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ABSTRACT 

In this report we try to establish an upper bound on the information capacity of an 

electromagnetic wave propagation circuit between two apertures when quantum 

effects come into play. We first discuss the specifications of a signal, and find 

that we can associate approximately BT quantities with a signal of bandwidth B 

and duration T,and that the energy associated with these quantities must differ by 

at least "hu. We then consider radiative attenuation loss within the framework of 

quantum theory and find that the radiative attenuation introduces a random noise 

in the circuit which is analogous to partition tube noise. 

With the channel matrix determined, we discuss the problem of evaluating the 

channel capacity under average and peak power constraints. Due to mathematical 

difficulties we are only able to establish the channel capacity explicitly when the 

radiative losses become extreme. In this limiting case — as a by-product — we also 

find that the best encoding procedure is a binary on — off system. 
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INFORMATION CAPACITY AND QUANTUM EFFECTS 

IN PROPAGATION CIRCUITS 

I.      INTRODUCTION 

The recent development of various types of coherent oscillators and amplifiers in the infrared 
and  the optical frequency  regions seems to  bear great promise for certain   communication and 

radar applications.    It is immediately  obvious that quantum effects will become of considerable 
importance in these  frequency regions because of the proportionality of quantum energy and 

frequency.   Any discussion of communication and information capacity at these frequencies must 

therefore take into account the full effects of the quantized energy of the waves. 

Some work has been done on quantum effects in communication systems, usually with empha- 
sis on the behavior of the various elements at the terminals of the system.     In particular,   the 

problems relating to the receiving end and the relative merits of quantum counters, linear ampli- 
1-3 fiers,   etc.,   have been widely discussed. 

Effects relating to the transmission path itself have received much less attention.     Recent 
4 5 works by Heffner    and Haus    have reported certain progress along this line.    However, we want 

to consider further the fundamental problem of the transmission of information on quantized elec- 

tromagnetic waves from a transmitting aperture  A  to a receiving aperture  B  as shown in Fig. 1. 

Because the actual propagation path is our main interest,  we shall only discuss the relation be- 
tween the information which is encoded on the electromagnetic wave passing out of the transmit- 
ting aperture and the information which is present on the wave passing into the receiving aperture. 
Questions relating to the encoding and decoding procedures will be left aside in this report.    Our 
problem is one of information transmission from aperture to aperture. 

The first question that arises is concerned with the amount of information which can be car- 
ried by an electromagnetic wave of given bandwidth and center frequency for a single polarization. 

In an early paper Stern   assumed that a message of bandwidth B  and duration T  could be speci- 
7 

fied by 2TB numbers,  as in the classical picture.    In a later work Gordon    argued that only half 
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as many numbers could be associated with a message.    The reason for this is intuitively clear: 

The classical specification of a bandpass limited signal involves the in-phase and the quadrature 

components at a rate of B.    In a quantum mechanical formulation,  however,  these two compo- 

nents must be regarded as noncommuting variables and only one of them can be specified exactly. 

In this report it is pointed out that even Gordon's ideas about the number of degrees of freedom 

of a message might be somewhat optimistic. 

In previous work the "wave capacity" was derived for a plane wave only.    This derivation 

does not leave room for considerations of radiative attenuation effects and therefore cannot be 

applied directly to practical communication situations.    A transmitting aperture can be made to 

excite several independent spatial modes,  none of which are plane waves.    The distinction be- 

tween plane and spherical waves is unimportant in certain respects.    But it must be remembered 

that the receiving antenna usually couples weakly into one of the spatial modes set up by the trans- 
mitting antenna — unless the transmitter-receiver separation is very small.    This weak coupling 

between the two apertures gives rise to a phenomenon which can be interpreted as partition noise. 

It will be shown that this noise has a rather profound effect on the capacity of the quantum circuit, 

particularly when the received power level is exceedingly low.    In Gordon's work,   the sequence 

of quantum numbers specified at the transmitting end reappears as the same sequence of numbers 

at the receiving end because of the lack of partition noise.    When partition noise is important, 
however,   the specification of a sequence of quantum numbers at the transmitter can only serve 
to define a set of distribution functions for the quantum numbers at the receiving end,   and hence, 

even in the absence of additive noise,   the channel must be described in terms of a matrix which 

exhibits noise properties. 

In what follows,  we first discuss the specification of a signal or a message fed into a single 

spatial mode (single mode includes only one polarization).    We then go on to discuss the concept 
of spatial modes and evaluate the number of such modes which can be excited by a given trans- 

mitting aperture.    The coupling between the transmitting and the receiving apertures is then es- 
tablished in such a way that quantization of the system can be carried out rather easily.    This 
quantization procedure leads to a specification of the communication channel in terms of a chan- 

nel matrix.    The form of this channel matrix is also worked out for the case of additive noise 
being present. 

With the form of the channel matrix established,   the channel capacity is determined through 

a familiar variational procedure.    It is shown that this procedure breaks down when partition 
noise is present.    In fact,   the solution of the variational problem leads to certain negative input 
probabilities for the optimum encoding procedure.     This situation has previously been considered 

Q 

by Muroga    who has shown that certain of the input "symbols" (here quantum states) must be 
omitted.    As there does not seem to be other than a trial-and-error procedure to the solution of 

the capacity problem in this case,   we are unable to establish the capacity of the channel except 

in the case of extreme radiative attenuation when the channel becomes binary.    In spite of the 
lack of a general result for the channel capacity,   it is possible to draw certain conclusions about 

the type of encoding procedure which must be employed to optimize the transfer of information. 

II.    SPECIFICATION OF A SIGNAL 

In information theory,   a continuous signal is shown to be equivalent to a certain number of 

degrees of freedom determined by the duration,   T,   and the bandwidth,   B,   of the signal.     The 
9 10 number of degrees of freedom is shown to be approximately equal to 2TB. ' It is understood 



that either  B  or  T   can be sharply defined,   not both simultaneously.     There are several ways 

in which 2TB quantities can be associated with a signal,   the most familiar ones being by means 

of sampled values either in the time domain or in the frequency domain. 

A bandpass limited time function,   f(t),   can be expressed as 

f(t) = f (t) •   COSOJ  t + f (t) sinoi   t (1) 1 '       C o s o 

where u>    is the center frequency of the pass band,   and where f  (t) and f (t) are time functions 

whose spectra differ from zero only when  | u> |  < irB,   where  B  is the signal bandwidth.    The two 

functions f (t) and f (t) may be represented as 

sin7rB(t - t, ) 
fc(t) =   L, fck     7rB(t - tk) 

sin 7rB(t — t, ) 
fs(t) =   L> f

sk     7rB(t - t, ) 

where tR =  g      , (2) 

and where f ,   and f ,   are the values of f (t) and of f (t),   respectively,  at the times t = t. .    At 
CK SK C S K 

each sampling point it is therefore possible to specify two quantities,  and hence 2B quantities 

per unit time.    For a message of approximate duration  T,   the number of quantities required 

to specify the complete signal is therefore 2TB.    It should be noted that the particular sampling 

functions used in (2) ensure that the sampling functions in the sums are completely independent 

at the sampling points. 

A similar situation exists when we consider sampling in the frequency domain.   A strict lim- 

itation of the signal in time leads to a sampling theorem for the frequency domain.     In this case 

it turns out to be possible to specify  2T independent quantities  (i.e.,   amplitude and phase) per 

unit bandwidth and therefore 2TB quantities in all. 

When we turn to a quantum approach to the signal description, we have to make sure that we 

are actually dealing with observable quantities.     In the classical theory it is possible to devise 

"thought experiments" whereby the sampled values actually appear as observables.    This,   how- 

ever,    requires measuring quantities  with infinitesimal energy,   and the  sampling procedure 

therefore does not appear to be directly applicable in quantum theory.   When making an observa- 

tion in the quantum sense,   there must always be a finite energy  associated with the observed 

quantity.    For this reason we have to replace the sampled values by some sort of average over 

a space or a time interval. 

One way to overcome this difficulty is to interpret the time-bandwidth product in a more lax 

way than is usual in the classical signal theory, and assume that a signal of approximate duration 

T  is represented in the following manner 

7T    ,       2 
sin •= t 

f(t) =  —  2J   (a{ cos ^i t + bf sinajft)       , (3) 

T t       I, 1 

where the increments inoj. are given by (2ir/T). With this particular choice of signal represen- 

tation, we see that the spectra of the various elementary signals corresponding to different val- 

ues of I no longer overlap,  and we have therefore been able to produce a set of functions which, 



even when observed in a quantum sense,  do not have to interfere.    The time function represented 

by (3) is sharply defined in the frequency domain where the upper and the lower frequency limits 

are 

t 1 
max      T     2      2 

f    .    =  ^ (I, - h       . (4) 
min      T     1      2 

Introducing the signal bandwidth through B = f — f    .   ,   we find that the number of independent & & b max       min ^ 
elementary signals which can be associated with the total signal is 

N = B •  T 

Again each of the elementary signals must be specified by two quantities,   such as a. and b. in 

(3),  and the number of degrees of freedom of the total signal is the same as in the conventional 

theory.    In the type of representation in (3),  however,  the fraction of the power which lies outside 

of the nominal time-bandwidth region BT is given by 

'•H' 
.   2 

Sln
z 

X dx = 0.097       . (5) 
x 

In the conventional sampling procedure,  this factor would be reduced by another factor of the 

order of l/BT.    The definition of the signal in the way suggested by (3) therefore makes elemen- 

tary signals ill-defined in the time domain.    A slight improvement appears to be possible by using 

instead of the sinx/x modulation a prolate spheroidal wave function.       This refinement will make 

very little difference in our conclusions and we shall avoid introducing this complication. 

One of several alternative ways of defining noninteracting elementary signals is to make 

them sharply defined in time and then construct a composite signal from a sequence of elementary 

signals.    In this case the frequency definition would be poor and the energy associated with ele- 

mentary signals would be uncertain.    In this report we shall find (3) most convenient as a de- 

scription of an elementary signal. 

Having defined a set of elementary signals,  we must next inquire about their description in 

the language of quantum theory.    In particular we must ask about the accuracy with which the a. 

and the b. can be specified,   and whether they can be specified independently.    For this purpose 

we imagine that the time function (3) has excited a single spatial mode which, for simplicity, we 

take to be a plane wave mode with direction of propagation along the z-axis.    Because of our 

choice of elementary signals,  all quantities such as Lagrangians and Hamiltonians can be ex- 

pressed as sums over contributions from the elementary signals.    From now on,  therefore,  we 

omit the subscripts   i,   and use a)    for the center frequency of the particular elementary signal 

under consideration.    The detailed quantization of elementary signals is carried out in Appen- 

dix A.    An elementary signal is assumed to be modulated onto a plane wave traveling in the 

z-direction and polarized along the x-axis.    In Appendix A the wave is represented by the x- 

component of the vector potential in the following form 

Bin-sr(T ~t) , , 
Ax(z,t) =      ^ \ L    [a cosuo(f -t) -/} sinu0(| - t) ]      . (6) 

T (c ~ t] 



In spite of the fact that this is a nonharmonic signal,   it is shown that the two amplitude factors 

a  and /3,   which contain all the information about an elementary signal,   can be combined into 
complex amplitudes   a  and a* which obey the same commutation relations as the complex ampli- 

tudes of an harmonic oscillator.    Provided the detection of the elementary signals is carried out 
the right way,  it is shown that  a   and (3   can be specified only to an accuracy corresponding to 

one quantum of energy fico   . 
We have therefore shown that a signal of approximate time-bandwidth product BT = N can 

be specified by N  degrees of freedom,   each with a minimum energy difference corresponding to 

one quantum -KCJ   .   This conclusion appears to be in complete agreement with the assumption made 
7 ° by Gordon    concerning the number of states which can be associated with a signal. 

III.   SPATIAL MODES AND PARTITION EFFECTS 

In the previous section we discussed the quantization of a signal impressed on a single plane 
wave mode.    In practice it is not possible to excite plane wave modes from an antenna of finite 
extent,   and we must examine the nature of the spatial modes which can be excited by an aperture 
of finite extent. 

Again we imagine that the fields are described by a vector potential satisfying the wave 
equation: 

2 
(7) ('!-?yK»=' 

and 

VA = 0 (8) 

It follows that a complete specification of the transverse components of A and their normal de- 
rivatives over an aperture will completely specify the fields in front of the aperture plane. For 
simplicity,   we take the transmitting aperture to be in the xy-plane and to be rectangular (Fig. 2). 

AREA a  "L L 

Fig. 2.    Transmitting aperture over which fields are prescribed. 



We now imagine that the transverse components of the vector potential are specified over 

the aperture,   and that the time variation of the components is in agreement with that of one of 

the elementary signals discussed in the previous section.    A general representation of the  x 

and the  y components of the vector potential in the half-space z > 0 is 

121 rV(Ak/2)    cc A       (r, t) = (T-)     TTT   \ dk \ \   dk   dk   (A      (k  k  k) exp[i(kr - kct) ] x, yv V
2TT'     Ak Jk   _(Ak/2) JJ        x      yl    x,yv   x  y H l 

o '    ' 

+ A*    (k  k k) exp[-i(kr - kct)]}       . (9) x,y    x  y ^ ' '' 

The field on the aperture is found from this by putting z = 0. 

A      (x, y, O, t) = 2J- \    ° dk{B      (x,y,k) exp[-ikct] 
X,y K Jk   -(Ak/2) X,y 

+ B*    (x, y,k) exp[+ikct]}       , (10) 

where the quantities A      (k  k k) are related to the B      (x, y, k) through the relations x,y    x y x,y    • •>•   ' & 

A      (k  k  k) =        \\ dxdy B      (x, y, k) exp [-i(xk    + yk  ) ]       . (11) 
x,y    x y JJ -     x,y*   ,J' Pl x     J  y'' 

aperture 

Because the fields over the transmitting aperture contain no structure larger than I    in the x- 

direction and I   in the y-direction,   it follows that A      (k k k) is completely specified provided y x,y    x  y r J    e r 
it is given at certain particular values of k   and k    given by x y 

k    = ^       r = 0,±1,±2, ... x        I x 

k    =   ^P-       s = 0,±1,±2  y I 

Q 
In analogy with the sampling theorem of Shannon    or the aperture synthesis procedure introduced 

15 
by Woodward and Lawson,      we therefore may put 

sin2 KK--N -HCv-H (-. n\ 6    x\ x       »       J ^y\yt 

where we have omitted k in the argument of A       because the field amplitudes are independent 

of frequency within the frequency range of an elementary signal.    Only an enumerably infinite 

set of modes can therefore be excited by an aperture of limited extent.    Of these,   the modes 

corresponding to 

(Tf)Mt5)2>kZ 

will, however, not be able to propagate away from the aperture. They correspond to evanescent 

waves. This leaves only a finite number of possible propagating modes. These will be the only 

ones of interest when it comes to discussion of information transfer between distant apertures. 



It is instructive to determine the number of independent spatial modes corresponding to 

traveling waves which can be excited by the transmitting aperture.    The solid angle occupied by 

each spatial mode is given by 

2 
Aft        ,    =   ^        , (14) 

mode     t I k2cos9 x y o r,s 

where 0        is the angle between k       and the z-direction.    The number of propagating modes per 

solid angle is the inverse of this,  and the total number of propagating modes therefore becomes 

N - C d<">       -    *Z  .   k
2 ii5\ 

J . AJ2        , 4TT o       ' (lb) 

^semi-space        mode 

which is seen to be one-quarter of the maximum gain of the aperture.    Each of these spatial modes 

can of course support two orthogonal polarizations of the waves (circular,  linear,  or other types). 
On the transmitting end we can therefore excite only a limited number of spatial modes, each 

in two different orthogonal polarizations.    The elementary signals impressed on the various spa- 
tial modes can be specified in exactly the same manner as was done for the plane waves of the 

previous section.    The artificial limiting of the cross section of the plane wave is now replaced 
by a natural limitation caused by the finite lateral extent of each of the spatial modes. 

Next we must discuss the coupling of the receiving aperture into the fields excited by the 

transmitting antenna.    We first carry through a discussion along completely classical lines be- 
fore we go on to a quantum description of the phenomena. 

Denote the Poynting vector set up by a particular transmitting mode specified by (r, s, \i.) by 
S      .    The parameter   \x signifies the state of polarization,   and the parameters r, s the direction. r,s 
The maximum power which can be absorbed by the receiving antenna becomes 

P(r,s)=       il        dx'dy'n-   S^g^x'.y')       . (16) 
aperture 

The integration extends over the whole of the receiving aperture;   n is the normal to the aperture 

surface and g ^ (x1, y')  is a weight factor relating to polarization and to the particular type of an- 

tenna employed.    The total power put into the (r, s, n) mode by the transmitter (index t) is of the 

form 

pM  . = Cs,(tx).diT    . d7) (r,s)t     J     (r,s) 

We can now introduce the ratio of aperture power to total power for each spatial mode (r, s, (i.) 

rs 

This number of course is always less than or equal to unity.    When one or more of the r's is 

equal to unity,  power may be transferred from the transmitting to the receiving aperture without 

loss.    This is essentially what is implied in most earlier work on quantum communication. 
In order to see when such close coupling between transmitting and receiving apertures is 

possible, we may argue as follows: The opening angle corresponding to each spatial mode is 

given approximately by 



x2 
Afl  =   - 3-       , (19) a. cos 9, 

where  X  is the wavelength,   a. the transmitting aperture area and 9. the angle between the beam 

direction and the normal to the aperture.    The area of the beam at the receiver,  located a dis- 

tance R away from the transmitter,  becomes 

a, = An •  R2      . (20) beam 

If this area is smaller than the projected area of the receiving aperture,   i.e.,   a    cos 9   ,  then a 
complete power transfer can take place.    The condition for this is seen to be 

/ a.a    cos 9    cos 9 
R<    /-L^ 2^ 1      • (21) 

2 ° As an illustration,   consider the following numerical example:   a    = a. = 1cm  ,  X = 6000 A.   Sub- 

stitution into the inequality shows that R is less than 166 m.    In any practical communication 

circuit,  therefore,  we must be prepared to use only one of the possible spatial modes which can 
be excited at the transmitter,  and we must also take full account of radiative attenuation effects 

in the quantum description of the circuit.    As we shall see,  this leads us to a partition noise ef- 

fect which will cause a serious decrease in information capacity of a communication channel when 

the received power is extremely low.    Such partition effects have been described previously by 
5 4 Haus    and it is implicit in some work by Heffner. 

Let us next try to study the relation between the transmitted and the received signal in terms 

of the ideas developed above.    We consider only one particular transmitted mode,  namely that 
corresponding to constant phase across the aperture,   only one of the two possible polarizations, 

and one of the elementary signals corresponding to the center frequency co   . 

The fields over a distant plane z = R in front of the transmitting antenna,  and R  denotes a 
point on this plane.    The fields over this reference plane,  or receiving aperture plane,   are 

121 rV(Ak/2)    cc A(R't) = <2V)     AkJk_(Ak/2)   
dk)\  dkxdkyFt(kxky){Btexp[i(kR-kct)] 

+ B* exp[-i(kR - kct)]} = Btgt(R,t) + B*g*(R,t)       . (22) 

Here B   is the mode amplitude;   see Eqs. (11) and (12).    F (k k ) is defined by 

1 1 sin TT k  I     sin rk  I 

1       X    y hi ykl 2     x x 2     y y 

and the functions g.(R, t) and g*(R,t) are just shorthand for the integrals in (22). Now the fields 

in all space can also be derived from a knowledge of the fields over the receiving aperture plane 

z = R. 
However,  we divide the receiving aperture plane into two parts:  one part coinciding with the 

receiving aperture,  and the other part consisting of the rest of the aperture plane (Fig. 3).    The 

new description of the fields therefore contains two terms,  one corresponding to either of the two 
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Fig. 3.    Transmitting and receiving apertures with receiving aperture plane. 

parts of the receiving aperture plane.    In the new representation with two terms,   we therefore 
obtain expressions of the form 

Ar(?'t) = {h)Z  A^      dkIldkxdky{Fr(kxV Br exp[-ikRo]exp[i(kr-kct)] 

+ F*(k k ) B* exp[ikRo] exp[-i(kr-kct)]} (24) 

which corresponds to the receiving aperture mode,   and a similar expression for A.(r, t) corre- 

sponding to the mode derived from the rest of the receiving aperture plane.    We are now in the 

position to quantize the system and we interpret the parameters B ,   B    and B. [corresponding 

to  Aj(r, t) ] as operators;  and,  furthermore,  introduce creation and annihilation operators as in 

Appendix A.    The following equations between the various operators are obtained: 

Prar + P<a| 

p * o *   +  p * Q * 
r    r t    t (25) 

The parameters P    and P. can be derived directly from the above equations (Appendix B).    They 
can,  however,  also be derived from physical arguments as we shall show shortly.    In what fol- 
lows,   we refer to the transmitted signal system as the t-system,   the system derived from the 

receiving aperture field distribution as the r-system,   and the system representing the lost radi- 
ation as the f-system. 

The t-system is specified by means of a set of eigenvectors of the operator a*a ,   and the 

r- and f-systems by means of eigenvectors of the operators a*a   and a*a.,   respectively.    Be- 
cause the r- and ^-systems are independent,  a state of the t-system can quite generally be ex- 
pressed as follows 

|N>t-EEc^l->rl»>l (26) 



(N) where the parameters C are to be determined.   It is well known that the various state vectors ^ n,m 
can be expressed by means of the state vector | 0>   through the relation 

a*N 
|N>    = -*—   |0> , (27) 

1      \/N! : 

where a.* is the creation operator of the system,  here the t-system.    If the same expansion is 

used for the r- and the ^-systems as well,  the following relation is obtained 

... N ,,f n   * m 
|N>   = ^—  |0>    =   Y Y C(N)   ^—<—  |0>     |0>.       . (28) 
1      t       N/NT *       U U     n'm    VTrTnTl r l 

Because the empty state of the t-system must correspond to both r- and f-systems being in the 

ground state (no additive noise),   we conclude that 

|0>t =  |0>r  |0>£        . (29) 

This means that the following identity must be fulfilled by the operators 

1 L L      n'm ^rTrnT     r      l 

n   m 

A similar relation between the operators can,  however,  be derived directly from the latter of 
Eq. (25). 

a*N -   V   V    Nl     p,,;np,;,ni a*n
a*m (31) at L   L n!m!   *>   vi       °m,N-n ar   a£ ' (J1) 

n   m 

Because the two operator equations must be identical,  we conclude that 

C(N)  =    /_N^  P*np*ma } 
n,m      "Jnlm!      r      £ m,N-n 

We notice that m + n = N,  which expresses the energy conservation of the system.    Hence,   the 

expansion of (26) simplifies to 

N 

l*V    I   4(SrPfPrN-n|->rlN-n>,       - 03) 
n=0 

From the normalization condition,   it is obvious that 

l = (|Pr|
2+  |P£|

2)N       , 

hence, 

Pr|
2+  |Pf|

2=  1       . (34) 

The transition probabilities,   i.e.,   the probabilities of reception of state  | n>    |N — n>. when the 

transmitted signal is in state | N> ,   is given by the square of the projection of |n>    [N — n>. upon 

|N>t, 

p(n|N)=   |r<n|f<N-n|N>t|
2 = (N)  | Pr | 2n| Pf | <N"n> 2      . (35) 

10 



The significance of | P   |     is seen by considering the transition 

p(l|l) =  |Pr|
2 = p      . (36) 

Hence,   v  must  be interpreted as the probability of receiving one photon when one was   sent. 

This,  of course,   is equal to the transmission loss of the propagation circuit,  or the ratio of re- 

ceived to transmitted power.    Because of (34),  we then have for the transition probability of the 

propagation circuit 

p(n|N),(^),n(l-,)N-n      , (37) 

which can also be derived from purely intuitive arguments.     As is seen from Appendix B,  the 

above interpretation of the P    and P. is completely borne out by the more laborious calculations 

presented there.    The transition probability p(n|N) is seen to have the appearance of containing 

partition effects.    The fact that a distinct transmitted signal might be received as a number of 
different signals means that the partition effects make the propagation circuit noisy even in the 

absence of additive noise. 

IV.   PROPAGATION CIRCUIT AS A COMMUNICATION CHANNEL 

In the previous two sections we have discussed the breaking up of a signal into independent 
elementary signals, and we have established a transition probability for elementary signals.   The 

complete transition probability is identical to the product of the elementary signal probabilities. 
In what follows,   the quality of the propagation circuit will be evaluated in terms of the mutual in- 

formation between transmitted and received signals.    In the optimization problem it will be as- 

sumed that there is an average power constraint on the total signal.   If the mutual information of 
elementary signals does not increase more rapidly than linearly with the signal energy,   then the 
average energy should be distributed evenly among the elementary signals (assuming the relative 

bandwidth of the total signal to be small).   It is therefore sufficient to solve the optimization prob- 

lem for a single elementary signal and afterwards make sure that the mutual information asso- 

ciated with an elementary signal does not increase more strongly than linearly with the elemen- 

tary signal mean energy.     We begin by defining the channel matrix for the elementary signal 
channel first without additive noise,  then with noise.    We go on to optimize the mutual informa- 
tion under average power constraint both with and without additive noise,   and we show that the 

results become identical to those of Gordon    for the case of v — 1,  i.e.,  when there is no parti- 
tion noise.    It is then shown that the results are improper whenever v < 1 because the familiar 

method with Lagrange's multipliers employed in the general analysis does not ensure that all 

probabilities are positive.    In order to understand what happens,   we construct certain simple 
channels and discuss them in detail.    From this particular discussion,   it is possible to general- 

ize the  results and draw conclusions about the channel capacity in the case of extremely weak 

received signals. 

1 
t This is also of the same form as the result derived by Shimoda, et a].,    for attenuation through absorption 
processes. 
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A.    Definition of Elementary Signal Channel Matrix 

As derived in the previous section,  the transition probability between signal state,  N,   at 

the transmitter and signal state,   n,   at the receiver is 

p(n|N)=(N),n(l-,)N-n (38) 

i.e.,  a binomial or Bernoulli distribution.    We note here that the number of received quanta is 

always less than or equal to the number transmitted.    If the transition probability is expressed 

in matrix form,   therefore,   the matrix becomes triangular.    The assumption that the transmitted 

signal can be specified to an exact number of quanta might seem rather unrealistic.    In practice, 

however,  when partition effects are important,  the conditional probability (38) is rather insensi- 

tive to changes in N,   so it is sufficient to specify N  approximately.    None of the conclusions in 

this paper will be affected by a "diffuse" specification of the transmitted signal. 

We now turn to the question of additive noise in the path.    The existence of additive noise 

will no longer guarantee that fewer quanta arrive than were transmitted and the transition matrix 

becomes less simple.    If the noise is of the equilibrium type associated with the temperature,   T, 

then matters are rather straightforward.    The probability of j quanta being present in a mode 

becomes 

P0(j) = (l-e"   )exp[-j6]       with 9 = ^r (39) 

and where  K  is Boltzmann's constant.    When noise is included,  the transition probability becomes 

n 

p'(n|N) =    YJ    P(Z|N) PQ(n-z) 

z = 0 

(40) 

For later purposes,  we shall express this in terms of a matrix product.    The noiseless ma- 

trix is then termed A,   with elements a...    The noise matrix is termed B,   with elements b... 

For the noiseless case,  p(j | i) = a.., 

p(0|0) 

p(0|l) p(l| 1) 

0. . . 

0. 

p(0|2)        p(l|2)        p(2|2)        0. 

If,  in the noise case,  the same meaning is to be attached to the various elements of the resultant 

transition matrix A',   we must arrange the noise terms as follows: 

t Note that in all our matrices we count lines and columns not from unity, as usual, but from zero. 
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po(0)        po(l)        po(2). 

0 Po(0)        Po(1)- 

0 Po(0). 

and 

A' = AB 

In passing,  we observe that the inverse matrix can be expressed in terms of the inverse of the 

elementary matrices 

(A')       = B   aA   a 

B.    Optimization with Lagrange Multipliers 

In this section we first carry out an optimization of the mutual information as defined by 
10 i 

Fano      for a general transition probability p(n|N) which may or may not include noise.    The cal- 

culation is carried out with an average power constraint at the transmitting aperture.    In this 

situation our choice lies in the selection of a proper distribution function for the occupation num- 

ber,   N,   at the transmitter,  pt(N),   or a distribution function p (n) at the receiving end.    After the 

general solution to this problem has been found,   we go on to evaluate the noiseless capacity and 

the capacity with noise present (formally only.'). 

The mutual information for an elementary signal is defined as 

I(N;n) = H(n) -H(n|N) 

YJ   Pr(n) logpr(n) +    Yi      Z   Pt(N) p(n|N) logp(n|N) 

n=0 N=0  n=0 

OO OO 00 

-  Z     Z    Pt(N) p(n|N) log   YJ    Pt(N)p(n|N) 

n=0 N=0 N=0 

OO OO 

+   Z     Z    Pt
(N) P(nlN) l°gp(n|N) 

n=0  N=0 

(41) 

This is to be maximized subject to the two constraints on the unknown distribution function p.(N) 

00 

2J    pt(N) = 1 normalizatic tion 

N=0 

2J     Np.(N) = N      average power constraint 

N = 0 

13 



Using the familiar methods of Lagrange,  with the constraints included after multiplication by 

indeterminate factors,  we have to form the expression 

I(N;n) -a'   £ pt(N) - 0   £ pt(N) 

N N 
9pt(N) 

and equate it to zero.    This leads us to the equations 

Y    (p(n|N) [1 + logpr(n) -logp(n|N)]} + a' +/3 •  N = 0 

n=0 

(42) 

Both sides of the equation are now multiplied by p.(N) and a summation is carried out over N. 

This gives 

OO OO 

-   Y,    Pr(n> loSPr(n) +    Y      E   Pt
(N) P<nlN) logp(n|N) = 1 + a' + (JN = a + 0N 

n=0 N=0  n=0 

But this is,  at least formally, the maximum mutual information 

(43) 

(44) 

The real problem now lies in the determination of the Lagrange multipliers   a   and /3.    To do this, 

we have to evaluate the distribution function p  (n) or p,(N) and use the constraint equations.    To 

carry out this,   we proceed as follows.    Rearranging Eq. (42),   we have 

Y    p(n|N) logp  (n) =    Y    p(n|N) [logp(n|N) -a -0]      , (45) 

n=0 n=0 

since 

Y    P(«|N) =  1       • 
n=0 

We therefore have an infinite set of linear equations in the unknowns x = logp (n), one equation 

for each value of N. Regarding x as the n component of a column vector, and also defining a 

column vector by the components 

d     =    Y    p(n|N) [logp(n|N) -a -0N]      , 

n=0 

we may write the set of equations as follows 

A'x = d 

(46) 

(47) 

where A' is the matrix form of the transition probability introduced previously.    The formal so- 

lution to the problem therefore is 

x = A'   'd      or      x    =    T     (A'"1) 
n       u    ' n, 

N=0 
NdN (48) 
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For the probability distribution at the receiving end we therefore have 

Pr(n) = exp I    <A'"VNdN 
LN = 0 

(49) 

There are  still the two unknowns  a  and [j  to be determined,   and two equations  are needed. 

These are found from the constraint equations in a slightly modified form,  viz., 

E    Pr<n> = 1      - E    nPr(n> = n (50) 

n=0 n=0 

In the noiseless case,  we are first of all faced with the problem of inverting the lower tri- 

angular infinite matrix 

(1-K) 

(l-y) 2^(1 - K) 

(1-K)
3 3K(1-K)

2 3K  (1 - K) 

IA        \m ,.        .m-1 /m\    2..        .m-2 (1 — v) m(l — K) 
/m\    2,.        ,i 
(2),  (1-K) 

To avoid going into detail,  we just state the result.    The general term is of the form 

(A"1)i,j=(j)(1"")i*i,"1)i"i''"i        [note that (j) = 0 for j>i]      , (51) 

or explicitly 

(1-K) v U' 
-1 

+(1-K)
2
K"

2
        -2(1-K)K"

2
        +K~

2 

IS 



INI 

With these expressions,  we obtain 

OO 00 

xn=logpr(n)=    £    (A_1)n)N   I   p(i|N) [logp(i|N)-a-/JI 

N = 0 i=0 

= -a -± OS -vlogv-d-v) log(l-y)] +  YJ  E(A_1)njNP(i|N) log(^)      . (52) 

B    i 

7 
For the particular case of v - 1,  this reduces to a result identical to that of Gordon 

pr(n) = exp[-a ~nj3]      . (53) 

Substitution into (50) gives 

a = log (1 + n) 

0  = log(l + h) -logh      , (54) 

and the elementary signal entropy becomes 

CM = (1 + h) log(l + h) -n logn      . (55) 

This can be recognized as  the mode entropy of a system of particles obeying Bose-Einstein 

statistics. 

Before discussing the case of v < 1 in detail,  we also write down the formal solutions for the 

noisy case and compare the capacity for the case v = 1 with previous results.    For equilibrium 

noise,  the matrix B becomes,   in agreement with (39), 

B     =     (l-e"°) 

-O -29 -36 1       e e e 

-29 

(56) 

_ A 

This has to be inverted in order to give the inverse matrix (A'     ) required for the solution for 
p (n).    The inverse of this noise matrix is of the peculiarly simple form 

B 

1       -e 

0 1 

0 0 -e (57) 
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-1 -1 
which can be checked by forming BB     .     Instead of the (A    ) used above,   we must now 

substitute 

(A'"V £ (B"Vj (A~\m = 7^  [<AA,m - •'etA"\+i.m]      • <58> 
j 

The transition probabilities must also be modified in accordance with Eq. (40) and now become 

(59) p(n|N) = e-ne    I    eJG(^),J(l-,)N-J -(l-e"9)       . 

1=0 

This can be checked for two particular cases.    First,  let the noise disappear,   i.e.,  T -» 0 and 

hence &-*<*>.    Only one term survives in the above sum,   namely that for which j = n,  and we 

have 

11m   p(n|N) = (N)„n(l-^N-n 

T-0 
(60) 

which is the noiseless case.    The other particular case is that for which v -* 1,   i.e.,  the intrin- 

sic lack of determinism of the channel in the absence of noise is removed,  and we obtain 

exp [- (n - N) 9 ] (1 - e  6)      n^N 

0 n < N 

In this case the noiseless channel matrix.   A,   diagonalizes and we have,  instead of (58), 

lim p(n|N) 
v-~ 1 

(A1-1) = (B"1) 
n,m n,m 

With these simplifications,   we have 

£  lA'"Vm  Z P(i|m) logp(i|m) 

^   (A'_1)nm  (1-e-9)     ]]     exp[-(i-m)e] [log(l-e"e) -(i-m)9] 

m i=m 

-  TJ  (B"\,m [(1 + L) log(1 + E) -LlogL) 

(61) 

(62) 

= - [(1 + L) log(l + L) - L logL] = -r 

where   L  is the mean noise occupation number defined by 

-e 
L -e 1 - e 

The distribution at the receiver hence becomes 

p (n) = exp [-a + L/3 -/3n - r] 

This distribution is substituted into the two constraint equations 

(63) 

(64) 

(65) 
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Y pr(n) = 1      and      YJ 
nPr<n> = L + S      , (66) 

n n 

where  S is the mean signal occupation number.    The results for a   and /3   are 

a = (1 + E) log (1 + L + S) - L log (L + S) - r 

P = log(l + E + S) - log(E + S)      , (67) 

and the capacity becomes 

CM = a + S0 = [(1 + L + S) log (1 + L + S) - (L + S) log (L + S) ] 

-[(1 + L) log(l + L)-LlogL]      , (68) 

which is the difference of the entropy of signal plus noise minus the entropy of the noise alone, 

which was to be expected,  and which is in agreement with Gordon's result. 

It should be noted that the function entering the expressions for the capacity in (68) and in 

(55),  namely, 

f(x) = (1 + x) log (1 + x) - x log x 

has a negative second derivative anywhere as long as x >0.    This means that the elementary 

signal capacity increases less rapidly than linearly with energy,  and hence the total signal en- 

ergy should be distributed on the average evenly among the various elementary signals. 

C.    Mutual Information When Partition Effects Are Present 

In order to evaluate the capacity in agreement with the previous section, the parameters 

a  and 0  have to be solved from the set of equations 

Z   Pr(n) = i     , 
n=0 

Y,    npr(n) = E + S      , (69) 
n=0 

with 

where 

pr(n) = exp[-a - £ 0 + Gn(L, u)}       , (70) 

OO OO 

Gn(L,y)=     Y     E   (A,'1)nmpU|m)logp(i|m)      , (71) 
m=0  i=0 

with 

1 + L    M + L7      .   n    v    L     '        3 

J=° 

(72) 
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and with 

(A'"1) = (1 + L) (A   *) - L(A_1)   J_. y n,m v        'n,m v        'n+l,m (73) 

where 

(A'1) =(n)(l-,)n-m(-l)n-m^n 

n,m     \m/ '      ' 
(74) 

It was at first thought that these equations could be solved by fixing the parameters  L and 

v,   evaluating G  (L, v) on an electronic computer,   and then proceeding to solve the equations for 

/3   and  a  numerically.    As an illustration of the difficulties then encountered,  Table I presents 

one of the resulting G    sequences obtained. 

TABLE 1 

NUMERICAL EVALUATION OF G (L» 
n 

n Gn(L» n Gn(L» 

0 

1 

2 

3 

0 

-3.2508297— 

5.9749897— 

-49.996700  

4 

5 

6 

7 

335.2726  

-2524.671  

1QST7  A  

l<vlRl?  

L = 0 (no noise),  v= 1/10. 

It is immediately obvious that such a sequence when substituted into p  (n) in Eq. (70) does 

not correspond to a valid physical situation,  the main reason being that a distinction occurs be- 

tween the probability of reception of even and odd numbers of quanta.    These difficulties arose 

at all the combinations of parameters chosen. 

Although we were not able to prove that the following explanation is correct,   it is thought 

that the subsequent discussion and considerations of certain models make this explanation very 

plausible.    In the calculations to evaluate the maximum mutual information presented in Sec. IV-B 

there is no constraint on the transmitter probabilities p.(N) to ensure that they are all positive. 

What is believed to happen in the case considered above is that the occurrence of certain negative 

transmitting probabilities (input probabilities) explains the "unphysical" behavior of the receiving 

probabilities p  (n) (output probabilities).    This explanation will become more plausible after our 

presentation of certain simplified models below.    The described difficulty is,  by the way,  not un- 
Q 

known in information theory and has been described in detail by Muroga.     To the knowledge of 

the author,  no satisfactory method has yet been developed in information theory to handle the sit- 
10 

uation.    The trial-and-error method suggested by Muroga and by Fano      is clearly completely 

impracticable in our case where extremely large numbers of possible signals are available at the 

transmitter.    It is possible that the extra constraints required to keep p (N) ^ 0 could be ensured 
18 

by some linear programming technique.       Unfortunately,   we have not been able to develop an 

adequate method here.    In the next section we therefore consider a simple model where negative 
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input probabilities do occur,   but where the system is so simple that we can follow in detail what 

happens. 

D.    Ternary Model Channel 

As the simplest possible example,   consider the case of the elementary signals only being 

allowed to assume the signal states N = 0,   1 and 2,  and let there be no additive noise.    As a 

channel matrix,  we use 

1 

1 - v 

(i-v)Z        Zv{\-v)        vZ 

(75) 

which is seen to correspond to the upper-left corner of the infinite channel matrix  A of Sec. IV-A. 

We can use the same procedure as there to evaluate the input and output probabilities.    Because 

there is no average power constraint in our simplified model,   Eq. (44) reduces to 

C = a       , (76) 

and Eq. (46) for the column vector  d  in this case becomes 

-C 

-C -H, 

-C       -2H1        +2P(1 - v) log2 

(77) 

with the following definition for H . 

H, • v log v — (1 — v) log (1 — p) (78) 

If we note that the inverse of our present particular channel matrix corresponds to the upper 

three by three corners of the general inverted channel matrix, we obtain immediately for the 

output probabilities from Eq. (49) 

Pr(0) 

Pr(D 

LPr(2) 

exp[-C] 

exp[-C -(l/v) Ht] 

exp{-C - (Z/v) H1 + 2 [(1 - v)/v) log 2} 

(79) 

We can immediately see that these results are not valid for large transmission losses,   i.e., 

v —• 0,  because for small  v it turns out that 

pr(2)»pr(l)       , 

and this does not appear to be physically possible,   whatever the input probability pt(N).    The 

channel capacity is found directly from the normalization condition on p    to be 
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C = log{l + exp[-£ H4] + exp[-^ H1 + 2 1 - v log 2]} (80) 

For the transmitted probabilities we obtain 

pt(0) = e"C{d —-  exp[-- H,] + ( — v \2 .    2 -)    exp[--H^ + 2 

Pt(D 
-C 

{7 exp[-- H 2^  (1 p) exp I — H. + 2 i'     1 

log 2]}      , 

^ ^2)} 

Pt(2) {^  exp[-J H1 + 2  i^  log 2] (81) 

It turns out that the limiting values for these probabilities when v -* 0 are 

lim p,(0) = +°° 

lim p (2) = +« 
lim pt(l) 

Upon closer examination of p.(l),   it is found that this probability goes negative when 

v = v    » 0.62 

The p ,  p. and C are all plotted against  v in Figs. 4 and 5.    For this model circuit,  we there- 
fore experience a breakdown of the validity of the general capacity formula as soon as   v  becomes 
less than a v    « 0.62. c 

When one of the input probabilities goes negative,  as just occurred,  Muroga proves that the 
procedure to be followed consists of putting one of the input probabilities equal to zero and eval- 
uating the capacity again.    If solutions can be obtained with one of several of the input probabili- 

ties equal to zero,  the capacity is the largest among these solutions.    If no solution is found, one 

further input probability must be equated to zero and the procedure repeated.    It is obvious that 

such a procedure cannot be used in our general case where we might begin by having enormously 
large quantum numbers at the transmitter. 

In the elimination process just described there will be more output signals than input signals, 
and it becomes necessary to introduce constraints on the output signals in order to be able to get 

Q 

definite relations between output and input probabilities.    Muroga    gives a general procedure to 
be followed in order to introduce the constraints among the output probabilities.    Because of the 
simplicity of the present channel matrix,   we can argue that when the ternary channel breaks 

down,  we obviously have to omit the input (transmitted) symbol N = 1 and the channel matrix re- 
duces to 

0 

(1 2i/(l - v) 
(82) 

This channel is shown in Fig. 6.    By simple inspection it is obvious that the two output symbols, 

n = 1 and n = 2,  can be combined into one symbol without reducing our capabilities of inference 

about the transmitted symbols.    The properly reduced channel matrix thus becomes 

(i~v)Z        l-(l-y)2 
(83) 
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A straightforward standard analysis shows that 

C = log ll + exp 

The output probabilities become 

pr(0) = exp[-C] 

logi/(2-„) + 2   [)    _">     log(l-K 
i/(2 - i/) 'II (84) 

p (1) = exp[-C + log 2 + 

pr(2) = exp 

Tzr^ logd-i/)] 

2 
-C + 2llog»> + (1

2_
l,

t,
)"  log(l-K)] (85) 

and for the two non-zero input probabilities,   we obtain 

pt(2) = exp l-C + 2   {\~_V]    log(l - v) 

pt(0) =  1 -pt(2) (86) 

The capacity for this binary scheme is plotted against   v  in Fig. 7, and the different probabilities 

in Fig. 8.    In the binary case,   we do get valid results for all values of  v,   but for v > v    = 0.62 

Fig. 7.   Capacity (natural units) of the binary channel plotted against   v. 
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Fig. 9.   Capacity (natural units) of model channel plotted against   v. 
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Fig. 10.    Signal probabilities required to achieve capacity in model 
channel plotted against   v. 

the ternary encoding scheme gives the greater capacity.    In Fig. 9 we show the maximum channel 
capacity for all values of  v  for the particular channel under consideration.    Figure 10 gives the 

probabilities as a function of  v  for the optimum encoding scheme.    It is reassuring to observe 

that all the curves are continuous through the value where the change between binary and ternary 

systems takes place. 

E.    Capacity for Extreme Transmission Losses When No Additive Noise Is Present 

We now return to the more general case where a very large number of possible levels can 

be used both at the input and at the output of the channel.    For the time being,  we assume that 

there is a peak power constraint at the input,   i.e.,  N < M.    The general solution of the capacity 

problem,  as we have seen,  cannot be solved by any of the methods known to the author.    It is pos- 
sible,  however,  to obtain the capacity in the extreme case when v -* 0. 

The effect of increasing the transmission loss,  i.e.,  decreasing  v,   is to decrease the num- 
ber of input signals that can be used in order to achieve channel capacity.    This process of de- 
crease in the number of input symbols will continue until,   in the extreme case,  only two input 
symbols are present,   namely,   N = 0 and N = M,   or until the channel has become binary.     We 
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therefore conclude that for extreme transmission losses,  the best we can do is to use an on — off 

system.    When this stage has been reached,  the channel matrix assumes the form 

A 

0 0 0 

(1-1/) 
M /M\,, .M-l 

{ 1 ) (1 - v) v 
/M\ ,, .M-2   2 

(M) " 
M 

(87) 

In exactly the same way as in the ternary channel discussed in Sec. IV-D, we can conclude here 

that n = 0 is one of the output symbols and n > 1 is the other one. The channel matrix therefore 

reduces to 

1 

(1 - v) M 1 - (1 - v) M 
(88) 

Putting 

H      = -M(l - ^)M log(l -v)-[i-(i- v)M] logfl -(1 - u)M] 
\] 

(89) 

log 1 + exp 
l-(l-y) M  HM 

,M 
log jl + [1 - (1 - v)    ] exp   —! ^j log(l - v) 

ll — (1 — v) 

For numerical computations it is convenient to introduce the approximations: 

log (1 - v) <* - v 

(90) 

[i-v) 
M -vM 

This means that we replace the binomial transition probabilities with Poisson probabilities, which 

is an extremely good approximation under the particular conditions considered here. The capac- 

ity now simplifies to 

C * log .   ,   ,, -uM. 1 + (1 — e ) exp I'M 
I'M (91) 

,19 This type of channel has previously been considered by R. C. Jones who evaluated information 

transfer for particular input probabilities but did not optimize the information transfer with re- 

spect to the input probabilities as we have done here.    The output probabilities implied in (91) are 

Pr(0) = e"C      , 

p  (n > 0) =  1 - e *r 

and the input probabilities are 

pr(n > 0) 

Pt(M) =   p(n > 0/M) 

pt(0) =  1 -p((M) 

(92) 

1-Pr(0) 
1 - exp [-cM] 

(93) 
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It would be of some interest to evaluate the probabilities of receiving a certain number of 

quanta,   n.    In the Poisson approximation,  this becomes 

,   . ....   (I'M)        -I'M .    , pr(n) = pt(M)      n/     e n ^ 1 (94) 

Figure 11 shows the capacity as a function of I'M for the binary case just considered.    As 

i^M increases,   an asymptotic value is reached corresponding to the binary channel noiseless 

case.    Note that it is only for vM less than some number near unity that the curve shown gives 

the actual peak power limited capacity.    When cM is slightly larger than this (undetermined!) 

number,   it would presumably be advantageous to use a ternary channel.    For even larger I'M the 

number of input symbols used should be even further increased to optimize the capacity.    Unfor- 

tunately,  mathematical difficulties have prevented us from establishing the exact values where 

the transitions between the various types of encoding procedures should take place. 
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Finally,   in order to provide a basis for the comparison of the quantized channel capacity 

with partition noise with the quantized channel capacity without partition noise as considered by 

Gordon,   we have to establish the binary capacity under average power constraints.    Rather than 

going through the whole optimization procedure again,  we use the results of the above peak power 

limited case.    When  M   is the "on-level" of the circuit,   we have already established the capacity 

[see Eq. (91)].    Let us denote this capacity by C(M).    For this particular value of M  we have for 

Pt(M) 

p (M) =   VeXP[rCLM|)]        • (95) *t 1 — exp [— I'M] 

The average power constraint requires that 

M •   pt(M) = M       , (96) 

where  M   is the average number of quanta transmitted in an elementary signal.    Between Eqs. (95) 

and (96),   we can solve for uM = g(vM),   and hence we can find the binary capacity  C  as a function 

of (i^M).    The relation between I'M and vM is shown in Fig. 14.    In Fig. 15 is shown the capacity 

as a function of vM,  that is the mean number of received signal quanta.    For comparison,   we 

also show Gordon's "noiseless" capacity curve [see Eq. (55)].   It is immediately obvious that the 

partition noise reduces the channel capacity very considerably.    In order to put this statement 

on a more quantitative basis,  we inquire about the amount of additive noise which would make the 

no-partition noise capacity curve corresponding to (68) have the same slope at the origin as 

curve  A  in Fig. 15.    The equivalent noise occupation number turns out to be 

N = 0.745       . (97) 

The asymptotic value of the partition noise as v -*• 0 therefore is equivalent to a rather substan- 

tial additive noise. 

V.     CONCLUSIONS 

In this report,  we have discussed several problems arising in the communication by means 

of electromagnetic waves when quantum effects come into play.    In Sec. II the problem of describ- 

ing a signal was discussed.    The familiar idea of sampling as used in the classical theories was 

rejected as a basis for a signal description.    Instead,  the signal was divided into elementary sig- 

nals which can be studied by means of a cross-correlation detection procedure which makes use 

of the total elementary signal energy.    Certain quantum mechanical considerations showed that 

the elementary signals can be specified to an integer number of quanta of energy.    It was also 

shown that a composite signal can be subdivided into approximately BT independent elementary 

signals,   B being the bandwidth and T the duration of the total signal. 

In Sec. Ill a relation between transmitted and received signals was established in agreement 

with quantum theory, and it was shown that a partition noise effect shows up in a proper deriva- 

tion of the signal channel matrix. 

In Sec. IV we first attempted to derive the channel capacity by using the familiar Lagrange 

multiplier optimization scheme.    This procedure was shown to break down because the occur- 

rence of radiative losses requires the number of signal possibilities to be reduced at the trans- 

mitter in order to achieve maximum capacity.    It was furthermore established that under extreme 

transmission losses the optimum encoding procedure tends to become purely binary.    For this 
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extreme case the channel capacity was established with both peak and average power constraints. 

It was shown that partition noise effects become rather important under these extreme conditions 

and an equivalent additive noise power was established. 

It should be emphasized that the results described in this report are not complete because in 

several places general conclusions have been drawn from particular examples.    All the problems 

in connection with the occurrence of negative input probabilities should be put on a firmer basis, 

and the transition regions between the various transmission encoding schemes should be estab- 

lished in order to evaluate the true capacity under more general conditions.   Another point which 

deserves more careful attention is the meaning and nature of the measuring procedure involved 

in establishing the commutation relation for the signal parameters  B and B* (see Appendix A). 

ACKNOWLEDGMENT 

It is a pleasure to acknowledge the benefit of several stimulating 

discussions at an early stage of the work with Mr. Thor Schaug- 

Pettersen, Mr. Tycho Jaeger and Dr. J. Goodman of the Norwe- 

gian Defence Research Establishment. Dr. Goodman is now at 

Stanford University. During the later part of this investigation, 

several colleagues at Lincoln Laboratory, notably Drs. B. Reiffen, 

K. L. Jordan, Jr. andH. A. Haus, have helped clarify various prob- 

lems. Special thanks are due Mrs. Margaret Gottschalk, who 

spent much time trying to solve the equations of Sec. IV-C and 

who finally convinced the author that no solution existed. 

29 



APPENDIX A 

QUANTIZATION OF AN ELEMENTARY PLANE  WAVE SIGNAL 

Starting with an elementary plane wave as in (6),   we obtain for the Lagrangian density of an 

elementary signal 

e     /3A   x2 ,     /9A   x2 

12 13 the variable canonically conjugate to A    is found to be 

p^ =       a A     = €~ -JtT-      • (A-2) x . dA . o    9t 
9(-§r> 

and the Hamiltonian density becomes 

1       2 1       9A2 
H "   2^P    +  2^~ lW] • (A_3) 

o o 

In order to evaluate the total Hamiltonian,   it is convenient to express an elementary signal 

in the following way 

.       pk   +(Ak/2) 
A   (z, t) = -rrr   \    ° {B exp[ik(z -ct)]   + B* exp [-ik(z - ct) ]} dk      , (A-4) 

X AK     J\r     -IAV/?I Jk   -(Ak/2) o 

where 
a) 

k   = -? o        c 

Ak = ~Y 

B = ~ (a + W)      . 

In this representation,   the canonically conjugate variable becomes 

e       nk   +(Ak/2) 
P  (z, t) = -ic -^   \    ° k{B exp[ik(z - ct) ]  -B* exp [-ik(z - ct) ]} dk     .        (A-5) 

x A* Jk  -(Ak/2) 

When computing the total Hamiltonian,  we have to limit the wave in the plane perpendicular to 

the z-axis because of the infinite extent of a plane wave.    Let us imagine a rectangular shape of 

area L  L  .    This somewhat artificial limiting of the wave can be avoided if other types of spatial 
x   y ° 

modes are considered.    The total Hamiltonian is evaluated as follows 

Hdz H = L   L     \ 
x  y J_ 

k  +(Ak/2) 
6 2      o = —c LL \\ dkdk'kk' \  dz {-BB* exp [i(k - k') (z - ct) ] 

Ak '   k   -(Ak/2) 

- B*B exp [-i(k - k') (z - ct)]} 
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7      e 

H = c    —%  LL   2ir .,2     x   y Ak J 

k   +(Ak/2) 

ff 
dkdk'kk'6(k-k')  (BB*  + B*B) 

kQ-(Ak/2) 

V L  L 2      x   y Ak 

= L L   cTe  w 
x   y        o   o 

pk  +(Ak/2) 
2?r(BB*  + B*B) \    ° 

1 + 3 uy 

;k   -(Ak/2) 

(BB*  + B*B) 

dk 

(A-6) 

Next we have to establish a commutation rule for the B and B* from general quantum principles. 

We base the quantization procedure on the following commutator relation (see for instance Ref. 13) 

[Ax(z,t),Px(z',t)] 
L L 

x  y 
6(z -z1) ifi ([ Poisson bracket) (A-7) 

In order to establish the desired commutation relation,  we have to express B and B* in terms 

of A and  P.    This solution for B and B* cannot be made in an arbitrary way.    It turns out that 

the commutator of B and B* depends on the way in which they are related to the field repre- 

sented by A and  P.    If this seems strange,  we must realize that the quantities B and B* only 

acquire a physical meaning provided we devise an experiment to measure the quantities.    When 

we relate B and B* to A and P,  we must regard this as a specification of an experiment for 

their observation.    The dependence of the commutator upon the representation of B and B* there- 

fore means that all experiments designed to evaluate B and B* are not equally good. 

It seems that the best one can do is to evaluate B and B* by the following formulas 

B 

B* 

r 41  Jk  -(Ak/2) 
o ' 

fk   +(Ak/2) n 

4*  Jk   -(Ak/2) J- 

dz 

dz 

A   (z, t) + x 
ik 
, 2 e  ck   g 

A  (z,t) x 
ik 

, 2 e   ck   e 

Px(z,t) 

P (z,t) X 

exp [—ik(z — ct)] 

exp [ik(z — ct)] (A-8) 

where g = {l + ^-(TT/TW  )  }.    It is obvious that these equations can be derived directly from the 

representations (A-4) and (A-5).    The detailed nature of the corresponding observations will not 

be discussed here,   but it appears that the representations for B and B*  correspond to a cross- 

correlation experiment where the cross-correlative waveform is of exactly the same nature as 

the signal waveform.    For the commutator of B and B* we obtain 

[B, B*] ^^dkdk'dzdz'(-7J-I-W[Ax(z,t).Px(z.,t)] 

v       o     oe ' 

+ k' [Ax(z',t),Px(z,t)]} exp[ik'(z' -ct) -ik(z -ct)] 

 3 ~    \ \ \ \  dzdkdk'dz' [kifi6(z -z1) + k'i-R6(z' - z) ] 
16* e   ck^gL  L    JJJJ 

o    o      x   y 

x exp [ik'(z' - ct) - ik(z - ct)] 

}2 



[B, B*l  =  % 5-  \ \ \ dkdk'(k + k') dz exp[i(k' - k) (z -ct)] 
L L  167^6  ck g JJJ 

x   y o       6 

•^—r re dkdk'(k + k-) 6<k- - k> =   * T 
fi    .      (A-9) 

87T6    CkZg   JJ LXLVCT   2eoa'og L  L  87re   ck  g ^ x   y        "  o   oe 

x   y      o 

To simplify even further,  we put V = L  L  cT which equals the volume occupied by the signal, x y 
and obtain 

/ 2e  a;   g 
a -      V • —^ B 

2e  a;  g 
a* = N/V- —^p_ B*    . (A-10) 

Substituting these new operators into (A-6),  we obtain the familiar expression for the elementary 

signal Hamiltonian 

H = fio;   j (aa* + a*a) = -Ko)   (a*a + y)      . (A-ll) 

14 It is shown in many standard texts on quantum mechanics      that a convenient set of basis vectors 

for the description of such a system is formed by the eigenvectors of the operator a*a,  viz., 

I 0>, 11>, . . . |n>.    It is also shown that the corresponding eigenvalues are the integers 0, 1. . . n, 

respectively.    The creation operator,  a*,  and the annihilation operator,  a,  are completely 

specified by the relations 

a *   I n > = Vn + 1  | n + 1 > 

a  |n> = ,s/n  |n — 1> 

a  |0> = 0 

With this we have reached a valid quantum description of the elementary signals and hence of a 

composite signal.    We observe that only a discrete set of states of the elementary signals is 

possible;   in fact,   an elementary signal at center frequency OJ    can be specified to an accuracy 

in energy of -no;   .    Similar conclusions can be reached for other types of elementary signals. 
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APPENDIX B 

DIRECT EVALUATION OF P 

In order to evaluate P , we compare the two signal representations at the transmitting 

aperture plane. To avoid unnecessary complications, we compare terms with identical time- 

variation. 

From Eqs. (9) and (11) we have in the t-representation 

A(x,y,k) = (^)2 ^ dkxdkyFt(kxky) Bt exp[i(kxx + kyy) ] 

+ complex conjugate (B-l) 

The function F,(k k ) is defined in (23).    In the r — i representation,  the terms with similar t   x y 
time-variation are [see Eq. (24)] 

=^-)2 dk dk F (k k ) B    •  exp 
2'      JJ       x    y   rv x y'     r p • zQ J k2 - (ky

2 + k,2) 
'y7       o v ~""x      "y 

+ similar f-term      . (B-2) 

Integration of both (B-l) and (B-2) over the transmitting aperture gives the equation 

\ \  dk  dk  F, (k k  )2 B   = \ \  dk  dk  F  (k  k  ) F,(k  k  ) exp   -iz    J k2 - (k JJ       x    y   V x y'       t     JJ       x    y   rv  x y'     V x y'      H[       o^ 

+ similar I -term 

The left side can be integrated over k    and k   directly,  giving 

at(27r)2 Bt      . 

2 + k2) IB x y    I    r 

(B-3) 

(B-4) 

In order to make the right-hand side easy to evaluate,  we make the assumption that the exponen- 

tial factor varies much more rapidly than the F  F   factor.    Only contributions near k    = k    = 0 

will be important,  and we obtain the approximate equation 

Bt*<i>Zar ff dkxdky •   exp[-izo J k' - <kx2 + ky > | 

+ similar i-term (H-S) 

Because k   and k    can deviate but little from zero,  the square root can be expanded to give x y 

Bt * (h)Z  ar '   exPt-ikz
0l )) dkxdky '   exP   izo(  X2k   y) 

+ similar i-term = -=p- a    •  i exp f—ikz   1 
2ir      r ^ L o1 

+ similar  i-term 

Finally,  we introduce the operators  a and a*   through the Eq. (A-10) 

B. 

o 

(B-6) 

ft 
t      „/ cTa,2e   w   g t V t     o   ob 
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B    =    / —= -  •  a        , 
r       / cTa   2e  u  g        r 

r    o   o& 

and obtain 

i        i^ 

a,  =  75—  Ja.a     •   exp [—ikz   1    •   a    +  i -term      . (B-7) t27rvtrrlo'zr v        ' 
k 
7. 
o 

We therefore conclude that 

,2 k    2   atar 
lPrl    Mfe)    -V      • <B"8> z 

o 

which is just the transmission loss in a propagation circuit (see for instance Ref. 20). 
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