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PREFACE 

Many problems in modem control engineering involve the numeri- 

cal solution of nonlinear differential equations subject to two- 

point boundary conditions. Hie purpose of this Memorandum Is to 

show how nonlinear extrapolation techniques can be used to convert 

a first-order successive approximation scheme into a second-order 

scheme for the solution of such problems. Results of a numerical 

experiment are presented. 



SUMMARY 

It is suggested that the convergence properties of the usual 

Plcard successive approximation scheme may be Improved through use of 

nonlinear extrapolation techniques. A numerical, example Is provided. 
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I.  INTRODUCTION 

An interesting class of nonlinear two-point 'boundary value 

problems is described tiy the following equations 

u" = f(u),   u(0) = u(l) = 0. (1) 

In the scalar case, the equation can be solved by quadrature; in 

the vector case, we must use numerical techniques.  Let un restrain 

our attention to the scalar case in order to present a new approach 

unhindered by analytic details.  One way to attack these problems 

is to use Newton's method and quasilinearization.    Such an ap- 

proach requires knowledge of the partial derivative äf/öu for the 

st determination of the (n+1)  approximation to the solution, given 

an n  approximation, u (x). The recurrence relations are the linear 

equations 

öf(u ) 
u'   =f(u ) + (u^ -u ) n+1   x n'  v n+1   rr äu   ' 

n 
(2) 

un+l(0) = Va^ = 0- 

They can be solved by producing a particular solution and two in- 

dependent solutions of the homogeneous equations numerically and 

determining the constant multipliers of the homogeneous solutions 

so as to satisfy the boundary conditions.  The sequence of functions 

u (x), u^(x), u^x), ... converges quadratically to the solution 

u(x), 0 = x = 1, under appropriate conditions on the function f(u); 

cf. Ref. 1. 



st 
Picard's method for finding the (n+1)  approximation requires 

the solution of the linear system 

u" n = f(u ), n+1   ^ n" 

u ,.,(0) = u ^(1) = 0. n+1     n+lv ' 

(3) 

st 
It is a first order method, so that if the (n+1)  approximation is 

u ,., = u + 6 , (h) 
n+1      n' v 

vhere 5 is the discrepancy, then 

l!8n+1||~K|lBn||. (5) 

If K < 1, the sequence of approximating functions converges linearly 

or "geometrically." 

II.  SKETCH OF METHOD 

Let us assume that we have a current approximation Un(x), 

0 = x = 1. We would like to find a new approximation using a varia- 

tion of Plcard's method. The method which we propose has the ad- 

vantage of quadratic convergence without requiring any partial 

differentiation which could require a major calculation in a larger 

problem. Let us compute the functions VLCX) and UpCx) hy means of 

the equations 

u^ = f(U0),   u^O) = u^l) = 0, 

(6) 
u^ = fC^),   u2(0) = u2(l) = 0. 



The application of Eqs. (4) and (5) to VL.  and iu leads to the 

following relations: 

Uj. - u || ~ K || U0 - u || , 

H u2 - u || ~ K H t^ - u || . 

Next we write the constant K in the approximate forms 

K     SB 
uo-ui 

and also. 

K     2= 

where the function U. is the prediction of u(x). Equating these 

two expressions for K leads to the extrapolation formulas 

uo ^ - V   . • . •■ 
1    U„ - 2u, + 0 " 2U1 + "2 ' 

(7) 

(u, - u ) 
Ul = "2 " Uo - 2**+  u2 • (8) 

Equation (7) has the same form as the first order transform of 

(2) . 
Shanks/ ; 

III. EXAMPLE 

This extrapolation technique was applied to the case 

f(u) = eu. 



An initial approximation was coniputed with u(0) = 0, u^O) = - 1, 

and the differential Eq.. (1). The Integration step length was .01. 

The results of this experiment are given in the table, together 

with the correct solution u(x). 

X U0(x) V*) Vx) u(x) 

0.0 0.000000 0.000000 0.000000 0.000000 
0.1 -0.095159 -0.01+1328 -0.01+1487 -0.01+11+36 
0.2 -0.181212 -O.O73067 -0.073337 -0.073269 
0.3 -O.258912 -O.O95566 -0.095861 -0.095800 
O.k -O.328885 -O.IO9061 -0.10927!+ -0.109238 
0.5 -0.391651«- -O.II3677 -0.113708 -0.113701+ 
0.6 -0.^7657 -0.109^33 -0.109209 -0.109238 
0.7 -0.^97265 -O.O9623I -0.0957^6 -0.095800 
0.8 -0.5^0786 -O.O73855 -0.073205 -0.073269 
0.9 -O.578W1 -0.01+1950 -0.01+1387 -0.0I+11+36 
1.0 -O.610565 0.000000 0.000000 0.000000 

Note that a single iteration gave a very great improvement over the 

initial approximation. The time required to do these four itera- 

tions on the IBM 7090 computer was about 20 seconds. 

The FORTRAN II programs Eire listed below. 
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♦       LIST 
CPICARD PICARD'S METHOD + 2-PT. B.V.PROBLEMS 
C 

COMMON T.MMAX,KMAXtNltNPRNT,ü£EROtU.IFLAG.DELTA.UPREV 
DIMENSION T(loO) .OZEP012).U(201) 
DIMENSION P1(201J»P2(201J 
DIMENSION Ul(201) 

C 
1  READloOO.NMAX.ICMAX.Nl .NPRNT 

PRINT910 
PRINT900,NMAXtKMAXtNl,NPRNT 
RFADl^OI .DELTA. (tJZERO( I ) .1» 1.21 
MRINT901.DELTA,(UZEROlI).1*1.2) 

K = 0 
PRINT902.K 
CALL START 

c 
e K ITERATION 
c 

DO 10Ü K=1.KMAX 
PRINT902.K 
IFLAG=1 

r 
c APPLICATION 

T(2)«0. 
T(3)«DELTA 
T(4)«0. 
T(5)«0. 

EACH A DOUBLE APPLICATION OF PICARD'S METHOD 

UPREV«U(1) 
I.A1.L INT(T.2.Nl.O.0.0.0*0.0) 
Pl( 1)»T(4) 

C 
DO 2 N-2.NMAX 
UPKtV*U(N-l) 
CALL INTM 

2 PllN)=T{4) 
r 

B1«-P1(NMAX) 
C 
<- APPLICATION 2 

T(2)»0, 
r<4)«ü. 
T(5»«0. 
U1(1)=P1(1) 
UPREV=U1(1» 
CALL INT(T.2.Nl.0.0.0.0.0.0) 
P2(1)=T(4) 

C 
DO 3 N=2.NMAX 
Ufhi£V*Ul(N-l) 
CAI L INTM 
UltN)«PltN) + B1*T(2) 

3 P2(N)»T»4) 



B2=-P2(NMAX) 
c 
c NEW APPROXIMATION 
c 

PRINT9Ü3 
U( 1 )=y. 
T(2)=o, 
PRINT904,T(2)iU(l) 
N*l 

c 
5 DO 53 M=1.NPRNT 

N = N+1 
Tt2)»T(?)+DELTA 
U2»P2(N) + B2»T(2) 
IF(N-NyAX)51.52t52 

51 U(N)»U2 - (U1(N)-U2)»*2 
GO TO 53 

52 U(NMAX)»0. 
53 CONTINUE 

/    (U(N)-2.»U1 (N)4-U2) 

PRINT9C4.T(2).U(N) 
IF(N-NMAX)5»1^0tl00 

C 
100      CONTINUE 

C 
GO   TO   1 

C 
1000 FORMAT(6I12) 
1001 FORMAT(6E12.8) 
900 FORMAT(6I20) 
901 F0RMAT(6E20.8) 
902 FORMATtlOHlITERATIONt 13) 
903 FORy.AT(lH0l8XlHT.26X4HU(T) /) 
90^ FORMAT(10XFlü.4, E30.8) 
910 F0RMAT(37H1PICARD'S METHOD + 2-PT. B.V.PROBLEMb ) 

END 



•      LIST 
SUBROUTINE START 
COMMON TtNMAX»KMAX,Nl»NPRNTtUZEROfUtIFLAG.DELTAtUPREV 
DIMENSION T(luO)»U2ERO(2) »LMaOU 

C 
C ACTUAL EQS. 

1FLAG-2 
T(2)«0. 
T(3)«DELTA 
Tm»UZPRO( i \ 
T(5>«UZERO(2) 
CALL INT(T.2.Nl,O.0.0.0.0.0) 
N«l 
U(1»«T(4) 
PRINT9Ü3 
PRINT904tT(2).U<1) 

C 

C 

5 DO 6 M«1»NPRNT 
CALL INTM 
N«N+1 

6 U(N)«T(*) 

PRINT904.T(2)tU(N) 
IF(N-NN'AX)5»7,7 

7  RETURN 
C 

903 FORMAT(1H018X1HT.26X4HU(T) /) 
904 FORMAT(10XF10.4» E30.8) 

END 



LIST 
SUBROUTINE DAUX 
COMMON T.NMAX.KMAXtNl.NPRNT.UZERO.U»IFLAG.DELTA,UPREV 
DIMENSION T(1-0),UZERO{2).U(201) 

GO TO (1»2)tI FLAG 
c 
c 

c 
c 

1 
PTCARD'S EOS. 

T(6)=Tt5) 
T(7)=EXPF(UPREV) 
RETURN 

2 
ACTUAL EOS. 

T(6)=T(5) 
T(7)»EXPF(T(4) ) 
RETURN 
END 

DATA 
201 <f 2 10 
•COS 0. -1. 


