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PREFACE 

Part of the Project MND research program consists of 

basic supporting studies in mathematics. In this Memorandum 

the authors discuss a method for solving large systems of 

differential equations where the solution is subject to 

certain boundary conditions. 
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SUMMARY 

Two—point boundary—value problems for second—order 

systems of linear differential equations are usually 

solved by a process involving the inversion of a certain 

matrix. If the system is too large, it may be difficult 

to compute this inverse to a high degree of accuracy. 

The purpose of this paper is to demonstrate that this 

difficulty can in some cases be circumvented by applying 

a method like that of Bodewig and Hotelling. 
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ON THE COMPUTATIONAL SOLUTION OP 
TWO-POINT BOUNDARY-VALUE PROBLEMS 

1.  INTRODUCTION 

Consider (as In LiJ) the n—dimensional vector 

differential equation 

(1.1) x" + A(t)x = 0 , 

where the solution is subject to the boundary conditions 

(1.2) x(O) = c,    x(l) = d. 

The problem is generally solved as follows. Let 

X,  and Xp denote the matrix solution of 

(1.3) X" + A(t)X = 0 

satisfying the initial conditions 

(1.4) X^O) - I, X'(0) = 0, 

x2(o) = 0, X^(0) = I. 

If g represents the (unknown) value of x^O), 

where x(t) is the solution to the problem, then 

(1.5) g = X2(l)~
1[d - X1(l)c]. 

If X2(l) is singular, then there may be many 

solutions, or none, and (1.5)* of course, makes no sense. 

If n is large, it may be difficult to compute 

Xp (l) to a high degree of accuracy. The purpose of this 

paper is to discuss a method of overcoming this difficulty. 
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2.  AN ITERATITO TECHNIQUE 

Let Xp(l) be some approximation to X~ (l). 

Define 

(2.1)    g1 - X2(l)[d - X1(l)c]J 

gn - x*(i)[d - x1(i)c - x^Dg^J + gn_1. 

Then we have the following theorem: 

Theorem. If the spectral radius of I - X2(l)Xp(l) 

Is less than one, then the sequence (g } defined by 

(2.1) converges to g, the unique solution of (1.5)• 

Proof. First note that if I - X*(l)X2(l) has 

spectral radius less than one, then Xp(l)Xp(l) must be 

nonsingular. Thus Xp(l) and Xp(l) are nonsingular, 

v/hich means that (1.5) has a unique solution. If g is 

the unique solution of (1.5)* then 

(2.2) Sn - S = xJ(l)U - X1(l)c - X^Dg^I   + g^ - g 

= x^Dtd - x^Dc -^(Dg^ 

- X2'(l)[d - X1(l)c - X2(l)g]   + gn_1 - g 

= (i -^(i)x2(i))(gn_1 - g). 

-X* 

If the spectral radius of I - X2(l)X2(l) is less 

than one, this shows that (gn - g} goes to zero as n 

goes to infinity,  and this concludes the proof.    This 
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theorem may be viewed as an application of a method of 

matrix inversion like that of Bodewig and Hotelling (see 

[3], [4] for additional references). 

o 
Corollary. If A(t) = B ,    a constant positive- 

definite matrix, then taking X^(l) = X2(l) makes [gn} 

converge to the solution. 

Proof.  Since X2(l) = B"
1 sin 33 it follows that 

the eigenvalues of XpU) ^ have absolute value less 
o 

than one, and thus all the eigenvalues of Xpll) are 

between 0 and one. 

Corollary. If each element of I - Xp(l)X2(l) is 

less in absolute value than 1/n, then [g } converges 

to the solution. 

2 
Corollary. If A(t) = - B , where 15 is a matrix 

with only real eigenvalues each of which is greater than 

zero, then taking Xp(l) = 2Be~  makes (g ] converge 

to the solution. 

_-,  Bt   —Bt 
Proof. X2(t) = B {- j-s ), v/hence 

X^'(1)X2(1)  equals I - e~2j3. 

Corollary.  If Y,(t), Y0(t) are solutions to 

Y" + A(l - t)Y = 0 satisfying initial conditions like 

(1.4), then taking )U(l) = Yj_(l) will make [gn} 

converge to the solution if YA(1)XA(1) has spectral 

radius less than one. 



Proof. Y£(1)X£(1) = I - Y;j_(l)X2(l). 

*, . 
Corollary.  If Xp(lJ = dA, where A Is the 

transpose of Xp(l) and d Is a positive constant 

chosen to be less than twice the reciprocal of the 

sum of the absolute values of each row of AXp(1), then 

[g ] converges to the solution. 

Note that this last corollary is not apt to be 

computationally useful, however, since if Xp(l) has 

some very small eigenvalues (and thus is hard to invert), 

under the above procedure I — Xp(l)X0(l) will have 

spectral radius very close to one, so that convergence 

will be slow. 
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