
UNCLASSIFIED

4360 2
AD -

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



XMI S: When governent or other dravngs, speod-
fiostons or other data are used for my purpose
other than In connection vith a definitely related

verimnt procurmewt operation, the U. B.
Oowzissnt thereby Incurs no responasbility, nor any
obligation hatsoevr and the fat that the Govem-
mEnt haes fozated, furnlshed# or in any vy
supplied the medd drawi ,s specifications. or other
data Is not to be reprided by Lplication or other-
wise as In any imer lloeslng the holder or any
other person or oorpoation, or onveying ay rihts
or penmiselon to inmuatore, use or sll any
patented Invention that way an %y be related
thersto.



S"L3-143436021
Optiml Adaptive Esimtion of

hDW Thim. MqIl

Decuinbu 1963

Techku bWor N. 6302-3

0Mm of Nava l Auwd Csufr
Plow 22MG2, NR 3m 36
Job* eppi yd UA Amy SWW Coups dm
U&S Akirs m md d. U&. Nay
UUm of Na"a bswda

UTUEISo IIITEIU offUSEU

NO OTS



DOC AVARMU NOWNE

N-W -~r my~ Fos. u mpuauofi u

duuh.n. 1 h use by USc b bulnd



SEL- 63- 143

OPTIMAL ADAPTIVE ESTIMATION OF SAMPLED STOCHASTIC PROCESSES

by

David Thomas Magill

December 1963

Reproduection in whole or im part
is permitted for say purpose of
The United States Government.

Technical Report No. 6302-3
Prepared under

Office of Naval Research Contract
Noar-225(24), NR 373 360

Jointly supported by the U.S. Army Signal Corps, the
U.S. Air Force, and the U.S. Navy

(Office of Naval Research)

System Theory Laboratory
Stanford Electronics Laboratories

Stanford University Stanford, California



ABSTRACT

This work presents an adaptive approach to the problem of esti-

mating a sampled, scalar-valued, stochastic process described by an

initially unknown parameter vector. Knowledge of this quantity com-

pletely specifies the statistics of the process, and consequently the

optimal estimator must "learn" the value of the parameter vector. In

order that construction of the optimal estimator be feasible it is

necessary to consider only those processes whose parameter vector comes

from a finite set of a priori known values. Fortunately, many prac-

tical problems may be represented or adequately approximated by such a

model.

The optimal estimator is found to be composed of a set of elemental

estimators and a corresponding set of weighting coefficients, one pair

for each possible value of the parameter vector. This structure is

derived using properties of the conditional mean operator. For gauss-

markov processes the elemental estimators are linear, dynamic systems,

and evaluation of the weighting coefficients involves relatively simple,

nonlinear calculations. The resulting system is optimum in the sense

that it minimizes the expected value of a positive-definite, quadratic

form in terms of the error (a generalized mean-square-error criterion).

Because the system described in this work is optimal, it differs from

previous attempts at adaptive estimation, all of which have used approxi-

mation techniques or suboptimal, sequential, optimization procedures.

Two examples showing the improvement of an adaptive filter as

compared to a conventional filter are presented and discussed.

- iii - SEL-63-143
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r(t) output vector of message process
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a parameter vector, knowledge of which specifies
the probability law describing the observable
process completely

a positive or negative integer representing the

the number of sampling instants in the future or

past that one is trying to estimate

5 jk Kronecker delta function
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element of some space (such as A); e.g., i C A

product of two or more quantities
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I. INTRODUCTION

A. OUTLINE OF THE PROBLEM

This investigation concerns the optimal estimation of a sampled,

scalar-valued, gauss-markov (briefly, a gaussian process which possesses

a generalized Markov property - see definition in Chapter IV) stochastic

process when certain parameters of the process are initially unknown.

It is assumed that the parameters come from a set that contains a finite

number of possibilities which are known a priori. The stochastic

process is thus represented by a set of elemental stochastic processes

(one corresponding to each possible combination of parameters), a switch

that is permanently but randomly connected to one of the elemental

stochastic processes, and a set of a priori probabilities for the set

of switch positions. The elemental stochastic processes are represented

as the outputs of linear dynamic systems excited by gaussian processes

whose time-displaced samples are independent, i.e., white noise. The

stochastic processes may or may not be stationary. In this analysis the

expression "to estimate" will mean either to predict (extrapolate),

filter, or interpolate. An optimal estimate will be defined as an

estimate that minimizes a generalized mean-square-error performance

criterion given the available data.

The above structure permits optimal estimates to be formed in the

following general cases:

1. The covariance matrix of the process is initially unknown but
must be one of a finite number of matrices.

2. The mean value function of the process is initially unknown but
must be one of a finite collection of deterministic functions.

3. The message component of the process is initially unknown but is
formed by the proper initial conditions, which are assumed to be
gaussianly distributed, on one of a finite number of possible
free, linear, dynamic systems.

4. Any realizable combination of the above cases.

Engineering examples of some of the above situations are listed

below.

- 1 - SEL-63-143



A space probe is to telemeter some analog,sampled data at a pre-

determined time; however, it is not certain that this data will be

transmitted because it is possible that the space probe's sensor received

no input or possibly the transmitter failed. This represents a situa-

tion in which the covariance matrix of the process is unknown but has

only two possible forms--the covariance matrix of the noise alone or

the covariance matrix of signal plus noise. This problem is just the

Wiener filtering problem with the added generality that it is possible

that no signal is present.

Consider a control problem such as anti-aircraft, for example, in

which for optimal control it is necessary to predict the future value

of a signal input that is corrupted by additive gaussian noise. A class

of inputs might be described by the outputs of a free, linear, dynamic

system for all possible initial conditions. This form of input descrip-

tion has been proposed by Kalman and Koepcke (Ref. 1]. A given control

system might very well have to respond optimally to various classes of

inputs, e.g., different targets. One then might ask for the best pre-

diction of the signal input, given that it came from one of a finite

number of known classes.

Another example concerns the optimal filtering of a signal process

with known covariance matrix that is subject to noise that possesses

one of two possible known covariance matrices. This situation could

occur in a communication or tracking problem in which an enemy might or

might not attempt to jam with noise of known covariance matrix.

B. PREVIOUS WORK

Kalman [Ref. 2] has considered the optimal prediction and filtering

of sampled gauss-markov stochastic processes when the parameters of the

process are known. Rauch [Ref. 3] has extended this analysis to include

interpolation and to handle the case in which the parameters are random

variables, independent from one sample point to the next; the mean values

and variances of these random variables are known. Because of the time

independence of the random parameters, it is impossible to learn the

parameters, and adaptive estimation will offer no Inprovement over

ordinary linear estimation.

SBL-63-143 - 2 -



Balakrishnan [Ref. 41 has developed an approximately optimal (with

respect to a mean-square-error performance criterion) computer scheme

for predicting noise-free (i.e., pure prediction with no smoothing)

stochastic sequences. No assumptions are made on the statistics and

hence the result is very powerful for the very specific problem. However,

a number of approximations, whose significance is difficult to assess, are

made. Weaver [Ref. 51 has considered the adaptive filtering problem in

which the noise spectrum is known, but the signal spectrum must be

learned with time. In the limit, the data processing proposed by

Weaver is optimal but, in the transient mode of learning, it is sub-

optimal. If signal or noise processes are nonstationary, the data

processor will always be learning and always be suboptimal. Shaw

(Ref. 61 has considered the dual filtering problem in which the signal

process varies randomly between two possible bandwidths.

The work in the present investigation represents an extension of

the state-transition method of analysis utilized by Kalman and Rauch

to the problem of estimation when the parameters of the stochastic

process are initially unknown and must be learned.

C. OUTLINE OF NEW RESULTS

The solution to the problem of the optimal estimate of a sampled,

scalar-valued, gauss-markov stochastic process with unknown parameters

(which must come from a finite set of known values) is derived in this

investigation. This solution is to be contrasted with the usual non-

optimal adaptive estimater proposed in the literature. Typically, it

is suggested that an optimal estimate of the statistics of the process

be made and then the optimal estimator be designed as if this best

estimate were indeed true. This sequential optimization procedure may

converge in the limit with time to the true optimal estimator. However,

for any finite amount of observed data, this approach may not be the

overall optimum procedure. Because of the many finite-duration esti-

mation problems--e.g., trajectory estimation--the advantage of the

optimal adaptive estimator in the transient mode is important practically

as well as theoretically.
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Since the optimal estimator would utilize the correct parameters,

if known, they must be "learned." Thus one is faced with a situation

in which the optimal estimator must adapt itself as it "learns" the

true values of the parameters of the process.

Although the elemental stochastic processes are assumed gaussian,

the probability law of the resultant stochastic process conditioned on

the past data is nongaussian. Shaw [Ref. 6) also found this unfortunate

result. Consequently, linear data processing will not, in general, be

optimal. Usually, nonlinear data processing is quite undesirable since

it can involve a large amount of calculation. Fortunately, by adopting

the proper viewpoint, it can be shown that, for the problem discussed

in this investigation, the nonlinear data processing is of a simple

form. By adopting the conditional-expectation point of view as advocated

by Kalman [Ref. 7), it is proven in the main text that the optimal esti-

mate is just the sum of the elemental optimal estimates weighted by the

conditional probabilities that the particular set of parameters is true.

Consequently, the only nonlinear processing consists of calculating

probabilities that will be used as weighting coefficients. Furthermore,

the major portion of this calculation is performed by the elemental

optimal estimators or has been performed previously in order to build

them. Therefore, the adaptive estimator proposed is quite feasible

while being optimal even in the transient or learning mode.

The adaptive estimator described in this dissertation is shown to

be useful for a class of linear-dynamic, quadratic-cost, stochastic

control problems. If the observations of the state vector of the plant

are corrupted by gaussian noise of unknown covariance matrix, then it is

necessary to construct this adaptive estimator in order to implement the

optimal control law.

By utilizing a theorem from Braverman [ Ref. 8) it is proved that

the adaptive estimator will converge with probability one to the optimum

estimator based upon the true parameters if the elemental stochastic

processes are ergodic. If the elemental processes are nonstationary,

the weighting coefficients may not converge. Nevertheless, the esti-

mate formed by the procedure described in this investigation is optimum

given the available data.

SEL-63-143 -4 -



The above results are applied to the Wiener filtering problem in

which the presence of the signal component is uncertain. The perform-

ance of the adaptive procedure outlined above is compared with that of

the conventional Wiener filter based on the assumption that the signal

is present. As a second example, a similar filtering problem with

certain message presence but random jamming presence is considered.

The steady-state, mean-square error of the adaptive filter is much less

than that of a conventional filter designed on the basis of no jamming,

even though the jamming is assumed to have only one chance in eleven of

occurring.
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II. STATEMENT OF THE PROBLEM

It is desired to form an estimate of a sampled-data, gaussian,

message process, possibly corrupted by additive noise, so that the

estimate minimizes a generalized mean-square-error performance measure.

The quantity being estimated may be either past, present, or future

values (or perhaps some linear function) of the message process. The

observable process is assumed to be a sampled-data, scalar-valued,

gaussian, random process whose mean value vector and/or covariance

matrix is unknown but is selected from a finite set of known vectors

and/or matrices. Thus, the parameters describing the process are ele-

ments of a finite, known, parameter space.

A. MODEL OF THE PROCESS

The observable, scalar-valued stochastic process (z(t): t = 1,

2, ...) can be considered to be a composite stochastic process since

it can be constructed from elemental stochastic processes (zi(t): t = 1,

2, ...; i = 1, ... L), as illustrated in Fig. 1. The various elemental

processes represent and exhaust the set of possible parameter values for

y.(t) z i t) zt

nL(t)

Yi~t) 11 M(I

-L t)()N

Z~nt)

FIG. 1. MODEL OF OBSERVABLE STOCHASTIC
P-OC6S.
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the observable process. The switch is randomly connected to one of

the L possible switch positions and remains there throughout the

duration of the process. Let Q denote that the switch is in position

J, i.e., z(t) = z (t). The a priori probabilities, (P(Cli):

i = 1, ... L), of the switch being in each of the L positions are

assumed to be known. Since the observable process (given that the

switch is in position j) is a gaussian random process, each of the

elemental processes must be gaussian also. Each elemental process is

considered to be composed of a message component tyi(t): t = 1,

2, ., and an additive gaussian noise component, fni(t): t = 1,

2, ... ]. Later it will be assumed that the elemental processes are

gauss-markov processes since this will greatly simplify the calculations;

however, at this point no such assumption is necessary.

B. EXAMPLES OF PROCESSES WITH UNKNOWN PARAMETERS

Numerous examples of processes with unknown parameters exist in

nature. Unfortunately, unless the unknown parameters come from a finite

set of known possible parameter values, a prohibitive amount of data

processing is required to calculate the optimal estimates. Fortunately,

many engineering problems meet the requirement that they have a finite

number of possible parameter values; many others may be adequately

approximated by that assumption. Three examples of the former situation,

which were briefly mentioned in the introduction, are described below.

The space-probe-telemetry problem may be represented by the stochastic

model shown in Fig. 2. The first elemental process is composed of both

message and noise processes, while the second consists of the noise

process alone. Consequently, throughout the duration of the process

the received signal is either message plus noise or noise alone. The

optimal filter must learn which is the case.

The random-Jamming problem can be modeled as illustrated in Fig. 3.

The first elemental process is composed of a signal process plus a noise

process representing receiver noise. The second consists of the same

signal process plus a different noise process, which represents both

- 7 - SEL-63-143



M(t) 
n (t)

y~) z1()l(t .z 1(t)4

P(.,)

YMz(t) ( Atz(t)

n2(t) = nI(t) + nj(t)

P(s2 ) (t) (t) P(&2 )

FIG. 2. MODEL OF RANDOM PROCESS FOR FIG. 3. MODEL OF RANDOM PROCESS FOR
WHICH THE PRESENCE OF THE MESSAGE WHICH THE PRESENCE OF THE JAMMING

COMPONENT IS UNCERTAIN. COMPONENT IS UNCERTAIN.

receiver noise and an independent, additive, gaussian, Jamming process

of known covariance matrix.

A model for the multi-class target prediction problem is given in

Fig. 4. The L elemental processes represent the different classes of

targets to be tracked. The noise processes are assumed to be the same

for each elemental process, while the message processes differ in a

manner adequate to represent the dynamics of various classes of such

targets as aircraft and missiles.

0 ) P(al)

n(t))yi(t) zi(t)

... . (t)

z20

FIG. 4. MODEL FOR MULTI-CLASS TARGET
PREDICTION PROBLEM.
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III. FORM OF THE OPTIMAL ESTIMATOR

The basic form of the optimal estimator will be derived in this

chapter. Two subsequent chapters will consider in detail the required

linear and nonlinear data processing, respectively.

The performance measure used is a generalization of mean-square

error, the most common criterion in use. This generalization is neces-

sary since the quantity or state of nature, denoted w, being estimated

may be vector-valued. Thus, in general, w will be a vector quantity,

although it is to be understood that in a particular case this vector

may be a scalar. Similarly, matrix quantities, which appear later, may

be either matrix-, vector-, or scalar-valued.

Specifically, the optimal estimate a of some state of nature w

will be defined as the value of West, which minimizes the following

quadratic form

E(() - a)est )T Q(C - West) Z 0,

where Q is a symmetric, positive definite matrix, the superscript T

denotes the transpose of a vector, and Ef0IZt) denotes the conditional

mean operator given the available data vector Zt defined at time t

as

TZ 1 z(l), z(2), "", z(t)).

Utilizing the trace identity

U TAV = tr(V *U TA),

where U and V are vectors, A a matrix, and tr(e) denotes the

trace operator upon a matrix, one may rewrite by completing the square

the above quadratic form as

- T +- *-T
(Cest -) Q( est - ) + tr([K CO •O

- 9 - SEL-63-143



where

z E(wIZ t and K 4EG WTI Zt

Since only the first term, which is a positive definite form, depends

on wst, the optimal estimate w is simply the conditional mean of

w. Furthermore, this estimate also minimizes the trace of the covariance

matrix of the error (the criterion used by Rauch [Ref. 3]), as can be

established by using the above trace identity and letting Q = I, the

identity matrix.

An interesting property of the conditional mean will be used to

derive the form of the optimal estimator.

A. DERIVATION OF THE FORM OF THE OPTIMAL ESTIMATOR

In the conventional estimation problem it is desired to form an

optimal estimate I of some state of nature w--e.g., in the filter-

ing problem, w = y(t). Since the optimal estimate is the conditional

mean, one calculates

W = S (lZt) dw (3.1)

where a2 A space of all w

p(CIzt) A the conditional probability density function of c given

the data vector Z .

Either the conditional density is known or it is possible to calculate

it, since the statistics of the random processes are presumed known.

Furthermore, in the usual estimation problem the conditional density is

gaussian and consequently linear data processing is optimum.

When the estimation problem involves an observable process, whose

probability structure would be completely specified by the knowledge of

an unknown parameter vector a, additional analysis is necessary. For

example, even though the elemental random processes are gaussian, the

SL-63-143 - 10 -



conditional density p(wIZt) will be nongaussian in general, as will be

shown later in the chapter. Consequently, nonlinear calculations will be

necessary to obtain the conditional mean. The solution may be found by

recognizing that the conditional density of c may be obtained from the

joint conditional density of w and a by integration over A, the

space of all possible values of a. Thus, Eq. (3.1) becomes

si' A

which may be rewritten, by definition of p(wlc, Zt), as

W = S wA P ( , Zt ) p(alZt) d t dw .

Interchanging the order of integration, which is permissible so long as

the integrand is absolutely integrable [Ref. 9], and defining the con-

ditional estimate

(a) W C W p(wa, Z t ) dw

leads to

SA ^(a) p(alz t) da. (3.2)

Thus, the optimal estimate is formed by taking the complete set of

conditional estimates, weighting each with the conditional probability

that the appropriate parameter vector is true, and integrating over the

space of all possible parameter values. It should be noted that no

restrictive assumptions have been made about the probability laws in the

above derivation. For example, in the special case that a is described

by a discrete probability law, then Eq. (3.2) may be rewritten (if one

has an aversion to the Dirac delta function) as

- 11 - SL-63-143



For computational reasons, implementation of Eq. (3.3) will be easiest

when A is a finite set indexed on a small number of integers.

It is now apparent that Eq. (3.3) is directly applicable to the

estimation of the process represented in Fig. 1, since a one-to-one

correspondence may be made between the switch position and the parameter

vector that specifies the statistics of the process. Subsequently, i

will be used to denote both a particular parameter vector and the corre-

sponding switch position. A block diagram of the optimal estimator for

the stochastic process represented in Fig. 1 is shown in Fig. 5. Since

the weighting coefficients are probabilities and hence must range between

zero and one, they may be implemented by potentiometers as shown. Figure

5 tacitly implies that the quantity being estimated, w, is a scalar

quantity. If w were a vector quantity, multiple ganged potentiometers

might be desirable.

ELEMENTAL WEIGHTING
ESTIMATORS COEFFICIENTS

FIG. 5. FORM OF OPTIMAL ADAPTIVE ESTIMATOR.
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If as time progresses it is possible to learn which elemental

stochastic process is being observed, it is then intuitively reasonable

to expect the optimal estimator to converge to the appropriate Wiener

filter for that process. In terms of the block diagram, this means that

the weighting coefficient corresponding to the true switch position will

converge to one while all the rest will converge to zero. Under the

proper assumption about the elemental processes, this will be shown to

be the case, in Chapter V.

Equations (3.2) and (3.3) will have the most practical significance

when the conditional estimates [!(a): all a E A] are linear in the

observed data vector Zt . In this case, the problem of constructing

an optimal estimator, which requires nonlinear data processing, is

factored into the calculation of a set of linear estimates and the non-

linear calculation of a set of weighting coefficients. Fortunately,

under the proper assumptions, the calculation of the weighting coeffi-

cients is not difficult. One may regard the optimal estimate w as

being constructed from a linear combination of vectors in the space of

linear estimates of w. The nonlinear calculations involved are solely

in the determination of the optimum values of the weighting coefficients

used in this linear combination. In the problem statement given in

Chapter II, the elemental processes were described as gaussian random

processes and, consequently, the conditional estimates are linear in

the observed data. Therefore, the problems considered in this dis-

sertation may be factored as described above.

Earlier in this section it was claimed that the conditional density

of the state of nature c would be nongaussian in general. This fact

is demonstrated by reasoning similar to that used in deriving the form

of the optimal estimator. Thus, for the finite possible parameter

vector case,

L

p(WjZt) = q p v zt) " P(atit ) "

i=l
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Inasmuch as the densities (p(ala i , Z t): i = 1, 2, ... L) are gaussian,
the resultant conditional density p(wIZt), being a linear combination

of gaussian densities, is in general nongaussian. Exceptions occur

when P(xi iZt) = 1 for some i or when ai = a for all i,j.

B. CONDITIONS FOR REDUCING THE NUMBER OF REQUIRED LINEAR ESTIMATORS

Since the set A of parameter values as used generally in Eq. (3.2)

and (3.3) may be a large finite or even a countable or uncountably

infinite set, the calculation of the set of all conditional estimates

(W (ci): all a E A) may not be feasible. Since the elemental processes

have been assumed to be gaussian random processes, the conditional esti-

mates are linear estimates; nevertheless, the amount of calculation

required may be prohibitively large. Consequently, it is desirable to

investigate assumptions that might reduce the amount of required data

processing.

Consider a subset A' of the parameter space A. If for all a

in A' one can write

a)(a) = S (a) - H Zt ,  (3.4)

where S(a) is a matrix function of a and where H is a matrix operator

(independent of a) on the vector Zt corresponding to the dynamical part

of the optimal estimator, then the calculation of

a (A') a SAO ( (a) p(aIzt) d

may be simplified as follows:

W (A') = SA' S(a) p(aIzt) da -H Zt.
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In other words, the nondynamical portion of the elemental linear

estinmator--i.e., S(a)--is included in the calculation of the weighting

coefficients, and only one linear dynamical estimate--i.e., H Zt--is

required for the subset A'. Thus under the assumption stated in Eq.

(3.4) the amount of necessary data processing has been reduced.

Another condition that greatly simplifies the calculation of a (A')

is given below. If for all a in A' and all Zt one can write

p(alzt) = p(a), (3.5)

then one may calculate a (A') by a linear operation upon the observed

data, i.e.,

I (A') = F Zt .

This follows by the gaussian assumption on the elemental processes,

which implies that I(a) = t() Z where H(a) is the optimal esti-

mator for the elemental process described by the parameter vector a.

Thus,

W (A')= 1.(a) p(a Z dc = A H(a) Z p(aZt) da.

Utilizing the assumption stated in Eq. (3.5) one finds that

I (A') = Y1 (a) p(a) da Zt = FA'Z t ,

where F a fA' t(a) p(a) da. Furthermore, the above linear relation

for I (A') holds in general only under the assumption given by Eq.

(3.5). Assume p(aZt) t p(a); then

SA, W (a) p(alzt) = 5A' p(alzt) H(a)
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and

(A') = G(Z) • Zt

where G(Zt) 41 p(alz t ) i(a) da.

At

Thus, in general, I(A') is a nonlinear function of Zt  since the

matrix G has its elements determined by the vector Zt on which it

operates.

One cannot expect to find the condition stated in Eq. (3.4)

satisfied frequently in practice. With respect to the problems posed

in this dissertation, it will be found that, in general, the conditional

estimates are rather complicated functions of the parameter vector. The

desired factorization will be found only in special cases, such as

filtering a white message process of unknown power from a white noise

process of known power. A white process for the discrete-time case

is defined as any process whose time-covariance matrix is the identity

matrix.

The second condition corresponds to those cases in which learning

is impossible and, consequently, there is no point in performing the

calculation necessary to obtain p(cz t ). This is the case that was

treated by Rauch in Ref. 3 and represents the reason he was able to

use only one linear filter for optimal estimation.

C. APPLICATION TO A CONTROL PROBLEM

An important application of estimation theory is to statistical

control problems. In these problems the state of nature that must be

estimated is the state vector, i.e., w = x(t), of the system equations.

Consider a control system described by the linear difference

equations

x(t + 1) = 0(t) x(t) + D(t) u(t) + A(t) V(t)

y(t) = M (t) X(t)
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where x(t) is the state vector of the control dynamics, O(t) is the

state-transition matrix, D(t) is the control-distribution matrix,

u(t) is the control vector, v(t) is a zero-mean, gaussian, random-

driving force, A(t) is the random-driving-force distribution matrix,

m(t) is the output vector, and y(t) is an output of the plant. Further

suppose that for all t the quantity z(t) actually observed is y(t)

corrupted by a gaussian random variable, I i (t), which is statistically

independent of v(t); i.e., z(t) = y(t) + I i(t), where (ni (t): t =

1, 2, ...), (i = 1, 2, ... L) is a gaussian random process with L

different, known, possible, statistical characteristics.

If the following quadratic performance criterion is adopted,

T

J =E[[xT(k + 1) Q x(k + 1) + uT(k) T u(k

where Q and T are symmetric, positive definite matrices, then it is

well known that the optimal control is a linear function of the optimal

estimate of the state vector. Thus,

^(t) = c(t) E(x(t)IZt) = C(t) ^(tit).

Consequently, the result on adaptive estimation derived earlier in

this chapter is applicable to linear-dynamic, quadratic-cost, control

problems when the observed output is corrupted by a gaussian process

described by an unknown parameter vector a. Naturally in the control

problem, also, it is necessary to assume that a must come from a

finite set of known possible values if implementation of the control law

is to be feasible.

At this point the form of the optimal estimator has been found, and

one of its important applications has been stated. All that remains to

be done is to calculate the conditional estimates and the weighting

coefficients; this will be done in the next two chapters, respectively.

Actual evaluation of the weighting coefficients will involve some non-

linear calculations in terms of the observed data. Fortunately, much
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of the necessary calculation is linear and is provided by the con-

ditional estimators. Because of this labor-saving relation the con-

ditional estimators will be derived first. None of the results in

Chapter IV are new, but the calculation of the weighting coefficients is

so closely tied in with these results that it is helpful to derive them

here.
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IV. ELEMENTAL ESTIMATORS

This chapter by itself represents a brief treatment of the estimation

of discrete-time, scalar-valued, gauss-markov processes whose statistics

are completely known. The results are not new and various portions have

been presented in Refs. 2, 7 and 10. However, this chapter does repre-

sent the first time that these results have been derived in this manner.

It is believed that this derivation is developed from a unified approach

that clarifies the fundamentals. The concept of the displaced-covariance

equation, which is introduced here for the first time, more closely re-

lates the solutions of interpolation problems to those of filtering and

prediction problems.

Additionally, the projection theorem of Hilbert space theory is

used as a partial basis for the derivation of the form of the optimal

estimator. This theorem is very powerful and simplifies the derivation.

An appendix is devoted to elementary aspects of Hilbert space theory

since this approach is not common in the engineering literature.

It should be noted that, while the results obtained are only for

scalar-valued observable processes--i.e., one observable quantity at

a time--they could be extended to vector processes, as has been done in

Refs. 2, 7 and 10. This extension is not made here for three reasons.

First, scalar-observable processes are more common in practice. Second,

notational difficulties would tend to obscure the results when evaluating

the weighting coefficients in Chapter V. Finally, if multiple observa-

tions were permitted, matrix inversions of the dimension of the multi-

plicity would be needed for each step. This procedure represents a

considerable amount of calculation and may well not be worth the effort

compared to the following suboptimal procedure.

Imagine that k observable quantities are present at one time. One

procedure would be to look at these quantities sequentially and regard

this sequence as a scalar process with a new structure at k times the

original sampling rate. If any of the observable quantities were in-

dependent of the others, they would have to be treated as separate
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problems. This procedure is suboptimal in that most of the quantities

would not be used immediately. The loss in performance is not likely to

be great since all the data would be processed before the next group

of k samples arrived. This type of sequential approach is mentioned

by Ho [Ref. 10], who suggests that a matrix-inversion lemma can avoid

matrix inversions altogether by processing one piece of data at a time.

It should be noted that the scalar-valued restriction applies only

to the observable process (z(t): t = 1, 2, ...). The quantity being

estimated, w, may well be vector-valued.

A. MODEL OF AN ELEMENTAL PROCESS

Since this chapter deals with the estimation of a single elemental

process fzi(t) = yi (t) + ni (t): t = 1, 2, .... ), there is no need for

the subscript or the word elemental; consequently they will be omitted

in most cases for notational convenience. It is to be understood that

the following analysis applies to each and every elemental process.

In this chapter it will be useful to make a further restriction on

the elemental processes. They will be assumed to be gauss-markov

processes; that is, they are gaussian random processes that posses a

generalized Markov property (explained below in Ref. 7, page 17). This

assumption has also been made in Refs. 2, 3, and 7 since it enables the

sufficient statistic [Ref. 11] to remain of finite and fixed dimension,

thereby vastly simplifying the data processing and storage required.

For stationary processes, this assumption in terms of the Z-transform

theory of sampled-data systems means that the power spectral density can

be expressed exactly or adequately approximated by a ratio of poly-

nomials in z2 . Hence, this assumption is not unduly restrictive.

It should be noted that the terminology gauss-markov process as

used by Kalman [Ref. 7] is somewhat misleading since in general neither

the observable process (3(t): t = 1, 2, ...) nor its signal and

noise components possess the strict Markov property. Rather, they are

derived by a linear operation on an implicit state vector x(t), which

does possess the true Markov property, namely,

p[x(t + 10x(t), x(t -1) Z p-x(t + l)jx(t)].
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In order to clarify this point the terminology implicit-markov, gaussian

process will be adopted in this work.

It is assumed that the processes are generated by linear difference

equations as described below. These equations are known since either

they are the known physical structure of the processes or they have

been synthesized to generate the statistical properties of the processes.

s(t + 1) = 0s(t) s(t) + Ds(t) uS(t) (4.1)

y(t) = rT(t) . s(t)

w(t + 1) = 0(t) w(t) + Dw(t) uw(t) (4.2)

n(t) = hT(t) * w(t)

where s(t) is the state vector of the message process

w(t) is the state vector of the noise process

0 (t) is the state transition matrix of the message

process

w (t) is the state transition matrix of the noise
process

D (t) is the distribution matrix of the message
process

Dw(t) is the distribution matrix of the noise process

Us(t) is a white gaussian vector process representing
the driving force of the message process

Uw(t) is a white gaussian vector process representing

the driving force of the noise process

r(t) is the output vector of the message process

h(t) is the output vector of the noise process

- 21 - SIL-63-143



It is possible to combine Eqs. (4.1) and (4.2) by a process of

augmenting the state vector. One defines the following quantities:

) lv(t) L

and

m (t) [r T(t) I hT(t)].

The large rectangular zeros that appear in the matrices 0(t) and

A(t) represent areas in which all the elements of these matrices are

zero.

Further, define

E(v(t) v (t)3 Q(t),

u(t) Q- Q'2(t) v(t),

and

D(t) _ ,(t) 0 (t).

If Q-1(t) does not exist, the dimensionality of the problem may be

reduced. The model for the complete process may now be represented by

the linear difference equation,

x(t + 1) = (t) x(t) + D(t) u(t) t =f , . . -1, 0, 1 . ... 00o

Z(t) = MoT(t) x(t) t = 1, 2, ... (4.3)
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The driving force u(t) which is a gaussian random noise process,

both spatially and temporally white, has covariance matrix

E(u(J) uT(k)) = I - 5jk for all integers J, k,

where 8jk is the Kronecker delta function.

Equation (4.3) is an adequate model to represent any zero mean,

implicit-markov, sampled-data, gaussian, random process. Proper struc-

ture of the input distribution matrix D(t) permits any desired degree

of correlation between message and noise processes. By representing

the process in terms of its difference equation, nonstationary or

finite-duration processes may be handled with the same theoretical

procedure as infinite-duration stationary processes. In the latter

case the quantities 0(t), D(t), and m(t) merely become constants

independent of time. It should be noted that the ranges of the time-

index sets of Eq. (4.3) differ. This difference is intended to reflect

the fact that only a finite number of observations is available at

present but that the internal or implicit structure of the process may

have existed for an infinitely long period. Thus, Eq. (4.3) may repre-

sent a stationary process upon which observations are taken after time

t = 0. In the event that it is desired to represent a process whose

internal structure begins at time t = 0, it suffices to make D(t)

identically the zero matrix for t < -1.

Figure 6 is a block-diagram representation of Eq. (4.3). Wide

arrows are used to represent the signal flow of vector quantities while

the conventional line arrows represent scalar quantities. The various

blocks perform the linear-matrix operations inscribed in them on the

incoming vector quantities. The summer is intended to represent a

vector summation.

B. RECURSIVE FORM OF OPTIMAL ESTIMATE

In this section the form of the optimal estimator for an elemental

process is found.As a first step the projection theorem is introduced.
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FIG. 6. MODEL OF ELEMENTAL SAMPLED STOCHASTIC PROCESS.

This theorem (which states a necessary and sufficient condition for an

optimal linear estimate) is applicable to the optimal estimate I (the

conditional mean of w) since gaussian statistics have been assumed for

the elemental process. For the second step the projection theorem is

used in conjunction with properties of the conditional mean to derive

the recursive form of the optimal estimate. The third step consists

of finding a general expression for the gain vectors that appear in the

recursive form. The final steps consist of finding specific expressions

for the gain vectors in four major forms of the estimation problem.

The common filtering problem will be solved first because of its

importance and since its solution is fundamental to the other forms.

Next, the prediction problem will be solved since its solution involves

only a simple extension of the analysis used for the filtering problem.

Finally, because of its difficulty, the interpolation problem will be

considered as two problems. The first of these is that of fixed-

relative-time interpolation; that is, one is interested in estimating

at each instant the value that a quantity had I7A samples ago. The

other problem is that of fixed-absolute-time interpolation; an example

of this is the estimation of the initial condition of the state vector.

As a result of the assumed structure of the message and noise

processes, a very useful property of optimal estimates results. The

implicit-markov assumption allows many related estimation problems to
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be handled simultaneously with little more labor than necessary for one

estimation problem. More specifically, the optimal estimates 1(JIt)

of all quantities w(j) that are linear functions of the state vector

x(j) (i.e., w(j) = A x(j) for some matrix A) may be simply found by

performing that linear operation on the optimal estimate of the state

vector. This fact follows because the optimal estimate is the con-

ditional mean. When the conditional-expectation operator E(.IZt) is

applied to both sides of the linear relation, the following equality

results

(jIlt) Efn(j)t) = A *(jIt).

Therefore, the subsequent sections will be primarily devoted to the

estimation of the state vector, i.e., w = x, even though in many cases

it is a hypothetical quantity.

1. Development of Projection Theorem

The following theorem from Hilbert space theory [Ref. 12] is

applicable since the expectation operator E(.) operating on two

random-variable vectors w and v satisfies the properties of an

inner-product relation. That is, one may write

TE(W V) = (w, V)

where w and v are regarded as vectors in a Hilbert space and

(-,o) denotes the inner-product operator. Furthermore, the quantity

(W, O), which is sometimes denoted 1l0ll1 since it is a measure of

the square of distance in the Hilbert space, is just the sum of the

mean-square values of the random-variable components of c. Hence,

the quantity (w - 1, w - W) = 1Io - W^11 is just the sum of the mean-

square errors of each component of the optimal estimate. Let r(t)

be defined as the linear space created by the sequence of observables

z(l), z(2), ... a(t). In other words, P(t) consists of all quantities

that may be written as H Zt  for some matrix H (possibly a row vector).

By the assumptions of the problem, c E r(t).
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PROJECTION THEOREM: (special case of the general abstract theorem

stated and proved in Appendix A).

E(c - v)T (w - v)) > E((w - W)T (W _

for all v e P(t) if and only if

E - a)T . v) = 0

for all v C r(t).

Any random variables u and v that satisfy

T
E(u . v) = 0

are said to be orthogonal, denoted u 1 v. The error term (W - () a

is called the residual.

Briefly, the projection theorem states that the residual is ortho-

gonal to the space of linear estimates. Thus, the optimal estimate

a), which is a linear estimate, may be geometrically interpreted as the

perpendicular projection of w on the linear space r(t).

The orthogonality property of the residual will prove useful

throughout the remaining chapters and will be crucial in recognizing a

simple method for determining the weighting coefficients.

2. Derivation of Recursive Form of Optimal Estimate

In this section the recursive form of the optimal estimate will

be derived. Except for gain constants, the solution of the estimation

problem will be found. Later sections will be devoted to evaluating

these gain constants and to further manipulations that will yield forms

of greater intuitive value or greater computational utility.

Consider the following definitions for all integer values of i

and j.

i(J i) 4 E{x(j)IZi).
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3i(jl 0) 1 XO) - 2,010)

In words, 2(ji) represents the best estimate of the state vector

x(j), at time j given all the available data Zi up to time i.

The quantity R(Jl i) is just the error of the best estimate 2(jli).

Thus, one has

x(t + Y) = R(t + ,1t - 1) + 3k(t + A1t - 1), (4.4)

where y is some positive (prediction) or negative (interpolation)

integer and t represents the integer corresponding to the present

sampling instant.

Since the optimal estimate is just the conditional mean, one

may apply the conditional mean operator E(IZt ) to Eq. (4.4) to obtain

2(t + nlt) = 2(t + nlt -1) + E(3(t + nit - 1)lZt). (4.5)

Taking the conditional expectation E(°IZtI) on both sides of Eq. (4.4)

and utilizing the projection theorem, one finds that

t-l

E(3k(t + yIt - l)lZt_) = k(t + y,i) i(i i - 1) = 0. (4.6)
i=l

The series expansion of the projection is valid since the time series

[( i til - 1) 4_ Z(t) - 2(11 t - 1): 1 = 1, 2, .... , t - 1)

spans I(t - 1). Likewise, since r(t - 1)CIr(t),

t
ZCI(t + 71 t -) 1 Z t = k(t + y,i) 1(ili -1) =k(t + y,t) 1(tlt -1).

=l
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Since Eq. (4.6) must hold for all Zt_ 1, one finds that k(t + 7,i) = 0

for i < t. Therefore, one may now write the fundamental recursive

relation of the optimal estimate.

(t + yft) = (t + y1t -1) + k(t + ,t) (tlt - 1)
(4.7)

for t = 1, 2, ...

Since the process is assumed to be zero mean, the initial value of Eq.

(4.7) is, for all integers y,

x(Yf0) = 0.

Intuitively, the vector k(t + 7 ,t) represents a gain vector

that operates on the error signal 1(tjt - 1) to provide a correction

vector for the previous best estimate of the state R(t + y't - 1).

The next section will express the gain vector in terms of the various

parameters of the process.

3. Determination of the Gain Vector

By applying the reasoning used in the introductory portion of

Chapter III, it is apparent that the optimal estimate, which is the

conditional mean, may be found by minimizing the trace of the following

covariance matrix,

P rt + y1t) 4 71t) T(t + 71t)). (4.8)

Likewise, define in general for all integers i and j the

covariance matrix

p(j, i) 3jC(jl i)• T(jI ) (4.9)

and the displaced covariance matrix

R(j,kj i) 0 Elx(jj i) . 3T(ki i)). (4.10)
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Utilizing these definitions, Eq. (4.7), and the fact that 1Ct~t - i)=

m T(t) 3j(tjt 1 ), yields

P(t + y1t) =P(t + ,'It - 1) - R(t + y,tlt - 1) m(t) k T(t + 2',t)

-k (t + 7,t) n T(t) RT(t + ,',tlt _ 1)

k t+ Y't) m T(t) pctIt - 1) m(t) k T(t + Yt

(4.11)

Completing the square, applying the trace operator (denoted by tr(.)

to both sides of Eq. (4.11), and using the trace identity yields

tr(p(t + y't)) = U2(tlt _ l)[k(t + y't) _-~ 'j ~)-

[ka +~ - 1) J

+ tr[P(t + ,v~t - 1)

- 'n(t) RTCt + 7,tit - 1) R(t + y,tlt -1) m(t)
(7Z(tjt -1

(4.12)

where

o 2(tlt -1) 4 n T(t) P(tl tl)m~t) = Varfi(tlt -1))

and Var(o) denotes the variance of the specified scalar-valued random

variable.

The gain vector enters into only the first term of Eq. (4.12).

Since that term is a positive definite form, the optimum gain vector is

k(t + Yt) = R.t + .Zjt..ZQ4 m~t) (4.13)
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Equation (4.13) is the general expression for the gain vector. Dif-

ferences between the problems of prediction, filtering, and interpolation

enter only through the displaced-covariance matrix R(t + 7,tlt - 1).

Consequently, the subsequent sections devoted to these problems will be

composed primarily of iterative solutions of the displaced-covariance

equatio. in the various cases.

4. Solution of the Filtering Problem

In this case 7 = 0 and the displaced-covariance matrix

R(t + 7,tlt - 1) is simply the nondisplaced-covariance matrix

P(tlt - 1). Thus, the basic relations in this case are

(tlt)  = ^(tjt -1) + k(t,t) 1(tlt - 1) (4.14)

and

P(tit -) mt
k(t,t) - 4 t - (4.15)

Moreover,

^X(tlt -1) . O(t - ) 'X(t - lit - l)

since E(u(t - 1)lZtl) = 0 because of the time independence of the

random driving force. Hence,

x(tlt) = O(t - 1) X(t - lit - 1) + k(t,t) i(tlt - 1). (4.16)

A block diagram of the optimal filter is depicted in Fig. 7.

It is of considerable interest to compare this diagram with Fig. 6,

which represents the model of the random process, since the optimal

filter contains a model of the internal structure of the process.

The next step is the iterative evaluation of the covariance

equation. As part of the problem statement it is assumed that the

a priori covariance matrix P(l0) is known. Therefore, in order to

evaluate P(tjt - 1) for all time it will be sufficient to relate
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FIG. 7. MODEL OF OPTIMAL FILTER.

iteratively P(t + lit) and P(tit - 1). Use of appropriate definitions

and Eq. (4.3) gives

3(t + lit) = 0(t) 1(tit - 1) + D(t) u(t) - 0(t) k(t,t) 'i(tlt - 1).

Substitution of this expression in the definition of P(t + lit) yields

P(t + lit) = 0(t) (I - k(tt) mT(t)] P(tit - 1) [I - k(tt) nT(t)]T

0r(t) + D(t) DT(t). (4.17)

Further reduction is possible by substitution of Eq. (4.15) into (4.17)

to give the covariance equation

P(t + lit) = 0(t)[I - k(tt) a(t)] P(tlt - 1) 07(t) + D(t) DT(t).

(4.18)

Consequently, by sequential cyclic use of Eqs. (4.15) and (4.18), the

gain vector can be determined for all time. The optimal filter for

the state vector is now complete. The best estimate of any linear

function of the present-state vector is then found by applying that

linear function to 2(tit). Thus, for example, in the conventional

filtering problem the best estimate of the message Is
(lt =[rT(t IC=Z 2(tlt),

where the oblong zero denotes the portion of the vector that has all

zero elements.
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The covariance matrix of the error of the estimate 2(tit) may

be found by expanding the definition of !(tlt). Thus,

P(tjt) = (I - k(t,t) m T(t)] P(tjt - 1). (4.19)

Therefore, the error power of the filtered message is

Vary(tjt)) = [r T(t)i= ] P(tlt)( )
Equations (4.18) and (4.19) may be combined to give

P(t + lit) = O(t) P(tlt) ir(t) + D(t) DJ(t),

which will be useful if it is necessary to evaluate the filtering per-

formance at each step.

It is interesting to note that the gain vector k(t,t), distri-

butes the error signal 1(tit - 1) to the estimate of the state (tjt)

in 3uch a manner that the output vector m(t) operating on the state

estimate yields the present value, z(t), of the observed process.

Thus,

mT(t) ^(tlt) = ̂ (tlt) = z(t).

This equality, which obviously must hold if the estimator is to be

optimal, may be established by showing that the variance of 1(tit) is

zero. Using appropriate definitions and Eqs. (4.19) and (4.15), one

finds that

Var(i(tlt)) = mT(t) P(ttt) m(t) = 0.

Since for any reasonable process the output vector m(t) is not

identically the zero vector, it has been established that the matrix

P(tjt) is nonnegative definite and not positive definite.
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5. Solution of the Prediction Problem

For this problem, y > 0; thus, the displaced covariance matrix

is simply related to the covariance matrix P(tIt - 1) and may be

evaluated as outlined below. Using Eq. (4.3) and pertinent definitions,

one may write

'k(t + rjt - 1) = O(t + - 1) 3i(t + 7- lit - 1)

+ D(t + 7 - 1) u(t + 7 - 1) 7 > 0.

Substitution of this expression in the following definition yields

R(t + y', tIt - 1) E ZI(t + yj t - 1) . 3jT(t I t _ 1))

= O(t + 7 - 1) R(t + 7 - l,tIt - 1) 7> 0,

(4.20)

where use has been made of the time independence of the random driving

force u(t). Repetitive application of Eq. (4.20) implies that

R(t + 7,tIt - n 0(] P~tIt - 1) 7> 0.

1=t+ +-1
(4.21)

Thus, by Eq. (4.13),

k(t + 7 ,t) = [I 1 )(i k(t,t) Y > 0. (4.22)

Now observe that, by repeated application of the fundamental recursive

relation (4.7),

t

X(t + 7't) =E k(t + 7 ,i) !(ili - 1)

i~l" (4.23)

for any integer 7.
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Combining Eqs. (4.22) and (4.23) yields

u(t + ( t) = [ H (ii 2(tit) for y > 0. (4.24)
.i=t+y-1

quation (4.24) represents the solution to the prediction problem. It

is found by merely performing a matrix multiplication upon the filtering

solution and, consequently, the block diagram of the optimal predictor

is such a minor extension of Fig. 7 that it will not be illustrated.

6. Solution of the Fixed-Relative-Time Interpolation Problem

The fixed-relative-time interpolation problem is concerned

with estimating the state vector x(t + y) for all integer values of

t and some specific negative integer y. Thus, for example, at each

sampling instant it might be of interest to estimate the state vector

five samples ago.

Evaluation of the displaced-covariance matrix is most difficult

for the interpolation problem. This factor undoubtedly explains the

avoidance of this problem in the earliest works employing the state-

space approach.

Use of Eq. (4.7) and appropriate definitions yields the following

equations:

1(t + ?li - 1) = 1(t + 71 i - 2) - k(t + y,i - 1) 'i(i - 1li - 2) (4.25)

1(ij i - 1) = 0(1 1 ) 1(1 -111 2) + D(i - 1) u(i 1 )

- 0(i - 1) k(i - 1,i - 1)1(i -1li -2). (4.26)

Substitution of these equations in the definition of the displaced-

covariance matrix gives

R(t + y, iji - 1) = R(t + y,t 11li - 2)[1 - m(i - 1) kT(i-1i-1]

T(i -1) for i > t +7. (4.27)
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Repetitive application of Eq. (4.27) implies that

R(t + y,iji - 1) = P(t + y~t + Y- 1){lH (I - m(j) k T(j,j)] 07(i)

(4.28)

Thus having iteratively found P(tlt -1) by Eqs.(4.15) and (4.18), one

may find R(t + y,iji - 1) for all i by use of Eq. (4.28).

To solve the moving (or fixed-relative-time) interpolation

problem, relate R(t + ylt) and 2(t + y - lit - 1).

t

t-l

k(t + 7,) (± 1) k(t + y~t - 1(1I~t - 1) (4.2)

ial

k(t + YJ' R= ~ii mi

k(t + y - l,i) = R~t + y~l ij ili)
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Thus, to find a relation between these two diaplaced-covariance matrices,

combine Eqs. (4.18), (4.20), and (4.28) to obtain

+ D(t + y 1) DT(t + y' 1)

(I m(j) kT(JJ)] iT(j)) for i> t +7y-
j~t~y(4.31)

R(t + ,ii -1) = (t+7y-l1) R(t + y-l,ii -l1) fori'5t +7y-.

(4.32)

Thus

k(t + y,i) = O(t + y- I)k(t + y - I,i)

+ D(t + y - )DT(t + y- 1

m(j)k T(a,a)]OT(,) M 4.3
* ~~ ((111 - ~(~- 1) (.3

f or i > t + y - 1

k(t + y,i) = O(t + y- 1)k(t + y - i,i) (4.34)

for i s t + y - 1.

Rewriting Sq. (4.29) and utilizing (4.30), (4.33), and (4.34) one finds

that

t+y71 t-1

2t+ 710) k(t + 7,i)%(ili - 1) + Z k(t + y, LI (ii I- 1

+ k(t+7, t)!(tlIt -)
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x^(t+ t) = 0(t+y-i) R(t+,-lt-1) + k(t+y,t) i(tjt-1) + D(t+,-l)

Vt-1 1 -1

DT~t [Z(EE I-maJ kT(j 'j)]OT(j

• (i) ¢ilI-1 (4.35)

Equation (4.35) represents the fundamental equation relating the

successive estimates in the fixed-relative-time interpolation problem.

Figure 8 illustrates a block diagram of the optimal fixed-relative-time

interpolator. It should be noted that an optimal filter is required as

part of the interpolator. Also note that a tapped delay line of length

171, which has 171 different time-variant gain vectors for tap gain

coefficients, is required. Consequently, for large values of 171,
implementation of Eq. (4.35) will require a large amount of equipment

and/or computation.

Under proper circumstances Eq. (4.35) may be rewritten and a simpli-

fied block diagram may be found. If it is assumed that the system dif-

ference equations are a discrete-time representation of a continuous-time

system described by linear differential equations, then the inverse of

the state-transition matrix will exist. Furthermore, If it is also

assumed that the observed process is really z'(t) = z(t) + v(t) where

v(t) is a white, zero-mean, gaussian process of finite power, then the

matrix P(tjt) will have an inverse. When these two matrices possess

inverses, the following equality can be found using Eq. (4.19) and (4.28),

{ t+I-'(j) kT(J'J)]'T(J}
" '

T
' (t+r"

l) 
P -l (t+ y 'l' t+ y "l) R(t+y 'l i111- ) 

7

(4.36)
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Equation (4.36) may be substituted into Eq. (4.35) to yield

+(t + y7t) = O(t + y - 1)2(t + y - lit - 1) + k(t + y,t)i(tlt - 1)

+ D(t + 7 - 1)DT(t + y - 1)OT-1 (t + Y - 1)

P-l(t + 7 - lit + Y - 1) R(t + y - l,ili - 1)

LI=t+7

^(t + ylt) = OCt + y - l)x(t + y - lit - 1) + k(t + 7 ,tY!(tlt - 1)

+ D(t + y - 1)DT(t + 
7 - 1)0T l(t + 0 - 1)

P-l( t + 7 - lit + 7 "1)[2(t + 7- l1t - 1)

- 2(t + y - lit + y - 1)). (4.37)

Equation (4.37) represents an alternate (and simpler) method of

writing Eq. (4.35) when the quantities *T-(t + 7 - 1) and

P- (t + y - lit + 7 - 1) exist. This form for the fixed-relative-time

interpolator was found previously by Rauch (Ref. 13] using the same

assumptions but different techniques.

7. Solution of the Fixed-Absolute-Time Interpolation Problem

In this case it is desired to estimate at each sampling instant

the state vector x(J), at some fixed, absolute time J. Perhaps the

most common example of this is the estimation of the initial value of

the state vector, i.e.,
x(O).

Repetitive application of Eq. (4.7) implies that for any integer

t corresponding to the present time
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t

2(Jt) = Z k(j,i)i(ili - 1). (4.38)
i=l

The gain vector may be found from the displaced-covariance matrix that

was determined in the previous section. Therefore, Eq. (4.38) represents

the solution of the fixed-absolute-time interpolation problem. Figure 9

is a block diagram of the implementation of this solution. It is to be

noted again that the optimal estimator includes as part of its structure

the optimal filter.

At this point the major estimation problems for processes with

known statistics have been solved. Thus, the construction of the

elemental estimators of Fig. 5 may be considered to be complete. The

analysis will now return to the estimation of processes with unknown

parameters.

k(J, t0 VSDLAY

St) OPTIMAL FILTER

FIG. 9. MODIL OF OPTIMAL ABOOLMR-TIM INTRUPOATM.
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V. CALCULATION OF THE WEIGHTING COEFFICIENTS

The remaining problem that must be solved is the calculation of the

weighting coefficients (P( ilZt) : i = 1, 2, .. .L). In some sense this

represents the truly interesting part of the analysis since it is a

study of the learning function of the optimal adaptive estimator. The

optimal estimator is called adaptive since its structure is a function

of the incoming data. This structure changes only through the weighting

coefficients and, consequently, they embody the learning or adaptive

feature of the estimator.

By Bayes' rule,

P(zt I adp(ai
P(ai Izt) = L (5.1)

E P(Ztla i Ma J)
J=l

which may be rewritten, to avoid practical computational problems, as

L p(z tla j )  a
P(ailZt) = 1 p(Ztlai) i = 1, 2, .. .L. (5.2)

jl

Since the a priori probabilities (P(a i) i = 1, 2, ...L] are known

constants, knowledge of the probability densities {p(ztl( i) : i = 1, 2,

.. .L) will suffice to evaluate the weighting coefficients. Because the

elemental processes are gaussian, they are described by the multivariate

gaussian density function

P(7.a) = (2x)-t/2jKZ;t(i)"exp (Z t - ut()] T  l t(i)[Zt - Mt(i)

i = l, 2, ...L, (5.3)

where Kz;t(i) is the covariance matrix of the first t time samples
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of the ith observable process (z (t) : t = 1, 2, ...) and M t(i) is
the corresponding mean-value vector. For notational convenience it will

be assumed that for all t and i, Mt(i) =0 , although this assump-

tion is not necessary for the succeeding analysis to apply.

In order to evaluate the weighting coefficients it will be neces-

sary to calculate each IKz;t(i)I and each quadratic form

zT K-1zt(i) Zt . At first thought it would appear that insurmountable

difficulties will be encountered as time progresses. One is required

to take the determinant of a matrix of ever-increasing dimension and

also to invert such a matrix. Fortunately, it is possible to avoid

these difficulties, and the next two sections will present the required

analyses. Briefly, the result is that the implicit-markov assumption

on the elemental processes greatly simplifies the calculation of these

quantities.

A. EVALUATION OF THE DETERMINANT

The evaluation of the determinant IKz;t(i)l may be simplified by

relating it to the previously required determinant IKz;til(i). Con-

sider the following equality (which is true by the definition of the

conditional probability density).

p(Zt) = pIz(t)lZtl]p(Zt-l). (5.4)

Since the elemental processes are gaussian, p(z(t)IZt-l] is a gaussian

density with mean 2(ttt-1) and variance a2(tlt-l). Substitute this

density and the appropriate multivariate gaussian distributions in Sq.(5.4).

Identification of like coefficients on both sides of this version of

Eq. (5.4) yields

IKz;t(i)l = ai2(tit - 1)IKz;t_l(X)l I i = 1, 2, ... L. (5.5)

It is possible to avoid evaluating any determinant by iterating Eq. (5.5).

Thus,

IKz;t(i) = (,)I ai'(JJ, - I) i = 1, 2, ... L. (5.6)
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Furthermore, the quantities {oi 2 (jlj - 1) i = 1, 2, ...L; j = 1,2, ... )

have already been calculated by Eq. (4.12) in order to implement the gain

vectors [Eq. (4.13)] needed in the elemental estimators.

Intuitively, the significance of Eq. (5.6) is given by the following

statement. The determinant of the covariance matrix is the product of

the variances of the one-step prediction errors. Thus, the matrix

K z;t(i) will be invertible if and only if at each sampling instant it is

impossible to predict perfectly the next value of the process.

The determinant IKz;t(i) may be related to an important concept

from information theory. The concept is that of the average information

or the entropy of the process and is defined as

H(Zt )0 - Sp(Zt) log p(Zt)dZt .  (5.7)

For an elemental process, substitution of the appropriate gaussian

density and integration gives

Hi(Zt) = log [(2te)tIKZ;t(i)I] i = 1, 2, ...L. (5.8)

One then can make the following statement. The matrix Kz;t(i) will be

invertible if the entropy of the gaussian process whose covariance

matrix is Kz;t(i) is finite. The entropy of the process may be

expressed in terms of the one-step prediction variances, as

t

Hi (z) t/2 log (2ne) + Y log ai - l) i = 1, 2, ...L.

j=l (5.9)

Similar results relating entropy to the one-step prediction variance

have been obtained previously by Elias [Ref. 14], Price [Ref. 15], and

Gel'lfand and Yaglom (Ref. 16].

B. EVALUATION OF THE QUADRATIC FORM

The quadratic form ZT KZt (i)zt may be thought of as the sum of

the squared-time samples of a scalar-valued random process
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(w(t) : t = 1, 2, ...). If the vector Wt  is defined as

T A
= [w(l), w(2), ..., wt)

then

T -1 T
Z K (i)z = w Wt  I = 1, 2, ...L (5.10)zt z;t (zt t wt'

implies that

Wt= K 'Y (i)zt  i = 1, 2, ... L. (5.11)t=KZ;t  , .

The matrix KZhY (i) is known as the bleaching [Ref. 17] or whitening

filter for the ith elemental process, and it may be either the symmetric

or causal square root of the inverse of the covariance matrix. The

latter interpretation will be used here since then the calculations to

be performed are physically realizable.

If the vector of observations Zt  is actually generated by the ith

elemental process, the vector Wt will be white. Thus, one desires to

find in each elemental estimator a process that is white when the esti-

mator matches the observed process. Fortunately, it is possible to find

such a process-- it is the normalized version of the one-step prediction

error, (t~t - 1). Before demonstrating this fact it will be helpful

to provide the following definitions.

The one-step prediction error of the ith estimator operating on the

jth elemental process is denoted ij(tt - 1). Therefore,

ij (tt -1) = z (t) - 2 ij(tt - 1) i,j = 1, 2, ...L,

where ij(tt - 1) is the estimate given by the ith elemental esti-

mator operating on data from the jth elemental process. Thus,

2ij(tjt - 1) is in r (t - 1), the space spanned by the jth time series.

The one-step prediction error of the ith estimator operating on an unspeci-

fied process is denoted 11 (tft - 1). Hence, in a particular example,
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ii(tIt - i) = i(tit - 1) for some j = 1, 2, ...L, just as z(t) = zW(t)

for the same integer J.

In terms of the above notation, the matched one-step prediction-error

processes (Iti(tit - 1) : t = 1, 2, ...; i = 1, 2, ...L) can be shown

to have independent time samples by use of the projection theorem.

By the projection theorem

i l(tlt - I) 1 v for all v E ri(t -

Now ii(t -lit - 2) E ri(t - 1)

since

I ii(t - lit - 2) = zi(t - 1) - 'ii(t - lit - 2) (5.12)

and zi(t - 1) e r - 1) and 2ii(t -lit - 2) Pi(t - 2) c ri(t - 1).

Likewise, 11 (aIj - 1) e ri(j) for all positive integers J. Further-

more, the following ordering relation among the linear spaces holds

r iC1) c ri1(2) c ... r i(t -)c r i~t).

Therefore,

ii (jJlJ - 1) E 1i(t -) for all j < t

and I ii(t It - 1) J.i i(JIJ 1 ) for all J < t

and for all positive integers t. Consequently, the time series

('ii(tlt - 1) : t = 1, 2, ... ) has independent time samples with

variance qi (tit - 1). The time series (w(t) : t = 1,2, ... ) is

obtained by

-t) = ;l(tlt " 1) '1(tit " 1). (5.13)
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T
Hence, the quadratic form Z K- (i) Z may be obtained by squaring the

t iZ;t mat eotie ysurn h
error signal 1(aia - 1), normalizing, and accumulating or summing over

time. The procedure is illustrated in Fig. 9.

C. COMPLETE WEIGHTING-COEFFICIENT CALCULATOR

For simplicity of illustration, the complete weighting-coefficient

calculator will be described for the case of only two elemental processes.

The analysis may be extended to problems with more elemental processes

simply by repeating for each additional process the appropriate portions

of the subsequent calculations.

For the dual elemental process situation Eq. (5.2) becomes

P(l[Zt = +p(ztlal2) P(a)J (5.14)

P(a2 Zt) = 1 - P(all zt).

The ratio of the gaussian densities is calculated as follows:

__z___l = K4z~± ' exp - Y2 [z (2z -Z K t(l)ZtJ}

(5.15)

Using previous results, this becomes

PC Zt I C2 ) a2(iI - 1)1 ep t ) '~a -1

P7Zt ax1) = ~ l 0,(l _ 1)( 2 2(j~j L ) 22(jtj 1)

(5.16)

Note that Eq. (5.16) avoids a potential numerical difficulty of Eq. (5.15)

by accumulating term by term the difference of the normalized, squared,

error signals rather than taking the difference between the two large

quadratic forms. Further note that the implementation of the exponential

of Eq. (5.16) needs to be accurate over only a reasonable dynamic range.
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By the time the argument of the exponential function becomes very large

in magnitude the weighting coefficients will have converged very close

to one and zero. In this situation any errors in implementing the

exponential function will have negligible effect on the optimal estimate.

Consequently, for most purposes the exponential may be formed by an

analog,diode function generator. The required square and square-root

operations may be formed in the same fashion. It may also be desirable

to form the inverse operation of Eq. (5.14) by a function generator

rather than by a division operation on a digital computer.

Figure 10 represents a block diagram of a method of implementing

Eq. (5.14). The input signals are available from the optimal esti-

mators. The variances [Uj(tjt - 1) : t = 1, 2, ...; i = 1, 2, ...L)

have been calculated in advance to construct the optimal estimator.

The square root of the ratio of the variances may also be calculated in

advance. This is assumed to be the case in the block diagram. The out-

put signals, which are the values of the weighting coefficients, either

control the tap positions of the potentiometers of Fig. 5, or else they

and the set of conditional estimates are processed by an appropriate set

of digital multipliers.

D. CONVERGENCE OF THE WEIGHTING COEFFICIENTS

Now that the description of the detailed structure of the optimal

estimator is complete, some comments about its performance are appropri-

ate. The convergence of the weighting coefficients is of particular

interest since they embody the adaptive or learning feature of the

optimal estimator. Because of the complex nature of the problem, it

is possible to give only a sufficient condition for the convergence of

the weighting coefficients. Because of the analytical complexity of the

probability distributions involved, it is not feasible to obtain an

expression for the rates of convergence.

The result is that, if all the elemental stochastic processes are

ergodic, the weighting coefficients will converge with probability

one to unity for the coefficient corresponding to the true process and

to zero for the others. This fact stems directly from Theorem 5.1 of
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Ref. 8, which is stated (with notational changes) without proof below.

This theorem represents a minor modification of a result, given by

Loeve (Ref. 181 which is derived from abstract probability theory.

Theorem:

If there exists a sequence of functions (fi;t(Zt) : t = 1, 2, ...

of the learning observations (z i(t) : t = 1, 2, ...) from class ±

such that lim f (Z ) is equal to the true value of the parameter
t-.wC i;t t

a i with probability one, then

lim P(ajlZ t ) = 5 j = 1, 2, ... L

with probability one.

For the problem considered in this paper, the sequence of functions

is just the sample covariance matrix and/or the sample mean value. It

is well known [Ref. 9) that if the elemental processes are ergodic the

sample covariance matrix and/or the sample mean value will converge with

probability one to the true covariance matrix and/or mean value, i.e.,

true parameter vector a.. Thus, ergodicity of the elemental processes

is sufficient to guarantee that the optimal estimator will converge in

the limit with probability one to the appropriate Wiener filter.

It should be noted that ergodicity of the elemental processes may

not be necessary, although it is sufficient. For example, the elemental

processes may be nonergodic, but the time-variant changes in the statis-

tics are of such a small magnitude that convergence occurs anyway.

If the elemental processes are nonstationary the weighting coeffi-

cients may not converge. Even in this case it should be recognized that

optimal data processing is being performed by the adaptive estimator;

convergence of the weighting coefficients is simply precluded by the

complicated nature of the problem posed.
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VI. EXAMPLES

Two examples that have been chosen for their simplicity and practi-

cal interest are evaluated in this chapter. The first example deals with

a filtering problem in which presence of the message is a random variable.

The second reverses the situation and considers the presence of a portion

of the additive noise as a random variable. Consequently, in both cases,

two elemental processes suffice to describe the observed process. In

both cases the steady-state performance of the adaptive filter is found

to be significantly better than that of a conventional filter.

A. EXAMPLE A

This example is meant to represent a specific case of the random-

message-presence situation described in Chapter II and represented in

Fig. 2. It is desired to perform the best filtering to separate the

message (if present) from the noise. It will be assumed that the mes-

sage and noise processes are stationary and may be described by the

following difference equations.

a1 : Message present

x1(t + 0= x 1t + u1(t )

x 2 (t + 1) = + u2 (t)

z1(t) = m1xl(t) + m2x2 (t) (6.1)

a2 : Message absent

X2 (t + 1) = + u2(t)

Z2(t) = m2x2(t) (6.2)

The driving forces (ui(t) : t = - , ... , -1, 0, 1, ...- ; i = 1, 2)

are independent,gaussian random processes with independent time samples

of unity variance.

Four possible situations might exist with a nonadaptive filter. The

steady-state, mean-square errors (MBE) for these cases are defined as

follows:
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A
1. 0 0 MSE when message present but filter designed for message

absent.

2. 0 = MSE when message present and filter designed for message
present.

3. 3 3 MSE when message absent and filter designed for message
absent.

4. P4 MSE when message absent but filter designed for message
present.

It is assumed that the nonadaptive filter is designed on the basis of

the message being present; consequently, cases 1 and 3 will never

occur.

The steady-state, mean-square errors for both the nonadaptive and

adaptive filters can now be evaluated in terms of the above P's.

The following quantities are defined:

n  steady-state, mean-square error of the nonadaptive filter

which assumes the message is present.

4a I steady-state, mean-square error of the adaptive filter.

Then

Sn = P(a1 ) 02 + P(c 2) P4  (6.3)

and, since 03 = O,

*a = P(a1 ) 12' (6.4)

The percent improvement I of the adaptive system over the conventional

filter is
-1

x =100 =[ P( 1) P X100 (6.5)

Note that

2 4 + Y (6.6)

where 7 is defined as the steady-state, mean-square error due to the

distortion of the message by the optimal filter. Thus,
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+ P(al) (i + X 100. (6.7)

The steady-state, mean-square errors 04 and 7 may be evaluated

using the theory of sampled-data systems [Ref. 19]. Due to previous

use of the symbol z in this text, the symbol A will be used for the

discrete-time complex frequency variable. It may be shown, using the

theory of sampled-data systems, that

= [1 - H(N)][l- H(-l)] yy() - (6.8)

1 "(jH)HA-1) n dA (6.9)

where A yy(A) and nn(A) are the discrete-frequency,power-spectral

densities of the message and noise processes, respectively. The

discrete-time causal Wiener filter is found to be

H(A) = A+1 1 "(6.10)

where the positive- and negative-sign superscripts denote spectral

factorization operators and the positive subscript denotes an operator

that selects the positive (or real) time component.

For the model of the stochastic processes described by Eqs. (6.1)

and (6.2)

(X -(A) 
r

ZZ,(' = ( . )( .,-1) (6.11)

and
sp

A 2 (6.12)
yy R ~)7~-*

where r, * < 1.
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The quantity r is defined as the solution that is less than unity

in magnitude of the equation

r+ r = , [I+ ( 2](6.13)

Substitution of Eqs. (6.11) and (6.12) in Eq. (6.10) yields

H(A) = ( - r-)]
1  A (6.14)

By using the above results, the mean-square errors may be found to

be

4 m [m2 (r- 1 _ 0)]-2 [1 - r2]
1  (6.15)

and

y (_1) [(r2 + - 1)02 + ((l - r2 )c 2 - 2(1 - r2)c + 1 - r4 )

r -10 _ + 2(1 r 2 )c + r 2 1) X [(e- - *)(r-1 - r)(r - 0)

(r - *-1))-1 
(6.16)

where

_ : [*(r- . -1

The percent improvement I will be evaluated for the following

numerical example:

Y2.1 1 1, 2 = 2,

P(OCl) 1 0.1, and P(cx2 ) = 0.9

- 53 SZL-63-143



In this case the percent improvement of the adaptive system over the

conventional filter (which is designed on the basis of the message being

present) is

I = 72.

This represents a very significant achievement, since the best possible

improvement under any circumstance is 100 percent.

B. EXAMPLE B

The example analyzed in this section is a particular case of the

random jamming situation presented in Chapter II and pictured in Fig. 3.

It is desired to perform the best filtering to separate the message from

the receiver noise or possibly from the sum of the receiver noise and

an independent jamming signal. It will be assumed that the message,

receiver noise, and jamming processes are stationary and may be described

by the following difference equations.

aI : Jamming absent

x1(t + 1) = Ox1 (t) + u1(t)

x (t + 1) = + u2(t)

Z1 (t =mlxl(t, + m2x2 (t) (6.17)

a2 : Jamming present

x1(t + 1) = .xl(t) + ul(t)

x 2 (t + 1) = u 2(t)

x3 (t + 1) = + u3 (t)

z 2 (t) =m 1 xl(t)+ m2x2 (t) + m3x3 (t) (6.18)

The driving forces (ui(t) : t = -, ... 1 -1, 0, 1, .. o; i = 1, 2, 3)

are independent gaussian random processes with independent time samples

of unity variance.
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Again, there are four possible situations that might occur with a

nonadaptive filter. The steady-state, mean-square errors for these

cases are defined as follows:

1. 01 = MSE when jamming present but filter designed for jamming absent

2. e 2  MSE when jamming present and filter designed for jamming present

3. 0 3  MSE when jamming absent and filter designed for jamming absent

4. 04 = MSE when jamming absent but filter designed for jamming present

It is assumed that the nonadaptive filter is designed on the basis of the

jamming being absent; consequently, cases 2 and 4 will never arise.

The steady-state, mean-square errors for both the nonadaptive filters

can now be evaluated in terms of the above B's.

The following quantities are defined:

SA
V = steady-state, mean-square error of the nonadaptive filter which

assumes no jamming is present.

SA
V = steady-state, mean-square error of the adaptive filter.

Then

Vn = P(C2 ) e1 + P(aI) e3 (6.19)

and

V = P(aI) 03 + P( 2 ) 2 (6.20)

The percent improvement I of the adaptive system over the conventional

filter is

V n- V a el P(al) 03 -1

S 100 =+ .)j X 100.n 1 0 P FC'27 el 2

(6.21)
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Using the theory of sampled-data systems

e Z H A)HW.1 [A 2)() A(6.22)

where A(l)(A) and A.(2(?A) are the power spectral densities of

receiver noise and receiver noise plus jamming noise, respectively.

H Il(N) and H,(X) are the Wiener filters designed on assumptions C

and a 2, respectively. Further manipulation yields

1 = c2m32[l - r2])l + 8 3. (6.23)

The quantities r and c are found from Eqs. (6.13) and (6.16).

For the stochastic processes described by Eqs. (6.17) and (6.18),

yy() N$ (6.24)

1)? m=2  (625
nn 2 * M 6.6

()() m22~ -m )2 -1 (6.2)

= ;(A - ( - 1) (.?

55 (A~ # )(A *

The zeros of the latter power spectral density are found from the equa-

t i o n+ 
0 - [ +( 

. 8
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Because of the similarity of form of the power spectral densities

involved, the Wiener filters for the two cases differ only in parameter

values.

H M 1[4($_ r-1l)1 "l  c7-
m2 - - r

(6.29)

where ( 2 ml1 -

The mean-square error 3 may be decomposed into the error power caused

by the noise and the message distortion power caused by the Wiener filter.

Thus,

03 = m c2 (l - r2 )-l + ( (6.30)

where y is defined by Eq. (6.16).

The remaining mean-square error e2  is found to be

= =I2-E(l _-r2)l +
2 2 -) + (6.31)

where is evaluated from Eq. (6.16) with the substitutions r =

and c = being made.

The percent improvement I will be evaluated for the following

numerical example:

# l Y2 1 .1, U2 - /2 M3 - 415.75,

P(a) = 10/11, and P(a2) = 1/11.
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In this case the percent improvement of the adaptive system over the con-

ventional filter (which is designed on the basis of the jamming being

absent) is

I = 75.3.

Because of the low likelihood of jamming occurring, this represents a

particularly significant achievement for the adaptive filter.
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VII. EXTENSION OF RESULTS

Processes with deterministic mean-value functions, such as mentioned

in case 2 of Chapter I, have not been specifically treated; therefore

the analysis derived in this work can be extended in a simple manner to

handle this situation. Thus, the elemental estimators will differ in

that the observed process (z(t) : t = 1, 2, .... will first have its

hypothesized mean-value functions (Ii(t) : t = 1, 2, ...; i = 1, 2, .. .L)

subtracted off to obtain the zero-mean processes necessary for use of the

theory of Chapter IV. The best estimate Ob(ci ) will then consist of the

hypothesized mean value of o, M(i ), plus the best estimate ac ( ai )
of the zero-mean component wac of the state of nature c. Since the

mean-value function is considered to be deterministic, it may be thought

of as being generated by a free, dynamical system with the proper initial

conditions. Consequently, the optimal estimator for a nonzero-mean

process will include a model of the mean-value function generator as

well as a model of the zero-mean component of the process.

Similarly, by merely allowing the input distribution matrix D(t)

to be identically the zero matrix for t = 1, 2, ... , it is possible to

handle the case in which the message component of the observable process

is formed by the proper initial conditions, which are assumed to be

gaussianly distributed, on one of a finite number of possible free,

linear, dynamic systems (i.e., case 3 of Chapter I). Because of this

condition on D(t), after a sufficient number of observations J, the

covariance matrix P(tlt - 1) will become the zero matrix for t > J.

This means that the state of the system has been learned perfectly.

Since no further randomness is allowed to enter the system, it will be

possible to predict, filter, or interpolate the process perfectly there-

after without taking any subsequent observations. In this situation,

expressions for the gain vectors, e.g., Eq. (4.15), will become indetermi-

nate forms. Fortunately, the error signal (i(tlt - 1) : t = J, J+l, ... )

will be identically zero, and any value may be used for the gain vectors.

In both these cases the only differences are in the details of the

elemental estimators. The weighting-coefficient calculator structure

remains the same.
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VIII. CONCLUSIONS

For sampled, scalar-valued, observable, gaussian, random processes,

the optimal adaptive estimate is an appropriately weighted summation of

conditional estimates, which are formed by a set of elemental estimators

(linear dynamic systems). The weighting coefficients are determined by

relatively simple, nonlinear operations on the observed data.

When the observed process also possesses the implicit-markov

property, the construction of the optimal adaptive estimator is simpli-

fied in two major aspects. First, the calculation of the weighting

coefficients is facilitated since the inversion of matrices that grow

with time is avoided; also, the evaluation of the determinants of these

matrices is reduced to the multiplication of appropriate scalar-valued

constants. Second, the elemental estimators may be implemented more

readily since the sufficient statistic remains of fixed dimension as the

amount of observed data increases. Furthermore, under the implicit-markov

assumption, the structure of an elemental estimator--whether it be a

predictor, filter, or interpolator--can be derived in a unified approach

by the introduction of the concept of the displaced covariance matrix.

If the construction of the optimal estimator is to be feasible, the

unknown parameter vector must come from a finite set of known parameter

vectors (perhaps time-variant). Fortunately, many engineering problems

may be adequately represented by such a model. The optimal adaptive

estimator is feasible to implement for filtering problems when the

presence of either the message or the jamming process is uncertain. The

performance of an adaptive filter is significantly better than that of

a nonadaptive filter for both of these cases.

The engineering usefulness of the optimal adaptive estimator is

enhanced by the fact that this estimator is applicable to an important

class of stochastic control problems. For linear-dynamic, quadratic-cost,

stochastic control problems, the optimal control law is a linear function

of the optimal estimate of the state vector of the control dynamics.

Therefore, when the observations of the plant (i.e., controlled object)

output are corrupted by a gaussian random process described by an initial-

ly unknown parameter vector, an optimal adaptive estimator is used in the

implementation of the optimal control law.
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IX. RECOOENDATIONS FOR FUTURE WORK

The analysis presented in this investigation could be extended with

resultant complexity to handle vector-valued observable processes. Per-

haps a more significant achievement would be to obtain analogous results

for continuous-time processes. Some difficulties in calculating the

required weighting coefficients might arise here since some of the simple

relations for determinants, etc. would no longer exist.

A very difficult problem occurs when the parameter vector describing

the process can take on a continuum of possible values. Since at present

it does not appear to be feasible to construct a continuum of weighting

coefficients or estimators, consideration should be given to various sub-

optimal schemes. One possible procedure would be to build a set of ele-

mental estimators based on parameter vectors distributed uniformly or

appropriately throughout the space A of possible parameter vectors. Each

elemental estimator could be designed on the basis of a mean parameter

vector with a large enough variance that the set of mean vectors and

their variances more or less filled the space A. Thus, it would be

assumed that the structure of the process could not be learned any more

accurately than these variances, and the optimal elemental estimator

would be constructed as described by Rauch [Ref. 3]. Numerous questions

exist about the accuracy of this approach and the convergence of the

weighting coefficients under these circumstances.

One of the most difficult subjects is the study of the convergence

of the weighting coefficients as attested by the fact that sufficient

conditions for convergence are found from rather abstract and advanced

probability theory. Direct analytical approaches to this problem become

hopelessly complex. Naturally, determination of the rate of convergence

is even more difficult. Despite these difficulties, both the conditions

for convergence and rate of convergence are subjects worthy of further

study since they are of great theoretical and practical interest.
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APPENDIX A. BRIEF SUMMARY OF HILBERT SPACE THEORY

The purpose of this appendix is to introduce some elementary concepts

of Hilbert space theory to the reader who may be unfamiliar with them.

Since random variables may be regarded as vectors in an abstract Hilbert

space, various methods from the theory of the latter subject may be

applied profitably to statistical problems. The following material

closely follows the approach of Parzen [Ref. 12]. The reader who is

interested in a more thorough and rigorous treatment of the subject is

referred to the above-mentioned article.

1. Definitions

a. Definition 1

S is a linear vector space if and only if for any vectors u and

v in S, and real number c, there exist vectors u+v and cu

respectively which satisfy the usual properties of addition and multi-

plication. There must also exist in S a zero vector, denoted 0, with

the natural property under addition.

b. Definition 2

S is an inner product space if and only if to every pair of

vectors u and v in S there corresponds a real number, denoted

(u,v), which is called the inner product of u and v. The inner product

must possess the following properties: for all vectors u, v, and

w in S and for every real number c,

i) (cuv) = c(u,v)

ii) (u+v, w) = (u,w) + (v,w)

iii) (uv) = (vu)

iv) (u,u) > 0 if and only if u J 0

c. Definition 3

The norm of a vector u, denoted Hull, in an inner product

space S is defined as follows:

H1.11 (u. ) -
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d. Definition 4

S is a complete metric space (under the previously defined norm)

if and only if for any sequence of vectors (U) in S such that

lum - un 1 -. 0 as m, n -. Co; then there exists a vector u in S

such that IlIUn - ull-" 0 as n-.

e. Definition 5

S is an abstract Hilbert space if and only if it is a linear

vector space, an inner product space, and finally a complete metric

space.

f. Definition 6

The Hilbert space, denoted by r(t), spanned by a time series

(z(j) : j = 1, 2, ...t), is defined to consist of all random variables

v (perhaps vector-valued) that are linear combinations of the random

variables (z(j) : j = 1, 2, ...t).

Inasmuch as random variables, e.g., u and v (perhaps vector-

valued), satisfy the properties required of a vector or point in a

Hilbert space under the inner product

(u, v) I B(u T . v)

the projection theorem is applicable to the estimation of stochastic

processes.

2. Projection Theorem

Let S be an abstract Hilbert space, let r be a Hilbert subspace

of S, let a be a vector in S, and let & be a vector in r. A
necessary and sufficient condition that & is the unique vector in r

satisfying

2

k- 1 sin im - vii (minimization property)

is that

(w - 1%,v) = 0 for all veP (orthogonality property).

The vector & is called the perpendicular projection of w onto P.
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Proof

The proof must consist of three parts. The equivalence of the

minimization and the orthogonality properties, the uniqueness, and the

existence of the vector 1, must be established.

a. Equivalence of minimization and orthogonality properties

1(0- vil1 = IIW - &11 + 2(O- 6, -v) + V -vi for vEt.

A
Since r is a linear space it contains w - v, and consequently

(w - , & - v) = 0. Therefore,

- vii -11 as claimed.

Suppose there exists a vector vlEr such that (O - o,v1 ) = a 9 0.

Then for some real number b,

I1w - - bv 1 11 = ,a) -all + 2(w - , bv1 ) + b2J I111

22
= 11w - 0ii + 2ba + b llvlIi.

By suitable choice of b the sum of the last two terms of the above

equation can be made negative, and consequently the optimality of &

can be contradicted.

b. Uniqueness

The uniqueness of 6 may be readily established by the use of

properties ii) and iv) of definition 2.

c. Existence

let

d - infimut over Ila - V11 for all vET.

Let (v n) be a sequence of vectors in r such that Ik - vn11 - d
as n -. -c. The sequence (Vn) is a Cauchy sequence, as my be estab-

lished by use of the parallelogram law outlined below.
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For any vectors x and y in S, the parallelogram law states

lix - y 11 + lix + y112 = 2 iixl + 2iiyiJi.

Use of the above relation yields for every m and n

Ilvn - vmil1 = II(vn - () - (vM - 0411,

= 2l1vn- a)l + 21vm - C11 - 411. Y 'vn + v) - 0ll2

Since Vvn + vm ) belongs to 1', it follows that

II1 (vn + v3) -Is li > d'.

and that

IIvn - v1' ! 21ivn - W112 + 2iivm - a112 - 4d2

As n and m tend to infinity the right side of the above inequality

tends to zero. Therefore, {vn) is a Cauchy sequence in a Hilbert

space and consequently converges in norm to some limit vector v' in S.

By the trisngle inequality and the definition of d

d !5 1M - v'ill liv' - vnil + 11W - vnil.

Since liv' - vnli - 0 the right-hand side of the above inequality tends

to d. Therefore, 11 - V111 = d and there does exist a vector v'

(now identifiable as v' - ) in r satisfying the projection theorem.

The proof of the projection theorem is now complete.
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