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ABSTRACT 

This report represents work in progress on properties of linear 
threshold functions. Xn a d dimensional -binary space there exists n 
separate points (N ■ 2d). Furthermore there exists possible com¬ 
binations (dichotomy) of these points. Not all of these combinations 
can be separated by linear threshold functions. This paper concerns 
itself with determining idiich combination can or cannot be separated. 
Surfaces other than hyperplanes are also studied. These include 
surfaces obtained by multiple linear threshold devices and quadratic 
surfaces. Consideration is also given to training procedures in the 
separation of random patterns by linear threshold devices. 
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I INTRODUCTION AND SUMMARY 

Consider a set of patterns which is represented by a set of vectors 

in a d-dimensional space. A homogeneous linear threshold function / is 

defined on this space: 

1, w* > 0 

/(*) ■ < -1, w • * < 0 . (1) 

[ 0, w • X * 0 

Any function of this form has a simple implementation indicated schemati¬ 

cally in Fig. 1. Every homogeneous linear threshold function naturally 

dichotomizes the set of pattern vectors into two sets, the set of vectors 

X such that /(x) * 1 and the set of vectors such that /(x) = “1. Geo¬ 

metrically, the two sets of pattern vectors are separated by the hyperplane 

[* : /(x) « 0, xefíá] (2) 

There are 2 functions taking values il on N points. Each function 

corresponds to a dichotomy of the N points. In general, there are fewer 

than 2* homogeneous linear threshold functions on N points. Section II 

is devoted to a short history of the problem of counting the number of 

homogeneous linear threshold functions. 

There are many classes of separating surfaces other than hyperplanes 

which are tractable analytically and easily implemented by augmented 

l,W X > 0 
.•l,W-X< 0 

FIG. 1 HOMOGENEOUS LINEAR THRESHOLD UNIT AND 
IMPLEMENTATION OF SEPARATING HYPERPLANE 
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linear threshold devices. 

Section II are generalized 

hyperspheres, hypercones, 
two sets. 

For example, in Section HI, the results of 

in order to count the number of ways in which 

and quadric surfaces can divide ,V points into 

In Section IV, it is found that a linear threshold device his a 

natural separating capacity of two random patterns per adaptive weight, 

thus verifying experimental work by Koford1’ and Brown* From the con 

sidérations in Section IV, it can be shown tha: a set of ¿d random 

inequalities in d unknowns has a solution with probability one-half. 

One possible definition of the process of generalization is offered 

in Section V, in which it is shown that a large number of patterns must 

be used in training a linear threshold unit in order to ensure a high 

probability of unambiguous response to additional unknown patterns. 

This report represents work in progress on properties of linear 

threshold functions. Future reports will concern: 

(1) A study of the inequality constraints on the weight 
vector V in Eq. (1). 

(2) Counting the number of dichotomies of N points in d-space 
that are separable with r or fewer errors. 

(3) (generalizing the constraint of general position in the 
theorems of Section II. 

(4) A etudy of capacities of networks of linear threshold 
devices. 

IWfartacM trt liitaS at tha („d •( tha raport. 
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II SEPARATION THEOREMS 

The following theorem ia due to Wendel:1 

Theorem 1. Let N points be randomly scattered on the sur* 

face of a unit sphere in d-space. Then the probability P, 
n $ 9 

that there exista aome hemisphere containing all of the 
points is 

The following theorem emphasises the fact that the underlying problem ia 
combinatorial rather than probabilistic: 

Theorem 2. Let Xj, ..., be rectors in d-space such that 

no d of them are linearly dependent. Of the 2* possible sets 

.... ixH) formed by aasigning plus and minus signs, 

exactly C# ^ sets hare the property that the entire set lies 
in aome half apace, where 

Theorem 2 has been prored by numerous authors, but Winder,4 Cameron,5 

Perkins, Whitmore, and Willis,4 and Joseph^ hare emphasised the application 

of Theorem 2 to the problem of counting the number of linearly separable 

partitions of a aet. All the authors listed abore hare used a rariant of 

a proof, which appears in Schlifli,4 of Theorem 3 or its dual statement 
Theorem 3': 

Theorem 3. N hyperplanes in general position passing through 

the origin of d*space diride the space into CH é regions. 

Theorem 3 . A d-dimensional aubspace in general position in 
JV-apace intersects CK é orthants. 

A «et of hyperplane» it in general position in Theorem 3 if erery 

d element subset of the aet of normal rectors defined by the hyperplanes 
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is linearly independent. The corresponding dual definition of general 

position for Theorem 3 is less clearly stated. A d-dimensional subspace 

is in general position in RN if the zero vector is the only element in 

the intersection of this subspace with any d-dimensional coordinate axis. 

A proof of Theorem 3 will be ukejtched. See* SchläfliCameron,* 

Winder,4 and Wendel3 for similar treatments. Let C# d be the number of 

regions formed by N (d ~ l)-dimensional subspaces in general position in 

d-space. Consider a (IV + l)th (d - 1)-dimensional subspace. It is inter¬ 

sected by each of the N subspaces in a (d ~ 2)-dimensional subspace. The 

N (d - 2)-dimensional subspaces maintain general position. Hence they 

divide the new subspace into C, ,., regions. Thus the (IV + l)th subspace 

intersects of the regions, forming ,., new regions. The 

total number of regions formed by /V + 1 planes is then given by the recur¬ 
rence relation ' * . 

• • 

e * 

Using the obvious boundary conditions . 

it is easily verified that CM , is given by Eq. (4). 
#• * 

Finally in Theorem 3 • we shall state Theorem 3 in an alternative 

equivalent form and present a new proof. 

Definition. A dichotomy of a set X m (x,, ..., xw e fl-} 

is linearly separable if and only if there exists we/?- such 
that 

t x ' w > t , s e X* 

* ' w < t , x e r . (?) 

The dichotomy {X ,X } is said to be hosiogeneously linearly separable 

if it is linearly separable with t - 0. A vector w satisfying Eq. (7) 

will be called a solution or separating vector and the corresponding 
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surface {* : x ’ w = t} will be called the separating hyperplane. If 

. t ■ 0 we have a separating hyperplane through the origin and a homogeneous- 
solution vector. 

The following lemma is geometrically obvious. It will be used in 

the proof of Theorem 3". and will be applied in the section on generalisation: 

Lemma. Let {X*,X } be a dichotomy oi X * {xi, Xj, ..., x^eR*) 

• and XlfH be a point in Rd. Then X'} and 

(A ,X U{s(|tj}} are both homogeneoualy linearly separable if and 

only if {X*,X } ia homogeneously linearly separable by a hyper* 

plane through 

Proof: ’ • 

The.dichotomy {A+U{x#M},*'} ia homogeneoualy linearly aeparable if 

and only if there exiata » such that 
• • * 

'• ’ w • X > 0 , x'e X* • 

» • > 0. 

• » **< 0 , X e A’ ). . (8) 
• • 

and {A ,A is homogeneously linearly separable if and only if 

■there exiats » auch that 

* e A* 

X e A’ (9) 

Uainç the connectedneaa of the open aet {» : w*x > 0, * e A+; 

»•X .< 0, X e A"} of separating vectora for {A\A‘} and the continuity 

of the inner product, we aee that Eqa. (8) and (9) hold if and only if 

there exiata a vector $ e Rd aeparating {A+,A'} such that 

m 0 • (10) 

Then the hyperplane {v : v’w - 0} aeparatea {A*,A'} and contains the 
point xKU. 

\ •• 

» • X > 0 , 
a 

a * x^, < 0, 

w • X < 0 , 

s 



Theorem S'- Let JT be a aet of N vectora in d-apace, every d 

of which are linearly independent. Then X has C# , homogene- 

oualy linearly separable dichotomies, where C„ w is given in 
Kq. (4). 

Proof: 

Let CHi be the number of homogeneously linearly aepawble dichoto- 
mxea of the set X - .... e fl-}. Consider a new point'in 

general position with respect to X, and consider a dichotomy {*♦,*-} of 

^ "eW P0int C,n alw,y* be to at least one of the elements 
of the dichotomy in order to form a separable dichotomy of {x,,*,/ ..... 

By the lemma, x#+, can be joined to either element Vthe 

dichotomy if and only if there exists a separating vector v for {X*,X~) 

lying in the U - 1I-dimensional orthogonal auBapace to xMU. There'are 

precisely C,,., homogeneou.ly linearly‘sepaVable dichotomies of the pro¬ 
jections of X in this aubspace. Hence 

- c. 
(11) 

Hepe.ted application of Eq. (11)' to the term, on the right yield. • . 

’ r r* ("-A *' * 
, .c'-' k (• * )c— • 

• • . * 

from which the theorem foTlows ‘immediately upon noting 

(12) 

C, ■ < 
2, m2. I 

0, m < I (Í3) 



Ill SEPARABILITY BY ARBITRARY SURFACES 

A change in point of view will enable us to apply the results of 

the previous section to classes of separating surfaces which are geo¬ 

metrically different from hyperplanes, but analytically quite similar. 

Suppose we ar.e given a family of surfaces {¢), each of which naturally 

divides a given space into two regions and a collection of ,V points in 

this space, each of which is assigned to one of two classes, X* or X~. 

This dichotomy of the points is said to be separable relative to {¢) if 

there exists at least one surface 0 such that all the X* points are in 

one region and all the X points are in the other. The crucial property 

of the family of surfaces {¢), in order that the results of the previous 

section apply, i^s that {¢) can be parameterized in s.uch a way^tha^t (¢)^ * 

is linear in its parameters^ Hyperplanes, hypersph*eres,aand polynomial * 
• •• •• * • ' • 

surfaces are special examples of such families'. * . 

• • 

.Consider the set of JV objects X - {x,,*, x^}. *We shal.l refer to 

the elements of X as .patterns for intuitive raisons. These patterns ■ " * 
*•, » ** .. •. • .. • .. 
need not. be considered as vectors in / vector space. On each pattern 

X è X a. set of. real .valued measurement function's ¢., ¢,, ..., ^ comprises* 

the vector of nveasu'r'ements * . 

• ' * ÏP : Jt - /t' „ . * * .' 
% * • . . S * 

• ■ 

. * • • • 
• . * 
wheïç ^x) - tojU), ¢2(x)j .•¥;(*)], X € X. * 

Definition: A dichotomy (binary partit ion) {X*. r) o.f X is 

• V-separabli if there exists a vector w such that 

(14) 

»•<P(x)-> 0 , x e X* 
• • • 

• • 

»^(x) < 0 , X e X~ . (15) 
a 

We shall count M , Æ } and Of , Af*} as distinct dichotomies. We see 

that the separating surface in the measurement space is the hyperplane 

»•'P " 0* The inverse image of this hyperplane is'the surface 

{x : w^(x) ■ 0) in the pattern space. The advantage in this general 
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formulation of the problem is that many interesting nonlinear surfaces 

xn the pattern space can be mapped into hyperplanes in another space 

where the results of the previous section will apply. 

Definition: Let the vector-valued measurement function <p be 
defined on the set of patterns 

* : X - {*,,..... X/i} ; 

Then, a set of patterns X is in <f-general obsitioit if the 

following equivalent conditions hold: 
• • 

(1) Every d element; subset of the set of d-dimensional 

measurement Vectors {<!>(*,), -..., <p(*# ) }‘is. linearly 
independent. * , . • 

# • 

(1' ) Every d * d submatri.x of the.’jV x d matrix <|> 

9,(^) 

(16) 

(17) 

has a non-zero determinant. 

(1 ) No d + 1 patterns lie on the same Ç-surface 

Í* : <P(x)*v * 0} in the pattern space. 

Clearly Definition 1' is just an explicit algebraic statement 

of Definition 1. Note that general position is a strengthened rank 

condition on the matrix ♦ (* has maximal rank d if at least one d x d 

submatrix has nonzero determinant). Definition 1*. relates general 

position in the measurement space to general position in the pattern 
apace. 
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Theorem 4. Let X ■ {xj,*^ ..., x#} be in <p-general positi 

where (p(*) • Iq-^x), <p2(x).<p,(x)], then precisely 

CHd of the 2# dichotomies of X are (p-separable where 

on 

A (7) (18) 

If, in addition, the <p-surface {x : <p(x)-w = 0} is constrained 
to contain the set of points Y - y2.where the 

projection of <pU) into the orthogonal subspace to <p(n is in 

general position, and <p(K) is linearly independent, then there’ 

are <I)*seP®r®ble dichotomies of X. 

Proof: (using Theorem 3") 
0 

Every d-element subset of the N vectors (pixj).<p(x ) ¡s 

linearly independent by hypothesis. Hence, by Theorem 3" there are 

precisely homogeneously linearly separable dichotomies of 

'i<P(Zi)’ 1 ' 1,2.0y definition these dichotomies correspond 
to the ip-separable dichotomies of X. 

The condition that the q>-surface contains the set Y is that the 

weight vector » must lie in the (d - *)-dimensional subspace 5 where 

S » {» : - 0 , i . 1,2.k} . 
• - * 

Let $ be the projection of <p onto S. Then, si since 

w<p - + W'(ç - $) , ,,,. 
(19) 

for all id m S, we see that a set of vectors {<p} is separable by a 

weight vector in S if and only if the set of their projections {$} is 

separable. Since the vectors $(x,).$(x#) are in ^-general 

position in S, there are homogeneously linearly separable 

dichotomies of {<p(x.) ¡ i . 1,2.by a vector » in S/ 
• 

A natural generalization of linear separability is polynomial 

separability. For the ensuing discussion, consider the patterns to be 

vectors in an «-dimensional space. The measurement function <p then map 
points in «-space into points in d-space. 

9 



Consider a natural class of mappings obtained by adjoining r-wiae 
products of the pattern vector coordinates. The natural separating 

surfaces corresponding to such mappings are known aa rth order rational 
varieties. A rational variety of order r obtained in a apace of a 

dimensions is represented by a homogeneous equation in the coordinates 
(*). of the rth degree. 

where (*). is the ith component of a in-fl* and (x)# - 1 in order to 

write the expression in homogeneous .form. A simple counting argument 
gives the number of coefficients F^r) in Eq. (20) aa 

\ (21) 

We remark that, since the surface represented by the coefficients is 

independent of a change of scale in the coefficients, there are really 

only - 1 independent coefficients in Eq. (20). The quantity 
^m ™ 1 is known in clnsmcflTl t W A . ft mm ä Æ —     _ _ # is known in claaaicaT geometry aa the -number of degrees of 
freedom of the surface. 

First order rational varietiea-are hyperplanes and second-order 
rational varieties are quadrics. Hyperapherea are quadrics with cer 
linear constraints on the coefficients. 

T TL ,<'> 
In Theorem 4, the mapping <p: Ä* - Ä • defined by 

a 

yields the following result: Aset of IV points in n-space, such that no 

Fa * points lie on the same rth-ordpr rational variety, has precisely C ^ j 
dichotomies which are separable by an rth-order rational variety. If*'f" 

the variety is constrained to contain k points, the number of separable 
dichotomies is reduced to C ... 

Koford* has observed that augmenting the vector x e fl- to yield 

a vector <p(x) as in Eq. (22) is especially eaay to implement when the 

coefficients are binary. BÍ8hop10ha8 exhaustively found the number 

<P, of quadrically separable truth functions of a arguments for low a. 

10 



From the foregoing it can be aeen that <Pe is bounded above by 

<P < C (23) 

In addition, Koford* notes that if the augmented vector <p(x) is used 

as an input to a linear threshold device (as in Fig. 2), then the standard 

training procedure will converge,11 (by the Perceptron convergence theorem) 

in a finite number of steps to a separating <p>aurface if one exists. 

Table 1 lists several examples of families of separating surfaces. 

All patterns x should be considered as vectors in an «-dimensional space. 
The function ç(x) ■ (1, x) is a (■ + 1)-dimensiona 1 vector. 

MEASUREMENTS 

FIG. 2 MEASUREMENT TRANSFORMATION AND IMPLEMENTATION OF 
SEPARATING ¢- SURFACE 
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IV RANDOM PATTERNS, CAPACITY 

Suppose that the patterns X * {x,, x2, .... xff} are chosen independ¬ 

ently according to a probability measure /x on the pattern space. How 

many dichotomies of X are (p-aeparable? Clearly, the results of the previous 

section will apply if X is in <P-general position. Now X is in <P-general 

position with probability one if and only if every <P-surface 

{x : v*<p(x) ■ 0} has n measure aero. 

Suppose that a dichotomy of X is chosen at random from the 2V équi¬ 

probable possible dichotomies of X. What is the probability Pnt¿ that this 

dichotomy is (P-separable? If X is in <p-general position with probability 

one, then with probability one there are d cp-separable dichotomies. 

Thus 

Note that Theorem 1 now follows from the above with the identification 

<P(x) * x. The necessary and sufficient conditions on the measure p de¬ 

fined on the unit d-sphere, for Theorem 1 to hold are the following: 

(1) The p measure of any subspace ia aero. 

(2) p is radially symmetric, t.e., 

p(B) ■ p(v : -V e B) . (25) 

Condition (2) is necessary in order that the probability (conditioned on X) 

that a random dichotomy of X be separable is equal to the unconditional 

probability that a particular dichotomy of X (all JV points in one hemi¬ 

sphere) be separable. 

Let {xj, X., ... } be a sequence of random patterns as above and de¬ 

fine the random variable JV to be the largest integer such that 

{xj, Xj, ..., xff} is (p-separable. From Eq. (24) we determine the proba¬ 

bility density of JV 

13 



P J N - n) (26) 

which ia juat the negative binomial diatribution (ahifted d unita right) 

with parameter, d and 1/2). Thu. N correapond. to the waiting time for 

the dth failure in a aeriea of toaaea with a fair coin, and 

£(«V) - 2d (27) 

Median (N) * 2d (28) 

The aaymptotic probability that N pattern, are aeparable in 
d ■ N/2 + (0/2)/19 dimenai ona ia 

where <&(«) ia the cumulative normal diatribution 

/ 

1 f“ »(a) . - e 2 dx 
SErL 

In addition, for e > 0 , 

lim P 
24(1 + 0,4 0 

P 
24,4 

1 

2 

lim P 
24(1-«),4 1 (29) 

Theae reaulta confirm the conjecture by Koford1 that £[*] - 2d, and 

auggeat that 2d ia a natural definition of the teparating capacity of a 

family of aurfacea that ia linear in d parametera. Thua a linear 

threahold device can be .aid to have a aeparating capacity of 2 pattern, 
per variable weight. 

14 



V GENERALIZATION 

It is generally believed that after a “large number" of training 

patterns the state of a linear threshold device is sufficiently con¬ 

strained to yield an unambiguous response to a new pattern. We shall 

show in this section that this intuition is misleading in the case of 

random assignments. Physical considerations such as bunching according 

to category, and effects of training algorithms which tend to locate the 

separating hyperplane in the middle of the region between the two cate¬ 

gories are not considered in this report. 

Consider a set of N patterns X * ..., x#} in d-space, which 

we shall call the training set. Let be a linearly separable 

dichotomy of X. Note that we are speaking of linearly separable rather 

than homogeneously linearly separable dichotomies in this section. A 

new vector y is given. On what basis may y be assigned unambiguously to 

X* or r? 

The classification of a vector y with respect to the partition 

{T ,X } is said to be asbtguous if, among the class of hyperplanes separ¬ 

ating X and X , there exists a hyperplane inducing the dichotomy 

{T+U{y},JT} and another hyperplane inducing the dichotomy {JT\JITlKy}}. 

We make the reasonable definition that y is ambiguous with respect to 

{X ,X } if {X ,X } is not linearly separable. In Fig. 3, foi example, 

o 
o 

o X": X 
i o 0 

FIG. 3 GENERALIZATION 
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foint« y, and y, are unaabiguoualy claeaifiable into aeta X* and X' 

reapectively, .bile point y, haa an aabiguoua claaaification becauae linea 

1 and -Cj aeparate but yield oppoaite claaaificationa for y,. 

Note that the reaulta of prerioue aectiona apply to generali.ation 

with reapect to nore general claaaea of aurfacea if a proper Rapping 
<9 : X - R* iu made. 

Propotition 1. Let JTUM ■ f* * * • . // y) be in general position 
m a-space. Let each of the linearly separable dichotomie* of X hare 

.,..1 probability. Th.„ th. p,.b.bilit, F, , tb.t y i. „bip.... ,itb 
reapect to a dichotomy of X ia 

rH.é 

- ' .MV) (30) 

Propoaition 1 will follow from Propoaition 2. 

Propotition 2. Let MM ■ {* * . k- • . 
7 .... Xj.y/ be in general poaition in 

a-apace. Then y haa an ambiguoua claaaification with reapect to C, 
dichotomiea of JT. 

Proof: 

From the lemma of Section 2, the point y i. ambiguoua with reapect 

to {X ,X } if and only if there exiata a hyperplane containing y which 

aeparatea {X X). Ibe propoaition followa immediately from Theorem 4, 

where <p(x) ■ (i(*) an¿ t|,e aeparating vector * ia conatrained by 

*-<P(y) • 0 . (31) 

Propoaition 1 follow, upon noting that there are C,,n li„e.rly .«parable 

dichotomie«, by application of Theorem 4 with <p(x) - (llJr). 

16 



Consider the behavior of Fu 
*» # ® 

for JV » d, 

and for N < d. 

1 i m F s } 
2d , d 

(32) 

(33) 

(34) 

For large dimension d. a plot of the probability FH d that a new pattern 

will be classified ambiguously with respect to a random dichotomy of the 
training set has the form shown in Fig. 4. 

Note the relatively large number of training patterns required for 

unambiguous generalisation. Compare Fig. 4 to Fig. 5, where we see that 

the probability of ambiguous response remains high even after the proba¬ 

bility of a consistent training set tends toward zero. 
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IM 

PATTERNS PER DIMENSION ü 
d 

FIG.5 TRAINING CAPACITY 

In tk. .,e»t tktt the p.tt.rn. then..!»., ,te r,„do.iy di,tPibuted 

»e remnrk tk.t th, ..d, ¡„ s.cti»„ IV randomly di.-' 

j «t.d pattern« and rand., dith.to.ia. .f ,h« p.,teni ,,t ,ppl ^ 
fnll t. tht. .action. Tl,. 0,0,1.! conditio„ th<t the ^ ^ 

in general position with probability one. 
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