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ABSTRACT

This report, the first of a series, summarizes a survey of the litera-

ture on thin, flexible, pressure vessels. Equations for the stresses in an

axi-symmetric balloon are determined. The equations arle then rearranged

to be most suitable for computation of shape. Derivation of the balloon design

parameter Z is presented.
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I. INTRODUCTION

This report is the first of a series of reports that will examine the pro-

blem of determining the shape of free balloons. The designs used today were

determined by the University of Minnesota and presented in Volume IX of the

reports of their work (Reference 1). This work has withstood the test of time;

its correctness has been proved by thousands of sucessful balloon flights. At

the time the work was done (1953), the largest balloon designs were about
3 million cubic feet, and maximum payloads were approximately 400 pounds.
Since then, balloons and payloads have been flown which fall outside the range

of design values provided by the University of Minnesota. In addition, new

materials, balloon configurations, and fabrication techniques have been intro-
duced. It has therefore become imperative to reopen the subject of determina-

tion of balloon shape.

The University of Minnesota performed their calculations on an analog

computer. The work of this study will be done by digital computer, which
will permit us to make more accurate calculations, and will afford an in-

dependent check of the earlier work.

This first report presents a review of past work on the subject and a
derivation of the equations that define the shape of a free balloon.

II. REVIEW OF PREVIOUS EFFORTS

A. Early Work

Early efforts to determine the shape of flexible containers subject to

internal pressure were concerned with airship shapes. The problem was

considered two-dimensional. The shape of a cross section normal to the
longitudinal centerline was determined, For the two-dimensional case,

material stresses in the longitudinal direction could be ignored or assumed

equal to zero. While this work is not directly applicable to free-balloon de-

sign, we have examined it for methods of approach to the problem.



The earliest study of the general problem is cited in Reference Z with

a date of 1914. The study was a graphical solution that is simple and straight-

forward, which can be made as accurate as desirable. At any point the stress t

i!ý determined simply by the expression

t pr

where

p = local pressure, r = radius of curvature.

For short increments of the curve, the above values are constant, and an arc

is struck of radius r. At the end of the arc, new values of p and r are calcu-

lated, and the next arc is drawn. Adjoining radii of curvature are colinear.

Reference 2 does not state how the solution is started. We surmise that t' is

determined from considerations of payload and shape and that the desired

size and pressure are found by a few trial solutions. It is convenient to

start at the top of the balloon where the direction of the radius of curvature

is known. A sketch illustrating this method is presented as Figure 1.

In this and most other work the weight of the material is assumed to

have a negligible effect. Such an assumption is not far wrong, but neither

is it necessary. The material weight changes stress in proportion to the

vertical component of the curve. A similar procedure could be applied to

a free balloon except that the gore width would be variable. Total load in

the balloon gore would be the defining parameter. As the shape of the balloon

developed, local radius and local gore width would be found and would allow

determination of local stress and radius of curvature. This method would

not be practical for balloons with circumferential stress other than zero.

An interesting analytical solution to the same problem of airship shape

is given by Pagon in Reference 3. The solution is in terms of elliptic in-

tegrals, so he has devised a chart that covers a large class of solutions.

They all have a horizontal tangent at the top, and only superpressures are

considered. The solutions are for weightless material only, but the case

of envelope weight and envelope shear is discussed. These considerations

make the problem intractable analytically.

- 2-
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Figure 1. Sketch Illustrating Graphical Determination of Airship Cross Section
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The theory of a mechanical method for determining shape is also given

in Reference 3. This method was published by a Colonel Crocco in 1914. He

showed that the equation for a thin elastic spline loaded at its ends is the same

as that for the airship envelope. The procedure for use of such a method is

outlined in some detail.

B. Parachute Design

It is appropriate to digress at this point and mention the work that has

been done in parachute design. Two assumptions appear to be universal:

1) parachute material is weightless, and 2) the pressure across the para-

chute is constant. The results of parachute design calculations are, there-

fore, not the same as those for a balloon, but they do provide a reasonable

check on balloon computations. The case of constant pressure is approached

in a balloon as the head of gas approaches infinity, or if the balloon is filled

with air. Reference 4 states that symmetric structures subject to the above

limitations. may be represented by

sin 0= k[ 1 + (.r )Z]

where

0 = angle between the curve and a plane normal to the axis of

symmetry

S= shape parameter

r = radial distance from axis of symmetry

a = maximum value of r.

It also states, "By varying the parameter X a family of curves is generated,

identical with the elastica occurring in the theory of the buckling of columns

and struts as originally investigated by Euler.

-4-



When X = 1 the curve is flat-topped and is the so-called Taylor shape.

Integration of the above equation and sample curves is given in the reference,

Circumferential and meridional stresses are also determined. Near the

parachute's top these expressions for stress are applicable to balloons. It is

shown that when X = I the circumferential stress is zero, and that the meri-

dional stress becomes infinite as r approaches zero. It is also shown that

with a slightly conical top (and therefore some circumferential stress) the

meridional stresses become small. The author further suggests that there

should be some circumferential stress to stabilize the parachute's shape

(not a problem with balloons) and to aid in full deployment of the gores. He

finds that the most efficient shape, from a drag-to-surface-area standpoint,

has an axial cord and a re-entrant top. We will investigate the effect of a re-

entrant top on balloon area (i. e. , weight) in a later report.

In both References 4 and 5, the work of Stevens and Jones (Reference 6)

is discussed. Here the canopy cords, corresponding to balloon tapes, carry

the entire meridional load. The material is allowed to bow outward between

the cords. Stresses and gore patterns are discussed. It has been observed

that balloon material bows outward between tapes. This work can be used

as a guide toward investigating the stresses in balloons,

C. Free Balloon Design

Upson appears to have been the first to record the concept of a "natural"

shape for a free balloon. In Reference 7 he considered the stresseb in a

partially inflated balloon and recognized the absence of circumferential stress.

A version of the differential equation for shape is derived but is applied only

to the vehicle's upper half.

A full determination of many weightless natural-shape balloons is made

in Reference 8 by Upson and others at the University of Minnesota. They

show that at the top the ideal curve is a cubic parabola. Circumferential

stress near the top is discussed for several shapes; this approaches infinity

for curves of degree between 2 and 3. Material deformation precludes this

happening in actual practice. The case of a balloon with material weight is

treated briefly,

-5-



The work of Upson was carried on by the University of Minnesota and

reported in various volumes (Reference 1). It is here that the parameter E

is introduced. A nomograph is given for determining E in termý of the pay-

load, volume, and material weight. Finally, tables of balloon Aliape are

given for 0 6 E 9 0. 4 in steps of 0. 05, These have provided thj% basis for

balloon designs used up to the present time.

III. DERIVATION OF THE EQUATIONS

Various derivations are given in the literature cited. The University

of Minnesota derived the equations in more than one way. The one presented

therein uses the variational principle starting with a statement of the total

gravitational potential energy. This method is elegant, but its results are

the same as those obtained using simple membrane theory, and it falls back

on that theory to evaluate a factor.

A. Assumptions

I) The balloon is assumed to be rotationally symmetric about a
vertical axis.

2) Meridional and circumferential stresses are assumed to be
constant at all points on the circle lying in a plane normal to
the axis of symmetry. This precludes the possibility of shear
in the balloon.

3) The densities of the inflation gas and surrounding air are
constant.

4) The balloon material is inextensible, thin, and incapable of
supporting any bending or compressive loads.

- 6 -



B. Symbols

Symbol Definition Dimension

a pressure head at bottom of balloon length

b difference in weight densities of air
and inflation gas force per unit volume

k constant = (2i1)l/3

p gas pressure across the balloon
material force per unit area

r radial coordinate of a point on balloon,
measured normal to the axis of
symmetry length

tc circumferential stress force per unit length

tm meridional stress force per unit length

8 gore coordinate of a point on the bal-
loon, measured in the meridional
direction from the bottom apex length

w unit weight of balloon material force per unit area

z height coordinate of a point on bal-
loon, measured parallel to the axis
of symmetry from the bottom apex length

A area of balloon surface length squared

B buoyant force on balloon force

F vertical load at top apex of balloon force

G gross lift of balloon = bV force

L payload suspended at bottom apex
of balloon force

T total film load = 2i•rt force
m

V balloon volume length cubed

W balloon weight force

-7-



Symbol Definition

a• non-dimensional a

1 non-dimensional z

9 angle between tangent to the balloon surface and
the axis of symmetry, measured in a meridional
plane

P non-dimensional r

a non-dimensional s

T non-dimensional t
c

angle between two meridional planes

W non-dimensional w

balloon design parameter = w(7(/b L)I/3

C. Elementary Considerations

At the bottom apex, the payload is supported by the balloon material

(film, tapes or both). The material load is easily computed in terms of the

apex angle:

T = L/cos e0

For film alone, the expression T = Z nr t is also valid. As r approachesm"
zero, tm must approach infinity. Thus the payload cannot be supported at a
point. Either tapes or sufficient film must be used in an end fitting so that

allowable film stresses are not exceeded. This is the basis, of course, for

cylinder-end balloons.

Consider a narrow element of material bounded at top and bottom by

parallel planes normal to the axis, as sketched:

-8-
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The forces on the element are shown. The pressure p is everywhere

normal to the material. If the material weight is zero, then there is no

force or component of force parallel to the element in the meridional direc-

tion. The total material loads at the top and bottom of the element must

therefore be equal. This may be generalized so far as to say that, for a

weightless balloon with zero circumferential stress, the total film load is

constant at every level of the balloon. Returning to the sketch, one can see

that material weight can be resolved into two components that are normal

and parallel to the element. Thus T1 will be greater than T0 by the parallel

component of the weight. Again, for an actual balloon, the total material

load increases with increasing levels by a component of the material weight.

The material load is everywhere finite. It has been shown that in theory

the stresses diverge at the bottom. By the, same reasoning, for a zero cir-

cumferential stress balloon, the stresses will diverge at the top. In a later

section, we show how the circumferential stress modifies the meridional

stress,

Figure 2 depicts the top portion of a balloon as a free body. Weight and

buoyancy are functions of the area and volume of this portion, respectively.

When r -+0, then (W-B) - 0, and the force diagram in the figure results. The

- 9 -
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Figure 2. Top Portion of Balloon Considered as a Free Body
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material load supports whatever weight F is located at the top. If F = 0, then

T cos 9 = 0. But T has been shown to be finite, so without a load at the top

the balloon must be flat.

D. Derivation of Stress Equations Using Membrane Theory

Consider an elemental area on the surface of the balloon located as shown

in Figure 3. The top and bottom of the element are defineB by parallel planes

normal to the axis of symmetry and located a distance Az apart. The inter-

section of one such plane with the surface of the balloon defines the circum-

ferential direction. The sides of the element are defined by two planes con-

taining the axis of symmetry and separated by an angle * (* < <1). The inter-

section of one such plane with the surface of the balloon defines the meridional

direction, Forces in the meridional and circumferential directions are ortho-

gonal with each other and with the normal to the surface.

The element and the forces acting on it are shown in Figure 4. Summing

forces in the vertical plane produces this relationship:

(tin + Atm c 1 Co(s +A ) - tm c cos 8 - b(z + a) A sin 8 - wA = 0

where

co =r*/

c = (r1 + r)

A 1/2 (c 0 + c1 ) As

All infinitesimals of order higher than the first will be omitted. Then

A = r * Aa and,

Another derivation, arriving at the same final equations, is given in the
Appendix.

- 11 -



r~ ++Az

As A z z + Az

z

e +Ae

e0

i I4,

Figure 3. Sketch Showing Relation of Elemental Area and Balloon
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Ar t coso + r At coso - r t sine AS - b r(z + a) sine A s - r w As = 0.m m m

The first three terms may be combined into A(r t coo 0). If the equation is
divided by As, we have

A(r t cos 9)m - r [ b(z + a) sine + w ] = 0 (1)
As

Summing radial forces in the horizontal plane, we obtain -

(tin+ a m) c 1 sin( G+A 8) - tM c0 sin a- Ztc sin(*/2) As + b(z +a) cos 9 A = 0

or

Art sin, + r At sin e + r t coso A9 - tc As + b r(z + a) cose As = 0

Then, as before,

A(r t sin8)
-As tc +br(z+a) coso =0. (2)

In the limit, as As-.O, Equations (1) and (2) become

d
•-(r tm coso) - r w - b r(z + a) sin 8 = 0

d(r t sinB) - t + b r(z + a) coso = 0.

Basically these equations define the stresses anywhere on the surface of a

balloon with a given configuration.

Since

sin 9 = dr/ds

and

cos 0 = dz/ds,

another form of these equations is

d (r t - r w - b r(z + a) r' 0

(3)

d (r tm r') - t + b r(z + a) z' }
- 14 -



where the prime (') denotes differentiation with respect to s. These are equa-

tions (6) and (7) as given in the University of Minnesota's report (Reference 1)

vols. I and II.

Now

z' dz/ds = dz/ V(dz) 2 + (dr)2 = I/ fI + (dr/dz)

r' = dr/ds = (dr/dz) (dz/ds) = (dr/dz)/l1 + (df/dz)Z

d d-dz 1/ 1 + (dr/dz)2) d--"

If these are substituted in equation (3) above, we have

d r tm\ w lr + (r') -br (z + a) r' 0

dz ( ) + br (z + a) = 0

where now

r'= dr/dz.

These are equations (1) and (Z) in the same report.

E. Derivation of Shape Equations

Any of the foregoing equations define the shape of the balloon. The

following development arrives at equations particularly suitable for com-

puting purposes.

Returning to equation (3) and performing the indicated differentiation,

we have

-15-



d
z1 (r tn) + z'a-o(r tm) - rw -br (z+a) r' =0

r"~ ~ (t +r'U(r tm)-t + br (Z + a) Z' = 0,

but, since z"= - r' e' and r" = z' 0',

- re1(rt)+z' .-(rt)- r w -br (z + a) r' = 0

z e'(rtm) + r' (r ti) - t + br (z + a) z' 0 (

Eliminating the buoyancy term results in an explicit expression for the

meridional material load:

d (r t r w z + r' t

ds m c

Integrating produces the relationship

5
r tm = f(r w z' + r' t ) ds + constant.m c)

The constant had already been evaluated when it was noted that the total

material load at the bottom (a = 0) of the balloon was

T 0 = 2 9 r tm = L/cos6 0

So

5
r t L/Z x con 00+ f (r w z' + r' t c) di. (5)

dEliminating the term J- (r ti) from equation (4) results in

8' (r t) + r w r' t z' + br (z + a)= 0

where use has been made of the fact that (r')2 + (z') 2 .

Rearranging,

9' = br (z + a) + r w r' -t z'] /rt (m

- 16-



This is the second equation, which, together with equation (5), is used

to calculate shape. The terms a, L, e w, and tc are independent variables.

For given values of a and L and for given functions w = w(s) and tc tc (a), the

shape is uniquely determined by 8%

F. Non-Dimensional Equations and Derivation of E

Equations (5) and (6) are best non-dimensionalized by, first, factoring

out b from the right hand side of (6) and dividing (5) by b. This produces

- l= r(z + a) + r(w/b) r' - (tc/b) z'] /(r tm/b) (7)

where

S

(r tm/b)= (L/b)/. ncos 80+ f [r(w/b) z' + r' (tc/b)] do.

Second, let

p =rl(L/b) 1/3

S=zl(L/b)I /3

a =a(Llb)I13

a = s/(L/b) 1/3

t = (r tm/b)/(L/b)

a) = (w/b)/(L/b)1/

T = (tclb)l(Llb)2/3

and note that

9 = dO/ds = (d8/da)/(L/b)l1 3 .

Substituting these in equation (7) above, results in the following non-

dimensional form of the shape equations:

- 17 -



- dO /do [P + P CD P - /

where

or't' I/( coo 00) + f P ( m '+ P ' r) do
0

Again, for a given (X, 9 o and c the shape is determined.

The University of Minnesota presented results in Vol' IX (Reference I)

for the case C = r = 0. In this case

- dO/do= (G + w p') (p/rt-,

and

a

r"t= l/(Zxcos 0)+ f U) do
0

Here the shape is dependent on 8 0 and a) only. The University of Minnesota's

results give a family of curves for a range of w values with 0 chosen so that

the balloon is flat on the top.

The term W is a very useful balloon design parameter because the expression

Sz (w/b) (b/L)1/ 3 = (1/L)1 / 3 (b) "/ 3 w

is dependent on payload, altitude, and material weight, These are the three

factors most likely to be known in the initial stages of a design. It has been
reported (Reference 9) that the University of Minnesota defined

E = (2 x/L)1/ 3 (V/G)2/3 w.

But

G = bV;

So

(2 = (Zs/L) 1/3 (b)"2/ 3 w = (2 X)1/3 *.

- 18 -



The term £ is well known and widely accepted; rather than introduce another

parameter, it will be used herein.

Finally,

-de/da + ( C) + k Z pp p

and (8)

r- = I/ 12xcos o0 )+ f (krE p + r p )do
0

where

It is clear the E will still be an important parameter when C and r are

non-zero.

- 19 -
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DERIVATION OF THE DIFFERENTIAL EQUATIONS FOR THE BALANCE

OF FORCES IN AN AXIALLY SYMMETRIC, THIN-FILM BALLOON

I. VERTICAL FORCES

Consider the lower portion of the balloon as a free body, thus:

/
/

z

Payload (LI/)

There are only four vertical forces to be considered: (1) the vertical

components of meridional tension, considered positive upward; (2) the pay-

load, considered positive downward; (3) the weight of the balloon below the

height z, considered positive downward; and (4) the downward force due to

the pressure acting on the horizontal projection of the balloon wall below

height z, considered positive downward.

Therefore, when the pressure at height zis equal to b(z + a), the weight

per unit area of the balloon film is equal to w and the payload equal to L,

(Figure A-l) the requirement that the sum of the vertical forces, at a height

z, be equal to zero is satisfied by the following equation:

A-I



tm

Ar

L

Figure A-1

A-Z



F : 2n r tm cos e - L - b(z + a) sin e r ds d*

0 0

-f f rw ds d, 0

0 0

which, upon integration with respect 'to *, yields

S s

-2rt cose -L-f xbr (z + a) sin 9 ds- f 2 irw dso 0.m d J
0 0

Differentiating the latter equation with respect to s, and dividing by 2 A

we have

d
d (r t cos e) - br (z + a) sin 0 - rw= 0

and, noting that cos e = dz/ds and sin 0 = dr/ds, we can write

d dz dr
U (r t m•-) - br (z + a) U- - rw 0.

II. HORIZONTAL FORCES

Consider as a free body a portion of the balloon, as defined in the

following sketch

/Y

/ A-

\ //
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This is a semi-circular element bounded by two horizontal planes (normal

to the axis of symmetry) and by a vertical plane (containing the axis of symmetry).

The location and dimensions of this free body are defined in the following sketch:

S+ 1AO r +Ar

rJ

An enlarged view of the free body is shown in Figure A-2. The material

stresses are also indicated. Since only horizontal loads are to be considered,

the weight of the material is omitted. In addition to the material stresses,

there is a pressure normal to the suirface of magnitude b(z + a). Horizontal

forces in the direction of tc will be considered, and are discussed individually

in the following:

A. Circumferential Stress

Assuming the variation of tc is linear for small As then

F = 2 As = (2 t + at) as.

If Atc << I and As <<l and we omit second order terms, then

F = 2 t As.
c c
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Figure A-2
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B. Meridional Stress

In the z-plane the horizontal component of meridional stress is t sin e
which, when integrated for its resultant in the tc direction, is

Z r t sin G.

m

In the (z + Az) -plane the horizontal component of meridional stress is

(t +At )sin (8 +AG).

If this is integrated for its resultant in the tc direction, we have

2(r + Ar) (t + Atrn) sin (8 + AG).

If Ar <<1, At <<1 and Ae <<I and we omit second order terms, then

Fr= 2r(t sin e + t cos a AG + sing Atrn M m m
+ Z t sin e Ar.

m

Note that

A(r t sin 8) = r t coso G + r sin G At + t sinG Ar.m m m mi'

Then

F = r t sin 9 + Z 6(r t sin e).

C. Pressure Force

From elementary hydrostatics the resultant pressure force will be equal

to the area of the balloon surface projected into the vertical plane times the

pressure at the centroid of that area. If we assume that the variation of r

is linear for small 4z, then the projected area is

SI r + (r 2+ Ar))
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The centroid of this area, correct to first order, is at z + Az/2. The

pressure then is

b(z + _z + a).

If Ar < <I and Az < <1 and we omit second order terms the resultant pres-

sure force is

F = 2 r b(z + a) Az.

Summing the three forces derived above in the direction of t with con-c

sideration for their direction as well as magnitude we have
Fh = t As - A(r t sin e) + r b(z + a) Az = 0.

Dividing by As, taking the limit as As - 0 and noting that sin 9 = dr/ds

we finally have

d dr + (+ dz- =0
- (r tm e+r ) = 0.
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