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FOREWORD

Technical Report No. 2303-1 was prepared by the Stanford
Electronics Laboratories, Stanford University, on Air Force Contract
AF04(695)-305 under Task No. 318201 of Project No. 3182, "University
Program for Vehicle Detection and Defense." The work was administered
under the direction of the Air Force Space Systems Division, Air Force
Systems Command. Capt. Robert Eaglet was Project Engineer for the
Division.

The studies presented covered the period from July through November
1963. The research activity was conducted by Joseph W. Goodman at the
Systems Techniques Laboratory at Stanford.

This is an interim technical report on one phase of the work under

Contract AF04(695)-305.
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ABSTRACT

Wien laser light strikes a diffuse object, such as paper, the
scattered light has been observed to possess a granular spatial structure.
The statistical properties of these so-called "sparkle patterns," as seen
by an observer in the far field of the scattering spot, are investigated,

The first ovder statistics of the observed electric-field strength,
the observed light iniensity, and the observed light phase are examined,
The electiric field is reasoned to be a complex normal random variable;
the intensity a real, exponentially distributed random variable; and the
phase a uniformly distributed random variable. Higher order statistics
of these random processes are also discussed. The autocorrelation func-
tions of the complex field and the intensity processes are investigated,
and that of the electric field is found to be proportional to the Fourier
transform of the light-intensity distribution incident on the scattering
surface.

Spatial averages of the light intensity are considered and are found
to converge to corresponding enseable averages when either the area of
the scattering spot or the uveraging area grows large.

The influence of light spectral content on sparkle pattcrns is
investigated in some detail, The cross correlation of patterns produced
by different monochromatic light components is evaluated. The degree of
correlation is found to depend on the frequency difference, the roughness
of the scattering surface, the angle of incidence of the laser beam, and
the position of the observer, Light spectral compunents of nonzero width
are considered, and the influence of bandwidth on the ability of an
observer to distinguish a sparkle pattern is examined. it is found that
sparkle patterns exis. for light of any bandwidth, but timc-invariant
patterns can be seen only whzn the bandwidth is less Lhan & -ertain limit
which depends on the roughness of the scattering surface, the angle of

incidence of the laser beam, and the position of the observer.

Publicatior of this technical documentary report does not constitute
Air Force approv-.l of the report's findings or conclusions. It is
published only for the exchange and stimuiation of ideas.
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IXTRODY

\7ated on the granular

-

A number . © authors have recently com™,

u " . . N aines on a diffuse surface.
sparkle” patter-s observen wheir 2 ow Tasers

Rizden and Gorder ‘Ref. 1} an’ Oliver [Rel =} have explained this granu-
522 Vv ~3 a random -catter pattsvn wvhic’ results
acter oi @ . .urfacc~ compered t. the wzr-elengths
[Ref. 3] has poincs  * * the s rikir.. simddarity betwe
and that of radar "clut.er, »sui 2cet «hich has been exu

in the past [Ref. 4]. A.though the naturs of the cletter an.

that are important in the o, lical case have n.t been investigated p.
viousiy. In this report, a r-latively cowplete tatistical theory of
sparkle patterns is developed. in a companion rep.rt, the effects of
sparkle on Jaser ranging and velrcity-measurement sys<‘cms will be inves-

tigated.
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t
where Do is the distance from the k h scatterer to the observation

point,

IEi|2 is the intensity of the light incident on the kP scattever,
— and

2 . s .
[ekl is the intensity of that portion of the light at the observa-
— tion point which arises from the kth scatterer.

The scattering cross section is, in general, a function of both the
light frequency and *the observation point., It is assumed that the
observation region is sufficiently small and the distance D0 suffi-

ciently large so that s is constant within that region for any given

frequency. By using thekconcept of cross section, the scattiering ele-
ments are considered to be isotropic point radiators. Further assumptions
on the statistical properties of the elementary scatterers will be dis-
cussed below.

At the scattering surface an "effective" scattered field distribu-
tion is defined by projecting the point radiators onto a plane X-Y at
the surface, which is parallel to the observation plane U-V, A 2 axis
is defined running perpendicularly between the origin of the X-Y [lane
anc the origin of the U-V plane, as shown in Fig, 1, The point z =0
is de“ined to coincide with the origin in the X-Y plane, while the
origin of the U-V plane is assumed to lie at z =D, w e D repre-
sents the distance between the two planes,

An effective complex field distribution for the projected scatterers

in the X-Y plane may be written as
K

E(x, vi t) =Z°' exp (3B,) 8(x - x., v - y.) exp (Jugt)  (2.2)
k=1
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FIG. 1. THE GEOMETRY OF THE SCATTERING AND OBSERVATION
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is the number of scatterers contributing to the oLserved

field in the U-V plane;

1s equal to "sk/4ﬂ iEiI and is a measure of the strength
th —_
of the Kk scatterer;

is the phase of the radiation from the kth scatterer, as

measured at :ts projected point in the X~Y plane;

: t .
is the location of the projection of the k h scatterer in

the X-Y plane;

is the angular frequency of the electromagnetic rediation;

and

is a two-dimensional Dirac delta function,



To distinguish between the spatial and time variations of the field,

Eq. (2.2) can be written

E(x, y; t) = B, (x, y) exp (Joyt) (2.3)

from which it is evident that

K

By (o 9) = D W m [5G vl exp (38,) 8(x - % v - ) (2.4)
- k=1 —

In the treatment which follows, the function EO (x, y) is con-
sidered to be a random process over an ensemble of Esssible scattering
distributions in the X~Y plane. The following assumptions are made:

1, The scatterers are randomly distributed over the X-Y plane with
uniform probability {as mentioned earlier).

2. ‘’he scatterinyg cross section of a given scatterer is a random
variable, and all scatterers have statistically independent and
identically distributed cross sections,

3. Since nearly all surfaces are extremely "rough" compared to a
light wavelengthf‘the phase angles Bk are uniformly distributed

in probability over the interval (0, 2H).
4, Each Bk is statistically independent of all others,

‘fhe final assumption of statistical independence might be improved
by allowing correlation to exist between the B of neighboring scat-
terers, However, providing that the correlation exists over an interval
which is small compared to the total extent of the scattering ~pot, no

major changes in the results presented here are anticipated,

#1f the scattering surface is not rough compared to a wavelength, the
results presented here apply only to that portion (possibly small) of
+he observed radiation which is not specular reflection. However, the
results do apply to quasi-specular reflection from metallic objects
caused by reflection from many small, optically smooth areas, each of
which is randomly distributed in depth over several wavclengths.

-5 - SEL-63~140




III. FIRST-ORDER STATISTICS OF THE SCATTERED LIGHT
IN THE OBSERVATION PLANE

A, AN EXPRESSION FOR THE COMPLEX FIELD STRENGTH IN THE OBSERVATION
PLANE
The relationship between the electric field in the X-Y plane at
the scattering surface and the electric field in the observation region
of the U-V plane is investigated in Appendix A. It is shown there
that a Fourier transfoerm relationship exists between the electric fields
in the two planes; specifically, if ¢(u, v; t) represents the complex

electric field strength in the U-V plane, then

. 201D
o v 2 [J(wot - = )] oxp [_J. IWQJ__A;_VZ).]

JAD

1*)
21 , |
f f E (x, y) exp [..1 X (ux * vy)de dy (s.1)
-0 —_—
provided the following condjtions are met:
1. x/D<<1 and y/D <1 for (x, y) in the scattering
spot.
2, u/D<<1 and v/D << 1 for (u, v) in the observation
region,

2
3. 20X /ND << 1 and 2Hy2/AD %<1 (i.e., the observation region is
in the far field oZ the scattering
spot).

a.* m?/a0® «< 1 ana ot an® «< 1.

For simplicity Eq, (3.1) is rewritten:

Gl vi 1) = 2 e () o | = %l]e_d W (s2)

¥
Note that this assumption does not require the scattering spot to be in
the far field of the receiving optics (observation region).

SEL-63-140 -6 -




where

e_g(u, v) 8 ‘/-;04[-1-:2(3:, y) exp [j % (ux + vy)] dx dy (3.3)

and

3as — (3.4)

The random parameters of the scattering surface become explicitly

evident when (2.,4) is substituted into (3.3), with the result

K = ' .
ol ) = 3y 15,0 3l e {J—%k b2 (b vyk)]} (3.5)
k=1

From this expression and the assumptions on the statistical proper-
ties of the scattering surface, it is now possible to derive the relevant

statistical properties of the scattered light.

B, STATISTICS OF THE COMPLEX FIELD STRENGTH

From the expression (3.5) it is evident that the complex electric
field eo(u, v) 1is given by a sum of randomly phased, random-amplitude
phasors, Because of the statistical independence and uniform distribu-
tion of the random phases 5k, the following assertion can be proved
{Ref. 5, p. 362]:

As the number K of elementary scatterers in the scattering spot

increases without bound, the random process eo(u, v) becomes a

complex normal process., The real and imagina;; parts of this process
are identically distributed with zero means and identical variances

which will be designated o?/z. At any single point (u, v), the
real and imaginary parts of the process are statistically independent,

-7 - SEL-63-140




It is assumed throughoui that the number of scattering elements

within the spot is indeed so large that eo(u, v) may be considered to

have normal stalistics. Thus, if Fo(u, v) is written as the sum of

real and imaginary parts,

€o(u, v) = el(u, v) +j ez(u, v) (3.6)

the _.int probability density function of ¢ and ¢ may be written

1 2
as
. \\
€, + €
1 1 2
Pe e, (1 G2) = e |- =5 (3.7)
1’72 iig o

From the relationship (3.2) between &(u, v; t) and eo(u, v), it
can be seen that for a fixed (u, v; t) the former is also a normal
process. However, as will be seen in Chapter IV, at any fixed instant
of time, g(u, v; t) in general will have statistics which are non-
stationary over the U-V plane, while eo(u, v) is a stationary

process,

C. STATISTICS OF THE LIGHT INTENSITY AND PHASE

The light intensity n the observation plane is defined as the

square of the modulus of rhe complex electric field strength,
FaN 2
1(u, v) £ [e(u, v; )| (3.8)

From (3.2) it is clear thet
2 2 2| 2 2
Hu, v) = a2 Jeg(o v)]2 = |l [e1<u, W+ 2, )] (3.9)

The intensity is an important physical quantity to consider, in that
the majority of light detectors have a response that is linearly pro-

portional to intensity,

SEL-63-140 -8 -



Although most detectors are insensitive to the phase of the received
radiation, applications do exist in which the phasc plays an important
role {e.g., heterodyne receivers). Accordingly, the phase of the

received radiation is defined by

.1 S v)

eIZu, v)

¥(u, v) = tan (3.10)

and its statistical properties, as well as those of the intensity, will
be investigated.
To find the first-order statistics of 1 and YV, the transformation

defined by (3.9) and (3.10) must be applied to the random variables ¢

1
and €2. The ianverse of this transformation is easily seen to be
/2
€, = : cos Y
T ai
(3.11)
13/2
€, = sin ¥
| 2]
from which the Jacobian is found to be
6&1 de,
3 91
|9] = =1 (3.12)
2|2l
Bel 862
oY v
The joint probability density function of I and V¥ may now be found
from the relation [Ref. 6, p. 38]
1/2 1/2
p, (I, ¥) =|J| p, cos v, sin ¥ (3.13)
I,V C1;€2 IEI a

-9 - SEL-63-140



The result is

1 I
(1, ¥) = —=5—5 exp |- (3.14)
’

Integrating over the appropriate variables reveals the marginal densities

of the intensity and phase to be

- .
1 I
—_— - — =
2 2 °*P 2 2) 1zc¢
Iy |a] "o
p (1) = ﬁ (3.15)
0 otherwise
\
and
-
1 0sys 20
21 R
py(¥) = ¢ (3.16)
0 otherwise
\
These results may be summarized as follows:
The light intensity I(u, v) is a real, exponentially distributed
random variable, while the light phase y(u, v) 1is a uniformly
distributed random variable on the interval (0, 2I).
Note that

pp T ¥) = p (1) p (V) (3.17)

from which it follows that:

the intensity and phase at the point (u, v) are statistically
independent random variables.

The moments of the intensity can be shown, from (3.15), to be
1’ = |§|2"02V (v + 1) (3.18)

SEL-63-140 - 10 -




JV. HIGHER ORDER STATISTICS OF THE SCATTERED LIGHT

A. INTENSITY-DISTRIBUTION FUNCTIONS AND CORRELATION FUNCTIONS

In the previous chapter the firs.-order statistics of the complex
field strength, the intensity, and the phase of the scattered light were
found. A complete statistical description of these quantities at any
single point in space is known therefore, but not the statistical rela-
.aonships between their values at two, three, or N different points
in space (i.e., the "higher order" statistics). It is a remarkable
property of the normal random process that once the so-called "suto-
correlation function" of the process is known, the statistics of all
orders are completely determined. In order to more fully describe the
statistics of sparkle patterns, the concept of autocorrelation function
and the rela’ed concept of "intensity-distribution function" are intro-
duced,

The two-dimensional intensity-distribution function, S(x, y), of the
scattered light intensity at the point (x, y) is defined as the
ensemble average of the scattered light intensity at that point, It is
assumed that tie elementary scatterers are so dens.iy packed that S(x, y)
may be considered to be a continuous function, in which case it can be

seen that

s(x, v) = o |5, (x 9|7 (4.1)

where s is the ensemble average of the scattering crouss section of the
elementary radiators. Thus the functional form of S(x, y) is identical,
up to a multiplicative constant, with the functional form of the intensity
distribution across the scattering spot, The intensity-dictribution func-
tion has the particular property that, when integrated over the entire

X-Y plane, it yields the constant o‘2 which is twice Lhe variance of

the normal distributions discussed earlier.

- 11 - SEL-63-140




The two-dimensional autocorrelation function of an arbitrary complex-

valued random process £(u, v) is defined by

Fg(Su, 6v) = g{u, v) £7(u - du, v - dv) (4.2)

where the superbar indicates an ensemble average. A process is said to

be wide sense stationary if the correlation funciion depends only on

(bu, Bv); while if it depends on (u, v) as well as (bu, dv), the
process is nonstationary.

The following important properties of any autocorrelation function
should be noted:

1, % (3u, 8v) is in general complex.

£

%, (du, dv)] < 5, (0, 0)].

%, | <[5, (0, o)

3. % (0, 0) is real and equals twice the average intensity of the

process E(u, v).

Using the definition (4.2), the autocorrelation functions of the
random processes eo(u, v), e(u, v; t), and I{u, v) will now be
investigated. From (3.5) and (4.2) the autocorrelation furction of
eo(u, v) is

K —

‘ Sk 2 20
Ff,so(éu, Bv) = E i |i(xk, yk)l exp [J o (::k'éu + uKSV)J (4.3)
—_— k=1

Note that this autocorrelation function does not depend on (u, v), so
the random process eo(u, v) is wide-sense stationary, Further note
that if the scatterers are sufficiently dense in the scattering spot,

the sum may be approximated by an integral, with the result

0 —
5 2 211
szﬁ- IE_i(x, y)| exp l-J N (xBu + y'év)] dx dy (4.4)

Re (50 &)

SEL-63-140 -12 -




Recalling the definition (4.1) of the intensity-distribution function,
it follows that:
The intensity-distribution furction and the autocorrelation func-

tion of the random process eo(u, v) are a Fourier transtorm pair;
specifically —_

F_ (Bu, dv) = ’ x, v) exp|J 21 xBu Sv ] x .
oy o0« [ f st [ 3 Gon e o) ax ey (a5

Since the intensity-distribution function is proportional to the intensity
of the incident light at the scattering surface, the functional form of
the autocorrelation function can be found directly once the intensity
distribution across the scattering spot ic known. Note that for a given
intens:ity-distribution function, the width of the corresponding auto-
corrzlation function depends on the wavelength A. The longer the wave-
length, the wider the peak of the correlation function,

The autocorrelation function of g(u, v; t) is now examined

briefly. Equations (3.2) and (4.2) yield

t
P,_E_(Su, Bv) = |3l4 !{eo(’éu, Bv) exp [— ] 7{-5 (2udu + 2vbv - su’ - sz)]

(4.6)

Since this expression is a function of (u, v) as well as (Bu, 5v),
the process e{u, v; t) is nonstationary. However, it can be shown
that if the scattering spot is in the far field of the observation
region, then the dependence on (u, v) is eliminated and the process
is wide-sense stationary.

Turning now to the autocorrelation function of the intensity random

process, from (3.9) and (4.2) it is seen that

RI(Su, ov) = |§|4 |Eg(u, v)[2 ‘ig(u - Bu, v - 8v|2 (4.7)

- 13 - SEL-63-140



Expanding eo(u, v) in its real and imaginary parts

€o(u, v) = €1(u, v) +j ez(u, v) (4.8)

yields

. 2 7
R (8u, Bv) = |a|* [%1<"' v) €2(u - Bu, v - 5v)

2 2
+ ez(u, v) ez(u - %u, v - Bv)

2 "2 "
+ e5(u, v) €f(u - Bu, v - Bv)
+ ei(u, v) eg(u - %u, v - SV)] (4.9)

X,, and x, are real, zero-mean, normal random vari-

3’ 4
ables, then the following relation is known to be true [Ref. 5, p. 343]:

Now 1f xl, X,

X KpXaKy = X Xy KoKy b X Ko X,X 4 X Xy XpXg (4.10)

Using this fact, it is not difficult to reduce (4.9) to

R (o, ov) = |af* [?9 * T (50, sv)|2] (4.11)

which provides a simple relation between the autocorrelation functions
of eo(u, v) and I(u, v). Note that the random process I(u, v) is
wide-sense stationary.

Three important intensity-distribution functions and their corre-

sponding autocorrelation functions ure listed helow:

SEL-63-140 - 14 -



1. Gaussian Scattering Spot

s(x, y)

n
3]
=t
~=| e
=
=
(V]
[+ ]
£
©
[ \
[0 E
<
3%
(]
+
-~
\l|<
]
[}
e~

. 2 1 [ : 725V\2
“ (%u, Sv) = ¢ exp{- 5[(-5\—) +<_D7T) ] (4.12)

§
[=4

ﬁl(éu, Bv) =

|
1
Q
—o
4
o
x
©
4 1 \
l/_\
= ’-‘\e
(o4
ol
N
+
_——~
=) l\)\e
o
p
—
|

2, Rectangular Scattering Spot

o -X<x¢s x‘s
axy -YZysy]
s(x, y) =
0 otherwisc

R. (Bu, &v) = o sine (dgif) sinc (2;§v) {4.13)
-0
“ 4 4 .2 [2%bu\ . 2 [2Ydv
dl(éu, 6v) = |a| o [} + sinc ( o ) sinc (‘Eﬁ?)]

where sinc b 2 (sin fib)/fb.
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3. Circular Spot

2
'g?§ 0 < x2 + y2 < 92
Tp
S(x, Y) =
0 olherwise

(4.14)

oy - a2 A )
? e , Ov

62
0 ZEE 2 2
—_— =5 ‘}(Su) + (8v)

i(TDE J(Su) + (5v) )
(7TE) [kau) + (5v) ]

Finally, some quantities are defined which will be of considerable

o 4 4
TI\Gu, Sv) la]® ¢ (1 +

use in later chapters.

The cross-correlation function of two complex-valued random proc-

esses gl(u, v) and gz(u, v) is defined by

" (bu, bv) £ ( , v) & 2(u - Bu, v - dv) (4.15)
12

In words, the cross-correlation function provides a measure of the
statistical similarity of the first random process §1 at the point

(u, v) and the second random proccss at the point (u - du, v - dv).

§2
A cross-correlation function need not have its maximum value at
Su = dv = 0,

The cross-intensity-distribution function is defined as the two-

dimensional Fourier transform of the cross-correlation function,

Sglz(x, y) = f fﬂglz(ﬁu Sv) exp[ TN (xBu + y5v)] ( ) d(g‘)}\)

(4.16)
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The cross-intensity-cistribution function is in general a complex

quantity,

B. HIGHER ORDER STATISTICS OF THE COMPLEX FIELD STRENGTH

In this section the joint statistics of the :eal and imaginary parts
of the complex field strength eo at i different points in space are
examined. Since these quantities have been seen to be normally distrib-
~ted, the statistical properties of Lhe field at N different points

in space are completely described by a 2N-dimensional normal distribution,

o - L -1
exp ( 2 Em £3 £

pN(Gll' €12 €210 €227 vt SNy GNQ = (4.17)

(em)® [5*/2

wheie

h

ekl is the real part of the field strength at the kt point;

Ekz is the imaginary part of the field strength at the kth point;

£ is a column matrix of the ¢, defined by

= | %2 (4.18)
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gc is the transpose of g;

A is the covariance matrix of the ¢, defined by

- -
111 %2 ¢ 00 fn®mr e

12511 %12%12 - 0 0 S12%m1 f12%h2

(4.19)

&>
1l

pi

e
L]

vt Snaifae

11 “n2fr2 0 o1 SneSwe

Q-l is the inverse of 4; and

i‘l\xj is the determinant of Q
The elements of the correlation matrix can be found from the auto-
correlation function of the process Go(u, v) by means of the following

relationship, which is not difficult to prove;

4 - - o *,
“CO(uk uE’ Vk "z) ;Q(uk’ Vk) fg(uz! vz)

{}k1€£1 * €k2622] *3J [€21€k2 - Gﬂzekl] (4.20)

2 ¢

51900 * 0 2 €pafpn T 2 €€ T 2 €48y

Noie that the imaginary part of the autocorrelation function is propor-
tional to the cross correlation between the real and imaginary parts of
the field strength at the two different points involved, It was pre-
viously shown that the real and imaginary parts of the field strength
at any one point are uncorrelated, but it is evident from (4.20) that

the real and imaginary parts at different points may be correlated., It,
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however, the laser spot is symmetrical about its center, the autocor-
relation function is entirely real, and the real and imaginary parts of

the field strength are statistically independent processes.

C. SECOND-ORDER STATISTICS OF THE LIGHT INTENSITY AND PHASE

The second-order statistics of the intensity and phase may be found

by a procedure similar to that used in Sec, IIIC, The transformation

2(2 2
1 = lal (‘11 * €12)

¢” interest is given by

-
It

(4.21)
(

€
W] = tan 1 Elg
11
€
11!2 = tan-l 6—2-2-
21 7
where I, and v, are the intensity and phase at the point (ul, vl),
and I2 and *2 are the same quantities at (uz, v2). The inverse of

this transformation is

11/2 N
611 = I_a-l cos \‘,'1
1/2
1 .
612 = ; sin Wl
EY
P (4.22)
1/2
I,
€21 = cos “é
E
i/2
I X
622 = sin w2 J
E
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The Jacobian of the transformation can k¢ shown to be

lo] = =1 (4.23)
1
43|
and, using the higher order analogy of (3.13),
. \
( i [3ea’s) (4.24)
p I, I, ¥, « = 4,24
LIy, "1 720 71 72 16n2|§|4|£| /2
where in this case
—~ / -
1/2
I1 cos wl
11/2 sin ¥
1 1 1
g = (4.25)
| 2f

1/2
12 cos wz

1/2
Je
12 sin b,

- -

It is convenient at this point to have separate symbols for the

real and imaginary parts of R€ (Su, Bv). Accordingly,
Y

R (5u, 5v) 2 R (bu, Bv) + j R_(6u, Bv) (4.26)
€0 1 2

SEL-63-140




The covariance matrix can now be written

rr -
2
4] 0 Rl R2
0 c'2 -R R
ael :
~"2
Rl -R2 c (o]
R2 R [¢] c'2
. 1 -t
The determinant [A| is
2

N 1 4 2 2
I£3l = i]; ( [ lll - 112 )

and the inverse matrix '1\&'-1 can be shown to be

[ a'2 0 -Rl -Réh

1 1 0 o'2 R2 -R1
2].{.\[ 12 -Rl R2 0'2 0

b—R2 -Rl 0 02..

Carrying through the computation required by (4.24) yields

(ll 1 )1/2

(4.27)

(4.28)

{4.29)

2
exp{- W (l1 . 12) . mm (RI cos ("'2 - '!'1) + R, sin (\2 - -‘1)}

P .v(iux-w--)-
Liht 172 0 2 16 ot fol*?

- 21 -

(4.30)
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Appropriate integrations over (@1, ?2) and (11, 12) yield the desired
marginal densities [cf. Ref. 6, p. 163]

; )
g
- (r, ~ 1)
( 4|3|2|A|172 1 2J (1, 12)1/2 (Ri . R:)1/2
I , I = = 1
Lyt ) ala* 14" ° 2]a|? 14412
(4.31)
and
, !£ﬂl/g (1 - 8212 4 B(K - cos 8)1 (4.32)
p, . (¥, )= - 4.32
WV P gt (1 - p%)%2 J

where I0 is a modified Bessel function of the first kind, zero order;

é _1. o - ) _2 i e -y K
B = =5 cos (02 1) + =5 sin (¢2 wl) (4.33)
¢ ¢
and |4 is given by (4.28).
The random variable AvY, defined by
Ay = \I/2 - \L!l (4.34)

is a quantity of some interest, It represents the phase difference
between the observed light at the points (uz, v2) and (ul, vl).
From (4.32) it is possible to show that

Léll/z - 52)1/2 +8(I - cos™'8)

2H0ﬂ (- 62)372

Ppy(O¥) = (4.35)
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where

-

1
p=-3
¢

Finally, the mean value of

IE@I =1 - 2 sin_

R

ces AV + —% sin Ay
c

[ay] is given by [Ref. 5, p.411]

Iaso(“z " Uy vy )l
1 ——

2
)

(4.36)

(4.37)
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V. SPATIAL AVERAGES

The preceding chapter considered only averages over an ensemble of
scattering surfaces. However, the experimental tools that an observer
must use are spatial averages (i.e., spatial integrations) over the
observation region of the U-V plane. In this chapter the statistical
properties of spatial averages are examined, with particular attention
paid t~ discovering conditions under which spatial averages are, with
high probability, very nearly the same as ensemble averages,

The integral of primary concern here is an average of the random

process I(u, v) over the region

2UsusU, -V

HA
<
WA
<

(5.1)

of the observation plane., The average is defined by

& = m f f u, v) du dv (5.2)

First, the expected value (over the ensemble of scatitering surfaces)
of the spatial average is examined (5.2). The orders of expectation and

integration may be int»srchanged to yield

=T v) =g (5.3)

Thus the spatial integration yields, on the average, the ensemble
expectation of I(u, v).

It is pertinent at this point to inquire as to how large the depar-
tures of & from its average value might be on any single trial, The
dependence of these departures on U, V and on the statistical structure
of I(u, v) is of particular interest, The answer to this question
will, of course, indicate the magnitude of the difference between spatial
averages of two intensity patterns which result from statistically

independent scattering surfaces (composed of similar materia]s).

SEL-63-140 - 24 -



Therefore the variance of & over the ensembie of scattering surfaces
is calculated.

To begin, note that

_ jffl(ul, v ) Iﬁz, \27 du; du, dv, dv,

(5.4)

2.

16U V

which may be rewritten as

F:-L_fyf(j[ﬁ(u -u,, v. =~ v.) du, du_, dv., dv (s.5)
22 J,J JJ 1t T N vy 7 V) Ay ey vy vy (S

16U

At this poirt it is clear that the variance of the spatial average will
depend only on the averaging region and the autocurrelation function of
I(u, v).

Continuing, (4,11) may be used to write

w2 4 4 lﬂ v Y 2
3= a)" 0" + U2y .[;,f.[ |3e0(“1 -y, vy - V)| T duy duy vy dv,
(5.6)

from which it is seen that the variance of & is given by

var (4] = —— 2v2 ffffa (u -u,v-v)l du, du, dv, dv,

16U
(5.7)

A change of variables [Ref. 6, p. 68] allows the expression to be

reduced to

var [4] = L:v_j:sj/(;zu (1 - -2%) (1 - 5’{;) lp,eo(e. n)|2 dg¢ dn  (5.8)
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The expression (5.13) contains considerable information. One con-

clusion, which is not surprising, is the following:

As the size of the integration area (UV) increases, the spatial
average converges to the ensemble average of the intensity process.

A slightly morc subtle, but related conclusion is:

As the size of the scattering spot (as measured by 7, and 72)

increases, the spatial average again converges to the ensemble
average.

- 27 - SEL-63-140



V1., THE DEPENDENCE OF SPARKLE PATTERNS ON LIGHT
FREQUENCY CONTENT

In the previous chapters ideally monochromatic light sources were
assumed, In actuality, the output of a laser, regardless of its type,
consists typically of a number of spectral components, each of rfinite
width. Since sparkle patterns were not observed until the advent of
narrowband laser sources, it is of considerable interest to determine
the exact role of spectral content in this phenorenon., This chapter is
concerned with (1) the cross correlation between sparkle patterns pro-
duced by different monochromatic frequency components; (2) some statis-
tical properties of sparkle patterns produced by a laser spectrum
consisting of a number of monochromatic components; and (3) some suf-
ficient conditions for observing sparkle patterns when the spectral

components have nonzero width,

A. THE CROSS CORRELATION OF PATTERNS PRODUCED BY DIFFERENT FREQUENCY
COMPONENTS

Suppose that two light sources with different frequencies fl and

f2 cps are available, Each source is assumed to Le ideally monochromatic,
and will produce a sparkle pattern when its light falls on a diffuse
surface, It is pertinent to inquire as to the correlation between the
two patterns at each point (u, v) of the observation region, as a

function of the frequency difference Af defined by

N = £, - £ (6.1)

assuming that in both cases the source illuminates the same area of a
fixed target and that the intensity distributions of the incident spots
are identical, If the correlation is high for all (u, v), then the
two sparkle patterns wusi Le very nearly identical; if it is low, the

two patterns bear little resemblence,
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From the definition (4.15), the cross correlation of the intensity
pattern when the frequency is fl and the intensity pattern when the

frequency is f is given by

2

QI (du, dv) = 1{u, v; fl) I{(u - du, v - dv; f2) (6.2)
12

By an argument similar to that used to derive (4.11) it can be shown

that

4 2
Ry (5u, dv) = |a] Eﬁoi + IRe (5u, Sv)lz] (6.3)
12 12
where
o 3 - N K - - "
ﬁ€]2(8u, Bv) = ig(u, v; fl) ig(u Bu, v - dv; fz) (6.4)

2
while 01/2 is the variance of the real and imaginary parts of
eo(u, v fl), and o§/2 is the corresponding variance for eo(u, v; f2).

If Af is sufficiently small to assure that the same total intensity is

scattered from the surface in both cases, then oi

and to determine R it suffices to determine F .
12 €12

To continue, what is the corrclation between the pattern I(u, v fl)

and og are identical,

and the untranslated pattern I(u, v; f2) at each point (u, v)? It is
assumed, for simplicity, that the observation plane U-V is parallel to
the plane defined by thc mean surface (X-Y), although the laser beam

is allowed to be incident on the surface at an angle ¢ with the normal
te the X-Y plane, as shown in Fig, 2, The Y and V axes are
directed upward in this figure,
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TARGET
SURFACE
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INCIGENT /
LASER T I

BEAM

I K OBSERVAT | ON
PLANE

FIG. 2. GEOMETRICAL RELATIONSHIP BETWEEN
THE LASER BEAM, THE SCATTERING SURFACE,
AFD THE OBSERVATION PLANE.

In Appendix B, the desired cross correlation is found to be given

by the following expression:

Of OF OF Of
R (0,0)=R. [=u, =v]o [ ——+= (6.5)
612 €y f2 f2 ZYc cos ¢ ¢
where
Ja
Rez(Su, Bv) = eo(u, v; f2) ig(u -%u, v - bv ; f27 (6.6)

and ¢z(§) is the characteristic function of the random variables Zys

as gi;;n by the Fourier transform of the probability density function

of the Zy,

o) & [ e (samz,) pye,) as, (6.7)
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It is proposed to use the result (6.5) to find the conditions under
which the two spatial patterns eo(u, v; fl) and eo(u, v; f2) will be
highly correlated. For high correlation, both factors in (6.5) must be
near their maximum values. The mugnitude of the characteristic function,
IOZ(E)I, is considerably less than i“3 maximum vzlue when £ is greater
than the reciprocal of the standard deviation o, of pz(zk). Thus a

necessary condition for high correlation is*

-1
c 1
af < oy (; * Cos 0) (e.8)

Turning to the first factor in (6.5), it can be shown from (4.5) that

[R_ (Bu, 8v)] is considerably less than its maximum when
‘'z

Dcz or dv > chZ
2 “x 2%

Su >

7 (6.9)

where bx is the X-dimension width of the scattering spot and Zy is
the Y-dimension width, Thus a necessary condition for high correlation

is

Dc
u < A—m; and VAT (6.10)

for all (u, v) included in the observation region.

The conclusions of this section can be summarized as follows:

The correlation between patterns produced by different frequency
components is maximum at (u, v) = (o, 0) and extends over a
finite region of the U-V plane. The magnitude of the maximum
correlation is determined by the relationship (6.8) between the
frequency difference Af, the surface roughness Oy and the
angle of incidence ¢ of the laser beam,

*
This result is quite similar to the so-called Rayleigh Roughness
Criterion [Ref. 4, p. 411},
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B, STATISTICAL PROPERTIES OF THE SPARKLE PATTERN PRODUCED BY A SUM

OF MONOCHROMATIC LIGHT COMPONENTS

In this section the first-order statistics of the total intensity
pattern are found for two special cases of interest, and ar. expression
for the autocorrelation function of the total intensity pautern is also
found.

It is -ssumed that the scattering process is a linear one, from
which 1t follows that when the laser output consists of a sum of mono-
chromatic frequency components, the total electric-field pattern is
simply the sum of the field patterns produced by the individual compenents

separately. The total electric field may be written, from (3.2), as

N an(u2 + v2)

GT(u, v; t) = a exp (jZanc) exp | -j —p5o—— Eg(u, v; fn)

i

(6.11)

vhere the f  are the frequencies of the N monochromatic components
involved.

The total intensity pattern is, from the definition (3.5), given by

2 Y& r e -0 )u? v2)
tu, v) = fa Z EexpLJZﬁ(fn-fm}t exp | -3 e e_o(u. vi 1) f§_(“' vi 1)

n=l m=l

(6.12)

If the intensity detector is followed by a low-pass filter sufficiently

narrow to eliminate all but the dc term, (6.12) becomes

N N
15(u, v) =Z lal® feglu, v; £)]% = Zl(u. v; £)  (6.13)
n=1 - n=1
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Now each I(u, 'S fn) is an exponentially distributed random
variable which may or may not be significantly correlated with other
members of the sum. For the general case of arbitrary frequency
spacings between spectral components, the statistics of I%(u, v) are
extremely difficult tc compute. However, two limiting cases oi interest
can be solved;

1. The case of spectral components with sufficiently wide frequency
separations to produce uncorrelated® patterns; and

2 The case of spectral components with sufficiently small frequency
separations to produce perfeclly correlaled patterns.

Suppuse first that the minimum separation between frequency com-
ponents is so large that all terms of (6.13) are uncorrelated for every
(u. v} in the observation region. A sufficient condition for this to

be true is, irom (6.8),

-1
c 1 -
min {f - £ }> = (1 + - ) (6.14)
nfm n m oZ cos ¢

Further suppose that the scattered light intensities resulting from
different frequency components are not precisely identical, a condition
which is always met in practice due to the fact that the laser spectral
components will always have at least slightly different intensities,
Then, as shown in Appendix C, the probability density function cf the

total intensity l%(u, v) is given by a weighted sum of exponential

functions,
/‘
N B 1)
= exp T Ilz20
l ‘202 la 202 T
n=1 & %y =l "n
p(1y) = ﬁ (6.15)
0 otherwise
\,

where the Bn are real, constant weighting factors which are evaluated

in Appendix C,

7(.Because the random variables I(u, v; fn) are composed of the sum of

the squares of two normal processes, zero correlation implies statistical
independence,
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Next, suppose that the maximum separation between frequency components
is so small that 211 terms ol (6.13) have unity correlation in the obser-

vation region, Sufficient conditions for this tc be true are

-1

max {r_ - f } << = <1 - — > (6.16a)
n m [+ cos ¢

n,m Z

and

Dc Dc

v << (6.16b)
max ifn - fm} 4y max ifn - fm} by

u <L

for all (u, v) in the observation region. Since all the terms of
(6.13) are perfectly correlated, the statistics of I+(u, v) are

easily seen Lo be exponential, with a probability density function

given by
\
1! \
1 . T s
of N 2 exp 2/ N 21 lT =0
aj { L« a i a
| ai <n=1 n) E (n:l ,,) /
p(13) = (6.17)
0 otherwise

Finally the autocorrelation function ¢f the total intensity pattern,

as given by

N N

?,T(Su, &v) = I,i‘(u, v) I,i\(u -%u, v - Bv) = ZE By (5u, 5v) (6.18)

n=1 m=1 m

is investigated. From (6.3) it follows that

N N
4({ 22 2
Rylou, 8v) = D% |l [O'ncm tlr, (on 5v)|] (6.19)

n=1 m=1 —
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while from Appendix B it can be shown that if (6.16b) applies, then

f - £ f - f
N ~ n m n m
Renm(tu, Sv) ._Rem(ﬁu, 5v) d>z(c rrvar st s ) (6.20)

Thus,
N N
4| 22 2 2
RT(Su, dv) = E E | a} [?hoh + ]pnml |R€ (3u, &v)] ] (6.21)
—_— nm
n=1 m=1 —_
where
fn - fm fn - fm
Pny = fg et (8.22)

is independent of {(Su, dv). Thus:

the sutocorrelation function of the total intensity pattern is
given by a weighted sum of the autocorrelation functions of the
irdividual intensity patterns.

C. SPARKLE PATTERNS PRODUCED BY SPECTRAL COMPONENTS OF FINITE WIDTH

Suppose that the laser output spectrum consists of a single spectral
component of finite bandwidth W, as shown in Fig. 3. The exact shape
of the spectrum is not of concern here, only the fact that it extends
over a range W cps, In this section it is not required that a low-
pass filter eliminate all the difference frequency terms, but rather
the observation is performed directly on the output of the intensity
detector.

The laser output field strength is considered to be a narrowband
random process in time, which is represented us an amplitude-and phase-

modulated sinusoid,

n(t) = A(t) exp (J[abt +8(e) ]} (6.23)
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where n(t) = strength of the laser output

A(t) = random amplitude modulation, of bandwidth W (approxi-
mately)

e(t) = random phase modulation, oi bandwidth W (approximately)

ub = center frequency of the laser spectrum,
ouUTPUT
SPECTRUM W

Li\ 1N —_—
\ f f

FIG. 3. LASER POWER SPECTRUM WITH A SINGLE
COMPONENT.

The observer is assumed to examine the scattered intensity pattern for

a time T sec., This observation interval is subdivided, for analysis

purposes, into a number of subintervals, each of duratioun somewhat less
than 1/W sec. During any one of these subintervals the laser output

is practically identical to a monouchromatic sinusoidal oscillation of

congtant amplitude and constant frequency , given by

®»=w, + 0 (6,24)

where é is the time derivative of the phase. Both the amplitude and
the frequency of the oscillation will change as time progresses through

the subintervals, Two distinctly different cases can now be distinguished:

SEL-63-140 - 36 -



/ -1
[ 1
WS (1 * == 0) (6.25a)
A
Case 2
C 1 -1
W >> E; 1+ ——s (6.25b)

In case 1, the maximum excursion of the oscillation frequency w is
sufficiently small to assure that the intensity patterns produced in all
subintervals are very highly correlated. Thus the sparkle-pattern struc-
ture does not change significantly from subinterval to subinterval, and
an observer can distinguish a stationary sparkly pattern, regardless of
how long his ckscrvation time T may be,

In case 2, the excursions of the oscillation frequency are so great
that uncorrelated patterns may be produced in adjacent subintervals, and
the sparkle pattern will "wash out" unless the observation time T is
less than I/W. But note that no matter how wide W may be, for a
sufficiently short observation time a distinct sparkie pattern will be
observed,

In summary, sufficient conditions for observing sparkle patterns

are
W & (14 2 h (regardless of T) (6.26a)
o, cos ¢
or
T << % (regardless of 02) (6.26b)

The final situation to be examined is that of a laser spectrum con-
sisting of a scries of narrowband spectral components, as shown in Fig.
4, The total extent of the spectrum is denoted B cps, while the

width of any one of the spectral components is approximately W cps.
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FIG. 4. LASER POWER SPECTRUM WITH SEVERAL COMPONENTS.

In this case the laser output may be written as a sum of narrowband

processes,

n(t) = ZAm(t) exp (3l21 £ ¢ + & (£)]) (6.27)

m
on

Reasoning identical to that used for a single output component shows
that the following conditions are sufficient for sparkle patterns to

be distinguished:

-1
1. B << -"—(1 +-1—-) (6.28a)
02 cos ¢
or
2. T g (6.28b)

In the present case it is not sufficient that

-1
[ 1 o
w<<6—z(1 * oog ®) (6.29)

for under this condition it is still possible for different spectral
components to produce uncorrelated patterns which will then add in

proportions that cha:.ge from subinterval to subinterval,
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APPENDIX A, FAR-FIELD FOURIER-TRANSFORM RELATIONS

This appendix conside™s the relationship between the field distri-
bution §(x, v; t) across the scattering spot and the field distribution
elu, v; t) in the observation region. The observed field at the point
(u, v) may be written as a sum of contributions irom the incremental
areas /A = AxAy on the spot. As AA 1is allowed to approach zero, the

sum passes to an integral which may be writren®

o~ E(x, y; t) onir
g(u, v; t:) = ——JT——' exp | -j > dx dy (A.l)
v

where r 1is the distance from (x, y) to (u, v). The geometry is

shown in Fig. S,

Y ‘A
) -
(x,y)
A
r v Q3SERVATIO
X ‘\ REGION
SCATTERING, i
SPOT —
T ~~ (u.v)
\\

FIG.

—» U

et &

THE GEOMETRY LEADING TO EQ. (A.1).

*This equation follows directly from Huygen's principle,
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Under the assumptlions

% <1, % << 1 for all (x, y) in scattering spot
% « 1, % <1 for all (u, v) in observation region

(A.1) ray be rewritten as

exp (J wyt) e
glu, v; t) = ff Ey(x, y) exp (-J' %1\5) dx dy

where Eo(x, y) is defined by

E(x, y; t) = Ey(x, y) exp (j w,t)

The distance r is seen to be given by

(A.2a)

(A.2b)

(a.3)

(a.4)

(A.5)

The binomial expansion may now be used to expand the exponent in the

integrand,

Ny

[~
:»P:
e}
n
>|=
(=]
[
+
(]
L
1
\x/
[
+
P S
<
(=] B
~ e
s

o -

- 2
C1iffu-x 2 NI 51 . 2i§her
8 ) D rder

terms
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The observation region is defined to be in the far field of the scat-

tering spot when

2 B
X
21 BX << 1

for a1l (x, y)
and in the scattering spot (A'7)

2
¥
M P << 1

Assuming that these conditions hold, and further assuming that

4
Es <1
4N\D
and (a.8)
4
fv 3 << 1
4N\D
Eq. (A.6) vecomes
~
21D P
( ) exp Lj(‘m ) _}-\_)] ,- w(u? + v
) s t) = -3 -
glu, v ) exp | J 3D
* 21
. ’[(;fio_(x, y) exp [j %) (ux + vy)] dx dy (A.9)
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APPENDIX B. CROSS CORRELATION OF FIELD PATTERNS
PRODUCED BY DIFFERENT FREQUENCY COMPONENTS

This appendix investigates the cross-correlation function of two
complex field patterns produced by different monochromatic frequency
components, Following the notation of Chapter VI, the correlation

function of interest is given by

s - R *, - - .
ﬂenm(ﬁu, dv) = ig(u, v; fn) ig(u Bu, v - dv; fn) (B.1)

41;.

5)
|E \“k: 'k I exp {J[sk(fJ)

2ff "l
+ CJ (ux + vy ) :} (B.2)

As the result of the statistical independence of the phases of different

scatterers, Eqs. (B.l) and (B.Z) carn be combined to yicld

-4€ (bu, &v) _Z ° (f") ° (

—_— exp(J(ﬁk(fn) -8, (e )]

2 2!x(fn - fm) 2ﬁfm
. |i(xk, yk)l exp{ | —pe—— (uxk + v_vk) * Do (xk5u + _\'kbv)

(B.3)
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which may be rewritten

X s, {t ) s ()
Re (8u, &v) = Z E‘ exp !‘,[Bk(rn) - Bk(rm)])
nm

4n

— k=1

2 1 - f T -1 \
. ]Ei(xk' yk)‘z exp {j [ Dcm<(-£f——-“l u o+ 5u) x, +( nf L 5v) yl>}}
—_ n m

(B.4)

But now note that

2i{(f - f ) = f -1
e TBE)- Bl = exp [ i A B R [—""—"’ (s + 1)]

(B.5)

where ¢ is the angle of incidence of the laser beam (see Fig. 2), z

th k

is the Z coordinate of the k radiator, and oz(g) is the charac-

teristic function of the random variables Z) . Fiﬁzlly, if the frequency
difference fn - fm is sufficiently small tc assure that the scattering
cross sections of the elementary scatterers are independent of frequency,

comparison of (B.4) and (4.3) shows that

fn-fm fn-fm fn-fm 1
Re (5, 5v)=;{,€ —F— utdy —p—vidv o, P (cos0+1)

nm m

(B.6)
where
K —
s 27f
k 2 m s
R (dut, 8v') = E :;H- |E,(x,, v )| exp [d oo (mbu’ & yk5v‘2|
n S
_— k=1
(B.7)

is the autocorrelation function of the pattern corresponding to fm'
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APPENDIX C. FIRST-CRDER STATISTICS OF THE INTENSITY
PATTERN PRODUCED BY A SUM OF WIDELY SPACED
MONOCHROMATIC FREQUENCY COMPONENTS

In this appendix, the incident ligh!{ beam is considered to be com-
posed of a sum of monochromatic spectral components, spaced so widely
apart that the intensity patterns produced by different components are
statistically independent. As indicated by Eqs. (3.11) and (6.13), the
total intensity pattern is simply the sum of a number of statistically
independent, exponentially distributed random variables.

It is a well-known result of statistics that the characteristic
function of a sum of & number of statistically independent random varia-
bles 1s simply the product of the characteristic functions of the com-
ponent random variables, From (3.11), the nth component intensity

pattern has a prcbability density function given by

1
_— >
55 %P | - Iz

n
p(r) = {17\ lalTe (c.1)
0 otherwise
The corresponding characteristic function is [Ref. 7, p. 221}

o (&) = - i )
_E(é) (1 e lg'zoiﬁ) {c.2)

It follows that the characteristic function of the total intensity

pattern is

5 1

22
n=1 (1 - § 21 a] o-ng)

‘?2(5) = (c.3)
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where N is the number of frequency components involved., Now if none
of the o, are identical, the characleristic function has only single-

order poles, and a partial-fraction expansion yields the simple result

N
o) = = (c.4)
s :E: 1- ;2 |al? cﬁ ¢

n=1

where

1i 42 2
B, = n 1 (1 - § i jaf” o §) o (¢) {c.5)
&> (Zﬂ Ia!zvi)

An inverse Fourier transform of (C.4) vields the probability density

function of the total iniensity pattern,

p (1) = ¢ (c.6)

0 otherwise
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