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Abstract

Viscoelasticity comprises an irreversible relation

between stress and strain which is governed by time effects.

Stress distributions for viscoelastic bodies subjected to

constant loads thus commonly vary with time. It is poss-

ible to utilize this flexibility of solution in some cases

to meet stress design criteria. For example, the irre-

versibility embodied in viscoelasticity can lead to the

production of a beneficial residual stress distribution

following loading. Such an example is discussed. Tempera-

ture has a marked effect on viscoelastic characteristics,

and thus supplies an additional controlling variable in

selecting a design solution. Cooling slows down rate pro-

cesses so that it may be possible to eliminate deleterious

aspects of viscoelasticity in a particular design problem

by selecting an appropriate temperature history. The example

.
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of the production of toughened glass by the interaction of

viscoelasticity and temperature effects is cited. Although

viscoelastic stress analysis is usually applied to polymers

and glasses, its influence also arises in design problems

for metals in the creep range.

1. Introduction

In recent years methods of solution have been developed

which considerably broaden the range of stress distribution

problems for viscoelastic materials which are amenable to

analysis. The technological motivation has been mainly the

increasing use of polymers and plastics for components which

must transmit load, and in particular the need to analyse

the stresses and strains in the grains of solid propellant

rockets during both storage and firing. Temperature influ-

ences can have a dominant effect in such solutions because

of the usually major influence of temperature on viscoelastic

characteristics.

Because linear viscoelastic theory supplies a useful

approximation to the response of many polymers at moderate

strains, and because this theory permits the utilization

of the powerful tools of linear mathematical analysis, the

development of methods of solution of particular problems

has been mainly restricted to linear material behavior.

Creep of metals at high temperature, and the associated

viscoelastic characteristics of recovery on unloading and

stress relaxation at constant strain, exhibit essentially

non-linear response, so that linear theory is not quanti-

tatively applicable. However, the types of influence of

viscoelastic material behavior on design, described in this

paper, will also arise for creep in metals. A basis for

the analysis for non-linear materials has been developed
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by Green and Rivlin [1]* but to date only applications of

this theory limited to simple configurations have beei

published.

The salient characteristics of viscoelastic material

behavior are exhibited by the creep and unloading response

of a material to a pulse of constant stress applied for a

period and then removed as illustrated in Fig. 1. OA

represents the instantaneous elastic response which is

instantaneously recovered at CD on unloading. Delayed

elasticity developes along AB and this is recovered grad-

ually along DE. Viscous flow occurs along BC and this

leads to permanent residual strain. These features comprise

time or rate effects in the material response which influ-

ence the stress distribution developed when a body is loaded

by surface forces. We will be concered with quasi-static

situations in which inertia forces are negligible compared

with applied loads. Stress distributions in viscoelastic

materials then usually differ essentially from those for

elastic materials in that under constant surface tractions

the time dependent material characteristics generate a

varying stress field in contrast to the constant field for an

elastic body. This situation is commonly considered as an

unfortunate complicating feature of viscoelastic stress-

analysis, and certainly the theory, reviewed in the next

section, is more involved than the corresponding elastic

analysis, due to the addition of the variable t and the

differential and integral operators in this variable which

occur. However, the variation with time of the stress field

does introduce a flexibility into solutions which may be

utilized to satisfy design requirements by means not avail-

able for elastic bodies. For example, the irreversibility

Numbers in square brackets refer to the bibliography
at the end of the paper.
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inherent in viscoelastic response can lead to the develop-

ment of a beneficial residual stress pattern after load

application, which could not appear in an elastic body since

reversibility dictates zero stress magnitudes after the load

is removed. Such a situation is discussed in Section 3 of
this paper. Greater control over the influence of the his-

tory of loading can be achieved by utilizing the marked effects

of temperature variation on viscoelastic response, and some

applications of this concept are presented in the last section

of the paper.

2. Linear Viscoelastic Stress-Analysis Theory

Stress distribution problems for viscoelastic bodies

are set in a similar form to those for elastic bodies, but

with the addition of time t as an independent variable;

prescribed tractions and displacement being given as func-

tions of time as well as of position. Fig. 2 illustrates

such a problem. With Cartesian axes xi, i = 1, 2, 3, the

stress distribution function aij(xt) for the viscoelastic

body V is to be found, where for conciseness x denotes

the triad of space coordinates (Xi, X2, x3 ). The history

of prescribed traction Ti(x,t) is given over the part of

the surface SI, and of the prescribed displacement ui(x,t)

over the remainder S2 . Other combinations of stress and

displacement components also can be used to prescribe par-

ticular problems as in elasticity. Initial conditions,

usually that the body is undisturbed at zero time, are also
needed.

The stress field must satisfy the equilibrium equations

for quasi-static motion:
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+ fi(x,t) = 0 (1)

where, according to the usual summation convention, the

repeated J indicates summation over the indices 1, 2,
and 3. Index i taking on the values 1, 2, and 3 gives

the three equilibrium equations for components in the

directions xi, x2 and x3 respectively.

We shall limit our analysis to small strains, and

use infinitesimal strain theory to relate the strain and

displacement components:

(6ui  6u
= (J + )/2 (2)

The stress-strain relations for combined stresses

are now needed to complete the formulation of the problem.

Linear viscoelasticity implies that creep curves of the

form OABC in Fig. 1, for different values of the applied

stress magnitude ao, have ordinates proportional to

ao at each time t. Such response indicates linear

mathematical relations between stress and strain, and the

applicability of superposition of effects for the combined

influence of more than one loading function. For isotropic

material behavior it is convenient to decompose the stress

and strain into shear type and dilatational components.

The former relate the deviator components of strain and

stress:
1 1

ei - "ij 3 Ckk 6ij ,sij = ij - Okk sij (3)
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where 61j is the Kronecker delta, and the latter the

dilatation eii and the average of the normal stress

components aii/3. Linear viscoelasticity then implies

laws of the form

P(sij) = Q(eij) (4)

P'(Oij) = Q'(Eii) (5)

where P,Q and P',Q' are independent pairs of linear

viscoelastic operators which can take the form of differ-

ential operators related to spring-dashpot models, integral

operators involving the creep compliance function J(t) or

the relaxation modulus function G(t), or the complex alge-

braic relation for oscillatory stress and strain variation

in terms of the complex modulus:

G-(w) = Gl(w) 4 i G2(w) (6)

The operator pairs P, Q or P', Q' acting on a stress

component a and a strain component e thus can takes

the forms:

np nq

ZprDra =ZqrDrFE (7a)
0 0
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where DE-

t

C(t) =o J(t-'r) ;-rdr(b

a(t) =l G(t-,r) U dr (7c)

S = G*() e (7d)

where in (7d) a and e are oscillatory with angular

frequency c and so can be represented in the forms

aoe l t and E0e it respectively, a0 and co being

in general complex constants. Depending on whether the

operator pairs in (7) apply to (4) or (5), the character-

istics used are associated with shear and dilatation re-

spectively, and are measured independently or deduced from

combined stress test results.

In addition to the field equations (l)-(5), boundary

conditions are needed to determine the stress distribution.

Over the part of the surface S1 compatibility between

the stress and the traction requires:

Ti = aij n, (8)

where nj are the components of the unit external normal;

and over S2 , u(x,t) is prescribed.
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The most common form of solution of these equations

applies to the special case when the surface regions S1

and S2 do not change with time, and then operation of the

Laplace transform on all the equations transforms the prob-

lem to an associated elastic problem for the transformed

variables (2]. Inversion of the solution then gives the

required viscoelastic stress distribution. This procedure

can be most easily carried out for low order differential

operators (7a), but these often do not provide a satis-

factory representation of material behavior (3]. The inte-
gral operators (7b) and (7c) represent accurately, arbitrary

linear viscoelastic response within the time range over

which the kernel functions J(t) or G(t) are measured.

However, Muki and Sternberg [4] found use of the Laplace
transform approach with measured values of the relaxation

modulus G(t) to be cumbersome.

Since equations (1) and (2) contain only space de-

rivatives and (4) and (5) only time operators, it is some-
times possible to integrate independently with respect to

the space and time variables either analytically (5] or by

making use of numerical methods and directly introducing
measured material properties (6]. The latter approach has

been used to analyse stresses in an encased hollow cylinder

subjected to internal pressure, which forms the basis for

discussion of the design problem in the next section. The

method applies for varying Sl in the form of an ablating

cavity, and for a more general type of boundary condition

on the outer surface corresponding to an elastic casing:

ar(b,t) = - B ee(b,t) (9)
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where the usual notation for an axially symmetrical problem

in polar coordinates is used, and b is the casing radius

and B a constant prescribing casing stiffness. The develop-

ment of the theory is discussed in (7], and the solution for

a body in terms of the relaxation moduli in shear and dilata-

tion is given in (8]. Thus the problem discussed in the

next section can be solved for arbitrary linear viscoelastic

material characteristics and simple models are used for

illustration merely for convenience.

3. Generating Residual Stresses in an Encased Cylinder

Consider a viscoelastic hollow cylinder with a support-

ing elastic casing as shown in Fig. 3. It is to be designed

to withstand internal pressure p0  in plane strain, and it

could, for example, be a rocket motor which must not fracture

under the internal gas pressure on firing [9]. The varying

stress distribution for suddenly applied and maintained pres-

sure is given in (10] for a cylinder exhibiting Maxwell type

viscoelastic response in shear, with elasticity in dilatation.

Maxwell response corresponds to the model and the creep and

relaxation curves shown in Fig. 4. The resulting variation

of radial and circumferential stresses are shown in Fig. 5.

It is seen that circumferential tensile stresses occur

adjacent to the cavity surface immediately on loading, but

that they, in common with stress components throughout, de-

crease algebraically and tend towards uniform hydrostatic

compression of magnitude of the applied pressure. This

change occurs since the cylinder is constrained against

continued flow by the elastic casing and the plane strain

condition, so that the shear stress relaxes to zero as in

the relaxation test, Fig. 4c. The viscoelastic material is

then stressed as a liquid under hydrostatic pressure, and
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the full cavity pressure is transmitted to the casing.

Since all normal stress components in the viscoelastic body

are then negative, a strong inhibiting factor against fract-

ure will exist. In fact, throughout the loading process,

the only state exhibiting a tendency to fracture is the

region of tensile circumferential stress adjacent to the

cavity for the period shortly after load application. The

negative growth of radial stress at the external radius

will, however, generate an increasing tensile stress in the

casing, which must be designed to carry this.

The stress field illustrated in Fig. 5 for a suddenly

applied and maintained pressure can be used in conjunction

with superposition to deduce the stress field for gradually

applied pressure p(t). As in the development of the

Duhamel integral, the pressure growth p(t) can be con-

sidered as the limit of pressure steps dt dt. Since

all stresses in Fig. 5 are proportional to Po , we write:

ae (r,t) = po Fe (r,t) (10)

where ae is then the circumferential stress field for

unit pressure. Deducing from (10) and linearity the re-

sponse to each infinitesimal step of the pressure growth

p(t), gives the corresponding circumferential stress

field:

a (r,t) = (r,t- ) d d (11)

-00

where the lower limit can be taken as zero for a cylinder

undisturbed prior to zero time.

-10-



It is clear from Fig. 5 that the internal cavity sur-

face is subjected to a stress variation most likely to lead
to fracture initiation since the maximum tensile stresses

occur there. The variation of 9(a,t) is illustrated in

Fig. 6 to facilitate the assessment of fracture tendencies

in the case of gradually applied pressure. For r - a, the

contribution to the integral in (11) for ae(r,t) by the

pressure steps immediately prior to the time t will be

positive since (t- ) will be small, and hence the inte-
grand positive according to Fig. 6 for monotonically in-

creasing pressure. For the more remote pressure increments,
the contribution to the integral will be negative. Thus by

sufficiently gradual application of the pressure, the posi-

tive contribution can be reduced arbitrarily by restricting

the pressure rise for t - T < to , where to is the dur-

ation of tensile stress shown in Fig. 6. If the pressure
is build'up gradually to po and maintained constant, the

stress will finally settle down to hydrostatic pressure po

as depicted in Fig. 5 for large t , since all stress incre-

ments in (11) will be effectively remote and the e(r,t- )

will approach -1. Thus the hydrostatic pressure field in
the viscoelastic cylinder, which inhibits fracture initia-

tion, can be achieved without passing through a stage of
appreciable cavity surface tension merely by gradual rather
than sudden pressure application. The possibility of such
an effect is due to the influence of loading history on the
response of a viscoelastic body, and such an effect could
not arise for an elastic body in which the stress field is

determined by the current applied load and is otherwise

independent of the load history.
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If when the steady hydrostatic stress field has developed,

the internal pressure is removed, the resulting stress distri-

bution variation is given by superposing the solution for

suddenly applied negative pressure of magnitude p0 , that

is superposing the field shown in Fig. 5 with sign reversed.

This leads to a residual stress field with no applied surface

loading. Compressive normal stresses occur throughout the

cylinder, the circumferential stress at the cavity surface

being compressive and of magnitude greater than p0 . Thus

the viscoelastic characteristics of the cylinder have gener-

ated a residual stress field beneficial from the standpoint

of inhibiting fracture, and ensuring the compressive normal

stresses throughout the cylinder when an internal pressure

of magnitude p is applied. Because of time effects

illustrated by the varying stress field shown in Fig. 5,
the residual stress field will gradually relax away, and

maintainance of internal pressure would be needed to retain

its full influence.

A similar situation would arise for a more general

viscoelastic law, although a material which relaxes to a

limiting non-zero shear stress would not settle to uniform

hydrostatic pressure, but would retain some distribution

of shear stress. In practice this is necessary to prevent

continued flow from, for example, gravity forces, and is

needed to maintain the cylindrical form. Behavior qualita-

tively of the type described will arise in general, and as

referenced in the previous section, methods are available

to analyse the situation for arbitrary linear viscoelastic

behavior. Some comments on the application of this concept

to rocket grain design are given in [9).

The generation of a residual stress field in a hollow

cylinder which reduces deleterious stresses on application
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of internal pressure is analogous to the process of auto-

frettage used to strengthen steel pressure vessels and gun

tubes. In this case the irreversibility of plastic flow is

utilized to generate a beneficial residual stress field.

Compressive residual circumferential stresses are generated

adjacent to the cavity surface, and the outer regions are

stressed in tension. For the viscoelastic problem discussed

above, the casing takes the place of such outer layers.

The influence of viscoelastic response in modifying

stress distributions and generating residual stress fields

is restricted by the limited time dependent viscoelastic

characteristics available which, for example, permit a

beneficial residual stress field to attenuate. Temperature

change has a marked effect on the viscoelastic properties,

and utilization of this additional variable provides greater

control and permanency to such influences. The theory for

non-isothermal conditions is given in the next section,

with some design applications of these concepts in the

last one.

4. Thermo-Viscoelastic Stress Distributions

In recent years the theory of stress analysis has been

developed for viscoelastic bodies with temperature vari-

ations, for which the influence of temperature on the

viscoelastic characteristics is taken into account in

addition to the effect of thermal expansion (4,11,12].
So-called thermo-rheologically simple material behavior

has been assumed, for which temperature rise causes a con-

traction in the time scale of all relaxation processes by

a function of the temperature. This corresponds to tem-

perature change causing a shift, without change of shape,

of the relaxation modulus function when plotted on a log
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(time) base, and is known as the Williams-Landel-Ferry

law in the chemical literature. This law, combined with

linear viscoelasticity, provides a satisfactory material

representation for many polymers and glasses for certain

ranges of stress and temperature.

This influence of temperature can be conveniently

characterized by defining a reduced time t which incor-

porates the temperature dependent time scale factor, so

that, in terms of t , the isothermal viscoelastic law

applies corresponding to some chosen base temperature

TB. If 1/0(T) represents the time scale factor, so

that 0(TB) = 1 , and log[O(T)] is the shift of the

relaxation modulus function G(log t) in the negative

direction along the log(t) axis, then the reduced time

for varying temperature as defined in (11] is:

=t [T(t')] dt' (12)

0

and the stress-strain relation is given by (7c) with the

relaxation modulus measured at the base temperature TB

and reduced time replacing real time:

G(t -t) Z, dt' (13)
0

At high temperature 0 is large, so that large , and

hence appreciable relaxation of stress according to (13),

occurs for small values of t. As the temperature is
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reduced, O(T) decreases, and much larger durations of

real time are needed to permit appreciable relaxation.

For thermo-viscoelastic stress analysis theory

equations (1) and (2) remain unchanged, (4) is replaced

by a relation of the type (13) for deviator components,

and assuming elastic response in dilatation, (5) is

modified to allow for thermal expansion:

aii = 3K (611 - 3aT) (14)

where K is the bulk modulus and a the coefficient of

linear thermal expansion.

Problem types amenable to solution are much more

restricted than in the isothermal case since, as dis-

cussed in [13), equations (1) and (2) contain partial

space derivatives for constant real time t, so that if

the reduced time variable e is used to introduce the

simple relation (13) and include temperature variation

effects, the expressions for partial spacial derivatives

at constant real time are complicated. If real time is

retained for the time variable, (13) no longer has the

form of a convolution integral. For certain problems

[4S the Laplace transform with respect to e can be

utilized, and in others numerical integration is feasible.

Solutions for slabs with stress and temperature a function

of the depth only, and spheres with spherically symmetri-

cal distributions have appeared in the literature [4,12,13]

and form the basis for the discussion of design problems

in the next section.

-15-



5. The Influence of Temperature Effects on Design

The acceleration of relaxation processes with in-

creasing temperature has a marked effect in attenuating

thermal stresses. For example (12] presents the thermo-

viscoelastic stress distributions for a sphere with a con-

centric spherical cavity, initially at uniform temperature,

heated internally. The cavity surface is held at constant

higher temperature and is considered to ablate with an

approximately constant velocity. The configuration repre-

sents an idealized model of a burning rocket grain, and

the solution was calculated for polymethyl-methacrylate

since for this material the relaxation modulus in shear

and the temperature scale factor O(T) are available in

the literature. The corresponding elastic solution was

also computed, and an example of the type of stress fields

generated is illustrated in Fig. 7, which is taken from

[12]. It is seen that due to the internal heating, circum-
ferential compressive stress arises adjacent to the cavity

surface due to the constraint of the unheated outer layer

inhibiting thermal expansion. This leads to a maximum

thermal stress at the surface in the elastic case, but

for the viscoelastic body the higher cavity temperature

has generated appreciable relaxation of stress. This

study showed that even for a rapidly moving ablating front,

appreciable thermal stress could be generated, but may only

exist over a narrow region adjacent to the front.

O(T) is (12) varies extremely rapidly with temper-

ature for many materials. For polymethyl-methacrylate

the measurements reproduced in [4] give a ratio of over

1O6 for a temperature change of 600 C, and commercial soda-

lime glass gives a ratio of about lO4 for a temperature

change of 1000 C (l4]. Thus, on cooling, relaxation times
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can grow exceedingly rapidly, and when long compared with

the time period studied, the material behaves virtually

elastically. This concept is now developed analytically.

When a body is cooled from a temperature at which

marked viscoelastic characteristics are exhibited, t(t)

given by (12) at first grows rapidly due to O(T) being

large, but since 0 can decrease by many orders of magni-

tude, the growth of e virtually ceases. When this

barrier or "freezing time" is reached, subsequent changes

in stress can be determined on the basis of thermo-elastic

theory [15). For if t and t2 are times after the

barrier has been reach

C(tl) -_t(t2 )  (15)

Since with appreciable temperature changes still

taking place, stresses and strains can change at approxi-

mately constant , (13) must be written in terms of

real time t to preserve a bounded strain derivative in

the integrand, leading to:

0

Thus

0

t17
C~tl - ~t2 = G[t(t ) - 4(t')] 3 dt'

0
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But by (15) the integrands can be considered identical

and

a(tl1) - a(t2) = G[t(tl) - t(t')] ;T, dt' (17)

t2

Since t' now lies only between t2 and t I ,(t')

remains at the barrier (15), and the kernel in (17) can

be replaced by G(O), whence:

a(t1 ) - a(t 2 ) = G(O)[c(tl) - c(t2 )] (18)

Thus the shear law for stress changes becomes the elastic

law with the modulus associated with initial response.

(14) gives a similar relation for dilatational components,

and thermo-elastic theory thus determines changes of stress

and strain.

This change to virtually thermo-elastic behavior on

cooling provides a means of permanent retention of re-

sidual stress fields generated by viscoelasticity, and

thus avoids the attenuation which occurs in the isothermal

case (Section 3 above).

Examples of the generation of permanent residual

stress fields through thermo-viscoelasticity by cooling

have been given for a solid sphere (15] and a plate [16].

In both cases cooling from a surface generates compressive

subsurface stress components parallel to the surface, and

these would tend to inhibit fracture in subsequent stress-

ing of the body. This concept is the basis for the
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manufacture of toughened glass, the theory for which is

presented in £161. Hot glass in a viscoelastic state is

cooled from the surfaces which then tend towards elastic

behavior and to contract thermally. Since the latter is

inhibited by the interior, still hot, layers, tension

stresses develope adjacent to the surfaces, which produce

compressive stresses in the interior since no external

forces are applied, and compressive viscoelastic flow of

the internal material occurs, thus relieving the elastic

tensile sub-surface stress. As the cooling spreads through

the plate, general thermal contraction occurs in addition

to the afore-mentioned viscoelastic contraction, and re-

sidual compressive stresses are produced in the layers

adjacent to the surface, balanced by internal tensile

stresses. As the glass cools down below the temperature

at which a barrier in t is reached, the stresses become

virtually permanent. For glass cooled from 6000C, the

ratio of relaxation times according to the thermo-

rheologically simple law extrapolated from measurements

in the neighborhood of 5000C is about l02 4 , so that re-

laxation can be considered completely eliminated at room

temperature. The residual stress distribution with sub-

surface compressive stresses strongly inhibits fracture.

The process is seen to depend on interaction of cooling

temperature gradients, thermo-viscoelasticity including

the transformation to thermo-elasticity at lower tempera-

tures, and thermal contraction. These factors are included

in the theory presented in the previous section with the

addition of the heat conduction equation to determine the

temperature field.

In assessing the application of such a process to

meet safe stress criteria in use, it is important to study

the entire history of stress during the process, since this
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may prescribe limitations. For the example considered

above, the tensile stress generated on first cooling can

lead to surface fracture if the cooling is too rapid, and

this limits the magnitudes of residual stress which can

be achieved. These factors depend in an involved manner

on the thermal and viscoelastic material characteristics,

the plate thickness and cooling process, and it is

essential to evaluate the problem before rational design

decisions can be made.

Analogous situations will arise in connection with

creep of metals of elevated temperatures, and in order to

provide adequate analyses it is necessary to develope

creep laws to include general loading history, as does

the law used above for thermo-viscoelastically simple

material response.
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Strain response to a pulse of constant stress for a
viscoelastic body.
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FIGURE 2

A boundary value problem for stress analysis.
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FIGURE 3

Pressurized hollow cylinder supported by an
elastic casing.
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FIGURE 4

Shear behavior of the viscoelastic cylinder.
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FIGURtE 5

The varying stress distribution
after sudden loading.



FIGURE 6

Variation of' circumferential stress at the cavity surface
for unit internal pressure.
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FIGURE 7

Stress distributions for an internally ablating sphere.


