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Introduction 

The problem of axisymmetrical buckling of clamped 

shallow spherical elastic shells under uniform external 

pressure (Figure l) has been studied by many authors 

with different numerical methods.  Consistent results for 

the buckling pressure for shells with a large range of 

geometrical parameters were obtained in their work.  In 

this paper we shall consider the effect of viscoelastic 

properties of shells on the axisymmetrical buckling.  For 

viscoelastic shells under constant uniform pressure, the 

average vertical deflection increases with time as shown 

In Figure 2.  When time reaches a critical value  t   , 

the rate of Increase of the average vertical deflection 

becomes very high, which indicates the initiation of 

snapping of the shell at this Instant.  After snapping, 
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the shell continues to deform as shown In Figure 2.  Our 

interest is to find the critical time  t    for different 

pressures and for shells with different geometrical para- 

meters.  The pressure on shells is considered to be 

applied either by pressurized air in a chamber of large 

volume or by an incompressible fluid.  For the latter 

loading condition, the average deflection remains constant 

and the applied pressure relaxes.  In this paper, the 

relaxation of external pressure of this type is analyzed, 

as well as prescribed pressure increases. 

Basic Equations 

Consider an elastic clamped shallow spherical shell 

as shown in Figure 1.  For axisymmetrical deformation, 

the governing differential equations and boundary con- 

ditions are found in [1] as 

12(l-v   ) a 

r-    r -r- r 
-,        2EHr2ß Er  ß2 (2) 

h  L     drvx   dr;       ^       a2 a 

ß = 0 at     r =  a (3) 

ag-v^/=0 atr=a (*) 
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where  ß - - 22j ,  w is the vertical deflection of the 

shell, ip     is a stress function, and E and  v are the 

Young's modulus and Poisson's ratio respectively.  Let 

E and v  be two constants and put o     o r 

I  - I 
1  Eo 

I  =  £  I X2   ,  2  xl 1-v 

1    1 

A = 2 [3(l-V*)]* (H}2 

Ar 

Aa 
2H ß 

12(l-v2)a 
d> =  2- f 

AE hJ o 

32E H3h •^ o '°-w 
Ho 

Equations (l-J+) can then be written as 

i2(x
2e" + x 0" - e) = - x2d> - 2px3 + x e $      (5) 

x *" + x *■ - ♦ » I, (x2e - I xe2) (6) 
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e(x) = o (7) 

AS>' (A) - v <t(A) = 0 (8) 

where ( ) = •*—  ( ) .  The material properties are involved 

in the constants I, and I„. 

In our viscoelastic theory, we use the following 

assumptions: (l) the strain components in the shell are 

small so the constitutive equations are linear; (2) for 

mathematical convenience, the bulk modulus of the shell, K, 

is assumed to be independent of time; (3) the Kirchhoff's 

hypotheses hold in the whole process of deformation; 

(4) the shell is assumed to deform quasi-statically, i.e. 

the effect due to its inertia force is neglected. 

In the viscoelastic problem, the Young's modulus E 

is replaced by an integral operator with a kernal function 

E(t).  The kernal function equivalent to Poisson's ratio 

in elastic case, v(t), can be found directly from the 

relation 

»<t)-!-5£L (9) 

We use the notation  E = E(0)  and  v = v(0),  then o   v '       o   v ' 

q  defined above is the classical buckling pressure of 

a complete spherical shell with the same thickness and 

radius of curvature.  The constants  I,  and Ip are 

replaced by the integral operators, with kernal functions 

Ii(t)  and  Ip(t)  which are determined by the following 

equations: 
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ix(t) -5^i 10 

(l-v)* (1+v) * I2 - (l-v
2) lx (11] 

where the starred notation represents the integral operation 

as shown in the following example: 

t 

f = f I(t-r) — dT 
J        dT 

Thus, equation (11) is a Volterra integral equation for I„. 

Examining the derivation of equations (1-4) in [1], we 

are able to derive the governing equations for the defor- 

mation of viscoelastic shells under the above assumptions 

by applying the correspondence principle to equations 

(5-8): 

i* (x2e"+ xö'-e) = - x2$ - 2px3 +xe$ (12; 

xc>" + x$' - * = 1 *(x2e - I x02) (13; 

9(70 = 0 (14) 

A$'(A) - v**(x) =0 (15) 
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where 9,   <t> and p are time dependent and ( ) ' = *HT ( ) • 

Equations (12) and (13) are two nonlinear integro- 

differential equations for the two unknown functions 

e(x,t) and <J>(x,t).  These equations will be solved numerical- 

ly.  The average vertical deflection p is found in [1] as 

A 

p = \    [x26dx (16; 

o 

Let  M  and M, be the meridional and circumferential 

moments respectively. Put 

6(l-v2)   2 
m =     °  * M (17' r   g 3   H r 

6(l-v2)   2 v  o' a m M, (i3; 
t   Ö O   H    r E hJ 

From the stress strain relations, we have 

mr = I2* 9  - I3 • (|) (19) 

mt = I2 * (|) - I3 # 6 (20) 

where the operator  I-  is defined as 

I3 = I2 * v (21) 

Hence, Mr and M^-  can be obtained from 0 by numerical 

differentiation and integrations. 



Numerical Method 

The viscoelastic material in our investigation is 

polymethylmethacrylate. The nondimensional relaxation 

modulus is found in [5] as 

x (t) = 10 -1.5 (1 + erf[0.31(log10t - 3-6)])    (22) 

we take v =0.35 which is equivalent to K/E = 1.111. 

Let t = t . We shall use the following approximation as 

shown in  [6] for the time integration: 

n-1 

J« 
i*f = Ko)fn - \ ni «fj + 1 + ?j)[Utn-t.+1)-i(tn-t.)]} 

=  \   [fn G(l,tn) - P(l,fn)] (23) 

where P(l,f ) - f  ,fl(0) - I (t -t  ,)] v ' n' n-lL K   ' v n n-ly J 

n-2 
+  Z  f(f . , ,+f .) [I(t -t.  'i-l(t -t.)]} 

(24) 

o(i,t ) = i(o) + Ktn-tn_1) (25) 

From the above definition,  F(I,f )  is linear with 

respect to f ,   i.e. r       n 



F(l,fn+gn)   =  F(l,fn)   +  F(l,gn) 

F(l,kf   )  =  kF(l,f   )     for  constant  k. 

Let   (l-v)#Ig  =  I, 

From equation (11) 

(1+v) * I2 = (l-vj)l2 

Using equation (23)J we obtain 

2(1 ) +F[l-v,(l ) ] 

U2) "      G(l-v,t ) 2" ^ 
n       v    n' 

2(I2) +F[l+v,(l ) ] 

<*2> -  (1-^)   2 £(l+v,t ) <2?> n v    n' 

where the subscript n designates the values at t = t , 

Hence, I?(t)  can be evaluated numerically.  Let 

Ax = — , where m is the total number of equal space 

steps.  Define 

x. = (i-l)Ax 

pj = P(V 

0ltJ = e(x.,t.)      and   •1J-»(x1.t. 

-8- 



The first and second partial derivatives of 0 with 

respect to  x can be approximated by the central differ- 

ence formulae: 

hi  " 2Ex  ("ei-l,j + 9i+l, 

ii 

). . 
ij 

-L» (0     - 20  + 0     ) 
Ax)*--   *-**«3    1J   1+1, J 

Equations (12)-(15) can be written as the following 

matrix difference equations: 

A. y. ,  + B. y. + C. y, ,,  = D, in i-l, n  inJin  in i+l,n   in (28; 

Ey       + F  y   , -,       +Gy,0 =H mmn nJm+l,n nJm+2,n r (29) 

where 

'in -     I* 
in 

in 
(30) 

in 

[(i-i)2- i^l]G(i2,tn) 

i-l) 

0 

2     i-l 
(31) 

B, in 

;2(i-i)'+i]o(i2ftn] 

4xi 6<ii'tJ 

2x: 

-[2(i-l)Vl] 

(32: 
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ri(i-D2+ ^lodj,,^) 
Cin = 

(i-D2
+^ 

(33) 

D. in 

3in 

in -1 

(34) 

On 
(35) 

Sl^-'nJ 

(36) 

rO 
(37) 

m+1     v   '   m+l,n; 

(38) 

Sln  =   [(i-D2-  i2i]F(I2,0i.ljn)-[2(i-D^l]F(l2,ein; 

+ [(i-D2+ ¥]F(I2.»W(B)-\
,1 +  2xi9in*in     W 
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Tln - - J x.e^cd^tj - \ 4  P(lyein)+ ^(i15e
2
in) (40) 

In our numerical analysis, one extra space station 

at x = A + Ax is added for the convenience of repre- 

sentation.  Equations (39) and (40) contain terms nonlinear 

in 9.   and <t>. .  An interative method is used to solve in      in 

this non-linear problem, i.e. we assume the values for 

9.  and <t>.   and evaluate  9.  and <D.   by taking  s.  and in     in in     In  *     &  in 

T.   as known functions.  Such iterations continue until 
in 

a certain convergence criterion is satisfied.  If D.   is 0 in 

known, we evaluate  y.   by the numerical technique given 

in [7]•  Let 

yin = 
Pin *!+!,« + ^in l*l> 

where  P.   is a two-by-two matrix and  Q.   is a column in 'in 

vector. 

From equation (28), we have 

(AinPi-l,n+Bin) ^in + Cin ^ + l,n = Din" Ain «1-1,11 

Therefore, 

P.  = - L. C. (42) in     in in v  ' 

Q.  = L, (D. -A. Q. ,  ) (43) ^in   inv in  in^i-l,n/ v •" 

where 

L.  = (A, P. .   + B. ) 1 (44) in   v in l-l,n    in' v  ' 

Since  yln = 0 
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P,  - Qn  =0 (45) In   In v  ' 

Equations (42) and (43) are the recurrence formulae for 

P.  and Q. ,  Therefore, the value of  P,   and  Qln  can 

be determined for i = 1,2,...m+1.  Substituting equation 

(4l) into equation (29) we can show that 

W,n = (Vm+l,n
+Gn)"^Hn-En^n-Rn^m+l,n) ^ 

where 

R  = E P   + P (47) n   n mn   n v  ' 

After y „   is determined by equations (46), y. (i=l,2,...m+l) 
1111 C- s  il 111 

and  p  can be evaluated by equations (4l) and (l6) respectively. 

In the case where  p  is prescribed as a constant, it is 

found by the following procedure that the external pressure 

relaxes.  Multiplying both sides of equation (12) by dx 

and integrating from x = 0 to x = A, we have 

A 

A2I2  *  9'(A) = - | \h  + [     x$(9-x)dx (48) 

o 
Again, if we multiply both sides of equation (12) by x dx 

and integrate, we obtain 

A 

I » [A29'(A) + 8p] = - E A4 + K f  x3O(0-x) dx       (49) 
2 3     X2JQ 
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Eliminating I„ * ö'(A)  from equations (48) and (49) and 

solving for p, we have 

P - ^ [8pl2 + fx(l+f)(l- £) •(e-x)dx] (50) 
A v 

hence, the relaxing external pressure at any time can be 

determined. 

In our numerical calculation, we computed  I,(t), 

I2(t), I~(t) and v(t) by equations (22), (27), (21) and 

(9) respectively.  These values are plotted as functions 

of  t  in Figure 3-  The functions  6  and • were 

evaluated by iterative procedure from equations (39)J (^0) 

(4l), (46), etc.  If p was prescribed, the calculation 

continued until the absolute value of the difference between 

the value of  p and the average value of  p's  found in 

the five previous iterative processes was less than 0.001. 

If  p was prescribed, the convergence criterion used here 

was that the absolute value of the difference between the 

value of p  calculated by equation (50) and the average 

value of p's  found in the five previous interative pro- 

cesses was less than 0.001.  In our computation, we used 

a log time step, therefore, the variations of  0  and $ 

at very early times could be taken into consideration.  The 

calculated values of 6    and $ at each time step were 

stored for the sake of the history dependence of the 

function F [equation (24)]. For the purpose of comparison, 

numerical calculations were carried out for A = 6 and 

p = 0.8 (i.e. 80^ of the classical buckling pressure of 

a complete sphere) for different time intervals and space 

intervals.  The results are shown in Figure 4.  Although 

there are discrepancies between these curves for the 
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different space intervals used, the critical times obtained 

from these curves show no noticeable difference.  We, there- 

fore, used  Ax = 0.125 and  A(log,Qt) =0.5 in the subse- 

quent computations. 

When t  approaches  t  ,  p increases very rapidly. 

The iterative process becomes divergent as  t  exceeds a 

certain value  t  .  This divergence of our iterative pro- cr ö r 

cedure arises from the fact that there does not exist a 

equilibrium state in the neighbourhood of the equilibrium 

state just before buckling defined by positive increaments 

of time.  We define  t   such that at  t = t   , the er cr 
log10tcr+ 0.005 

iterative process converges and at  t = 10 = 

1.012 t  ,  the iterative process diverges.  The maximum cr * 
relative error of  t   found from this definition is less cr 
than 1.2$. 

Numerical Results and Discussions 

A program for numerical computations was written in the 

BALGOL machine language and all calculations were made on the 

IBM 709O digital computer at Stanford University Computation 

Center.  These facilities were in part made available under 

the National Science Foundation Grant NSP-GP 9^8.  The 

average vertical deflection under different pressures are 

plotted against time for A = 6 and \  = 7  in Figures 

5 and 6.  The critical times under different pressures are 

shown in Table 1 and Figure J. 

From Figure 7, we find that the critical time decreases 

when the pressure increases.  The rate of decrease becomes 

very rapid when the pressure is close to the elastic buckling 

pressure.  As we know, the critical time is zero when the 

external pressure reaches the elastic buckling pressure based 
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on the modv.li for instantaneous loading.  Since the elastic 

buckling pressure for A = 7 is higher than that for 

X = 6"-  , under the same external pressure, the shell with 

A = 7 possesses longer critical time than the shell with 

A = 6.  Figures 8, 9 and 10 show the distributions of  0, 

m and m, at different times for A = 6 and p ■ 0.85. r     t r 

The  9  curves in Figure 8 are the slope distributions be- 

fore buckling.  After buckling, the values of  9 are pre- 

sumably positive in the whole range of x.  Before buckling, 

the vertical deflection grows with time but the shape of 

the deflection curve remains approximately the same.  From 

Figures 9 and 10, we find that the moments near the shell 

edge relax and that the moments in the region outside the 

boundary layer grow with time as a result of magnification 

of the slope curve (Figure 8). 

The case in which p = 1.092 was evaluated and the 

corresponding relaxation curve of external pressure  p  is 

shown in Figure 11 for A = 6.  Figures 12, 13 and 1^ 

represent the distribution of  9, m and m, at different 

time stages.  When time increases, the deflections in the 

central portion of the shell decrease but the deflections 

elsewhere increase so the average vertical deflection 

remains a constant.  In Figure 13 and lk,   moments decrease 

with increasing time because of relaxation of external 

pressure. 
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log 10 It cr' 

p A = 6 A = 7 

0.80 -0.22 0.14 

0.85 -0.59 -0.17 

0.90 -1.05 -0.48 

0.95 -1.75 -0.91 

Table 1 

Critical Times for A = 6 and  A = 7 
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FIG.   1.     Geometry  of  Clamped  Shallow Spherical  Shells 
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FIG. 6.  Average Vertical Deflections for X « 7 
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