.6): 

«(t, to) = A(t)*(t, to) ,   0 <tQ<t <«> , 

*(t , t ) = I . v o' o ) 
(2.8) 

2. Each column of the fundamental matrix ^(t, t )  is a linearly 
independent solution of the vector differential equation (2.6). 

0±  = A(t) ^ ,       0 < to < t < oo , 

1 = 1, 2, ... n ;  0±=  ^(t, to) 

J^. .(* ^ * ) = 5 (Kronecker delta),  j = 1, 2, 

(2.9) 

3. The determinant of ^(t. t ) Is given by the Jacobi-Liouville 
formula [Ref. 12, p. 19J. 0It is seen from this that <I>(t, t ) 
Is never singular. 

det *(t, t ) = exp \  B: A(T) dx , 
0      Jt o 

n 

(2.10) 

where Tr A(T) = )  a (T). 

1=1 

Since it is often convenient, however, to choose t =0, 
' o 

we shall use the following notation for this case. 

$(t, 0) = «(t) ;   «(0, 0) = *(0) = I . (2.11) 

Now it Is possible to express ©(t, t ) in terms of <I>(t) by noting 

that *(t) is the fundamental matrix for the vector equation 

SEL-62-117 - 10 - 



x = A(t)x ,   x(0) ^ 0 ,   0 < t < (2.12) 

This is the same equation as (2.6), only with a different interval 

and initial conditions.  The solution is 

x(t) = »(t)x(O) .  $(0) = I (2.13) 

From the group of equations, (2.6) to (2.13), we deduce 

♦(t, to) = »(t) *"
1(to) (2.14) 

A graphical interpretation of the above equation is illuminating and 

helpful in a discussion of the Floquet theory.  From Eqs. (2.7) and 

(2.13), one may regard the fundamental matrix as a linear operator 

representing the transfer (or transmission) characteristics of a system 

described by differential equations (2.6) and (2.13).  This can be 

illustrated graphically as shown in Fig. 3. 

*(t) 

x(0) x(t) 
_x(t) = 0{t)x(0) 

i(0) 

*(t0)     *(t.t0) 

L(t0) 2L(t) 

.£(V = ^(toWO) • 
j.(t)  = 0(t.to)«(to) 

♦ (t) 

x(0)    ,      x(tj 
-     *'Hw       0 

j((t) - Ht)*'*{t9)*it0) 
= <J.{t,t0)x_(t0) , 

$(t.t0) = «-(tjo-'ct,.) . 

FIG.    3       A GRAPHICAL REPRESENTATION OF THE  FUNDAMENTAL MATRIX. 
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A nonstatlonary linear system with an external input b(t)  is re- 

presented by 

x = A(t)x + b(t) ,  t < t < oo , (2.15) 

where "b(t)  is an n x 1 vector. 

The solution may "be formally written as: 

x(t) = Ht)9'\to)x{to) +   J  «>(t)<I."1(T)b(T) dr    (2.16) 

and this reduces to a convolution integral if    4>(t) = exp At.  The 

matrix kernel $(t)<J>  (x) may he regarded as a matrix forn of a time- 

variable impulse response n(t, x). 

Having found a general form for a forced response of the 

nonstatlonary linear system, Eq.. (2.15), "the next important question 

is the boundedness "of response. 

3.  Definition of Stability 

The physical idea behind the mathematical concept of stability 

is closely related to a "bounded" response of a physical system when 

it is driven by an external input.  Usually a mathematical definition 

of stability is based on the boundedness (i.e., the property of having 

specific bounds or limits) of solutions of differential equations.  This 

gives rise to many definitions of stability, because it is possible to 

define the boundedness of solutions of differential equations in many 

different ways [Ref. 2?, Chapter k]. 

For the purpose of the type of physical applications we have 

in mind, however, the definition of stability based on an input-output 

relationship seems to be adequate.  Vie therefore adopt the following 

definition of stability for the subsequent discussions [Ref. 25]:  A 

system is said to be stable if, and only if, its output is bounded for 

a bounded input. 

In order to put this definition of stability into a more pre- 

cise mathematical form, it is necessary to define the "magnitude" of a 

vector x(t)  in some convenient way.  The magnitude of a scalar y(t) 
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may be defined by its absolute value,  |y(t)|. The "magnitude" of a 

vector is called a norm and it may be defined in several ways [Ref. 

29, PP. 71-72]. 

For purposes of this paper a norm of a vector x(t) is defined 

to be; 

|x(t)| = supilx^t)!! t       i=l, 2, ...n (2.17) 

By definition, the forced response of a linear system as shown 

by Eq. (2.16) is stable, if and only if. 

I|x(t)|I < M  for all  t > t , (2.18) 

given that  ||b(t)|| < JC  for all t > t , 

where M.  and VL    sire finite, positive, real numbers. 

In the case of a single-variable linear system which is charac- 

terized by the input-output relationship 

c(t) = j  h(t, T) f(T) dx , 

it is well-known that the necessary and sufficient condition for stabil- 

ity [Ref. 26] is given by 

\   |h(t, T)IdT < M  for all t > 0 , 

provided that we exclude "impulse" functions and the higher derivatives 

of the impulse functions. 

We can state the exactly analogous condition for nulti-variable 

linear systems [Ref. 30]: de output of a linear system as given by 

Eq.. (2.16) is bounded for a bounded input if, and only if, 

-t 

\  I|*(t)*'1(T)!|dT < M  for all t>t ,       (2.19) 
«Jj. — o 

where M is a finite, positive, real number. 
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We shall refer to this statement as the Fundamental Theorem on Stabil- 

ity (of linear systems). 

B.  EXTENSION OF FLOQUET THEORY 

1.  Introduction 

The linear system in which one or more system parameters may 

vary periodically with time is represented by a linear differential 

equation with periodic coefficients; 

x = A(t)x ,   0 < t < 

A(t + 1) = A(t) , 

(2.20) 

where the elements of the matrix A(t)  are continuous functions of 

time a. .(t) of normalized period 1. The period has been normalized 

to 1 as a matter of convenience.  This system can be dealt with ade- 

quately by the classical theory of Floquet. 

If some of the elements a. .(t) have a finite number of dis- 

continuities within the period 0 < t < 1,  then it is necessary to 

extend the classical theory to deal with such piece-wise continuous 

cases.  First we consider a simple introductory example, in order to 

be better prepared for a discussion of the general theory. 

Example 1:  A simple linear system with periodic coefficients 

Let us consider the following first-order linear differential 

equation with periodic coefficients: 

X + a(t)x = 0  ,       x(0) ^ 0  ,       0 < t < 

a(t + 1) = a(t) 
(2.21) 

First of all, it will be shown that a solution of this equation 

is not necessarily a periodic function of time x(t) of period 1.  To 

make this example more concrete, we may regard the above equation as 

representing the feedback system shown in Fig. h. 

The system equation is 
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f(t) =0 

koi < M 

FIG. 4.  A SIMPLE LINEAR SYSTEM WITH A PERIODIC PARAMETER 

x +   [w + Kbm(t)]x = 0 ,      x(0) ^ 0 , 

where    ni(t + l)   = m(t)     and    a(t)  = w + Kbm(t). 
The  solution is obtained by direct integration: 

t 

x(t)   = x(O)  exp[-J       a(T) dx]  = x(0) 0(t)   , 

t + 1 

x(t + 1)  = x(0)  exp[-\       a(T) dx]  = exp[-\     a(T)  dx]x(t) 

= cx(t)   . 

It is clear from the above equations that x(t)  is not a 

periodic solution unless  / a(x) dx = 0. 

We note the following important properties of the solution: 

1. 0(t) = exp[-/ a(x) dx]  is a 1*1 fundamental matrix.  It i£ 
the solution of 

0 + a(t)0 = 0 ,  0(0) = 1 ,   0 < t < oo . 

2. 0(t + 1) = c0(t) , 

where  c =0(1) = exp[-/ a(x) dx]. 

3. From the two equations shown above. 
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0(t + 1) = c0(t) ,  and 

x(t + 1) = cx(t) , 

we deduce the following difference equations: 

0(k + 1) = c0(k) •, 

x(k + 1) = cx(k) . 

Both the fundamental matrix 0{t)    and the solution x(t)  satisy 
the same difference equation. 

k. The necessary and sufficient condition for stability of the solu- 
tion x(t) is obtained readily from 2. and 3^ as follows: The 
linear periodic system (Eq.. 2.21) is stable if, and only if. 

|c| expl i [-\ a(T) d-r] < 1 

The generalization of the above results in terms of an n-dlmensional 

system for the case in which a(t) is continuous leads directly to the 

classical Floquet theory. 

2.  The Classical Theory of Floquet on Linear Systems with Con- 

tinuous, Periodic Coefficients 

(2.20): 

We start from the n-dimensional vector differential equation 

fc(t) = A(t)x(t) ,   x(0) £ 0 ,       0 < t < oo , 

A(t + l) = A(t) ;  n x n matrix , 

where the elements of A(t)  are continuous, periodic functions a .(t) 

of period 1.  The formal solution is 

x(t) = *(t)x(0) , (2.22) 

and we examine the hasic properties of the fundamental matrix <Ii(t) 

which were investigated by Floquet and Lyapunov.  The following proper- 

ties are noted: 

1. Both iCt) and *(t + l) satisfy the homogeneous matrix differ- 
ential equation associated with Eq. (2.20).  This can be proved 
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simply by noting that 'both x(t) = *(t)x(o) and 
x(t + 1) = *(t + l)x(0)  are the solutions of Eq. (2.20), and 
consequently they must satlsy the same equation. 5y substituting 
x(t) and x(t + l) into Eq. (2.20) we obtain: 

and 
*(t) = A(t) 4(t) 

*(t + 1) = A(t + 1) *(t + 1) = A(t) »(t + 1) . 

2. Since each column of the two matrices *(t) and *(t + l) satis- 
fies the differential equation (2.20), and there are not more 
than n independent solutions, the columns of *(t + l) must 
be linear combinations of those of *(t).  This relationship may 
be stated formally as 

*(t + 1) = <t(t)C,  0 < t < oo , (2.23) 

where C is a constant, nonsingular n x n matrix because 
C = *(l) from the above equation. 

From the group of equations shown above, Eqs. (2.20 to 2.23) 
deduce the all-important linear difference equations.  This is 
a very critical step, because we reduce a linear differential 
equation with periodic coefficients, Eq. (2.20), to a linear 
difference equation with constant coefficients. 

(a) From Eq. (2.23) we have a matrix difference equation 

*(k + 1) = 4i(k)C = C<l>(k) , (2.2i0 

k = 0, 1, 2, ... 
From Eqs. (2.22), (2.23) and {2.2k)  we obtain a vector differ- 
ence equation 

x(k + 1) = Cx(k) , (2.25) 

k = 0, 1, 2, ... 
where C = 4>(1) is called the discrete transition matrix. 

(b) The solutions of the above two difference equations are 

•(k) = 4«(o)ck = ck , 

x(k) = C x(0) , 

(2.2Ua) 

(2.25a) 
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and it can be easily verified by direct substitution that 
*(k)  and x(k)  satisfy Eqs. (2.2h)  and (2.25) respectively. 

(c) The determinant of the transition matrix C is obtained from 
the Jacohi-Liouville formula as previously given by Eq,. (2.10) 
[Ref. 12, p. 57]. 

det C = det *(!) = exp \ Tr A(T) dr = z-Zg ... z ,   (2. 26) 

where z.  are the eigenvalues of the matrix C and are 
called the characteristic root.s of Eq, (2.20). 

k.     The periodic transition of the state vector x(t) between two 
successive periods from t=k to t=k+l is fiescribed by 
the difference equation (2.25), but this only describes the 
periodic transition starting from t = 0.  If we want to describe 
the periodic transition of the state vector starting from some 
arbitrary initial time, t / 0,  it is necessary to derive a 
new difference equation. 

(a) The continuous transition of state starting fron t > 0 is 
described by 

*(t) = A(t)y(t) , t   < t < 00 , 
O —   —   ' 

A(t + 1) = A(t) ,  y(to) = x(to) , 

y(t) = $(t, to)y(to) = »(t)»"
1^)^) . 

(2.27) 

(2.28) 

From Eq. (2.1^) and (2.23) we have 

«(t + 1, to) = *(t, to)C' , 

c = *(to)c «"
1(to) , 

(2.29) 

(2.30) 

and from the above equations we obtain a new difference 
equation 

y(i + 1) = C'y(i) 
(2.31) 

1 ■ k + t .   k = 0, 1, 2, ... 

(b) Because of the periodicity of coefficient matrix A(t), we 
find the periodic transition characteristics represented by 
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The significance of this equation may be best illustrated by 
graphical representation (Fig. 5). 

x.(k) 

*(T) 

^(k + r) 

*{T) 

• » • 
^(k + I)   x^(k + I + r) 

FIG. 5.  A PERIODIC TRANSITION CHARACTERISTIC. 

Fig, 5 illustrates the relation: 

x(k + T) = *(k + T, k)x(k) = *(T)x(k) , 

0 < T < 1,  k = 0, 1, 2, 3, ... 

(2.33) 

This equation shows very clearly that we know the transition 
characteristics of the state vector x(t) for all time, if 
it is known for any one period. Thus, stated in formal 
language, the solution of the linear differential equation 
(2.20) is known for all time if it is known for any one period. 

(c) It is also instructive to derive Eqs. (2.30) and (2.31) from 
a graphical representation (Fig. 6). 

C' 

,-l 
x(k) ^—* *- 

*(to)\ 

^k + to) =X(i) / iiM  + 1)  £.(•< + I + t0) =x(i 
+ ') 

^-^ ^^ 

C 

X{i + i) = *(t0)c «-'(Vrd) 
=C' x{i) . 

FIG. 6.  A GRAPHICAL REPRESENTATION OF THE DIFFERENCE EQUATION. 

5.     The analytic form of a fundamental matrix    ^(t)     is   given in Ref. 
25,   p.   28,   as 
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*(t; = n(t) exp Bt , (2. 3*0 

n(t + i) = n(t) , 11(0) = 1 • 

We can 
tlon: 

deduce a number of important results from the above equa- 

(a) The 
are 

exponential matrix exp Bt 
related by the equation 

and the transition matrix C 

C = exp B . (2.35) 

The eigenvalues of the matrix B are called the characteris- 
tic exponents of Eq. (2.20) and are obtained from the equation 
det[ßl - BJ = 0. The characteristic exponents ß.  are re- 
lated to the characteristic roots z.  by a logarithmic equa- 
tion :L 

z. = e 
i 

ßi + j2k« 

ßj^ = in  z. = in   |zi|   + j{ei + 2kjt)   , 

k = 0,  +1,   +2,   ...   ;       1 = 1,  2,   ... a  . 

(2.36) 

(2.37) 

We shall take only the principal values, unless stated other- 
wise. 

ßt * pi  UJ + oe^^ (2.38) 

The above relations between the characteristic exponents and 
the characteristic roots are valid not only for the case in 
which all the eigenvalues are distinct, but also for the case 
of multiple eigenvalues. This may be proved simply by trans- 
forming the two matrices B and C Into Jordan normal form 
[Ref. 31, pp. 67-120]. 

(b) If the matrix B is of simple structure [Ref. 32], one can 
obtain a new fundamental matrix ^(t) by a similarity trans- 
formation which diagonal1zes matrix B. 

Y(t) = ^"""«(t)! = [T'^OTHT"""^!] 

= P(t) exp Bdt (2.39) 

where    B,     is a diagonal matrix,   and    T    is a constant matrix, 
^(t)    is  a new fundamental matrix associated with Eq.(2.20) 
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if we introduce the change of variable, x. = Ty.    The analy- 
tic form of each column is deduced from Eq, (2739). 

ß.t 
^(t) = P1(t)e (2.1*)) 

1 = 1, 2, 

where *..(*) a^d P. (t) represent the 1 th column of the 
matrices ^(t) and ^(t). 
Any solution x(t) = Tyjit)  of the differential equation (2.20) 
may be considered as a vector In the n-dimensional space 
spanned hy the set of vectors TV (t). Furthermore, this set 
of vectors jo(t)  satisfy the difference equation: 

tjt 1) = z1 ^(t) {2.kl) 

1, 2, 

where 
ßi 

Ji ~   ' Pjt 
(c) Physically, the set of vectors Tp.(t)e  ;  1 = 1, 2, ... n, 

represents the normal modes of the system represented by Eq. 
(2.20).  Consequently any force-free behavior of the system 
may be resolved into each normal mode.  Since 
p (t + l) = p.(t), one can expand each component of P^t) 
la a Fourier Series; or, for that matter, the fundamental 
matrix f{t)  = P(t) exp B.t can be expanded In a Fourier 
series, because P(t) = pft + l). A typical component of the 
fundamental matrix will be of the form 

^(■t) = e 
ß.t V L 

JmiVb 

where 
The terms 

Jmrt »n/T = 2it (carrier frequency)   . 
for large Integer values of give rise 

to high frequency ripples normally present In any carrier 
frequency system [Ref. 1, pp. 6O-6T]. 

(d) If the matrix B has repeated eigenvalues and is not of 
simple structure, then it is always possible to put B into 
a Jordan normal form. The fundamental matrix <?{ t) Is then 
of the form 

Y(t) = Q(t) exp et (2.k2) 
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where J = 

h 1 0 

0 Pi 1 

0 0 ß 

L o 

ß 2 * 
0  ß, 

, Q(t+l)=Q(t). 

(2.1(2) 

yt) 

Consequently, a typical column vector ^(t)  corresponding 
to an eigenvalue ß.  of multiplicity m is expressed as 

r  k - i tk - 2 1   Pi* 
= L(k -171 ii(t) + (k .2)1 ae(t) + ••• +täk - i(t) + ^.W] e    ' 

(2.43) 
k = 1, 2, ... m. 
For the stationary linear system with a repeated eigenvalue 
of multiplicity m,  the corresponding column vector has the 
form 

r tk - i      t 
*k^ = [(k - 1)1 H.! + (k 

k - 2 

-äf.He + ••• + % 
1 V 

i + Sk J e  ' 

where c.  is the constant vector with the components: 
c. . = 1 ^"for J < 1 and c.  =0 for j > 1. 

6. Stability criteria for the linear system with periodic coefficients 
shown below may be derived most readily from the form of the 
fundamental matrix. 

x = A(t)x + b(t),  x(t ) ^ 0,  t < t < co , 

A(t + 1) = A(t) and ||b|| < N , 

(2.44) 

where N is a finite, positive, real number, 

(a) The solution of the above equation, x(t), is bounded for 
all t > f  if, and only if, all the characteristic exponents 
ß  have negative real parts [Ref. 33, pp. 23-24]. 
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Proof;  The solution x(t) is written as shown previously 
from Eq. (2.16): 

X(t) = »(t)*"1^)^) +J   *(t)*-1(T)t(T)dT . 

Substituting Eq,. (2.314-) for *(t), we obtain the following 
form of solution for x(t): 

x(t) = n(t)e    0 r^t )x(t ) + \ n(t)eB(t " T)ir-1(T)b(T)dT . 

0 (2A5) 

It is clear that the first term will decay exponentially with 
time, if all the characteristic exponents (eigenvalues of B) 
have negative real parts. The second term may be written as 

t t 

j Il(t)eB(t " T)n-1(T)b(T)dT = Il(t) y eB(t " T)u(T)dT 

o o 
= n(t)y(t) . 

y(t)  is a familiar convolution integral.  Its components are 
bounded if the eigenvalues of B have negative real parts. 
Note that II~ (t)  is bounded by the fact that II(t)  is non- 
singular Q.E.D. 

(b) Since the characteristic exponents and the characteristic 
roots are related by Eq. (2.36), an alternative stability 
criterion may be stated in terms of the constraint on the 
characteristic roots: 
The solution of Eq. (2.^0,  x(t),  is bounded for all t > t , 
if, and only if, all the characteristic roots z.  lie within 
the unit circle.  The proof follows directly from Eq. (2.36) 
and the preceding stability criterion stated above. 

It is not easy, in general, to calculate analytically the funda- 
mental matrix *(t),  even if we know its form is given by Eq. 
(2.3^-).  Since stability is often the most important consideration 
in many physical problems, the calculation of characteristic ex- 
ponents is a matter of great importance.  In order to calculate 
the characteristic exponents, however, it is necessary to know 
the fundamental matrix ^(t) only at t = 1 as previously shown 
by Eqs. (2.23) and (2.36). Since 3>(t) must satisfy the matrix 
equation. 
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«(t) = A(t)«(t),  *(0) = I, 

A(t + 1) = A(t) , 

0 < t < 1 , 

i2.k6) 

we need to Integrate the above equation only over the fundamental 
period, 0 < t < 1 , to obtain *(l) = C. Because we only need 
the numerical solution *(l),  rather than the analytical solution 
$(t), this can be obtained to any desired accuracy by the use of 
a digital computer. Having obtained the numerical matrix ^Cl), 
we simply compute the eigenvalues of *(l) to determine the 
characteristic roots. The eigenvalue analysis is one of the most 
common computer routines. Perhaps the simplest and most straight- 
forward method for the numerical integration of Eq.. (2.46) by a 
digital computer would be the method of mean coefficients [Ref. 
3h].    This method is essentially an approximation of the periodic 
coefficient matrix A(t) by a finite number of constant coeffi- 
cient matrices within the fundamental period, 0 < t < 1. The 
period is divided into m subintervals:       ~ 

m 

I •t*-1' 

T, = t, - t.   .,, 
k   k   k - 1' 

k = 1, 2, 

t = 0 , 
o    ' 

t = 1 
m 

If within each sübinterval,  T ,  the elements a. .(t) of the 
matrix A(t) are replaced by "cheir respective mean values, we 
have 

A(t)  =Ak,       0<t<Tk>       k=l,  2,   ...m, (2.4?) 

T 

K.      0 

Now we solve the following equations in place ofEq.   {2,k6): 

4(t)  = A^t)   ,       4(0)  = I  ,       0<t<Tk, (2.146) 

k = 1,  2,   ... m . 

The solution at t = 1 is given by "cascading" the solutions of 
the above equations: 
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m 
*(1) = H exp A^T 

k = 1   ^ ^ 
(2.1»8») 

This entire numerical calculation is quite practical for a 
modem computer; the answer is obtained in a matter of minutes. 

8. We summarise briefly the main results of the classical Floquet 
theory: 

(a) The solution of the linear differential equation with con- 
tinuous, periodic coefficients, Eq. (2.20), is completely 
determined for all time t > 0 if the solution is known 
only over the fundamental period 0 < t < 1. 

(b) Neither the solution nor the fundamental matrix $(t)  can 
be analytically calculated in general, even over the funda- 
mental period. 

(c) The characteristic exponents and characteristic roots are 
determined completely by the numerical matrix $(l). This 
can be computed to any desired accuracy by a digital computer 
in a matter of minutes. 

(d) Consequently, the stability of a linear system with periodic 
coefficients and its natural response at the discrete instants 
of time separated by a full period, may be determined within 
a desired accuracy by machine computation, using Eq. (2.25a). 

We have listed some of the most important properties of linear 

systems with continuous, periodic coefficients and discussed to a cer- 

tain extent the physical significance and computational aspects of the 

characteristic exponents. Next we shall discuss an extension of the 

Floquet theory to the linear systems with piece-wise continuous periodic 

coefficients. 

3. Extension of the Classical Theory 

There are many examples of modem engineering systems in which 

one or more system parameters may vary periodically but not always 

continuously. For instance, periodically operated on-off type switches 

are used in many communication and control systems and a large number 

of such systems may be represented by linear differential equations 

with piece-wise continuous periodic coefficients.  This class of systems 

will be called piece-wise, continuous, periodic systems. Very fortu- 

nately, it is possible to extend the conclusions of the classical Flo- 

quet theory to the above class of systems without elaborate modifica- 
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tions. We shall first treat a special case of a linear system with 

piece-wise constant, periodic coefficients and proceed afterwards to a 

discussion of linear systems with piece-wise continuous, periodic 

coefficients. 

a. We consider a generalized Htll-Meissner equation to illus- 

trate the theory for piece-wise continuous periodic systems. 

* = A(t)x ,       0+< t < oo, 

A(t + 1) = A(t): n x n matrix, 

A(t) = A.^  k < t < k + 1/2, 

A(t) = A^  k + 1/2 < t < k + 1, 

k = 0, 1, 2, ... 

t ^ k,  t ^ k + 1/2, 

(2.1»9) 

The system is switching between the two constant parameter systems with 

coefficient matrices A,  and Ap respectively.  In the one-dimensional 

case, this may be visualized as shown in Fig. 7. The solution,  x(t), 

of the piece-wise constant periodic system, Eq. (2.1+9), is not necessar- 

ily dlscontinuous. This can be seen fron the one-dimensional example 

shown in Fig. h.     If we assume the modulator m(t) is a square wave of 

the form shown in Fig. 1,  then we have x + a(t)x = 0, 0 < t < oo. 

A(t) 

1)5 

FIG.   7.      A PIECE-WISE CONSTANT PERIODIC COEFFICIENT  (FOR A ONE-DIMENSIONAL SYSTEM). 
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t ^ k, t / k + 1/2, 

The solution is x(t) = x(0)exp[-/ a(T)dT], 

where  a(t)  Is piece-wise continuous. 

and it is continuous for 
•      ■ •     - o ■ 

t > 0. In general, we make the following ohservations on the continu- 

ity of the solution of Eq.. (2.14-9): 

1. It is always possible, at least in principle, in electrical and 
mechanical systems to choose the stored charges and flux linkages 
and the canonical coordinates and momenta as the state variables, 
respectively. Then these variables are continuous, and are dif- 
ferentiable almost everywhere because of the basic conservation 
laws such as conservation of charge, flux linkage and momenta etc., 
provided the delta function and its derivatives are excluded. 

2. If it is not convenient to choose the state variables as specified 
above for some physical reasons, such as difficulty of measurements 
and observability, then the solution x(t) of Eq. {2.kg)  may not 
be continuous at the points of discontinuity. In such a case, we 
have 

x(k + l/2+) = S^k + 1/2") , (2.50) 

x(k+) = S2x(k") 

k = 0, 1, 2, ... 

where S,  and S_  are nonsingular constant matrices.  The above 
equations will be referred to as the boundary conditions.  Normally 
these boundary conditions are given or derived from the constraints 
such as conservation of momentum, charge and flux linkage, etc. 

3. Equation (2.^9) plus the boundary condition, Eq. (2.50), are needed 
for representation of the type of piece-wise continuous, linear 
periodic system under consideration.  Now we write down the solu- 
tion. 

x(t) = *(t, k+)x(k+),  t ^ k,  t ^ k + 1/2 ,     (2.51) 

k = 0, 1, 2, ... 

Because of the periodicity of A(t),  we have the matrix difference 
equation 

»(t + 1, k+) = *(t, k+)C 

and the vector difference equation 

x(k + 1+) = Cx(k+) . 

(2.52) 

(2.53) 
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The latter can be derived easily from Eas. (2.51) and (2.52).  If 
we set k = 0, Eq. (2.53) becomes x(l ) = Cx(0 )  sind it is 
necessary to solve Eq. (2.^9) plus Eq.. (2.50) only for k = 0 to 
obtain the discrete transition matrix. We solve a differential 
equation with constant coefficients successively in each sublnter- 
val,  0 < t < 1/2 and 1/2 < t < 1,  to obtain 

C = S2exp A2(l/2)S1exp A^l/2) (2.53a) 

It is interesting to note that all the characteristic roots of C 
may still be within the unit circle even if some of the eigenvalues 
of A.  and Ap have positive real parts. Conversely, some of 
the characteristic roots of C may be outside the unit circle 
even if all the eigenvalues of A1  and A  have negative real 
parts. The latter is illustrated oy the following example: 

Example 2; 

For the sake of simplicity, we set S 
exp A (1/2)  and exp A^(l/2)  to be 

. = S_ = I and choose 

r.k     ion r .k       o-| 
exp A (1/2) = ,    exp A (1/2) = 

■L       L o   .2-1 LlO   .2 J 

A,  and A- have the same eigenvalues, both negative real: 
p^ = -2 Zn  2,5,  P2 = -2 >en 5 

r 100.16  2 "I 

~L2     .o^J 
and Trace C = 100.2 = z + z 

Clearly either z,  or z_ must be outside the unit circle. 

k.  If the time origin were not t = 0, but t = l/k    in Eq. (2.^9), 
and all other things were to remain the same, then we could also 
show easily. 
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x(t) = *(t, l/h)Al/h)  , 

*(t + 1, 1/k)   = *(t, 1/1+)C' , 

x(r + 1) = C'^r) , 

r = 1/k,  1 + 1/k  , ... 

= k + 1/k,    k = 0, 1, 2, ... 

and C« = exp A^l/^OC exp P^i-l/k) 

- 28 - 

(2.5^) 

(2.55) 

(2.56) 

(2.57) 



The two discrete transition matrices C and C are related by 
a similarity transformation as in the previous case of classical 
theory. 

The above results can be extended directly to the general 

case in which there are a finite number of discontinuities of A(t) 

in the fundamental period 0 < t < 1. Next we discuss the general 

piece-wise continuous periodic system which includes the above special 

case. 

b. A linear system with piece-wise continuous, periodic coeffi- 

cients may be defined by the following equation: 

x = A(t)x,  0+ < t < oo,  t / t. + k , 

A(t + 1) = A(t), 

A(t) = A.(t),  k + tt-^t^k+t*, 

1 = 1, 2, ... m;       k = 0, 1, 2, ... 

(2.58) 

where T. = t7 -tt ,,  >  T. = 1,  t =0 and t = 1,  and by the 1   i  1-1'  / ■  1   *       o m   ' 

boundary conditions 
1=1 

(t* + k) = s^^xCt^ + k) , x^ 
—^ 1 (2.59) 

i = 1, 2, ... m;  k = 0, 1, 2, 

where S.  are constant, nonsingular n x n matrices. 

The one-dimensional case with three discontinuities may be sketched 

as shown in Fig. 8. 

1. The solution may be written as 

x(t) = *(t, k+)x(k+),  t / k + ti,  t > k+,       (2.60) 

1=1, 2, ... m. 

k = 0, 1, 2, ... 

Because of the periodicity of A(t), we have the matrix difference 
equation 

^t + 1, k+) = «(t, k+)C (2.61) 
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*(t)    A 

*!(*) 

Mt) 
A2(t) 

FIG.    8.      A PIECE-WISE CONTINUOUS PERIODIC COEFFICIENT 

(FOR A ONE-DIMENSIONAL  SYSTEM). 

and the vector difference equation 

x(k + 1+) = Cx(k+) (2.62) 

It is seen from equation (2.6l) that 

C = $(1+,   0+) e «(1+)   , (2.62a) 

and we need to solve the matrix equations associated with Eqs, 
(2.58) and (2.59) in order to calculate the matrix 0(1 ). 

*(t)  = A(t)«(t),       *(0+)  =1,       0+ < t < 1+, (2.63) 

A(t) = A1(t),       t^K t < t±, 

± = 1,  2,   ... m;       k = 0,  1,   2,   ... 

where    t    =0,     and    t    = 1. 
The hounSary conditions are derived from Eq..   (2.59), 

•(t+)  = Si*(t-)   , {2.6k) 

1=1,   2,   ...  m  . 

The solution at t=l, *(1) has the form 

♦(1+) - Sm*m-l(V Vl^m-l — *o(V 0+) = c '   (2-65) 
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otnd    V^t,  t. )    Is the fundamental matrix associated with the Ith 
equation of (2.62). 
The determinant of C is obtained from Eqs. (2.26) and (2.65). 

m 
det C = [ II det S 

1=0 

12     n 

J exPJ ' Tr A(T)dT 

(2.66) 

where z.  are the eigenvalues of C (characteristic roots). 

2. The analytical form of the fundamental matrix may be found from 
the matrix difference equation (2.6l) and the boundary condition, 
Eq. (2.64).  If we assume that the fundamental matrix has the 
same form as shown by Eq. (2.3^) in the classical Floquet theory, 
then we obtain 

*(t) = P(t)eBt,  t > 0 , 

P(t + 1) = P(t) , 

and P(t+) = S^Ct") , 

1=1, 2, ...m. 

(2.67) 

(2.68) 

The discontinuities in the fundamental matrix-.^(t) are trans- 
ferred to the periodic matrix P(t)  since e   is a continuous 
matrix. For the linear system with piece-wise constant periodic 
coefficients with m discontinuities, Eq. (2.65) becomes 

$(1+) S exp A ..T ..S  , m r   m-1 m-1 m-1 exp A T 
00 

where ^(t) = exp A.t ;  T. = t.-t. , . 
This was to be expected. 
It is clear from Eqs. (2.65) and (2.67) that the characteristic 
roots and the characteristic exponents are exactly the same as in 
the classical case, and they are related by the same equations as 
Eqs. (2.35) to (2.38).  The boundary conditions, Eq. (2.68), are 
the only difference caused by the discontinuities. 

3. One can derive the stability criterion for the linear system with 
piece-wise continuous periodic coefficients in the same manner as 
for the classical case. We consider Eq. (2,58) with a finite 
forcing term. 

x(t) = A(t)x(t) + b(t) ,  0 < t < 00 

where  !Ib(t)I| <b   for t>0, 

- 31 - 

(2.69) 
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with the same boundary conditions as given by Eq. (2.59).  Now 
we state the following theorem as an extension of the classical 
Floquet theory: 
The solution x(t) of the linear system with piece-wise continuous 
periodic coefficients, Eq. (2.69), is stable if, and only if. all 
the characteristic roots of the force-free system, Eq. (2.58) plus 
Eq. (2.59)^ are within the unit circle.  (See Appendix A for proof 
of this theorem.) 

k.  In summary, the linear system with piece-wise continuous periodic 
coefficients is completely described by the differential equation 
and the boundary conditions at the points of discontinuity. The 
periodicity of the transmission characteristics as shown by Eqs. 
(2.6l) and (2.67), and the stability criterion stated above, are 
direct extensions of the results of the classical Floquet theory 
presented earlier.  In short, we can handle the linear system with 
piece-wise continuous periodic coefficients in almost the same way 
as we handle the linear system with continuous periodic coeffi- 
cients. 

k.    Calculations of Forced Responses and Transfer Functions 

Even if we know from the Floquet theory that the fundamental 

matrix of the linear system with periodic coefficients has the form 

^(t) = I[(t)exp Bt, it is very difficult in general to find the periodic 

matrix Il(t). Consequently, the form of solution given by Eq. (2.^5) 

is not suitable to practical applications.  If we want to obtain a 

practical solution of the inhomogeneous vector equation (2.Ml), we 

have to use something other than Eq. (2.^5)• 

a. Since many time functions such as exponentials, ramps and 

sinusoids can be generated as solutions of linear differential equations 

with constant coefficients, one can "simulate" a large class of forcing 

functions by appropriate stationary linear systems excited by proper 

initial conditions [Ref. 7]. Assuming that the input u(t) belongs 

to this class, we obtain in general the following equations: 

ü = Wu> 0<t<t<oo, 

* = A(t)x + FU;       0<to<
t<00, 

A(t + 1) = A(t):    n x    n   matrix , 

(2.70) 

(2.71) 

where W is a constant m x m matrix, u(t)  is an m x 1 input 

vector and F Is a constant n x m matrix. 
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The forcing term in Eq.. (2.71) may tie set as Fu(t) = b(t) to make 

Eq. (2.71) identical with Eq,. (2.69); but we shall use the above forms 

which are more widely seen in the literature. 

Equations (2.70) and (2.71) may be combined into a single 

equation 

W    0 

F   A(t) 

u 

,   0 < t  < t < 00 ; 
'    - o — (2.72) 

or we may rewrite the expression for simplicity as 

v = H(t)v ,  t < t < 00 , (2.73) 

where H(t + l) = H(t) : (m + n) x (m + n) matrix. 

Thus we have transformed the inhcmogeneous n-dimensional 

vector equation (2.71) into the homogeneous (m + n)-dimensional vector 

equation (2.72). Since the latter is a linear differential equation 

with periodic coefficients, its solution is 

v(t) = »(t, to)v(to) = <I'(t)$-
1(to)v(to) ,        {2.7k) 

where *(t + l) = 4'(t)C. 

The vector difference equation is derived as shown previously: 

v(l + 1) = »(to)C«"
1(to)v(l) = Rv(l) , 

i = k + t ,  k = 0, 1, 2, ... 

or v(k + 1 + t ) = Rv(k + t ) , —v       o    —    o ' 

and the solution is 

v(k + t ) = R v(t ) . 
—    o    — o 

(2.75) 

(2.76) 

It is a straightforward matter, therefore, to calculate the "sampled" 

response of a linear system with periodic coefficients, provided that 

the external input can be generated as the solution of an appropriate 
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linear differential equation with constant coefficients. 

b. Even though the Inhomogeneous equation with periodic coeffi- 

cients, Eq. (2.69), may be transfoimed into the homogeneous difference 

equation with constant coefficients, Eq. (2.75),  1* is no't possible in 

general to describe this system completely by a transfer function in- 

dependent of time.  This can be seen frcm the fact that the discrete 

traasltior. matrix R depends on the time of excitation t  in Eq. 

(2.75). 

1. We start from Eq. (2.70) In order to derive the transfer function. 
It is clear from Eq. (2.70) that the fundamental matrix 4(t, t ) 
has the form 

$(t, to) = 

rew(t-to) 

L*21(t' V 

0    1 (2.77) 

where *p (t, t ) is the fundamental matrix associated with the 
equation X = A\t)x,  and *_. (t, t ) is the "coupling term" due 
to the external input and has the form 

t 

*21(t, to) = y *(t)4-1(T)eW(t-to)dT 

The form of the discrete transition matrix R can be inferred 
readily from Eqs. (2.7^), (2.75) and (2.77). 

R = 
W    0 

= R(V (2.78) 

In order to define the transfer function, we set t =0. Then 
Eq. (2.75) becomes 

v(k + 1) = Rv(k) , 

and taking the z-transform of this equation we obtain 

v(z)  =  [«I  - Hj^O*)  , (2.79) 
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or 

■u(z)" 

X(2) 

(zl - R^)" 

_(zl - K&y^ji** - ^u)'1   («I - ^ 

It follows from this equation that 

x(z) = z(l - R22)'
1R21u(z) + z(zl - R22)"

1x(0+) .    (2.80) 

The transfer function T,.(z) is defined as 

x,(z) 
T .(Z) =  J_ , 
1J    üTUl 

(2.81) 

R   and R   a?e functions of 
dependent transfer function 

with x(0+) = 0 in Eq. (2.80). 
It can be seen from Eq. (2.80) that R   is the discrete transi- 
tion matrix of the homogeneous equation k =  A(t)x, if u(t) = 0 
in Eq. (2.71). Consequently, the poles oF the transfer function 
which are the characteristic roots of R_„ are independent of the 
initial time, t . But the zeros will depend on t  because both 

'   i-i o 
t . Therefore one needs a time- 

T..(z, t ),  to describe the system, 
Eq. (2.72), completely.  It is sufficient, however, to limit the 
range of t  within the fundamental period 0 < t < 1. This 
can be seen from the periodicity of state transition characteris- 
tics as shown by Eqs. (2.7^) and (2.75).  Consequently, the time- 
dependent transfer function T. .(z, t ) is analogous to the modi- 
fied Z-transform [Ref. 35] characterization of sampled-data systems. 

2. One can give a simpler, alternate derivation of the transfer func- 
tion by starting from the integral representation of the forced 
response, Eq. (2.45). If we set x(t ) = 0,  then the solution of 
the inhcmogeneous equation (2.71) is 3-: o 

x(t) = ^   $(t)$"1(T)Fu(T)dT (2.82) 

Since u(t)  is a solution of the differential equation (2.70), we have 
W(t-t ) 

u(t) e      u(t ).  Substituting this expression into the above 

equation, we obtain 
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r*       w(T-t ) 
x(t) = »(tn   «'X(T)Fe    0 tt(to)dT , 

o 

-,   ,    „    W(k-t ) 
and x(l + 1) = Cx(i) + C[/^ *"-L(T)FeWTdT]e    0 u(to) 

= Cx(l) + Du(i) , 

i = t + k,  k = 0, 1, 2, ... 

where D = C /^ «"1(T)FeWTdT. 

Applying the Z-transform to the above equation, we get 

x(z) = [zl - C]"1 Du(z) , 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

and the transfer function can he defined in the same way as Eq. 
(2.8l). The theoretical simplicity of this method is offset, 
however, by the practical difficulty in evaluating the integral, 
Eq.. (2.85). 

SEL-62-117 36 



Ill,  APPLICATIONS TO SYSTEM ANALYSIS AMD DESIGN 

A.  INTRODUCTION 

We have developed In the previous chapter the basic mathematical 

tools needed for analysis of linear systems with periodic coefficients 

(or parameters). So far we have discussed the representation of this 

class of systems by linear differential equations.  In this discussion, 

the main emphasis has been placed on the extension of Floquet theory 

to cover not only linear systems with continuous periodic parameters, 

but also linear systems with piece-wise continuous periodic parameters. 

Such systems include many modern engineering systems. 

Now we are in a position to use these tools in solving practical 

engineering problems.  In this chapter we apply the extended Floquet 

theory to the exact stability analysis of feedback amplifiers with 

periodically time-varying parameters.  The nature of design problems 

and limited design method based on the Floquet theory and frequency 

domain approximations are discussed by means of an example. We review 

briefly the basic features of a simple carrier frequency feedback 

"system in order to be better prepared for detailed discussions of more 

realistic examples later. 

The system model shown in Fig. 9 may represent several types of 

Physical systems, but in this case we will take it to be a carrier D.C. 

IS1<2 rv^ «.,(1) K(»)J^ 
^t) 

«2(t) H($) 

x,(t) 

J* 
t 

b 

FIG. 9.  THE BASIC MODEL OF CARRIER FREQUENCY FEEDBACK SYSTEM. 
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amplifier.  The forward transmission link represents a standard form 

of chopper modulated D.C. amplifier. The  low frequency (0 to about 

100 cps)  signal e(t) is modulated hy a high frequency carrier. 

This is done by a product-type modulator, m..(t). The modulated signal 

e(t)m-(t) is amplified by an A.C. amplifier K(s) and demodulated by 

another product-type modulator m (t). Normally m(t) =m(t), but 

this need not always he the case.  The demodulated signal x_(t)m (t) 

is passed through a low-pass filter H(s)  to attenuate the unwanted 

high frequency modulation products.  This chopper-stabilized amplifier 

is almost free of zero drift, which is the major problem in ordinary 

D.C. amplifiers.  The feedhack is used to maintain a constant trans- 

mission from input to output despite variations in operating charac- 

teristics of the components due to aging or environmental changes.  The 

basic model shown in Fig. 9 includes the most essential features only; 

there are many variations of this model in practice. 

B.  ANALYSIS OF FEEDBACK SYSTEMS WITH PIECE-WISE CONTINUOUS PERIODIC 

PARAMETERS 

1. The System Model and Basle Equations 

Now we take up a more realistic carrier D.C. amplifier and 

demonstrate the power of the extended Floquet theory in an analysis of 

the hth  order periodic system shown in Fig. 10. The system configura- 

tion is very similar to the one shown in Fig. 9 except that the system 

in Fig. 10 has a more complicated feedback link. The A.C. amplifier 

in the forward link is described by a second-order transfer function. 

The modulator-demodulator pair is introduced in the feedback link to 

provide a greater degree of isolation between the input and the output. 

The two modulators m (t) and m (t) are both periodic functions 

having a period 1, as sketched in Fig. 11.  The precise waveforms of 

m,(t) and m (t) are plotted from experimental data in Fig. lib. 

Neither m1(t), a piece-wise continuous periodic function, nor m (t), 

a continuous periodic function, is dlfferentlable at t = k and 

t = k + 1/2 , k = 0, 1, 2, ...  . 

Due to the presence of the two modulators, the system of Fig. 10 
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is represented by a linear differential equation with piece-wise con- 

tinuous periodic coefficients. Although this may be a special example, 

the method of analysis is general enough, so that it should be clear 

from this example how to proceed vtzh  other types of piece-wise con- 

tinuous, linear periodic systems. Th.e  system equations can be obtained 

directly from the model shown in Fig. 10 as follows: 

(p   +  w1)xl  = W^Xg   , 

(p + w
2)x2 = P3^ ' 

(p + w
3)x3 = p(-Kbm^x^)   , 

(P + wi+)\ = P^g^)  , J 

2 
m2 = i; 

(3-1) 

dt'    t>0' where nu(t + 1) = m^t); m2(t + 1) = m2(t); 

and some x.(0 )  are non-zero. 

Since m_(t)  and m (t)  are not always differentiable, and since 

the solutions of Eq. (3.1) are not necessarily continuous at the dis- 

continuities of m (t)  and m (t),  we rewrite Eq. (3.1) in a more 

convenient form by introducing a change of the state variables, as 

shown by the nonsingular transformation given below: 

or 

and 

Vl 

V2 

V3 

1 0 0              0   ^ rXl1 
0 1 -1              0 X2 

0 0 1    +Kbm^m X5 

-2 
0 0              1 _xlJ 

v(t) = P(t)x(t) 

p(t + 1) = p(t) , 

[3.2) 

The linear transformation,   Eq.   (3.2),   provides a two-fold advantage. 

First,  we avoid the differentiation of    EL.(t)     and    m  (t);   and second, 

the  new set of  state variables    v.     physically  correspond to the voltages 
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across the capacitors if we draw the electrical analogue. Fig. 12, of 

the system shown in Fig. 10. 

It follows from the basic laws governing electronagnetic phe- 

nomena that the voltages across the capacitors must be continuous pro- 

vided that no impulse is allowed. 

Combining Eqs. (3.1) and (3.2) we obtain the system equation 

in a standard form: 

rv] --w^Kbm^+l) Wlnl2 Wim2 
-w Kbm 

^2 
+w2Kbm1 -W2 -W2 

+w2Kbm1m2 

^3 
+w Kbm 0 

■W3 
+wqKbm1m2 

LV _-V2 0 0 -Vk 

V. 
3 

LTi. J 

(3.3) 

and 

v(t)  = A(t)v(t)  ,       t>0,       t=k+ti, 

A(t + 1)  = A(t)   , 

A(t)  = Ai(t)   ,       k+tj<t<k+ t^+1 , 

i  = 0,   1,  2 ;       k = 0,   1,  2,   ... 

>       i3.h) 

where    t    =0,     t-   = 1/2,     and    t2  = 1. 

This is the same type of equation as Eq. (2.6l) discussed, pre- 

viously in the extended Floquet theory. The boundary conditions are 

+o*- 

«i   = RjCj   , i  = I,  2,   3,  * 

FIG.    12.       AN   ELECTRICAL   ANALOGUE   OF   THE   CARRIER   SYSTEM. 

SEL-62-11T - kZ  - 



obtained from the fact that the solution    v(t)    must be continuous 

because of its physical interpretation mentioned above. 

v(k+) = v(k') = v(k)  , 

v(k + 1/2")  = v(k + l/2+) = v(k + 1/2)   . 

The solution is of the form 

v(t) = <I>(t)v(0+)  ,      Ho+) = I ,      t > 0 

Because of the periodicity of A(t), we have 

*(t + 1) = *(t)C ,  t > 0 , 

where C = *(1+) 

and 
x(k + 1+) = Cx(k+) ,  k = 0, 1, 2, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Since the coefficient matrix A(t) is not piece-wise constant 

but piece-wise continuous, it is not possible to calculate analytically 

the fundamental matrix ^(t). One can ccxapute, however, the discrete 

transition matrix C to any desired accuracy by a digital computer, 

2. Calculation of the Characteristic Roots and Stability Analysis 

It was shown by the extended Flosiuet theory in the previous 

chapter that stability of the linear system with piece-wise continuous 

periodic coefficients, Eq.. (3.3)> is ccmpletely determined by the 

eigenvalues of the discrete transition matrix C.  Ihese eigenvalues 

are called the characteristic roots of the system. 

a. Calculation of Characteristic Roots 

The constant matrix C is obtained fram nuaerical integra- 

tion of the matrix equation associated with B].. (3-3) over the funda- 

mental period: 

«(t) = A(t)*(t)  ,      *(0+) = I ,      0+ < t < 1+ , (3-9) 

%tl/2, XfiX , 
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A(t)  = A^t)   ,       0+ < t < 1/2 

A(t)  = AgCt)   ,       1/2 < t < 1 , 

with the boundary conditions: 

*(l/2+)  = *(l/2-)   ,       *(1+)  = *(!") (3.10) 

The numerical solution 4(1) = C may he obtained within adequate 

accuracy by various techniques of numerical analysis. ¥e shall apply 

the method of mean coefficients as outlined in the previous chapter 

(Ch. II, Sec. B-3). The  fundamental period Is divided into 21 subln- 

tervals in this example. The  result is given by Eq. (3.11). 

20 
$(r) = C f H exp A.T , 

1=0     ^ :L 
(3.11) 

where 

20 

1=0 
The computational algorithms for calculation of the matrix C and its 

eigenvalues are available as standard computer routines in most com- 

puter laboratories. 

b. Stability Analysis 

In order to compute the matrix C and its eigenvalues, we 

choose the parameter values w.., w, w_, w,  and Kb,  and the period, 

as shown in Fig. 13. The characteristic roots and the characteristic 

exponents for these parameter values are plotted in Fig. 13 and Fig. 

ika.,  respectively. It is interesting to compare the modulated feedback 

system shown in Fig. 10 with the unmodulated, continuous system which 

is obtained by setting m1(t) = m (t) = 1 in Figs. 10 and 11. For the 

same choice of parameter values, the continuous system becomes unstable 

for the loop gain Kb > 32.5,  as shown in Fig. I1*. 

3. Experimental Results 

The carrier frequency feedback amplifier shown in Fig. 10 is a 

"low frequency" model of the experimental amplifier shown in Fig. 15. 
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FIG.    13.       Z-PLANE   PLOT  OF   THE   CHARACTERISTIC   ROOTS  OF   THE   MATRIX   C. 
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PARAMETER  VALUES 

tb - 350 

»I • «2 - ttoi rat. /«ae. 
»3 • SOTT rtt. /tec. 
"» • WTT rtt. Ittc. 

T •  lO"3 »«. 

ß, 

* 

-100 

A, - -17,580 

OUT Of  SCALE 

-60 -20 
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a.     S-Plane   Plot  of   the  Characteristic   txponents  of   the  Matrix  C. 

PARAMETER VALUES 

W|   >  w-   ■ 2077 rad.   per  sec. 

M- >  SOTT rad.   per sec. 

M»  * m>77 rad.   per sec. 

UNSTABLE  FOR    kb > 32.5 

»:   EIGENVALUES 

H077 
^V      2077 

.b\ 

lb - 32.5 

J2*T 

jlOr 

/ 

K 
\ 
J 

b.      S-Plane  Locus  of   the Natural   Frequencies  of   the  Unmodulated,   Continuous   Systea 

FIG.    14.       A   COMPARISON   OF   THE   STABILITY   OF   THE   MODULATED   SYSTEM 
WITH   THAT   OF   AN   UNMODULATED   SYSTEM. 
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Since this is a D.C. amplifier, the frequency range of the input signal 

is limited to about 300 cps, and consequently the low frequency behavior 

of the system is of paramount importance. The transformers are used to 

block the transmission of any zero drifts associated with physical 

amplifiers and modulators, and to provide a better inter-stage isolation. 

The amplifier K and all three transformers are wideband, as shown in 

Figs. 16 and 17, and their upper cut-off frequencies are at least one 

order of magnitude greater than both the highest input frequency and 

the fundamental carrier frequency. Because of the wideband character- 

istics of the amplifier and transformers, the bandwidth of the loop 

transmission is predominantly determined by the cut-off frequency of the 

low-pass filter H(s). This cut-off frequency is at least two orders 

of magnitude below the upper cut-off frequencies of the amplifier and 

transformers.  The low frequency model of this amplifier is derived on 

the basis of the above reasoning.  Hie amplifier is driven by the low 

duty factor, one cycle per second pulse train as shown in Fig. iBb. The 

system. Fig. 18a, is excited periodically for about .15 second and the 

input is zero for about .85 second. A natural decay of the system 

during the time of zero input is analyzed frcm the oscillograms in Pig. 

19. 

We know from the Floquet theory that any natural decay of the 

system must be expressible as a linear ccmbination of the normal modes, 

and each normal mode is of the form p,(t)e  . Normally, we can 

measure one component of the state vector, 

xi(t) = > qi(t)e ^ ,  where q^t + T) = q1(t),  T = 10"^ sec. 

1=1 (3.12) 

If q^t)  are expanded in Fourier series, then we have 

q^(t) =  ) c<r,e
Jnnt,  where Q = 2« * 103 rad. per sec. 

'in 
n=-°o 

Passing x (t) through the low-pass filter as shown in Fig. 18a, we 
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FIG.     16.       AMPLITUDE   CHARACTERISTICS   OF   TRANSFORMER. 
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PARAMETER  VALUES 

lb =   350 

H|   < H« s 20r rad./sec. 

«3 ■ 3077 rad./sec. 

«q  "  IOTT  rad./sec. 

T  =   I0"3  sec. 

ZERO   INPUT ZERO   IKPUT 

HORIZONTAL  SCALE    50 «sec/c« 
VERTICAL SCALE 20 «v/c» 

FIG.     19.       RESPONSE   OF   CABRIER   AMPLIFIER 
(FIG.    18a)    TO    .15   SECOND   PLLSE. 
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obtain the osclllograms of Fig. 19. Since all the terms of q.(t) 

except the constant terms are attenuated by the.low-pass filter, only 
ßlt      P2% 

the sum of two dominant modes, a e   + a^e  , Is significant after 

about the first 50 milliseconds of decay. One can measure the expo- 

nents ß,  and ß  approximately from the oscillogram. The measured 

and calculated values agree to within the limits of experimental accu- 

racy, as shown below. 

a. Natural Frequency of Oscillation 

Calculated 7.5 cps 

Measured 8.214- cps 

eg error 9.85 ^ 

b. The Constant of Decay 

Calculated      k2 msec 

Msasured       30-^ msec . 

C.  LIMITED DESIGN BASED ON THE FLOQUET THEORY AND EXPERIMENTAL RESULTS 

1. The Nature of Design Problems 

There is a close relationship between analysis and design of 

any engineering system, and normally the developnent of simple, approxi- 

mate methods of analysis forms an essential part of the design. The 

Bode diagram, Nyqulst plot and Evans' root-locus method are the best 

known tools for engineers designing feedback control systems.  The 

popularity of these methods may be attributed to the fact that they 

allow "workable" approximations and simple analysis of the system 

response as a function of the critical design parametess, such as loop 

gain or bandwidth. 

The main difficulty in the design of linear systems with periodic 

parameters comes from the fact that we still do not have any simple 

method of analysis because we cannot in general obtain simple analytical 

relations between the characteristic roots and the system parameters. 

So long as we have no clear-cut Insight into this relationship, we 

probably will not be able to develop powerful yet simple design methods 

for linear systems with periodic parameters to the same extent we have 

developed such methods for stationary linear systems. The actual design 
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of any engineering system can seldom be accomplished by pure synthesis 

in most practical situations.  The system design may be divided into 

four steps, as follows [Ref. 36; also Ref. 1, pp. 36-ltO]: 

The first step is to write the design specifications outlining 

the specific functions to be performed by the system and the desired 

qualities of its performance in terms of the degree of accuracy, the 

speed of response, the allowable peak overshoot, the signal-to-noise 

ratio, the power capability of the output stage and the estimated cost, 

etc. 

The second step is to interpret as many of these specifications 

as possible in terms of constraints on the design parameters of the 

system.  This is often the most difficult part of the system design. 

Normally the designer is able to translate only a part of the specifi- 

cations into analytical constraints on the mathematical equations re- 

presenting the system dynamics.  Because of this difficulty, the actual 

design of any engineering system can seldon, if ever, be reduced to a 

pure mathematical synthesis. 

The third step is to select the physical components, such as 

the compensating networks and the controller, in addition to the fixed 

parts of the system, to realize the mathematical functions derived from 

the manipulations of the system equations formulated in the second step. 

The fourth and final step Is to evaluate the design and to im- 

prove the performance by a combination of analog and digital simulations. 

Also included in this last step is the experimental testing of the 

laboratory models. 

In most cases we can solve only parts of the design problem, 

although these may often be the most important parts, by analytical 

methods.  In this paper we shall first consider the limited design of 

carrier-frequency feedback systems with general periodic modulations. 

2.  Extension of the Root-Locus Concept to the Design 

Tne original root-locus method, as proposed by W. R. Bvans, 

[Ref. 3l]}   is a combination of analytical and graphical techniques that 

allows a rapid, approximate determination of the system eigenvalues 

(natural frequencies) as they are affected by variation of a critical 

design parameter, such as system loop gain.  Normally the characteristic 

- 53 - ■62-117 



equation of a single loop feedback system has the form 

D(s) + KN(s) = 0 (3.13) 

where D(s) and N(s) are polynomials in the complex variable s,  and 

K is the variable parameter.  A considerable simplification results if 

the polynomials D(s)  and N(s)  are known in factored forms; this is 

the case in which the root-locus method is most effective. If the poly- 

nomials D(s)  and N(s)  are not given in factored form, it is not 

possible to take full advantage of the root-locus method in determining 

the loci of the roots of Eq.. (3»13) as K is varied over a certain 

range.  If the critical parameter K does not appear in a simple form 

in the characteristic equation as shown by Eq. (3.13), it is almost 

hopeless to find a simple way to sketch the loci of characteristic roots 

as functions of the parameter K.  Unfortunately this is the situation 

we find in a design of carrier-frequency feedback amplifiers.  For 

example, in the linear system with piece-wise constant periodic para- 

meters shown in Fig. T, the characteristic roots are obtained frcm 

det [zl - C] = 0 , 

where C = S exp A (l/2)S1exp A (l/2),  and where the design parameters 

are included in elements of the matrices A.  and A . 1       c 
The coefficients of this characteristic equation are very compli- 

cated transcendental functions of the design parameters, so that it is 

just about impossible to find useful, simple relationships between the 

characteristic roots and the design parameters. We are forced to use 

a computer to calculate the characteristic roots as one design parameter 

is varied at a time.  For instance, we may vary the loop gain while 

holding the bandwidth to a certain value. We may then choose a suitable 

combination of the loop gain and bandwidth frco the family of root loci 

plots obtained in this manner. This is not necessarily a simple, effi- 

cient method for designing a carrier-frequency feedback amplifier; but 

it is straightforward.  It is a practical method if a digital computer 

is available. 
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Even though the root-locus method may be adequate for the ad- 

justment of the design parameters, the use of this method Is essentially 

design by repeated analysis, and hence is not applicable to the synthesis 

of compensating networks which are frequently needed in the feedback 

amplifier. This is perhaps the worst limitation of the design method 

discussed above. 

In the next section we shall Illustrate an application of the 

root-locus concept to the adjustment of design parameters. 

3.  A Design Example and Experimental Results 

A number of examples of design by the root-locus concept, in- 

cluding design of one fifth-order system, have been worked out, and 

good agreement with experiment has been obtained. >/e shall take the 

carrier amplifier shown in Fig. 10 as a design example. 

Normally there are four parts in the design specifications for 

a feedback amplifier.  These are: gain, bandwidth, stability and noise. 

In  the example based on Fig. 10, we assume that the random noises pro- 

duced in amplifiers and modulators are negligible. We only consider the 

unwanted sideband components (modulation products) generated by the 

modulation. 

a. Design Specifications 

1. An external D.C. gain variable from 20 do to 60 db and constant 
within 2 ^ of the nominal design value. 

2. Minimum bandwidth: 300 cps. 

3. Dominant time constant: less than .05 sec. and ^ = .5 (£=dsmplng 
ratio). 

k.   Output signal to noise ratio: oO db. 

5. Fixed components of the system: the characteristics of modulators, 
transformers and amplifier as shown in Figs. 15, l6 and 17. 

Usually there are additional design requirements not speci- 

fied above, but we ignore them in this example. 

Ideally, a designer should obtain the equations of the system 

with appropriate design constraints from the given specifications.  The 

mathematical solutions of these equations then should give the set of 

parameter values required to realize the specified design.  But the 

specifications given above are not completely reducible to such a set 

of purely logical and mathematical operations. 
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la the example now under consideration, we want to determine 

the cut-off frequency of a low-pass filter w , the gain constant K, 

and the feedback ratio b in such a manner as to meet the design speci- 

fications. 

h. Preliminary Design Calculations 

Now we actually calculate the preliminary design values of 

the system parameters.  Normally in this phase of design, a designer 

uses simple approximate models to facilitate preliminary calculations 

of the design parameters. It is a matter of skill, experience, and 

physical intuition of the designer to make workable simple models appro- 

priate to the design problems at hand. We shall use in this example a 

very simple and somewhat crude model based on frequency domain approxi- 

mations for calculation of the D.C. gain and the rnlm'mum bandwidth. For 

the purpose of stability analysis, to obtain the specified time constant 

and damping ratio, we use the system model in Fig. 10 and apply the 

extended Floquet theory. 

In order to derive the simple model suitable for calculation 

of the gain and handwidth, we follow reasoning based on the frequency 

response characteristics of carrier systems. 

First we consider the forward transmission link, which is 

redrawn in Fig. 20 for convenience. It is well known that the ultimate 

bandwidth of a carrier system such as shown above is limited by the 

fundamental carrier frequency ß,  and may never be greater than r:/2. 

We obtain the simple approximate model of the forward transmission link 

as shown in Fig. 21 if we assume: 

G{8) 2     ,   H(») = -I^i- 
($-h»2)(»-K<3) s-tw, 

FIG.    20.      THE   FORWARD   TRANSMISSION    LINK. 
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y(t) 

FIG. 21. A SIMPLIFIED MODEL OF THE FORWABD LINK. 

1. the input signal is band limited to ß/3.> 

2. the total amount of  energy in the sidebands is about 
signal energy in the output. 

of the 

In the example under consideration, the latter condition is generally 

satisfied for the range of the parameter values 0 < w. < •i/10, 

i = 1, 2, 3. 

Finally, we obtain the simplified model in Fig. 22 for the 

complete system if the feedback link is also replaced by the same type 

of approximate model as used for the forward transmission link. The 

reduction of gain constant frcm K to .7K is caused by the differences 

in phase and waveforms of m-(t)  and mp(t).  The average gain from 

f(t)  to y(t)  in Fig. 21 is about  -.7K,  which can readily be calcu- 

lated from Fig. lib. 

Now we calculate the D.C. gain and bandwidth from the model 

in Fig. 22 for comparison with measured values from the experimental 

carrier amplifier in Fig. 15. The gain and bandwidth of a carrier sys- 

tem need to be defined carefully, because its output contains a count- 

ably infinite number of sidebands in addition tö the signal-frequency 

FIG.    22.       THE   SIMPLIFIED    SYSTEM   MODEL. 
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component. We therefore define the gain as the ratio of the amplitude 

of the signal-frequency component of the output to that of the Input 

signal. We accordingly define the bandwidth as the frequency at which 

this gain falls 3 db below Its B.C. value. 

From the transfer function 

X1(s)       -.TKw 
T(s) = FTiF = s + U + -TKb^ (3.110 

It Is an easy matter to calculate the gain and bandwidth.  In order to 

maintain the constant gain within the specified tolerance of 2^, we set 

the loop gain Kb = 100,  since the gain sensitivity is Inversely pro- 

portional to the loop gain in the single loop feedback system. 

The external gain K  and the bandwidth B  are 

K. 
1 
b Bt7 = (1 + .7Kb)w. (3.15) 

10 < K < 10  in order to vary from and 10 "' < b < 10   with 

20db to 60db with the loop gain Kb = 100. 

The bandwidth calculated from Eq. (3.15) and the measured 

values from the experimental amplifier shown in Fig. 15 are compared 

below: 

1. Kb = 100,       w1 = 8it rad./seo.   (+ 10^) 

Calculated    B    = 281+ cps   (+10^) w — 
Measured    B    = 272  cps w 

2. 

% error = h.k% (-5-9^ to +11.1^) 

Kb  = 100,       w     = 12«  rad./sec.   (+ 10^) 

Calculated B = 426 cps (+ 10^) w — 
Measured B = 3^5 =Ps w 
% error = 16.7^ (+5^ to +26.2^), 

w = 20« rad. per sec jOn rad. per where other parameters are: 

sec. and w, = l+Cht rad. per sec. 

These data indicate that the errors in bandwidth calculations 

based on the simplified model increase as the input signal frequency 
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and the bandwidth B  approach the ultimate limit,  ft/2, which is 

equal to 500 cps in this example.  The agreement between the calculated 

and measured external gain K , however, was well within the specified 

tolerance of + 2^. 

Having calculated the gain and bandwidth from the simplified 

model shown in Fig. 22, and having obtained experimental support for 

the model, one may be tempted to use the same model for stability analy- 

sis. Here one must be warned very strictly that the model under con- 

sideration is not valid for stability analysis, as will be shown in the 

next section. 

c. Stability Analysis for the Design 

It appears fron Eq. (3.1^) that the natural response remains 

well damped even if the loop gain Kb  increases without bound.  This 

conclusion which is based on the simplified model, is proved completely 

wrong by stability analysis based on the original model shown in Fig. 

10, which is the more accurate model of the experimental amplifier 

shown in Fig. 15. 

In order to find the allowable range of parameter values 

which satisfy the design requirements, we extend the basic concepts of 

Evans' root-locus method.  Since the characteristic exponents determine 

the dominant time constant and the damping, we plot the migration of 

characteristic exponents as functions of the loop gain Kb in Fig. 23. 

Because of the extremely complicated relationships between the charac- 

teristic exponents and the loop gain, the numerical values of the 

characteristic exponents corresponding to different settings of the 

loop gain Kb are obtained by machine computation.  The entire com- 

putation takes no more than a few minutes if a digital computer Is 

used.  In Fig. 23, all the system parameters except the loop gain are 

held constant.  The shaded area is the "forbidden region".  The charac- 

teristic exponents must be located to the left of this region to satisfy 

the design specifications.  One may also plot the loci of characteristic 

exponents as functions of the low-pass cut-off frequency w  while 

holding all other system parameters constant.  This is done in Fig. 2k. 

From plots of this type, one could also construct a map in the two- 

dimensional parameter space, Kb-w  plane, to plot the boundary which 
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PARAMETER VALUES: 

PERIOD «  IO"3 sec 

W| = Wj = 2077 rad. /sec. 

W3 = 3077 

W,! = 1*077 

Kb =  100 

£ > .5 

x 
150 

Im 

-    jtO 

-    J20 

Re 

-100 -80 -60 

I, - DAMPING RATIO 

TJ = THE DOMINANT TIME CONSTANT 

SHADED AREA:   FORBIDDEN  REGION 

FIG.    23.       THE   LOCI   OF   CHARACTERISTIC   EXPONENTS   AS 
FUNCTIONS   OF   LOOP   GAIN      Kb. 
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PARAMETER VALUES 

I0"3 »ec. PERIOD > 
w2 -   2077 

w3 -   3077 

w^ -   1*077 

Kb -   100 

2077 

•100 -80 

£ - DAMPIHG RATIO 

rH '  THE OOMIMANT TIME CONSTAHT 

SHADED AREA:  FORBIDDEN REGION 

-60 

FIG. 24.  THE LOCI OF CHARACTERISTIC EXPONENTS 
AS FUNCTIONS OF THE CUT-OFF FREQUENCY  «,. 
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separates the plane Into the allowed and forbidden areas. 

d. The Output Signal-to-Noise Ratio 

The weakness of the present design method shows up most 

clearly at this point.  If we choose the three parameters, K, b, and 

w  to meet the design specifications on the B.C. gain, bandwidth, 

dominant time constant, and damping ratio), then we have little choice 

but to accept whatever signal-to-noise ratio results from the above 

choice of design parameters.  It is clear from the system model shown 

in Fig. 10 that the high frequency noises generated by the modulators 

are attenuated mostly by the low-pass filter. The cut-off frequency 

of this filter w  determines the bandwidth, as already shown by Eq. 

(3.15).  It can provide, however, only fixed 20 db/decade attenuation 

rate. This is not enough to meet the specified output signal-to-noise 

ratio of 60 db. 

Perhaps the simplest (but not necessarily the most elegant) 

solution is to filter the output x (t) in an ad-equate manner outside 

the feedback loop, as shown in Fig. 25.  The output filter H (s) may 

be designed by a number of well-known network design techniques [Refs. 

38, 39]» The fourth-order Butterworth filter is found to have adequate 

cut-off characteristics for this application. The signal-to-noise ratio 

in the filtered output x (t)  now meets the design specification.  The 

element values of the filter may be found directly from available tables 

[Ref.>0]. 

e. Concluding Remarks on the Design 

The design example discussed above shows that linear feed- 

back systems with piece-wise continuous periodic parameters may be 

.nKiH: 
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designed in almost the same manner as we design stationary linear feed- 

back systems. The  familiar concepts and techniques such as frequency 

domain approximations and root-locus method apply directly to the de- 

sign of linear systems with periodic parameters. The type jf stability 

analysis and the filtering of high frequency modulation products are 

the only major differences between stationary linear systems and linear 

systems with periodic parameters. Because of the great degree of 

similarity between the two classes of linear systems, the design of 

linear systems with periodic parameters will be greatly facilitated if 

there are reliable systematic procedures by which one can always find 

the approximately equivalent stationary models adequate for analysis 

and design.  It seems possible to develop such approximation procedures 

if the carrier to signal-frequency ratio is not lower than 10:1- This 

approximation problem is not studied in this chapter; but it seems im- 

portant enough to deserve future investigations. 

The problems concerning analytical design and synthesis of 

compensating networks have also not been discussed to this point.  Since 

the Floquet theory is primarily a tool of analysis, there seems to be 

no straightforward way to apply It to the compensation of linear feed- 

back systems with periodic parameters.  This is clearly seen from the 

fact that one must have the differential equation of the compensated 

system to apply the Floquet theory, but one cannot write the differential 

equation unless one knows the structure of the compensating network. 

Once a specific form of compensation, such as a lead network or a lag 

network, is assumed, one can adjust parameter values of the ccmpensating 

network in the same manner that the gain and bandwidth are adjusted in 

the design example.  It is, however, not possible to obtain the struc- 

ture and parameter values of a desired compensating network from the 

Floquet theory.  Seme aspects of these problems will be discussed in 

the next chapter, wherein we study the application of Integral equations 

to the synthesis of compensating networks. 
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IV.  APPLICATIONS OF INTEGRAL EQUATIONS TO THE STUDY OF LINEAR 
FEEDBACK SYSTEMS 

A.  REPRESENTATION OF LINEAR FEEDBACK SYSTEMS BY VOLTERRA INTEGRAL 
EQUATIONS OF THE SECOND KIND 

In the study of physical systems which can he represented hy dif- 

ferential equations, one may often gain a hetter insight into the 

physical nature of the problem, or one may solve the problem more 

easily, hy representing the given physical system hy an integral equa- 

tion. 

First it is shown in this chapter that a wide class of linear feed- 

hack systems (including stationary, sampled-data and carrier frequency 

feedback systems) may he studied from a unified point of view hy appli- 

cations of Volterra Integral equations of the second kind. 

Second, it is shown that the integral aquation formulation leads 

to a straightforward mathematical solution of the compensation problem 

for a limited class of linear feedback systems with periodic parameters 

1.  Integral Equations as Generalizations of the Convolution 
Integral Approach 

During the past two decades, analysis and design of time- 

invariant (stationary) linear systems have been carried out in terms 

of the convolution integral and associated convolution transforms, 

among which the Fourier transform and the Laplace transform are perhaps 

the best known methods. These transform methods are most effective in 

solving special classes of linear integral equations. We shall now 

consider two simple examples of linear feedback systems which naturally 

lead to linear integral equations. 

Example (l) 

The system equation for Fig. 26 is: 

x(t) = V e(T)h(t - T)dT = )    [fir) + bx(T)]h(t - -r) dr , 

or 
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f(t) ^X^ e{t) x(t) 

b = A COMSTANT MULTIPLIER 

FIG.    26.       A   SIMPLE   STATIONARY   FEEDBACK   SYSTEM 
(EXAMPLE   1). 

t t 

x(t) - b j x(T)h(t - T)dT = J f(T)h(t - T)dT ,    (4,1) 
o o 

t > 0+,  x(0+) = 0. 

The unknown, x(t), appears under the integral sign. This is a con- 

volution type integral equation, a special case of the Volterra integral 

equation of the second kind.  (See Ref. 17, Chapter II, and Ref. kl, 

Chapter II.) Equation (4.1) can be reduced to the familiar algebraic 

equation by the Laplace transform: 

X(s) - bX(s)H(s) = F(s)H(s) , (4.1a) 

or 

x(s) = i -(bi(s) F(s) = w(s)r(s) . 

This is normally regarded as the basic equation of the single loop 

feedback system in Fig. 26. Although the transfer function concept 

based on the above equation is very useful, this specialized approach 

has serious limitations if the system is no longer stationary (as will 

be shown next). 
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Example  (2) 

ffl(t) = A TIME-DEPENDENT MULTIPLIER 

FIG.    27.       A   SIMPLE   NONSTATIONARY   FEEDBACK   SYSTEM 
(EXAMPLE   2). 

Figure 27 represents a simple example of nonstationary feedback systems 

with a modulator m(t) and the transfer function H(s).  The system 

equation is: 

x(t) - b J x(T)m(T)h(t - T)dT = y(t) , t > 0+       (^.2) 
o 

r* 
where y(t) = \    f(T)m(T)h(t - T)dT is the "open loop" response when 

Jo 
there is no feedback, i.e., when b = 0. 

Taking the Laplace transform, we have 

X(s) - [x(s)*M(s)]H(s) = Y(s) , (^.3) 

where * denotes the convolution in s. 

This is not an algebraic equation in X(s) but a convolution type 

integral equation in the complex variable s.  It is not possible to 

solve this equation analytically except in special cases; consequently 

we cannot calculate the transfer function as in the stationary case. 

Even for the simplest possible modulation,  m(t) = 2 cos wt,  Eq. (^.3) 

becomes 

X(s) - [X(s - jw) + X(s + jw)]H(s) = Y(s) (^.»0 

This is a functional equation in the complex variable  s.  The mathe- 
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matical theory on this subject does not seem to be adequately developed. 

Even a very simple example such as the one now under consideration is 

enough to point out the rather serious limitations in the application 

of the Laplace transform method to the analysis of nonstationary linear 

systems.  It is therefore not only desirable, but necessary, to start 

with more basic concepts than those of transfer function and Laplace 

transform in order to formulate a more general theory applicable to 

both stationary and nonstationary linear systems. 

The Volterra integral equation of the second kind seems to pro- 

vide an excellent tool for analytical investigations of general linear 

systems. A standard form of this equation is 

t 

x(t) - b j k(t, T)x(T)dT = y(t) , 

where y(t) and k(t, T) are known, and k(t, T) is called the kernel. 

A physical system represented by Eq. (4.5) is the time-varying linear 

feedback system shown in Fig. 28, if we set 

y(t) = J f(T)k(t, T)dT . 

Equation (4.5) reduces to Eq. (4.1) if - the system is stationary; 

i.e., if k(t, x) = h(t - T). 

In the case of many modulation systems, the kernel has the 

following form: 

k(t, x) = m(T)h(t - T) . (4.6) 

f(t) e{t) 
k(t,q) 

x(t) 

FIG.  28.   A PHYSICAL MODEL OF THE VOLTEBRA EQUATION. 
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This Is called a separable kernel [Ref. h2],  or product-type kernel, and 

plays a very Important role in the study of periodically sampled sys- 

tems and amplitude modulation systems. 

In general it is not possible to tell the structure of the 

physical system from the differential equation of the system alone, 

because there are many different physical systems which lead to the 

same form of differential equation. For instance, the form of a dif- 

ferential equation describing a feedback system is not different from 

the form of a differential equation describing a stable system without 

any Intentional feedback. Unless we have a priori knowledge that the 

given differential equation comes from a stable system, the form of 

the equation,  x = A(t)x,  does not reveal whether the system is stable 

or not. 

In the integral equation representation, on the other hand, it 

is possible to indicate clearly the presence of any Intentional feed- 

back in the system. Furthermore, it is more convenient to talk about 

the general properties of the system in the integral equation formula- 

tion than in the differential equation formulation. The relative merits 

of the two formulations will become clearer as we go along. 

2. Conversion of the Ordinary Differential Equation Into a Volterra 
Integral Equation 

Now we set up a general procedure to be followed in going from 

one representation of the physical system, namely, the ordinary linear 

differential equation, to the other representation, that is, the Vol- 

terra Integral equation of the second kind. The theory of Volterra 

integral equations of the second kind Is particularly simple, and the 

estimates on the bounds of the solutions can be obtained more readily 

than in the differential equation fomulation of the same problem. 

Consider the following differential equation: 

x(t) = A(t)x(t) + u(t) ,  x(0) = 0 , 0 < t < oo ,    (1^.7) 

A(t):  continuous and bounded n *    n   matrix , 

u(t):  continuous and bounded n x 1 matrix . 
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The formal solution of this equation as given by Eq. (2.19) is of little 

use In practice because we cannot find In general the fundamental matrix 

*(t). If we convert, however, the above equation Into a Volterra In- 

tegral equation of the second kind [Ref. 33, pp. 1-11 to 1-13L then 

we can find an upper bound and a lower bound of the solution x(t) 

readily by application of Gronwall's lemma [Ref. 12, p. 35> and Ref. 

27, pp. it-O-Ul] and the theory of linear operators [Ref. 29, Chapters 3 

and k;  Ref. ^3, pp. 48-93; and Ref. kk]; 

In order to convert Eq. (4.7) into a Volterra Integral equation 

of the second kind, we decompose the time-dependent matrix A(t) into 

a sum of two matrices: a simple constant matrix W and a time-dependent 

matrix B(t). 

A(t) = W + B(t) . (4.7a) 

This decomposition is arbitrary, except that the constant matrix W 

should be so simple that its exponential,  exp Wt,  can be analytically 

calculated without tedious labor. 

The new differential equation becomes 

x(t) = Wx(t) + B(t)x(t) + u(t) (4.8) 

This can be transformed into a Volterra integral equation of the second 

kind: 

X(t) - \ H(t - T)B(T)x(T)dT = \ H(t - T)u(T)dT ,      (4.9) 

where H(t) = exp Wt. 

This is the vector-matrix form of the scalar equation (4.1) and physi- 

cally corresponds to the multi-dimensional feedback system shown In 

Fig. 29. 

Equation (4.9) may be written in a simpler form with the aid of 

operator notation. 

x - KBx = Ku or  [l - KB]x = Ku , (4.9a) 
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£(1)   =  J     H(t-T)e(T)dT 
o 

B(t)  = A MATRIX MULTIPLIER 

FIG.    29.       A   MULTI-DIMENSIONAL   FEEDBACK   SYSTEM. 

where K is the convolution operator defined hy Kx = / H(t - T)x(T)dT. 

This is a linear operator equation.  Now we can apply the theory of 

linear operators to the above equation to solve for x and find its 

bounds, as will be shown in the next sections. 

B.  ELEMENTS OP INTEGRAL EQUATION THEORY 

We have given examples of the representation of linear dynamic sys- 

tems by integral equations. Now we discuss a limited aspect of integral 

equation theory which is directly applicable to the study of linear 

feedback systems. 

1. The Classification of Linear Integral Equations 

Linear integral equations are basically classified into three 

kinds. We list each kind below and point out the physical significance 

wherever possible. 

a. Linear Fredholm Integral equation of the first kind: 

h(t, T)x(T)dT = f(t),   a < t < b , (^•11) 

b. Linear Fredholm integral equation of the second kind; 

x(t) - A j h(t, T)X(T )dT = f(t) . (^.12) 

where A = a parameter. 
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c. Linear Volterra integral equation of the first kind: 

„t 

T)x(T)dT = f(t),     a < t < oo (^.13) Ih(t' 
d. Linear Volterra integral equation of the second kind: 

x(t) - A \ h(t, T)x(T)dT = f(t) , (h.lk) 

e. Linear Integral equation of the third kind: 

[t)x(t) - Ä \ h(t, T)x(T)dT = f(t) . (^.15) 

The unknown x(t) always appears under the Integral sign, and all other 

functions in the above equations are known. The function h(t, T) is 

called the kernel of the integral equation. The Fredholm equations 

have the fixed limits of integration,  a and b,  while the Volterra 

equations have the variable upper limit,  t. 

The well-known Wlener-Hopf equation for the nonstationary ran- 

dom process [Ref. k^]  is a special case of Eq. (^-.11).  Equation (^.l^) 

Is the same as Eq. (^.5)^ which represents the time-varying feedback 

system in Fig. 28. 

2. The General Method of Solution 

The solution of the Inhcmogeneous differential equation (^.7) 

has the form 

X(t) = \ <I>(t)*"1(T)u(T)dT . 

But this equation is of little use, as mentioned previously, because 

in practice we cannot generally find the fundamental matrix *(t) 

explicitly. 

The situation seems somewhat Improved, at least in principle, 

if the differential equation is converted into the Volterra Integral 
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equation of the second kind; because It is then always possible to 

write down the solution of this integral equation explicitly by the 

Neumann series expansion [Ref. 31, pp. 3^-37, and Ref. h6].    Since 

each term of the series is an integral, it is necessary to evaluate 

these integrals in order to put the solution in a more useful form. 

Now let us consider a Volterra integral equation of the second 

kind in vector form. 

x(t) \  H(t, T)XI (T)dT = f(t) , {k.l£) 

where f(t) is bounded for all t > 0 . 

The solution of this equation (see Ref. kl,  pp. 13-15, and Ref. ^7) is: 

t t 

x(t) = f(t) + \ H(t, T)f(T)dT + \ H(t, T)f1(T)dT + ... 

\ H(t, T)fa(T)dT + (^.17) 

where ^'=1 H(t, T)f(T)dT ,  and f (t) 
-nv ' ■ 

H(t, T)f1_1(T)dT . 

This solution is valid only if the series converges uniformly. 

It is necessary and sufficient for the uniform convergence that 

the norm of H(t, T) be bounded in the closed region, 0 < * < T, 

0 < T < t, for any finite T. 

It is sufficient for the uniform convergence, but not necessary 

that H(t, T) be bounded and continuous with respect to t and x. 

The solution x(t) is continuous if the kernel H(t, T) is 

either continuous with respect to t and T or its discontinuities 

are limited to the types specified by Kolmogorov and Fomin [Ref. 29, 

pp. 112-116]. From the latter case, one can infer a precise condition 

under which the solution of a linear differential equation with piece- 

wise continuous coefficients may be continuous. This is done by trans- 

forming the differential equation into the Volterra integral equation 

of the second kind with a piece-wise continuous kernel. Previously, 

in Chapter II, we have stated the existence of continuous solutions 

for piece-wise continuous, linear periodic systems on the basis of 
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physical reasoning. The mathematical condition is now given in the 

reference cited above. 

The solution given by the Neumann series, Eq. (4.17), is of 

little practical value unless the integrals can be evaluated readily 

and unless the series converges very rapidly. Unfortunately, such is 

not generally the case in practice, and one must normally find some 

approximate methods of estimating the infinite sum of terns. Because 

of this fact, the Neumann series solution, Eq.(4.17), is primarily of 

theoretical interest and is not suitable to practical applications 

except in special cases. 

C.  ANALYSIS AND COMPENSATION OF FEEDBACK SYSTEMS BY VOLTERRA INTEGRAL 
EQUATIONS OF THE SECOND KIND 

1. Introduction 

It has already been shown that general, nonstationary linear 

feedback systems may be represented by Volterra integral equations of 

the second kind. Now we want to explore the advantages of integral 

equation representations in the analysis and compensation of a very 

broad class of feedback systems. It is shown hereafter that stationary 

linear systems, periodically sampled systems and nonstationary linear 

systems all may be represented by a single integral equation.  Each 

class of the linear systems mentioned above corresponds to special 

conditions on the kernel of an integral equation. We can deduce, there- 

fore, the known classes of linear feedback systems simply from the 

Volterra integral equation of the second kind, and thus place the 

specialized tools such as Laplace transform and Z-transform in a clear 

perspective. 

The synthesis of ccmpensating networks for a limited class of 

nonstationary feedback systems is most readily formulated by means of 

the integral equation. This feature seems to be one of the potential 

advantages of the integral equation representation over the differential 

equation representation. 

2. The Stationary linear Feedback System 

We derive the stationary linear feedback system as a special 

case of the nonstationary system represented by Eq. {h.9)   and sketched 
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in Fig. 29. 

■ 

x(t) - \ H(t - T) B(T)x(T)dT = \ H(t - T)u(T)dT . J 
Since the time-dependent matrix B(t) represents the nonstationaa^y 

part of the system, as may be seen clearly from Eq.. (^.8), we set 

B(t) = B ,  a constant n x n matrix. Then we ohtain the stationaxy 

system 

-"-t ■ 

H(t - T)Box(T)dT » \ H(t - T)u(T)dT .      (^.18) 

Taüng the Laplace transform of both sides, we have 

x(s) - H(s)B x(s) = [I - H(s)B ]x(s) = H(s)u(s) ,    (^.19) 
o— o — 

and 

x(s) = [I - H(s)B^]"1H(s)u(s) 

From this equation,  we  can now define the  generalized transfer function 

as 

T.     (s)    =    -Si, r-    . ij u (s) (^.20) 

This  coincides with the conventional transfer function defined for the 
single-variable system,  if    x,    u,     H    and    Bo    are all scalars in 
Eq.   (14-.18).     We note that it is also possible to derive the  same  result 
from the differential equation (k.Q) if we set    B(t) = B .    An inter- 
ested reader may  consult the article by Kavanagh  [Ref.  hQ] for an ex- 
tensive treatment of mxilti-variable  control systems. 

3. The Sampled-Data Feedback System 

We may regard the simple nonstationary feedback system shown in 
Fig.  27 as the basic model of sampled-data systems if the modulator, 

m(t),     is the  sampler defined by 

00 

m(t)  =  YöCt - k) ■ i(t)  , (^.21) 
k=-oo 
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where k is an integer and 5(t) is the impulse. In order to derive 

the conventional result, we use Eq. (k.2),  which is a scalar form of 

Eq. (M). 

x(t) - b \ x(T)i(T)h(t - T)dT = \ f(T)i(T)h(t - T)dT . 
« b (k.22) 

If we take the Laplace transform of both sides. 

X(s) - b[x(s)*l(s)]H(s) = [F(s)*l(s)]H(s) . (^.23) 

This is the same type of integral equation as Eq. (^.3), but 

the following important property of l(s) makes it possible to solve 

this equation [Ref. 1, pp. 109-110]: 

l(s)*([F(s)*l(s)]H(s)\ = [F(s)*I(s)][H(s)*l(s)]     (k.2k) {b 

")■ 

In order to simplify the notation, we shall henceforth set 

X(s)*l(s) = X (s).  If we convolute l(s) with Eq. (4.23), we obtain 

(4.25) X*(s) - bX*(s)H*(s) = F*(s)H*(s) , 

and 

X*(s) =  H (S1  F*(s) = T*(s)F*(s) . 
1 - bH (s) 

One may Introduce the conventional Z-transform here to express the 

above result in the Z-domaln: 

H(z) 
X(z) = 1 - bH(2) 

F(z) = T(Z)F(Z) • (4.26) 

It should be clearly understood that the solution of Eq. (4.23) 

was possible only because of the special property of l(s)  expressed 

by Eq. (4.2^). Otherwise, it is generally not possible to solve the 

integral equations (4.22) or (4.23) explicitly in a closed form. 

We also note that it is not necessary to introduce the de-sampler 
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or holding device, as is done in many cases [Refs. 6, ?], when the 

sampled-data system is represented by differential equations.  If the 

de-sampler is not allowed, then the differential equation of a sampled- 

data system will contain at least impulses in its coefficients. This 

can he seen from Eq. (3-3)> if we replace the modulators m (t)  and 

m2(t) by appropriate impulse samplers i^Ct) and i?(t). Although 

the differential equation with distributional coefficients may be 

handled by the theory of distributions [Ref. 31, pp. I35-IV3], the 

integral equation provides a more elegant and simpler treatment of 

the sampled-data system. 

k.  Estimates on the Bounds of Solutions 

It is quite convenient to estimate the lower bound of the norm 

of the state vector in the integral equation representation. In many 

cases, this lower bound corresponds to the steady state "gain" of the 

system. For instance let us consider the multl-dimensional feedback 

system shown in Fig. 29. Using the simpler form of the system equation 

x - KBx = Ku , 

we obtain the following inequality from the property of the norm [Ref. 

k3,  pp. 81-83]: i| pt 

H(t - T)u(T)dT II 

-T  •       (^.27) 

1 + f||H(t - T)|t|B(T)|dT 

It is also possible to derive from this equation the result analogous 

to the familiar feedback gain formula 

x    = 1 + fUrlN^prlW (^.28) 

if 11K II INI » 1. 
It is assumed in the above that    x    is bounded.    The application of 

Eq.   (^.28) to the ^th order system shown in Fig.   10 has shown the  same 
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result that was obtained by the frequency domain approximation discussed 

in the previous chapter. 

The equations (4.27) and (4.28) give estimates of "magnitude" of 

the system response, but neither gives any indication of stability. In 

order to obtain useful stability bounds, it Is necessary to estimate an 

upper bound of the system response |jx|| as a function of critical sys- 

tem parameters such as gain and bandwidth, etc. Unfortunately, estimates 

of upper bounds based on the property of the norm 

iillir^ ('1.29) 

or on the Gronwall's lemma, give too conservative results to be useful 

for design of feedback systems.  For example, if we apply Eq,. (4.29) or 

Gronwall's lemma to Example (l) shown in Chapter II, we obtain the ex- 

tremely conservative result from both estimates that the system is 

stable for KbM < b. But It is seen from the exact solution of the 

system equation (2.24) that the system could be stable even If KbM ■* oo. 

It may be tentatively concluded from the above discussion that 

the estimates of stability bounds based on the norm are too crude and 

too conservative to be useful for practical applications.  It is, there- 

fore, necessary to develop more refined estimates of stability bounds 

for successful applications of the Integral equation representation to 

analysis and design of nonstatlonary linear feedback systems. So far, 

no satisfactory mathematical theory on stability of the Volterra Inte- 

gral equations has emerged. 

Next we shall consider application of Integral equations to the 

synthesis of a limited class of nonstatlonary feedback systems. 

5. Compensation of Nonstatlonary Linear Feedback Systems 

We now consider a class of nonstatlonary linear systems which 

may be separated Into stationary parts characterized by transfer func- 

tions and time-dependent multipliers which may represent modulators or 

time-variable gain. 

The feedback system shown In Fig. 30 belongs to this class.  We 

assume that the input f(t),  the response x(t)  and all the components 
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Mt) B(jw) m3(t) 

FIG.     30.       A   TIME-VARYING   FEEDBACK    SYSTEM. 

except H (jw)  are specified in the above system, and that these quan- 

tities are Fourier transformahle.  F(jw)  denotes the Fourier transform 

of f(t).  It is desired to find the compensating filter H (jw)  such 

that the system will produce a specified response for the given input 

f(t). 

The system equations are obtained directly from Fig. 30* 

\ e(T)m1(T)g(t - T)dT = y(t),   g(t - T) s 0 for x > t , 
(^•30) 

\ y(T)m2(T)h(t - T)dT = x(t),   h(t - T) s 0 for  T > t , 

(Ml) 

e(t) = f(t) - m^t) J x(T)m (T)h(t - T)dT,   b(t - T) s 0 for T > t, 

(^.32) 

where H(jw) = H (jw)H (jw),  e(t) =0 for t <'o but m.(t) ^ 0, 

and i = 1, 2, 3, ^ for t < 0. 

Solving these equations simultaneously, we obtain 

H(jw) 
X(jw) 
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{[E(jw)*M1(jw)]G(jw))*M2(jw) 

and Hc( jw) = g-Q^jj H(jw) . 
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In order for H (jw)  to be physically realizable, it must satisy the 

Paley-Wiener criterion [Ref. U9]: 

CO 
log |Hc(jw)|| 

dw < 00 , 
1 + w 

(^.3^) 

If we set    jw = s    in Eq.   (^-.33)^  we may use  sin alternate  criterion 

for the physical reallzablllty. 

H (S)  = X(s) 3^ = Nisi ) 

{[E(s)*ML(s)]G(s)}*M2(s)  ^(S)       D(S) 
(M5) 

where    E(s)  = M1|(S)*{B(S) [M (s)*X(s) ] ^ 

In order for H (s) to be physically realizable, all the poles of 

H (s) must lie in the left half of the s-plane. 

We consider a special case in order to illustrate some of the 

problems involved In the synthesis of H (s).  If we make the following 

choice of components for the system shown in Fig. 30: 

m1(t) = m2(t) = e
jnt + e"^,  m^t) = m^t) = 1 ,  and B(s) = 1 , 

then the system represents a simple carrier feedback system.  In this 

case, we obtain the following expression for H (s) from Eqs. (4.30) 

and (4.31): 

Vs) = rfii —  oK   '  B(s)[G(8+jO) + G(s-jn)] + E(s+j2fi)G(s+jn) + B(8-J20)G(a-jO) 

(4.36) 

Since both    E(s)     and    G(s)     are rational functions of     s,     we  set 

E(s)  = Po(s)/Qo(s)     and    G(s)  =  -KNo(s)/Do(s), 

resulting expressions into the above equation. 

E(s)  = P (s)/Q (s)     and    G(s)  =  -KN (s)/D  (S),     and substitute the 
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Hc(s)=-i^ 
QoQlQ-lDlD.l 

K ^^ po(NiD-i + ^A^^-a + Qo(p2
Q.2

NiD.i + ^V-iV 

It is seen from the above equation that the order of H (s) 

could be greater than the sum of the orders of P0(s), Q.As),     ®Qi
s) 

and D (s). Assuming that X(s)/H (s) is analytic for Re s > 0, 

D(s, jß) must he a Hurwitz polynomial [Ref. 50], and N(s, jfl) must 

he a polynomial of s with real coefficients, in order to satisfy the 

physical realizahillty criterion. Both D(s, jfi) and N(s, JO) are 
k 

in general polynomials of the form , E c, s  having real coefficients, 

c, ,  as seen from Eq. {h.36).    Some of the coefficients of D(s, JH), 

however, could he negative. It is, therefore, possible to realize 

H (s) with time-invariant linear networks only in special cases. 
cx ' 

The recent report hy Weiss [Ref. 5l] presents a reasonably 

complete theory of a special class of carrier frequency networks, 

but there are not yet theories which state precisely the constraints 

which would be necessary on E(s) and G(s) in Eq. (^.36) to insure 

the physical realizahillty of H (s). There seem to be no published 

papers on the synthesis of Hjis) as shown in Eq. (^.35). 

It is mathematically straightforward to obtain the "formal" 

solution of the compensation problem for the simple case considered 

above. However, the analytical complexity of formal solutions as seen 

from Eqs. (1+.35) to (^-ST) tends to make this formally elegant procedure 

rather impractical. 

In consequence of the difficulties described above, a designer 

of carrier frequency control systems may find at present that the trlal- 

and-error method of compensation with the aid of Floquet theory is more 

efficient and practical than the formal procedure based upon use of 

the integral equations. 
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V.  SUGGESTIOMS FOR FURTHER WORK 

The work presented in the previous chapters may he extended in 

hoth theoretical and practical directions, as described helow, 

A.  STABILITY OF LINEAR SYSTEMS WITH AIM)ST PERIODIC COEFFICIENTS 

The linear system with periodic coefficients is a subclass of the 

linear systems with almost periodic coefficients defined by 

x = A(t)x , 

where the elements a. .(t) of matrix A(t) are almost periodic func- 

tions [Ref, 33>  P. I-ll> and Ref. 52].  In many cases, A(t) may be 

written as a sum of periodic matrices, A(t) = .L A.{t),    The periods 

of matrices A.(t) are not necessarily rational multiples of each 

other.  It is of interest to explore how stability of this system de- 

pends on the characteristic exponents of the subsystems defined by 

y = Ai(t)y , 1, 2, 

B.  THE COMPENSATION AND DESIGN OF LINEAR SYSTEMS WITH PERIODIC 
PARAMETERS 

We have shown a mathematical procedure for compensation of carrier 

frequency control systems.  It is often impractical, however, to 

realize physically the compensating networks called for by the results 

of applying this procedure. 

There seems to be a definite need for the development of simple, 

systematic procedures for the design of modulated control systems. Dis- 

covery of some clever approximate methods seems to be the key to the 

developnent of useful design procedures. 

Normally, a design procedure may be divided into two parts, namely, 

approximation and synthesis. Since the form of impulse response (or 

the fundamental set of solutions) of a linear system with periodic 

parameters is known from the Floquet theoiy, one can specify the desired 
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response characteristics in terms of the impulse response. 

In order to realize a specified impulse response g(t) hy a 

linear system with periodic parameters, it is necessary in general to 

approximate g(t) Jay a realizable Impulse response of the form 

b(t) == i5icipi('t)e  ' where c.  are constants and p.(t) are periodic 

functions. Having determined c., p.(t) and ß  according to a 

chosen approximation criterion, then one has to develop the synthesis 

procedure for physical realization of the approximate Impulse response 

h(t). 
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APPENDIX A.  PROOF OF THE EXTENDED FLOQUET THEORY 

This appendix presents a proof for the extended Floquet theory 

developed In Chapter II. 

Referring to Chapter II, the solution of Eq. (2.66) Is 

x(t) = »(t)x(O) + \ 4)(t)*"1(T)h(T)dT . (A.l) 

Now we  set    t = k + q;     k<q<k + t-1;   then 

+ q. 

x(k + q.)  = ^(k + q)x(O)  + \       *(k + ci)$"1(T)b(T)dT  . (A.2) 

Since *(k + 1 + q.) = *(k + q)C from Eq.. (2.6l),  *(k + q.) = *(q)C , 

and the Integral may be written as 

2(k) = »(k + <l) \ 4>"1(T)h(T)dT + J $"1(T)b(T)dT + ... 

+ \  *"1(T)b(T)dT + J  *"1(T)b(T)dTj 

= 1'(ci)Ck \  [*"1(T)D(T) + C'V^TMT + 1) + 

+ C^'-'-h^iTMr  + k - 1) + C"i5;4'"1(T)b(k + T)]dT 

(A.3) 

from which* 

Z(k) = $(q) WcV^-ObCT) + Ck-1$"1(T)b(T + 1) + ... 

+ »~:L
(T)1>(T + k)]dT . 

Rewriting Eq., (A.2) as 
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x(k + q.)  = C *((i)x(0) + £(15:)  , CA.V) 

and taking the noms of both sides,  we have 

||x(k + q)|| < Hc^l   |l*(q)x(0)||   +||s(k)|l     . (A.5) 

Since q. < 1, |!*(q)ll < a1 and we set |(x(0)|| < x , II «" (T)II < a2, 

0 < T < 1, where a.., a      and x  are finite, positive, real numbers. 

Now we examine the two terms of Eq. (A.5) separately. 

1. In order to find an upper bound of He; II for the general case, 
we assume that the maximum characteristic roots of matrix C have 
multiplicity a. Since an arbitrary matrix can be transformed 
into the Jordan normal form, it is always possible to set 

C = U JU , (A.6) 

where J is a matrix in Jordan form. Then it follows at once that 

Ck = U-1^ ; (A.?) 

and if k > a, then 

J^ = 

kl z k-cn 

kz 
1 * * * al(k-a): 

k 

Assuming that z..  is the maximum characteristic root but  | z | < 1 
by hypothesis, we have 

||J^l|<_I_^_Tr|z1l^<ka|z1|k^ for k>a,   (A.8) 

or 

|| jN < N(a)  for k < a , 

and 
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llcHUlMllljllllulUu^lzJ^ (A.9) 

where    ||u" ||  ||u!l < u .     and    N(a)    Is a bounded positive constant. 

2.  An upper bound of   || 2(k)||    is readily found to be 

||2(k)|| < hid    [||ck|| + ... -f ||Ca|  + aN(a)]a2bo 

< a1a2bo[ka iz1!k"a + ... + oP + QN(a)]uo 

M[k
a IzJ^^ + a   + aN(a)] , (A,10) 

where    M = a..ab u .     Consequently we obtain the inequality 

lx(k + q)|| < a.u x ka UJ11"0 + M[ka |z,|k'a + ... + aa + c«(a)]  . 
0 0    -L X (A.ll) 

Since  |z.| < 1 by assumption, we can set 

-ß 
Zi = e , >  0 . (A.12) 

Then    k     | z, | = k    e     ^ ,     and this becomes  arbitrarily 
pma'] 1   as    k -*■ +oo. 

It is clear from this  argument that 

l^m ||x(k + q,)\\  < mlor     + N(a)] (A.13) 

and this limit is bounded. 

Therefore the hypothesis that the magnitude of the maximum charac- 

teristic root,  z,, is less than one (i.e., all roots lie within the 

unit circle) is sufficient to guarantee stability of the solution of 

the linear system with piece-wise continuous periodic coefficients 

described by FT. (2.69); that |z | < 1 is also necessary is evident 

from the preceding argument. This statement is equivalent to the 

theorem of Chapter II. 
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