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ABSTRACT

The spectral absorption coefficient of heated air has been calculated over the
frequency interval and temperature rangc where electronic iransitions in diatomic
molecules are the dominant mechanism. With the aid of experimentally determined
constants, the spectra of six important band systems have been theoretically

reconstructed. These spectra and the corresponding line intensities bave been pre-

served in the form of a magnetic tape atlas. Average absorption coefficients and

their role in radiative traunsfer are discussed. A method of calculating group absorp-
tion coefficients based on a sampling technique is described. Digital computer pro-
grams based on this procedure have been used to compute optical transmissions

through heated air. Typical results of the calculation are presented.
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1. INTRODUCTION

Electronic transitious in diatomic molecules contribute appreciably to the absorp-
tion coefficient of air at optical frequencies for air temperatures of a few thousand
degrees(l’ 2), Such transitions are discrete when they cccur between two bound
states of a molecule. Continuum transitions occur from bound to free states or between
two free states (inverse bremsstrab:ung). This paper discusses line absorption arising
in si» prominent molecular band systems in heated air and presents the results of
some recent calculations on those systems.

Basic theoretical expressions for the line absorption coefficient are presented in
Section II. Section I contains a brief discussion of the molecular spectra for the
six band systems: the Schumann-Runge bands of O2 , first and second positive
systems of N2 , beta and gamma bands of NO, and the first negative system of
N; . Magnetic tape atlases for the above spectra are also described in this section.

Some average absorption coefficients and their utility in radiation transport will
be discussed in Section 1V, which also contains ¢ description of an average transmis-
sior. calculation and presents sample results of that calculation,

The spect1oscopic notation used herein is that of }!erzberg(a), to which the reader

is referred for any necessary background material.
M. THE SPECTRAL ABSORPTION COEFFICIENT OF A DIATOMIC MOLECULE

A theoretical expreas‘ou for the spectral absorption coefficient will be obtained
whch is valid for electronic transitions in diatom:> molecules when the Born-
Oppenheimer(4) approximation may be applied witi sufficient accuracy. Consider an

electronic transition between two nondegenerate ievcls or sub-levels, where a sub-level



is one of the components of a degenerate electronic state. The absorption coefficient

for such a transition between a lower state L and an upper state U is:

u(v) = N.B__h

LB 1o F () (1)

where v, —u is the line frequency, N, is the particle density of the lower state,

L
B is the Einstein coefficient for absorption, and F(v) is a line shape factor

L—-u
such that f F(v)dv = 1. By spectroscopic convention(s) the lower level is given
by (n", v",J"), where n" is the electronie stale indicator, v" is the vibrational
quantum number, and J" is the rotational quantum number. The upper level is
then specified by (n!, v', J') . Primes always refer to upper levels and double
primes to lower levels. When p is expressed in ''wave numbers" (cm-l) , the
Einstein coefficient for absorption is given by

3 Z ,RMII’Mli 2
80 M", M

B
3hzc

n',v",J3", n', v, J' - 2J" + 1 (2)

where

»>M" , M! = - .
R = I 'p"nn.vn’Jn'MnR lp'n"v"Jv,Ml dr (B

is the matrix element of the electric moment operator R = -ﬁe +—ﬁn of the electrons
and nuclei. Here M'" and M' are azimuthal quantum numbers numbering the
spatially degenerate rotational levels of the lower and upper states, and the summation
is over all possible combinations of the rotational sub-levels of the lower with those of

the upper state.



Since the Born-)ppenheimer approximation is assumed, the molecular wave

function may be written as a product

= ¢ewvihwrot. 4

of the electronic, vibrational, and rotational wave functions. Substituting (4) into (3)
leads to an expression for the sum in (2):

" 1 o
'RM M |2 = lRel"q(v',v")SJn
M",M!'

2

9 i -'-‘, "
lRel = 'J*ﬁeﬁeﬁedre

2

—' "
a(v',v") = l I Yo vin 97 M

The dfn in (7) can be replaced with dR, since the vibrational eigenfunctions
depend only on the internuclear separation. Re is the electronic transition moment

”" ]
and q(v',v") 1is the Franck-Condon factor. SJ.. is that part of M,,ZM,,RM M |2

that depends on the rotational quantum number J'' and the coupling in the molecule.

The S J‘s are often called Honl-London intensity factors; they are available in the

literature for all the important types of electronic transitions. Franck-Condon factors

have been calculated for maay band systems of diatomic molecules by Nicholls and

co-workora(s's' 7).




Equation (2) becomes

81r3
sh’c

2 J
B [Bel " atv' v gy

n",n',v",v',J",J' =

The particle density in the lower level is given by

-E
M20" + 1y exp |23 01]

Nn",v",J" =

where N is the total particle density for all levels, E gt i 18 the energy

n!l
of the level and wy its nuclear spin statistical weight. Q is the total partition

function and may be written as the sum of contributions from all the electronic

states:
(10)

Taking into account electronic (orbital + spin), vibrational, rotational, and nuclear

(spin only) degrees of freedom, we may write

Q = Q Q

electronic “vib, -rot. Qnuclear

_vm h(_!

Q kT

= wA(ZS + 1) exp [

electronic

-

[-Go(v)hc] (v)
ib-rot. = vzb e |57 | Yrot.




{ -F_(J)he KT
VA f (23 + 1) exp [-—-—————"kT ]dJ * foB, (14)
(o]

_ (21, + 1)(2L + 1)
nuclear o

Q (15)

In these formulas v, is the energy of the lowest vibraticnal level of electronic state
n above that of the ground state, Go(v) is the vibrational term referred to the lowest
vibrational level, FV(J) is the rotational term for the vth vibrational level with Bv
its corresponding rotational constant, and S is the total electron spin. w, is the
statistical weight for orbital angular momentum A about the internuclear axis and
takes the value 1if A = 0 and value 2 if A = 0, Ia and lb are the nuclear spins
of the two nuclei and ¢ is a symmetry number having the value 2 for homonuclear
molecules and 1 for heteronuclear systems.

An approximate formula for Qvib.-rot. that is more convenient for calculation and
yet accurate enough for our problem was developed by Bethe(s) and later corrected by
Brinkley @) :

= 1 T
Quib-rot. =~ T exp(-l.4388wo) ra3gss_ (1 * YT

1
T

(16)

where y ., Bethe's correction factor for anharmonicity and non-rigidily, has the value

1 Zwoxo ao BBO
Y Taamse \w, st an

Here w and Bo are the vibrational and rotational constants of the v = 0
vibrational level, wy X, is the first anharmonic constant and a, is the interaction

counstant for coupling between rotation and vibration.

6




Returning now to Eq (9), we multiply nuinerator and denominato. by Qn as

given by Eqgs. (11), (12), and (15) and obtain after a little algebra

Q. wl(an + 1) exp l- {Go(v") + Fv"(J")} E%

_ n
=N (75 + 1)0,Q Q

N
total Qtotal nuclear “vib-rot.

n'lv"J"

where use has been made of the relation

E

atyrgr o [VO + GO(V") + FV"(J") he

[0/

now let Pn,, = Qn" /Qtotal denote the fractional pcpulation of the n"th electronic
state and introduce the rotation

2
514 L0 wi

Homat, vive, gngr = “3he (25+ T)w, Q

2
nuclear nrmt, I, v"v'm(', v VS,

(20)

h
Epugn = [Golv™) + Fuld"] 3¢

where Lo = 2.6875 x 1019 plrticles/cma is Loschmidt's number.
We now obtain the desired form of Eq. (1) by substitution, using Eqs. (18), (20),

and (21):

N P -
. | Jtotal"an ( l'"‘v".x")
B(v) = [fm;;;] Hn'\n- BRALVAIN LU 1 exp T TF(v) (22)

Here the quantities H and E are characteristic of the isclated molecule, f.e.,

da nat depend on the temperature and density. Cince the bracketed term in (22) is




.. ]
dimensionless, H has dimen-fons cm “, and F(v) has dimensions e¢m (discussion
follows), the absorption coefficient u(v) has the required dimension cm—l.
Although Eq. (22) is valid fcr arbitrary torm facter F(v), in our calculations for

for air we have assumed a Lorentz line profile, viz.,

F(v) = 1 - [ 4

o"-r(v-

\2
ynnn' . viw? . Jm,

where o is th> line half-width at half-maximum. The absorption coefficient u(v)
at v due to several contributing (overlapping) lines is just the sum of the separate

line absorption coefficients:

uv) = Zi:ui(»')

where { labels the iines and the sum runs over all lires whose profiles overlap

significantly* at v,

*Obviously some suitable criterion must be chosen to limit the calcilation to some
reaxcnable number of lines per frequency considered.




III. LINE FREQUENCTFS AND INTENSITIES FOR AIR

The frequency, '"H" function, and "E" function must now be ‘ound for each line
which is to be included in the calculation. Theoretica! reconstruction of the spectrum
for each of the six electronic systems is accomplished by utilization of experimental
constants as cited under the separate systen:.s below.

Fine structure {(composite lines) due to spin splitting and A-type doubling(s) has
been ignored in the calculation for the following reasons: (1) the spin splitting is not
well known, (2) actual line widths and profiles arc not generally known, (3) A-type
doubling increases with increasing J and lines are probably not well resolved until
very high J is reached, and (4) it is felt some compensation is obtained by choosing
the line half-width large enough to include partially resolved lines.

Schematic energy-level diagrams are presented in Figs, 1 through 6: these illus-
trate levels ind transitions for the band systems included in the discussion. The
coaventions used in the diagrams are those of Herzberg(a)v The resolution due to
spin splitting and the  \-type doubling in Il states have both been greatly exaggerated
for purposes of clarity. Vertical lines (transitions) are drawn in composite line
groupings.

Intensity factors used in the calculation are in accord with the rotational sum rule
with the exception of the NO gamma system, whose composite line intensity factors
cannot be expressed in simple form. However, only two very weak transitions have
been omitted.

A few of the lovels for the N, second positive system are labeled with the asso-

ciated nuclear spin statistical weight, which is written to the right of the level.
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The Bz - X X (Schumann-Runge) System of O,

With small dispersion, 37‘. - 32 bands consist of a single R and a single P

' branch. Larger dispersion shows each line to be resolved into three components of
about the same intensity. There are, thus, six main branches. Six very weak satellite
branches for which AJ = AK are also present. Alternate triplets in the P and R {
branches are missing, since the nuclear spin of the oxygen atom is zero. Even K
rotation levels are missing in the X state, and odd K levels are missing in the B
state. In our calculation, lines will be treated as unresolved. Figure 1 shows two
groups of lines which are considered to be composite lines whosc ifunl-London factors
are obtained by simply adding up the SJ's for the individual components. These fac-

tors turn out to be 3K" for the P branch lines and 3(K" + 1) for the R-branch lines.

Rotational terms of both I states are then given by
F.(K) - BK(K+ 1) - DK>(K + 1)° (1) '
v v \s

- The rotational constants B and D, for the ground state were calculated from

)
the molecwlar constants of Hcrxbcrg(a’.

(10)

were obtained from experiment .

———

For the 332; state, the Bv‘s and D‘_'s

For the O, Schuinann-Runge system, then, the HJ,_ s are given by

L J!
{
2
= L w 2 e
S L L IR : qev.v)s,
Hypo g0 Mg o ihe 3 (Q ) e K © 3 @a) _
nuclear i
" K+ 1 i K K"+ 1
ise” Lu a
Fran g ROTTQUvIVT)
$he  TRTKT e K- K K- 2b) ;
where K 1,3, 3,

)

pm— L] ~——— ——.




The B "'ng -8 Z; (First Positive)System of N,

The structure of 3“ - 32 bands is very complicated (Fig. 2), particularly if,
as is the case here, the coupling in the [l state is near Hund's case "a." Since there
are three sub-bands, 3Ho -3t 3[11 - 32+. 3[12 - 32+. and each sub-band has
nine branches {three for each triple! component of the lower state), there are, in all,
27 hranches. Of these, we expect nine branches to be relatively strong. ten satellite
pranches to be comewhat weaker, and eight to be weak branches; the latter are repre-
s~nted by dashed lires in the figure. We will omit the latter eight branches entirely.
The 19 remaining branches, along with their corresponding intensity factors, are
included in the calculations.

Formulas for the rotational levels of a 32: state have been derived by Schlapp(“).

+
Now in the case of the A 32

u ~ State of NZ' the spin splitting is very smail,

and, furthermore, is known only very approximately for most of the vibrational levels.
Therefore, we ignore the spin splitting and use instead the term formula for 12 states
given by Eq. (1).

The values of B and D\_ for cach of the vibrational levels considered were

”
calculated from molecular constants given by Nawle. (12)

Rotational term formulas for the 3"; state arc from Buk»“a) and are for any

degree of uncoupling:

, 4
1

. - / - 272./32.1 - -5 4

;“”) B\, LJ(J + 1) 1'.l 12‘/311] l)\‘ (J 2) )
. . 4

F,() - B LJ(.! + 1)+ 41,2;31.1] - by (J + :-) )

F.o) B lowens JZo -2z, -p gyt i5)

va v TS v

1.




where

z, =YV(YV-4)+4/3+4J(J+1) (6)

22 YV(YV—I)-4/9+2J(J+1) @)

and Yv - Av/Bv is a measure of the degree of coupling of the spin to the internuclear '

axis. For large rotation, Fvl‘ Foo and F 5 Boover into 1 case "b" term series
with J - K+ 1, K, and K - | respectively. Note that levels sz (0). FVS (0). ‘
and Fv3 (1) do not exist because of the requirement that J =2 @ = |A+ 2| for

Hund's case "a." The Bv' Dv' and Yv values for each vibrational level are

.
taken from Budo(l". Since A-type doublirg is small except for very large K, it
has been neglected in the above formulas.

I for the first positive system is given by

——— e S

J"
2 2/3 if K" even ’ ,
g " L( I2
- Hy, "3 =52 vIR q(v'.v")~ < S, (8)
. T8 he e 1/3 if K odd K i
SK" K" (P-branch)
- K"+ 1 (R-branch) ‘
3 3 . L .
The N, €7l - B "5 Second Positive )} System ‘
The structure of 3 -3 bhands 15 simple if both states belung erther to ‘
Hund’s case "a" or to Hund's casc "b." If both 3” states Uelong to case “a,” the
3 3 3 \
selection rule AL - 0 allows division into three sub-bamis- no R | ":: . {

o I3 {

and Jll,, - 3",, . Should \ tape doubline be disregarded, cach sub-bamt has a strong

-

» gy

h, astrong P. and (except for 3"0 - alln) aweak § branch. I bath M states
belong to case b or if both go over {rom case "3 to case b wilh increasing

rotation, the same six strong bands vccur. For all valucs of K in case "a.” ami for

...
[
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large values of K in case '"b,' the three P branches are close together and the three
R branches are close together, giving rise to a characteristic triplet structure.
In the N, second positive system, both °i states belong to case '"a" for small

K values. Both go over to case '"b" for large values of K. Figure 3 shows the six

main branches of the csl'lu-}33ﬂg system and the corresponding energy level diagram.

A rapid transition from case "a' to case ''b" has been assumed, Since nitrogen nuclei
follow Bose statistics (I = 1), the symmetrical levels (s) will have the higher sta-
tistical weight wI(s) = (2I+ 1)(I1 + 1) , and the antisymmetrical levels (a) will have
the lower statistical weight wI(a) = 2+ I, i.e., wl(s) =6 and wl(a) = 3. There-

fore the total weight for the A doublet is w, = 9 which is just 1/2 of the "maximum"

1
weight wQ(ZI + 1)2 = 18 that one would expect for a heteronuclear system of the same
type and for v ch both nuclei have Ia = Ib =1,

The Q2 and Q3 branches have line intensities that fall off as 1/J', and hence
the total intensity residing in these branches is small. Therefore, these branches will
be omitted in the present study.

Formulas for the rotational terms are given by Egs. (3) through (7).

K »

v v Yoo + GZ,(v‘) - Gg(v") , then the frequencies of the lines will be

given by

R
n

Vjn = VV",V',J"(_J"+1) - VV",V' + F;l(J" +1) - FH(J")

P

n . - A L1 - - 1" A
VJ.-; - an'vl'Ju(Ju_l) VV",V' + Fn(J 1) Fn(J )

for n -1,2,3.




The two lines arising from the components of a A-iype doublet overlap in fre-

quency and are identical except for the wy. one having the value 6 (symmetrical) and

the other 3 (antisymmetrical). This allows us to construct the H PR LI

= H o for the whole doublet by simply adding the H's for the individual compo-

uents, viz:

2

n Sw Lo ] ! ‘2 1 " 3 6 £
Hyw g = 3he " 537 vgn g1 Re! AV VI SpulsTs * 5] (1)

81r2L° 2
"g'hc - VJ" , I'I Re I q(v"Vh) S.Yn

where 9/2 is the value of Qnuclear'

Honl- London factors for 3“—3!1 systems under various coupling conditions have

been given by Budc; (15). For this study it will be sufficiently accurate to use the

Héni-London factors tor a 't~ type transition:

The final formulas for Hoo o Vvt g g then becom:

)
R 8r'l. R
o n 2 ? Al "
Hio e ¥ye lRel qv'. v [ e 1
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The values of Bv’ Dv’ and Yv for the C u and B g states of N2 which
were used in this study are due to Budé(ls_m).

The B 22:: - X 2}:‘; (First Negative) System of N,

Since 22 states always belong strictly to Hund's coupling case "b!' giving rise
to the selection rule AK = 1+ 1 with AK = 0 being forbidden, the structure of a
22 - 22 transition is simple. There are two principal branches, an R branch and
a P branch, each of which may be resolved irto three components according to the
rule AJ =0, + 1. For one of these (AJ = 0) AJ = AK.

The energ; level diagram and transitions which apply to first negative bands are

shown in Fig. 4. Rotation terms of lower 2}:; and upper 22: states are both given

by Eq. (1).
Douglas (16) lists the values of Bv’ Dv , and Go(v) used in the calculation.
Ignoring the spin, the rotational levels can be labeled by K. Grouping lines

arising from the same K" level, we have

5 2/3 if K" even
167 Lo

2
- _Jh—(.—— DK",K" Rel q(v',v") S8

K" 11/3 if K" odd

where

SIlK SK"+ 1 if KO- K"+ 1

- K" if K' - K" -1

The factors to allow for K odd or even arise because of the effect of symmetry
propecties on 2.‘: - 2}_‘ transitions of homonuclear molecules. Even K" levels

arc symmetric (wl(s) - 6), while odd K" levels are antisymmetric (wl(s)
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The B'I1 — X 211 (Beta) System of NO

The structure of a 2H - 2[[ system is simple if both states beiong to Hund's
coupling case "a" or both belong to case "b" or if, as in the present case, both states
are intei mediate between cases "a'" and "b" and go over together from case "a" to
case "b" with increasing nuclear rotation. There are two sub-bands in the NO
Beta system: 21'.'1/2 - 2“1/2 and 2H3/,2 - 21'!3/2. Each sub-band consists of a
strong R, astrong P, and weak Q branch. Since the intensity of the Q branches
falls off like J -1 . we will negiect these branches entirely. Figure 5 shows the NO
beta system.

Roth the B 2II and X 21 states of NO are intermediaste between Hund's
coupling cases "a" and 'b," with the X state being nearer case "a" ‘A = 124.2 cm_l)
than the B state (for which A ~ 32 cm_l) . A general formula for the term values of
a 2y state with coupling intermediate between cases "a" and "b" has been derived

by Hill and Van Vleck(17).

2 (n

T (v,J) = Ty + G (v) + Bv[(J + %) -1+ (- 1) py| - D, s
(J+1) (n

2
el l - 2 e
p(d) -\/(J + 2) Y, +Y,/4 and Y = A/B

2 2
i - = i .
Here the subscript n - 1 stands for a ﬂl/2 and n = 2 stands for 3/2

A subscript n bas been affixed to the vibrational term G(v) since the different sub-
states of the multiplet may have slightly different vibrational levels. F«rmulas for the

line frequencies of the two R and two P branches follow.




=y +v(1)»rF

BTN JTCAEISINS 76 )

= v + u(‘zl) + sz(Jn + 1) - FS(J")

= v + V(\}) + F]'_(J" -1) - F'I'(J")

ve + w2+ Faan - 1) - By

T, - Ty

n .
= v(v..)’v.= G(v') - Giv"),n =1, 2

2 2 1/2
F (J) = F (v.J) = B, (J+§) -1+ (-1)“[(J +%) - Y+ Y‘2,/4]

J4

7+ 1)

with Bv and Dv baving been calculated with the id of molecular constants given by
Gillette and Eyster(le).

As the 2[1 states approach case "b," the selection rule AK = 0, + 1 holds. Also
branches with AK = AJ are very waak. Disregarding A-type doubling and neglecting

the weak Q branches and satellite branches, we see that the band ‘ructure is similar

v o
to that of a 22 - "% transition, i e.,4 strong branches. I[f the satellite lines are




considered as par: of a composite line, but Q branches are still ignored, the intensity

factors may be given with sufficient accuracy for our purpose by

and the H factors are ther

2
4 Lol

2 .
HJu,Jv = 3he R l VJn’qu(v'yV")b 1"

e

The a2z - x%n {(Gamma) System of NQ

The X 2“ state of NO belongs neither strictly to coupling case "a' nor to case
"b!' but to a transition case which goes from case "a" to case '"b" with increasing
rotation. However, the A22 state belongs strictly to case "b," and as a result
of this combination the structure of the NO gamria bands is quite complicated. The
2n state has been discussed previously (see NO Beta system). Figure 6 shows levels
and transitions applicable to the NO gamma system.

The general term formula for the X 2 state is given in the preceding discussion

of the NO Beta system. The quantum number K has been formally extended to levels

having small rotation in the case of the A 22‘. state. Rotaiior.l terms for this state

are given by Eq. (1), where the rotational constants were chosen to agree with
experiment(lg'zo).

Intensity factora for the twelve branches are given (apart frem an arbitrary constant)

(21)

by Earls These formulas were normalized to obey the sum rule.




After combining branctes and sa.ellites and omitting two weak transitions, six
composite ;ines serve the needs f our calculation. Intensity factors for these

lines are given in Table 1.

Table 1
INTENSITY FACTORS

Transition and Branch SJ

(@ + 1)%+ (20 + 1) UM% + 47 + 1 - 2Y)

PJ) = 8J

(20« 1)%+ (23 + 1 U4I% + 43 + 1 - 2Y)
3 (J v 1)

Rz(J) =

R 2] + 1 . 2 .
Ri(J) + "Qy(d) ———SJ—-{GJ-I-UHJ +4J+1-éY)l

Q) + ¥, (3) = %{&1 PN BPONTTUC LIt [ 2Y)}

Qi) + R ) = 3"—;}—1 {6.1 S1ru@t i - ZY)I
p 2 + 1
Potd) + Q1) = g7+ 1)

[&1+7-U(4.12+4.1+1-2Y)}
-1/
u - ly?-ay 2+ )3

The '8 for the NO Gamma system are then

HJ"'J
2!2Lo 2
HJII.J' = _:,'F VJV‘.‘;' iRel Q(V'-V”)S‘,‘n

where the 33,, are the composite intensity factors describud above




Spectral Atlases for Air

Digital computer codes (for the IBM 7090) have been constructed to write the
maguetic-tape line atlases for the six molecular systems to be included in the calcula-
tion. For each system, the spectral lines and their "H" and "E" functions are generated
according to vibrational and rotational quantum numbers and labeled by an identification
vector. These lines are ther merged and sorted according to line frequency. For each
spectral line, there are three decimal numbers and one octal number (the identification

vector) on tape:

| 4 a

(frequency) (identification vector)

where a is formed of the upper and lower vibrational and rotational quantum numbers,
the branch number, and an integer from 1 to 6 which specifies the molecular system to
which the line belongs.

The systems, their 'key" integer 7. and the total number of lines stored on tape

for each system are

Schumann-Runge 13,838
First Poaitive 58,476
Second Positive 16,780
First Negative 21,306
Beta 135,760
Gamma 25,400

Total Lines 151,528




Table 2 contains basic information pertaining to the band systems. Note that the
4th vibrational level is the highest included for the C sﬂu state of N2 . Since the C
state is perturbed by another electronic state above the v' = 4 level, v' was not
extended to higher values.* A further restriction on v' and v" (as well as on J'
and J') is that the total vibrationa! and rotational energy of any level was not permitted

to exceed the dissociation energy for the state.

Table 2
BAND SYSTEM PARAMETERS
2
Number |R | R
h?:ﬁ::i::d Vmax Ymax °fBands  {-number e—as 3 e—l
Included (*>107) (10°cm )
0, B 32; - X 3!:; 20 19 217 0.048 3.29 21.5-50.0
3 3.+
N, B0 - A%z 10 11 66 0.02 3.34 1.97-19.5
N.c3n -pdn 4 10 34 0.07 4.6 21.5-36.4
2 u g
N; B 22: - X 2:; 17 18 106 0.0348 2,85 14.9-32.8
Nop2n_x2n 6 16 40 0,008 0.7 17.3-49.5
Noalr-x?%n 7 16 5§ 0.0025 0.14 31.0-50.0

Bquation (1) was used to fairly high J (~100) . The extent to which *his formula

fails at high J 1is oot known, but it is felt that accuracy is oniy fair at J = 80.

*Wesk bands observed by Y. Tanaka and A. S. Jursa (22) hava been identified as
v' = 5 hands.




In addition to the individual system line atlases, a tape consisting of all the systems
merged according to frequency has bzen written, This merged tape, containing all
151,528 hnes, will serve as the spectral line atlas for air. By masking techniques,
the origin of each line may be found from its identification vector, i.e., its species,
lower level, etc. To compute the absorption coefficient, the atlas tapes must be used
in conjunction with population numbers and partition functions corresponding to the
desired air temperature and density. Population factors may be obtained by interpolating
in the tables of Gilmore(za). The vibration-rotation partition functions are given, with

sufficient accuracy for our problem, in Table 3.

Table 3

PARTITION FUNCTIONS

Molecule and State Vibration-Rotation Partition Functions

0.4834 T(1 + 0.0000149 T)
1 - exp (- 2256/T)

. QT =
QT) = 0.48468 T(1 + 0.0000174 T)
2 1 - exp (- 2081,2/T)

_ 0.42670 T(1 + 0.0000144 T)
GM - 1 - exp (- 2474/T)

_ 0.3617 T(1 + 0.0000102 T)
QM 1 - exp (- 3152.5/T)

Q(T) - 9:4098 T(1 + 0.0000119 T)
5! 1 - exp (- 2719/T)

All of the Franck-Condon factors used in the atlas construction are from

R. W. N!cholls(s-n. ke electronic {-values were taken from Treanor and Wurster

o
(O2 Schumann-Runge), Bennett and Dalby(z") (N: First Negative), and the compilation

]
of Meyerott ot al. @) (remaining band systems).




1IV. RADJATION TRANSPORT AND MEAN ABSORPTION "OEFFICIENTS

One manner in which the spectral atlas for air has been utilized is in the
numcrical determinaticn of some mean absorption coefficients for application in
radiation transport problems. These coefficients and the method of their deter-

mination will now be discussed.

Radiation Transport

The radiative transfer of energy in a medium can be calculated if one knows
the intensity of radiation Iv as a function of position and time, direction of ray a.ud
frequency. Aleng a given ray, Iv changes in a manner which is determined by
emission and absorption of the radiation by the material through which it passes.
Such changes are calculated from the equation of transfer. If the material is in

local thermodynamic equiiibrium, the equation of transfer is

dlv
ds “V(BV -lv)

where s denotes the length measured along the ray,

bk ek 1 - VAT,
1 %4 1 4 13

is defined in terms of the absorption coefficient Ay(p ., T) and

he /T -1
¢ .

( 1)

2hv3
.

By(T)
c

21




is Planck's blackbody distribution function. The primed coeffiric tc differ from the

-hV/kT) . This distinction arises because of the

unprimed ones by a factor (1 - e
preserce of the so-called induced emission. Since that term is proportional to ly , it
is convenient to subtract it from the absorption quV and denote the difference, which

appears on the right-hand side of Eq. (1) as p;ly .

The integration of Eq. (1) is formally straightforward and leads to

-Tv(sl) 1 T
Ir‘sl) = e Iv(so) + f By(s) e dTv (4)
5
where
s
= f ' tnv L)
T, | uy(! ) ds (5)

[0}

If I, has been caiculated for ali rays going through a given point, the integral over

all directions and frequencies

]
Q ]J (- H;)d\‘ldv Y L B )dndy (&

is the difference between abserbed and emitted power per unit volume and it deter-
m.res the net rate of heating ot the material,
The formal simplicity of the above program of calculation is unfortunately mis-

leading because the numerical work is generally prohibitive. The difficulty les in

the fact thzi the optical properties «f air in the temperature range covered by this




article result mainly from transitions between molecular levels. The spectrum
associated with the major band systems consists of an enormaous number of lines
and the absorption coefficient fluctuates from large values at the line centers to
small ones between the lines. PRecause of these "windows' the radiation at some
point generally comes from poiuts along the ray which are an appreciable distance
further back. The frequen~y dependence of the distance and with it Iv fluctuates
just as strongly as u;, . One can define an abrorption coefficient which varies

smoothly with » by forming the average

wAy

I 1 '

B, = 3 J[ By dv
v

where Av is chosen to be large compared to the width of individual lines but narrow
enough to contain only a few strong lines. Similarly one can define a smoothly vary-
ing average r . When one uscs these averages cne must, however, be very careful
because the quantities u:_ and ly fluctuate so strongly that it is obviously a poor
approximation to replace the average product LTE by the product u-"’ f; . Itis for
cexample, not correct to determine r by direct integration of ¥q. (1) with .-q in
place of A&; . Instead, iy is in principle necessary to ‘tegrate Eq. (1) at all {re-
quencies to obtain a detailed spectral Jdistribution before one can calculate averages.
There are two limiting situations where this cnormous amount of computation
can be avoided. The one situation arises when lr is very much smaller than l\y
which can only happen for a transparent medium, i ¢, if u"__l‘ {i. being the size of

the radiating region) is uniformly small compared to unity In that case one can




neglect the absorption and one obtains

-]
Q= - 41r°f uB, dv

By introducing the sc-called Planck mean absorption coefficient

) fyLBV dv
p B(t)

-

4
B(T) - ij(T)dv =

o

this can be written as

Q - Jl;ofr‘ (n

In the opposite extreme of an opague region for which y'{l >> 1 one can also simplily
Eq. (6). The length 1t in this relation is the size of the region where the optical
properties change by lees than say 5 percent and the inequality iz supposcd to he
valid at those frequencies where Hy contributes significantly to B For an npaque
region the transfer of radiation is most convenicntly treated in the diffusion approxi-
mation. This appraximation follows {rom the observation that I is almost equal

to Bv which leads to an approximation where one replaces 1 on the left-hand side
,




of Eq. (1) by Bv so that

1 dBv
I, =B, - g ds (12)
v
dBv dBv dT
The derivative I - 9T ds adds a small anisotropic contribution to the
isciropic B , S0 that the energy flow in different directions does not completely
caacel out. There is therefore a flux
F--4 L T8 (13)
HR
where
o dB
1 v
f u dT dv
Looo (14)
u o dB
R f Y ay
daT
0
defines the so-called Rosseland mean absorption coefficient E . The rate of
radiative heating ncw becomes
G=--v F-4g. (Lo (15)
3 Hp

With an absorption coefficient which varies between very large and very small values
neither the averaging procadure of Eq. (9) nor that of Eq. (14) is justified. It is there-

fore neceseary to find other methods for reducing the labor to a reasonable level.




The Sampling Method

The average intensity of radiation in high temperature air appears to change
quite slowly with wave length. This suggesis that it may be sufficicnt tc solve the
transport equation in a few sample intervals of the spectrum whose widths are large
compared to the width of individual lines but small enough to contain only a few
strong lines. After performing the transport calculations to find I’i at a large

number n (say 100) of evenly spaced frequencies Y, in that interval one can use

these to obtain a meaningful average I_; = %Zlu. for the sample intecval. Calcu-
1

lations of this type form an important part of tlis paper and are discussed in a

later subsection.

Grouping of Intensities (Part 1)

One can imagine that the frequencies v, fna small interval from v to v + Av
have been arrangad int» groups a, b, ¢, etc. where the absorption coefficients of group a
are all larger than those of group b, which are in turn larger than in group c, etc. There
will now be less of a spread between the absorption coefficients within each group than
hetwe;:n all of them.

The intensities within each group are algo showing much less spread. This
fotlows because the intensity at some point along a ray reflects the conditicns exist-
irg approximalcly cne mean {ree path (uL ) -1 behind go that a small spread in u"'
implies that the points of origin lie closely together.

If ane defines averages within each group. i.e., ;: . g ... ami 1lt . f; -

it is now quite reasonable tc approximate the average products bv producis of the aver-

ages like




etc. It is therefore reasonable to assume that the average intensities obey separate

transport equations like

- BB, -

if there are k groups, the heating term “;':lv in Eq. (6) can be replaced by
1 == —_T LT
RORL LT

It is actually a fairly good approximation to use only two groups.

An Average Transmission Calculation

Consider a frequency interval Av which is small enough that gross radiation
transport features do not change appreciably over the interval, yet is large enough
to contain-many lines (say ~ 200). Let vj denote a fixed frequency point within the
interval and let o label a line whose inaximum lies within that same interval. A
transmission point function may th~n be defined for an isothermal, homogeneous slab

of thickness x :
Tr(v) = e {- (Zuat)) + up(v)] x} (19)

where the summation is taken over all lines which contriubte significantly at vj . In
the above expression, He {8 an absorption coefficien. containing continuum contribu-
tions as well as other effects not included in the apectral calculation (i.e., contribu-
tions from polyatomic maolecules).

The average transmission through the slab for a frequency interval Av centered

at frequency v may then be written

Te ¥ vy - altiv"*p (=TT () * w (0] x}dv




Thus far, results have been obtained only for the case where B, = 0, and so we
now omit it from the equations. An approximation to the integral is made by evalu-
ating the argument at many points in Av and utilizing the trapezoidal integration
scheme.

An average absorption coefficient may now be defined through the relation

e—u(v)x _ ﬂAV( »)

Deleting superscripts we obtain

logeﬁ(:/)

u(v) = - —— (22)

The sum over « may include line contributions from several molecular species.
Only in the optically thin case can an average absorption coefficient for air be
obtained by summing average absorption coefficient contributions from the individual
species. The present calculation is not restricted to any particular opacity region.
Based on the preceding equations, a digital computer code was written to calculate
the average transmission of ootical radiation through &n isothermal, homogeneous
slab of heated air. Variable parameters in the calculation are the air composition
and electronic population, slab temperature T , line half width ¢, basic frequency
intervals, and the number of frequency points on the l.ne wings.

Results have been obiained for temperatures ircm 1,000° K to 12,000° K and

dcnsities from a:mospheric normal to 10.4 that of normal. Thus far a value of

1 cm-1 for o has been used -~onsistently for all calculationa with the exception of

1 parameter study for uxygen.
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Intervals of 100 cm'1 size were picked at 2,000 cm-l spacing except for the
density case _Pg = 10-1 , where double the usual number of intervals was calcu-
lated. °

Sample curves from the results are presented in Figs. 7-91. Smooth curves
have been drawn tnrough the computed points, which fall at 2, 000 cm_l intervals
from 49,500 cm ! on down. (Except the case where ;)2- =101, as was pre-

o
viously mentioned.)

Grouping of Intensities (Part 2)

One way of calculating two group absorption coefficients utilizes the results on
transmission which are obtained by means of the sampling method. After obtaining
the transmission through a plane slab,one can fit ite dependence on the slab thickness

x by the expression

_“'x -u!'x
Tr(x)=%(e a +e“b) (23)

To show the accuracy of this fit, we compare the x-dependence of the effective absorp-
tion coefficient

loge Tr

gz (24)

as calculated from the slab calculation and from the formula of Eq. (23).

31



Comparison of caiculated and fitted values of the effective
absorption coefficient for a typical case T = 5,000°K ,
v =25500cml, p/p = 1.0

x(cm) 4 8 16 32 64 128 256 512 1024

105 Heale 685 683 678 670 653 622 568 488 395

105 Moyt 681 680 676 670 653 622 569 495 434

The differences at large values of x are not important because the transmission

is negligible in that case.

Some tables of and u, for various cases follow the sample curves from
Hy b

the average transmission calculation.

Continuum Contributions

Inclusion of the continuum in the calculations awaits a more accurate analysis
of the various effects that are involved. For the readers convenience, however, a
means of including any desired contribution will be indicated.

Returning to Eq. (20) and assuming He to be a slowly varying function of fre-

quency over the interval Ay, we obtain as an approximation

Av H V)X

Tr (v) = ta—m‘—-/e’q){'lgu&(v)l x} v
Av

By applying Eq. (22) the total average absorption coefficient i8 given by

w(v) = u (V) + p(v)




where £ labels that pari of the absorption c.oefficient arising from the lines. The
same procedure can be followed when one 18 using the two group absorption coeffi-

cients. The corresponding ecuations are

' -
By = Ho Mgy

R '
by < gt HYy (28)

where the label 1 has been affixed to those coefficicnts that were calculated when
continuum processes were omitted.

Photodetachment of 0 , inverse bremsstrahlung, and the 0, Schumann-Runge
continuum are among the contributors to the continuous absorption coefficient. In
addition, impertont polyatomic line transitions might be best handled by empirical
mezanr as a part of the continuum. One known important polyatomic contributor
whicn is receiving special attention is NO2 . All these will eventually be integrated

into the ca'culations

Discussion of Sample Results

Saraple curves of T vs. X in Figs. 7 —38 exhibit the smooth behavior that
allows the twe-group approximation to be a fairly good one. As the temperature is
raised and density lowered, however, some of the complicated frequency dependcnce
shows up in the crosgsing of these curves, for which frequency is a parameter.
Figures 39-70 present the same sort of results in a differcnt fashion, i.e., in

the form of an average absorption coefficient.




Influenced by the sensitivity of the fractional species concentrations and elec-
tronic level populations to charges in temperature (and density),the frequency
dependence of the transmission becomes very complicated above 3,000°K at densi-

ties 107

normal atmospheric and below. The predominant absorption system at
temperatures from 1,000 to 3,000°K is the O 2 Schumann-Runge system which
is strongest in the higher frequency regions, i.e.. about 30,600 cm'l onup. At
3,000°K, NO starts to contribute appreciably and increases in importance as the

temperature increases. A very important constituent at the higher temperatures

(6,000 to 8,000°K) is N; » whose first negative system exhibits a strong peak

and valley behavior which is apparent in the lower density plots.

More points were computed for the density case p/p0 = 10'1 . leading to
lower energy information not on the other graphs. In particular, the point at
18,500 cm-l showe a relatively more opaque region. This is apparently the high-
energy end of the N2 first-positive contribution and is to be expected, according
to the work of Meyerott, Sokoloff, and Nlcholla(z’ .

Where gross energy transfer .s being considered, it must be remembered
that the vibration-rotation spectrum of NO, which is eapecially important at
lower {requencies for temperatures up to 3,000° K. has not yet been included in

the calculations, and therefore is not contained in these results.




Frequency
(cm-1)

Table 5

TWO-GROUP ABSORPTION COEFFICIENTS

T = 5000°K
plp, =

10-1

1950¢
21500
23500
25500
27509
29500
31500
33500
35500
37500
39500
41500
43500
45500
47500

49500




Table 5 (Cont.)

T = 6000°K
p/p0 =

10-1

Frequepcy
fem™h)

18500
21500
23500
25500
27500
29500
31500
33500
3565C0
37560
39500
41500
43500
45590
47500

49500




Table 5 (Cont.)

T = 7000°K
plp, =
10-1

Frequency
(em-1)

19500

21500

23500

25500

27500

29500

31500

328TH

35500

37500




Table 5 (Cont.)

T = 8000°K
plp, =

101

Frequency
(cm-1)

19500
21500
23500
25500
27500
29500
31500
33500
35500
37500
39500
41500
43500
45500
47500

49500
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Pig. 39 The avarage absorption coefficient of heated air as a function of
frequency for various optical nath lengths.
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Fig. 40 The avernge abrorption coefficient of heated air as 2 function of
frequency for various optical path lengths.

78




2 x10%(cw)
8 x10°(CMm)

/3.2 x10'(CM)

7
/
/1.20 1102 (€M)

/
8.12 x 102 (CM)

L L IIIIL

]

Lt

|
A

]

T
x
Q
-
F 4
W
S
'S
w
W
o
O
4
o
-
a
a«
Q
g

LI

T T

|

SRS ARLE

T

L Lo
233 . 18 s

FREQUENCY (107 CM™

Y

The average absorption cveflicient of heated air as a function of
frequency for varfous optical path lenyths.

79




ABSORPTION COEFFICIENT (cM™')

=
—
T= 4000 °K
p/py 10 B
o0 2x107(cm
; 4110° (o
— 0 -
}_ 8 10V (CM) ]
= _
32 x10'(CM)
107" —
- =
— —
|~ 2 ~
1.28 2102 (CM)
— —
ot
— ——
- .
- _
— ~—
— i
- —
103 o
- 3
-—
104 i L 1 L i ] 1 l i 1 1 J 4

a8 23 23 1ns 37s “3 433 493

rrequency (103 et

Fig. 42 The average absorption cocfficient of heated air as 3 function of
{requency {or various opt.c:! path lengths.
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Fig. 43 The average absorption coeflicient of heated air as a function of
frequency for various optical path lengths.
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Fig. 4 The average absorption coefficient of heated air as a function of
frequency for various opticai path lengths.
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