UNCLASSIFIED AD 436885

DEFENSE DOCUMENTATION CENTER

FOR SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED

MOTICE: When government or other dravings, specifications or other data are used for any purpose other than in connection with a definitely related government produrement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or othervise as in any manner licensing the holder or any other person or corporation, or conveying an, rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

This report has been approved for open publication by the Department of Defense, Office of the Assistant Secretary of Defense (Public Affairs).

3

]

1

Ī

į

]

1

۲ I

1

1

ļ

_

Qualified requestors may obtain copies of this report from DDC.

F

I

I

CONTENTS

Section		Page
	ILLUSTRATIONS	iii
	TABLES	ix
	ABSTRACT	1
I	INTRODUCTION	2
Ш	THE SPECTRAL ABSORPTION COEFFICIENT OF A DIATOMIC MOLECULE	2
ш	THE LINE FREQUENCIES AND INTENSITIES FOR AIR	9
	The B ${}^{3}\Sigma_{g}^{-}$ (Schumann-Runge system of O_{2})	10
	The B ${}^{3}\Pi_{g}$ - A ${}^{3}\Sigma_{u}^{-}$ (First Positive) System of N ₂	11
	The N ₂ C ${}^{3}\Pi_{u}$ – B ${}^{3}\Pi_{g}$ (Second Positive) System	12
	The B ${}^{2}\Sigma_{u}^{+} - X {}^{2}\Sigma_{g}^{+}$ (First Negative) System of N $_{2}^{+}$	15
	The B ${}^{2}\Pi$ – X ${}^{2}\Pi$ (Beta) System of NO	16
	The A $^{2}\Sigma$ – X $^{2}\Pi$ (Gamma) System of NO	18
	Spectral Atlases for Air	20
IV	RADIATION TRANSPORT AND MEAN ABSORPTION COEFFICIENTS	23
	Radiation Transport	23
	The can.pling Method	28
	Grouping of Intensities (Part 1)	28

i

Section		Page
	An Average Transmission Calculation	29
	Grouping of Intensities (Part 2)	31
	Continuum Contributions	32
	Discussion of Sample Results	33
	REFERENCES	130

ii

ILLUSTRATIONS

I

;

Figure		Page
1	$B \overset{3}{}_{u}^{-} - X \overset{3}{}_{g}^{-}$ Band of O_{2} (Schumann-Runge system)	39
2	$B^{3}\Pi_{g} - A^{3}\Sigma_{u}^{+}$ Band of N_{2} (First positive system)	40
3	$C^{3}\Pi_{u} - B^{3}\Pi_{g}$ Band of N ₂ (Second positive system)	41
4	$B \frac{2\Sigma_{u}^{+}}{2\Sigma_{u}^{+}} - X \frac{2\Sigma_{g}^{+}}{2\Sigma_{g}^{+}}$ Band of N_{2}^{+} (First negative system)	42
5	$B^2\Pi - X^2\Pi$ Band of NO (Beta system)	43
6	A $^{2}\Sigma$ – X $^{2}\Pi$ Band of NO (Gamma system)	44
7	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	45
8	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	46
9	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	47
10	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	48
11	Average transmission of optical radiation through a slab of neated air as a function of optical path length.	49
12	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	50
13	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	51
14	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	52

iii

Figure		Page
15	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	53
16	Average transmission of optical radiation through a slap of heated air as a function of optical path length.	54
17	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	55
18	Average transmission of optical radiation through a slab of heated air as a function \Im optical path length.	56
19	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	57
20	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	58
21	Average transmission of optical radiation through a slah of heated air as a function of optical path length.	59
22	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	60
23	Average transmission of optical radiation through a siab of heated air as a function of optical path length.	61
24	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	62
25	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	63
26	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	64
27	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	65
28	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	66
29	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	67
30	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	68

I

ł

F

٠

٦,

Figure		Page
31	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	69
32	Average transmission of optical radiation through a slob of heated air as a function of optical path length.	70
33	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	71
34	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	72
35	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	73
36	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	74
37	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	75
38	Average transmission of optical radiation through a slab of heated air as a function of optical path length.	76
39	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	77
40	The average absorption coefficient of heated air us a function of frequency for various optical path lengths.	78
41	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	79
42	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	80
43	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	81
44	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	82
45	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	83
46	The average absorption coefficient of herted air as a function of frequency for various optical path lengths.	84

v

×

ļ

ì

Ì

I

.

,

rigure		Page
47	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	85
48	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	86
49	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	87
50	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	88
51	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	89
52	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	90
53	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	91
54	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	92
55	The average abosorption coefficient of heated air as a function of frequency for various optical path lengths.	93
56	The average absorption coefficient of heated air us a function of frequency for various optical path lengths.	94
57	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	95
58	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	96
59	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	97
60	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	95
61	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	99
62	The average absorption coefficient of heated air as a function of frequency for monitors optical path lengths.	100

I

۰.

vi

Figure

ŧ

i. 1

> : .

> > .

ligure		Page
63	The average absorption coefficient of heated air $a_{n,n}$ is function of frequency for various optical path lengths.	101
64	The average absorption coefficient of heated air $-i$ function of frequency for various optical path lengths.	102
65	The average absorption coefficient of heated $a^2 = 3$ a function of frequency for various optical path lengths.	103
66	The average absorption coefficient of heated air as a function of frequency for various optical path $le = 0.05$.	104
67	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	105
68	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	106
69	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	107
70	The average absorption coefficient of heated air as a function of frequency for various optical path lengths.	108
71	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	109
72	Average transflission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	110
73	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	111
74	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	112
75	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the firman	133
76	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperature a	114

19 y •

vii

1

The optical path length is given it the figure

Figure		Page
77	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	115
78	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	116
79	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	117
80	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	118
81	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	119
82	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	120
83	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	121
84	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	122
85	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	123
86	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	124
87	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures The optical path length is given in the figure.	125

Į

:

ł

ł

viii

Figure		Page
\$8	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	126
89	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	127
90	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	128
91	Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.	129

I

I

ļ

I.

TABLES

Table		Page
1	Intensity Factors	19
2	Band System Parameters	21
3	Partition Functions	22
5	Two-Group Absorption Coefficients	35

ix

ABSTRACT

The spectral absorption coefficient of heated air has been calculated over the frequency interval and temperature range where electronic transitions in diatomic molecules are the dominant mechanism. With the aid of experimentally determined constants, the spectra of six important band systems have been theoretically reconstructed. These spectra and the corresponding line intensities have been preserved in the form of a magnetic tape atlas. Average absorption coefficients and their role in radiative transfer are discussed. A method of calculating group absorption coefficients based on a sampling technique is described. Digital computer programs based on this procedure have been used to compute optical transmissions through heated air. Typical results of the calculation are presented.

I. INTRODUCTION

a 5

Electronic transitions in diatomic molecules contribute appreciably to the absorption coefficient of air at optical frequencies for air temperatures of a few thousand degrees (1, 2). Such transitions are discrete when they occur between two bound states of a molecule. Continuum transitions occur from bound to free states or between two free states (inverse bremsstrabung). This paper discusses line absorption arising in six prominent molecular band systems in heated air and presents the results of some recent calculations on those systems.

Basic theoretical expressions for the line absorption coefficient are presented in Section II. Section III contains a brief discussion of the molecular spectra for the six band systems: the Schumann-Runge bands of O_2 , first and second positive systems of N_2 , beta and gamma bands of NO, and the first negative system of N_2^+ . Magnetic tape atlases for the above spectra are also described in this section.

Some average absorption coefficients and their utility in radiation transport will be discussed in Section IV, which also contains ε description of an average transmission calculation and presents sample results of that calculation.

The spectroscopic notation used herein is that of $Herzberg^{(3)}$, to which the reader is referred for any necessary background material.

II. THE SPECTRAL ABSORPTION COEFFICIENT OF A DIATOMIC MOLECULE

A theoretical expression for the spectral absorption coefficient will be obtained which is valid for electronic transitions in diatomic molecules when the Born-Oppenheimer⁽⁴⁾ approximation may be applied with sufficient accuracy. Consider an electronic transition between two nondegenerate levels or sub-levels, where a sub-level

. 3

is one of the components of a degenerate electronic state. The absorption coefficient for such a transition between a lower state L and an upper state U is:

$$\mu(\nu) = N_L B_{L \rightarrow u} h \nu_{I \rightarrow u} F(\nu)$$
(1)

where $\nu_{L \rightarrow u}$ is the line frequency, N_L is the particle density of the lower state, $B_{L \rightarrow u}$ is the Einstein coefficient for absorption, and $F(\nu)$ is a line shape factor such that $\int F(\nu) d\nu = 1$. By spectroscopic convention⁽³⁾ the lower level is given by (n'', v'', J''), where n'' is the electronic state indicator, ν'' is the vibrational quantum number, and J'' is the rotational quantum number. The upper level is then specified by (n', v', J'). Primes always refer to upper levels and double primes to lower levels. When ν is expressed in "wave numbers" (cm^{-1}) , the Einstein coefficient for absorption is given by

$$B_{n'', v'', J'', n', v', J'} = \frac{8\pi^3}{3h^2c} \frac{\sum_{M'', M'} |R^{M'', M'}|^2}{2J'' + 1}$$
(2)

where

$$\vec{\mathbf{R}}^{\mathbf{M}^{\dagger\dagger}}, \mathbf{M}^{\dagger} = \int \vec{\psi}^{\dagger\dagger}_{\mathbf{n}^{\dagger\dagger}}, \mathbf{v}^{\dagger\dagger}, \mathbf{J}^{\dagger\dagger}, \mathbf{M}^{\dagger\dagger}, \vec{\mathbf{R}}^{\dagger} \psi^{\dagger}_{\mathbf{n}^{\dagger}}, \mathbf{v}^{\dagger}, \mathbf{J}^{\dagger}, \mathbf{M}^{\dagger} dr$$
(3)

is the matrix element of the electric moment operator $\vec{R} = \vec{R}_e + \vec{R}_n$ of the electrons and nuclei. Here M'' and M' are azimuthal quantum numbers numbering the spatially degenerate rotational levels of the lower and upper states, and the summation is over all possible combinations of the rotational sub-levels of the lower with those of the upper state.

Since the Born-')ppenheimer approximation is assumed, the molecular wave function may be written as a product

$$\psi = \psi \psi \psi \psi$$
e vib rot. (4)

of the electronic, vibrational, and rotational wave functions. Substituting (4) into (3) leads to an expression for the sum in (2):

$$\sum_{\mathbf{M}'',\mathbf{M}'} \left| \mathbf{R}^{\mathbf{M}'',\mathbf{M}'} \right|^2 = \left| \mathbf{R}_{e} \right|^2 q(\mathbf{v}',\mathbf{v}'') \mathbf{S}_{J''}$$
(5)

where

$$|\mathbf{R}_{e}|^{2} = \left| \int_{\psi} \mathbf{\bar{R}}_{e} \psi_{e}^{\dagger} d\tau_{e} \right|^{2}$$
(6)

and

.

$$q(v',v'') = \left| \int_{\psi}^{\psi} \psi''_{vib} d\tau_{n} \right|^{2}$$
(7)

The dr_n in (7) can be replaced with dR, since the vibrational eigenfunctions depend only on the internuclear separation. R_e is the electronic transition moment and q(v',v'') is the Franck-Condon factor. $S_{J''}$ is that part of $\sum_{M'',M'} |R^{M'',M'}|^2$ that depends on the rotational quantum number J'' and the coupling in the molecule. The S_J 's are often called Honl-London intensity factors; they are available in the literature for all the important types of electronic transitions. Franck-Condon factors have been calculated for many band systems of diatomic molecules by Nicholls and co-workers^(5, 6, 7).

4

,*

Equation (2) becomes

$$B_{n'',n',v'',v',J'',J'} = \frac{8\pi^3}{3h^2C} \left| R_e \right|^2 q(v',v'') \frac{S_{J''}}{2J''+1}$$
(8)

The particle density in the lower level is given by

$$N_{n'',v'',J''} = \frac{N(2J''+1)\omega_{\tau} \exp\left[\frac{-E_{n'',v'',J''}}{kT}\right]}{Q}$$
(9)

where N is the total particle density for all levels, $E_{n'', V'', J''}$ is the energy of the level and ω_{I} its nuclear spin statistical weight. Q is the total partition function and may be written as the sum of contributions from all the electronic states:

$$Q = \sum_{n} Q_{n}$$
(10)

Taking into account electronic (orbital + spin), vibrational, rotational, and nuclear (spin only) degrees of freedom, we may write

$$Q_n = Q_{\text{electronic}} Q_{\text{vib.-rot.}} Q_{\text{nuclear}}$$
 (11)

where

 \odot

3*****-

$$Q_{\text{electronic}} = \omega_{\Lambda} (2S + 1) \exp\left[\frac{-\nu_{00} hc}{kT}\right]$$
(12)

$$Q_{\text{vib-rot.}} \approx \sum_{v=0}^{\infty} \exp\left[\frac{-G_o(v)hc}{kT}\right] Q_{\text{rot.}}^{(v)}$$
 (13)

$$Q_{\text{rot.}}^{(\mathbf{v})} = \int_{0}^{\infty} (2J + 1) \exp\left[\frac{-F_{\mathbf{v}}(J)hc}{kT}\right] dJ \cong \frac{kT}{hcB_{\mathbf{v}}}$$
(14)

$$Q_{\text{nuclear}} = \frac{(2I_{a} + 1)(2I_{b} + 1)}{\sigma}$$
(15)

In these formulas ν_{00} is the energy of the lowest vibrational level of electronic state n above that of the ground state, $G_0(v)$ is the vibrational term referred to the lowest vibrational level, $F_v(J)$ is the rotational term for the v^{th} vibrational level with B_v its corresponding rotational constant, and S is the total electron spin. ω_{Λ} is the statistical weight for orbital angular momentum Λ about the internuclear axis and takes the value 1 if $\Lambda = 0$ and value 2 if $\Lambda \neq 0$. I_a and I_b are the nuclear spins of the two nuclei and σ is a symmetry number having the value 2 for homonuclear molecules and 1 for heteronuclear systems.

An approximate formula for $Q_{vib-rot}$ that is more convenient for calculation and yet accurate enough for our problem was developed by Bethe⁽⁸⁾ and later corrected by Brinklev⁽⁹⁾:

$$Q_{vib-rot.} = \frac{1}{1 - \exp\left(\frac{-1.4388\omega_{o}}{T}\right)} \frac{T}{1.4388B_{o}} (1 + \gamma T)$$
(16)

where γ , Bethe's correction factor for anharmonicity and non-rigidity, has the value

$$\gamma = \frac{1}{1.4388\omega_{o}} \left(\frac{2\omega_{o} x_{o}}{\omega_{o}} + \frac{\alpha_{o}}{B_{o}} + \frac{8B_{o}}{\omega_{o}} \right)$$
(17)

ł

Here ω_0 and B_0 are the vibrational and rotational constants of the v = 0vibrational level, $\omega_0 x_0$ is the first anharmonic constant and α_0 is the interaction constant for coupling between rotation and vibration.

Returning now to Eq (9), we multiply numerator and denominator by Q_n as given by Eqs. (11), (12), and (15) and obtain after a little algebra

$$N_{n''v''J''} = N_{\text{total}} \frac{Q_{n''}}{Q_{\text{total}}} \frac{\omega_{I}(2J''+1) \exp\left[-\left\{G_{0}(v'')+F_{v''}(J'')\right\}\frac{hc}{kT}\right]}{(2S+1)\omega_{\Delta}Q_{\text{nuclear}}Q_{\text{vib-rot.}}}$$
(18)

where use has been made of the relation

$$E_{n''v''J''} = \left[\nu_{00} + G_{0}(v'') + F_{v''}(J'') \right] hc$$
(19)

now let $P_{n''} = Q_{n''}/Q_{total}$ denote the fractional population of the n''^{th} electronic state and introduce the notation

$$H_{n''n', v''v', J''J'} = \frac{8\pi^{2}L_{o}}{3hc} \frac{\omega_{I}}{(2S+1)\omega_{\Lambda}Q_{nuclear}} \nu_{n''n', J''J', v''v'} |R_{c}|^{2} q(v', v'')S_{J''}$$
(20)

and

$$\mathbf{E}_{\mathbf{v}''\mathbf{J}''} = \left[\mathbf{C}_{\mathbf{o}}(\mathbf{v}'') + \mathbf{F}_{\mathbf{v}''}(\mathbf{J}'')\right] \frac{\mathbf{h}\mathbf{c}}{\mathbf{k}}$$
(21)

where $L_0 = 2.6875 \times 10^{19}$ particles/cm³ is Loschmidt's number.

We now obtain the desired form of Eq. (1) by substitution, using Eqs. (18), (20), and (21):

$$\mu(\nu) = \left[\frac{N_{\text{total}}P_{n''}}{L_{0}Q_{\text{vib-rot}}}\right] H_{n''n', \nu''\nu', J''J'} \exp\left(\frac{-E_{v''J''}}{T}\right) \pi F(\nu)$$
(22)

Here the quantities H and E are characteristic of the isolated molecule, i.e., do not depend on the temperature and density. Since the bracketed term in (22) is dimensionless, H has dimensions cm^{-2} , and $F(\nu)$ has dimensions cm (discussion follows), the absorption coefficient $\mu(\nu)$ has the required dimension cm⁻¹.

Although Eq. (22) is valid for arbitrary form factor $F(\nu)$, in our calculations for for air we have assumed a Lorentz line profile, viz.,

$$\mathbf{F}(\nu) = \frac{1}{\pi} \frac{\sigma}{\sigma^2 + \left(\nu - \nu_n \mathbf{n} \mathbf{n} \mathbf{i}, \mathbf{v} \mathbf{i} \mathbf{v} \mathbf{i}, \mathbf{j} \mathbf{i} \mathbf{j} \mathbf{i}\right)^2}$$
(23)

where σ is the line half-width at half-maximum. The absorption coefficient $\mu(\nu)$ at ν due to several contributing (overlapping) lines is just the sum of the separate line absorption coefficients:

$$\mu(\nu) = \sum_{i} \mu_{i}(\nu) \qquad (24)$$

t

ţ

where i labels the lines and the sum runs over all lines whose profiles overlap significantly* at ν .

^{*}Obviously some suitable criterion must be chosen to limit the calculation to some reasonable number of lines per frequency considered.

III. LINE FREQUENCIES AND INTENSITIES FOR AIR

The frequency, "H" function, and "E" function must now be found for each line which is to be included in the calculation. Theoretical reconstruction of the spectrum for each of the six electronic systems is accomplished by utilization of experimental constants as cited under the separate systems below.

Fine structure (composite lines) due to spin splitting and Λ -type doubling⁽³⁾ has been ignored in the calculation for the following reasons: (1) the spin splitting is not well known, (2) actual line widths and profiles are not generally known, (3) Λ -type doubling increases with increasing J and lines are probably not well resolved until very high J is reached, and (4) it is felt some compensation is obtained by choosing the line half-width large enough to include partially resolved lines.

Schematic energy-level diagrams are presented in Figs. 1 through 6; these illustrate levels and transitions for the band systems included in the discussion. The conventions used in the diagrams are those of Herzberg⁽³⁾. The resolution due to spin splitting and the Λ -type doubling in Il states have both been greatly exaggerated for purposes of clarity. Vertical lines (transitions) are drawn in composite line groupings.

Intensity factors used in the calculation are in accord with the rotational sum rule with the exception of the NO gamma system, whose composite line intensity factors cannot be expressed in simple form. However, only two very weak transitions have been omitted.

A few of the levels for the N_2 second positive system are labeled with the associated nuclear spin statistical weight, which is written to the right of the level.

The $B_{u}^{3}\Sigma_{u}^{-} - X_{g}^{3}\Sigma_{g}^{-}$ (Schumann-Runge) System of O_{2}

With small dispersion, ${}^{3}\Sigma - {}^{3}\Sigma$ bands consist of a single R and a single P branch. Larger dispersion shows each line to be resolved into three components of about the same intensity. There are, thus, six main branches. Six very weak satellite branches for which $\Delta J \neq \Delta K$ are also present. Alternate triplets in the P and R branches are missing, since the nuclear spin of the oxygen atom is zero. Even K rotation levels are missing in the X state, and odd K levels are missing in the B state. In our calculation, lines will be treated as unresolved. Figure 1 shows two groups of lines which are considered to be composite lines whose if onl-London factors are obtained by simply adding up the S_J's for the individual components. These factors turn out to be 3K" for the P branch lines and 3(K" + 1) for the R-branch lines.

Rotational terms of both Σ states are then given by

$$F_{v}(K) = B_{v}K(K+1) - D_{v}K^{2}(K+1)^{2}$$
 (1)

The rotational constants B_v and D_v for the ground state were calculated from the molecular constants of Herzberg⁽³⁾. For the $B^{-3}\Sigma_u^-$ state, the B_v 's and D_v 's were obtained from experiment⁽¹⁰⁾.

For the O_2 Schumann-Runge system, then, the $H_{J^{(i)}_{j},j}$'s are given by

$$H_{J'',J'} = H_{K'',K'} = \frac{8\pi^2 L_0}{3 h c} = \frac{1}{3} \left(\frac{\omega_I}{Q_{nuclear}} \right) \frac{|R_c|^2 q(v',v'') S_J}{|K'',K'|} = (2a)$$

$$= \frac{16\pi^2 L_0}{3 h c} \frac{|K'',K'|^2 R_c|^2 q(v',v'')}{|K'',K''|^2} \left(\frac{|K''+1||if||K'|||K''+1|}{|K''||if||K'|||K''+1|} \right)$$
(2b)

where K^{**} 1, 3, 5, ...

The $B_{g}^{3} - A_{g}^{3} \Sigma_{u}^{-}$ (First Positive) System of N₂

The structure of ${}^{3}\Pi - {}^{3}\Sigma$ bands is very complicated (Fig. 2), particularly if, as is the case here, the coupling in the Π state is near Hund's case "a." Since there are three sub-bands, ${}^{3}\Pi_{0} - {}^{3}\Sigma^{+}$, ${}^{3}\Pi_{1} - {}^{3}\Sigma^{+}$, ${}^{3}\Pi_{2} - {}^{3}\Sigma^{+}$, and each sub-band has nine branches (three for each triplet component of the lower state), there are, in all, 27 branches. Of these, we expect nine branches to be relatively strong, ten satellite branches to be somewhat weaker, and eight to be weak branches; the latter are represented by dashed lines in the figure. We will omit the latter eight branches entirely. The 19 remaining branches, along with their corresponding intensity factors, are included in the calculations.

Formulas for the rotational levels of a ${}^{3}\Sigma$ state have been derived by Schlapp⁽¹¹⁾. Now in the case of the A ${}^{3}\Sigma_{u}^{+}$ = state of N₂, the spin splitting is very small, and, furthermore, is known only very approximately for most of the vibrational levels. Therefore, we ignore the spin splitting and use instead the term formula for ${}^{1}\Sigma$ states given by Eq. (1).

The values of B_V and D_V for each of the vibrational levels considered were calculated from molecular constants given by Naude. ⁽¹²⁾

Rotational term formulas for the $\frac{3}{g}$ state are from Budo⁽¹³⁾ and are for any degree of uncoupling:

$$\mathbf{F}_{V1}(\mathbf{J}) = \mathbf{B}_{V}\left[\mathbf{J}(\mathbf{J}+1) - \sqrt{Z_{1}} - 2Z_{2}/3Z_{1}\right] = \mathbf{D}_{V}\left(\mathbf{J}-\frac{1}{2}\right)^{4}$$
(3)

$$F_{v2}(J) = B_{v} \left[J(J+1) + 4Z_{2}/3Z_{1} \right] = D_{v} \left(J + \frac{1}{2} \right)^{4}$$
(4)

$$\mathbf{F}_{v3}(J) = \mathbf{B}_{v} \left[\mathbf{J} (J+1) + \sqrt{Z_{1}} - 2Z_{2}/3Z_{1} \right] = \mathbf{D}_{v} (J+3/2)^{4}$$
 (5)

1.

where

$$Z_{1} = Y_{v}(Y_{v} - 4) + \frac{4}{3} + 4J(J + 1)$$
(6)

$$Z_{2} = Y_{v} (Y_{v} - 1) - 4/9 + 2J (J + 1)$$
(7)

and $Y_v = A_v/B_v$ is a measure of the degree of coupling of the spin to the internuclear axis. For large rotation, F_{v1} , F_{v2} , and F_{v3} go over into 2 case "b" term series with J = K + 1, K, and K = 1 respectively. Note that levels $F_{v2}(0)$, $F_{v3}(0)$, and $F_{v3}(1)$ do not exist because of the requirement that $J \ge \Omega = |\Lambda + \Sigma|$ for Hund's case "a." The B_v , D_v , and Y_v values for each vibrational level are taken from Budo⁽¹²⁾. Since Λ -type doubling is small except for very large K, it has been neglected in the above formulas.

II, for the first positive system is given by

$$H_{J''} = \frac{8}{9} \frac{\pi^2 L_c}{hc} |\nu| |R_e|^2 q(\nu', \nu'') \times \begin{cases} 2/3 \text{ if } K'' \text{ even} \\ 4/3 \text{ if } K'' \text{ odd} \end{cases} + S_{K''}$$
(8)
$$S_{K''} = K'' \quad (P\text{-branch})$$
$$= K'' + 1 (R\text{-branch})$$

The $N_2 = C^3 II_u - B^3 II_g$ Second Positive) System

The structure of ${}^{3}\Pi$ = ${}^{3}\Pi$ bands is simple if both states belong either to Hund's case "a" or to Hund's case "b." If both ${}^{3}\Pi$ states belong to case "a," the selection rule $\Delta \Sigma = 0$ allows division into three sub-bands: ${}^{3}\Pi_{0} = {}^{3}\Pi_{0}$, ${}^{3}\Pi_{1} = {}^{3}\Pi_{1}$, and ${}^{3}\Pi_{2} = {}^{3}\Pi_{2}$. Should Δ tape doubling be disregarded, each sub-band has a strong h, a strong P, and (except for ${}^{3}\Pi_{0} = {}^{3}\Pi_{0}$) a weak Q branch. If both ${}^{3}\Pi$ states belong to case "b" or if both go over from case "a" to case "b" with increasing rotation, the same six strong bands occur. For all values of K in case "a," and for large values of K in case "b," the three P branches are close together and the three R branches are close together, giving rise to a characteristic triplet structure.

In the N₂ second positive system, both ³II states belong to case "a" for small K values. Both go over to case "b" for large values of K. Figure 3 shows the six main branches of the $C^{3}\Pi_{u} - B^{3}\Pi_{g}$ system and the corresponding energy level diagram. A rapid transition from case "a" to case "b" has been assumed. Since nitrogen nuclei follow Bose statistics (I = 1), the symmetrical levels (s) will have the higher statistical weight $\omega_{I}(s) = (2I + 1)(I + 1)$, and the antisymmetrical levels (a) will have the lower statistical weight $\omega_{I}(a) = (2I + 1)I$, i.e., $\omega_{I}(s) = 6$ and $\omega_{I}(a) = 3$. Therefore the total weight for the Δ doublet is $\omega_{I} = 9$ which is just 1/2 of the "maximum" weight $\omega_{\Omega}(2I + 1)^{2} = 18$ that one would expect for a heteronuclear system of the same type and for w is both nuclei have $I_{a} = I_{b} = 1$.

The Q_2 and Q_3 branches have line intensities that fall off as 1/J'', and hence the total intensity residing in these branches is small. Therefore, these branches will be omitted in the present study.

Formulas for the rotational terms are given by Eqs. (3) through (7).

If $v_{V'',V'} = v_{OO} + G'_O(V') - G''_O(V'')$, then the frequencies of the lines will be given by

and

$$\frac{P_n}{\nu_{J''}} = \nu_{v'',v',J''(J''-1)} = \nu_{v'',v'} + F_n'(J''-1) - F_n'(J'')$$
(10)

for n - 1,2,3.

The two lines arising from the components of a Λ -type doublet overlap in frequency and are identical except for the ω_{I} , one having the value 6 (symmetrical) and the other 3 (antisymmetrical). This allows us to construct the $H_{n'',n',v'',v',j'',J'}$ $H_{J'',J'}$ for the whole doublet by simply adding the H's for the individual components, viz:

$$H_{J'',J'} = \frac{8\pi^2 L_o}{3hc} \cdot \frac{1}{2 \cdot 3} \cdot \nu_{J'',J'} | R_e |^2 q(v',v'') S_{J''} \left(\frac{3}{9/2} + \frac{6}{9/2} \right)$$
(11a)

$$\frac{8\pi^{2}L}{9hc}o_{\nu_{J'',J'}}|R_{e}|^{2}q(v',v'')S_{T''}$$
(11b)

where 9/2 is the value of $Q_{nuclear}$

Hönl-London factors for ${}^{3}\Pi - {}^{3}\Pi$ systems under various coupling conditions have been given by Budo (15). For this study it will be sufficiently accurate to use the Hönl-London factors for a ${}^{1}\Pi - {}^{1}\Pi$ type transition:

$$S_{J''}^{R} = J'' + 1$$
 (12)

$$S_{J''}^{P} = J''$$
 (13)

ł

ŧ

The final formulas for $H_{n'',n',v'',v'',J'',J''}$ then become

$$\frac{R_{n}}{H_{J''}} = \frac{8\pi^{2}L_{0}}{9hc} \frac{R_{n}}{\nu_{J''}} |R_{e}|^{2}q(v', v'') [J'' + 1]$$
(14)

and

$$\frac{P_{n}}{H_{J''}} = \frac{8\pi^{2}L_{o}}{9hc} \frac{P_{n}}{\nu_{J''}} |R_{e}|^{2} q(v',v')J''$$
(15)

for n 1,2,3.

The values of B_v , D_v , and Y_v for the $C^{3}\Pi_u$ and $B^{3}\Pi_g$ states of N_2 which were used in this study are due to $Budo^{(13-14)}$.

The
$$B^{2}\Sigma_{u}^{+} - X^{2}\Sigma_{g}^{+}$$
 (First Negative) System of N_{2}^{+}

Since ${}^{2}\Sigma$ states always belong strictly to Hund's coupling case "b", giving rise to the selection rule $\Delta K = \pm 1$ with $\Delta K = 0$ being forbidden, the structure of a ${}^{2}\Sigma - {}^{2}\Sigma$ transition is simple. There are two principal branches, an R branch and a P branch, each of which may be resolved into three components according to the rule $\Delta J = 0$, ± 1 . For one of these ($\Delta J = 0$) $\Delta J \neq \Delta K$.

The energy level diagram and transitions which apply to first negative bands are shown in Fig. 4. Rotation terms of lower ${}^{2}\Sigma_{g}^{+}$ and upper ${}^{2}\Sigma_{u}^{+}$ states are both given by Eq. (1).

Douglas ⁽¹⁶⁾ lists the values of B_v , D_v , and $G_o(v)$ used in the calculation. Ignoring the spin, the rotational levels can be labeled by K. Grouping lines arising from the same K" level, we have

$$H_{K'', K'} = \frac{16\pi^2 L_0}{3hc} \nu_{K'', K'} |R_e|^2 q(v', v'') S_{K''} \cdot \begin{cases} 2/3 & \text{if } K'' \text{ even} \\ \\ \\ 1/3 & \text{if } K'' \text{ odd} \end{cases}$$
(16)

where

ţ

$$S''_{K} = K'' + 1$$
 if $K' = K'' + 1$
- K'' if $K' = K'' - 1$

The factors to allow for K odd or even arise because of the effect of symmetry properties on ${}^{2}\Sigma = {}^{2}\Sigma$ transitions of homonuclear molecules. Even K⁰ levels are symmetric ($\omega_{1}(s) = 6$), while odd K⁰ levels are antisymmetric ($\omega_{1}(s) = 3$).

The $B^2II - X^2II$ (Beta) System of NO

The structure of a ${}^{2}\Pi$ - ${}^{2}\Pi$ system is simple if both states belong to Hund's coupling case "a" or both belong to case "b" or if, as in the present case, both states are intermediate between cases "a" and "b" and go over together from case "a" to case "b" with increasing nuclear rotation. There are two sub-bands in the NO Beta system: ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ and ${}^{2}\Pi_{3/2} - {}^{2}\Pi_{3/2}$. Each sub-band consists of a strong R, a strong P, and weak Q branch. Since the intensity of the Q branches falls off like J⁻¹, we will neglect these branches entirely. Figure 5 shows the NO beta system.

Both the B ${}^{2}\Pi$ and X ${}^{2}\Pi$ states of NO are intermediate between Hund's coupling cases "a" and "b," with the X state being nearer case "a" (A = 124.2 cm⁻¹) than the B state (for which A ~ 32 cm⁻¹). A general formula for the term values of a ${}^{2}\Pi$ state with coupling intermediate between cases "a" and "b" has been derived by Hill and Van Vleck⁽¹⁷⁾.

$$T_{n}(v,J) = T_{e} + G_{n}(v) + B_{v}\left[\left(J + \frac{1}{2}\right)^{2} - 1 + (-1)^{n}\mu(J)\right] - D_{v} \cdot \begin{cases} J^{4} & (n = 1) \\ (J + 1)^{4} & (n = 2) \end{cases}$$
(17)

where

$$\mu(J) = \sqrt{\left(J + \frac{1}{2}\right)^2 - Y_v + Y_v^2/4} \text{ and } Y_v = A/B_v$$
 (18)

Here the subscript n = 1 stands for a ${}^{2}\Pi_{1/2}$ and n = 2 stands for ${}^{2}\Pi_{3/2}$. A subscript n has been affixed to the vibrational term G(v) since the different substates of the multiplet may have slightly different vibrational levels. Formulas for the line frequencies of the two R and two P branches follow.

$$R_{1}(J) = \nu_{e} + \nu_{v}^{(1)} + F_{1}^{*}(J^{*} - 1) - F_{1}^{*}(J^{*})$$
(19)

$$R_2(J) = \nu_e + \nu_v^{(2)} + F_2(J''+1) - F_2'(J'')$$
 (20)

$$P_{1}(J) = \nu_{e} + \nu_{v}^{(1)} + F_{1}'(J'' - 1) - F_{1}''(J'')$$
(21)

$$P_{2}(J) = \nu_{e} + \nu_{v}^{(2)} + F_{2}^{\prime}(J'' - 1) - F_{2}^{\prime\prime}(J'')$$
(22)

where

$$\nu_{c} = T \dot{e} - T \dot{e}$$
(23)

$$\nu_{v}^{(n)} = \nu_{v'',v'}^{(n)} = G_{n}^{'}(v') - G_{n}^{''}(v''), n = 1, 2 \qquad (24)$$

and

٩

$$F_{n}(J) = F_{n}(v,J) = B_{v} \left\{ \left(J + \frac{1}{2}\right)^{2} - 1 + (-1)^{n} \left[\left(J + \frac{1}{2}\right)^{2} - Y_{v} + Y_{v}^{2}/4 \right]^{1/2} \right\}$$

- $D_{v} \cdot \left\{ \begin{array}{ccc} J^{4} & n = 1 \\ & & \\ (J + 1)^{4} & n = 2 \end{array} \right.$ (25)

with B_v and D_v having been calculated with the aid of molecular constants given by Gillette and Eyster⁽¹⁸⁾.

As the ${}^{2}\Pi$ states approach case "b," the selection rule $\Delta K = 0$, ± 1 holds. Also branches with $\Delta K \neq \Delta I$ are very weak. Disregarding Λ -type doubling and neglecting the weak Q branches and satellite branches, we see that the band "tructure is similar to that of a ${}^{2}\Sigma - {}^{2}\Sigma$ transition, i.e., 4 strong branches. If the satellite lines are

considered as part of a composite line, but Q branches are still ignored, the intensity factors may be given with sufficient accuracy for our purpose by

$$S_{J''}^{R_2} = S_{J''}^{R_1} = J'' + 1$$
 (26)

$$S_{J''}^{P_2} = S_{J''}^{P_1} = J''$$
 (27)

and the H factors are then

$$H_{J'',J'} = \frac{4\pi^2 L_0}{3hc} |R_e|^2 \nu_{J'',J'} q(v',v'') S_{J''}$$
(28)

The $A^{2}\Sigma - X^{2}\Pi$ (Gamma) System of NO

The X ${}^{2}\Pi$ state of NO belongs neither strictly to coupling case "a" nor to case "b," but to a transition case which goes from case "a" to case "b" with increasing rotation. However, the A ${}^{2}\Sigma$ state belongs strictly to case "b," and as a result of this combination the structure of the NO gamma bands is quite complicated. The ${}^{2}\Pi$ state has been discussed previously (see NO Beta system). Figure 6 shows levels and transitions applicable to the NO gamma system.

The general term formula for the X ${}^{2}\Pi$ state is given in the preceding discussion of the NO Beta system. The quantum number K has been formally extended to levels having small rotation in the case of the A ${}^{2}\Sigma$ state. Rotational terms for this state are given by Eq. (1), where the rotational constants were chosen to agree with experiment⁽¹⁹⁻²⁰⁾.

Intensity factors for the twelve branches are given (apart from an arbitrary constant) by Earls⁽²¹⁾. These formulas were normalized to obey the sum rule.

After combining branches and salellites and omitting two weak transitions, six composite lines serve the needs of our calculation. Intensity factors for these lines are given in Table 1.

Table 1INTENSITY FACTORS

 $\underline{s_J}$

Transition and Branch

$$P_{1}(J) = \frac{(2J+1)^{2} + (2J+1)U(4J^{2}+4J+1-2Y)}{8J}$$

$$R_{2}(J) = \frac{(2J+1)^{2} + (2J+1)U(4J^{2}+4J+1-2Y)}{8(J+1)}$$

$$R_{1}(J) + R_{2}(J) = \frac{2J+1}{8J} \left\{ 6J - 1 - U(4J^{2}+4J+1-2Y) \right\}$$

$$Q_{1}(J) + Q_{2}(J) = \frac{2J+1}{8(J+1)} \left\{ 6J + 7 + U(4J^{2}+4J+1-2Y) \right\}$$

$$Q_{2}(J) + Q_{12}(J) = \frac{2J+1}{8J} \left\{ 6J - 1 + U(4J^{2}+4J+1-2Y) \right\}$$

$$P_{2}(J) + P_{2}(J) = \frac{2J+1}{8(J+1)} \left\{ 6J + 7 - U(4J^{2}+4J+1-2Y) \right\}$$

where

Ì

1

ŧ

١

Ţ

$$U = \left[Y^2 - 4Y + (2J + 1)^2 \right]^{-1/2}$$

The $H_{J^{\prime\prime}, J^{\prime}}$'s for the NO Gamma system are then

$$H_{J'',J'} = \frac{2\pi^2 L_0}{3hc} \nu_{J'',J''} R_e |^2 q(v',v'') S_{J''}^{\bullet}$$
(29)

where the $\,S_{J^{\prime\prime}}^{\bullet}\,$ are the composite intensity factors described above

Spectral Atlases for Air

Digital computer codes (for the IBM 7090) have been constructed to write the magnetic-tape line atlases for the six molecular systems to be included in the calculation. For each system, the spectral lines and their "H" and "E" functions are generated according to vibrational and rotational quantum numbers and labeled by an identification vector. These lines are then merged and sorted according to line frequency. For each spectral line, there are three decimal numbers and one octal number (the identification vector) on tape:

$$\nu$$
 α H_{α} E_{α} (frequency) (identification vector)

ł.

where α is formed of the upper and lower vibrational and rotational quantum numbers, the branch number, and an integer from 1 to 6 which specifies the molecular system to which the line belongs.

The systems, their "key" integer η . and the total number of lines stored on tape for each system are

η

= 1	o ₂	Schumann-Runge	13,836
2	N ₂	First Positive	58,476
3	N ₂	Second Positive	16,750
4	N_2^+	First Negative	21,306
5	NO	Beta	13,760
6	NO	Gamma	25,400
		Total Lines	151,528

Table 2BAND SYSTEM PARAMETERS

Molecule and Transition	v' max	v" max	Number of Bands Included	f-number	$ R_e ^2$ (× 10 ⁻³⁶)	Range (10 ³ cm ⁻¹)
$O_2 B \frac{3\Sigma_u}{u} - X \frac{3\Sigma_g}{g}$	20	19	217	0.048	3.29	21.5-50.0
$N_2 B \frac{3\Pi}{g} - A \frac{3\Sigma_u^+}{u}$	10	11	66	0.02	3.34	1.97-19.5
$N_2 C \frac{3}{u} - B \frac{3}{g}$	4	10	34	0.07	4.6	21.5-36.4
$N_2^+ B \Sigma_u^+ - X \Sigma_g^+$	17	18	106	0.0348	2,85	14.9-32.8
NO B ${}^{2}\Pi$ - x ${}^{2}\Pi$	6	16	40	0.008	0.7	17.3-49.5
NO A $2\Sigma - X^{2}\Pi$	7	16	55	0.0025	0.14	31.0-50.0

Equation (1) was used to fairly high $J (\sim 100)$. The extent to which this formula fails at high J is not known, but it is felt that accuracy is only fair at J = 80.

*Weak bands observed by Y. Tanaka and A. S. Jursa $\binom{(22)}{1}$ have been identified as $v^{1} = 5$ bands.

In addition to the individual system line atlases, a tape consisting of all the systems merged according to frequency has been written. This merged tape, containing all 151,528 lines, will serve as the spectral line atlas for air. By masking techniques, the origin of each line may be found from its identification vector, i.e., its species, lower level, etc. To compute the absorption coefficient, the atlas tapes must be used in conjunction with population numbers and partition functions corresponding to the desired air temperature and density. Population factors may be obtained by interpolating in the tables of Gilmore⁽²³⁾. The vibration-rotation partition functions are given, with sufficient accuracy for our problem, in Table 3.

I

ļ

Table 3

PARTITION FUNCTIONS

Molecule and State	Vibration-Rotation Partition Functions
o₂ x ³ Σ [−] g	$Q_1(T) = \frac{0.4834 T(1 + 0.0000149 T)}{1 - \exp(-2256/T)}$
$N_2 \wedge {}^3\Sigma_u^+$	$Q_2(T) = \frac{0.48468 T(1 + 0.0000174 T)}{1 - \exp(-2081.2/T)}$
N ₂ B ³ Π g	$Q_3(T) = \frac{0.42670 T(1 + 0.0000144 T)}{1 - \exp(-2474/T)}$
$N_2^+ X 2\Sigma_g^+$	$Q_4(T) = \frac{0.3617 T(1 + 0.0000102 T)}{1 - exp(-3152.5/T)}$
NO X ² 11	$Q_5(T) = \frac{0.4098 T(1 + 0.0000119 T)}{1 - exp(-2719/T)}$

All of the Franck-Condon factors used in the atlas construction are from R. W. Nicholls⁽⁵⁻⁷⁾. The electronic f-values were taken from Treanor and Wurster $(O_2$ Schumann-Runge), Bennett and Dalby⁽²⁵⁾ $(N_2^+$ First Negative), and the compilation of Meyerott et al.⁽²⁾ (remaining band systems).
IV. RADIATION TRANSPORT AND MEAN ABSORPTION COEFFICIENTS

One manner in which the spectral atlas for air has been utilized is in the numerical determination of some mean absorption coefficients for application in radiation transport problems. These coefficients and the method of their determination will now be discussed.

Radiation Transport

The radiative transfer of energy in a medium can be calculated if one knows the intensity of radiation I_{ν} as a function of position and time, direction of ray and frequency. Along a given ray, I_{ν} changes in a manner which is determined by emission and absorption of the radiation by the material through which it passes. Such changes are calculated from the equation of transfer. If the material is in local thermodynamic equilibrium, the equation of transfer is

$$\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}\mathbf{s}} = \mu_{\nu}^{\dagger} (\mathbf{B}_{\nu} - \mathbf{I}_{\nu})$$
(1)

where s denotes the length measured along the ray,

$$\mu'_{\nu} = \rho \kappa'_{\nu} = \rho \kappa_{\nu} (1 - e^{-h\nu/kT})$$
⁽²⁾

is defined in terms of the absorption coefficient $*_{\mu}(\rho, T)$ and

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} (c^{h\nu/kT} - 1)^{-1}$$
(3)

is Planck's blackbody distribution function. The primed coefficients differ from the unprimed ones by a factor $(1 - e^{-h\nu/kT})$. This distinction arises because of the presence of the so-called induced emission. Since that term is proportional to I_{ν} , it is convenient to subtract it from the absorption $\mu_{\nu} I_{\nu}$ and denote the difference, which appears on the right-hand side of Eq. (1) as $\mu_{\nu}^{\dagger} I_{\nu}$.

The integration of Eq. (1) is formally straightforward and leads to

$$I_{\nu}(s_{1}) = e^{-\tau_{\nu}(s_{1})} \left(I_{\nu}(s_{0}) + \int_{s_{0}}^{s_{1}} B_{\nu}(s) e^{-\tau_{\nu}} d\tau_{\nu} \right)$$
(4)

where

$$\tau_{\nu} = \int_{0}^{s} \mu_{\nu}^{\dagger}(s^{*}) ds^{*}$$
(5)

If I_{μ} has been calculated for all rays going through a given point, the integral over all directions and frequencies

$$\dot{\mathbf{Q}} = \iint \left(-\frac{\mathrm{d}\mathbf{I}_{\boldsymbol{\nu}}}{\mathrm{d}\boldsymbol{s}} \right) \mathrm{d}\boldsymbol{\Omega} \,\mathrm{d}\boldsymbol{\nu} = \int \boldsymbol{\mu}_{\boldsymbol{\nu}}^{T} \int (\mathbf{r}_{\boldsymbol{\nu}} - \mathbf{B}_{\boldsymbol{\nu}}) \,\mathrm{d}\boldsymbol{\Omega} \,\mathrm{d}\boldsymbol{\nu}$$
(6)

is the difference between absorbed and emitted power per unit volume and it determines the net rate of heating of the material.

The formal simplicity of the above program of calculation is unfortunately misleading because the numerical work is generally prohibitive. The difficulty lies in the fact that the optical properties of air in the temperature range covered by this article result mainly from transitions between molecular levels. The spectrum associated with the major band systems consists of an enormous number of lines and the absorption coefficient fluctuates from large values at the line centers to small ones between the lines. Because of these "windows" the radiation at some point generally comes from points along the ray which are an appreciable distance further back. The frequency dependence of the distance and with it I_{ν} fluctuates just as strongly as μ'_{ν} . One can define an absorption coefficient which varies smoothly with ν by forming the average

$$\overline{I}_{\nu}^{\dagger} = \frac{1}{\Delta \nu} \int_{\nu}^{\nu + \Delta \nu} \mu_{\nu}^{\dagger} d\nu$$
(7)

where $\Delta \nu$ is chosen to be large compared to the width of individual lines but narrow enough to contain only a few strong lines. Similarly one can define a smoothly varying average $\overline{\Gamma_{\nu}}$. When one uses these averages one must, however, be very careful because the quantities μ_{ν}^{+} and $\overline{\Gamma_{\nu}}$ fluctuate so strongly that it is obviously a poor approximation to replace the average product $\overline{\mu_{\nu}^{+}\Gamma_{\nu}}$ by the product $\overline{\mu_{\nu}^{+}}\overline{\Gamma_{\nu}}$. It is for example, not correct to determine $\overline{\Gamma_{\nu}}$ by direct integration of Eq. (1) with $\overline{\mu_{\nu}^{+}}$ in place of μ_{ν}^{+} . Instead, it is in principle necessary to integrate Eq. (1) at all frequencies to obtain a detailed spectral distribution before one can calculate averages.

There are two limiting situations where this enormous amount of computation can be avoided. The one situation arises when I_{μ} is very much smaller than B_{μ} which can only happen for a transparent medium, i.e., if $\mu_{\mu}^{+}I$. (i, being the size of the radiating region) is uniformly small compared to unity. In that case one can

neglect the absorption and one obtains

$$\dot{\mathbf{Q}} = -4\pi \int_{\mathbf{0}}^{\infty} \mu_{\nu}' \mathbf{B}_{\nu} \, \mathrm{d}\nu \tag{8}$$

By introducing the so-called Planck mean absorption coefficient

$$\overline{\mu_{p}} = \frac{\int \mu_{\nu}^{\prime} B_{\nu}^{\prime} d\nu}{B(t)}$$
(9)

where

$$B(T) = \int_{0}^{\infty} B_{\nu}(T) d\nu = \frac{\sigma T^{4}}{\pi}$$
(10)

this can be written as

$$\dot{Q} = 4\mu_{\rm B}\sigma T^4$$
(11)

In the opposite extreme of an opague region for which $\mu_{\nu}^{ef} \gg 1$ one can also simplify Eq. (6). The length f in this relation is the size of the region where the optical properties change by less than say 5 percent and the inequality is supposed to be valid at those frequencies where B_{ν} contributes significantly to B_{ν} . For an opaque region the transfer of radiation is most conveniently treated in the diffusion approximation. This approximation follows from the observation that I_{ν} is almost equal to B_{ν} which leads to an approximation where one replaces I_{ν} on the left-hand side

of Eq. (1) by B_{ν} so that

$$I_{\nu} = B_{\nu} - \frac{1}{\mu_{\nu}^{i}} \frac{dB_{\nu}}{ds}$$
(12)

The derivative $\frac{dB_{\nu}}{ds} = \frac{dB_{\nu}}{dT} \frac{dT}{ds}$ adds a small anisotropic contribution to the isciropic B_{ν} so that the energy flow in different directions does not completely cancel out. There is therefore a flux

$$\vec{F} = -\frac{4\pi}{3} \frac{1}{\overline{\mu_R}} \vec{\nabla B}$$
(13)

where

$$\frac{1}{\frac{1}{R}} = \frac{\int_{0}^{\infty} \frac{1}{\mu_{\nu}^{'}} \frac{dB_{\nu}}{dT} d\nu}{\int_{0}^{\infty} \frac{dB_{\nu}}{dT} d\nu}$$
(14)

defines the so-called Rosseland mean absorption coefficient $\overline{\mu_R}$. The rate of radiative heating new becomes

$$\dot{Q} = -\vec{\nabla} \cdot \vec{F} = \frac{4\sigma}{3}\vec{\nabla} \cdot \left(\frac{1}{\mu_{\rm R}}\vec{\nabla}T^4\right)$$
(15)

With an absorption coefficient which varies between very large and very small values neither the averaging procedure of Eq. (9) nor that of Eq. (14) is justified. It is therefore necessary to find other methods for reducing the labor to a reasonable level.

The Sampling Method

The average intensity of radiation in high temperature air appears to change quite slowly with wave length. This suggests that it may be sufficient to solve the transport equation in a few sample intervals of the spectrum whose widths are large compared to the width of individual lines but small enough to contain only a few strong lines. After performing the transport calculations to find I_{ν_i} at a large number n (say 100) of evenly spaced frequencies ν_i in that interval one can use these to obtain a meaningful average $\overline{I_{\nu}} = \frac{1}{n} \sum I_{\nu_i}$ for the sample interval. Calculations of this type form an important part of this paper and are discussed in a later subsection.

Grouping of Intensities (Part 1)

One can imagine that the frequencies ν_i in a small interval from ν to $\nu + \Delta \nu$ have been arranged into groups a, b, c, etc. where the absorption coefficients of group a are all larger than those of group b, which are in turn larger than in group c, etc. There will now be less of a spread between the absorption coefficients within each group than between all of them.

The intensities within each group are also showing much less spread. This follows because the intensity at some point along a ray reflects the conditions existing approximately one mean free path $(\mu_{\nu}^{i})^{-1}$ behind so that a small spread in μ_{ν}^{i} implies that the points of origin lie closely together.

If one defines averages within each group, i.e., $\overline{\mu_{a}^{*}}$, $\overline{\mu_{b}^{*}}$,... and $\overline{I_{a}}$, $\overline{I_{b}}$,... it is now guite reasonable to approximate the average products by products of the averages like

$$\overline{\mu_{a}^{'I}} \approx \overline{\mu_{a}^{'}} \frac{1}{a}$$
(16)

li

etc. It is therefore reasonable to assume that the average intensities obey separate transport equations like

$$\frac{\overline{dI}_{a}}{ds} = \overline{\mu_{a}^{i}} (B_{\nu} - \overline{I_{a}})$$
(17)

If there are k groups, the heating term $\mu_{\nu}^{I}I_{\nu}$ in Eq. (6) can be replaced by

$$\frac{1}{k} \left(\overline{\mu_a} \,\overline{l_a} + \overline{u_b} \,\overline{l_b} + \overline{\mu_c} \,\overline{l_c} + \dots \right)$$
(18)

It is actually a fairly good approximation to use only two groups.

An Average Transmission Calculation

Consider a frequency interval $\Delta \nu$ which is small enough that gross radiation transport features do not change appreciably over the interval, yet is large enough to contain-many lines (say ~ 200). Let ν_j denote a fixed frequency point within the interval and let α label a line whose maximum lies within that same interval. A transmission point function may then be defined for an isothermal, homogeneous slab of thickness x :

$$\operatorname{Tr}(\nu_{j}) = \exp \left\{ - \left\{ \sum_{\alpha} \mu_{\alpha}^{\dagger}(\nu_{j}) + \mu_{c}^{\dagger}(\nu_{j}) \right\} \right\}$$
(19)

where the summation is taken over all lines which contribute significantly at ν_j . In the above expression, μ_c is an absorption coefficient containing continuum contributions as well as other effects not included in the spectral calculation (i.e., contributions from polyatomic molecules).

The <u>average</u> transmission through the slab for a frequency interval $\Delta \nu$ centered at frequency ν may then be written

$$\widetilde{\mathrm{Tr}}^{\Delta\nu}(\nu) = \frac{1}{\Delta\nu} \int_{\Delta\nu} \exp\left\{-\left\{\sum_{\alpha} \mu_{\alpha}^{\dagger}(\nu) + \mu_{c}(\nu)\right\} \mathbf{x}\right\} \mathrm{d}\nu$$
(20)

Thus far, results have been obtained only for the case where $\mu_c = 0$, and so we now omit it from the equations. An approximation to the integral is made by evaluating the argument at many points in $\Delta \nu$ and utilizing the trapezoidal integration scheme.

An average absorption coefficient may now be defined through the relation

$$e^{-\overline{\mu}(\nu)\mathbf{x}} = \overline{Tr}^{\Delta\nu}(\nu)$$
(21)

Deleting superscripts we obtain

$$\overline{\mu}(\nu) = -\frac{\log_e \overline{\mathrm{Tr}}(\nu)}{x}$$
(22)

The sum over α may include line contributions from zeveral molecular species. Only in the optically thin case can an average absorption coefficient for air be obtained by summing average absorption coefficient contributions from the individual species. The present calculation is not restricted to any particular opacity region. Based on the preceding equations, a digital computer code was written to calculate the average transmission of optical radiation through an isothermal, homogeneous slab of heated air. Variable parameters in the calculation are the air composition and electronic population, slab temperature T, line half width σ , basic frequency intervals, and the number of frequency points on the line wings.

Results have been obtained for temperatures from 1,000° K to 12,000° K and densities from atmospheric normal to 10^{-4} that of normal. Thus far a value of 1 cm⁻¹ for σ has been used consistently for all calculations with the exception of \perp parameter study for oxygen.

Intervals of 100 cm⁻¹ size were picked at 2,000 cm⁻¹ spacing except for the density case $\frac{\rho}{\rho_0} = 10^{-1}$, where double the usual number of intervals was calculated.

Sample curves from the results are presented in Figs. 7-91. Smooth curves have been drawn through the computed points. which fall at 2,000 cm⁻¹ intervals from 49,500 cm⁻¹ on down. (Except the case where $\frac{\rho}{\rho_0} = 10^{-1}$, as was previously mentioned.)

Grouping of Intensities (Part 2)

One way of calculating two group absorption coefficients utilizes the results on transmission which are obtained by means of the sampling method. After obtaining the transmission through a plane slat, one can fit its dependence on the slab thickness x by the expression

Tr(x) =
$$\frac{1}{2} \left(e^{-\mu_a^{\dagger} x} + e^{-\mu_b^{\dagger} x} \right)$$
 (23)

To show the accuracy of this fit, we compare the x-dependence of the effective absorption coefficient

$$\bar{\mu} = -\frac{\log_e \mathrm{Tr}}{\mathrm{x}}$$
(24)

as calculated from the slab calculation and from the formula of Eq. (23).

x(cm)	4	8	16	32	64	128	256	512	1024
$10^5 \mu_{calc}$	685	683	678	670	653	622	568	488	395
$10^5 \mu_{fit}$	681	680	676	670	653	622	569	495	434

Table 4. Comparison of calculated and fitted values of the effective absorption coefficient for a typical case T = 5,000°K, $\nu = 25,500 \text{ cm}^{-1}$, $\rho/\rho_0 = 1.0$

The differences at large values of x are not important because the transmission is negligible in that case.

Some tables of μ_a and μ_b for various cases follow the sample curves from the average transmission calculation.

Continuum Contributions

Inclusion of the continuum in the calculations awaits a more accurate analysis of the various effects that are involved. For the readers convenience, however, a means of including any desired contribution will be indicated.

Returning to Eq. (20) and assuming μ_c to be a slowly varying function of frequency over the interval $\Delta \nu$, we obtain as an approximation

$$\frac{\Delta\nu}{\mathrm{Tr}}(\nu) = \frac{e^{-\mu}c^{(\nu)x}}{\Delta\nu} \int_{\Delta\nu} \exp\left\{-\left[\sum_{\alpha}\mu_{\alpha}'(\nu)\right]x\right\} d\nu$$
(25)

By applying Eq. (22) the total average absorption coefficient is given by

$$\overline{\mu}(\nu) \approx \overline{\mu}_{c}(\nu) + \overline{\mu}_{f}(\nu)$$
(26)

where f labels that part of the absorption coefficient arising from the lines. The same procedure can be followed when one is using the two group absorption coefficients. The corresponding equations are

$$\mu'_{a} = \overline{\mu'_{c}} + \mu'_{al} \tag{27}$$

and

$$\mu_{\mathbf{b}}^{\dagger} = \overline{\mu_{\mathbf{c}}} + \mu_{\mathbf{b}\ell}^{\dagger}$$
(28)

where the labet I has been affixed to those coefficients that were calculated when continuum processes were omitted.

Photodetachment of 0^- , inverse bremsstrahlung, and the Θ_2 Schumann-Runge continuum are among the contributors to the continuous absorption coefficient. In addition, important polyatomic line transitions might be best handled by empirical means as a part of the continuum. One known important polyatomic contributor which is receiving special attention is NO₂. All these will eventually be integrated into the calculations.

Discussion of Sample Results

Sample curves of T vs. X in Figs. 7-38 exhibit the smooth behavior that allows the two-group approximation to be a fairly good one. As the temperature is raised and density lowered, however, some of the complicated frequency dependence shows up in the crossing of these curves, for which frequency is a parameter. Figures 39-70 present the same sort of results in a different fashion, i.e., in the form of an average absorption coefficient. Influenced by the sensitivity of the fractional species concentrations and electronic level populations to changes in temperature (and density), the frequency dependence of the transmission becomes very complicated above $3,000^{\circ}$ K at densities 10^{-1} normal atmospheric and below. The predominant absorption system at temperatures from 1,000 to 3,000° K is the O₂ Schumann-Runge system which is strongest in the higher frequency regions, i.e., about 30,000 cm⁻¹ on up. At 3,000° K, NO starts to contribute appreciably and increases in importance as the temperature increases. A very important constituent at the higher temperatures (6,000 to 8,000° K) is N_2^+ , whose first negative system exhibits a strong peak and valley behavior which is apparent in the lower density plots.

More points were computed for the density case $\rho/\rho_0 = 10^{-1}$. leading to lower energy information not on the other graphs. In particular, the point at 18,500 cm⁻¹ shows a relatively more opaque region. This is apparently the highenergy end of the N₂ first-positive contribution and is to be expected, according to the work of Meyerott. Sokoloff, and Nicholls⁽²⁾.

Where gross energy transfer is being considered, it must be remembered that the vibration-rotation spectrum of NO, which is especially important at lower frequencies for temperatures up to 3,000°K, has not yet been included in the calculations, and therefore is not contained in these results.

			Τ =	= 5000° K					
			f	ο/ρ ₀ =					
D	. 1	.0	10	0-1	1	0 ⁻²	10-4		
(cm ⁻¹)	μ _a	μ _b	μ _a	μ _b	μ _ą	μ _b	μ_{a}	ዀ	
19500	1.92-4	3.54 ⁻⁵	4.05 ⁻⁶	7.95-7	2.84-8	5.74-8			
21500	1.22 ⁻³	4.34 ⁻⁴	2.56 ⁻⁵	9.37 ⁻⁶	1.75 ⁻⁶	6.28-7			
23500	3.93 ⁻³	1.38 ⁻³	7.06 ⁻⁵	2.73 ⁻⁵	4.61 ⁻⁶	1.64 ⁻⁶			
25500	1.00^{-2}	3.66 ⁻³	1.61 ⁻⁴	6.07 ⁻⁵	9.61 ⁻⁶	3.32 ⁻⁶	1.82 ⁻⁸	1.45 ⁻⁹	
27500	1.76 ⁻²	5.84 ⁻³	2.83 ⁻⁴	1.06 ⁻⁴	1.68 ⁻⁵	6.07 ⁻⁶	1.40 ⁻⁸	5.03 ⁻⁹	
29500	4.06 ⁻²	1.52 ⁻²	6. 54 ⁻⁴	2.68 ⁻⁴	3.90 ⁻⁵	1.51 ⁻⁵	3.21 ⁻⁸	1.19 ⁻⁸	
31500	4.49 ⁻²	1.53 ⁻²	6.95 ⁻⁴	2.55 ⁻⁴	4.04 ⁻⁵	1.35 ⁻⁵	3.17 ⁻⁸	1.01 ⁻⁸	
33500	8.31 ⁻²	3.27 ⁻²	1.30 ⁻³	5.62 ⁻⁴	7.54 ⁻⁵	3.12 ⁻⁵	5.94 ⁻⁸	2.35 ⁻⁸	
35500	1.43 ⁻¹	6.42 ⁻²	2.44 ⁻³	1.05 ⁻³	1, 51 ⁻⁴	5.65 ⁻⁵	1.23 ⁻⁷	4.34 ⁻⁸	
37500	2.24 ⁻¹	7.94 ⁻²	3.40 ⁻³	1.25 ⁻³	1.94-4	6.47 ⁻⁵	1.52 ⁻⁷	4 .60 ⁻⁸	
39500	3.34 ⁻¹	1.02 ⁻¹	5.32 ⁻³	1.57 ⁻³	3.23 ⁻⁴	7.58 ⁻⁵	2.49 ⁻⁷	5.71 ⁻⁸	
41500	5.39 ⁻¹	2.15 ⁻¹	8.91 ⁻³	3.44 ⁻³	5.42 ⁻⁴	1,82 ⁻⁴	4.31 ⁻⁷	1.37 ⁻⁷	
43500	6.87 ⁻¹	2.57 ⁻¹	1, 13 ⁻²	4. 34 ⁻³	6.70 ⁻⁴	2.47 ⁻⁴	5.37 ⁻⁷	1.87 ⁻⁷	
45500	9.95 ⁻¹	4 .63 ⁻¹	1.71 ⁻²	8.07 ⁻³	1.06^{-3}	4.65 ⁻⁵	8.61 ⁻⁷	3.62 ⁻⁷	
47500	1.09	3.90 ⁻¹	1.75 ⁻²	6.45 ⁻³	1.03 ⁻³	3.59 ⁻⁴	8.30 ⁻⁷	2.63 ⁻⁷	
49500	1,38	6.70 ⁻¹	2.37 ⁻²	1. 19 ⁻²	1.45 ⁻³	6.97 ⁻⁴	1.18 ⁻⁶	5,42 ⁻⁷	

Ţ

ļ

ł

Table 5

TWO-GROUP ABSORPTION COEFFICIENTS

Table 5 (Cont.)

I

•

ł

1

I

۰.

J

10⁻⁴

T = 6000° K

10-2

 $\rho/\rho_{0} = 10^{-1}$

1.	0	
----	---	--

Frequency (cm ⁻¹)	μ _a	₽ъ	μ _a	μ	μ _a	۳ _b	μ _a	μ
19500	5.07 ⁻⁴	1.08-4	9.63 ⁻⁶	2.33 ⁻⁶	3.50 ⁻²⁵	2.12-26		
21500	2.44 ⁻³	8.93-4	4.27 ⁻⁵	1.61 ⁻⁵	7.58 ⁻²²	7.92 ⁻²³	2.47 ⁻⁸	5.37 ⁻⁹
23500	5.68 ⁻³	2.26 ⁻³	9.48 ⁻⁵	3.88 ⁻⁵	1.01^{-17}	5.08 ⁻¹⁹	9.23 ⁻⁸	1.22 ⁻⁸
25500	1.13 ⁻²	4.36 ⁻³	1.81-4	6.86 ⁻⁵	1, 10 ⁻¹⁵	1.33 ⁻¹⁶	2.13 ⁻⁸	1.72 ⁻⁹
27500	1.81 ⁻²	7.01 ⁻³	2.85 ⁻⁴	1.08 ⁻⁴	2.66 ⁻¹⁵	1.08 ⁻¹⁷	1.29 ⁻⁸	4.22 ⁻⁹
29500	3.61 ⁻²	1.50 ⁻²	5.59-4	2.27-4	3.44 ^{-1?}	1.64 ⁻¹⁵	2.99 ⁻⁸	1.40 ⁻⁸
31500	3.76 ⁻²	1.34 ⁻²	5.71-4	1.94 ⁻⁴	2. 49 ⁻¹²	1.49 ⁻¹³	1.79 ⁻⁸	6.30 ⁻⁹
33500	6.32 ⁻²	2.77 ⁻²	9.63 ⁻⁴	4.12-4	1.21 ⁻¹⁰	4.97 ⁻¹²	1.99 ⁻⁸	8.01 ⁻⁹
35500	1.05 ⁻¹	4 .57 ⁻²	1.71 ⁻³	6.50 ⁻⁴	1.12 ⁻⁹	9.92 ⁻¹¹	3.99 ⁻⁸	1.50 ⁻⁸
37500	1.42 ⁻¹	5.08 ⁻²	2.11 ⁻³	7.11 ⁻⁴	1.51 ⁻⁸	3.50 ⁻⁹	4 , 32 ⁻⁸	1.33 ⁻⁸
39500	2.04 ⁻¹	6.12 ⁻²	3.12 ⁻³	8.62 ⁻⁴	1.15 ⁻⁷	1.79 ⁻⁸	6.52 ⁻⁸	1.58 ⁻⁸
41500	3.15 ⁻¹	1.24^{-1}	4.92 ⁻³	1.80 ⁻³	8.73-7	5.24 ⁻⁸	1.03 ⁻⁷	3.47 ⁻⁸
43500	3.79 ⁻¹	1.47 ⁻¹	5.87 ⁻³	2.25 ⁻³	4 . 12 ⁻⁶	5.88 ^{~7}	1.22 ⁻⁷	5.40 ⁻⁸
45500	5.33 ⁻¹	2.47 ⁻¹	8.56 ⁻³	3.78 ³	2.69 ⁻⁵	3.81 ⁻⁶	1.82 ⁻⁷	7.61 ⁻⁸
47500	5.23 ⁻¹	1.88 ⁻¹	8.08 ⁻³	2.79 ⁻³	1.46 ⁻⁴	1.30 ⁻⁵	1,69 ⁻⁷	5,38 ⁻⁸
49500	6.45-1	3.20 ⁻¹	1.04 ⁻²	4.97-3	8.41-4	1, 10 ⁻⁴	2.20 ⁻⁷	1.01 ⁻⁷

Table	5	(Cont.)	
-------	---	---------	--

T = 7000° K

 $\rho/\rho_0 =$ 10-1

.

T

.

1

I

I

Ţ

l

1

1

10-4

10⁻²

Frequency (cm ⁻¹)	μ _a	μ _b	μ _a	μ _b	μ _a	μ _b	μ _a	μ _υ
19500	1.02 ⁻³	2.74 ⁻⁴	2.18 ⁻⁵	7.14 ⁻⁶	2.30 ⁻⁶	9.34 ⁻⁷		
21500	3.55 ⁻³	1.33 ⁻³	6.32 ⁻⁵	2.69 ⁻⁵	1.02 ⁻⁵	3, 19 ⁻⁶	2,39 ⁻⁸	5.26 ⁻⁹
23500	7.35 ⁻³	2.90 ⁻³	1.49 ⁻⁴	6.44 ⁻⁵	3.12 ⁻⁵	7.44 ⁻⁶	7.48 ⁻⁸	1.30 ⁻⁸
25500	1.30 ⁻²	5.06 ⁻³	3.11-4	6.94 ⁻⁵	3.51 ⁻⁵	1.78 ⁻⁶	2.10 ⁻⁸	1.27 ⁻⁹
27500	1.88 ⁻²	7.63 ⁻³	2.95 ⁻⁴	1.26^{-4}	1.91 ⁻⁵	8.16 ⁻⁶	1.19 ⁻⁸	2.61 ⁻⁹
29500	3.29 ⁻²	1.37 ⁻²	4.92-4	2.10-4	3.27 ⁻⁵	1.57 ⁻⁵	3.24 ⁻⁸	1.34 ⁻⁸
31500	3.33 ⁻²	1.12 ⁻²	4.76-4	1.61 ⁻⁴	2.57 ⁻⁵	9,25 ⁻⁶	1.20 ⁻⁸	3.54 ⁻⁹
33500	5.12 ⁻²	2.23 ⁻²	7.03 ⁻⁴	3.00 ⁻⁴	3.29 ⁻⁵	1.35 ⁻⁵	4.97 ⁻⁹	2.04 ⁻⁹
35500	8.30 ⁻²	3.33 ⁻²	1.22-3	4.82 ⁻⁴	6.36 ⁻⁵	2.43 ⁻⁵	1.05 ⁻⁸	4.10 ⁻⁹
37500	1.00 ⁻¹	3.48 ⁻²	1.37 ⁻³	4.53 ⁻⁴	6.33 ⁻⁵	2.03 ⁻⁵	9.68 ⁻⁹	3.00 ⁻⁹
39500	1.44 ⁻¹	3.85 ⁻²	1.92 ⁻³	5.31-4	9.23 ⁻⁵	2.25 ⁻⁵	1.38 ⁻⁸	3.44 ⁻⁹
41500	2.06 ⁻¹	7.97 ⁻²	2.87 ⁻³	1.0 6⁻³	1.36 ⁻⁴	4.70 ⁻⁵	2,06 ⁻⁸	7. 14 ⁻⁹
43500	2.41 ⁻¹	9.13 ⁻²	3.31^{-3}	1.27 ⁻³	1.56 ⁻⁴	5.71 ⁻⁵	2.36 ⁻⁸	8.69 ⁻⁹
45500	3.25 ⁻¹	1.45 ⁻¹	4.58 ⁻³	1.98 ⁻³	2.14 ⁻⁴	9.07 ⁻⁵	3.27 ⁻⁸	1,36 ⁻⁸
47500	2.99 ⁻¹	1.06 ⁻¹	4.15 ⁻³	1.42^{-3}	1.94 ⁻⁴	6.46 ⁻⁵	2.91 ⁻⁸	9, 87 ⁻⁹
49500	3.58 ⁻¹	1.73 ⁻¹	5.06 ⁻³	2.39 ⁻³	2.37-4	1, 10 ⁻⁴	3.60 ⁻⁸	1.66 ⁻⁸

			T =	8000° K				
			ρ	$\rho_0 =$				
	1.0		10 ⁻¹		10-2		10 ⁻⁴	
Frequency (cm ⁻¹)	μ _a	μъ	μ _a	"ъ	μ _a	μ	μ _a	^µ ъ
19500	1,95 ⁻³	6.00-4	4.78 ⁻⁵	1.72 ⁻⁵	3.42 ⁻⁶	1.49 ⁻⁶		
21500	4.26 ⁻³	1.79^{-3}	1.29-4	4.85 ⁻⁵	1.60 ⁻⁵	4.52 ⁻⁶	1.78 ⁻⁸	4.44 ⁻⁹
23500	9.01 ⁻³	4.18 ⁻³	3.55 ⁻⁴	1.12-4	4.98 ⁻⁵	8.87 ⁻⁶	5, 56⁻⁸	8.58 ⁻⁹
25500	1.82 ⁻²	5.76 ⁻³	4.45 ⁻⁴	9.14 ⁻⁵	3.68 ⁻⁵	2.01 ⁻⁶	2.04 ⁻⁸	1.10 ⁻⁹
27500	2.01 ⁻²	8.92 ⁻³	3.61 ⁻⁴	1.54 ⁻⁴	2.02 ⁻⁵	6.65 ⁻⁶	1. 11 ⁻⁸	1.88 ⁻⁹
29500	3.01 ⁻²	1.31 ⁻²	5.42 ⁻⁴	2.57-4	3.81 ⁻⁵	1.80 ⁻⁵	3.21 ⁻⁸	1.30 ⁻⁸
31500	2.85 ⁻²	9.90 ⁻³	4 .12 ⁻⁴	1. 49⁻⁴	1.93 ⁻⁵	6.60 ⁻⁶		
33500	3.79 ⁻²	1. 64 ⁻²	4.46 ⁻⁴	1.89 ⁻⁴	1.35 ⁻⁵	5.68 ⁻⁶		
35500	6.47 ⁻²	2.61 ⁻²	9.02 ⁻⁴	3.58 ⁻⁴	3. 10 ⁻⁵	1.22 ⁻⁵		
37500	6.86 ⁻²	2.29 ⁻²	7.92-4	2.63 ⁻⁴	2.42 ⁻⁵	7.73 ⁻⁶		
39500	9.30 ⁻²	2.56^{-2}	1.10 ⁻³	2.88 ⁻⁴	3.30 ⁻⁵	8.74 ⁻⁶		
41500	1.31 ⁻¹	4 .92 ⁻²	1.53 ⁻³	5.77-4	4. 70 ⁻⁵	1.70 ⁻⁵		
43500	1.47 ⁻¹	5.61 ⁻²	1.74 ⁻³	6.52	5.26 ⁻⁵	1, 98 ⁻⁵		
45500	1.91 ⁻¹	8.34 ⁻²	2.27 ⁻³	9.71 ⁻⁴	6.93 ⁻⁵	2.91 ⁻⁵		
47500	1.69 ⁻¹	6.07 ⁻²	2.01 ⁻³	6,95	6.04 ⁻⁵	2.12 ⁻⁵		
49500	1.97 ⁻¹	9.41 ⁻²	2.34 ⁻³	1, 11 ⁻³	7.13 ⁻⁵	3, 33 ⁻⁵		

Table 5 (Cont.)

ł

1

ŧ

.

1

Ę.

38

.

J

ł

I

i

t

İ

зл₂

٠

Fig. 2 B 3 IIg = A $^{3}\Sigma_{u}^{+}$ Band of N₂ (First positive system)

ł

. . .

i

1

.

ذ و

Fig. 3 C ${}^{3}\Pi_{u} = B {}^{3}\Pi_{g}$ Band of Y_{2} (Second positive system)

٠,

0.212

,

•

1

Z

ŧ

l

ł

; Ì

ŧ

i

ł

ŧ

.

Ì

ļ

į

. ,

;

\$

ł

.*

•

ŧ

•

į

ł

•

i

ŧ

۰.

I

.

ļ

i

ł

Į

i

i

ļ

Į

ł

54

c) • **

1 1 1

j,

Į

į

i

ł

ļ

۱

.

57

-

Ì

ł

Į

Í

ł

ł

İ

I

ť,

ł

i

.

!

ļ

.

ļ

1

I

1

ļ

ļ

ł

I

ł

İ

ĺ

i

7

I

I

ŀ

•

İ

İ

ł

I

ļ

.

I

I

Į

ł

f

ļ

Į

ľ

ł

ł

ļ

I

į

1 .

į

Ì

I

I

ļ

I

ŀ

ļ

C

2

ļ

•

,

з }

7. #

....

À.

Fig. 29 Average transmission of optical radiation through a slab of heated air as a function of optical path length.

•

...

P

• •

ľ

; k

l

ļ

ì

٤

ŀ

1

70

•

۴.

l

I

ļ

Ţ

.

.

i

Ţ

T 1

I

ĺ

J

1

1

Ţ £

•

*

.

ţ 1

1

J

1

I

I

ļ

1

.

;

I

ł

ļ

7 2

İ

÷.

ŧ

ļ

T T

I

.

ł

•

1

Í

•

.

•

Į

I

Į

I

į

Í

. .

.

•

.....

ĺ

I

l

Ì

76

. .

j

Í

•

. . .

•

•

•

Í

N

Pig. 39 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 40 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

.

ļ

ļ

;

;

i

Ī

ł

Fig. 41 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Î.

Ţ

i

÷

t

i

÷ †

ļ

ł

Í

Fig. 42 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

ĺ

۲

I

Į

I

ł

Fig. 43 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

I

I

ŕ

Fig. 44 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

C

Fig. 45 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Ģ

٠.

1

I

I

į

i

Ì

į

ļ

Į

I

I

I

Ī

ł

ŧ

ŧ.

Fig. 46 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

84

.

. .

Fig. 47 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

I

1

I

Į

1

Ł

Į

I

ł

ľ

I

1

1

Ī

I

Ĭ

Fig. 48 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 49 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Ĩ

Į

ł

•

1

•

.

I

ļ

I

l

ļ

Į

I

(

1

ļ

Fig. 50 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 51 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Į

I

₹ ₩1

(

.

f

.

:

I

ŧ

ł

ł

Į

I

ł

1

į

Ī

i

ţ

ţ

i

I

I

Fig. 52 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 53 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

i

٤

1

ŧ

ļ

Fig. 54 The average absorption coefficient of neated air as a function of frequency for various optical path lengths.

i

Fig. 55 The average absorption coefficient or neated air as a function of frequency for various optical path lengths.

.

Ì

Fig. 56 The average absorption coefficient of heated air 45 5 function of frequency for various optical path lengths.

Fig. 57 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Ī

1

Fig. 58 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

•

۰.

Fig. 59 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

τ

L.

۱.

1

Ľ

Ŀ

Ľ

E

[

Į

1

Fig. 60 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 61 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

ر ، • ن

Fig. 62 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 63 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Ţ

Fig. 64 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 65 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Į

:

2

;

ł

F

Fig. 66 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 67 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

Fig. 68 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

i

Į

Fig. 69 The average absorption coefficient of heated air as a function of frequency for various optical path lengths.

I

1

i

Ī

Fig. 70 The average absorption coefficient of heated air as a function of irequency for various optical path lengths.

ļ

١

I

ļ

İ

.

i

i

1

.

;

ļ

ł

:

ĺ

1

i

1

l

· · · · ·

.*

111

.

.

Fig. 74 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure. Į

Į

I

I

ţ

1

i

1

I

112

ł

i

ł

ł

Ì

i

i

I

ļ

F

ļ

1

i

ĺ

i

Fig. 77 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.

5. 78 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.

.

÷

ł

1

Í

ĺ

ļ

ł

.

ł

i

Í

ĺ

9 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.

117

0.

The optical path length is given in the figure.

Fig. 80 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.

İ

1

Į

ļ

•

•

.

.

t

ł

1

-

Fig. 81 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.

-

ł

Į

Ì

ł

İ

ļ

l

İ

ł

i

ł

ł

ł

mäu

يع لأنبحت تنا

ماميندهين امعيتين يحتناكيني

ļ

1

l

;

i

ł

İ

Fig. 83

Fig. 84 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures. The optical path length is given in the figure.

۱

The methed much langth is stuan in the figura

ŧ

ļ

•

ţ

۱

ł

, f

ł

l

l

ł

·

ł

ŧ

÷

1

i

Ì

Į

I

ļ

ļ

Fig. 87 Average transmission of optical radiation through a slab of heated air as a function of frequency for various temperatures The optical path length is given in the figure.

Fig. 88 Average transmission of optical radiation through a slab of heated air as a function of frequency for varicus temperatures. The optical path length is given in the figure. l

ļ

,

1

ļ

;

ļ

126

ſ

þ 1111

-0 -- -- 0-----

111

2

ncated arr as a nunction of it equency for various temperature. The optical path length is given in the figure.

ł

!

i

Ī

Į

ļ

l

Į

unän en ut uavä er män

REFERENCES

 B. H. Armstrong, J. Sokoloff, R. W. Nicholls, D. H. Holland, and R. E. Meyerott, J. Quant. Spectro3c. Radiat. Transfer <u>1</u>, 143 (1961).

1

ŧ.

ŧ

- R. E. Meyerott, J. Sokoloff, and R. W. Nicholls, <u>Absorption Coefficients of Air</u> (Air Force Cambridge Research Center, Bedford, Mass. 1960), Geophysics Research Pager No. 68.
- 3. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York 1950).
- 4. M. Born and J. R. Oppenheimer, Ann. d. Phys. 84, 457 (1927).
- 5. R. W. Nicholls, Can. J. Phys. 38, 1705 (1960).
- 6. R. W. Nicholls, J. Res. N.B.S. 65A, 451 (1961).
- 7. R. W. Nicholls, J. Res. N.B.S. 66A, 227 (1962).
- 8. H. A. Bethe, The Specific Heat of Air up to 25,000°C (OSRD Report 369 1942).
- 9. E R. Brirkley, Jr., J. G. Kirkwood, and J. M. Richardson, <u>Tables of the Properties</u> of Air Along the Hugoniot Curve and the Adiabatic Terminating in the Hugoniot. (OSRD Report 3550 1944).
- 10. P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).
- ¹1. R. Schlapp, Phys. Rev. <u>51</u>, 342 (1937).
- 12. S. M. Naude, Proc. Roy. Soc. 136, 114 (1932).
- 13. A. Budo, Z. Physik 96, 219 (1935).
- 14. A. Budo, Z. Physik 98, 437 (1936).
- 15. A. Budo, Z. Physik 105, 579 (1937).
- 16. A. E. Douglas, Can. J. Phys. 30, 302 (1952).
- 17. E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1926).
- 18. R. H. Gillette and E. H. Eyster, Phys. Rev. 56, 1113 (1939).
- 19. R. F. Barrow and E. Miescher, Proc. Phys. Soc. A70, 219 (1957).
- 20. I. Deezsi, Acta Physica 9, 125 (1959).

i.

1

ŧ.

- 21. L. T. Earls, Phys. Rev. <u>48</u>, 423 (1935).
- 22. Y. Tanaka and A. S. Jursa, J. Opt. Soc. Am. 51, 1239 (1961).
- 23. F. R. Gilmore, <u>Equilibrium Composition and Thermodynamic Properties of</u> <u>Air to 24,000⁶K</u>, (Rand Corporation RM-1543, Santa Monica, California 1955).

o<u>f</u> 55

959

- 24. C. E. Treanor and W. H. Wurster, J. Chem. Phys. 32, 758 (1960).
- 25. R. G. Bennett and F. W. Dalby, J. Chem. Phys. 31, 434 (1959).
- 26. J. C. Keck, J. C. Camm, B. Kivel, and T. Wentink, Amm. Phys. 7, 1 (1959).