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PREFACE

Part of the Project RAND research program consists of
basic supporting studies in mathematics. In this Memorandum
the authors discuss a method for solving large systems of
differential equations where the solution 1s subject to

certain boundary conditlons.
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SUMMARY

Two—point boundary—value problems for second—order
systems of linear differential equations are usually
solved by a process involving the inversion 6f a certain
matrix. If the system is too large, it may be difficult
to compute this inverse to a high degree of accuracy.
The purpose of this paper is to demonstrate that this
difflculty can in some cases be circumvented by applying

a method like that of Bodewlg and Hotelling.
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ON THE COMPUTATIONAL SOLUTIOHN OF
TWO—~POINT BOUNDARY-VALUE PROBLEMS

1. INTRODUCTION

Consider (as in [1]) the n—dimensional vector

differential equation

(1.1) x" + A(t)x = 0,

where the solutlon is subject to the boundary conditions
(1.2) x(0) = ¢, x(1) = d.

The problem 1ls generally solved as follows. Let
Xl and X2 denote the matrix solution of
(1.3) X" + A(8)X =0

satisfying the initial conditions

(1.4)
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If g represents the (unknown) value of x'(0),

where x(t) 1s the solution to the problem, then
(1.5) g =X, (1) Ha - x,(1)c]
. X2 1 .

If X2(1) is singular, then there may be many
solutions, or none, and (1.5), of course, makes no sense.
If n is large, it may be difficult to compute
Xgl(l) to a high degree of accuracy. The purpose of this

paper is to discuss a method of overcoming this difficulty.




2. AN ITERATIVE TECHNIQUE

Let X;(l) be some approximation to Xgl(l).
Define
(2.1) gy = Xé(l)[d—}(l(l)c],
*
g, = Xz(l)[d ~ %Xy (1)e = Xg(l)gn__l] te, -

Then we have the following theorem:

Theorem. If the spectral radius of I — Xg(l)XE(l)

is less than one, then the sequence {gq] defined by

(2.1) converges to g, the unique solutlon of (1.5).

Proof. First note that if I - Xg(l)){z(l) has
spectral radius less than one, then X;(I)Xg(l) must be
nonsingular. Thus X;(l) and X2(l) are nonsingular,
which means that (1.5) has a unique solution. If g 1is

the unique solution of (1.5), then

(2.2) g, — & =%(0ld - % (1) ~X,(2)g, 4] +g, 3~ 8

X;(l)[d - X, (1)e = Xy(1)g, 4!

- xy(Wla - X, (1)e = Xy(1)el + g, - &

*

(1 - X5(1)%,(1))(g, ; - &)-

.X.
If the spectral radius of I — X2(1)X2(l) is less
than one, this shows that {gn —~ g} goes to zero as n

goes to infinity, and this concludes the proof. This
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theorem may be viewed as an application of a method of
matrix inversion like that of Bodewig and Hotelling (see

[3], [4] for additional references).

Corollary. If A(t) = Bg, a constant positive—

definite matrix, then taking X;(l) = Xg(l) makes [gn}

converge to the solution.

1 sin B, 1t follows that

Proof. Since X2(1) =R
the elgenvalues of Xg(l) all have absolute value less
>
than one, and thus all the eigenvalues of XE(l) are

between O and one.

Corollary. If each element of I — Xg(l)XE(l) is

less in absolute value than 1/n, then [gn] converges

to the solution.

Corollary. If A(t) = - BE, where B 1s a matrix

with only real elgenvalues each of which is greater than

zero, then taking Xg(l) = 2B¢™" makes [gn} converge

to the solution.

Proof. Xg(t) = B—l( ), whence
X;(l)Xg(l) equals I — )

Corollary. If Yl(t), Yg(t) are solutions to

Y' + A(1 — t)Y = 0 satisfying initial conditions like

Al
converge to the solution if Yé(l)Xé(l) has spectral

(1.4), then taking X,(1) = Yi(l) will make [gn]

radius less than one.




Proof. Yé(l)X'(l) =1 — Y'(l)Xe(l).

*
Corollary. If X2(l) = dA, where A is the

transpose of X2(l) and d 1is a positive constant

chosen to be less than twice the reciprocal of the

sum of the absolute values of each row of AXE(l), then

{gn] converges to the solution.

Note that this last corollary is not apt to be
computationally useful, however, since if Xe(l) has
some very small elgenvalues (and thus is hard to invert),
under the above procedure I — X;(l)Xg(l) will have

spectral radius very close to one, so that convergence

willl be slow.
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