UNCLASSIFIED

AD NUMBER

AD436345

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Foreign Government Information; DEC 1963. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.

AUTHORITY

DSTL, AVIA 6/17494, 13 Aug 2008

THIS PAGE IS UNCLASSIFIED

$\begin{array}{r} \text{UNCLASSIFIED} \\ \textbf{436345} \\ \textbf{AD} \end{array}$

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

Best Available Copy

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or othervise as in any manner licensing the helder or any other persons or corporation, or conveying any rights or permission to manufacture, use or sell any patented investion that may in any way be related thereto.

20	TECH. NOTE		TECH. NOTE
4	CPM. 47		CPM. 47
က			
9			
. 00			
	Boyal	aibcbairt	Translate Black
4			

ATALOGED BY UUU AS AD NO.

TECHNICAL NOTE No. CPM. 47

SOME PHYSICAL PROPERTIES OF TERPHENYL RESIN BONDED LAMINATES

by

B. Nixon

DECEMBER, 1963

436345

THE RECIPIENT IS WARNED THAT INFORMATION CONTAINED IN THIS DOCUMENT MAY BE SUBJECT TO PRIVATELY-OWNED RIGHTS,

NO. OTS

UNCLASSIFIED

U.D.C. No. 678.653.5.362 : 678.5-419

.

.

Technical Note No. CPM.47

December 1963

ROYAL AIRCRAFT BSTABLISHMENT

SOME PHYSICAL PROPERTIES OF TERPHENYL RESIN BONDED LAMINATES

by

B. Nixon

SUMMARY

The production of heat resistant thermosetting resins based on terphenyl and <u>p</u>. xylylene dichloride in various ratios is described. The strength of the laminates made from these resins is shown not to differ greatly and it is concluded that the cross-linking density remains the same for the three ratios investigated.

The resistance of asbestos laminates to gamma radiation and strong alkali is investigated, together with some preliminary strength tests on glass reinforced laminates.

Infrared spectrophotometry shows that the methylene groups within both terphenyl and polybensyl resins are oxidised during ageing at elevated temperatures.

UNCLASSIFIED

COT	STT.	PATTO
001	1.1	OT NA

•

•

•

•

•

•

		Page
1	INTRODUCTION	4
2	SYNTHESIS OF TERPHENYL RESINS	4
	2.1 Theory 2.2 Practice	4 5
	2.2.1 First stage resin 2.2.2 Second stage resin - small scale 2.2.3 Second stage resin - large scale	5 6 6
3	FABRICATION OF BOARDS	6
	3.1 Asbestos laminates 3.2 Glass laminates	6 7
4	STRENGTH TESTS AND PHYSICAL PROPERTIES	7
	 4.1 Flexural strength at room temperature 4.2 Flexural strength at elevated temperatures 4.3 Density 4.4 Resin content 4.5 Weight loss on laminates 4.6 Resistance to alkali 4.7 Resistance to radiation 	7 8 8 8 8 8 8
5	INFRARED SPECTROPHOTOMETRY	9
6	DISCUSSION OF RESULTS	9
7	CONCLUSIONS	11
8	WARNINGS	12
ACK	NOWLEDGHENTS	12
REF	TRENCES	12
ADV	ANCE DISTRIBUTION LIST	13
APP	ENDIX 1 - Use of high temperature flexural rig	14
TAB	LES 1 - 8	15-20
ILL	USTRATIONS - Figs.1-12	-
DET	ACHABLE ABSTRACT CARDS	-

Technical Note No. CPM.47

•

.

.

.

.

•

		TABLES	
Table			Page
1		First and second stage resin - weights of reactants	15
2	-	Flexural strength of R.A.7. and three terphenyl laminates of different ratio at room temperature after ageing at elevated temperatures	16
3	-	Flexural strength of R.A.7. and three terphonyl laminates of different ratios at elevated temperature after ageing at that temperature	17
4	-	Density (grams/c.c) and reain content of asbestos laminates bonded with terphenyl resin in three different ratios	18
5	-	Flexural strength of 10:11 ratio terphenyl/asbestos laminates after immersion in 40% solution of strong alkali	19
6	-	Flexural strength of 10:11 ratio terphenyl/asbestos laminates after exposure to gamma radiation, tested at room temperature and at 240°C	19
7	-	Flexural strength of 10:11 ratio terphenyl/glass laminates after agoing at 240°C	20
8	**	Percentage weight loss of 10:11 ratio terphenyl/glass laminates at 240°C, with the initial density and resin content	20
		TLLUSTRATIONS	
		ILLUSTRATIONS	<u>Pis</u> .
First	sta		
		ge resin - loss of hydrogen chloride against time	1
Second	l st		
Second Weight	i st ; lo	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation	1 2
Second Weight Percen agein	l st 2 lo 2 tag 2 j	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins a retention of flexural strength of terphenyl laminates after n strong alkali	1 2
Second Weight Percen agein Percen	l st itag itag itag	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after n strong alkali to retention of flexural strength of terphenyl/glass laminates	1 2 3 4
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after n strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C	1 2 3 4 5
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after in strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R	1 2 3 4 5 6
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after n strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C	1 2 3 4 5
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after in strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride	1 2 3 4 5 6
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after in strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R D. xylylene dichloride 1.2. dichloroethane	1 2 3 4 5 6 6 6 6 6 6
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation es of asbestos laminates bonded with terphenyl resins retention of flexural strength of terphenyl laminates after n strong alkali retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R D. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C	1 2 3 4 5 6 0 6 0 7 6 7 7 7 0
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after in strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Torphenyl resin after prolonged exposure at 300°C	1 2 3 4 5 6 6 6 6 6 7 8 7 6 7 7 6 7 7 6 7 7 6
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins to retention of flexural strength of terphenyl laminates after in strong alkali to retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Intrial polybensyl resin	1 2 3 4 5 6 6 6 6 7 5 7 6 7 8 6 7 8 6
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins are retention of flexural strength of terphenyl laminates after n strong alkali a retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Inttial polybensyl resin Polybensyl resin after 1 hour at 185°C	1 2 3 4 5 6 6 6 6 7 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins are retention of flexural strength of terphenyl laminates after n strong alkali a retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Initial polybensyl resin Polybensyl resin after 1 hour at 185°C Folybensyl resin after 1 hour at 185°C	1 2 3 4 5 6 8 6 6 6 7 7 6 8 8 8 8 8 8 8 8 8 8
Second Weight Percen agein Percen toste	l st ; lo itag itag itag itag id a	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins retention of floxural strength of terphenyl laminates after n strong alkali e retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Initial polybensyl resin Polybensyl resin after 1 hour at 185°C Initial polybensyl resin Polybensyl resin after further hour at 300°C Polybensyl resin after further hour at 300°C	1 2 3 4 5 6 8 6 6 6 0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Second Weight Percen agein Percen toste Infrar	l st ; lo utag jutag jutag jutag jutag	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins retention of floxural strength of terphenyl laminates after n strong alkali e retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Initial polybensyl resin Polybensyl resin after 1 hour at 185°C Doublensyl resin after 1 hour at 185°C Folybensyl resin after further hour at 300°C Doublensyl resin after further hour at 300°C	1 2 3 4 5 6 8 6 6 6 7 7 6 8 8 8 8 8 8 8 8 8 8
Second Weight Percen agein Percen toste Infrar	i st i lo itag i tag i t	ge resin - loss of hydrogen chloride against time age resin - evolution of hydrogen chloride to gelation as of asbestos laminates bonded with terphenyl resins retention of floxural strength of terphenyl laminates after n strong alkali e retention of flexural strength of terphenyl/glass laminates t 240°C spectra of Santowax R p. xylylene dichloride 1.2. dichloroethane Initial terphenyl resin Terphenyl resin after 1 hour at 185°C Terphenyl resin after further hour at 300°C Initial polybensyl resin Polybensyl resin after 1 hour at 185°C Initial polybensyl resin Polybensyl resin after further hour at 300°C Polybensyl resin after further hour at 300°C	1 2 3 4 5 6 8 6 6 6 0 7 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

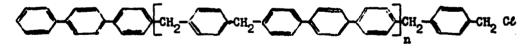
- 3 -

1 INTRODUCTION

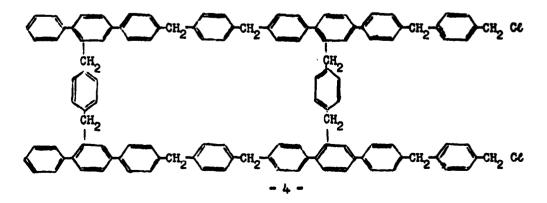
The exploitation of the Friedel-Crafts reaction between aromatic hydrocarbons and dichloromethyl derivatives has led to promising heat resistant polymers¹. A useful inexpensive polymer is that based on a mixture of ortho meta and para terphenyls (Santowax R.) and some of the properties of asbestos reinforced laminates were given in a preliminary report².

It was noted during this investigation that the laminates displayed some initial thermoplasticity, which disappeared on ageing at elevated temperatures. It was appreciated that this could be partly due to low cross-linking density and it was realised that a more detailed investigation would be required to resolve this point.

It was decided to prepare terphenyl resins with different molar ratios of terphenyl to p. xylyleno dichloride, and to investigate their physical properties. Additionally the physical properties of asbestos reinforced laminates bonded with these different resins would be determined.


Preliminary investigations of glass cloth laminates have been made using the resin with the most suitable ratio of terphenyl to <u>p</u>. xylylene dichloride as found above.

A further point of interest from the initial roport was the weight increase which followed heating in air at temporatures above 200°C. The process was followed by infrared spectrophotometry and evidence for exidation of the methylene groups is presented.


2 SYNTHESIS OF TERPHENYL RESINS

2.1 Theory

By using a 1:1 molar ratio of torphonyl to \underline{p} . xylylene dichleride a linear polymer of the following structure should be produced:

Additional p. xylylene dichloride should bring about cross-linking leading to the following structure.

Technical Note No. CPM.47

By increasing the ratio of <u>p</u>. xylylene dichloride to terphenyl, it was thought that a greater cross-linking density, hence greater strength, and less thermoplasticity at elevated temperatures could be obtained in the finally cured resin². From previous experience it was felt that the ratios 10:11, 10:13, 10:15 of terphenyl to <u>p</u>. xylylene dichloride were the most suitable for comparison.

The resin could be made in two stages. In the first stage a ratio of 4 moles of terphenyl to 3 moles of p. xylylene dichloride was used, so producing a thermoplastic resin and then this resin could be reacted with a further amount of p. xylylene dichloride to give a highly branched resin that would cross-link on further heating.

2.2 Practice

The resin was made in two stages. The first stage resin was made in the melt at $150^{\circ}-180^{\circ}$ C, while the second stage was made in a suitable solvent in order to give a solution of the thermosetting resin in any of the three ratios to be investigated.

2.2.1 First stage resin

15.36 moles (3533 grams) of Santowax R, a commercially available form of the mixed terphenyls and 11.4 moles (1997 grams) of p. xylylene dichloride were heated together (Table 1). The 10 litre reaction vessel, which had a wide neck to facilitate the pouring of the liquid resin, was fitted with a powerful stirrer, a thermocouple lead, an argon supply to prevent exidation of the reactants and a straight through condenser, connected to a receiving vessel containing a known amount of alkali.

When both the reactants had melted they were kept at 150-180°C. The catalyst, 5.0 mls of 10% w/w stannic chloride in 1.2 dichloroethane was added at intervals when it was noticed that the hydrogen chloride evolved had alowed down. The hydrogen chloride was dissolved in water and neutralised against twice normal (2N) sodium carbonate, using bromo-phenol blue as an indicator (Fig.1). Towards the end of the reaction, the temperature of the reactants was increased to 180°C in order to assist the pouring of the resin, this was when 80% of the theoretical amount of hydrogen chloride had been evolved.

The first stage resin had a softening range of 80-95°C and when fresh was a clear red and transparent, but on several days standing it became green and opaque. The resin was typically thermoplastic, and should have a molecular weight in the region of 1000 to 1200.

On two occasions a crude pilot-plant batch of <u>p</u>. xylylene dichloride was used to make the resins, but the reaction was so violent that it became uncontrollable and gelled. Upon investigation it was found that the <u>p</u>. xylylene dichloride was contaminated with a strong catalyst, so increasing its reactivity that even the <u>p</u>. xylylene dichloride could cross-link itself. Upon purification by further recrystallisation the <u>p</u>. xylylene dichloride behaved in the normal manner.

٩.

2.2.2 Second stage resin - small scale

The second stage resin was made on a small scale in order to find out how much hydrogen chloride could be evolved before gelation. This was done with all the three ratios investigated (Fig.2).

50.2 grams of the first stage resin was dissolved in 120 grams of 1.2 dichloroethane (Table 1). The flask was fitted with an air supply to sweep over the hydrogen chloride evolved through a straight condenser to the receiving vessel containing known amounts of alkali. When the resin had dissolved the appropriate amount of p. xylylene dichloride was added (Table 1). The whole was gently boiled. When the p. xylylene dichloride had dissolved, a little catalyst was added and a stoady flow of hydrogen chloride was evolved. The acid was titrated against 2N sodium carbonate using bromo-phenol blue as indicator.

All the samples of this second stage resin gelled after between 1.95 and 2.22 grams of hydrogen chloride had been evolved, regardless of reactants ratios employed.

2.2.3 Second stage resin - large scale

This large batch of the second stage resin was only taken approximately 60% of the way towards gelation, so that a solution of a potentially thermosetting resin was obtained.

900 grams of the first stage resin was dissolved in 2560 grams of 1.2 dichloroethane in a 10 litre flask fitted as in the small scale preparation. When the first stage resin had dissolved the appropriate amount of **p**. xylylene dichloride was added, then the whole was gently boiled. A little catalyst was added and the hydrogen chloride evolved was titrated against the alkali.

After approximately 60% of the total possible hydrogen chloride had been evolved this second stage resin was cooled. This resin would be used either diluted with 1.2 dichlorosthane to impregnate the asbestos felts or used undiluted to impregnate the glass fabric.

3 FABRICATION OF BOARDS

3.1 Asbestos laminates

The boards, 12 inches square and approximately 1/10th of an inch thick were made by using five asbestos felts for each. The appropriate amount of the second stage resin was diluted with more 1.2 dichloroethane so as to make a solution having a solids content of between 10 and 12%.

Each piece of asbestos felt was weighed and impregnated with the appropriate amount of diluted resin to give a resin content on the cured boards of 50%. The "A" direction" was marked on the felts which were then left to dry in air at room temperature for at least 24 hours.

Technical Note No. CPN.47

Sets of five felts were used to make each board. The felts were assembled with the grain direction parallel and cured at 185° C and 500 lb/sq in. for 90 minutes, using steel platens coated with stearate grease. A powerful extraction system was fitted to the press in order to remove the hydrogen chloride evolved during the cure, particularly when the board was vented at 30, 60 and 90 second intervals. The boards were left to cool under pressure until their temperature fell below 100°C. Each board was post cured for 72 hours at 200°C. During the post cure it was noticed that large amounts of p. xylylene dichloride sublimed onto the walls of the post curing oven when the 10:13 ratio resin and especially the 10:15 ratio resin had been used for the impregnation.

3.2 Glass laminates

Glass laminates were made using satin weave glass cloth with three different finishes (Marglass heat cleaned, Marglass 717, and Fothergill and Harvey NOL-24).

Four strips of each glass cloth $36" \times 9" \times 0.006"$ were impregnated with the undiluted second stage resin made using a 10:11 molar ratio of terphenyl to p. xylylene dichloride, and left to dry in air. Each laminate was made by using eleven plies of the impregnated cloth $7\frac{1}{4}"$ square and oured in a frame mould (Fig.10) at 185°C for 90 minutes at a pressure of approximately 20 lb/sq in. The laminates were cooled under pressure and then post cured for 24 hours at 180°C and for 120 hours at 200°C.

4 STRENGTH TESTS AND PHYSICAL PROPERTIES

The following tests were carried out on the asbestos laminates made with ratios of terphenyl to \underline{p} . xylylene dichloride of 10:13 and 10:15 -

Flexural strength at room temperature and at elevated temperatures, density, resin content and loss in weight of the laminates.

The above properties for the laminates made using the resin with the 10:11 ratio are taken from Technical Note CPM 8². In addition to the above properties, the resistance of these laminates to strong alkali and radiation was also investigated.

The glass laminates were out into flexural strips and tested both at room temperature and at 240°C after agoing at 240°C for up to 1000 hours. Density, resin content and loss in weight were also determined.

4.1 Flexural strength at room temperature

The flexural strength of the specimens at room temperature was determined on a three point bending rig (based on the recommendations laid down in B.S.2782, Part 3, Method 3048, and in A.S.T.M. Specification D.790-59T) built into a large oven (see Appendix 1). A two inch span width was used throughout the testing and typically five specimens were tested in each group. Testing was carried out on each set of heat aged specimens (Tables 2 and 5-7).

2 H 144 87 H 1953 - 19 84 1 F

4.2 Flexural strength at elevated temperatures

The flexural strength of the specimens at elevated temperature was determined on the same rig as was used to determine their strength at room temperature.

Short term ageing, up to 100 hours, was done entirely within the testing oven; long term ageing was carried out in separate ovens, the specimens being transferred to the oven rig at least one hour before testing. The temperature of the oven was controlled to within 2°C of the testing temperature (Tables 3 and 6-7).

4.3 Density

The density of the specimens was determined by weighing and measuring the flexural specimens (Tables 4 and 8).

4.4 Resin content

Resin contents were determined on the flexural specimens, after they had been broken, by ashing to constant weight at 800°C on a Stanton thermobalance¹ (Tables 4 and 8). In the case of the asbestos laminates allowance was made for the loss of weight of the asbestos itself⁵.

4.5 Weight loss on laminates

Weight loss on the laminates was determined on the flexural specimens for different times at 200°C, 240°C and 300°C (Table 8, Fig.3).

4.6 <u>Resistance to alkali</u>

To observe the effect of strong alkali on the laminates, flexural specimens were immersed in 40% sodium hydroxide or 40% potassium hydroxide at room temperature and at 50°C.

The specimens removed after each poriod of ageing were washed thoroughly in running water and dried in an air oven at 50°C so that they were completely dry and alkali free. The flexural strength of the specimens was determined on the three point bending rig. The figures are given in Table 5 and graphically in Fig.4.

The good retention strength of terphenyl laminates after 4000 hours exposure to alkali is similar to that to be reported by Moore⁶ for polybonsyl laminates. Both these Friedel-Craft resins are superior to conventional phenolic resins using the same reinforcement⁶.

4.7 Resistance to radiation

In view of the high aromatic content of the terphenyl resin it should display good radiation resistance. For this reason it is of potential interest as a structural material in atomic energy applications. In order to obtain evidence on this point flexural specimens taken from an asbestos laminate made with the 10:11 molar ratio resin were subjected to 10, 100 and 500 megarad doses of gamma radiation at the Royal Military College of Science, Shrivenham. After each dosage the specimens were tested on the three point bending rig at room temperature and at 240°C (Table 6).

5 INFRARED SPIECTROPHOTOMSTRY

It has been noticed with several resins that during the ageing at elevated temperatures of both the resins and the laminates an increase in weight occurs^{1,2}. The most obvious explanation for this increase in weight is that the methylene group -CH₂- is being oxidised to a carbonyl group -Cm².

Infrared spectrophotometry is well suited to following such chemical changes during a series of operations 7.

Both a terphenyl and a polybernyl resin were tested to see whether their methylene groups could be detected initially and whether on exposure to heat these groups were replaced by the corresponding carbonyl groups.

A solution of the thermosetting resin was poured onto a sodium chloride disc and the solvent allowed to evaporate at 50°C to produce a clear film. The disc was mounted in a frame holder which was kept in the same position throughout the series of recordings. An initial spectrum was taken, then further spectra were recorded after 1 hour at 185°C, a second hour at 300°C, and finally after prolonged exposure (ca. 24 hours).

A series of standards were used to verify the positions of the main absorption peaks:-

(a) Santowax R. was used because of its aromatic groups.

(b) p. xylylene dichloride showed the methylene chloride groups (CH,Cl).

(c) 1.2. dichloroethane, again for its methylone groups and because it was the solvent used.

(d) Bensophenone for the presence of the aryl ketonic groups.

The above spectra can be seen in figures 6 to 9 inclusive.

6 DISCUSSION OF RESULTS

On comparing the resins made in the different ratios it should be noticed that regardless of the amount of <u>p</u>. xylylene dichloride present, the gelation point is approximately the same in all cases (Fig.2). It was also noticed that large white crystals of <u>p</u>. xylylene dichloride could be seen under a low power microscope, in the gelled resin, especially in the higher ratio resins. <u>p</u>. xylylene dichloride sublimed from the laminates during their post cure.

- 9 -

Technical Note No. CPM.47

At 200°C the flexural strongths of the terphenyl laminates from the three resins are quite similar, reaching their maximum cold strength after at least 1000 hours of ageing, while their strength at 200°C seems to be at a maximum between 1000 and 2000 hours.

Remembering that both the phenolic laminates - R.A.7 4 and the terphenyl laminates made from the 10:11 ratio resin were aged at between 230°C and 240°C, whereas the other terphenyl laminates were aged at 240°C, then their flexural strengths cannot be compared directly. The only comparison that can be drawn is between two sets of laminates made from the resins of higher molar ratio, and these are obviously quite similar.

At 300°C, although all the specimens were aged in the same oven, but at different times, the severity of the temperature seems to degrade the laminates at roughly the same time - 75 to 100 hours.

All the laminates had low hot strengths at the beginning of each exposure schedule, but all improved during the subsequent ageing.

Weight losses of the three sets of laminates at 200°C were similar, at 230-240°C the laminates from the higher ratio resins lost more weight than the laminates made from the lower ratio, again on account of the former being aged at a lower temperature than the latter. At 300°C the laminates with the higher ratio resins tended to lose weight more rapidly than the other laminates.

The resistance of terphenyl laminates to strong alkali are given in Table 5 and Fig.4. From these results it can be seen that the terphenyl laminates retain at least 74% of their original flexural strength even after 4000 hours immersion in the strongest of alkali. The best phenolic laminates in this respect, R.A.1. could only retain 50% of their original flexural strength after the same exposure, and were below 74% before 500 hours of immersion had been attained⁶.

The apparent resistance of terphenyl/asbestos laminates to gamma radiation is encouraging, as there appeared to be no detrimental effect after a dosage of 500 megarad. In view of this a series of longer exposures using glass reinforced laminates has been started.

Little work has been done so far on glass laminates, but even so some useful information has been obtained. The resin content, densities and weight losses of the laminates are all similar, but the flexural strengths vary considerably before and during ageing at 240°C.

The laminate containing glass fabric having the NOL -24 finish had the best initial cold strength, but it also had the poorest initial hot strength. After 100 hours at 240°C, at which time it could be assumed that each laminate had reached its optimum properties, the heat cleaned fabric laminate had the best overall strength properties. After 1008 hours ageing all three laminates had similar flexural strengths at 240°C. Laminates with a hot flexural strength of 24,000 lb/sq in. after 1000 hours at 240°C are good compared with present polyester and epoxy laminates⁸.

- 10 -

Leminates made with the heat cleaned fabric always broke cleanly during testing, whereas in the other laminates the specimens were often deleminated. It was also noticed that the NOL-24 finished glass laminates did not tend to warp as much as the other two during ageing at 240°C.

It can be seen from Table 8 that the glass reinforced laminates lose much less weight at 240°C than the asbestos laminates at the same temperature. As all the weight loss must be the actual terphenyl resin, than after 1000 hours at 240°C approximately 7 to 12% of the resin within the laminate is lost, while 14% to 20% of the resin within the asbestos laminates is lost (average of the two higher ratio resins).

Taking the terphenyl and polybensyl resins in Figs.7 and 8, their methylene groups $(-CH_2^{-})$ can easily be detected by their strong absorption peaks at 2926 cm⁻¹ and 2853 cm⁻¹ together with peaks at 1465 ± 20 cm⁻¹ (Figs.7a and 8a), which are similar to the absorption peaks produced by the methylene groups in p. xylylene dichlorids and 1.2. dichloroethane (Figs.6b and 6c). On exposure to elevated temperatures the concentration of methylene groups decreases and there is a corresponding increase in the strength of the absorption peak in the region of 1670-1660 cm⁻¹ (Figs.7 and 8), which corresponds to the carbonyl groups absorption range⁹ as can be seen in the spectrum of bensophenone (Fig.9). There is a much broader but less convincing range for a carbonyl structure at 1200 ± 100 cm⁻¹ which can be seen in the later spectra of both resins and in bensophenone.

7 CONCLUSIONS

The main conclusion to be drawn from the present work is that no matter what quantity of p. xylylene dichloride is used in the manufacture of the resins, the gelation point and the cross-linking density remain unchanged. The fact that free p. xylylene dichloride is observed when the higher ratio resins are gelled and also during the post cure of the laminates at 200°C, seem to point to the fact that any excess p. xylylene dichloride takes no part within the resin or the laminates.

Increasing the proportion of <u>p</u>. xylylene dichloride to terphenyl makes no difference to the initial hot strength of the laminates and only long ageing at elevated temperatures is effective in giving a reasonable hot strength. It can be assumed that the extra <u>p</u>. xylylene dichloride does not increase the cross-linking density at all.

The resistance of terphenyl laminates to sodium and potassium hydroxide is excellent, and the resistance to gamma radiation is very encouraging. Further work is in progress to confirm the radiation resistance of terphenyl bonded glass laminates on prolonged exposure.

The glass leminates can be made with reasonable ease, but a much larger programme should be undertaken to study the effects of different finishes of the glass cloth on the resultant laminates.

It seems clear that the methylone groups in both the terphenyl and polybensyl resins are slowly oxidised to carbonyl groups by ageing at elevated temperatures in air. This contrasts with the findings of Conley and Bieron⁷, who found rapid oxidation of the methylene groups to carbonyl groups in phenolic rosins exposed to oxidative conditions.

In order to study in detail all the properties of terphenyl bonded laminates, large scale production of the resin and impregnated materials will have to be done, and suitable arrangements are being worked out with commercial organisations.

8 WARNINGS

Attention is drawn to the toxic hazards involved in handling <u>p</u>. xylylene dichloride, 1.2 dichlorosthane and hydrogen chloride¹⁰.

It is advisable to use barrier creams on exposed areas of skin and to have adequate ventilation during the impregnation and curing of the felts.

ACKNOWLEDGMENTS

Acknowledgments are made to Professor A. Charlsbury of R.M.C.S. for the use of his irradiation facilities and to Dr. W.A.Lee for his confirmation on the interpretation on the infrared spectra. The author also wishes to thank Mr. R.G.Hulme for the preparation of many hundreds of test specimens.

REFERENCES

<u>No</u> .	Author	<u>Title, etc</u>
1	Phillips, L. N.	Friedel-Crafts reactions for the synthesis of heat rosistant aromatic polymers. R.A.E. Technical Report No. CPM.3, April 1963.
2	Nixon, B.	Preliminary investigation into the physical properties of asbestos laminates bonded with a terphenyl resin. R.A.E. Technical Note No. CPM.8, February 1963.
3	Flory, P. J.	Principles of polymer chemistry. 1953, p.47.
4	Turner Brothers Asbestos Co. Ltd.	Durestos resinated asbestos moulding materials.
5	Baker, A. Sherriff, Miss E.V.	Determination of asbestos in reinforced phenolic resins. R.A.E. Technical Note Chem 1111, October 1949.
6	Noore, B. J. C.	Initial evaluation of asbestos laminates bonded with polybensyl resin. R.A.E. Technical Note No. CPM.46, Docember 1963.

- 12 -

REFERENCES (Contd)

Title, eto

- 7 Conley, R. T., Bieron, J. F. The Journal of Applied Polymer Science. Vol.7, No.1, January 1963, p.103-117.
 - Yarsley Testing The preparation and elevated temperature ageing Laboratories Ltd. of glass cloth laminates. Narch 1963.
 - The infra-red spectra of complex molecules. 1954.
- 10 Sax, N. I.

Bellamy, L. J.

Author

Dangerous properties of industrial materials. 1957.

ATTACHED:-

<u>No</u>.

8

9

- Appendix 1 Tables 1-8
- Figs.1-12, Drgs Nos. CFM/R.271-279 Negs Nos. 164,934-164,936 Detachable abstract cards

ADVANCE DISTRIBUTION:-

Chief Scientist DGAGS DG/GW DGSR(A) DA (Mech) DCA(RD) D Mat & S AD/GW (G & C) AD Mat (NM) 2 AID (INM) MAT 7,8 TIL 1b 150 Director, RAE DDRAE(A) Pats 1 RAE Head of Aero Department Head of CPM Department Head of ME Department Head of Space Department Head of Structures Department Head of Weapons Department Library, RAE RPE Westoott RRE Malvern RAE Bedford NGIE, Pyestock DERDE, Waltham Abbey SMR1 Waltham Abbey **80**2 Waltham Abbey Secretary JSR & D Plastics Committee 30 (Dr. T.P.Hobin, KRDE)

.

APPENDIX 1

USE OF HIGH TEMPERATURE FLEXURAL RIG

The floxural strength (cross breaking strength) of the laminates was measured both at room temperature and at elevated temperatures on the same apparatus (Figs.11 and 12). The conditions of testing were governed by B.S.2782, Part 3, Method 304b, and by A.S.T.M. Specification D.790.59T.

The specimen is placed across the two supports and the load is applied across the centre of the specimen by means of a piston actuated by a normal factory air supply system. The loading rate can be varied by means of the regulator valve so that the specimen will break within 15 to 45 seconds of applying the load. A maximum load pointer shows the exact breaking load recorded through the load gauge.

The actual procedure is as follows :-

- (a) Specimen is placed across the two supports.
- (b) Open main air supply tap.
- (c) Leave tap A open and close tap C.
- (d) Tap D should be open to the atmosphere, while tap B is closed.

(e) The regulator tap is slowly opened and the piston forces the plunger onto the load cell, which is connected to a gauge showing the load being applied, while the regulator gauge only shows the air line pressure.

(f) When the specimen broaks, taps B and C should be opened, and tap D is closed. The piston will then return to the top of the cylinder. The breaking load is recorded on the load gauge.

(g) The regulator value is turned off and the broken specimen removed. During elevated temperature testing the load cell should be removed from the top of the loading plunger, as heat affects the instrument.

Flexural strength =
$$\frac{3SL}{2BT^2}$$

S = Span between the supports.

L = Breaking load.

B = Width of specimen in inches.

T = Thickness of specimen in inches.

- 14 -

TABLE 1

.

8

reao tants
8
Toights
1
resin
s tage
second
and
Pirst

		Pirst	ät				Secon	Second stage resin	resin			
Reactants	Moles .	Ratio N.V.	Moles Ratio Wgt.used Moles Ratio Wgt.used Moles PRatio Wgt.used Moles Ratio Wgt.used ratio M.W. (grams) ratio N.V. (grams) ratio M.W. (grams) ratio (grams)	Moles ratio	Ratio N.V.	Wgt.used (grams)	Moles ratio	•Ratio M.W.	Wgt.used (grans)	Moles ratio	Ratio M.W.	₩gt.used (grams)
Terphenyl (Santowar R)	0-1	920	3533	10	23/0	3533	- 10	2300	3533	10	2300	3533
2. Xylylene dichloride	ۍ د	525	1997	11	1925	1925 2960	£	13 2275	34,90	15	2625	0£0†

If the entire batch of the first stage resin is used in the second stage, then 963, 1493 and 2033 grams of p. xylylene dichloride would be needed to change the ratio of 4:3 to 10:11, 10:13 and 10:15 respectively. Hence, for 900 grams of the first stage resin, 178, 276 and 375 grams of p. xylylene dichloride would be needed to change the ratio to 10:11, 10:11 and 10:15 respectively. Note:-

.

يرايا ومحمد ومروقي والمراجع المراجع المراجع المراجع المراجع

- 15 -

.

.

TABLE 2

· .

.

Hours	R.A.7	10:11	10:13	10:15
-	200°C	200°C	200°C	200°C
Nil 25 50 100 250 500 1000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$23,900 \pm 6,900$ $28,200 \pm 4,200$ $28,200 \pm 3,800$ $28,100 \pm 3,700$ $28,300 \pm 2,300$
2000 4000	16,300 ±1,500 < 3000	36,400 ± 8,600 30,900 ± 5,900	22,700 ± 8,100 20,200 ±11,000	22,500 ±4,600 17,300 ±3,500
-	230-240°C	230-240°C	240°C	240°C
N11 25 50 100 250 500 1000 1500 2000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$23,900 \pm 6,900 \\ 28,400 \pm 3,800 \\ 23,200 \pm 5,500 \\ 21,300 \pm 3,500 \\ 23,500 \pm 3,100 \\ 17,900 \pm 8,100 \\ 10,900 \pm 4,800 \\ 10,900 \pm 4,900 \\ 10,9$
-	300°C	300°C	300°C	300°C
Nil 5 10 15 25 50 75 150	38,200 ±2,900 33,000 ±4,100 38,200 ±3,100 25,700 ±5,600 < 3000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$24,600 \pm 8,300 \\19,900 2,300 \\26,000 \pm 2,600 \\21,300 \pm 9,500 \\15,200 \pm 2,500 \\< 3000$	$23,900 \pm 6,900 \\ 25,800 \pm 3,800 \\ 24,100 \pm 4,800 \\ 25,100 \pm 1,500 \\ 12,200 \pm 5,500 \\ < 3000$

Flexural strength of R.A.7 and three terphenyl laminates of different ratios at room temperature after agains at elevated temperatures

TABLE 3

Hours	R.A.7	10:11	10:13	10:15	
	200°C	200°C	200°C	200°C	
1 25 50 250 500 1000 2000 4000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$14,400 \pm 3,300 \\21,600 \pm 3,600 \\22,100 \pm 3,100 \\19,500 \pm 4,100 \\20,600 \pm 4,100 \\21,700 \pm 4,200 \\23,000 \pm 3,700 \\17,400 \pm 1,500$	
	2 30-2 40°C	230-240°C	240°C	240°C	
1 25 50 100 250 500 1000 1500 2000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 11,900 \pm 4,200 \\ 16,800 \pm 3,000 \\ \hline \\ 15,500 \pm 2,100 \\ 16,900 \pm 1,600 \\ 20,100 \pm 2,000 \\ 18,800 \pm 2,600 \\ 11,800 \pm 2,900 \\ 8,400 \pm 3,500 \end{array}$	
	300°C	300°C	300°C	300°C	
1 5 10 15 25 50 75 150	38,800 ± 2,700 36,200 ± 4,300 32,700 ± 1,500 25,700 ± 2,700 < 3000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$13,450 \pm 5,150 \\11,400 \pm 5,400 \\-9,600 \pm 3,500 \\10,500 \pm 2,600 \\-9,000 \pm 1,700 \\< 3000$	

Flexural strength of R.A.7 and three terphenyl laminates of different ratios at elevated temperatures after ageing at that temperature

.

.

.

,

.

.

.

•

.

.

TABLE 4

		Densi	ty grms/o		Res	in conte	nt %
Temperature	Hours	10:11	10:13	10:15	10:11	10:13	10:15
200°C	N11 250 1000 2000 4000	1 •48 1 •48 1 •49 1 •49 1 •52	1 • 49 1 • 52 1 • 48 1 • 53 1 • 55	1 • 49 1 • 49 1 • 51 1 • 53 1 • 49	49•5 47•7 48•0 47•4 44•4	49·5 50·0 50·5 47·5 49·5	49 • 5 51 • 0 53 • 0 52 • 5
230*- 240°C	N11 250 1000 2000 4000	1 •43 1 •46 1 •47 1 •47 -	1 •49 1 •49 1 •52 1 •41 1 •29	1 • 49 1 • 48 1 • 48 1 • 39	46 •8 47 •8 45 •0 39 •2 -	49 • 5 49 • 5 44 • 0 37 • 5 35 • 0	49•5 48•5 45•0 41•0 31•0
ر 300°c	N11 50 75 150	1 • 38 1 • 37 - 1 • 28	1 •49 1 •45 1 •31 -	1 • 49 1 • 46 1 • 34 1 • 06	48•4 44•2 31•7	49•5 44•2 39•0 -	49•5 45•2 42•5 24•0

Density (grams/c.c.) and resin content of asbestos laminates bonded with terphenyl resins in three different ratios

•Note:- The 10:13 and 10:15 were aged at 240°C, whereas the 10:11 were aged at 230-240°C.

TABLE 5

.

Flexural strength of 10:11 ratio terphenyl/asbestos laminates after immersion in 40% solution of strong alkali

Hours exposure		ydroxide temp.		hydroxide temp.	Sodium h at 5	ydroxide 0°C	Potassium at 5	hy droxide 0°C
N11 100	32,900	+3 300		p.s.i. ± 4 ±1,200	,900 26,900	±1,900	26,800	±100
500	37,300	±3,300 ±3,500	32,500	±9,400	29,400	±2,800	34,700	±1,400
1000 2000	34,500 28,900	±3,200 ±1,600	34,800 28,700	±2,600 ±5,700	29,300 29,800	±2,700 ±3,800	30,200 27,900	±1,000 ±1,200
4000	27,000	±300	29,800	±2,400	31,800	±1,500	27,900	±560

TABLE 6

Flexural strength of 10:11 ratio terphenyl/asbestos laminates after exposure to gamma radiation, tested at room temperature and at 240°C

Dosage	Room temperature	240°C
Nil 10 megarad 100 " 500 "	$\begin{array}{rrrr} 26,700 & \pm 4,700 \\ 26,700 & \pm 4,000 \\ 28,000 & \pm 1,700 \\ 27,000 & \pm 1,700 \end{array}$	$\begin{array}{r} 17,000 \pm 2,500 \\ 23,200 \pm 900 \\ 23,700 \pm 1,800 \\ 24,000 \pm 1,400 \end{array}$

7 EURIC


Rexurel strength of 10:11 ratio terphenyl/glass leminates after againg at 240°C

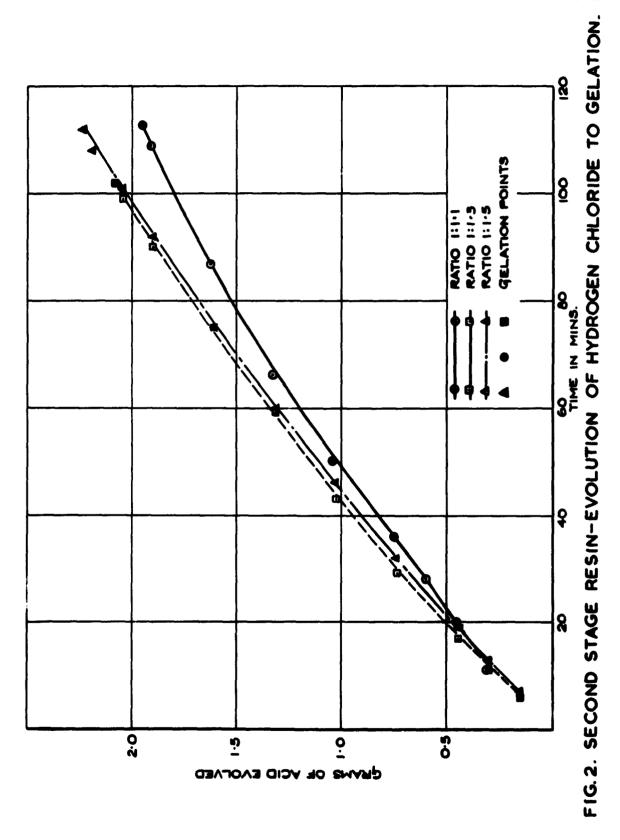
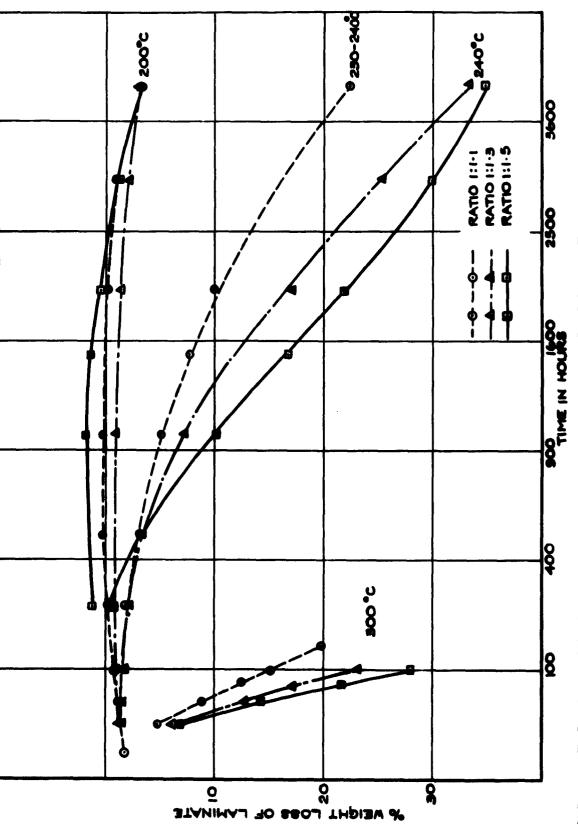

Cloth finish	Æ	5	~	717	NOL	NOL-24
Hours at 240°C	R.T.	240°C	R.T.	240°C	R.T.	240°C
ቜፚ <u></u>	39,200 ±3,000 38,200 ±4,300 32,300 ±1,900	17,900 ±1,800 34,100 ±5,500 39,300 ±1,200 37,400 ±1,700 24,300 ±500	4,6,4,00 ±2,000 4,0,600 ± 900 35,500 ±4,000	20,500 ±5,900 28,300 ±1,900 34,500 ±1,500 34,500 ±2,400 28,200 ±2,400	50,100 ±7,100 44,400 ±6,900 4.0,100 ±8,100 -	10,100 ± 4,100 25,700 ± 6,300 28,000 ± 8,700 29,300 ±12,300 29,900 ± 3,200

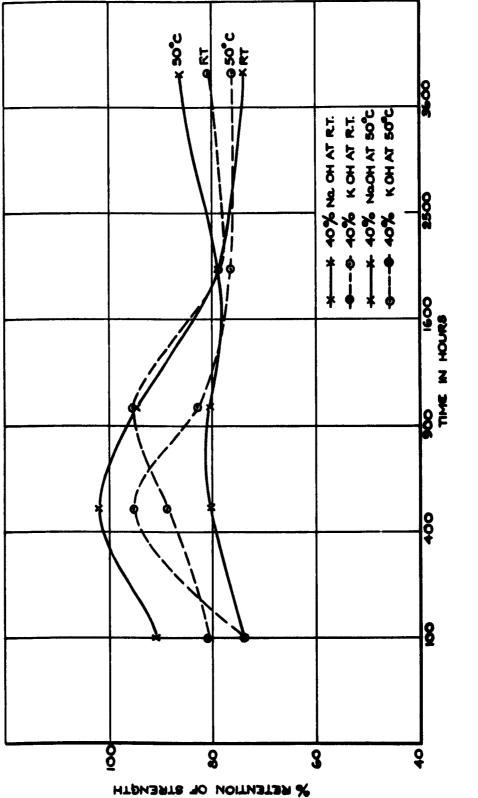
TABLE 8

Percentage weight loss of 10:11 ratio terphenyl/glass leminates at 240°C, with the initial density and resin content

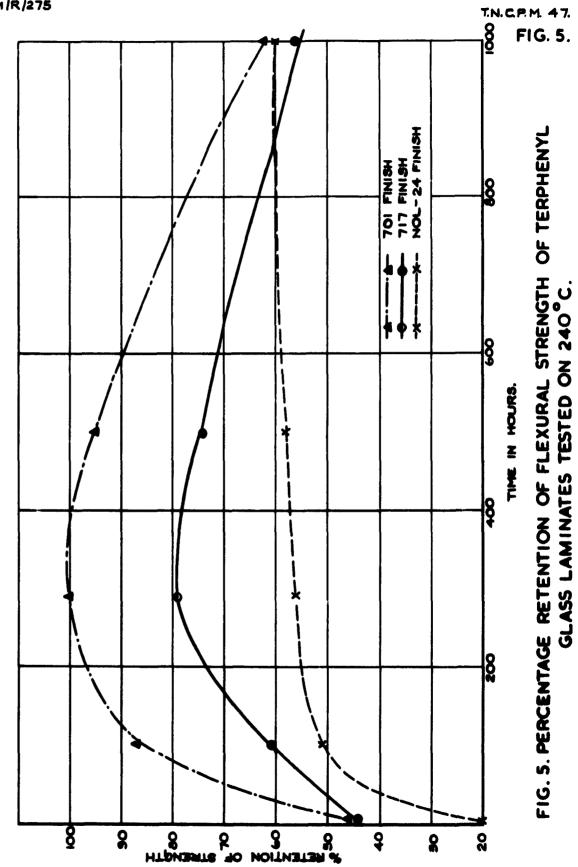
Hours at 240°C	5	717	NOL 24
5	09-0+	÷0•35	+0-51
	+0.51	+0.32	09.04
	20-0+	89 9	67-0+
	800	<u>ب</u>	10-0 1
	-3-61	-3•16	-1.96
Initial density Initial resin content	1-61 gran/co 30-3%	1.59 grms/00 31.2%	1.59 gras/00 28.65



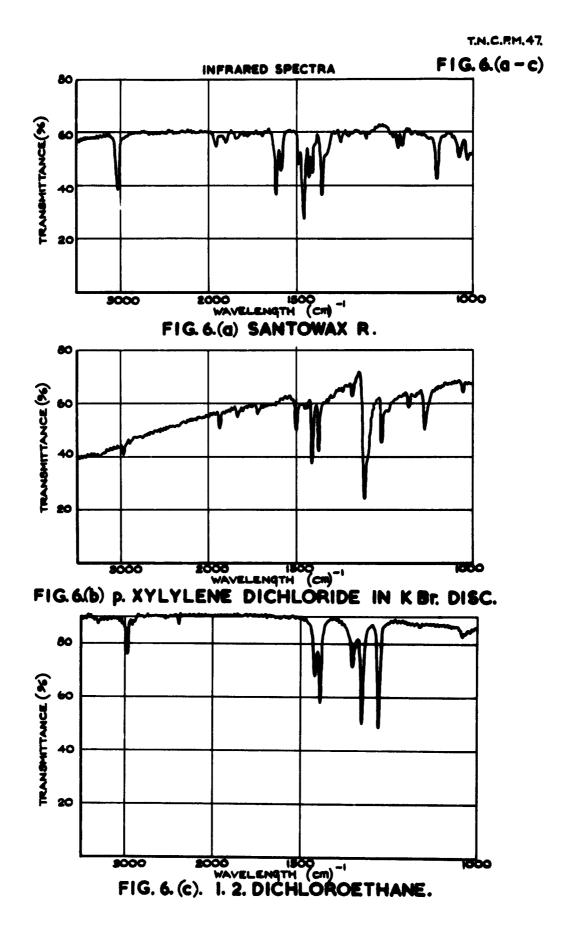
F IG. 2.


T.N. C.P.M. 47

•


T.N. C.P.M. 47. FIG. 3.

т.н. с.р.м. 47 FIG. 4.


FIG. 4. PERCENTAGE RETENTION OF FLEXURAL STRENGTH OF TERPHENYL

LAMINATES AFTER AGEING IN STRONG ALKALI.

**

CPM/R/275

CPM/R/277

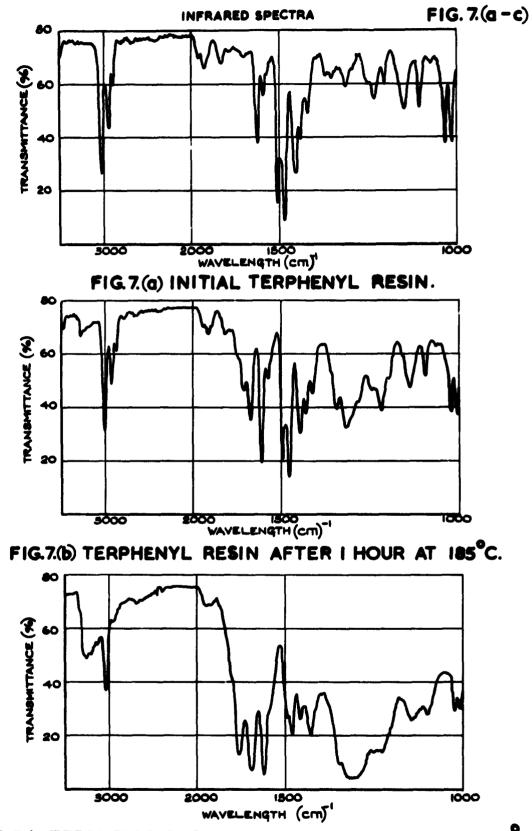


FIG. 7.(c) TERPHENYL RESIN AFTER FURTHER HOUR AT 300°C

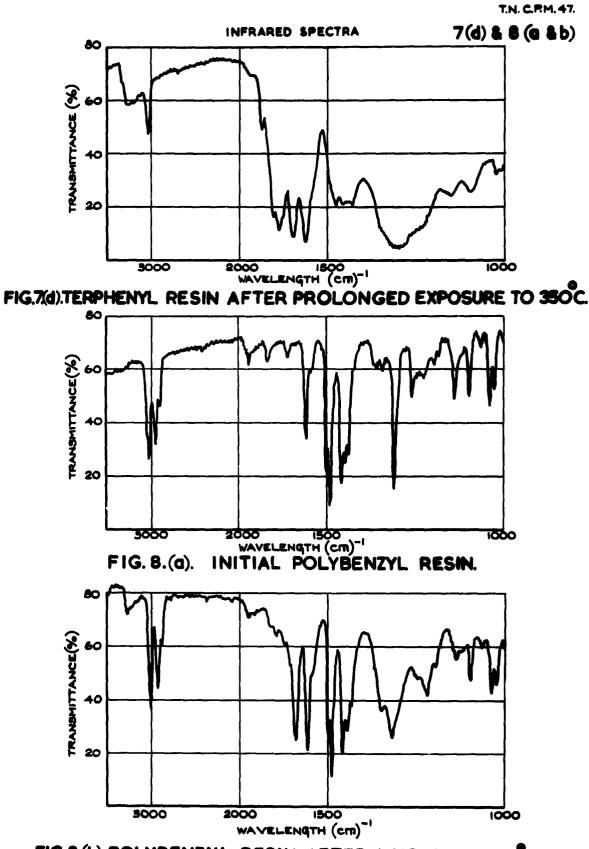
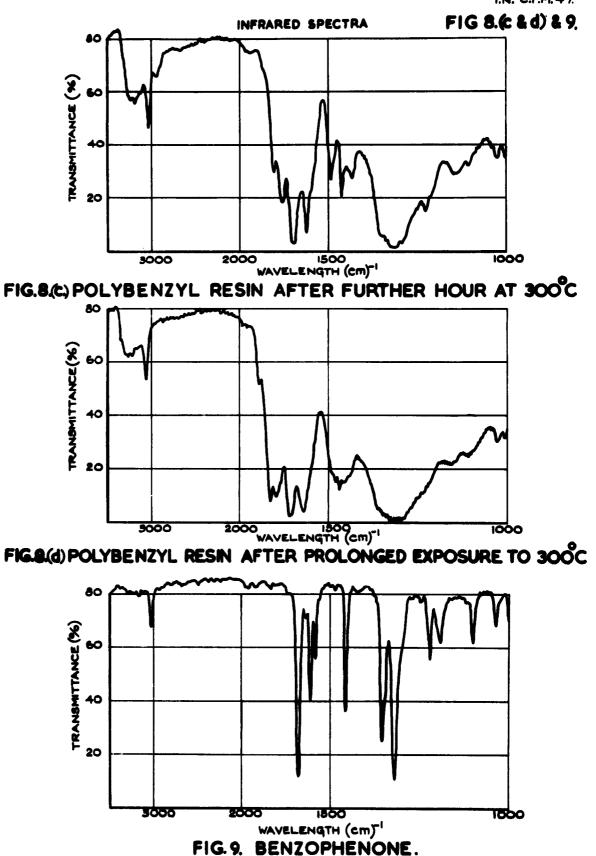
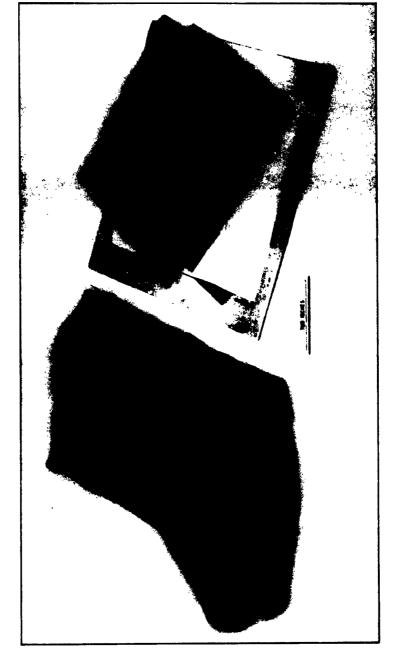



FIG.8.(b) POLYBENZYL RESIN AFTER I HOUR AT 185 C.



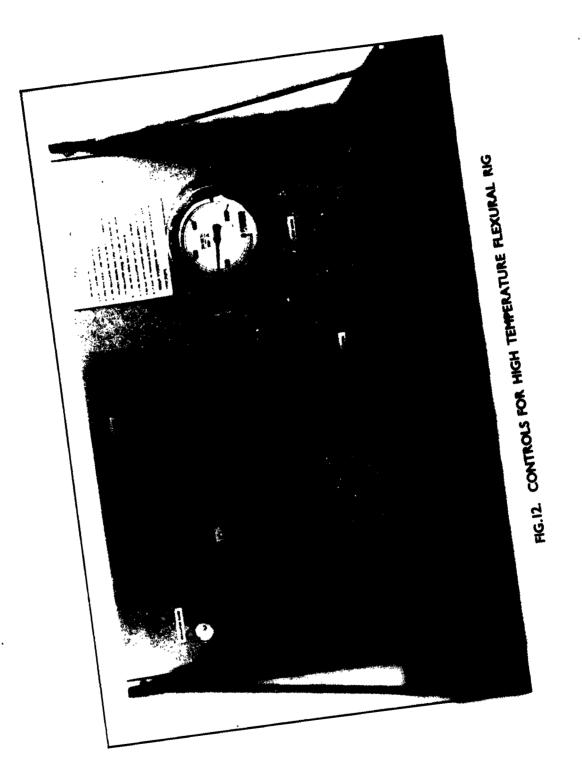


FIG.II. GENERAL VIEW OF HIGH TEMPERATURE FLEXURAL NG

R.A.E. 14895 63

TECH. NOTE: CPM 47 FIG.12

EAE WIN G

Podmical Note No. CPL47 678.55.342 1 Ropul Airweit Bochildment 678.5-419	2 : Technical Note No. CHLA? Nepul Airwrdt Botablidaunt	674.653.5.342 : 674.5-419
BOR FUBLIA, MOMENIE OF TRAVENIA. NEUR BORD LARGAND. Minne, B. Bronder 1980.	ade publical portatile of timelity main same lutilate. Hime, 3. December 196.	utome.
The production of hest resident thermometting ratins haved on throught and p. stylene dishiprids in verious ration is described. The strength of the imminutes much from these resins is shown not to differ greatly and it is emcladed that the cross-limiting density remains the m for the three ratios investigated.	The production of heat resident: thermeeting resins based on The terphonyl and p. Nyjama dishlarids in various ratios is described. The strength of the luminates much from these resins is shown not to differ a much greatly and it is concluded that the cross-limiting density remains the ass for the three ratios investigated.	retins based on the described. The moun not to differ maity remains the mean
The resistance of adheston luminates to gumma radiation and strong alkall is investigated, together with sume proliminary strongth tests on glass reinforced luminates.	The resistance of advances instantes to genes reduction and strong alimit is invertigated, together with sum proliminary strongth tests on gives relatived logistics.	distion and strong ry strength tests on
Infrared spectrophotometry shows that the multipleme groups within both terphonyl and polyhomayl rusins are oxidised during ageing at elevated temperatures. Multiplementary	Noth Infrared spectrefectuatory down that the multiplene groups within both terpinent and polybeaugh resins are oridized during ageing at cleveted temperatures. Wether Prip	lete graups within both Geing at cleveted
Technical Note No. CPL/7 678.63.5342 : Royal Atrunut Becallidame	2 : Technical Note No. CRL47 Reput Airwart Boublidment	678.653.5242 : 678.5-419
ADE PUBLICAL MARETINE OF INDUMER. METH JOIDED LABOATIN. Jittur, 3. – Doomber 1963.	BOR MUCK, MONTING OF THERE MERINDOND LARGEN.	ADIAS.
The production of hest resistant thermometting restna based on terphony: and g. ztyphene dishibids in verices ratios is described. The strength of the insinctes much from these resins is shown not to differ greatly and it is concluded that the cross-limiting density remains the m for the three ratios investigated.	The production of heat resident thermosticing resins hased on the terryheat and p. styldame dishipride in versues ratios is described. The privacity and it is concluded that the even-limiting density remins the sees for the three ratios investigated.	reths based on os 1s described. The mom not to differ modity remins the see
The redistance of adverse laminates to guess redision and strong alkali is investigated, tegether with some proliminary strongth tests on glass reinforced laminates.	The recipitons of advector luminates to guars reduction and strong alkali is invertigated, together with sums proliminary strongth tests on glass relatived luminates.	ettetion end strong 17 strongth tests on
Infrared spotrophotometry shows that the methylene groups within both terphenyl and polynemyl resime are oxidized during againg at elevated temperatures.	och Infrend gestrefnörmery aben that the mitgene groups within both terfangi and polysangi redne are stidlard daring aping at slavated temperatures.	dene groups within both apping at elevated

These abstract cards are inserted in Reports and Technical Notes for the convenience of Librarians and others who need to maintain an Information Index.

•

•

•

.

4

•

dstl

Information Centre Knowledge Services [dstl] Porton Down Salisbury Wihs SP4.0.10 22060-6218 Tel: 01980-613753 Fay 01980-613970

Defense Technical Information Center (DTIC) 8725 John J. Kingman Road, Suit 0944 Fort Belvoir, VA 22060-6218 U.S.A.

AD#: AD436345

Date of Search: 13 August 2008

Record Summary: AVIA 6/17494

Title: Properties of terphenyl resin bonded laminates Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years Former reference (Department) TECH NOTE CPM 47 Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967.

The document has been released under the 30 year rule.

(The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.