
UNCLASSIFIED

AD NUMBER

AD436343

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Foreign
Government Information; DEC 1963. Other
requests shall be referred to British
Embassy, 3100 Massachusetts Avenue, NW,
Washington, DC 20008.

AUTHORITY

DSTL, DSIR 23/31496, 13 Aug 2008

THIS PAGE IS UNCLASSIFIED



UNCLASSIFIED4 34 3
AD _ _ _ _ _ _

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



B est
AvailIable

Copy



MVTOV: Vb= geInm or other iravimp, qel.
firniame ow other fttan suese fbi my pn'~sm
other thm In amsetlam with a Geftalft.y reUAte
am==" 1 " M tqpSU, the U. a.
owznmt -bff aImn. sono qamu~tys r aw

obSp.m Aeewerl -d the eat *at 09 fein.
=At my haebmtfriu or In mw aw
Mu"e the @at4 iaqeSttmes ow owhr
a" Is Wo toe xzs 1w ~II,~ ow oohr-
othe wum owinm ow ammwiqsi ieWrw a
ow pe e1o M14"to ineee uw oel w
No!e-Wea IMMO UM~ mwt ft o SWMW be low.
tbeltO.



TECH. NOTE TECH. NOTE

SPACE 52 SPACE 52

CZ0 TECHNICAL NOTE No. SPACE 52

THE LONG - PEIMOD
MOTION OF THE PLANE Of

'-Jc A DISTANT CIRCULAR ORUT
44-

by

R. R. Allan and G. E. Cook

DECEMBER, 1963

APR 2 3

THE REC!PIENT IS WARNED THAT INFORMATION
COiT.%.;,NL- hI THIS DOCUMENT MAY SE SUAXCT

TO PRIVATILY-OWN1D RIGHTS.

NO 0 r MINISTRY OF AVIATION. LONDON. W.C.2



U.D.C. No. 629.195.077.3 s 521.6 : 521.41

Toohnioal Note No. Space 52

December 1963

ROYAL AIRCRAFT ESTABLISHMENT
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SUY

We oonsider Earth satellites in the region where the porturbiqg effeot@

due to Earth's oblateness and luni-solar gravitational foroes are oqparalble,

A general solution is obtained for simultaneous procession about arW mber of

fixed a8xs; this is an extension of Laplaoe's treatuent fo the moetio of

Iapetus about Saturn. Results are given for general orbits on the assmmtioa

that the lunar orbit lies in the eoliptio. Synobronous orbits are oonsidered

in greater detail.
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i IMMUCtTIOtN

The main perturbations for a relatively distant Earth satellite are due
to the Earth's oblateness and the gravitational attractions of the Sun and Moon.
We consider satellites at distances of a few Earth radii, where the effeot of
the Earth's oblateness is of the mine order as the effects of the distant
bodies. 7his range covers a major region of interest for ommunioation
satellites. Two aspects of this problem have alraoy been oonsidered by the
authors separately1 ,2, and the present work gives a more oanploto solution of
the general problm

The olassical problem of this type oonoerns the motion of apetus3 which,
apart fron the very distant and retrograde satellite Phoebe, is the outermost
satellite of Saturn. The perturbing foroe due to the oblatenoss of Saturn
(suitably modified to include the attraotion of the rings anr the inner
satellites) is c mparable with the perturbing force due to the gravitational
attraction of the Sun. By itself the former would cause the satellite's orbital
plane to preoess around the axis of rotation of Saturn, while the latter by
itself would oause the orbital plane to process around the pole of the orbit of
Saturn. The motion of Iapetus, which is a combination of simultaneous prooes-
sions about two different axes, was first considered by Laplaoe4 and later
discussed in considerable detail by Tissera&S5.

We take the disturbing function to inoldue the second sonal hsrmonio of
the Earth's gravitational potential and the lowest order term, i.e. the seoond
harmonic, in the expansion of each of the solar and lunar disturbing functions.
We consider only initially circular satellite orbits and, since the seoond
harmonic has no secular effect on the eooontricity of a circular orbit, the
orbits will remain circular tbroughot. In fact the higher harmonics in the
lunar disturbing function become moe Important as the orbital radius inr ae,
and their negleot sets an upper limit to the radius of the satellite orbit for
which the theory is applicable, espeoially since the parallactic term (third
harmonic) will change the eccentricity of a circular orbit. A amll initial
eccentricity such as may be built up by tVe parallactic term, may increase
rapidly if the orbit is sfficiently largeo.

The disturbing functions arc averaged analytically over the mean anomalies
of both the satellite and the disturbing bodies. For this procedure to give a
good representation of the satellite's motion, the period of the predicted long-
period motion of the orbital plane should be reasonably long oampred with the
periods of the disturbing bodies.

As a result of the limitations discussed in the last two paragraphs our
treatment is most useful for satellites at distances between about 3 am 10
Earth radii.

2 DIBMWRIN FW!TIOK AM EZLTICI CV )ID!IC

The perturing effect on the motion of a satellite about the Earth due to
the gravitational attraotion of a third body of mass mj (j a I for Sum, j a 2

for Moon) is given by the disturbing funotion

-3-
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where ., rj are the positions of the satellite and the disturbing body relative

to the arth, a*x p u * G j. We assume r << rj and retain only the lowest-order

term in the eqansion of this disturbing function in powers of r/r,, vi.

i 3
2 (ooa e) r .LJ)2 *r 2 r 2 (2)a1

where 81 is the angle between r an r. Inoluding the seoonl harmonic in the

Earth's gravitational potential, the owhlete disturbing funotion may be written

x2 2~
UP2 ( 0) + P2(oos e.) . (.3)

J=1,2

Here I a Gmn, where m is the mass of the Earth, J2 is the coefficient of the

seoonl zonal harmonic, % is the mean equatorial radius of the Earth, ande 0

is the angle between r and the polar axis of the Earth.

Por the long-period motion it is permissible to average the disturbing
funotion ove the mean anamalies of the satellite and of the disturbing bodies.
Equation (3) is first written in the form

U. 2r [,Cr). 22) r 7- r . .L.{3( )2 - r2 r~ (4
j=1,2 J

where R a is a unit veotor along the Earth's axis. To average over the mean

anomly £ of the satellite the follwing integrals will be used (of. Mwen).

0f =a3(t 12)312 (5a

0 ra
I r d (5b)

0 r5 23(1 62)3/

-4-
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ft (6a),x J rr 2 a j + e P + leij
0 Ztcy .' I a2 [( 42 Z+,,0)_ q(b

where a, e are the semi-major axis and eooentrioity of the satellite's orbit,
ad , ) 1 R are the natural unit vectors assooiated with the satellite orbit,
with R along the positive normal to the orbital pl-a,, P in the orbital plae
in t direotion of perigee, and q = .. X. 1 is the Aamtensor. Equations
(5a,b) may easily be verified taking the true anomaly as the variable of inte-
gration, and equations (6&,b) by taking the eooentrio anomaly. It is imterial
in what order the double averaging is performed, ar it proves rather simpler to
average first over the mean anomalies of the disturbing bodios using the
analogues of (5a) and (5b) so that the singly-averaged disturbing function may
be written as

where aJ. ej are the semi-miaor axis and eooentrioity of the orbit of the 3th

disturbing body, and R is the unit vector normal to the orbital plano, i.e.
R4 lies along the pole of the eoliptio and _i normal to the lunar orbital
plane.

After taking the average over the mean anomaly of the satellite using (5a)
to (6b), the doubly-averaged disturbing funotion takes the form

U u na&2 UO (8)

where

* W W 0 - a 2)-3/2 [L -o )2

,2)

where n is the mean motion of the satellite, and

-5 -
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3nJ 3L

The umi.mjor axia and the muan motion n are constant in the long-period
motion, and they have been freely incorporated in (10). In writing (9) we have
used the tensor identity

and dropped an irrelevant ooratant term fran the luni-solar part of the
disturbing function.

If we ohoose a particular reference plane, we can express the disturin
function in terms of the oorresponding elementse, 1, 0, wi and give Oe Lagrange
equations for their variation. Hoever this procedure is neoessarily very
oaplicated if the two disturbing orbit planes are taken as distinct, and it is
much simpler to use vectorial elments which are not tied to any particular
frame. The vectorial elements are taken as e and h defined by

e P, and h - ( - o) , (l)

so that

*.o h.0, and *2 ]2  * . (2)

In term of t"0 s elements the Lagrange equatios take the onqPaot and
Umy trioal fe D

(13)

- a.

where U* . U/nL2. PrOa (9) the distatbig function U* my be written in tes at
these elements as

U .o*(1-0 2 -5/2 (1. R )2
-  ( .2)- 3 / 2 ]

-6-
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From (I3) and (14) the equation for h is

0 - ( -2) "5/2 L. R) ( 1)

- jl , . j)L .) + j'2 1j(. j) , . (15)

It is obvious from the farm of U* that aU/as vaniches for e = 0, so that i
must vanish for a circular orbit (with our assuutions regarding the disturbing
function).

We now oonsider only circular satellite orbits, setting e = 0 in (15) and
replacing h by R so that we can write

2
= -)0 jR . Ij)( 3 1). (16)

If only one of the terms on the right hand side of (16) were present, the
normal to the orbit R would simply regress around the appropriate R at a

constant rate 0 5os yj, where y is the angle between R and iie The rate of

precession is sero when yj = 900v

For a distant Earth satellite the motion of the orbital plane is a cn-
bination of rates of procession about three different axes. Moreover the lunar
orbital plane is inclined to the ecliptio at 509 ' and is itself regressing
about the pole of the ecliptio with a period of 18.6 years. It is usually
adequate to approximate by assuming that the lunar orbit lies in the ecliptic,
or alternatively by taking a mean position for the pole of the lunar orbit if
the time interval of interest is short.

3 GIMAL SOLUTION POR ANY NMER Of PID AXES

We shall show that equation (16) can be solved exactly for simultaneous
preocession about any nmaer of fixed axes. Howevor we first oonsider the simple
approximation of assuming that the angles yi between R and the various axes R

are all small. This requiros that the axes R therselves must be close together,
-;j0

which is approximately true in practice since Ro and R are inclined at 23O,

a n & at 50, an 4 an _ at between 18 an 280. If the various cosine
factors . R) cos y are simply replaced by unity, equation (16) becomes

W(I7)
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where

W (08)

and i is a unit vector. Then R regresses at a oonstant inclination around the
man pole R with the precession volooity ;.

To obtain an exact solution of (6), we note that the equation simplifies
ooliderably if it is referred to the principal axes of the symetrio tensor
z j .L R. Alternatively ono can ask whether thors are an positions where R
will remain at rest. In fact wil vanish if the scalar product of R with the
tensor either vanishoe or is a7ultiplo of , In either case R is an-eigen-
vector of the tensor, i.o.

(z W R R - X t) 009)
-i ? =j (19

where I is the ideamtnsor, and X is tho oigenvalue.

To obtain an idea of the magnitudes involved, the eigonvalues have boon
evaluated using the approximation that the lunar orbit lies in the ecliptic,
iLe. that J.coincides with R,. The R are first referred to a right-handedd-asystem of equatorial axes with one axis towards the vernal equinox. The
oiona-nto of R. are (0,0,1), while those of R are (0, -sin a, ace a)O a being
the obliquity of the ecliptio. Then, if we set w +  2 = w*,' the eigenvalues
are the roots of the equation

-7,0 0

o e sin 2 e - -a* sin a oos a 0.

S-w sin e cos e +0 + o 2¢ -

We label the eigenvalues X i 2 and X3 and arrange them in the order

'3 > W2 ) )1.  The suffixes 1, 2 and 3 used here for the eigonvalues, and later
for the principal axes, have no connexion with the suffixs i and 2 used for the
Sun ard Moon. We find

( wo + w' ) ; ( o + 00)2 _ 4o "* sn g]

The values of wo, w and the eigenvalues X2 and X 3are plotted as functions
of W% in Fig. -



Technical Note No. Space 52

The directions of the corresponding principal azes are readily disoovered

from (16). That corresponding to the eigenvalue sero is clearly perpendioular
to 10 anM d, i, e. it is directed towards (or away from) the vernal equinox.

The remaining two principal axes lie in the plans of R and . If a is the

angle between R and the principal axis oorresponding to X3 (or %2)0 we have

tan2a - w* sin2/(w0 + w * cos 2s).

The orientation of the principal axes 0123 is shown incidentally in Pig.3, and
the value of the angle a is given as a function of &At in Fig.2.

Assuming that, in the general case, we have found the principal ax@ 0i,

02, 03 and the eigenvalues Xi. W20 'T equation (6) becomes in soalar form

(1 = ( - 2 ) 2 X3

- 3) , (20)

k3 - ("2 - ") x~i '2

where x , x2, x3 are the caponents of R along the principal axes. Multiplying

each equation by the corresponding x and adding, we have

zij 'i+X22 + X3't 0,'

which merely leads to the known conition that R is a unit vector:

x2 2 2 (1
11+ X2 4x + i. 21

On the other had multiplying eah equation by X x and ad ing gives

xi xi k +)2-'2 + 3 33 -

which yields the non-trivial integral

2 h 2  2i ) , c (22)

where X7 in a constant lying between ),iand x 3, from (21).

0
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The integral (22) can be found without diagonalining the tensor, in two

other ways. P'irst, multiplying (16) scelarly by T, W k ) gives
£.k

k J,k

The right-hanl side of this equation must vanish sirce it is anti-symetrio in
j anA k so that we obtain

TW j -Rj) 2  W 7-1j 00S2YJ a X0 (23)

whioh is the farm in whioh the integral is given for sinultaneous preoessien
about two different aze. in the classical problem of the motion of lapetWs3 .

8ecooly, we note that the doubly-averaged Hamiltonian of the system is
H a -(p/2a) - U. If the axes Ra re fixed, then H is independent of explioit
tim and must be a constant of the motion. Since a Is also a oonstant of the
long-period motion, U itself must be ooutant. Using the knowledge that an
initially oiroular orbit remains oizuler, we rooover the integral (22) on
setting e a 0 in (9).

J. NATMIE O? TI MMS

The equations (20) are similar to the Ruler equations for the motion of a
rigid body under no foroes, and corresponding results oan be derived for the
nature of the motion ard the period. 'We reoall that the eigenvalues are

in the order ). 3 )'2 > )1 a t lies between W e1 MI, In
praotice ).is 3 mch greater than the other two elgenvaluss (see Pig.13.
Equation (22) gives a one-parameter family of ourves on the unit sphere whioh
are the possible trajcotories of the pole Aj the initial position of the pole
determines the value of W of The motion is periodic, and the trajeotories
divide into two types depending on whothor ). is greater or less than X2.

case (1) 8 if X2 (21) and (22) oannot be satisfied sin ultaneously
if x 3 0. so that the pole R oan neve attain or orosa the plane X o 0.

Out (ii): Sidlarly If W2 > XoO ' the pole oan never attain or oross the
plane x, a 0.

- 10-
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Eliminating x2 between (21) an (22), we fird

2- 2}x - - 1)x . ("0 - "2) (2)

so that, on setting Xo = -2 the bounding curve between the two types of

trajectory is the intersection of the pair of planes

x3/mt a + - .1)/(%3- 2)} (25)

with the unit sbere. The half-angle between the planes is plotted (wn.w the
legend xi/2 - 02 in 4ig2 as a funotion of a/%.

An idea of the shapes of the trajectories is given by their projections

on the coordinate planes; eliminating x3 and xi in turn from (21) and (22) we

(X3 - X 2t= + ( -X2) - (*&3 ")d (26a)
2 2

2) -XX)2 . - ) . (26b)

Par x3 > Xo > X2 the trajectory encircles the axis 03, am its projection on

012 is an ellipse of amu eccentricity (assming >> )2, )" Likei for

*&2 > Xo > )I the trajootory encircles the axis 01, and its projection on 023
is an ellipse of large eccentricity. Trajeoctories of the pole R are shown in
fig. 3.

Laplace considered the case where the polo of the satellite orbit is very
near the principal axis 03, when the trajectory on the unit sphere is wry nearly
a circle around the pole 03. -his is equivalent to Laplaoe's result, which Is
that the satellite orbit regresses at nearly constant rate and inclination on the
proper or Laplaoian plane which is here simply the coordinate plane 012.

5 PZOD OP OSChIATII

Using (26a) an (26b) to eliminate x, a x, frm the second of (20), we

c2 = 3 - X 0) - ()3 - 12) -2 - )x 2 ]
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The quartor-poriod of the osoillation is given by inverting ars integratingi from
z2 = 0 to i 2 m O; the upperlmts afun ction of2depnds on whether

),o > ).2 or not. Por instance if Xo > X21 the upper limit of integration is

determined by tho first square root, ard the period of a ooclete oscillation is

v1

T Xh2, ( -xo)/ - 2 ) , 2 2 4
3- 0i -4vi 3V224d

where " (h 3 x)/( 2 )•

VA (,X0 - )1)/(&2 . 1)

The transformation X2 -v 1 sin * reduoes tho above to the standard form

T a 4(* - ). /2 (1 k2,sxi2 )-4
T = 4 ,- 2) 4 (xo-4)f (1(-o 2 Y 4,

0

where

- , / V, 3 0 2 ) 1 1 [ X 3 - % 2 ) ) 'o ) } Y

so that

T a - 2)'2 (4 - )4K (k), o > W2 ' (27.)

where K(k) is the omplete elliptic intogral of the first kind, As ' °

approaches its upper limit )., the trajectories shrink towards the stationary

point on the axis 03; k tend& to zero, and the period tends to a limiting value
which we will call T3, given by

T3 M 2%(). - x 1 )4 (.x - -)- , (28a)

- 12 -
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sine K(O) = %/2. On the other hard as Xo approaches )., k tends to i, and the

period tends to infinity.

The period oan be evaluated similarly for X 0 < X 2 giving
o 12

T ( - (.4 -0) K(k'), 'o < X2 , (27b)

where

m" . ~ 10 - )2)CXo -*X)]/[7X 3- ).o0,2 - xi)]

As X 0 approaches its lower limit Xi, the trajectories shrink towards the stable

point on the axis 01; k' tends to zero and the period tends to the limiting
value TI where

T1  27(, - 1)4 (%2 - )4. (28)

ig. 4 gives the limiting periods T3 and T1 as functions of aAtp again on the

assumption that the lunar orbit lies in the ecliptic ( = 0).

6 SIHR0OUS MMIT

Por orbits with a period of one sidereal day (at a height wt . 6.6108)
w@ have the following values

o a 1.900/yr., WI a 0.7380/yr., W2 - i.6110/yr.

'4e consider first the approximation that the lunar orbit lies in the
ecliptic, so that the satellite orbit is subjected to simultaneous preoession
forces about only two axs, the Earth's axis and the pole of the ecliptic. -
If we take the simplest approximation of equation (17), then the mean pole R
lies in the plane of R 0 and R at an angle of 70331 tom the EarthIs axis, ana

; 7.1i6/yr. The shortest period, when R is very lose to L is 50.6 yr. if
the satellite arbit is initially equtorial, the rate of precession is reduced
by the cosine of the inolination to. and the period is 5J1.0 yr.

In the general treatment of Section 3, but still assuming the lunar orbit
lies in the ecliptic, the eigenvalues are

*k a 0, X2 a 0.261o/.r., X3 . 6.988/Wyr.,

- 13 -
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and the principal axis 03 lies in the plane of R and R at an angle a = 70231

to the Earth's axis. PFrn (28a) the limiting value of the period when R is very
close to 03 is 52.5 yr. On the other hand if the satellite orit is initially
equatorial,

X = 6.877 0/yr., k2  - 6.26 x 10- 3

and the period is 52.9 yr. Thus the simplest approximation of a mean pole is
remarkably accurate for this oase.

The period of the osoillation can be caloulated from (27a) and (27b) for
all possible trajeotories at synchronous height. Since all trajectories
interseot the plane 013, a convenient parameter here is the angle 0 between 03
and the interseotion of the trajectory with 013. Setting

x .asin ,, x2 = 0, x3  u oo $,

in (22) we have

Xo0 sin 2 n2 + )3 os 2  "

The value of # oorresponing to o  X2 is denoted by 02 eo that the half-angle

between the bounding planes between the two regions of motion in Pi3.3 is l/2 - 02

(which has already been plotted in Pig 2). Fig 5 shows the period of oscillation
as a function of # for synchronous orbits.

The lunar orbital plan is not fixed in the ecliptic but is itself
regressing around the pole of the eoliptio with a period of 18.6 years at an
inclination of 509 ' to the ecliptic. Pa each position of the lunar plane it
would be possible to find the eigenvalues xl, X2 )3 ("1 * 0) and the direotion

of the Principal axoe, but these are varying all the tim Howeer it is simple
to integrate (16) nimrioall.y, and we have perfozmed this integration for an
initially equatorial circular satellite orbit for fout different initial posi-
tions of the lunar plans. Sinoe the polar ooordinates of R with respect to an
equatorial system are i an! (Q-x/2) wh i an d are the-inclination and the
right ascension of the ascending " on the eqmAtorial plane, these provide a
useful may of illustrating the results. We have given in Pig. 6 a polar plot of
the coordinates i and (O-i t2) of the poloe R. The four different curves rofer to
the different initial conditions givenby I 1 * 900 (Jul.y j94) no , 0 (Mwgh
1969), 0' 2700 (Nov. 1973), ' . 1a 0 (Jay 1978), w ' Is the loagi% de
of the ascendin neg e of the lunar ortit on the plane of th eclipti meAsoe
frOm vernal equinox. The symbols on the ovsa mark the subsequsen positogo of
the pole R at intervals of 5 Years from the launoh dato. In general the tra-
jectory Gs not quite pass through the Zarth's axis after one circuit, and the
tim of closest passage varies between about 52.5 and 53.5 years.

-14I.-
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The most significant feature revealed by Fig. 6 is that the different
trajectories interseot after about 28 years, and again after about 56 years.
This arises fran the near-onm-ensurability of the period of lunar preoession

18.6 years) and the period of the motion of the satellite orbital plane
52.9 years). It is possible to give a perturbation treatment for the dis-

placement of the pole R from the position it would have if the lunar orbit lay
in the eoliptio. If the pole R is not too far away from 03, there are two large
terms in the displaoement with frequencies 6' - w, where A' is the rate of
regression of the lunar node on the eoliptio and w is a mean rate of precession
of R around 03. Numerioally

A' + W S (19.34 ± 6.8o)/yr. a 26.14°/yr. or 12.5°/yr.,

which gives periods of 13.8 years and 28.7 years. Consequently the two large
term in the displacement both vanish first after about 28 years.

7 COCLUWSIONS

The long-term evolution of a circular satellite orbit at a distance of a
few Earth radii has been investigated. Only the leading terms are retained in
the disturbing function, which is averaged over the mean anomalies of the
satellite, the 3un and the Moon. Neglect of the third harmonic in the lunar
disturbing function set an upper limit to the radius of the orbit for which
the theory Is valid. On the other hand the period of the predicted motion must
be appreoiably longer than a year for the double averagiMn procedure to be
justifiable; this mete a lower limit to the orbital radius. For these reasons
the analysis is most useful for orbits at distances between 3 and 10 Earth
rami-

The motion consists of simultaneous precession about the Earth's axis, the
pole of the ecliptic and the pole of the lunar orbit, and can be described by a
general solution if those as are asmed fixed. The motion of the pole of the
orbit is analogous to the motion of the instantaneous axis of rotation of a
rigid body moving unior no forces. For a circular orbit of given ai,, there
are tbree mutually perpenioular directions in which the pole of the orbit will
rmin at rest, two of which are stable positions. In general the projection of
the pole of the orbit on the unit sphere follows a fixed trajectory which
encircles one or other of the two stable positions; in fact the unit sphere is
divided into two different regions bound5ed by a pair of planes through the third
arM unstable axis aM the trajeotory must lie entirely in one or the other of
these two regions. In practice the larger region is the more important and the
corresponing stable position of the plane is the well-known Laplacian or proper
plans, The significance of the propor plane is theat the pole of an orbit
inclined at a small angle to it will regress around the pole of the proper plane
at nearly constant rate aid inclination.

Tho analysis has been applied to Earth satellites assuming the lunar orbit
lies in the ecliptic. The inclination of theoproper plane to the equator
inreases from 00190 at 3 Earth radii to 18.8 at 10 Earth radii, an the semi-
angle between the bounding planes reaches a maximum value of nearly 120 at about
7.7 Barth radii, as shown in Fig.2. As the trajectory of the pole of the orbit
shrinks towards either of the stable positions the period decreases to one or
other of two limiting values. For a given siso of orbit, the limiting value at

- 15 -
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the pole of the proper plane is the shortest possible period; this limiting
period attains a maxmum value of about 70 years near 8. 9 Earth radii as shown
in Fig. 4. The limiting period around the other stable stationary position
inoreaes nearly linearly with radial distance from 121 to 403 years between
3 at 10 Earth radii.

Synohronous orbits have been considered in more detail. The period of the
long-term motion is given for all initial positions in Fig.5, and te limiting
values of the period are 52.5 an 267 years. The effect of the motion of the
lunar orbit on an initially equatorial orbit at synchronous height has been
fourl by numerical integration for four different initial positions of the lunar
orit, ie. four different launoh dates, and is illustrated in Pig.6.
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