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ABSTRACT

This work presents an adaptive approach to the problem of esti=-
matirng a sampled, scalar-valued, stochastic process described by an
initially unknown parameter vector., Knowledge of this quantity com-
pletely specifies the statistics of the process, and consequently the
optimal estimator must "learn" the value of the parameter vector, In
order that construction of the optimal estimator be feasible it is
necessary to consider only those processes whose parameter vector comes
from a finite set of a priori Kknown values, Fortunately, many prac-
tical problems may be represented or adequately approximated by such a
model.

The optimal estimator is found to be composed of a set of elemental
estimators and a corresponding set of weighting coefficients, one pair
for each possible value of the parameter vector. This structure is
derived using properties of the conditional mean operator. For gauss-
markov processes the elemental estimators are linear, dynamic systems,
and evaluation of the weighting coefficients involves relatively simple,
nonlinear calculations, The resulting system is optimum in the sense
that it minimizes the expected value of a positive-definite, quadratic
form in terms of the error (a generalized mean-square-error criterion).
Because the system described in this work is optimal, it differs from
previous attempts at adaptive estimation, all of which have used approxi-
mation techniques or suboptimal, sequential, optimization procedures,

Two examples showing the improvement of an adaptive filter as

compared to a conventional filter are presented and discussed.
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parameter vector, knowledge of which specifies
the probability law describing the observable
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I. INTRODUCTION

A, OUTLINE OF THE PROBLEM

This investigation concerns the optimal estimation of a sampled,
scalar-valued, gauss-markov (briefly, a gaussian process which possesses
a generalized Markov property - see definition in Chapter IV) stochastic
process when certain parameters of the process are initially unknown,

It is assumed that the parameters come from a set that contains a finite
number of possibilities which are known a priori. The stochastic
process is thus represented by a set of elemental stochastic processes
(one corresponding to each possible combination of parameters), a switch
that is permanently but randomly connected to one of the elemental
stochastic processes, and a set of a priori probabilities for the set
of switch positions, The elemental stochastic processes are represented
as the outputs of linear dynamic systems excited by gaussian processes
whose time-displaced samples are independent, i.e., white noise, The
stochastic processes may or may not be stationary, In this analysis the
expression "to estimate" will mean either to predict (extrapolate),
filter, or interpolate., An optimal estimate will be defined as an
estimate that minimizes a generalized mean-square-error performance
criterion given the available data.

The above structure permits optimal estimates to be formed in the
following general cases:

1, The covariance matrix of the process is initially unknown but
must be one of a finite number of matrices,

2, The mean value function of the process is initially unknown but
must be one of a finite collection of deterministic functions.

3. The message component of the process is initially unknown but is
formed by the proper initial conditions, which are assumed to be
gaussianly distributed, on one of a finite number of possible
free, linear, dynamic systems,

4, Any realizable combination of the above cases,

Engineering examples of some of the above situations are listed
below,

-1-=- SEL-63~143



A space probe is to telemeter some analog,sampled data at a pre-
determined time; however, it is not certain that this data will be
transmitted because it is possible that the space probe's sensor received
no input or possibly the transmitter failed., This represents a situa- -
tion in which the covariance matrix of the process is unknown but has
only two possible forms-~-the covariance matrix of the noise alone or
the covariance matrix of signal plus noise, This problem is just the
Wiener filtering problem with the added generality that it is possible
that no signal is present,.

Consider a control problem such as anti-aircraft, for example, in
which for optimal control it is necessary to predict the future value
of a signal input that is corrupted by additive gaussian noise. A class
of inputs might be described by the outputs of a free, linear, dynamic
system for all possible initial conditions., This form of input descrip-
tion has been proposed by Kalman and Koepcke [Ref. 1]. A given control
system might very well have to respond optimally to various classes of
inputs, e.g., different targets, One then might ask for the best pre-
diction of the signal input, given that it came from one of a finite
number of known classes,

Another example concerns the optimal filtering of a signal process
with known covariance matrix that is subject to noise that possesses
one of two possible known covariance matrices. This situation could
occur in a communication or tracking problem in which an enemy might or

might not attempt to jam with noise of known covariance matrix.

B. PREVIOUS WORK

Kalman [Ref. 2] has considered the optimal prediction and filtering
of sampled gauss-markov stochastic processes when the parameters of the
process are known, Rauch [Ref. 3] has extended this analysis to include
interpolation and to handle the case in which the parameters are random
variables, independent from one sample point to the next; the mean values
and variances of these random variables are known, Because of the time
independence of the random parameters, it is impossible to learn the
parameters, and adaptive estimation will offer no inprovement over

ordinary linear estimation,

SEL-63~143 -2 -



Balakrishnan [Ref. 4 ] has developed an approximately optimal (with
respect to a mean-square-error performance criterion) computer scheme
for predicting noise-free (1.e., pure prediction with no smoothing)
stochastic sequences. No assumptions are made on the statistics and
hence the result is very powerful for the very specific problem, However,
a number of approximations, whose significance is difficult to assess, are
made. Weaver [Ref. 5) has considered the adaptive filtering problem in
which the noise spectrum is known, but the signal spectrum must be
learned with time. In the limit, the data processing proposed by
Weaver is optimal but, in the transient mode of learning, it is sub-
optimal, If signal or noise processes are nonstationary, the data
processor will always be learning and always be suboptimal., Shaw
[Ref. 6] has considered the dual filtering problem in which the signal
process varies randomly between two possible bandwidths.

The work in the present investigation represents an extension of
the state-transition method of analysis utilized by Kalman and Rauch
to the problem of estimation when the parameters of the stochastic

process are initially unknown and must be learned.

C. OUTLINE OF NEW RESULTS

The solution to the problem of the optimal estimate of a sampled,
scalar-valued, gauss-markov stochastic process with unknown parameters
(which must come from a finite set of known values) is derived in this
investigation, This solution is to be contrasted with the usual non-
optimal adaptive estimater proposed in the literature. Typically, it
is suggested that an optimal estimate of the statistics of the process
be made and then the optimal estimator be designed as if this best
estimate were indeed true. This sequential optimization procedure may
converge in the limit with time to the true optimal estimator. However,
for any finite amount of observed data, this approach may not be the
overall optimum procedure. Because of the many finite-duration esti-
mation problems--e.g., trajectory estimation--the advantage of the
optimal adaptive estimator in the transient mode is important practically
as well as theoretically,
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Since the optimal estimator would utilize the correct parameters,
if known, they must be "learned." Thus one is faced with a situation
in which the optimal estimator must adapt itself as it "learns" the
true values of the parameters of the process.

Although the elemental stochastic processes are assumed gaussian,
the probability law of the resultant stochastic process conditioned on
the past data 1s nongaussian, Shaw [Ref. 6] also found this unfortunate
result, Consequently, linear data processing will not, in general, be
optimal., Usually, nonlinear data processing is quite undesirable since
it can involve a large amount of calculation, Fortunately, by adopting
the proper viewpoint, it can be shown that, for the problem discussed
in this investigation, the nonlinear data processing is of a simple
form. By adopting the conditional-expectation point of view as advocated
by Kalman [Ref. 7], it is proven in the main text that the optimal esti-
mate is just the sum of the elemental optimal estimates weighted by the
conditional probabilities that the particular set of parameters is true.
Consequently, the only nonlinear processing consists of calculating
probabilities that will be used as weighting coefficients. Furthermore,
the major portion of this calculation is performed by the elemental
optimal estimators or has been performed previously in order to build
them. Therefore, the adaptive estimator proposed is quite feasible
while being optimal even in the transient or learning mode,

The adaptive estimator described in this dissertation is shown to
be useful for a class of linear-dynamic, quadratic-cost, stochastic
control problems, If the observations of the state vector of the plant
are corrupted by gaussian noise of unknown covariance matrix, then it is
necessary to construct this adaptive estimator in order to implement the
optimal control law.

By utilizing a theorem from Braverman [ Ref. 8] it is proved that
the adaptive estimator will converge with probability one to the optimum
estimator based upon the true parameters if the elemental stochastic
processes are ergodic. If the elemental processes are nonstationary,
the weighting coefficients may not converge. Nevertheless, the esti-
mate formed by the procedure described in this investigation is optimum

given the available data,

SEL-63-143 -4 -
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The above results are applied to the Wiener filtering problem in
which the presence of the signal component is uncertain. The perform-
ance of the adaptive procedure outlined above is compared with that of
the conventional Wiener filter based on the assumption that the signal
is present, As a second example, a similar filtering problem with
certain message presence but random jamming presence is considered.

The steady-state, mean-square error of the adaptive filter is much less
than that of a conventional filter designed on the basis of no jamming,

even though the jamming is assumed to have only one chance in eleven of

occurring.
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II. STATEMENT OF THE PROBLEM

It is desired to form an estimate of a sampled-data, gaussian,
message process, possibly corrupted by additive noise, so that the h
estimate minimizes a generalized mean-square-error performance measure.
The quantity being estimated may be either past, present, or future
values (or perhaps some linear function) of the message process, The
observable process is assumed to be a sampled-data, scalar-valued,
gaussian, random process whose mean value vector and/or covariance
matrix is unknown but is selected from a finite set of known vectors
and/or matrices, Thus, the parameters describing the process are ele-

ments of a finite, known, parameter space.

A, MODEL OF THE PROCESS

The observable, scalar-valued stochastic process {z{t): t =1,
2, ...} can be considered to be a composite stochastic process since
it can be constructed from elemental stochastic processes {zi(t): t =1,
2, ...;i=1, ... L}, as illustrated in Fig. 1, The various elemental

processes represent and exhaust the set of possible parameter values for

n(t)
y)(t) x z)(t)

n,(t) ~ (o)
] \‘
y;(t) T z;(t) ——— ’(':)
P(a.i)
»
”
—_——,——— - o)

)\l

FIG. 1. MODEL OF OBSERVABLE STOCHASTIC
PROCESS, .
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the observable process. The switch is randomly connected to one of

the L possible switch positions and remains there throughout the
duration of the process. Let aJ denote that the switch is in position
j, t.e., z(t) = zj(t). The a priori probabilities, {P(ai):

i=1, ... L}, of the switch being in each of the L positions are
assumed to be known, Since the observable process (given that the
switch is in position J) is a gaussian random process, each of the
elemental processes must be gaussian also. Each elemental process is
considered to be composed of a message component (yi(t): t =1,

2, ...}, and an additive gaussian noise component, {ni(t): t =1,

2, ...}, Later it will be assumed that the elemental processes are
gauss-markov processes since this will greatly simplify the calculations;

however, at this point no such assumption is necessary.

B. EXAMPLES OF PROCESSES WITH UNKNOWN PARAMETERS

Numerous examples of processes with unknown parameters exist in
nature, Unfortunately, unless the unknown parameters come from a finite
set of known possible parameter values, a prohibitive amount of data
processing is required to calculate the optimal estimates. Fortunately,
many engineering problems meet the requirement that they have a finite
number of possible parameter values; many others may be adequately
approximated by that assumption, Three examples of the former situation,
which were briefly mentioned in the introduction, are described below.

The space-probe-telemetry problem may be represented by the stochastic
model shown in Fig. 2, The first elemental process is composed of both
message and noise processes, while the second consists of the noise
process alone., Consequently, throughout the duration of the process
the received signal is either message plus noise or noise alone. The
optimal filter must learn which is the case.

The random-jamming problem can be modeled as illustrated in Fig., 3.
The first elemental process is composed of a signal process plus a noise
process representing receiver noise. The second consists of the same

signal process plus a different noise process, which represents both

-7 - SEL-63-143



'(G|)

— z(t)

n(t) = z(t) / O]

S o

FIG. 2. MODEL OF RANDOM PROCESS FOR FIG. 3. MODEL OF RANDOM PROCESS FOR
WHICH THE PRESENCE OF THE MESSAGE WHICH THE PRESENCE OF THE JAMMING
COMPONENT IS UNCERTAIN. COMPONENT IS UNCERTAIN,

receiver noise and an independent, additive, gaussian, jamming process
of known covariancé matrix.

A model for the multi-class target prediction problem is given in
Fig. 4. The L elemental processes represent the different classes of
targets to be tracked. The noise processes are assumed to be the same
for each elemental process, while the message processes differ in a
manner adequate to represent the dynamics of various classes of such

targets as aircraft and missiles.

n(t)

y (t) z7y(t)

\Z)-

- .-y v -

n(t) ‘“.~- Play)

y;i(t) z;(t) z(t)
z

FIG. 4. MODEL FOR MULTI-CLASS TARGET
PREDICTION PROBLEM.
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III. FORM OF THE OPTIMAL ESTIMATOR

The basic form of the optimal estimator will be derived in this
chapter. Two subsequent chapters will consider in detail the required
linear and nonlinear data processing, respectively.

The performance measure used is a generalization of mean-square
error, the most common criterion in use. This generalization is neces-
sary since the quantity or state of nature, denoted w, being estimated
may be vector-valued. Thus, in general, w will be a vector quantity,
although it is to be understood that in a particular case this vector
may be a scalar, Similarly, matrix quantities, which appear later, may
be either matrix-, vector-, or scalar-valued,

Specifically, the optimal estimate & of some state of nature

will be defined as the value of w

est’ which minimizes the following

quadratic form
Eflw - o, )T Qo - o )iz}
est est t?’

where Q 1is a symmetric, positive definite matrix, the superscript T
denotes the transpose of a vector, and E['|Zt] denotes the conditional
mean operator given the available data vector Z defined at time t

t
as

e

T
z, o (2(1), 2(2), <=, z(t)).
Utilizing the trace identity
UTAV = tr{(V - UTA),

where U and V are vectors, A a matrix, and tr{*} denotes the
trace operator upon a matrix, one may rewrite by completing the square
the above quadratic form as

(w ¢ " u->)T Q(west -o) + tr{[l(w -w e (I)T]Q],

P W e

-9 - SEL-63-143

~



where

® Q& E{w| z,) and K, & E{we wT| z).

Since only the first term, which is a positive definite form, depends

~
on w the optimal estimate w is simply the conditional mean of

’
w, F:;:hermore, this estimate also minimizes the trace of the covariance
matrix of the error (the criterion used by Rauch [Ref. 3]), as can be
established by using the above trace identity and letting Q = I, the
identity matrix,

An interesting property of the conditional mean will be used to

derive the form of the optimal estimator.

A. DERIVATION OF THE FORM OF THE OPTIMAL ESTIMATOR

In the conventional estimation problem it is desired to form an
optimal estimate & of some state of nature w--e.g., in the filter-
ing problem, w = y(t). Since the optimal estimate is the conditional

mean, one calculates
o = S wp(w|zt) dw (3.1)
Q

where 0 & space of all w

p(m]Zt) 4 the conditional probability density function of w given
the data vector zt.

Either the conditional density is known or it is possible to calculate
it, since the statistics of the random processes are presumed known,
Furthermore, in the usual estimation problem the conditional density is
gaussian and consequently linear data processing is optimum.

When the estimation problem involves an observable process, whose
probability structure would be completely specified by the knowledge of
an unknown parameter vector (O, additional analysis is necessary. For

example, even though the elemental random processes are gaussian, the

SEL-63-143 -10 -



conditional density p(w|zt) will be nongaussian in general, as will be
shown later in the chapter. Consequently, nonlinear calculations will be
necessary to obtain the conditional mean. The solution may be found by
recognizing that the conditional density of «w may be obtained from the
joint conditional density of w and ¢« by integration over A, the
space of all possible values of . Thus, Eq. (3.1) becomes

&:S wS. plw, a|zt) da dw,
Q A

which may be rewritten, by definition of p(u|aQ, Zt), as
o-{ of sa 2) sz, @ w.
Q A

Interchanging the order of integration, which is permissible so long as
the integrand is absolutely integrable [Ref. 9], and defining the con-
ditional estimate

& (o) QSQ o plwla, 2.) do

w= ; w((l 04 Z da- (3.2

Thus, the optimal estimate is formed by taking the complete set of
conditional estimates, weighting each with the conditional probability
that the appropriate parameter vector is true, and integrating over the
space of all possible parameter values. It should be noted that no
restrictive assumptions have been made about the probability laws in the
above derivation. For example, in the special case that ( 1is described
by a discrete probability law, then Eq. (3.2) may be rewritten (1f one

has an aversion to the Dirac delta function) as

&= Sﬂ&Kai) P(a1|zt). (3.3)
'y
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For computational reasons, implementation of Eq. (3.3) will be easiest
when A 1is a finite set indexed on a small number of integers,

It is now apparent that Eq. (3.3) is directly applicable to the
estimation of the process represented in Fig. 1, since a one-to-one
correspondence may be made between the switch position and the parameter
vector that specifies the statistics of the process. Subsequently, ai
will be used to denote both a particular parameter vector and the corre-
sponding switch position. A block diagram of the optimal estimator for
the stochastic process represented in Fig. 1 is shown in Fig. 5. Since
the weighting coefficients are probabilities and hence must range between
zero and one, they may be implemented by potentiometers as shown. Figure
S5 tacitly implies that the quantity being estimated, w, is a scalar

quantity., If w were a vector quantity, multiple ganged potentiometers

might be desirable.

> ﬁ(0~|) C p(a| Izt)

CAAA

-~ ~N

A ]
LSV S (a;) - Pa;]2y)

r — —
[ e "(at) o
¢
ELEMENTAL WEIGHTING
ESTIMATORS COEFFICIENTS

FIG. 5. FORM OF OPTIMAL ADAPTIVE ESTIMATOR.
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If as time progresses it is possible to learn which elemental
stochastic process is being observed, it is then intuitively reasonable
to expect the optimal estimator to converge to the appropriate Wiener
filter for that process. In terms of the block diagram, this means that
the weighting coefficient corresponding to the true switch position will
converge to one while all the rest will converge to zero. Under the
proper assumption about the elemental processes, this will be shown to
be the case, in Chapter V.,

Equations (3.2) and (3.3) will have the most practical significance
when the conditional estimates {&(a): all ¢ € A} are linear in the
observed data vector Zt. In this case, the problem of constructing
an optimal estimator, which requires nonlinear data processing, is
factored into the calculation of a set of linear estimates and the non-
linear calculation of a set of weighting coefficients. Fortunately,
under the proper assumptions, the calculation of the weighting coeffi-
cients is not difficult. One may regard the optimal estimate & as
being constructed from a linear combination of vectors in the space of
linear estimates of w. The nonlinear calculations involved are solely
in the determination of the optimum values of the weighting coefficients
used in this linear combination. In the problem statement given in
Chapter II, the elemental processes were described as gaussian random
processes and, consequently, the conditional estimates are linear in
the observed data. Therefore, the problems considered in this dis-
sertation may be factored as described above.

Earlier in this section it was claimed that the conditional density
of the state of nature w would be nongaussian in general. This fact
is demonstrated by reasoning similar to that used in deriving the form
of the optimal estimator. Thus, for the finite possible parameter

vector case,

plw|2,) = Z p(a>|a1, z,) * Pla,]2,).
i=1

-13 - SEL-63-143



Inasmuch as the densities {p(wlai. Zt): i=1, 2, ... L} are gaussian,
the resultant conditional density p(wIZt), being a linear combination
of gaussian densities, is in general nongaussian., Exceptions occur
when p(ailzt) =1 for some i or when a, = a for all 1i,j.

B. CONDITIONS FOR REDUCING THE NUMBER OF REQUIRED LINEAR ESTIMATORS

Since the set A of parameter values as used generally in Eq. (3.2)
and (3.3) may be a large finite or even a countable or uncountably
infinite set, the calculation of the set of all conditional estimates
(® (0): all a € A} may not be feasible. Since the elemental processes
have been assumed to be gaussian random processes, the conditional esti-
mates are linear estimates; nevertheless, the amount of calculation
required may be prohibitively large. Consequently, it is desirable to
investigate assumptions that might reduce the amount of required data
processing.

Consider a subset A' of the parameter space A. If for all «
in A' one can write

&a) = s(a) * H 2 (3.4)

t ’
~
where s(a) is a matrix function of « and where H is a matrix operator

(independent of «) on the vector Zt corresponding to the dynamical part

of the optimal estimator, then the calculation of
s (e @ sz w
Al
may be simplified as follows:

& (a) = SA' 8(a) p(o]2,) da + A 2,
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In other words, the nondynamical portion of the elemental linear
estinator--i.e., S(a)--is included in the calculation of the weighting
coefficients, and only one linear dynamical estimate--i.e., f zt--ia
required for the subset A'. Thus under the assumption stated in Eq.
(3.4) the amount of necessary data processing has been reduced.

Another condition that greatly simplifies the calculation of & (A')

is given below. 1If for all & in A' and all Zt one can write
ple]2z,) = pla), (3.5)

then one may calculate o (A') by a linear operation upon the observed

data, i.e.,

This follows by the gaussian assumption on the elemental processes,
which implies that &(a) = H{a) Z, where fi(a) is the optimal esti-
mator for the elemental process described by the parameter vector O.

Thus,
o (AY) =S &) p(a]Zt) do. =S () z, p(a‘zt) do.

A' A'

Utilizing the assumption stated in Eq. (3.5) one finds that
5= M) p a2 -re,

K t t
where F 4 fA' ﬁ(a) p(a) dx. Furthermore, the above linear relation
for & (A') holds in general only under the assumption given by Eq.

(3.5). Assume p(alzt) # p(a); then

SA' @ (a) pla zt) da = SA' rla| zt) ?l(oz) da ¢ Z,
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and
& (A') = G(Zt) A

where G(Zt) 4 S;' p(alzt) ﬁ(a) da.

Thus, in general, &(A') is a nonlinear function of Zt since the
matrix G has its elements determined by the vector Zt on which it
operates,

One cannot expect to find the condition stated in Eq. (3.4)
satisfied frequently in practice. With respect to the problems posed
in this dissertation, it will be found that, in general, the conditional
estimates are rather complicated functions of the parameter vector. The
desired factorization will be found only in special cases, such as
filtering a white message process of unknown power from a white noise
process of known power. A white process for the discrete-time case
is defined as any process whose time-covariance matrix is the identity
matrix.

The second condition corresponds to those cases in which learning
is impossible and, consequently, there is no point in performing the
calculation necessary to obtain p(a|zt). This is the case that was
treated by Rauch in Ref, 3 and represents the reason he was able to

use only one linear filter for optimal estimation,

C. APPLICATION TO A CONTROL PROBLEM

An important application of estimation theory is to statistical
control problems. In these problems the state of nature that must be
estimated is the state vector, i.e., w = x(t), of the system equations.

Consider a control system described by the linear difference

equations

o(t) x(t) + D(t) u(t) + a(t) v(t)

m () x(t)

x(t +1)

y(t)
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where x(t) 1s the state vector of the control dynamics, ®&(t) is the
state=-transition matrix, D(t) is the control-distribution matrix,

u(t) is the control vector, v(t) is a zero-mean, gaussian, random-
driving force, A(t) is the random-driving-force distribution matrix,
m(t) 1is the output vector, and y(t) is an output of the plant. Further
suppose that for all t the quantity z(t) actually observed is y(t)
corrupted by a gaussian random variable, ni(t), which is statistically
independent of v(t); i.e., z(t) = y(t) + qi(t), where {ni(t): t =

1, 2, ...}, (i =1, 2, ... L) is a gaussian random process with L
different, known, possible, statistical characteristics.

If the following quadratic performance criterion is adopted,

T
J =E{>—‘ [xT(k +1) Q x(k + 1) + uT(k) ¥ u(k)J} ,
k=t

where Q and Y are symmetric, positive definite matrices, then it is
well known that the optimal control is a linear function of the optimal

estimate of the state vector. Thus,
a(t) = c(t) E{x(t)lzt) = c(t) x(tjt).

Consequently, the result on adaptive estimation derived earlier in
this chapter is applicable to linear-~dynamic, quadratic-cost, control
problems when the observed output is corrupted by a gaussian process
described by an unknown parameter vector (. Naturally in the control
problem, also, it is necessary to assume that «Q must come from a
finite set of known possible values if implementation of the control law
is to be feasible.

At this point the form of the optimal estimator has been found, and
one of its important applications has been stated. All that remains to
be done is to calculate the conditional estimates and the weighting
coefficients; this will be done in the next two chapters, respectively.
Actual evaluation of the weighting coefficients will involve some non-

linear calculations in terms of the observed data. Fortunately, much
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of the necessary calculation is linear and is provided by the con-
ditional estimators. Because of this labor-saving relation the con-
ditional estimators will be derived first. None of the results in
Chapter IV are new, but the calculation of the weighting coefficients is
s0 closely tied in with these results that it is helpful to derive them

here.
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IV, ELEMENTAL ESTIMATORS

This chapter by itself represents a brief treatment of the estimation
of discrete-~time, scalar~valued, gauss-markov processes whose statistics
are completely known. The results are not new and various portions have
been presented in Refs. 2, 7 and 10. However, this chapter does repre-
sent the first time that these results have been derived in this manner.
It is believed that this derivation is developed from a unified approach
that clarifies the fundamentals. The concept of the displaced-covariance
equation, which is introduced here for the first time, more closely re-
lates the solutions of interpolation problems to those of filtering and
prediction problems.

Additionally, the projection theorem of Hilbert space theory is
used as a partial basis for the derivation of the form of the optimal
estimator. This theorem is very powerful and simplifies the derivation.
An appendix is devoted to elementary aspects of Hilbert space theory
since this approach is not common in the engineering literature.

It should be noted that, while the results obtained are only for
scalar-valued observable processes--i.e., one observable quantity at
a time-~they could be extended to vector processes, as has been done in
Refs. 2, 7 and 10. This extension is not made here for three reasons.
First, scalar-observable processes are more common in practice. Second,
notational difficulties would tend to obscure the results when evaluating
the weighting coefficients in Chapter V. Finally, if multiple observa-
tions were permitted, matrix inversions of the dimension of the multi-
plicity would be needed for each step. This procedure represents a
considerable amount of calculation and may well not be worth the effort
compared to the following suboptimal procedure.

Imagine that k observable quantities are present at one time. One
procedure would be to look at these quantities sequentially and regard
this sequence as a scalar process with a new structure at k times the
original sampling rate. If any of the observable quantities were in-

dependent of the others, they would have to be treated as separate
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problems., This procedure is suboptimal in that most of the quantities
would not be used immediately. The loss in performance is not likely to ¢
be great since all the data would be processed before the next group
of k samples arrived. This type of sequential approach is mentioned *
by Ho [Ref. 10], who suggests that a matrix-inversion lemma can avoid
matrix inversions altogether by processing one piece of data at a time,
It should be noted that the scalar-valued restriction applies only
to the observable process {z(t): t=1, 2, ...}. The quantity being

estimated, w, may well be vector-valued.

A. MODEL OF AN ELEMENTAL PROCESS

Since this chapter deals with the estimation of a single elemental’
process {zi(t) = yi(t) + ni(t): t =1, 2, ...}, there is no need for
the subscript or the word elemental; consequently they will be omitted
in most cases for notational convenience. It is to be understood that
the following analysis applies to each and every elemental process.

In this chapter it will be useful to make a further restriction on
the elemental processes. They will be assumed to be gauss-markov
processes; that is, they are gaussian random processes that posses a
generalized Markov property (explained below in Ref. 7, page 17). This
assumption has also been made in Refs. 2, 3, and 7 since it enables the
sufficient statistic [Ref. 11] to remain of finite and fixed dimension,
thereby vastly simplifying the data processing and storage required.
For stationary processes, this assumption in terms of the Z-transform
theory of sampled-data systems means that the power spectral density can
be expressed exactly or adequately approximated by a ratio of poly-
nomials in z2, Hence, this assumption is not unduly restrictive.

It should be noted that the terminology gauss-markov process as
used by Kalman [Ref. 7] is somewhat misleading since in general neither
the observable process {I(t): t=1,2, ...] nor its signal and
noise components possess the strict Markov property. Rather, they are
derived by a linear operation on an implicit state vector x(t), which

does possess the true Markov property, namely,

plx(t + 1)]x(¢), x(t - 1), ...] = plx(t + 1)|x(¢)].
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In order to clarify this point the terminology implicit-markov, gaussian

process will be adopted in this work.

It is assumed that the processes are generated by linear difference

equations as described below. These equations are known since either

they are the known physical structure of the processes or they have

been synthesized to generate the statistical properties of the processes.

where

w(t)
o ()

0 ()
D (t)
D, (t)
u (t)
u,(t)

r(t)
n(t)

s(t +1)
y(t)

w(t + 1)

n(t)

= Os(t) s(t) + Ds(t) us(t)

(4.1)
= r7(t) * s(t)
= Ow(t) wit) + Dw(t) uw(t)

(4.2)
= nT(t) + w(t)

is the state vector of the message process

is the state vector of the noise process

is the state transition matrix of the message
process

is the state transition matrix of the noise
process

is the distribution matrix of the message
process

is the distribution matrix of the noise process
is a white gaussian vector process representing
the driving force of the message process

is a white gaussian vector process representing
the driving force of the noise process

is the output vector of the message process

is the output vector of the noise process
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It is possible to combine Eqs. (4.1) and (4.2) by a process of

augmenting the state vector. One defines the following quantities:

el TG

and
T (t) o [r7(¢t) i nT(t)].

The large rectangular zeros that appear in the matrices O(t) and
A(t) represent areas in which all the elements of these matrices are
zero.

Further, define .
E(v(t) vT(£)) o t), .
u(t) 8 @74(t) v(t),
and

p(t) & a(t) Qyz(t).

If Q-l(t) does not exist, the dimensionality of the problem may be
reduced. The model for the complete process may now be represented by
the linear difference equation,

x(t +1) = o(t) x(t) + D(t) u(t) t

"
4

KA
g
>

m(t) x(t) t

z(t)
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The driving force u(t) which is a gaussian random noise process,
both spatially and temporally white, has covariance matrix

E{u(y3) uT(k)} =145 for all integers j, k,

Jk

where 8Jk is the Kronecker delta function,

Equation (4.3) is an adequate model to represent any zero mean,
implicit-markov, sampled-data, gaussian, random process. Proper struc-
ture of the input distribution matrix D(t) permits any desired degree
of correlation between message and noise processes. By representing
the process in terms of its difference equation, nonstationary or
finite-duration processes may be handled with the same theoretical
procedure as infinite-duration stationary processes. In the latter
case the quantities ®(t), D(t), and m(t) merely become constants
independent of time. It should be noted that the ranges of the time-
index sets of Eq. (4.3) differ. This difference is intended to reflect
the fact that only a finite number of observations is available at
present but that the internal or implicit structure of the process may
have existed for an infinitely long period. Thus, Eq. (4.3) may repre-
sent a stationary process upon which observations are taken after time
t = 0. In the event that it is desired to represent a process whose
internal structure begins at time t = 0, it suffices to make D(t)
identically the zero matrix for t < -1,

Figure 6 is a block-diagram representation of Eq. (4.3). Wide
arrows are used to represent the signal flow of vector quantities while
the conventional line arrows represent scalar quantities. The various
blocks perform the linear-matrix operations inscribed in them on the
incoming vector quantities. The summer is intended to represent a

vector summation,

B. RECURSIVE FORM OF OPTIMAL ESTIMATE

In this section the form of the optimal estimator for an elemental

process is found.As a first step the projection theorem is introduced.
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u(t) 2(t)

D(t)

FIG. 6. MODEL OF ELEMENTAL SAMPLED STOCHASTIC PROCESS.

This theorem (which states a necessary and sufficient condition for an
optimal linear estimate) is applicable to the optimal estimate o (the
conditional mean of ) since gaussian statistics have been assumed for
the elemental process, For the second step the projection theorem is
used in conjunction with properties of the conditional mean to derive
the recursive form of the optimal estimate. The third step consists

of finding a general expression for the gain vectors that appear in the
recursive form. The final steps consist of finding specific expressions
for the gain vectors in four major forms of the estimation problem.

The common filtering problem will be solved first because of its
importance and since its solution is fundamental to the other forms.
Next, the prediction problem will be solved since its solution involves
only a simple extension of the analysis used for the filtering problem.
Finally, because of its difficulty, the interpolation problem will be
considered as two problems. The first of these is that of fixed-
relative-time interpolation; that is, one is interested in estimating
at each instant the value that a quantity had |7| samples ago. The
other problem is that of fixed-absolute-time interpolation; an example
of this is the estimation of the initial condition of the state vector.

As a result of the assumed structure of the message and noise
processes, a very useful property of optimal estimates results. The

implicit-markov assumption allows many related estimation problems to
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be handled simultaneously with little more labor than necessary for one
estimation problem. More specifically, the optimal estimates &(J[t)
of all quantities w(J) that are linear functions of the state vector
x(j) (1.e., w(J) = A x(j) for some matrix A) may be simply found by
performing that linear operation on the optimal estimate of the state
vector. This fact follows because the optimal estimate is the con-
ditional mean. When the conditional-expectation operator E['|Zt} is
applied to both sides of the linear relation, the following equality

results
a(3]t) o Elw(4)]2,) = A &(4]t).

Therefore, the subsequent sections will be primarily devoted to the
estimation of the state vector, i.e., w = x, even though in many cases

it is a hypothetical quantity,

1. Development of Projection Theorem

The following theorem from Hilbert space theory [Ref. 12] is
applicable since the expectation operator E(°*] operating on two
random-variable vectors w and v satisfies the properties of an

inner-product relation. That is, one may write
E{u?' v} = (w, v)

where w and v are regarded as vectors in a Hilbert space and

(°,') denotes the inner-product operator. Furthermore, the quantity
(w, w), which is sometimes denoted |jw||? since it is a measure of

the square of distance in the Hilbert space, is just the sum of the
mean-square values of the random-variable components of . Hence,

the quantity (w =&, o - ®) = |jo - @|> is just the sum of the mean-
square errors of each component of the optimal estimate. Let F(t)

be defined as the linear space created by the sequence of observables
z(1), z(2), ... 2(t). 1In other words, I'(t) consists of all quantities
that may be written as H zt for some matrix H (possibly a row voctor).
By the assumptions of the problem, & € I'(t).
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PROJECTION THEOREM: (special case of the general abstract theorem
stated and proved in Appendix A).

Ew - v)T (0 - v)) > E((w - &) (0 - 2))
for all v € I'(t) if and only if
E{(w - m)T cvl=0

for all v € I'(t).
Any random variables u and v that satisfy

E[uT

* v} =0
are said to be orthogonal, denoted u l v. The error term (w - ) faY o
is called the residual.

Briefly, the projection theorem states that the residual is ortho-
gonal to the space of linear estimates. Thus, the optimal estimate
®, which is a linear estimate, may be geometrically interpreted as the
perpendicular projection of  on the linear space I'(t).

The orthogonality property of the residual will prove useful
throughout the remaining chapters and will be crucial in recognizing a

simple method for determining the weighting coefficients.

2. Derivation of Recursive Form of Optimal Estimate

In this section the recursive form of the optimal estimate will
be derived. Except for gain constants, the solution of the estimation
problem will be found., Later sections will be devoted to evaluating
these gain constants and to further manipulations that will yield forms
of greater intuitive value or greater computational utility.

Consider the following definitions for all integer values of i
and J.

%(3]1) o E(x(4))2,).
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%(J)1) o x(3) - R(3)1).

In words, Q(Jli) represents the best estimate of the state vector
x(j), at time j given all the available data Z, up to time i.
The quantity %(Jj|i) is just the error of the best estimate 2(3)1).

Thus, one has
x(t +7) = R(t + 7|t = 1) + X(t + 7|t - 1), (4.4)

where 7 1is some positive (prediction) or negative (interpolation)
integer and t represents the integer corresponding to the present
sampling instant.

Since the optimal estimate is just the conditional mean, one

may apply the conditional mean operator E{-'Zt] to Eq. (4.4) to obtain

&(t + y|t) = R(t + 7|t -1) + E(X(t + 7|t - 1)|zt}. (4.5)

Taking the conditional expectation E(-'Zt_l] on both sides of Eq. (4.4)
and utilizing the projection theorem, one finds that

t-1
E(X(t + 7|t - 1)|zt_1} =Z k(t + 7,1) 2(i|1 -1) = 0. (4.6)
i=1

The series expansion of the projection is valid since the time series
{((i|1 - 1) o s(1) - 2(4)1 -1): 1=1,2, ..., t -1}

spans ['(t - 1). Likewise, since I'(t - 1)cI'(t),
t

E(k(t + 7|t - 1)|2,) =Z k(t + 7,1) (1)1 - 1) = k(t + 7,t) B(t|t - 1).
i=1
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Since Eq. (4.6) must hold for all Z,_,» one finds that k(t + y,1) =0
for i < t. Therefore, one may now write the fundamental recursive

relation of the optimal estimate.

R(t + yft) = R(t + 7|t -1) + k(t + y,t) B(t|t - 1)
(4.7)

for t =1, 2, ...

Since the process is assumed to be zero mean, the initial value of Eq.

(4.7) is, for all integers 7,
2(7' 0) = 0,

Intuitively, the vector k(t + 7,t) represents a gain vector
that operates on the error signal i(t[t - 1) to provide a correction
vector for the previous best estimate of the state R(t + 7|t -1).
The next section will express the gain vector in terms of the various

parameters of the process.

3. Determination of the Gain Vector

By applying the reasoning used in the introductory portion of
Chapter III, it is apparent that the optimal estimate, which is the
conditional mean, may be found by minimizing the trace of the following

covariance matrix,
P(t + o|t) o E(x(t + 7|t) %(t + 7|t)). (4.8)

Likewise, define in general for all integers i and j the

covariance matrix
P(3|1) @ B(x(4]1) * % (4]1)) (4.9)
and the displaced covariance matrix
R(J,K|1) & E(x(3]1) * %" (k|1)). (4.10)
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Utilizing these definitions, Eq. (4.7), and the fact that i(tlt -1) =
mT(t) i(tlt - 1), yields

P(t + 7|t) = P(t + |t = 1) = R(t + 7,t[t = 1) m(t) k"(t + 7,¢t)
-k(t + 7,t) mT(t) RT(t + 7, t|t = 1)

wk(t + 7,t) m(t) B(t|t - 1) m(t) k(¢ + ,t)

(4.11)

Completing the square, applying the trace operator (denoted by tr{+)
to both sides of Eq. (4.11), and using the trace identity yields

T
tr(P(t + 7|t)) = a*(t|t - 1)[k(t + 7,t) - R(t +ogi: : = i%’m(t)]
[k(t + y,t) - R(t +ogi: : = i%,m(t)]
+ tr(P(t + 7]t - 1)
Cmt(t) RT(t + y.tlt = 1) R(t + 7.t]t - 1) m(t)
TT(e[t - 1)
(4.12)

where
c?(t]t - 1) & mT(t)P(t|t-1)m(t) = Var(2(t|t - 1))

and Var(*] denotes the variance of the specified scalar-valued random
variable.
The gain vector enters into only the first term of Eq. (4.12).

Since that term is a positive definite form, the optimum gain vector is

k(t + 7,t) = R(t +&Zi:I: - :% me) (4.13)
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Equation (4.13) is the general expression for the gain vector, Dif-
ferences between the problems of prediction, filtering, and interpolation .
enter only through the displaced-covariance matrix R(t + 7,t|t -1).
Consequently, the subsequent sections devoted to these problems will be .
composed primarily of iterative solutions of the displaced-covariance

equatior. in the various cases.

4. Solution of the Filtering Problem

In this case y = 0 and the displaced-covariance matrix
R(t + 7,t|t - 1) is simply the nondisplaced-covariance matrix
P(t|t - 1). Thus, the basic relations in this case are

2(t|t) = x(t]t - 1) + k(t,t) B(t|t - 1) (4.14)
and
k(t,t) = ﬂ;',zt,'tll 'f%tl : (4.15)
Moreover, )

x(t]t = 1) = ¢t - 1) X(t -1t - 1)

since E[u(t - 1)|Zt_1] = 0 because of the time independence of the

random driving force. Hence,
x(t|t) = o(t - 1) %(t - 1|t - 1) + k(t,t) 2(t|t -1). (4.16)

A block diagram of the optimal filter is depicted in Fig. 7.
It is of considerable interest to compare this diagram with Fig. 6,
which represents the model of the random process, since the optimal
filter contains a model of the internal structure of the process.

The next step is the iterative evaluation of the covariance
equation. As part of the problem statement it is assumed that the
& priori covariance matrix P(1|0) is known. Therefore, in order to

evaluate P(t|t - 1) for all time it will be sufficient to relate
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| aT(t) "’ ®(t-1)

FIG. 7. MODEL OF OPTIMAL FILTER,

iteratively P(t + 1|t) and P(t|t - 1). Use of appropriate definitions
and Eq. (4.3) gives

%(t + 1]t) = o(t) X(t|t - 1) + D(t) u(t) - &(t) k(t,¢) 2(t|t - 1).
Substitution of this expression in the definition of P(t + 1|t) yields
P(t + 1|t) = 0(t) [1 - k(t,t) m'(£)] P(t|t = 1) [1 - k(t,t) n'(£)]T

o"(t) + () D'(t). (4.17)

Further reduction is possible by substitution of Eq. (4.15) into (4.17)

to give the covariance equation

P(t + 1]t) = 0(t)[1 - k(t,t) m'(¢)] P(t]t - 1) 67(¢) + D(t) D(¢),
(4.18)

Consequently, by sequential cyclic use of Eqs. (4.15) and (4.18), the
gain vector can be determined for all time., The optimal filter for
the state vector is now complete. The best estimate of any linear
function of the present-state vector is then found by applying that
linear function to %(t|t). Thus, for example, in the conventional
filtering problem the best estimate of the message is

$(t)t) = [rT(t)iG R(t]t),
where the oblong zero denotes the portion of the vector that has all

zero elements.

-31 - SEL-63-143



The covariance matrix of the error of the estimate ﬂ(t|t) may

be found by expanding the definition of i(t't). Thus,
P(t|t) = [I - k(t,t) mT(t)] P(t|t - 1). (4.19)

Therefore, the error power of the filtered message is

r(t)
Var{§(t|t)} = [rT(t)EC.:)] P(t|t) 7Y -
Equations (4.18) and (4.19) may be combined to give
P(t + 1]t) = &(t) P(t|t) OT(t) + D(t) dr(t),

which will be useful if it is necessary to evaluate the filtering per-
formance at each step.

It is interesting to note that the gain vector k(t,t), distri-
butes the error signal %(t|t - 1) to the estimate of the state x(t|t)
in such a manner that the output vector m(t) operating on the state
estimate yields the present value, z(t), of the observed process.
Thus,

m(t) x(t]t) = 2(t]t) = z(¢).
This equality, which obviously must hold if the estimator is to be
optimal, may be established by showing that the variance of i(t[t) is

zero. Using appropriate definitions and Eqs. (4.19) and (4.15), one
finds that

var((t|t)) = m'(t) P(t|t) m(t) = O.
Since for any reasonable process the output vector n(t) is not

identically the zero vector, it has been established that the matrix
P(tlt) is nonnegative definite and not positive definite.
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8, Solution of the Prediction Problem

For this problem, 7 > 0; thus, the displaced covariance matrix
is simply related to the covariance matrix P(t]t = 1) and may be
evaluated as outlined below, Using Eq. (4.3) and pertinent definitions,
one may write

%(t + o)t =1) =&t + 7 -1) %(t +7 -1t - 1)
+D(t +7-1) u(t + 7y -1) y> 0.
Substitution of this expression in the following definition yields

R(t + 7,t|t - 1) & E((t + 7|t = 1) » X (¢t - 1))

=&t +7-1)R(t +y - 1,t|t - 1) y> 0,

(4.20)

where use has been made of the time independence of the random driving
force u(t). Repetitive application of Eq. (4.20) implies that

t
R(t + g,t]t -1) =| [ o) »(t|t -1) y> 0.
i=t+y-1
(4.21)
Thus, by Eq. (4.13),
t

Kt +9,t)=| [[ o) x(t,¢) 7> 0, (4.22)

i=t+y-1

Now observe that, by repeated application of the fundamental recursive
relation (4.7),

x(t + 7]t) =Z k(t + 7,1) B(1)1 - 1)
i=1 (4.323)

for any integer 7.
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Combining Eqs. (4.22) and (4.23) yields
t

R(t + o|t) = H o(1)] ®(t|t) tor y > 0, (4.24)
i=t+y-1

Equation (4.24) represents the solution to the prediction problem. It
is found by merely performing a matrix multiplication upon the filtering
solution and, consequently, the block diagram of the optimal predictor

is such a minor extension of Fig. 7 that it will not be illustrated.

6. Solution of the Fixed-Relative-Time Interpolation Problem

The fixed-relative-time interpolation problem is concerned
with estimating the state vector x(t + 7) for all integer values of
t and some specific negative integer 9. Thus, for example, at each
sampling instant it might be of interest to estimate the state vector
five samples ago.

Evaluation of the displaced-covariance matrix is most difficult
for the interpolation problem. This factor undoubtedly explains the
avoidance of this problem in the earliest works employing the state-
space approach,

Use of Eq. (4.7) and appropriate definitions yields the following
equations:

%(t + 7|1 - 1) =%(t + 7|1 -2) -k(t +y,1-1) 2(1 - 11 - 2) (4.25)

%(1]1 - 1) = o(1 - 1) %(4 =11 - 2) + D(1 - 1) u(1 - 1)

- (1 -1) k(4 ~1,1 -21)2(1 - 1|1 -2). (4.26)

Substitution of these equations in the definition of the displaced-

covariance matrix gives
T
R(t + 7,1|1 - 1) =R(t + 7,4 - 1|1 - 2)[I - m(i =1) k(1 ~-1,i -1)]
4,27
OT(i -1) for 1>t + 7. ( )
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Repetitive application of Eq. (4.27) implies that

i-1
R(t + 7,41 = 1) = P(t + 7|t + 7 - 1) J]l (1 - m(3) x'(3,9)) 07(y)
=t+y
(4.28)

Thus having iteratively found P(t|t - 1) by Eqs.(4.15) and (4.18), one
may find R(t + 7,i|1 - 1) for all i by use of Eq. (4.28).

To solve the moving (or fixed-relative-time) interpolation
problem, relate X(t + y|t) and R(t + 7 - 1|t - 1).

t
R(t + o|t) = k(t + 7,1) 2(1}1 - 1)
t-1
==§: k(t +7,1) B(1)1 - 1) + k(t + 7,t) 2(t|t - 1) (4.29)
i=1
t-1
Rt + 9 -1t -1)=Z k(t + 7 -1,1) B(i|1 - 1) (4.30)
i=]

where

k(t +9,1) = Bt +

and

iji - 1) m{i
c(i|1 -1
R{t + - -
k(t +y -1,1) = -S__—-ZE:T%T%Lé_lel—!LLI )
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Thus, to find a relation between these two displaced-covariance matrices,
combine Eqs. (4.18), (4.20), and (4.28) to obtain

R(t + 7,4|1 = 1) = 0(t + y = 1) R(t + 7 ~ 1,4|1 - 1)

+D(t + 9 -1) DT(t +7=1)

-1
{ Tl [ - m(3) K'(4,3)] q’T(J)} for i >t +y -1
J

st+y (4.31)
R(t + 7,11 -1) =0(t +7 =1)R(t + 7y -1,1|1 ~1) for i St +y - 1.
(4.32)

Thus

k(t + 7,1) = ®(t + 7 - V)k(t + 7 - 1,1)

+

D(t + y - 1)DT(t +7 =1)

-1
. {J’H (1 - M(J)RT(J.J)NT(J)}—M— (4.33)

=t+y o*(1]1 - 1)
for 1>t +y -1

k(t +7,1) = ®(t + 7 - Dk(t + 7 - 1,1) (4.34)
for i <t + 9y - 1.

Rewriting Eq. (4.29) and utilizing (4.30), (4.33), and (4.34) one finds
that

t+y-1 t=1
R(t + 7|t) = Z k(t + 7,1)2(1|1 - 1) +Z k(t + 7,1)2(4]1 - 1)
= i=t+y

+ k(t+7,t)E(e|t - 1)
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R(tey|t) = O(t+y-1) R(t+y-1]t-1) + k(t+y,t) B(t| t-1) + D(t+y-1)

t-1 i-1
D (t+y-1) :E: [ 11-m(3) x"(3,9)107(3)
1=tey |I=H7
‘;‘:_1 B(1]1-1)]. (4.35)

Equation (4.35) represents the fundamental equation relating the
successive estimates in the fixed-relative-time interpolation problem.
Figure 8 illustrates a block diagram of the optimal fixed-relative-time
interpolator. It should be noted that an optimal filter is required as
part of the interpolator. Also note that a tapped delay line of length
|7', which has |7| different time-variant gain vectors for tap gain
coefficients, is required. Consequently, for large values of |7|,
implementation of Eq. (4.35) will require a large amount of equipment
and/or computation.

Under proper circumstances Eq. (4.35) may be rewritten and a simpli-
fied block diagram may be found. If it is assumed that the system dif-
ference equations are a discrete-time representation of a continuous-time
system described by linear differential equations, then the inverse of
the state-transition matrix will exist., Furthermore, if it is also
assumed that the observed process is really z'(t) = z(t) + v(t) where
v(t) is a white, zero-mean, gaussian process of finite power, then the
matrix P(t|t) will have an inverse. When these two matrices possess
inverses, the following equality can be found using Eq. (4.19) and (4.28),

T t1ats) ¥05,910%(5)) = T (taye1) B (eg1] £99-1) B(1p-1,14] 3-1). |
setey

(4.38) *.
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Equation (4.38) may be substituted into Eq. (4.35) to yield

(e + yt) =0(t + 7 - 1)R(t + ¥ -1t - 1) + k(t + 9,t)2(t|t - 1)

-1
+D(t + 9 - 1)DT(t +y - I)OT (t +9-1)
t-1
Pt 4 7y =1t + 7 - 1) }: R(t + 7 - 1,1|1 - 1)
i=t+y
- = imii_ Ty (11 - 1)

S(t + o|t) =0(t + 7 - 1)%(t + 7 = 1|t = 1) + k(t + 7,t)2(t]t - 1)
T T}
+D(t + 7 -1)D(t +y-1)0 (t+0-1)
. P-l(t +y -1t + 7 - 1)[%(t + 5 - 1|t -1)

-R(t + 7 -1t + 7 -1)]., (4.37)
Equation (4.37) represents an alternate (and simpler) method of

-1
writing Eq. (4.35) when the quantities oF (¢t + y - 1) and

-1
P (t +7 -1t +y - 1) exist. This form for the fixed-relative-time
interpolator was found previously by Rauch [Ref. 13] using the same
assumptions but different techniques.

7. Solution of the Fixed-Absolute-Time Interpolation Problem

In this case it is desired to estimate at each sampling instant
the state vector x(J), at some fixed, absolute time j. Perhaps the
most common example of this is the estimation of the initial value of

the state vector, i.e.,
x(0).

SN e e d i e e v e -

Repetitive application of Eq. (4.7) implies that for any integer 7
t corresponding to the present time :
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R(J|t) = k(J,1)2(1]1 - 1). (4.38)

The gain vector may be found from the displaced-covariance matrix that

was determined in the previous section. Therefore, Eq. (4.38) represents
the solution of the fixed-absolute-time interpolation problem. Figure 9
is a block diagram of the implementation of this solution. It is to be
noted again that the optimal estimator includes as part of its structure
the optimal filter,

At this point the major estimation problems for processes with
known gtatistics have been solved. Thus, the construction of the
elemental estimators of Fig. 5 may be considered to be complete. The

analysis will now return to the estimation of processes with unknown
parameters.

i1
—d k(] t) ‘

3(t|t-1)

——z2t) b ormimL FiLTer

FIG. 9. MODEL OF OPTIMAL ABSOLUTE-TIME INTERPOLATOR.
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V. CALCULATION OF THE WEIGHTING COEFFICIENTS

The remaining problem that must be solved is the calculation of the
weighting coefficients (P(a1|zt) : i=1, 2, ...L}. In some sense this
represents the truly interesting part of the analysis since it is a
study of the learning function of the optimal adaptive estimator, The
optimal estimator is called adaptive since its structure is a function
of the incoming data. This structure changes only through the weighting
coefficients and, consequently, they embody the learning or adaptive
feature of the estimator.

By Bayes' rule,
p(z,|a,)P(a,)
L ’

Z p(z|ay)p(a))

j=1

(5.1)

P(ai| Zt) =

which may be rewritten, to avoid practical computational problems, as

p(z |a Pla,)

P(a'Z)— 1+Z;(2—Ta‘t)- i=1, 2, ...L. (5.2)
Ji‘i

Since the a priori probabilities {P(ai) :i=1, 2, ...L) are known

constants, knowledge of the probability densities {p(zt|a1) t 1 =1, 2,
...L} will suffice to evaluate the weighting coefficients. Because the
elemental processes are gaussian, they are described by the multivariate

gaussian density function

p(z)0) = (2u)"/’|xz;t(1)|""exp{% (z, - 4, (101" G} (1)0z, - "t(‘)]}
| i=1,23,...L (5.3)

where Kz_t(i) is the covariance matrix of the first t time samples
’
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of the ith observable process [zi(t) tt=1,2, ...] and Mt(i) is
the corresponding mean-value vector. For notational convenience it will
be assumed that for all t and 1, Mt(i) = 0, although this assump-
tion is not necessary for the succeeding analysis to apply.

In order to evaluate the weighting coefficients it will be neces-
sary to calculate each IKZ;t(i)| and each quadratic form
zf K;tt(i) Zt. At first thought it would appear that insurmountable
difficulties will be encountered as time progresses. One is required
to take the determinant of a matrix of ever-increasing dimension and
also to invert such a matrix., Fortunately, it is possible to avoid
these difficulties, and the next two sections will present the required
analyses. Briefly, the result is that the implicit-markov assumption
on the elemental processes greatly simplifies the calculation of these

quantities.

A. EVALUATION OF THE DETERMINANT

The evaluation of the determinant 'Kz;t(i)l may be simplified by
relating it to the previously required determinant 'KZ;t-l(i)l' Con-
sider the following equality (which is true by the definition of the
conditional probability density).

p(z,) = plz(t)|2,_ )z, ). (5.4)

Since the elemental processes are gaussian, p[z(t)'Zt_l] is a gaussian
density with mean 2(t|[t-1) and variance o?(t|t-1). Substitute this
density and the appropriate multivariate gaussian distributions in Eq.(5.4).
Identification of like coefficients on both sides of this version of

Eq. (5.4) yields

1Kz, (1)] = o, (e]t - 1)| Ky, (1) 1=1,2, ...L. (5.8)

It is possible to avoid evaluating any determinant by iterating Eq. (5.5).
Thus,

IKz;t(i)l = }jl,oi’(JIJ -1) 1=1,2, ...L (5.6)
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Furthermore, the quantities {0'1’(_1].1 -1):1=1,2, ...L j=1,2, ...)
have already been calculated by Eq. (4.12) in order to implement the gain
vectors [Eq. (4.13)] needed in the elemental estimators.

Intuitively, the significance of Eq. (5.6) is given by the following
statement. The determinant of the covariance matrix is the product of
the variances of the one-step prediction errors. Thus, the matrix
Kz;t(i) will be invertible if and only if at each sampling instant it is
impossible to predict perfectly the next value of the process.

The determinant |Kz;t(i)| may be related to an important concept
from information theory. The concept is that of the average information

or the entropy of the process and is defined as
H(z ) 2 _ \ p(z.) 10g p(z, )az (5.7)
t t t t’ :

For an elemental process, substitution of the appropriate gaussian

density and integration gives

H,(2,) = 4 1og [(zne)t|xz;t(1)|] 1=1, 2, ...L (5.8)

One then can make the following statement. The matrix Kz;t(i) will be
invertible if the entropy of the gaussian process whose covariance
matrix is Kz;t(i) is finite. The entropy of the process may be
expressed in terms of the one-step prediction variances, as
t
ui(zt) = t/2 log (2ne) + )4 Z log 0'1’(J|J -1) i=1,3, ...L
=1 (s.9)

Similar results relating entropy to the one-step prediction variance
have been obtained previously by Elias [Ref. 14], Price [Ref. 15], and
Gel'fand and Yaglom {Ref. 16].

B. EVALUATION OF THE QUADRATIC FORM

The quadratic form i: K;{t (i)zt may be thought of as the sum of
’

the squared-time samples of a scalar-valued random process
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{w(t) : t =1, 2, ...). If the vector W, 18 defined as

TA
v, = [w(1), w(2), ..., w(t)]
then
T -1 T
2, Kp.¢ (1)zt =W W 1=1,2, ...L (5.10)
implies that
-4
LA S (1)zt i=1, 2, ...L (5.11)

The matrix K;?t (1) is known as the bleaching [Ref. 17] or whitening
filter for the ith elemental process, and it may be either the symmetric
or causal square root of the inverse of the covariance matrix, The
latter interpretation will be used here since then the calculations to
be performed are physically realizable.

If the vector of observations Zt is actually generated by the ith
elemental process, the vector Wt will be white. Thus, one desires to
find in each elemental estimator a process that is white when the esti-
mator matches the observed process. Fortunately, it is possible to find
such a process-- it is the normalized version of the one-step prediction
error, i(t|t - 1). Before demonstrating this fact it will be helpful
to provide the following definitions.

The one-step prediction error of the ith estimator operating on the

jth elemental process is denoted Eij(tlt - 1). Therefore,
iij(t|t -1) = zJ(t) - Qij(tlt -1) 1,3 =1, 2, ...L,

where Qij(tlt - 1) is the estimate given by the ith elemental esti-

mator operating on data from the jth elemental process. Thus,

Qij(tlt -1) is in Pj(t - 1), the space spanned by the jth time series.
The one-step prediction error of the ith estimator operating on an unspeci-

fied process is denoted ii(t|t - 1). Hence, in a particular example,
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ii(tlt -1) = iid(tlt - 1) for some j=1, 2, ...L, just as z(t) = zJ(t)
for the same integer J.

In terms of the above notation, the matched one-step prediction-error
processes {iii(tlt -1) :t=1,2, ...; 1=1,2, ...L] can be shown
to have independent time samples by use of the projection theorenm.

By the projection theorem
"z'u(t|t -1) L v for all v € I‘i(t -1).
Now zu(t -1jt - 2) € I"i(t -1)

since

'in(t -1t - 2) zi(t -1) - iu(t -1t - 2) (5.12)
and zi(t -1) € Fi(t - 1) and 211(1: -1t - 2) € I‘i(t - 2) CI‘i(t - 1),

Likewise, ili(J|J -1) € Pi(J) for all positive integers j. Further-

more, the following ordering relation among the linear spaces holds

1“1(1) C 1‘1(2) cC ... I"i(t -1)c Pi(t).

Therefore,
2,03/ -1) el (e -1)  forall y<t

and zii(tlt -1) 1 zii(J|J -1) for all j<t
and for all positive integers t. Consequently, the time series
[iii(t|t -1) :t =1, 2, ...] has independent time samples with
variance ci’(t|t - 1). The time series (w(t) : t =1,2, ...) 1is

obtained by

w(t) = c;l(t|t - 1) 'i:l(t|t - 1). (8.13)
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T 1

Hence, the quadratic form zt Kz~t(i) zt may be obtained by squaring the
L

error signal ii(Jlj - 1), normalizing, and accumulating or summing over

time. The procedure is illustrated in Fig. 9.

C. COMPLETE WEIGHTING-COEFFICIENT CALCULATOR

For simplicity of illustration, the complete weighting-coefficient
calculator will be described for the case of only two elemental processes.
The analysis may be extended to problems with more elemental processes
simply by repeating for each additional process the appropriate portions
of the subsequent calculations.

For the dual elemental process situation Eq. (5.2) becomes

-1
p(z,|a,) Pla,)
¥ plz,[o,) Plo)) (5.14)

p(a1|zt) ={1

p(a2|zt) = 1 - p(a1|zt).
The ratio of the gaussian densities is calculated as follows: »
%
p(z,]0,) J]K,., ()] T .
- H 1 -1 _ -1
Pz 10,) " \Thy, T [ O ™% | % Koy (212 - % Kpy (102
(5.15)
Using previous results, this becomes
% t /o ~
r(z,|a,) L oj(s}y - 1) 23(3)3 - 1) ) 230313 - 1)
PETO) TV ey - 0 eg\ao2(als - 1) 203(a]s - 1)
J= 93 JIJ 9 J|J Oh JlJ
' (s.16)

Note that Eq. (5.16) avoids a potential numerical difficulty of Eq. (5.15)
by accumulating term by term the difference of the normalized, squared, .
error signals rather than taking the difference between the two large

quadratic forms, Further note that the implementation of the exponential

of BEg. (5.16) needs to be accurate over only a reasonable dynamic range.
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By the time the argument of the exponential function becomes very large
in magnitude the weighting coefficients will have converged very close
to one and zero. In this situation any errors in implementing the
exponential function will have negligible effect on the optimal estimate.
Consequently, for most purposes the exponential may be formed by an
analog,diode function generator, The required square and square-root
operations may be formed in the same fashion., It may also be desirable
to form the inverse operation of Eq. (5.14) by a function generator
rather than by a division operation on a digital computer,

Figure 10 represents a block diagram of a method of implementing
Eq. (5.14). The input signals are available from the optimal esti-
mators. The variances {c:(t|t -1) :t=1,2, ...;1i=1, 2, ...L)
have been calculated in advance to construct the optimal estimator.
The square root of the ratio of the variances may also be calculated in
advance. This is assumed to be the case in the block diagram. The out-
put signals, which are the values of the weighting coefficients, either
control the tap positions of the potentiometers of Fig. 5, or else they
and the set of conditional estimates are processed by an appropriate set

of digital multipliers.

D. CONVERGENCE OF THE WEIGHTING COEFFICIENTS

Now that the description of the detailed structure of the optimal
estimator is complete, some comments about its performance are appropri-
ate. The convergence of the weighting coefficients is of particular
interest since they embody the adaptive or learning feature of the
optimal estimator. Because of the complex nature of the problem, it
is possible to give only a sufficient condition for the convergence of
the weighting coefficients. Because of the analytical complexity of the
probability distributions involved, it is not feasible to obtain an
expression for the rates of convergence.

The result is that, if all the elemental stochastic processes are
ergodic, the weighting coefficients will converge with probability
one to unity for the coefficient corresponding to the true process and

to zero for the others. This fact stems directly from Theorem 5.1 of
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Ref. 8, which is stated (with notational changes) without proof below.
This theorem represents a minor modification of a result, given by
Loeve [Ref. 18], which is derived from abstract probability theory.

Theorem:
If there exists a sequence of functions {fi-t(zt) tt=1, 2, ...}
’
of the learning observations {zi(t) t1t=1,2, ...] fromclass 1{

such that tlig ri,t(zt) is equal to the true value of the parameter
’
ai with probability one, then

c1im P(O‘let) = 531

with probability one,

For the problem considered in this paper, the sequence of functions
is just the sample covariance matrix and/br the sample mean value. It
is well known [Ref, 9] that if the elemental processes are ergodic the
sample covariance matrix and/or the sample mean value will converge with
probability one to the true covariance matrix and/or mean value, i.e.,

true parameter vector Q Thus, ergodicity of the elemental processes

is sufficient to guarant:e that the optimal estimator will converge in
the 1limit with probability one to the appropriate Wiener filter.

It should be noted that ergodicity of the elemental processes may
not be necessary, although it is sufficient., For example, the elemental
processes may be nonergodic, but the time-variant changes in the statis-
tics are of such a small magnitude that convergence occurs anyway.

If the elemental processes are nonstationary the weighting coeffi-
cients may not converge. Even in this case it should be recognized that
optimal data processing is being performed by the adaptive estimator;
convergence of the weighting coefficients is simply precluded by the

complicated nature of the problem posed.
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VI. EXAMPLES

Two examples that have been chosen for their simplicity and practi-
cal interest are evaluated in this chapter. The first example deals with
a filtering problem in which presence of the message is a random variable.
The second reverses the situation and considers the presence of a portion
of the additive noise as a random variable., Consequently, in both cases,
two elemental processes suffice to describe the observed process. In
both cases the steady-state performance of the adaptive filter is found
to be significantly better than that of a conventional filter.

A, EXAMPLE A

This example is meant to represent a specific case of the random-
message-presence situation described in Chapter II and represented in
Fig., 2, It is desired to perform the best filtering to separate the
message (if present) from the noise. It will be assumed that the mes-
sage and noise processes are stationary and may be described by the
following difference equations.

a Message present

"
xl(t +1) =9 xl(t) + ul(t)
xz(t +1) = + uz(t)
zl(t) = mlxl(t) + 2x2(t) (6.1)
a2 : Message absent
xz(t +1) = + uz(t)
zz(t) = mzxz(t) (6.2)

The driving forces {ui(t) tt= -0, ,.., 1,0 1, ...0; 1 =1, 3)
are independent,gaussian random processes with independent time samples
of unity variance,

Four possible situations might exist with a nonadaptive filter. The
steady-state, mean-square errors (IBE) for these cases are defined as
follows:
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[
1w
-
I

MSE when message present but filter designed for message

absent .,
A
2. Bz = MSE when message present and filter designed for message
present,
3. 53 é MSE when message absent and filter designed for message
absent .
4, 64 é MSE when message absent but filter designed for message

present,
It is assumed that the nonadaptive filter is designed on the basis of
the message being present; consequently, cases 1 and 3 will never
occur,
The steady-state, mean-square errors for both the nonadaptive and
adaptive filters can now be evaluated in terms of the above P's.

The following quantities are defined:

Wn é steady-state, mean-square error of the nonadaptive filter
which assumes the message is present.
Wa é steady-state, mean-square error of the adaptive filter,
Then
v, = Pla) s, +Plo,) B, (6.3)

and, since 63 = 0,

v, = Plo)s,. (6.4)

The percent improvement I of the adaptive system over the conventional
filter is

Vo~V Pla,) B
n a 1 2
I = ‘yn X100 =11 + m E X 100 (6.5)
Note that
By =By +7 (e.s)

where 7 1s defined as the steady-state, mean-square error due to the

distortion of the message by the optimal filter. Thus,
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-1

P(al) N
I=[1+3(a_27(1+54 )] X 100 . (6.7)

The steady-state, mean-square errors 64 and 7 may be evaluated
using the theory of sampled-data systems [Ref. 19]. Due to previous
use of the symbol 2z 1in this text, the symbol A will be used for the
discrete~time complex frequency variable. It may be shown, using the

theory of sampled-data systems, that

y =g b0 - mI0- H0he 00 2 (5.8)
Be = 35 S'r BEG 8 () R (6.9)

where éyw(k) and Ann(k) are the discrete-frequency, power-spectral
densities of the message and noise processes, respectively. The

discrete-time causal Wiener filter is found to be
1 dyy (N
+ -

a0 42 ()

where the positive- and negative-sign superscripts denote spectral

H(A) = (6.10)

factorization operators and the positive subscript denotes an operator
that selects the positive (or real) time component.

For the model of the stochastic processes described by Egs. (6.1)
and (6.2)

g - (A - 1T)

3 (A )
25M PR (6.11)
and
A) = - " * X , )
3, =-(3) R Ty (6.12)

where r, ¢ < 1.
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The quantity r is defined as the solution that is less than unity
in magnitude of the equation

r+ r-1 = ¢ + 0-1 [}+ (;i)zj (8.13)

Substitution of Eqs. (6.11) and (6.12) in Eq. (6.10) yields

H(A) = (:—:) [o(o - r 1)t 7\—7‘_—; . (6.14)

By using the above results, the mean-square errors may be found to

By = m; [mzo(r—l -9)]"2 [1 - :r']'1 (6.15)

and

y = (@) [+ et =10t s (- #Ne? =20 - e v 1 1Y)

rle-c?+2(1 -r?e +r? -1)x [(0—1 - 0)(r-1 -r)(r - 9)
R o § (6.16)

where

el (:Ll-)’ [o(r2 - o)7L,

The percent improvement I will be evaluated for the following
numerical example:
0=%,, ll1=1, ll2=2,

p(al) = 0.1, and ’(0‘2) = 0.9
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In this case the percent improvement of the adaptive system over the
conventional filter (which is designed on the basis of the message being
present) is

I =72,

This represents a very significant achievement, since the best possible

improvement under any circumstance is 100 percent.

B. EXAMPLE B

The example analyzed in this section is a particular case of the
random jamming situation presented in Chapter II and pictured in Fig. 3.
It is desired to perform the best filtering to separate the message from
the receiver noise or possibly from the sum of the receiver noise and
an independent jamming signal. It will be assumed that the message,
receiver noise, and jamming processes are stationary and may be described

by the following difference equations.

al : Jamming absent .
xl(t +1) = Oxl(t) + ul(t)
xz(t +1) = + uz(t) -
zl(t) =nﬁx1(t) + mzxz(t) (6.17)
a2 ¢ Jamming present
xl(t +1) = Oxl(t) + ul(t)
xz(t +1) = + uz(t)
xs(t +1) = + ua(t)
zz(t) =|m1x1(t)+ mzxz(t) + maxs(t) (6.18)
The driving forces [“1(t) tt==0 ,..,=-1,0 1, .,0; i=1, 2, 3) .

are independent gaussian random processes with independent time samples

of unity variance. *
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Again, there are four possible situations that might occur with a
nonadaptive filter, The steady-state, mean-square errors for these

cases are defined as follows:

[
@@
1

5 MSE when jamming present but filter designed for jamming absent

1
2, 62 Q MSE when jamming present and filter designed for jamming present
3. 93 e MSE when jamming absent and filter designed for jamming absent
4. 94 e MSE when jamming absent but filter designed for jamming present

It is assumed that the nonadaptive filter is designed on the basis of the
Jjamming being absent; consequently, cases 2 and 4 will never arise.

The steady-state, mean-square errors for both the nonadaptive filters
can now be evaluated in terms of the above 8's.

The following quantities are defined:

v e steady-state, mean-square error of the nonadaptive filter which

n assumes no jamming is present,
Va = steady-state, mean-square error of the adaptive filter.
Then
v =
n p(az) 0, + p(al) 64 (6.19)
and
Vv = . .20
. = Plo)) 8, + P(ay) 0, (6.20)

The percent improvement I of the adaptive system over the conventional
filter is

=1
V -V 0 Pla, ) )
n [ 1 1 3
I T s % lw = — R — X 100-
vn [91 - 62 P(azs 91 92]

(6.21)
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Using the theory of sampled-data systems

om0+ g7 § moma e sDon £ (e

where éi;)(k) and éﬁ:)(A) are the power spectral densities of
receiver noise and receiver noise plus jamming noise, respectively.
HI(A) and Ha(k) are the Wiener filters designed on assumptions «

1

and az, respectively. Further manipulation yields

6, = c’m3[1 - 1l 4o (6.23)

1 3
The quantities r and c are found from Eqs. (6.13) and (6.16).
For the stochastic processes described by Eqs. (6.17) and (6.18),

! Ae
3, ,(A) = - (-,—) P Ty (6.34)
é(nlﬁ(” = my (6.25)
and
é(:g(?\) = m3 + mg 2 Ay . (6.26)

Consequently, the power spectral densities of the two elemental processes

are similar in form.
(- r)(A - 57
(-0 -0

s -

- (6.27)
i;(A -F)(A-F")

(A -0 -oT

s -

The zeros of the latter power spectral density are found from the equa-
tion 2

r+TFLlaos 0'1[1+ Q—)J (6.38)
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Because of the similarity of form of the power spectral densities
involved, the Wiener filters for the two cases differ only in parameter

values.

m) = (Z2) tote - # ph o g

2 -r N-r
(6.29)

where . ,m, 3 Celea-l
c =K%;) [0(0 -7 )]

The mean-square error 63 may be decomposed into the error power caused
by the noise and the message distortion power caused by the Wiener filter.
Thus,

8y = m; c?(1 - r’)-1 +y (6.30)

where 7 is defined by Eq. (6.16).

The remaining mean-square error e2 is found to be
6, = ﬁ; T3 (1 - ?’)'1 + 5 (6.31)
where 7 1is evaluated from Eq. (6.16) with the substitutions r = F
and ¢ = C being made.

The percent improvement I will be evaluated for the following

numerical example:

=) m=1, m, =/, my =4J15.75,

p(°‘1) = 10/11, and p(az) = 1/11.
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In this case the percent improvement of the adaptive system over the con-
ventional filter (which is designed on the basis of the jamming being

absent) is

I=175.3.

Because of the low likelihood of jamming occurring, this represents a

particularly significant achievement for the adaptive filter.
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VII. EXTENSION OF RESULTS

Processes with deterministic mean-value functions, such as mentioned
in case 2 of Chapter I, have not been specifically treated; therefore
the analysis derived in this work can be extended in a simple manner to
handle this situation. Thus, the elemental estimators will differ in
that the observed process (z(t) :t=1, 2, ...} will first have its
hypothesized mean-value functions [ii(t) tt=1,2, ...; 1=1,2, ...L)
subtracted off to obtain the zero-mean processes necessary for use of the
theory of Chapter IV. The best estimate &@11) will then consist of the
hypothesized mean value of w, Eﬁai), plus the best estimate &ic(ai)
of the zero-mean component Dae of the state of nature . Since the
mean-value function is considered to be deterministic, it may be thought
of as being generated by a free, dynamical system with the proper initial
conditions, Consequently, the optimal estimator for a nonzero-mean
process will include a model of the mean-value function generator as
well as a model of the zero-mean component of the process.

Similarly, by merely allowing the input distribution matrix D(t)
to be identically the zero matrix for t =1, 2, ... , it is possible to
handle the case in which the message component of the observable process
is formed by the proper initial conditions, which are assumed to be
gaussianly distributed, on one of a finite number of possible free,
linear, dynamic systems (i.e., case 3 of Chapter l). Because of this
condition on D(t), after a sufficient number of observations j, the
covariance matrix P(t|t - 1) will become the zero matrix for t > j.
This means that the state of the system has been learned perfectly.

Since no further randomness is allowed to enter the system, it will be
possible to predict, filter, or interpolate the process perfectly there-
after without taking any subsequent observations. In this situation,
expressions for the gain vectors, e.g., Eq. (4.15), will become indetermi-
nate forms. Fortunately, the error signal (E(t|t -1) : t =J, J+1, ...}
will be identically zero, and any value may be used for the gain vectors.

In both these cases the only differences are in the details of the
elemental estimators, The weighting-coefficient calculator structure

remains the same.
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VIII. CONCLUSIONS

For sampled, scalar-valued, observable, gaussian, random processes,
the optimal adaptive estimate is an appropriately weighted summation of
conditional estimates, which are formed by a set of elemental estimators
(1inear dynamic systems). The weighting coefficients are determined by
relatively simple, nonlinear operations on the observed data.

When the observed process also possesses the implicit-markov
property, the construction of the optimal adaptive estimator is simpli-
fied in two major aspects. First, the calculation of the weighting
coefficients is facilitated since the inversion of matrices that grow
with time is avoided; also, the evaluation of the determinants of these
matrices is reduced to the multiplication of appropriate scalar-valued
constants. Second, the elemental estimators may be implemented more
readily since the sufficient statistic remains of fixed dimension as the
amount of observed data increases. Furthermore, under the implicit-markov
assumption, the structure of an elemental estimator--whether it be a
predictor, filter, or interpolator--can be derived in a unified approach
by the introduction of the concept of the displaced covariance matrix.

If the construction of the optimal estimator is to be feasible, the
unknown parameter vector must come from a finite set of known parameter
vectors (perhaps time-variant). Fortunately, many engineering problems
may be adequately represented by such a model. The optimal adaptive
estimator is feasible to implement for filtering problems when the
presence of either the message or the jamming process is uncertain. The
performance of an adaptive filter is significantly better than that of
a nonadaptive filter for both of these cases.

The engineering usefulness of the optimal adaptive estimator is
enhanced by the fact that this estimator is applicable to an important
class of stochastic control problems. For linear-dynamic, quadratic-cost,
stochastic control problems, the optimal control law is a linear function
of the optimal estimate of the state vector of the control dynamics.
Therefore, when the observations of the plant (1.0., controlled object)
output are corrupted by a gaussian random process described by an initial-
1y unknown parameter vector, an optimal adaptive estimator is used in the

implementation of the optimal control law.
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IX. RECOMMENDATIONS FOR FUTURE WORK

The analysis presented in this investigation could be extended with
resultant complexity to handle vector-valued observable processes. Per-
haps a more significant achievement would be to obtain analogous results
for continuous-time processes. Some difficulties in calculating the
required weighting coefficients might arise here since some of the simple
relations for determinants, etc. would no longer exist.

A very difficult problem occurs when the parameter vector describing
the process can take on a continuum of possible values. Since at present
it does not appear to be feasible to construct a continuum of weighting
coefficients or estimators, consideration should be given to various sub-
optimal schemes. One possible procedure would be to build a set of ele-
mental estimators based on parameter vectors distributed uniformly or
appropriately throughout the space A of possible parameter vectors. Each
elemental estimator could be designed on the basis of a mean parameter
vector with a large enough variance that the set of mean vectors and
their variances more or less filled the space A, Thus, it would be
assumed that the structure of the process could not be learned, any more
accurately than these variances, and the optimal elemental estimator
would be constructed as described by Rauch [Ref. 3]. Numerous questions
exist about the accuracy of this approach and the convergence of the
weighting coefficients under these circumstances.

One of the most difficult subjects is the study of the convergence
of the weighting coefficients as attested by the fact that sufficient
conditions for convergence are found from rather abstract and advanced
probability theory. Direct analytical approaches to this problem become
hopelessly complex. Naturally, determination of the rate of convergence
is even more difficult, Despite these difficulties, both the conditions
for convergence and rate of convergence are subjects worthy of further

study since they are of great theoretical and practical interest.
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APPENDIX A. BRIEF SUMMARY OF HILBERT SPACE THEORY

The purpose of this appendix is to introduce some elementary concepts
of Hilbert space theory to the reader who may be unfamiliar with them.
Since random variables may be regarded as vectors in an abstract Hilbert
space, various methods from the theory of the latter subject may be
applied profitably to statistical problems. The following material
closely follows the approach of Parzen [Ref. 12)., The reader who is
interested in a more thorough and rigorous treatment of the subject is

referred to the above-mentioned article.
1. Definitions
a, Definition 1

S 1is a linear vector space if and only if for any vectors u and
v in 8, and real number ¢, there exist vectors u+v and cu
respectively which satisfy the usual properties of addition and multi-
plication. There must also exist in S a zero vector, denoted O, with

the natural property under addition,
b. Definition 2

S 18 an inner product space if and only if to every pair of
vectors u and v in S there corresponds a real number, denoted
(u,v% which is called the inner product of u and v, The inner product
must possess the following properties: for all vectors u, v, and

w in 8 and for every real number c,

1) (cu,v) = c(u,v)
11)  (uev, w) = (u,w) + (v,w)
111) (u,v) = (Viu)

iv)  (u,u) > 01if and only if u # O
¢, Definition 3

The norm of a vector u, denoted "u", in an inner product ¢
space S is defined as follows:

lall € (u,u)%.
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d. Definition 4

S is a complete metric space (under the previously defined norm)
if and only if for any sequence of vectors [un) in 8 such that
||um - un" - 0 as m, n -+ o; then there exists a vector u in 8§

such that Hun - u” - 0 as n - oo,
e. Definition 5

S 1is an abstract Hilbert space if and only if it is a linear
vector space, an inner product space, and finally a complete metric

space.
f. Definition 6

The Hilbert space, denoted by F(t), spanned by a time series
[z(J) tJ=1,2, ...t}, 1is defined to consist of all random variables
v (perhaps vector-valued) that are linear combinations of the random
variables (z(j) : 3 =1, 2, ...t}).

Inasmuch as random variables, e.g., u and v (perhaps vector-
valued), satisfy the properties required of a vector or point in a
Hilbert space under the inner product

(u, v) 4 B{uT. v)

the projection theorem is applicable to the estimation of stochastic

processes.

2, Projection Theorem

Let S be an abstract Hilbert space, let [' be a Hilbert subspace
of S, let w be a vector in 8, and let & be a vector in I'. A
necessary and sufficient condition that & is the unique vector in I

satisfying
2 2
[kb - &" = min WD - vﬂ (minimization property)
ver
is that
(w=-8&,v)=0 for all ve€l' (orthogonality property).
The vector & is called the perpendicular projection of @ onto [,
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Proof

The proof must consist of three parts. The equivalence of the
minimization and the orthogonality properties, the uniqueness,and the

existence of the vector &, must be established.
a. Equivalence of minimization and orthogonality properties

lo-vl  =flo-8]" +3(w-8 & -v) +[@-v]"  for ver.

Since ' 1is a linear space it contains & - v, and consequently
(w=-®, & -v) =0. Therefore,

ll - V"a 2w - &“z as claimed.

Suppose there exists a vector v,€' such that (0 - &,vl) =afo.
Then for some real number b,

2 2 2
o =& = bv | = o -8 +2(w -8, bv)) + 2|V, |l

3 2
flo - &) + 2pa + b’"vlu.

By suitable choice of b the sum of the last two terms of the above
equation can be made negative, and consequently the optimality of &
can be contradicted.

b. Uniqueness

The uniqueness of & may be readily established by the use of
properties 1i) and iv) of definition 2.

c. Existence
Let
d 4 infimum over |lw - v for all verl,

Let (vn] be a sequence of vectors in ' such that |w - vn" -d
as n - «, The sequence {vn) is a Cauchy sequence, as may be estab-
lished by use of the parallelogram law outlined below.
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For any vectors x and y in 8, the parallelogram law states
2 3 2 3
= = il + llx + yll = 2/ +2fyf .

Use of the above relation yields for every m and n

vy = vl = li(vy = @) = (v, = @)

2 2 3
alv - ol +2lv, - ol -4 Yy, +v) -l .
Since y2(vn + Vm) belongs to [', it follows that

2
I '/2(vn + vm) -of > d3,
and that
2 32 2
- - - - 442
v, = vl =2lv, - ol +2lv, -ol -4,
A8 n and m tend to infinity the right side of the above inequality
tends to zero. Therefore, {vn] is a Cauchy sequence in a Hilbert

space and consequently converges in norm to some limit vector v' in 8.
By the triangle inequality and the definition of d

asfo-vil s Iv - v+ - vl

Since ||v' - vn" -+ 0 the right-hand side of the above inequality tends
to d. Therefore, |w - v'| = d and there does exist a vector v'
(now identifiable as v' =8) in [ satisfying the projection theorem.
The proof of the projection theorem is now complete.
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Washington 33, D.C.
Attn: EEE Station 5-8

-

Office of Technicel Services
Dept. of Commerce
Washington 38, D.C.

-

Director

National Security Agency
Fort George G. Meade, Md,
Attnt R42

-

NASA, Goddard Space Flight Center

Greenbelt, Md,

Attn: Code 611, Dr. G.H, Ludwig
Chief, Data Systems Divisions

-

NASA

Office of Adv. Res, & Tech,
Foderal Office Bldg. 10-B
800 Independence Ave.
Weshingtom, D.C.

Attn:  Mr, Paul Johnson

-

Chief, U.8, Army Security Agency
Arlington Hall Station
2 Arlington 13, Virginis

W of Aberdeen
Dept. of Natural Philosophy
Marisohal College
Aberdeen, Sootland

1 Attt Nr, RV, Jones

U of Arizoss
1 Atta: R.L. Valker
1 D.J. Mamiltom
U of British Columbia

Vasoouver §,
1 Attat Dr, A.C, Soudack

#o AF or Classified Reports.
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California Institute of Techunology
Pasadens, Calif,

1 Atto:
1
1

Prof. R.W, Gould
Prof, L.M. Field, BB Dept,
D, Braversan, EE Dept.

California Institute of Technology
4800 Oak Grove Drive
Pasadena 3, Calif,

-

Attnt

Library, Jet Propulsion Lab,

U. of California
Berkeley 4, Calif,

-

Attng

Proz. R,N, Saunders, EI Dept.
Dr. R.K. Wakerling,
Radiation Lab, Info, Div.,
Bldg. 30, Rm, 101

U of California
Los Angeles 34, Calif,

-

Attng

C.T, Leondes, Prof, of
Engineering, Engineering Dept.
R.8, Elliott, Electromagnetics
Div., College of Engineering

U of California, San Diego
School of Science and Engineering
La Jolla, Calif,

-

Attn:

Physics Dept.

Carnegie Institute of Technology
Schenley Park
Pittsburg 13, Pa,

-

Attn:

Dr. E.M. Williams, EE Dept.

Case Institute of Technology
Engineering Design Center
Cleveland 8, Ohio

-

Attn?

Dr. J.B, Neswick, Director

Cornell U
Cognitive Systems Research Prograa
Ithaca, N.Y,

-~

Attnt

¥, Rosenblatt, Hollister Hall

Thayer School of Engr.
Dartmouth College
Hanover, New lampshire

1 Attn:

John ¥, Strohbehn
Asst, Professor

Drexel Institute of Technology
Philadelphis 4, Pa,

9

Attn:

PF.B, Haynes, IE Dep:.

U of Floride
Enginesring Bldg., Rm, 336
Gainsville, Fla,

-

Attn:

N.J, Viggins, KX Dept.

Georgia Institute of Technology
Atlsnta 13, G,

Attn:

-

Mrs, J,H, Crosland, Librarian
7, bLixon, Engr,Experiment Station

Marvard U
Plerce Mall
Cambridge 38, Ness,

-

Atn:

Dean M. Brooks, Div of Engr, and
Applied Paysics, Rm, 217
R, Farkas, Librarian, Rm, 3034,
Tech, Reports Collection

U of Mawail
Homolulu 14, Newaii

Attm:

Asst, Prof, K. Najita, EE Dept.

U of Illinois
Urbena, 111,

1 Attme

-

P.D, Coleman, ER Res. lab,

¥. Perkins, EE Res. Lab,

A. Alvert, Tech.Rd.,EE Res, Lab,
Library Serials Dept,
Prof.D.Alyert,Coordinated Sci,lab,

#Instituto de Pesquisas de Marinha
Ministerio da Marinha
Rio de Janeiro
Estado ds Guanabara, Brasil

1 Attn: Roberto B, da Costs

Johna “Hopkins U

Charles and 34th St,

Baltimore 18, Md,

Attn: Librarian, Carlyle Barton Lab,

-

Johne Hopkins U

86821 Georgia Ave,

Silver Spring, Md,

Attn: N.H, Choksy
Mr. A.¥, Nagy, Applied
Physics Lab,

-

Linfield Research Institute
McMinnville, Ore,
1 Attn: G.N. Hickok, Director

Marquette University
College of Engineering
1518 W, Wisconsin Ave,
Milwaukee 3, Wis,
1 Attn: A.C. Moeller, IE Dept,

MNIT
Cambridge 39, Mass,

1 Attn: Res. Lab. of Elec., Doc.Ra.
1 Miss A, S1ls, Libn,Rm 4344,
LIR
1 Mr, J.E, Ward, Elec,Sys.lab,
NIT
Lincoln Laboratory
P.0, Box 73
1 Attn: lexington 73, Mass,
1 Navy Representative
1 Dr. W.1, Wells
1 Kenneth L. Jordon, Jr.

U of Michigan
Ann Arbor, Mich,

1 Attn: Dir., Cooley Elec. Labs,.,
N. Campus
1 Dr. J.E, Rowe,Elec.Phys. Lab,
1 Comm, Sci.lab.,180 Frieze Bldg.
U of Michigan

Institute of Science and Technology
P.O, Box 618
Ann Arbor, Mich.
Attn: Tech. Documents Service
¥. Wolfe-=IRIA--

-

U of Minnesota

Institute of Technology

Minneapolis 14, Minn,

Atta: Prof. A, Van der Ziel,
X Dept,

]

U of Nevads

College of Engineering

Reno, Nev,

Attn:  Dr. R.,A, Manhart, XE Dept,

-

Northeastern U
The Dodge Library
Boston 15, Mass,.
1 Attas  Joyce E. lunde, Librarian

Northwestern U

3432 Oakton St.

Rvanston, 111,
1 Atta: W.8, Toth Aerial
Measurements Lad,

U of Notre Dame
South Bend, Ind,
1 Attn: B, Nenry, ET Dept.



Ohio State U

23024 Niel Ave.

Columbus 10, Ohio

Attnt  Prof. E.M. Boone, BB Dept.

-

Oregon State U
Corvallis, Ore.
Attn:  H.J. Oorthuys, EE Dept.

—

Polytechnic Institute
333 Jay 8¢,

Srooklyn, N.Y.

Attn: L., Shaw, RE Dept.

-

Polytechnic Institute of Brooklyn
Graduate Center, Route 110
Farmingdale, N.Y,

Attn:  Librarian

-

Purdue U
Lafayette, Ind.
Attn: Library, XE Dept.

-

Rensselaer Polytechnic Institute
Troy, N.Y.
1 Attn: Library, Serials Dept.

#U of Saskatchewan
College of Engineering
Saskatoon, Canada

1 Atta: Prof. R.E. Ludwig

Syracuse U
Syracuse 10, N.Y,
1 Attn: EE Dept.

"Wppsals U
Institute of Physics
Uppsala, Sweden

1 Attn: Dr. P.A. Tove

U of Utah
Salt Lake City, Utah
1 Attn: R.W. Grow, EE Dept,

U of Virginia
Charlottesville, Va.

1 Attn:  J.C. Wyllie,Aldersan Library

U of Washington
Seattle 3, Wash,
1 Attn: A.B. Harrison, EE Dept.

Worchester Polytechnic Inst.
Worchester, Mass.
1 Attar Dr. N.N, Newell

Yale U
New Naven, Conn.
1 Attn:  Sloane Physics Lab.
1 EE Dept.
1 Dunham Lab. ,Engr. Libdbrary

Avco Corp.
Res. Lab.
2388 Revere Besch Parkway
Bverett 49, Mass,
1 Attn: Dr, Ourdoa Abell

Argoane Natiomal lab.
9700 South Cass

Argonme, 111,
1 Atta: Dr., 0.C. Simpson

Adairal Corp.
3800 Cortland 8t.
Chicagoe 47, 111.
1 Atta: E.N, Roberstom, Librarian

Airborae Iastruments Lab.
Comac Roed
Deer Park, lLong 1sland, K.Y,

Amperex Corp.

2330 Dufry Ave.

Ricksville, Long Island, N.Y.
Attn:  Proj.Engineer, 8. Barbasso

-

Autonetics

Div. of North Americen Aviation, Inc.
#1580 B. Imperial Highway

Downey, Calitf.

Attn: Tech. Library 3040-3

-

Bell Telephone labe.

Murray H{l1 Lsb,

Murray Hill, N.J.

Attn:  Dr. J.R. Pierce
Dr. 8. Darlington
Mr. A.J. Grossman

-

Bell Telephone Labds., Inc.
Technical Informstion Library
Whippany, N.J.
1 Attn: Tech. Repts, Librn.,
¥hippany Lab.

#Central Electronics Engineering
Research Institute

Pilani, Rajasthan, Indis

Attn: Om P. Gandhi - Vis: OMR/London

-

Columbia Radiation Lab.
538 West 130th S8t.
New York, New York

-

Convair - San Diego

Div. of Genersl Dynamics Corp.
San Diego 12, Calif,

Attn: Engineering Library

e

Cook Research labe.
6401 ¥. Oakton 8t.
Attnt  Morton Grove, I11.

-

Cornell Aeronautical Labs., Inc.
4435 Genessee

Buffalo 231, N.Y,

Attn: Library

-

Bitel~McCullough, Inc.
301 Industrial Way

San Carlos, Calif,

Attn:  Research Librarian

Ewan Knight Corp.
Bast Natick, Mass.
Atta: Libeary

-

-

Fairchild Semiconductor Corp.
4001 Junipero Serrs Blvd,
Palo Alto, Calif. )

1 Attn: Dr. V.N. Grinich

Genersl EKlectric Co.

Defense Electroaics Div., LMED

Cornell Uaiversity, Ithaca, N.Y.

Atta: Libeary - Yia: Commander,
ASD V=P AFB, Ohio, ASRNOW
D.E. Lewis

-

General Blectric TWT Products Sec,
601 Califorais Ave.
Palo Alto, Calif.

1 Atta: Tech. Library, C.0. Lob

General Electric Co. Res. lad
P.0. Box 1088
Schaectady, N.Y,
Attat  Dr. P.N, Lewis
R.L. Shuey, Ngr. Iafo.
Studies Sec.

-

General Electric Co.
Rlectronics Park
Slég. 3, M, 1431
Syracuse, N.Y,

1 Attas J. Dyer, Vice<Pres.hTech.Dir,1 Atta: Doe, Library, Y. Burke

#No AF or Classified Reports.

Gilfillan Brothers
1818 Venice Blvd.
Los Angeles, Calit,

1 Attn:

Engr. Library

The Hallicrafters Co.
S5th and Koatner Ave,

1 Attne

Chicago 24, 111.

Hewlett~Packard Co.
1801 Page Mill Road

1 Attns

Palo Alto, Cslif.

Hughes Atrcraft
Malibu Beach, Celif,

1 Attas

Nr. Iems

Mughes Aircraft Ct,
Florence at Teale St.
Culver City, Calif,

-

Attnt

Tech.Doc.Cen,, Bldg 8,
Rm, C2048

Hughes Aireraft Co,
P.0. Box 378
Newport Beach, Calif,

[

Attn:

Library, Semiconductor Div.

IBM, Box 390, Boardman Road
Poughkespsie, N.Y,

1 Attn:

J.C. Logue, Dats Systems Div,

18, Poughkeepsie, N.Y.

-

Attns

Product Dev.Lab.,E.M. Davis

1M ASD and Research Library
Monterey and Cottle Roads
8an Jose, Calif.

1 Attn:

Miss M. Griffin, 83ldg.035

ITT Pederal labe,
800 Washington Ave.
Mutley 10, N.J,

-

Atta:

Mr. K. Mount, Librarian

Laboratory for Electronics, Inc.
1075 Commonwealth Ave.
Boston 13, Mass.

1 Atint

Library

1EL, Inc.
78 Akron St.
Copiague, Long Island, N.Y.

1 Attas

Mr. R.8. Mautmer

Lenkurt Klectric Co.
San Carlos, Calif,

[

Attn:

M.L. Waller, Librarian

Librasocope

Div. of General Precision, Inmc.
808 Westera Ave,

Gleadale 1, Calif.

1 Attas

Engr. Libeary

Lockheed Nissiles and Space Div,
P.0. Box 804, Bldg. 884
Sunnyvale, Calif,

1 Attas

Dr, W.M. Warris, Dept.67-30
G.¥. Price, Dept., €7-33

Helpar, Inc.
3000 Arlington Dlvd.
Palls Church, Va,

Attns

Librarian

Nicrowave Associates, Inc.
Nortiwest Iadustrial Park
Burlington, Mass,

1 Attat
1

K. Nortemson
Librarian
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Miorovave Electronics Corp.
4061 Transport Bt.
Palo Alto, Calif,
1 Attnt 8.7, Laisel
N.C. Long

Minneapolis-Honeywell Regulator Co.
1177 Blue Neron Blvd,
Riviers Beach, Fla.

1 Attn: Semiconductor Products Library

Monsanto Research Corp.
Station B, Box §
Dayton 7, Chio

1 Attn: Mrs. D. Crabtres

Monsanto Chemical Co,
800 N. Linbergh Blvd.
8t, Louis 68, Mo.
1 Attns Mr, B. Orban, Ngr. Inorganic

#Dir., National Physical Lab.
Hilside Road
New Delhi 13, India
1 Attn: 8.C, Sharma -~ Viag
oM /London

#Northern Electric Co., latd,
Research and Development Labs.
P.O. Box 3511, Station "C*
Ottawa, Ontario, Cansda

1 Attn: J.F, Tatlock

Via: ASD, Foreign Release
Oftice
W=p AFD, Ohio
Mr. J. Troysl (Asyr)

Northronics

Pslo Verdes Research Park
6101 Crest Road

Palos Verdes Estates, Cslif,
Attn: Tech, Info. Center

-

Pacific Semiconductors, Inc.
14830 8o0. Aviation Blvd.
Lawndale, Calif,

Attn: N.Q. North

~

Philco Corp.

Tech. Rep. Division

P.0, Box 470

Philadelphia 34, Ps.

Atta: PR, Sherman, Mgr. Editor

™

Philco Corp.
Jolly and Union Meeting Roads
Blue Bell, Pa.
Attns  C.T. McCoy
Dr. J.R. Peldmeier

)

Polarad Blectronics Corp.

43-30 Thirty-Fourth St,

lLong Island City 1, N.Y,
1 Attn:  A.N. Soaneaschein

Radio Corp. of Ameriocs
BRCA Labs., David Sarmoff Res. Cen.
Princeton, N.J.

3 Atta: Dr. J. Sklansky

ACA Labde., Princetoa, N.J,
1 Atta: N, Johneom

RCA, Missile Elec. and Comtrols Dept.
. Mass,
1 Atta: Libeery
The Rand Corp.
1700 Maia 8t,

Saata Neaics, Calif.
1 Atta: Neles J. Waldron, Librarian
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4 Attns

Raytheon Manufscturing Co.
Microwave and Power Tube Div,
Burlington, Mass.

Attn: Librarian, Spencer Lab,

-

Raytheon Manufacturing Co.

Res. Div., 38 Seyon St.

VWaltham, Mass.

Attn: Dr, H, Stats
Mrs. M. Bennett, Librarian
Research Div. Library

-

Roger White Electron Devices, Inc,
Tall Oaks Road
Laurel Hedges, Stemford, Conn.

-

Sandia Corp.
Sandis Base, Albugquerque, N.M.
Attn: Mrs, B.R. Allen, Librarian

-

Sperry Rand Corp.
Sperry Electron Tube Div.
Gainesville, Fla.

-

8perry Gyroscope Co.

Div, of Sperry Rand Corp.
Great Neck, N.Y,

Attn: L. Swern (MS3T108)

-

Sperry Gyroscope Co.

Engineering Library

Mail Ststion F-7

Great Neck, Long Island, N.Y.
Attn: K. Barney, Engr. Dept. Head

™

Sperry Microwave Electronics
Clearvater, Fla.
Attn: J.E. Pippin, Res. Sec. Head

-

Sylvania Electric Products, Inc.
300 Evelyn Ave.
Mt. View, Calif,

[

Sylvanis Klectronics Bystems
100 First Ave,

Waltham 54, Maass.

Attn: Librarian, Waltham Labs.
1 Mr. E.E. Nollis

-

Technical Research Group
1 Syosett, L.I., N.Y,

Texas Instruments, Inc.
Semi ductor-C Div,
P.O. Box 208
Dallas 232, Tex.
Attn: Library
Dr. W. Adcock

-

Texas Instruments, Inec.

P2.0. Box 6015

Dallas 33, Tex.

Attn: M.E. Chun, Apparatus Div,

3

Texas Iastruments
6017 B, Calle Tuberia
Phoenix, Arisomns

1 Atta: R.L. Pritohard

Texas Instruments, Inc.
C R ch and Ba ing
Technisal Reperts Service
P.0. Box 5474
1 Atta: Dallas 33, Tex

Tektronix, Imnc.
P.0, Box 300
Beavertoa, Ore.

Yariaa Associates
611 Mansen Way
Palo Alto, Calif,

1 Atta: Tech. Lidrary

Dr. J.F. Delord, Dir. of Resesrch

-

-

-

-

Weitermann Electronics
4849 North 38th St
Milvaukee 9§, Wisconsin

Westinghouse Electric Corp.

Friendship Internatiomal Airport

Box 746, Baltimore S, Md.

Attn: O.R. Kilgore, Mgr. Appl.
Res. Dept. Baltimore Lab,

Vestinghouse Electric Corp.
3 Gateway Center
Pittsburgh 22, Pa.

Attn: Dr, G.C. Ssiklai

VWestinghouse Electric Corp.
P.O. Box 2%

Rlmirs, N.Y.

Attn: 8.8, King

Zenith Radio Corp.
6001 Dickens Ave.
Chicago 39, I11.
Attn:  J. Markin

#o AF or Classified Reports.



