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FOREWORD

Technical Report No. 2303-1 was prepared by the Stanford

Electronics Laboratories, Stanford University, on Air Force Contract

AF04(695)-305 under Task No. 318201 of Project No. 3182, "University

Program for Vehicle Detection and Defense." The work was administered

under the direction of the Air Force Space Systems Division, Air Force

Systems Command. Capt. Robert Eaglet was Project Engineer for the

Division.

The studies presented covered the period fr'om July through November

1963. The research activity was conducted by Joseph W. Goodman at the

Systems Techniques Laboratory at Stanford.

This is an interim technical report on one phase of the work under

Contract AF04(695)-305.
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ABSTRACT

When laser light strikes a diffuse object, such as paper, the

scattered light has been observed to possess a granular spatial structure.

The statistical properties of these so-called "sparkle patterns," as seen

by an observei in the far field of the scattering spot, are investigated.

The first order statistics of the observed electric-field strength,

the observed light inLensity, and the observed light phase are examined.

The electric field is reasoned to be a complex normal random variable;

the intensity a real, exponentially distributed random variable; and the

phase a uniformly distributed random variable. Higher order statistics

of these random processes are also discussed. The autocorrelation func-

tions of the complex field and the intensity p;'ocesses are investigated,

and that of the electric field is found to be proportional to the Fourier

transform of the light-intensity distribution incident on the scattering

surface.

Spatial averages of the light intensity are considered and are found

to converge to corresponding ensemble averages when either the area of

the scattering spot or the uveraging area grows large.

The influence of light spectral content on sparkle pattcrns is

investigated in some detail. The cross correlation of patterns produced

by different monochromatic light components is evaluated. The degree of

correlation is found to depend on the frequency difference, the roughness

of the scattering surface, the angle of incidence of the laser beam, and

the position of the observer. Light spectral cowponents of nonzero width

are considered, and the influence of bandwidth on the ability of an

observer to distinguish a sparkle pattern is examined, it is found that

sparkle patterns exist for light of any bandwidth, but tsiv-invariant

patterns can be seen only when the bandwidth is less than _ -ertain limit

which depends on the roughness of the scattering surface, the angle of

incidence of the laser beam, and the position of the observer.

Publication of this technical documentary report does not constitute

Air Force approvw.l of the report's findings or conclusions. It is

published only for the exchange and stimulation of ideas.
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I. INTRODU

A number authors ave recently cor \.'ied on the granular

"sparkle" pattei s observec. when a w as(.- hines on a diffuse surface.

Rigden and Gordorn (Ref. Ij at' Oliver [vi,- have explained this granu-

,-:] v - a random carter patt--n whic" r-'ults from the "rough" char-

acter oi :urf.jc compored t,. :h,-o " .;e.engtis nvlved. Lang:suir

[Ref. 3] has poi,-, • ' the srzikiz.. ,ii tlar.ty betw. n this phenomenon

and that of radar "clutLor, , ct siich has been ext . sively studied
1. sparkle

in the past (Ref. 4]. A. hough the natur , of the cl'tter an.

phenomena are basically id ntical, some of .he statistical prop. ies

that are important in the ottwal case have n(.t been investigated p.

viousi3. In this report, a r'latively complete :tatistical theory of

sparkle patterns is developed. in a companion report, the effects 3f

sparkle on laser ranging and velicity-measurcmvnt sy,*.cms will be inves-

tigated.

- 1 - SEL-63-140



where D is the distance from the kth  scatterer to the observation ervation
point,

IE 12 is the intensity of the light incident on the kth scatterer, scatterer,
- and

lek 12 is the intensity of that portion of the light at the observa- e observa-k tion point which arises from the kth scatterer.

The scattering cross section is, in general, a function of both the h the

light frequency and the observatlon point. It is assumed that the the

observation region is sufficiently small and the distance D suffi- suffi-

ciently large so that sk  is constant within that region for any given any given

frequency. By using the concept of cross section, the scattering ele- ing ele-

ments are considered to be isotropic point radiators. Further assumptions assumptions

on the statistical properties of the elementary scatterers will be dis- 1 be dis-

cussed below.

At the scattering surface an "effective" scattered field distribu- distribu-

tion is defined by projecting the point radiators onto a plane X-Y at X-Y at

the surfacewhich is parallel to the observation plane U-V. A Z axis A Z axis

.s defined running perpendicularly between the origin of the X-Y itane X-Y plane

ana the origin of the U-V plane, as shown in Fig. 1. The point z = 0 )int z = 0

is do'ined to coincide with the origin in the X-Y plane, while the le the

origin of the U-V plane is assumed to lie at z = D, w e D repre- D repre-

sents the distance between the two planes.

An effective complex field distribution for the projected scatterers 1 scatterers

in the X-Y p~ane may b written as

K

E(x, y; t) = exp (j3k) 5(x - xk , y -yk exp (jw0 0 (2.2) (2.2)

k=l

- 3 - SEL-63-140 EL-63-140
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U

FIG. 1. THE GEOMETRY OF THE SCATTERING AND OBSERVATION
PLANES.

where K is the number of scatterers contributing to the oLserved

field in the U-V plane;

a k is equal to iEil and is a measure of the strength

of the k scatterer;

Pk is the phase of the radiation from the kth scatterer, as

measured at ts projected point in the X-Y plane;

(xkyk) is the location of the projection of the kth  scatterer in

the X-Y plane;

is the angular frequency of the electromagnetic radiation;

and

is a two-dimensional Dirac delta function.

SEL-63-140 - 4 -



To distinguish between the spatial and time variations of the field,

Eq. (2.2) can be written

E(x, y; t) = E0 (x, y) exp (jc0 t) (2.3)

from which it is evident that

K

E0 (x, y)= C (k' YAk) exp (ok ) &(x- Xk, Y - ) (2.4)

k=l

In the treatment which follows, the function E0 (x, y) is con-

sidered to be a random process over an ensemble of possible scattering

distributions in the X-Y plane. The following assumptions are made:

1. The scatterers are randomly distributed over the X-Y plane with
uniform probability (as mentioned earlier).

2. '.he scattering cross section of a given scatterer is a random
variable, and all scatterers have statistically independent and
identically distributed cross sections.

3. Since nearly all surfaces are extremely "rough" compared to a
light wavelength the phase angles ak are uniformly distributed

in probability over the interval (0, 2R).

4. Each 0k is statistically independent of all others.

The final assumption of statistical independence might be improved

by allowing correlation to exist between the a of neighboring scat-

terers. However, providJng that the correlation exists over an interval

which is small compared to the total extent of the scattering ,-pot, no

major changes in the results presented here are anticipated.

MT£ the scattering surface is not rough compared to a wavelength, the

results presented here apply only to that portion (possibly small) of
.h,, observed radiation which is not specular reflection. However, the
results do apply to quasi-specular reflection from metallic objects
caused by reflection from many small, optically smooth areas, each of
which is randomly distributed in depth over several wavcengths.

- 5 - SEL-63-140



III. FIRST-ORDER STATISTICS OF THE SCATTERED LIGHT
IN THE OBSERVATION PLANE

A. AN EXPRESSION FOR THE COMPLEX FIELD STRENGTH IN THE OBSERVATION
PLANE

The relationship between the electric field in the X-Y plane at

the scattering surface and the electric field in the observation region

of the U-V plane is investigated in Appendix A. It is shown there

that a Fourier transform relationship exists between the electric fields

in the two planes; specifically, if i(u, v; t) represents the complex

electric field strength in the U-V plane, then

U_ V; t) exp [A~io ]* exp [- H(u 2 +v 2 f

ff oo(x, y) exp (ux + vy~jdx dy (3.1)

provided the following conditions are met:

1. xiD << I and y/D << I for (x, y) in the scattering
spot.

2. u/D << 1 and v/D << 1 for (u, v) in the observation
region.

3. 21Tx 2 D<< I and 211y 2/AD << 1 (i.e., the observation region is
in the far field o: the scattering
spot).

4,* 1u4 /4ND 3 << 1 and 1v 4/4ND3 << 1.

For simplicity Eq. (3.1) is rewritten:

_e(u, v; t)= a exp (jw0 t) exp [- f(u + 729 o(u, v) (3.2)

Note that this assumption does not require the scattering spot to be in
the far field of the receiving optics (observation region).

SEL-63-140 - 6 -



where

) ffE(x. y) exp 2 (ux + vy] dx dy (3.3)

(u, V) f 0 _0 x (3.3

and

a exp (_jHDADxp "J (3.4)
- J2 D

The random parameters of the scattering surface become explicitly

evident when (2.4) is substituted into (3.3), with thu result

K

u, v) = V"' s E(Xk yk) exp I + (Ux +k )] (3.5)Lj 4H i E k(X k k AD k k3.5

k=l

From this expression and the assumptions on the statistical proper-

ties of the scattering surface, it is now possible to derive the relevant

statistical properties of the scattered light.

B. STATISTICS OF THE COMPLEX FIELD STRENGTH

From the expression (3.5) it is evident that the complex electric

field 0 (u, v) is given by a sum of randomly phased, randor.-amplitude

phasors. Because of the statistical independence and uniform distribu-

tion of the random phases Pk' the following assertion can be proved

[Ref. 5, p. 362]:

As the number K of elementary scatterers in the scattering spot
increases without bound, the random process co(u, v) becomes a

complex normal process. The real and imaginary parts of this process
are identically distributed with zero means and identical variances

which will be designated r 2/2. At any single point (u, v), the
real and imaginary parts of the process are statistically independent.

- 7 - SEL-63-140



It is assumed throughouL that the number of scattering elements

within the spot is indeed so large that eo(u, v) may be considered to

have normal statistics. Thus, if io(U, v) is written as the sum of

real and imaginary parts,

co(U, v) = E1 (u, v) + j C2 (u, v) (3.6)

the ,int probability density function of e1  and r2  may be written

as

/ 2 2'

e=l 2  I exp -1 +2 (3.7)pCl, >cl, 2 2) r ep -2 )

From the relationship (3.2) between c(u, v; t) and e0(u, v), it

can be seen that for a fixed (u, v; t) the former is also-a normal

process. However, as will be seen in Chapter IV, at any fixed instant

of time, c(u, v; t) in general will have statistics which are non-

stationary over the U-V plane, while co(u, v) is a stationary

process.

C. STATISTICS OF THE LIGHT INTENSITY AND PHASE

The light intensity si the observation plane is defined as the

square of the modulus of 'he complex electric field strength,

I(u, v) li(u, ,,; t) 12 (3.8)

From (3.2) it is clear that

I(u v) = 1212 IC(u, v)2 = 12 [E(u, v) + C2(u, v)] (3.9)

The intensity is an important physical quantity to consider, in that

the majority of light detectors have a response that is linearly pro-

portional to intensity.

SEL-63-140 - 8 -



Although most detectors are insensitive to the phase of the received

radiation, applications do exist in which the phase plays an important

role (e.g., heterodyne receivers). Accordingly, the phase of the

received radiation is defined by

E (.u, v)

i,(U, v) = tan- 2 (3.10)

and its statistical properties, as well as those of the intensity, will

be investigated.

To find the first-order statistics of I and *, the transformation

defined by (3.9) and (3.10) must be applved to the random variables e

and e 2. The inverse of this transformation is easily seen to be

i /2
E I = - cs "

(3.11)

1I/2

'2  T 1/2 sin

II

from which the Jacobian is found to be

IFT ~T
ijI = - 1 (3.12)

6C 2: 21A

The joint probability density function of I and , may now be found

from the relation [Ref. 6, p. 381

(I1/2 Il/2
PI$(I'  ) = I l' e2 1 cos r, - sin (3.13)

- 9 - SEL-63-140



The result is

p- 21TaI 2 2 exp (3.14)

Integrating over the appropriate variables reveals the marginal densities

of the intensity and phase to be

2- 2 exp I-'2 1  -

pI() (3.15)

ad otherwise

and

21121
p *(0) (3.16)

0 otherwise

These results may be summarized as follows:

The light intensity I(u, v) is a real, exponentially distributed
random variable, while the light phase V(u, v) is a uniformly
distributed random variable on the interval (0, 2H).

Note that

pIq'(I, PiI) p l( 0 (3.17)

from which it follows that:

the intensity and phase at the point (u, v) are statistically

independent random variables.

The moments of the intensity can be shown, from (3.15), to be

Ev = 22 r(v + 1) (3.18)

SEL-63-140 - 10-



:V. HIGHER ORDER STATISTICS OF THE SCATTERED LIGHT

A. INTENSITY-DISTRIBUTION FUNCTIONS AND CORRELATION FUNCTIONS

In the previous chapter the firs.-order statistics of the complex

field strength, the intensity, and the phase of the scattered light were

found. A complete statistical description of these quantities at any

single point in space is known therefore, but not the statistical rela-

_ionships between their values at two, three, or N different points

in space (i.e., the "higher order" statistics). It is a remarkable

property of the normal random process that once the so-called "auto-

correlation function" of the process is known, the statistics of all

orders are completely determined. In order to more fully describe the

statistics of sparkle patterns, the concept of autocorrelation function

and the related concept of "intensity-distribution function" are intro-

duced.

The two-dimensional intensity-distribution function, S(x, y), of the

scattered light intensity at the point (x, y) is defined as the

ensemble average of the scattered light intensity at that point. It is

assumed that the elementary scatterers are so dens.±y packed that S(x, y)

may be considered to be a continuous function, in which case it can be

seen that

S(x, y) = E.(x, y)1 2  
(4.1)

where 7 is the ensemble average of the scattering cross section of the

elementary radiators. Thus the functional form of S(x, y) is identical,

up to a multiplicative constant, with the functional form of the intensity

distribution across the scattering spot. The intensity-diztribution func-

tion has the particular property that, when integrated over the entire

X-Y plane, it yields the constant a2 which is twice the variance of

the normal distributions discussed earlier.

- 11 - SEL-63-140



The two-dimensional autocorrelation function of an arbitrary complex-

valued random process t(u, v) is defined by

t(u, v) 1'(u -bu, v - 5b) (4.2)

where the superbar indicates an ensemble average. A process is said to

be wide sense stationary if the correlation function depends only on

(bu, 5v); while if it depends on (u, v) as well as (bu, bv), the

process is nonstationary.

The following important properties of any autocorrelation function

should be noted:

1. E (Fu, 8v) is in general complex.

2. it (bu, bv)l :1 (o, 0)1.

3. (0, O) is real and equals twice the average intensity of the

process j(u, v).

Using the definition (4.2), the autocorrelation functions of the

random processes e0 (u, v), i(u, v; t), and I(u, v) will now be

investigated. From-(3.5) and (4.2) the autocorrelation function of

C0 (u, v) is

K

K (bu, bv) = E I(xk, )2 exp (zbu + uk5V (4.3)
k=l

Note that this autocorrelation function does not depend on (u, v), so

the random process eo(u, v) is wide-sense stationary. Further note

that if the scatterers are sufticiently dense in the scattering spot,

the sum may be approximated by an integral, with the result

F (b, by) j L IE Xi A 2 exp ex (xbu + y v dx dy (4.4)

SEL-63-140 - 12 -



Recalling the definition (4.1) of the intensity-distribution function,

it follows that:

The intcnsity-distribution function and the autocorrelation func-
tion of the random process eo(u, v) are a Fourier transform pair;
specifically

S(8 yv dx dy (4.5)

Since the intensity-distribution function is proportional to the intensity

of the incident light at the scattering surface, the functional form of

the autocorrelation function can be found directly once the intensity

distribution across the scattering spoL ic known. Note that for a given

intensity-distribution function, the width of the corresponding auto-

corralation function depends on the wavelength N. The longer the wave-

length, the wider the peak of the correlation function.

The autocorrelatior function of 6(u, v; t) is now examined

briefly. Equations (3.2) and (4.2) yield

9 (bu, 5v) [al 0(bu, 5v) exp j (2ubu + 2vrv - bu -v2

(4.6)

Since this expression is a function of (u, v) as well as (6u, bv),

the process E(u, v; t) is nonstationary. However, it can be shown

that if the scattering spot is in the far field of the observation

region, then the dependence on (u, v) is eliminated and the process

is wide-sense stationary.

Turning now to the autocorrelation function of the intensity random

process, from (3.9) and (4.2) it is seen that

i 1(bu, bv) = IaI 4 ICo(U, v)12 jCo(u - bu, v - 6v "  (4.7)

- 13 - SEL-63-140



Expanding e O(U, v) in its real and imaginary parts

C0 (u, v) = Yu, v) + j E2 (u, v) (4.8)

yields

4 L)2]u,4v) C2
I(bu, bv)= 1 I(u 6 v - bv)

+ l 2(U, v) U-b , v)
2 2( u

2(u, V) e 2(u - bu, v - bv)

2 21'+(u, V) EC( 2 v - &V)

+e v) (u - uv - 5) (4.9)

Now if X1 , x2, x3, and x4  are real, zero-mean, normal random vari-

ables, then the following relation is known to be true [Ref. 5, p. 343]:

x1 x2 X3 4 = x1 x2 x3X4 + x1x3 x2x4 + xIx 4 x2X3  (4.10)

Using this fact, it is not difficult to reduce (4.9) to

l(bu, bv)= j,
4 [(T4 + [jeo(FU, 5v)I2] (4.11)

which provides a simple relation between the autocorrelation functions

of C (u, v) and I(u, v). Note thut the random process I(u, v) is

wide-sense stationary.

Three important intensity-distribution functions and their corre-

sponding autocorrelation functions are listed helow:

SEL-63-140 - 14 -



1. Gaussian Scattering Spot

2 (+v 1 2 7
=X 2) exp L ) 21)s~,y n 172 "-g

2: I-yl 1 Yv27

Su 5v) = 2 exp( - j 1 (
7

--8 
-) + ( -V ) JJ(4.12)

22

[
(bu, bv) = 1214 4 F, e Y b -- -- + ( --5v

2. Rectangular Scattering Spot

s ( X, y ) =
0x otherwisc

(bu, 5v) = n2 s sinc 2 %4.13)

,(u, bv) = 1I14  a 4 1  + sinc - sinc2  'V ]1

I~~- (v a 2 Db, 2

where sinc b '= (sin llb)/Ilb.

- 15 - SEL-63-140



3. Circular Spot

a22 2 2

2'" 0 <_ x + y p

S(x, y) =

0~ otherwise

___ v) 2 (4.14)

+I

0 b 2 2[ 2 )

( u, -lU +) (uv , -)v 4.

2

45 1 AD+)5

k1 ( u , bv ) i 9i 1' + 4 2!1 2 ( bu )2 + ( v 2

Finally, some quantities are defined which will be of considerable

use in later chapters.

The cross-correlation-function of two complex-valued random proc-

esses t,,(u, v) and E 2(u, v) is defined by

~.(bu, bv) _ g (u, V) 9*(u - bu, v - 5v) (4.15)S1 2  - 2

In words, the cross-correlation function provides a measure of the

statistical similarity of the first random process 1 at the point

(u, v) and the second random process g2 at the pont (u - bu, v - 8v).

A cross-correlation function need not have its maximum value at

5u = 5v = 0.

The cross-intensity-distribution function is defined as the two-

dimensional Fourier transform of the cross-correlation function,

S (X y= f 1f(bu, 5v) exp + b d db

(4.16)

SEL-63-140 - 16 -



The cross-intensity-distribution function is in general a complex

quantity.

B. HIGHER ORDER STATISTICS OF THE COMPLEX FIELD STRENGTH

In this section the joint statistics of the real and imaginary parts

of the complex field strength e0  at :; different points in space are

examined. Since these quantities have been seen to be normally distrib-

..ted, the statistical properties of the field at N different points

in space are completely described by a 2N-dimensional normal distribution,

e;:p - A

PN(ll ' C12 ' E2]' C2 2 ' . NI' EN2 =  2-t ((211 lN /2 ( .7

where

e kl is the real part of the field strength at the kth point;

Gk2 is the imaginary part of the field strength at the kt h point;

e is a column matrix of the e, defined by

C 21

= 22 (4.18)

eNl

N 2

- 17 - SEL-63-140



.t is the transpose of e;

A is the covariance matrix of the e, defined by

I1I1 11 12 • . 11 N1 1IN2

121 C12C12 - . . 12 N1 1 l2CN2

A C et (4.19)

C Ni CSC 12 C " NI N CNCN2

L CN2C1 CN2C12  E N2CN1 CN2CN2

A is the inverse of A; and

IAi is ti'e determinant of A.

The elements of the correlation matrix can be found from the auto-

correlation function of the process o(u, v) by means of the following

relationship, which is not difficult to prove;

c0(u k - uk, vk ,) _(uk, vk) 1%(u, v)

~6kll + k2E~*] .~ C22~i] (4.20)

=2 ek.1 j 2 CL1k2 = 2 Ek2%2 - j 2 6 2ckl

Note that the imaginary part of the autocorrelation function is propor-

tional to the cross correlation between the real and imaginary parts of

the field strength at the two different points involved. It was pre-

viously shown that the real and imaginary parts of the field strength

at any one point are uncorrelated, but it is evident from (4.20) that

the real and iwaginary parts at different points may be correlated. If,
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however, the laser spot is symmetrical about its center, the autocor-

relation function is entirely real, and the real and imaginary parts of

the field strength are statistically independent processes.

C. SECOND-ORDER STATISTICS OF THE LIGHT INTENSITY AND PHASE

The second-order statistics of the intensity and phase may be found

by a procedure similar to that used in Sec. IIIC. The transformation

c' interest is given by

I1 I-12 C2 + C12

2 = i 2 1 ~22) (4.21)

III = tan 
" 1 i_2

611

tan-l _2 

1
2 C 21

where I and are the intensity and phase at the point (UV v 1) ,

and 12 and ,2 are the same quantities at (u2 , v2 ). The inverse of

this transformation is

1/2
1

CCos I?411 1 V

i1/21
C1 - - sin I

(4.22)
1i/2
2

-21 =- cos2

1 3/2

'22 2 sin + 2

I al
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The Jacobian of the transformation can bc shown to be

'J] -4 4(4.23)

and, using the higher order analogy of (3.13),

2/4

pI~j -t ~ ~=161jI III (4.24)

where in this case

I1 2 cos

1 sin
1 (4.25)

[ 1/2
12 cos *2

2i/

1 /2 sin 41

It is convenient at this point to have separate symbols for the

real and imaginary parts of R (bu, bv). Accordingly,60

R(ou, bv) 1(bu, bv) + j R2 (bu, 5v) (4.26)
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The covariance matrix can now be written

or2 0 R I  R 2

A =-12 R1 (4.27)

2

2 R 1  -R 2  a 0

R2  R1  0 2

The determinant !AI is

-2 2 (4.28)

and the inverse matrix A "1 can be shown to be

2  0 -R1  -R2

0 2a R 2  -R1-A 2 11 ---- R2 2 02 (4.29)

[1{' -R R2 1 0 ,|

Carrying through the computation required by (4.24) yields

2 (/ (a 2 (' 12)1/2 ( + s~

11 j -7 21 -a(' 12) -I (R Ij CosI (/2 ft n 2 l
1II 2 2 16- .~ 12 - - -

(4.30)
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Appropriate integrations over ( 1 ) and (I , I2) yield the desired

marginal densities (cf. Ref. 6, p. 163]

exp 2 I 12
p- 41 112 _ _ 1 Al 11 (1 1 )11 (R2 + R 2)1/2PI2 4[j4 I(i1

/
2 1° 2!a! 4 1 2  /

(4.31)

and

"2(1/2 F(1_- 32) 1 /2 + -(H cos-1 
(4.32)

"I 2 " 411 L (l - p2)3/2

where I is a modified Bessel function of the first kind, zero order;

and where

[AR1 R2
: -5cos*2 -"') -5 sin ( (4.33)

2 2 ~1 2 sn02 1
a' 0*

and 1A6 is given by (4.28).

The random variable A&, defined by

=^ '=2 - 1 (4.34)

is a quantity of some interest. It represents the phase difference

between the observed light at the points (u2 , v2 ) and (Ul, vl).

From (4.32) it is possible to show that

pA 2 1 "2)1/2 +( " sl (4.35)

PA'(* 211,4 (l - p2)3/2
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where

R R2
2cas A* + 2~ sin A* (4.36)

or a

Finally, the mean value of 1IL1 is given by [Ref. 5, p.4111

11 - 2 0i~ [~ (U 2 - Uf V2 - v di] (4.37)
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V. SPATIAL AVERAGES

The preceding chapter considered only averages over an ensemble of

scattering surfaces. However, the experimental tools that an observer

must use are spatial averages (i.e., spatial integrations) over the

observation region of the U-V plane. In this chapter the statistical

properties of spatial averages are examined, with particular attention

paid te discovering conditions under which spatial averages are, with

high probability, very nearly the same as ensemble averages.

The integral of primary concern here is an average of the random

process I(u, v) over the region

-U : u U, -V ! v : V (5.1)

of the observation plane. The average is defined by

-L-- I(u, v) du dv (5.2)

First, the expected value (over the ensemble of scaLtering surfaces)

of the spatial average is examined (5.2). The orders of expectation and

integration may be int.erchanged to yield

= = 2 or (5.3)

Thus the spatial integration yields, on the average, the ensemble

expectation of I(u, v).

It is pertinent at this point to inquire as to how large the depar-

tures of from its average value might be on any single trial. The

dependence of these departures on U, V and on the statistical structure

of I(u, v) is of particular interest. The answer to this question

will, of course, indicate the magnitude of the difference between spatial

averages of two intensity patterns which result from statistically

independent zcattering surfaces (composed of similar materials).
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Therefore the variance of a over the ensemble of scattering surfaces

is calculated.

To begin, note that

V 1
'j uf (,, v1 ) I(, . du d.u dv d,

l22- ivj _ 1 1 2 1 2 1 216U2V -_ -U

(5.4)

which may be rewritten as

s2 1 f ffRf(u - u v " v2 ) du du dv dv (5.5)
1U2 V2 f"~ I 1 1 2 i 1 d2 1  2 1 216U2V2  -, -U

At this poirt it is clear that the variance of the spatial average will

depend only on the averaging region and the autocorrelation function of

I(u, v).

Continuing, (4.11) may be used to write

4
a2U2 = . (U 1 - U4, V+ -V12 dUd dv dv

1'-I .ijjj'Iel 2' 1. dv22  1 2

(5.6)

from vhich it is seen that the variance of & is given by

var (J] = 1 V fvff U (u- u v- 2v)1 du du dv dv2V2 f ffjjk 1 -2P 1 v2) 1 2 1 216U V - -U 0

(5.7)

A change of variables [Ref. 6, p. 68] allows the expression to be

reduced to

var =a
4 2Vj2U (iL 2)i) ( IF- ) 0 )j2 d g dy (5.8)2 5- = u o - V 0-q1 2
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The expression (5.13) contains considerable information. One con-

clusion, which is not surprising, is the following:

As the size of the integration area (UV) increases, the spatial
average converges to the ensemble average of the intensity process.

A slightly morc subtle, but related conclusion is:

As the size of the scattering spot (as measured by yl and y2)

increases, the spatial average again converges to the ensemble
average.
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VI. THE DEPENDENCE-OF SPARKLE PATTERNS ON LIGHT

FREQUENCY CONTENT

In the previous chapters ideally monochromatic light sources were

assumed. In actuality, the output of a laser, regardless of its type,

consists typically of a number of spectral components, each of finite

width. Since sparkle patterns were not observed until the advent of

narrowband laser sources, it is of considerable interest to determine

the exact role of spectral content in this phenor enon. This chapter is

concerned with (1) the cross correlation between sparkle patterns pro-

duced by different monochromatic frequency components; (2) some statis-

tical properties of sparkle patterns produced by a laser spectrum

consisting of a number of monochromatic components; and (3) some suf-

ficient conditions for observing sparkle patterns when the spectral

components have nonzero width.

A. THE CROSS CORRELATION OF PATTERNS PRODUCED BY DIFFERENT FREQUENCY
COMPONENTS

Suppose that two light sources with different frequencies f and

2 cps are available. Each source is assumed to be ideally monochromatic,

and will produce a sparkle pattern when its light falls on a diffuse

surface. It is pertinent to inquire as to the correlation between the

two patterns at each point (u, v) of the observation region, as a

function of the frequency difference f defined by

= f2 - fl (6.1)

assuming that in both cases the source illuminates the same area of a

fixed target and that the intensity distributions of the incident spots

are identical. If the correlation is high for all (u, v), then the

two sparkle patterns must be very nearly identical; if it is low, the

two patterns bear little resemblence.
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From the definition (4.15), the cross correlation of the intensity

pattern when the frequency is f and the intensity pattern when the1

frequency is f2  is given by

i12 (u, 5v) = I(u, v; fl) I(u - bu, v - 6v; f2 ) (6.2)

By an argument similar to that used to derive (4.11) it can be shown

that

1(u, 5v)= r!I [ 2 + ,C2 (u. v),2] (6.3)

where

(bu, 5v) = C0 (u, v; f ) E(u - 5u, v - 5v; f2 1 (6.4)
1]2 0_ 1 -0

while a112 is the variance of the real and imaginary parts of
2

GONU, v; fl), and a2/2 is the corresponding variance for Co(U, v; f2 ).

If Lf is sufficiently small to assure that the same total intensity is

2 2scattered from the surface in both cases, then ( and 2ar identical,

and to determine i 2  it suffices to determine R 12.

To continue, what is the correlation between the pattern I(u, v; f1 )

and the untranslated pattern I(u, v; f2 ) at each point (u, v)? It is

assumed, for simplicity, that the observation plane U-V is parallel to

the plane defined by thc mean surface (X-Y), althogh the laser beam

is allowed to be incident on the surface at an angle 0 with the normal

to the X-Y plane, as shown in Fig. 2. The Y and V axes are

directed upward in this figure.
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z

I NCIDEN
LASER'r
BEAM

OBSERVATION
PLANE

FIG. 2. GEOMETRICAL RELATIONSHIP BETWEEN
THE LASER BEAM, THE SCATTERING SURFACE,
A1YD THE OBSERVATION PLANE.

In Appendix B, the desired cross correlation is found to be given

by the following expression:

a (a, 0) = a (Mu, 6fv OZ( 6f +4 (6.5)
12 2 \ 2 2 c/Cs\4

where

R (bu, bv u ;f ( 66

2 ) 0 ( U v f2 ) C O ( - u , v - 5 v ( 6.2)

and OZ(O is the characteristic function of the random variables z k'

as given by the Fourier transform of the probability density function

of the z k?

Sf exp (j2ltz k) pz (z k) dz k (6.7)
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It is proposed to use the result (6.5) to find the conditions under

which the two spatial patterns E0 (u, v; f1 ) and eo(U, v; f2 ) will be

highly correlated. For high correlation, both factors in (6.5) must be

near their maximum values. The magnitude of the characteristic function,

10Z(01, is considerably less than is maximum velue when t is greater

than the reciprocal of the standard deviation ai, of pz(zk). Thus a

necessary condition for high correlation is*

(1 + 1)- (6.8)

Turning to the first factor in (6.5), it can be shown from (4.5) that

JR, (bu, 5v) is considerably less than its maximum when
"2

Du c Dc

or 5v > f De (6.9)
2 x 2 y

where 4 is the X-dimension width of the scattering spot and Z isx y
the Y-dimension width. Thus a necessary condition for high correlation

is

Dc Dc (6.10)u < ---7 and v ---

x y

for all (a, v) included in the observation region.

The conclusions of this section can be summarized as follows:

The correlation between patterns produced by different frequency

components is maximum at (u, v) = (0, 0) and extends ovcr a
finite region of the U-V plane. The magnitude of the maximum
correlation is determined by the relationship (6.8) b-tween the
frequency difference Af, the surface roughness a, and the
angle of incidence 0 of the laser beam.

This result is quite similar to the so-called Rayleigh Roughness
Criterion [Ref. 4, p. 411).
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B. STATISTICAL PROPERTIES OF THE SPARKLE PATTERN PRODUCED BY A SUM
OF MONOCHROMATIC LIGHT COMPONENTS

In this section the first-order statistics of the total intensity

pattern are found for two special cases of interest, and an expression

for the autocorrelation function of the total intensity pattern is also

found.

It is -ssumed that the scattering process is a linear one, from

which it follows that when the laser output consists of a sum of mono-

chromatic frequency components, the total electric-field pattern is

simply the sum of the field patterns produced by the individual components

separately. The total electric field may be written, from (3.2), as

N t Hfn(u 2 + v2)l

CT(u, v; t))= a exp(j2fnt" exp • (u, v; n

n=l

(6.11)

where the f are the frequencies of the N monochromatic components

involved.

The total intensity pattern is, from the definition (3.5), given by

V, 2 jaj ] eo'  [ - ,

p. j~r,2 f~ Dc ~ V fn) C*(U.V

(6.12)

If the intensity detector is followed by a low-pass filter sufficiently

narrow to eliminate all but the dc term, (6.12) becomes

N N

42~(u, v) tat 2 IEO(u, v'; fn)1 =. I(u, v; fn (6.13)

n=l n=l
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Now each I(u, v; f n) is an exponentially distributed random
variable which may or may not be significantly correlated with other

members of the sum. For the general case of arbitrary frequency

spacings between spectral components, the statistics of Ilj(u, v) are

extremely difficult to compute. However, two limiting cases of interest

can be solved;

1. The case of spectral components with sufficiently wide frequency

separations to produce uncorrelated* patterns; snd

? The case of spectral components with sufficiently small frequency

separations to produce perfectly correlated patterns.

Sdppose first that the minimum separation between frequency com-

ponents is so large that all terms of (6.13) are uncorrelated for every

(u. v) in the observation region. A sufficient condition for this to

be true is, irom (6.8),

min(f + (6.14)

Further suppose that the scattered light intensities resulting from

different frequency components are not precisely identical, a condition

which is always met in practice due to the fact that the laser spectral

components will always have at least slightly different intensities.

Then, as shown in Appendix C, the probability density function of the

total intensity 1.(u, v) is given by a weighted sum of exponential

functions,

p(I) n( n n (6.15)

0 otherwise

where the B are real, constant weighting factors which are evaluated

in Appendix C.

Because the randon, variables IN, v; fn) are composed of the sum of

the squares of two normal processes, zero correlation implies statistical
independence.
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Next, suppose that the maximum separation between frequency components

is so small that all terms oZ (6.13) have unity correlation in the obser-

vation region. Sufficient conditions for this to be true are

max ( ;(+ (6.16a)
n,m Z I

and

Dc m < Dc (6.16b)
m n m x (fn m y

for all (u, v) in the observation region. Since all the terms of

(6.13) are perfectly correlated, the statistics of I(u, v) are

easily seen to be exponential, with a probability density function

given by

r 2( 2 exp ( ( 2 l 0

POP = ~ n=1 2nl (6.17)

0 otherwise

Finally the autocorrelation function of the total intensity pattern,

as given by

N N

1%T(bu, bv) = 1j,(u, v) I4 (u - bu, v - bv) = (bu, by) (6.18)

n=l m=l nm

is investigated. From (6.3) it follows that

N N

by b)= ~ ja14 [(7 2 a2 IR (bu, bv)1l (6.19)

n=l m=l nm
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while from Appendix B it can be shown that if (6.16b) applies, then

fn- f f ".f)
1 (bu, bv) n (bu, by) 0z n m + _n (6.20)

nm m Z C

Thus,

N N1

PT(bu, bv) = Ijj al14 [U nU + 
1 2ml lj (bu, bv)l 2  (6.21)

n=l m=l

where

Pnn = Q c - + nL (6.22)

is independent of (bu, bv). Thus:

the sutoco:relation function of the total intensity pattern is
given by a weighted sum of the autocorrelation functions of the
individual intensity patterns.

C. SPARKLE PATTERNS PRODUCED BY SPECTRAL COMPONENTS OF FINITE WIDTH

Suppose that the laser output spectrum consists of a single spectral

component of finite bandwidth W, as shown in Fig. 3. The exact shape

of the spectrum is not of concern here, only the fact that it extends

over a range W cps. In this section it is not required that a low-

pass filter eliminate all the difference frequency terms, but rather

the observation is performed directly on the output of the intensity

detector.

The laser output field strength is considered to be a narrowband

random process in time, which is represented as an amplitude-and phase-

modulated sinusoid,

n(t) = A(t) exp (j(w0 t + 0(t)]) (6.23)
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where n(t) = strength of the laser output

A(t) = random amplitude modulation, of bandwidth W (approxi-
mately)

0(t) = random phase modulation, of bandwidth W (approximately)

00 = center frequency of the laser spectrum.

OUTPUT
SPECT~um

FIG. 3. LASER POWER SPECTRUM WITH A SINGLE
COMPONENT.

The observer is assumed to examine the scattered intensity pattern for

a time T sec. This observation interval is subdivided, for analysis

purposes, into a number of subintervals, each of duration somewhat less

than I/W sec. During any one of these subintervals the laser output

is practically identical to a monochromatic sinusoidal oscillation of

constant amplitude and constant frequency w, given by

W = O 0 + (6.24)

where 0 is the time derivative of the phase. Both the amplitude and

the frequency of the oscillation will change as time progresses through

the subintervals. Two distinctly different cases can now be distinguished:
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Case I

w« -1 + (6.25a)

Case 2

W >> , o

In case 1, the maximum excursion of the oscillation frequency w is

sufficiently small to assure that the intensity patterns produced in all

subintervals are very highly correlated. Thus the sparkle-pattern struc-

ture does not change significantly from subinterval to subinterval, and

an observer can distinguish a stationary sparkly pattern, regardless of

how long his observation time T may be.

In case 2, the excursions of Lhe oscillation frequency are so great

that uncorrelated patterns may be produced in adjacent subintervals, and

the sparkle pattern will "wash out" unless the observation time T is

less than I/W. But note that no matter how wide W may be, for a

sufficiently short observation time a distinct sparkle pattern will be

observed.

In summary, sufficient conditions for observing sparkle patterns

are

.eC 1 + (regardless of T) (6.26a)

or

T « (regardless of o) (6.26b)

The final situation to be examined is that of a laser spectrum con-

sisting of a series of narrowband spectral components, as shown in Fig.

4. The total extent of the spectrum is denoted B cps, while the

width of any one of the spectral ;omponents is approximately W cps.
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SPECTRUM n W

fk fk+l fk+2 fk+3 f k4 f

FIG. 4. LASER POIATH SPECTRUM WITH SEVERAL COMPONENTS.

In this case the laser output may be written as a sum of narrowband

processes,

n(t) =Z AM(t) exp (j[2J[ fmt + &M(t)) (6.27)

where Am(t) and Om(t) are bandlimited to approxinat'ely W cps.

Reasoning identical to that used for a single output component shows

that the following conditions are sufficient for sparkle patterns to

be distinguished:

I. B << c 1+(6.28a)

or

2. T (6.28b)

In the present case it is not sufficient that

W << L 1 + I(6.29)

for under this condition it is still possible for different spectral

components to produce uncorrelated patterns which will then add in

proportions that cb, :.ge from subinterval to subinterval.
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APPENDIX A. FAR-FIELD FOURIER-TRANSFORM RELATIONS

This appendix considc's the relationship between the field distri-

bution E(x, v; t) across the scattering spot and the field distribution

_(u, v; t) in the observation region. The observed field at the point

(u, v) may be written as a sum of contributions from the incremental

areas LA Lx~y on the spot. As 6A is allowed to approach zero, the

s.m passes to an integral which may be written*

00Exy; t) ir
E(u, v; t) = J r exp -j -- dx dy (A.1)

where r is the distance from (x, y) to (u, v). The geometry is

shown in Fig. 5.

Y ',A

t r03SERVATIOI
X REGION

SCATTERING

SPOT

U

FIG. S. THE GEOMETRY LEADING TO EQ. (A.1).

*This equation follows directly from Huygen's principle.
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Under the assumptions

1 << 1, D- << 1 for all (x, y) in scattering spot (A.2a)
D D

UV
W << 1, << 1 for all (u, v) in observation region (A.2b)

(A.1) iay be rewritten as

_(u, v; t) = exp(jWOO %(X, y) exp ( 2.__ dx dy (A.3)

where E0 (x, y) is defined by

E(x, y; t) = Eo(x, y) exp (j w)t )  (A.4)

The distance r is seen to be given by

r = D +( - ) ( D))(A.5)

The binomial expansion may now be used to expand the exponent in the

integrand,

211r 211D 11-x -y2

2 D 2

I U x 2 + ( v _ Y)2] 2 higher)- D + order (A.6)

terms)
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The observation region is defined to be in the far field of the scat-

tering spot when

2
211 1- << i

DA

for all (x, y) (A.7)
and ( in the scattering spot

2
211 Y- << 1

Assuming that these conditions hold, and further assuming that

Hu4
_--<<

and (A.8)
11v4

-- 4<<I

4XD
3

Eq. (A.6) becomes

Ii(t -. r "( v
exp Ot 2 - 2)

L (I exp i 11(

rs 1
ff Eo(XI y) exp [I (ux + vy dx dy (A.9)
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APPENDIX B. CROSS CORRELATION OF FIELD PATTrERNS
PRODUCED BY DIFFERENT FREQUENCY COMPONENTS

This appendix investigates the cross-correlation function of two

complex field patterns produced by different monochromatic frequency

components. Following the notation of Chapter VI, the correlation

function of interest is given by

(eu, 8v)=E 0 ( u, V; f ) C*(u - bu, v - 8v; f B1

nm - _

where

j n,n k=1l

+ -a.f (ux+ y])(B2
Dc k "kJ

As the result of the statistical independence of the phases of different

scatterers, Eqs. (B.1) and (B.2) can be combined to yield

S(bu, 5V) = 
5
'a kmexp 0 ( k(f) 13(fmd

k=1

E I(xkI Yk) 12 exp (j [2!z( r (ux f y + M 5x~ kv)]

(B.3)
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which may be rewritten

(BU, fv) = sk~ m exp 'J[0k.(fn) -0k(fm1)1Etm(S, Qv =:fn -4k

k=1

E (x exp ( -\ (f.m- v ufV+

(B.4)

But now note that

exp IU (1(f)- 1 (f mJ = x j + 1) n +

(B.5)

where 0 is the angle of incidence of the laser beam (see Fig. 2), Zk

is the Z coordinate of the kth radiator, and (Q) is the charac-

teristic function of the random variables zk. Finally, if the frequency

difference f - f is sufficiently small to assure that the scatteringn m
cross sections of the elementary scatterers are independent of frequency,

comparison of (B.4) and (4.3) shows that

Re (5u, bv) =_( mF fm u + bu, n M + 5 Z _ Co +

(B.6)

where

K -[
Y (bu, 5v,) : a lI (x, y) 2 exp 5 XS' kv'

m k=l

(B.7)

is the autocorrelation function of the pattern corresponding to fm
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APPENDIX C. FIRST-ORDER STATISTICS OF THE INTENSITY
PATTERN PRODUCED BY A SUM OF WIDELY SPACED

MONOCHROMATIC FREQUENCY COMPONENTS

In this appendix, the incident light beam is considered to be com-

posed of a sum of monochromatic spectral components, spaced so widely

apart that the intensity patterns produced by different components are

statistically independent. As indicated by Eqs. (3.11) and (6.13), the

total intensity pattern is simply the sum of a number o1 statistically

independent, exponentially distributed random variables.

It is a well-known result of statistics that the characteristic

function of a sum of a number of statistically independent random varia-

bles is simply the product of the ciaracteristic functions of the com-

ponent random variables. From (3.11), the nih component intensity

pattern has a prcbability density function given by

1 exp 1 n2 I 0
P(in )  n n % \ a (c.1)

0 otherwise

The corresponding characteristic function is [Ref. 7, p. 221)

2 ( (C.2)

It follows that the characteristic function of the total intensity

pattern is

N1

HI 1 21~2o 2 (C.3)
T n=l (i- j 2Ha2 ng)
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where N is the number of frequency components involved. Now if none

of the an are identical, the characLeristic function has only single-

order poles, and a partial-fraction expansion yields the simple result

N B
FZ - n 2a2 (C.4)

n=1 n-j t2 2

where

= lira ( A,2 2
B n - 1 - j 21i a 2 (C.5)

n 2j1Ii 2) 2.i

An inverse Fourier transform of (C.4) yields the probability density

function of the total intensity pattern,

N B

2 e.<p . I '2 0

n=l n IalI a '

p ( = (c.6)

otherwise
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