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ROYAL AIRCRAPT ESTABLISHMENT

THE LONG-PERIOD MOTION OF THE PLANE OF A DISTANT
CIRCULAR ORBIT

by
R. R, Allan and G, E, Cook

SUSURY

We consider Earth satellites in the region where the perturbing effects
due to Earth's cblateness and luni-solar gravitational faorces are oampersble,
A general solution is obtained for simultansous precession sbout any mmber of
fixed axes; this is an extension of Laplace's treatment for the motion of
Iapetus about Saturn, Results arec given for general orbits on the assumption
that the lunar orbit lies in the ecliptic., Synohronous orbits are oconsidered
in greater detail,
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1 INTRCODUOCTION

The main perturbations for a relatively distant Earth satellite are due
to the RBarth's cblateness and the gravitational attraotions of the Sun and Moon,
We oconsider satellites at distances of a few Earth radii, where the effeoct of
the Earth's cblatensss is of tho same order as the effects of the distant
bodies, This range covers a major rogion of interest for conmunication
satcllites, Two aspects of this problem have alroady been considered by the
authors aeparately1’2, and the present work gives a more completec solution of
the general problem,

The classical problem of this type conoorns the motion of Iupet'.us3 which,
apart fram the very distant and retrograde satollite Phoobe, is the outermost
satellite of Saturn, The perturbing foroe due to thc oblatenoss of Saturn
(suitably modified to inolude the attraotion of the rings and the imner
satellites) is ocomparsble with the perturbing foroe dus to tho gravitational
attraction of the Sun, By itself the former would cause tho satellite's orbital
plane to precess around the axis of rotation of Saturn, while the latter by
itself would cause the orbital plane to preocess around the pole of the orbit of
Saturn, The motion of Iapetus, which is a ocombination of siultaneous preces-
sions about two different axes, was first considercd by Laplace’ and later
disoussed in considersble dotail by Tisseranmdd,

Wo take the disturbing function to include the second somal harmonioc of
the Earth's gravitatiomal potontial and the lowest arder term, i,e, the seocond
harmonic, in the expansion of each of the solar ard lumar diaturbing fumotions,
We consider only initially oiroular satellite orbits and, sinoce the secord
harmonic has no secular effect on the eoccontricity of a ciroular orbit, the
orbits will romain oircular throughout, In faot the highsr harmonios in the
Junar disturbing funotion becomo more important as the orbital redius ingresses,
and their neglect sets an upper limit to the radius of the satellite oxbit for
which the theory is applicable, especially since the parallactio term (thinrd
harmonic) 'mty :chhmge the eooen&icitybof a omiro\d.ar oiz‘:it. A small m:nithl
eccentrioci 8 as be built y the tic term, may TOAS0
rapidly if the orbit is sufficiently largeb, ’

The disturbing funotions arc averaged amalytically over the mean anomalies
of both the satollite and the disturbing bodies, For this procedure to give a
good representation of the satellito's motion, the period of the prodioted long-
period motion of the arbital plane should be reasonably long oompered with the
periocds of the disturbing bodios,

As a rosult of tho limitations disoussed in the last two paragraphs our
treatmont is most useful for satollitos at distances between about 3 and 10
Earth radii,

The perturbing effeot on the motion of a satellite about the Barth due to
the gravitatioml attraction of a ﬂurd.bod.yofmlmd (J=1forSun j=u2

for Moon) is given by the aisturbing funotion

pd {l£ - £3|-1 - r'f(; . E.J)} ’ (1)
-3a
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where r, r 4 are the positions of the satellits and the disturbing body relative
to the Earth, ard By= &nd. We assume r << :n:':l and retain only the lowest-order
term in the expansion of this disturbing funotion in powers of r/v 3 vis,

2
::BLPZ(OO'GJ) = Eg{%&.ad)z_%rzrg}, (2)
J J

where 6 3 is the angle between r and £J' Including the second harmonic in the
Earth's gravitational potential, the oomplete disturbing function may be written

5 g2 - 2
U = = %&PZ(OOI Oo) + >—‘ h;;d‘_rz(ou ed) . (3)
J=1,2

Here p = Gm, where m is the mass of the Earth, J, is the ooeffioient of the
secord zonmal harmonic, Ry is the mean equatorial radius of the Earth, and eo
is the angle between r and the polar axis of the Earth,

For the long-period motion it is permissible to average the disturbing

funoction over the mean anomalies of the satellite anmd of the disturbing bodies,
Bquation (3) is first written in the form

w, Ri N B
U = -—22;5-[3(;.1_10)2-1-2}+3;2;3-3-{5(;.55)2-35‘5}, )

where 30 is a unit veotor along the Earth's axis, To average over the mean
anomaly ¢ of the satellite the following integrals will be used (of, lﬁuen7).

ﬁ;j‘ ;1356- = m. (58)

b 3
=/

[+)

.’\nl_.

Lrd = mg-w. (50)
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2%
. f U = ;2(14»%02), (6a)
[}

& = %a2{<1+u2)22+(1-e2)99}. (6v)

':\!1"
o,
Co (%]
A
(L]

where a, ¢ are the semi-major axis and ecoentriocity of the satellite's orbit,
adl P, Q, R are the matural unit vectors associated with the satellite arbit,
with P along the positive normal to the orbital plane, P in the orbital plane
in the direction of perigee, and Q =R . B, 1 is the idemtensor. Equations

(5a,b) may easily be verified taking the true anomaly as the variable of inte-
gration, and equations (6a,b) by taking the eccentric anomaly, It is immaterial
in what order the double averaging is performed, amd it proves rather simpler to
average first over the mean anomalies of the disturbing bodins using the
analogues of (5a) and (5b) so that the singly-averaged disturbing function may
be written as

J, RS —
v -“z;“{s(;.go)z-rz}-z‘ZW{s(;.gg)-ra}, (7

where &, 6, are the semi-najor axis ani ecoentricity of the orbit of the i
disturbing body, and BJ is the unit vector normal to the orbital planec, i,e,

.13,1 1lies along the pole of the ecliptic amd 52 is normal to the lunar oarbital

plane,

After taking the average over the mean anomaly of the satellite using (5a)
to (6b), the doubly-averaged disturbing function takea the form
2
U a na”U*, (8)

where

Ut o (1 - ‘2).3/2 {7}@_ LR -}}

+ ;:2 vy #1 - 02)(3 . &J)z + o2 {1 -2‘ @. 33)2}] s (9)

where n is the mean motion of the satellite, and
- 5 -
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nJ 4T
w, = -n—z'f}i,wd - —T—Jm . (10)

m3(1 - od)

The semi-major axis a and the mean motion n are oonstant in the long-period
motion, and they have been freely inocorporated in (10), In writing () we have
used the tensor identity

PE+QQ+RR = 1,

and dropped an irrelevant constant term fram the luni-solar pert of the
disturbing funotion,

If we choose a particular reference plane, we oan express the disturbing
funotion in terms of the corresponding elements e, i, 0}, w and give the Lagrange
esquations for their variation, However this prooedure is necessarily very
oomplicated if the two disturbing arbit planes are taken as distinot, and it is
muoch simpler to use veotorial elements which are not tied to any partioular
frame, The veotorial elements are taken as ¢ and h defined by

¢ = 6P, and b = (1-.2)*3, | (11)
so that
e.h =0, and g+} a1, (12)

In terms of th elements the Lagrange equations take the oompact amd

symmetrioal £
P X
(43)
s = o3 sn-¥

where U* = U/na’, From (9) the disturbing funotion U* may be written in terms of
these elemonts as

Ut . w, {&(1 - 02)-5/2 G&. 50)2 -301- 02)-3/2}
. Z ud{im.gd)2+oz-§(;.3_3)2}. (14)
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From (13) and (14) the equation for h is

h o= -u1- 02)-5/2 (@.R)E, - b)

-) e r_zjxaa.ww}: oye s )@~ 9 . (15)
3=1,2 . J=1,2 .

It is obvious from the form of U* that 3U*/3e vaniches for e = 0, so that §
must un:;.lh for a oircular orbit (with our assumptions regarding the disturbing
function),

We now consider only circular satellite orbits, setting e = 0 in (15) and
replacing h by R, so that we can write

2

R - -Z;%@. R)@®, -~ B) . (16)

If only one of the terms on the right hand side of (16) were present, the
normal to the orbit R would simply regreas around the appropriate 3.‘) at a
constant rate w008 Yy, where Yy is the angle between_l‘;uﬂgj. The rate of

precession is sero when y 5= 90°,

For a distant Earth satellite the motion of the orbital plane is a oom-
bination of rates of procession about three different axes, Moreover the lunar
orbital plane is inclined to the ecliptic at 5°9' and is itself regressing
about the pole of the ecliptic with a period of 18.6 years, It is usually
adequate to approximate by assuming that the lunar orbit lies in the ecliptic,
or alternatively by taking & mean position for the pole of the lunar orbit if
the time interval of intercst is short,

3 GENERAL SOLUTION FOR ANY NUMBER OF FIXED AXES

We shall show that equation (16) can be solved exactly for simultaneous
precession about any mmber of fixed axes, However we first oonsider the simple
approximation of assuming that the lnglcl'yd between R and the various axes R
are all small, This roquires that the axes R 4 themselves must be close together,
which is approximately trus in practice since R and R, are inclined at 23°,

R, ard B, at 5°, and R and R, at between 18° and 28°, If the various cosine

factors (R . _13'3) = cos v, aro simply replaced by unity, equation (16) becomes
ga - 5 zo R ’ (17)

-7-
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where

iR = >.., R (18)

and _i_ is a_unit veotor. Then R regresses at a constant inclination around the
mean pole R with the precession velooity &,

To cbtain an exact solution of (16), we note that the equation simplifies
considerably if it is referred to the principal axes of the symmetric tensor
) 3 ,R_J 3_3 « Altornatively ono can ask whether thors are any positions where R

will remain at rest, In faot R will vanish if thc scalar product of R with the
tensor either vanishos or is a multiple of R, In either case R is an ocigen-
vector of the tensor, i,e,

(2w,BRj=21) .R = O, (19)

where { is the idemtonsor, amd A is tho oigenvalue,

To obtain an idea of the magnitudes involved, the eigenvalues have beon
evaluated using the spproximation that the lunar orbit lies in the ecliptio,
i,e, that 32 ocoincides with R,, The R 4 are first reforred to a right-handed

system of equatorial axes with one axis towards the vernal equinox, The
components of R are (0,0,1), while those of R, are (0, -sin ¢, cos &), ¢ being

the cbliquity of the ccliptio, Then, if we set TREPE w*, the eigenvalues
are the roots of the equation

-\ 0 0
(o} w‘uinzc-'h ~»* sin ¢ cos ¢ = 0,

0 ~w*sine cos ¢ 0°+U‘OOI2¢-7\.

We label the eigenvalues k1, ).2 uﬂ)\’ and arrange them in the order

k, >N 7\1. The suffixes 1, 2 and 5 usod here for the eigenvalues, amd later
for the principal axes, have no comnexion with the suffixes 1 and 2 used for the
Sun ard Moon, Ve find

1 =
A
7\3 = 3, + )3 {{?ﬂo N b w* li.nzc}i .

The values of Wor Uy and uy and the eigenvalues 12 and ).3 are plotted as functions

of q/hx in Mg.1. 8
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The directions of the corresponding principal axes are readily discovered
from .(16), That corresponding to the eigenvalue gero is olearly perpeniicular
toR and R,, i.e, 1t is direoted towards (or away fram) the vernal equinox,

Therminingtwoprimipalmalieinﬂxeplamdgoud&'. If a is the

angle between R and the principal axis corresponding to A, (or 12), we have
tan 2a = w* sin 2'/(“0 + W* cos 2¢8) .

The orientation of the principal axes 0123 is shown inoidentally in Fig.3, and

the value of the angle & is given as a function of a/Rp in Mg.2,

Assuming that, in the general case, we have found the principal axes 01,
02, 03 and the eigenvalues A,, ), Mg, equation (16) becomes in scalar form

)
x, = (A, - 13) x5 X, ;\ (20)

where x,, X, x; ure the components of R along the principal axes, MNultiplying
each equation by the correspording x j and adding, we have

x1x1+12!t2+:513 = 0,
which merely leads to the known condition that R is & unit veotor:
2 2 2
e e xR o=, (21)
On the other hard multiplying each equation by M 3 xd and adding gives
Ay x1x1+).2:2x2+132533 = 0,
which yields the non-trivial integral
2 2
k1x1+7\2x2+).3i§-1°, (22)

where A is & constant lying between A, amd A;, from (21).

-9 =



Technical Note No, Space 52

The integral (22) can be fourd without diagonalising the tensor, in two

other weays, Tirst, multiplying (16) scalarly by y uk(g . -P&) R gives
4
k

}: “@.B)&.8) - Z w,uk@.ap@.g‘)gygy.gk} :

k Jk

The right-hand side of this equation must vanish since it is anti-symetrio in
J and k s0 that we obtain

}_‘,03(5. 3_3)2 - y«’d oooayj - A, (23)

which is the form in which the integral is given for simultansous precessi
about two different axes in the classicel problem of the motion of Iapetus’,

Secondly, we note that the doubly-averaged Hamiltonian of the system is
H = «(u/2a) - U, If the axes R, are fixed, then K is independent of explicit

time and must be a constant of the motion, Sinoce a is also a constant of the
long-period motion, U itself must be constant, Using the knowledge that an
initially oircular orbit remains circular, we recover the integral (22) on
setting ¢ = 0 in (9).

L NATIRE OP THE MOTION

The equations (20) are similar to the Euler equations for the motion of a
rigid body under no foroes, and corresponding results can be derived for the
nature of the motion and the period, Ve recall that the eigenvalues are
arranged in the ordark,> Ay > Ay amd tlatho nolbomon'}.1 ud'hg. In

[ ]

Practios \; is much greater than the other two eigenvaluss (see Pig,1

Equation (22) gives a one-parsmeter family of ourves on the unit sphere which
are the possidle trajeotories of the pole R; the initial position of the pole
determines the value of )'o' The motion is periodic, amd the trajectories

divide into two types depending on wheothor )‘o is greator or less than 7\2.
Case (3): If Ay > A > %y, (21) and (22) cannot be satisfied simultaneously

ir x, = 0, 80 that the pole R can nover attain or oross the plane :5 = 0,

Mzsmwuif12>k°>7\1, the pole can never attain ar oross the
phmx1-0.

-10-
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Eliminating x, botween (21) amd (22), we f£ind
(rg - xa)x"; -\, - A, )xf « (A, =2, (2»)

so that, on setting A o™ )‘2’ the bounding ocurve between the two types of
trajectory is the intersection of the pair of planes

x}/x1 = * g‘g - x1)/(x5 - xa)f (25)

with the unit sphere, The half-angle betwoen the planes is plotted (under the
legend x/2 - $,) in Pig.2 as a funotion of a./hn.

An idea of the shapes of the trajectories is given by their projections
on the coordinate planes; eliminating x; and x, in turn from (21) and (22) we

find

(g =255 + (g =208 = (ag =2) (26a)

(a, - l,)xg + (Ag - k,):% = (g =1,) . (26v)

For 7\3 > "o > Ay, the trajectory encircles the axis 03, and its projesotion on
012 is an ellipse of small ecoentricity (assuming A3 3> Ay ).1). Likewise for
7\2 > xo > 7\1, the trajoctory oemoirclos the axis 01, and its projection on 023
;.;‘ u}; ellipse of large eccentricity, Trajectories of the pole R are shomn in

Laplace considered the case where the polc of the satollite orbit is very
near the prinoipal axis 03, when the trajeotory on the unit sphere is very nsarly
a oircle around the pole 03, - This is equivalent to Laplace's result, which is
that the satellitc orbit regresses at nearly constant rate and inolination on the
proper or Laplacian plane which is hers simply the coordinate plane 012,

5 PERIOD OF OSCILIATION
Using (26a) ard (26b) to eliminato x, and x; fram the second of (20), we

% = ¢ ng “ng) = (ag - xz)xg]*{xo “7) = (- 11)::2}ir .
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The quartor-poriod of the osoillation is given by inverting and integrating from
X, = 0 to X, = 0; tho upper limit as & funotion of x, depends on whether

A . ).2 or not, For instance if \ 0 )‘2' the upper limit of integration is
determined by tho first square root, and the period of a camplete oscillation is

v
-+ 1
{(x, -2 ), = x1)] [ (1= xg/v$>’* (1 - ,g/vg)‘* ax, ,
[}

where R YRRV V(WS VI

Vg = (ko - 7'1)/()~2 - M') .

and

The transformation X, =V, sin ¥ reduces tho above to the standard form
x/2 ’i’

O -7,2)'1’ (g - x1)"}f (1 - ¥ sin®y) &y,

°

where
E . v‘:'/vg = {("5 -2)0, - x1)}/{(x3 - W), - 7\1)} ,
so that
T = z.(x_,, - xa)'* (x; - ).1)"’" K(k), A > Py (27a)

where K(k) is the complete elliptic intogral of the first kind, As & o
approsches its upper limit XB’ the trajectories shrink towards the stationary

point on the axis 03; k tends to sero, and the period tends to & limiting value
which we will call T}, given by

T, = 21:()‘3 - )"lr (x3 - Az)"l’ ’ (26e)
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since K(0) = /2, On the other hard as A, approaches Ay, k tends to 1, and the
period tends to infinity,

The period ocan be evaluated similarly for )‘o < xz giving
1 1
T m z,(x3 - xo)'f (, - x1)"" K(k'), A <y, (27)

where
S (WA ).1)}/{(1.3 - 30 = 2)].

As )'o approaches its lower limit 11, the trajectories shrink towards the stable

point on the axis 01; k' tends to zero and the period tends to the limiting

value T1 where

T, = 20, - \)E O - )2, (28v)

Pig. 4 gives the limiting periods T; and T, as funotions of o/Ry, aguin on the

assumption that the lunar orbit lies in the ecliptio (x1 = 0),
6 SINCHRONOUS ORBITS

For orbits with a period of one sidereal day (at a height s/RE = 6, 6108)
we have the following values

UO = h-900°/yr., 01 = 0.7380/31'0, “2 = 1.5110/71'-

e conslder first the approximation that the lunar orbit lies in the
ecliptic, so that the satellite orbit is subjected to simultansous precession
foroes sbout only two axes, the Earth's axis and the pole of the ecliptioc, .

If we take the sinplest approximation of equation (17), then the mean pole R
lies in the plane of R anmd R, at an angle of 7°33' from the Rarth's axis, anl

a 7.116°/yr. The shortest period, when R is very close to i, is 50,6 yr, If
the satellite orbit is initially equgtorial, the rate of precession is reduced
by the cosine of the inolination to R, and the period is 54,0 yr,

In the general treatment of Seotion 3, but still assuming the lumar orbit
lies in the ecliptio, the eigenvaluea are

A = 0, A, = 0,261%., Ay = 6,988%r.,
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and the principal axis 03 lies in the plane of go and _R,' at an angle a = 7%3:

to the Earth's axis, From (28a) the limiting value of the period when R is very
olose to 03 is 52,5 yr. On the other hend if the satellite orbit is initially
equatorial,

A, = 6.877° /., i = 6.26><1o'5 ,

and the period is 52,9 yr, Thus the simplest approximation of a mean pole is
remarkably asccurate for this case,

The period of the oscillation can be caloulated from (27a) amd (27) for
all possible trajectories at synchronous height, Since all trajectories
interseot the plane 013, a convenient parameter here is the angle ¢ between 03
and the intersection of the trajectory with 013, Setting

x, = sin ¢, x, = o, 13 = ocos ¢ ,

in (22) we have

2 2
7\0 = k1 sin¢+)‘soos¢.

The value of ¢ corresponding to "o = ).2 is denoted by ¢2 so that the half-angle
between the bounding planes between the two regions of motion in Fig,3 is %/2 - ¢,

(which has alresdy been plotted in Pig,2), PFig.5 shows the period of osoillation
as a funotion of ¢ for synchronous orbits,

The lunar orbital plane is not fixed in the ecliptic but is itself
regressing around the pole of the ecliptic with & period of 18,6 years at an
inclination of 5°9' to the ecliptic, PFor each position of the lunar plane it
would be possible to find the eigenvalues A, Xy, g ().1 4 0) and the Airections

of the princi; axes, but these are varying all the time, However it is simple
to integrate (16) numerically, and we have performed this integration for an
initially equatorial circular satellite orbit for four different initial posi-
tions of the lunsr plans, Since the polar ooordimstes of R with respeot to an
equatorial system arc i ami (Q-x/2), where i and N are the inclination and the
right asoension of the asoending no:ie on the equatorial plans, thess provide a
useful way of illustrating the results, We have given in Pig,6 a polar plot of
the coordinates 1 and (R~-%x/2) of the pole R, The four different curves refer to
the different initial oonditions given b f1' = 90° (July 1964), 0! = 0° (Maroh
1969), n' = 270° (Nov, 1973), 0' = 180 {Ju.ly 1978), where Q! {s the longitude
of the asoending node of the lumar orbit on the plane of the ecliptio measured
from vernal equinox, The symbols on the ourves mark the subsequent positions of
the pole R at intervals of 5 years from the launch date, In gensral the tra-
Jootory does not quite pass through the Earth's axis after one oircuit, and the
time of closest passage varies botween about 52,5 and 53,5 years,

-1l -
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The most significant feature revealed by Pig,6 is that the different
trajectories intersect after about 28 years, and again after about 56 yeers,
This arises from the near-cammensursbility of the period of lunar precession
é18.6 years) and the period of the motion of the satellite mbital plane

~52,9 years), It is possidble to give a perturbation treatment for the dis-
placement of the pole R from the position it would have if the lunar orbit lay
in the ecliptio, If the pole R is not too far away fram 03, there are two large
terms in the displacement with frequencies fi' ¢ u, where {i' is the rate of
regression of the lunar node on the eoliptic and w is a mean rate of precession
of R around 03, Numerically

Bt w = (19,34 ¢ 6,80)%yr. = 26,14°/yr. or 12,54°/yr.,

which gives periods of 13,8 years amd 28,7 years, Consequently the two large
terms in the displacement both vanish first after sbout 28 years,

7 c IONS

The long-term evolution of a circular satellite orbit at a distance of a
few Earth radii has been investigated, Only the leading terms are retained in
the disturbing funotion, which is averaged over the mean ancmalies of the
satellite, the 3un and the Moon, Neglect of the third harmonic in the lunar
disturbing funotion sets an upper limit to the radius of the orbit for whioh
the theory is wvalid, On the other hand the period of the predioted motion must
be apprecishly longer than a year for the double averaging procedure to be
Justifiable; this sets s lower limit to the orbital radius, For these reasons
the analysis is most useful for orbits at distances between 3 and 10 Earth

The motion oconsists of simultaneous preocession about the Earth's axis, the
pole of the eoliptic anmd the pole of the lunar orbit, and ocan be desoribed by a
general solution if those axes are assumed fixed, The motion of the pole of the
orbit is analogous to the motion of the instantaneous axis of rotation of a
rigid body moving under no forces, For a circular orbit of given sise, there
are three mutually perpendicular direotions in which the pole of the orbit will
remain at rest, two of which are stable positions, In general the projection of
the pole of the orbit on the unit sphere follows a fixed trajeotory which
encircles one or other of the two stable positions; in faot the unit sphere is
divided into two different regions bounded by a pair of planss through the third
and unsteble axis and the trajeotory must lie entirely in one or the other of
these two regions, In practice the larger region is the more important and the
ocorresponding stable position of the plane is the well-known Laplacian or proper
plans, The significance of the proper plane is that the pole of an orbit
inclined at a =mall angle to it will regress around the pole of the proper plane
at nearly constant rats and inoclimtion,

The analysis has been appliod to Earth satellites assuming the lunar orbit
lies in the coliptic, The inclination of the oProper plane to the egquator
inoreases from 0,19° at 3 Earth radii to 18,87 at 10 Earth radii, aml the semi-
angle between tho bounding planes reaches a maximum value of nearly 129 at about
7.7 Barth radii, as shown in Fig,2, As tho trajectory of the pole of the orbit
shrinks towards eithear of the stable positions the pericd deoreases to ons or
other of two limiting velues, For a given sigzo of orbit, the limiting value at
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the pols of the proper plane is the shortest possible period; this limiting
period attains & maximum value of about 70 years ncar 8,9 Earth radii as shown
in Pig, 4 The limiting period around the other stable stationary position
inoreases nearly lincarly with radial distance from 121 to 403 years between

3 and 10 Darth radii, :

Synohronous orbits have beon oconsidered in more detail, Tho period of the
long-term motion is given for all initial positions in Pig,5, and tho limiting
velues of the period are 52,5 and 267 years, The effect of the motion of the
lunar orbit on an initially equatorial orbit at synchronous height has been
fourd by numerical integration for four differcont initial positions of the lunar
orbit, i,e, fowr difforent launch datcs, and is illustratod in Pig,6,
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