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The spin-flop transition in a uniaxial antiferromagnet defines

three critical fields; that of the true thermodynamic transition and

those limiting the local stability of antiferromagnetic and spin-

flop phases. The latter two are calculated by a spin-wave analysis.

The results are in qualitative agreement with the hysteresis observed

by Schelleng and Friedberg in the spin-flop tnansition in MnBr2 .kH20.

The spin-wave spectrum of the spin-flop phase is given, and the

magnetization in the spin-flop phase is found to increase more rapidly

than linearly with field because of quantum corrections absent in

molecular field theory.



We consider a uniaxial antiferromagnet, at or very near zero

temperature, with an applied field parallel to the unique easy axis.

As the field is increased a transition occurs to a spin-flop phase,

in which the spins are almost orthogonal to the field. Such tran-

sitions have been observed by many investigators, and in certain

materials considerable hysteresis may be observed in the transition,

with different critical fields as the transition is traversed up-

ward and downward in field.(1,2 ) This is to be expected on the

following basis. As the field is increased to a critical value
u
HU, a local instability occurs when one of the spin wave frequencies

of the antiferromagnetic configuration becomes negative. As the

field is decreased, a local instability in the spin-flop phase

occurs at a lower field Hc, when one of the spin wave frequencies

of the spin-flop phase becomes negative. Between the two critical
u Ao

fields Hu and H , there exists a third field H0 , at which the freec c c
energies of the two phases are equal. Whether the actual observed

o u A
transitions occur at Hc, without hysteresis, or at H. and H.,

with hysteresis, depends upon the presence or absence of nucleating

centers and local inhomogeneities. The problem is fully analogous

to the super-heating and super-cooling metastability in a con-

ventional gas-liquid first-order phase transition.

An alternative mechanism for the hysteresis has been suggested

by Date and Nagata.(2) They ascribe the hysteresis to the exist-

ence of a fourth-order anisotropy, in addition to the dominant

uniaxial anisotropy. This fourth-order anisotropy introduces
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energy minima along both the longitudinal and transverse axes, with

an intermediate energy maximum. The hysteresis is associated with

the difficulty of overcoming this intermediate energy barrier.

However, the hysteresis certainly occurs, and is a large effect,

even in materials with very small fourth-order anisotropy, as in

MnBr2 .4H20. (1)

For simplicity, we assume a model decomposable into two equiva-

lent sublattices, with the nearest neighbors of a spin on one sub-

lattice lying entirely on the other sublattice. The anisotropy

is taken simply as -K(SZ)2 for each ion, and 2S is the exchange

interaction of nearest neighbor pairs. Labelling the spins on

one sublattice by f and those on the other sublattice by g, the

Hamiltonian is

Spin wave analyses of the antiferro.agnetic phase have been

given by P. W. Anderson (3 ) and by R. rubo (4 ), to which we make

one amendment. In application of the Holstein-Primakoff trans-

formation the K(Sz)2 operator is replaced by K(S-a+af)2 =

K[S 2-2Sa af (a a 2 afaf is a boson number operator.

The spin wave theory can be looked upon as an expansion in powers

of the spin deviation, and (a+af)2 can then be neglected. Alter-

natively all operators can be replaced by simple operators

which give the correct matrix elements
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in the low-lying states (which alone are important in the spin wave

regime) even though relatively large errors are introduced in the

high-lying states; this is the procedure suggested by Van Kranendonk

and Van Vleck. (5) Thus,for the lowest two levels(in which

afa f 0 and 1) we have (a 2 = and in this procedure
K(Sz )2 - K[S2 _ (2S-1) afar]. We note that for S = 1/2 both the

right-hand and left-hand ,einbers then reduce to K/4, whereas the

equation is inconsistent if (a~af)2 is neglected. The alteration

in the latter formalism is made by replacing 2SK by (2&-l)K, or

K by 92 K, where

(2)

The familiar result of the analysis is that the spin wave spectrum(3'4,5 )

of the antiferromagnetic phase is composed of a doubly degenerate

branch with an energy gap, concave upward at k = 0, and approaching

linearity with increasing k. The applied field splits the degeneracy,

driving one branch upward and one downward. At the critical field

le the k - 0 mode of the lower branch is driven down to zero fre-

quency, and this occurs at a field which, with the C2 correction

inserted, is
Hc 2..=r S (3)

where z is the number of nearest neighbors.

To calculate Hc we formulate a spin wave theory of the spin-

flop phase. We choose coordinate systems x1 , y, zI and x2, y, z 2

to characterize spins on the f and g sublattices respectively.



The z1 and z2 axes lie in the first and second quadrants of the

x-z plane respectively, and each makes an angle B with the z-axis.

In choosing these coordinate systems it is anticipated that the

spins, initially in the x-z plane, make only small oscillations in

the vicinity of that plane. In particular, they do not precess around

the z-axis, away from the x-z plane. To ensure that this is so we

add an additional planar anisotropy to the Hamiltonian;

At the end of the analysis we shall show that the planar aniso-

tropy K1 has no essential effect, that the spectrum and critical

field are very weak functions of K1 , and that we can take K1 = 0

without complication.

We make the Holstein-Primakoff transformation, followed by

the replacement by operators appropriate to the low-lying states

as discussed above.

=I (5)

S s 41 ja
(6)

(7)

and similarly for Sz 2 , S+, Sg. These operators have correct matrix

elements among the three lowest-lying states of each spin. Sub-

stituting in the Hamiltonian H', we neglect terms whose matrix



elements would be quadratic in the amplitude of the second excited

state, such as af a +a fa, or those whose matrix elements would be pro-

portional to the product of the amplitudes of the first and second
++ + +

excited states, such as a a a A term such as a a a a a

replaced by 2afaf. We thereby obtain a Hamiltonian involving zero,

first, and second order terms in the boson operators. The condition

that the first order terms vanishes determines e:
=e ' (8)

The resultant Hamiltonian is most conveniently written in terms of

spin wave operatirs, defined by

= (9)

and

F4 3(10)

whence

E, +(11)
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where

A = 2. S - S4-2,C (12)

IL '5
(13)

A (15)

and I is defined, as usual, by the summation of exp (ik.6.) over
the z nearest neighbors at positions 61. The Hamiltonian is

diagonalized by the transformations

S(16)

where A ,, (17)

(A vk

A+7.13 -84 -4 (18)

A"28 4'e, (19)

giving

t'E PA (20)



M

with the spin wave energies

(22)

and with K and K1 denoting the "reduced" anisotropy constants

It will also be recalled that = l-(2S) -1 and

cos e = PH(2S(2zJ -12 K)]-', in terms of which the spectrum of the

spin-flop phase is completely defined.

For small anisotropy the w 1(k) branch is almost linear in k,

because of the first square root, whereas the w2 (k) branch has a

large k = 0 intercept. Consequently we refer to the w1 (k) branch

as the acoustical branch and the w2 (k) branch as the optical branch.

The optical branch has vanishing initial slope, a negative initial

curvature for large applied fields (cos2  1 O.rk , if K 0)

and a positive initial curvature for small applied fields, as in-

dicated in Fig. 1. The change in initial curvature occurs because

the values of w 2 (k) for small k decrease rapidly with increasing H,

whereas the decrease is less rapid for large k. In contrast the

applied field increases the frequency of modes in the acoustical

branch.

As the field is decreased to the critical value Hc the fre-

quency of the k = 0 optical mode vanishes (see Fig. 1). This

critical field is found by taking Yk = 1 and setting the second
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radical in equation (21) equal to zero, giving

2%tt(I+.r=224)

or

det' V 1J 4.f(4)X (25)

We now note that i-1 for large spin, and in the classical

limit (Smk) the critical field becomes independent of K . For

even small spin the fictitious anisotropy has little effect; in

the most extreme case (S=l) the coefficient of K1 is only .21,

whereas the coefficient of K is 1.20. The effect of the aniso-

tropy K1 for small spin values is traceable to the quantum

fluctuations of Sy , which enables these spins to sense the energy

out of the x-z plane. In accordance with the reality of the

physical situation we henceforth take K1 = 0.

For MnF2 the ratio K= K/(2zJ) is m .01, so that the two

fields Hu and Hc differ by only about 2%. But for MnBr2.-4H2 0

the field 2S(2zJ)iU is approximately 25 kilo-oersteds, whereas

2SK/U is approximately 3 k-oe. Hence Hc and Hc differ by about

2 k-oe., with a mean of about 8 k-oe. This in general agreement

with the scale of the hysteresis observed by Schelleng and Fried-

berg(') in the spin-flop transition.

It should perhaps be mentioned that the field Hc can be found

alternatively by extrapwiating to zero frequency the field H(i)

required for antiferromagnetic resonance at frequency w. Thus the



separation of the critical fields c and H0 can be observed in

principle even in materials in which impurities destroy the meta-

stability of the "superheating" or 'supercooling" states.

The net matnetization <Sf>and the sublattice magnetization

f sf) are of interest. These quantities are related by

2S~z 'Z)(26)

and the sublattice magnetization is

~'L ~(27)

Here nl(k) is the average occupation of the acoustical mode of wave

vector k; n (k) =fexp [Phwl(k)]-l_-l, and similarly for n2 (k).

Several limiting cases of interest can be identified im-

mediately. Let T = 0 (or P = ))H = 0, and K = 0. We then are

discussing the ground state of the simple antiferromagnet, and

equation (27) reduces directly to

< (28)

which is the familiar result of Anderson.(3) By numerical cal-

culation of the summation in equation (28) Anderson has found a

reduction of approximately .08 in the effective spin from its

'ideal' value of S.



- 12 -

In the opposite limit we again take T = 0 and we note that

when H takes the critical value

s %(29)

then 8 = 0 and <S'l> = S. Thus the spin-flop phase undergoes a

second order phase transition to a fully-aligned phase, with

fully saturated spin components. This second-order transition has

been discussed by Falk (6 ) for the special case of zero anisotropy

by a variational method, and by Anderson and Callen (7 ) by a Green

function method which extends the theory to higher temperatures.

The latter authors have also analyzed the critical field Hc in

the intermediate temperature region, and the thermodynamics of the

antiferromagnetic and paramagnetic phases.

As the field is increased at constant temperature, through

the spin-flop range,<S increases through two contributions.

Firstly, cos 0 increases linearly with H, and secondly the sub-

lattice magnetization \ Sf > increases (becoming equal to S only

at Hc). Consequently<SZ> increases faster than linearly with H,

as contrasted with the strictly linear variation predicted by

molecular field theory. (8)
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Fig. 1. ,Achematic Spin-Wave Spectrum of the Spin-Flop Phase

Solid curves correspond to high applied fields and

dotted curves correspond to low applied fields.


