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PREFACE

Meny problems in moderm comtrol engineering involve the numeri-
cal solution of nonlinear differential equations subject to two-
point boundary conditions. The purpose of this Memorandum 1s to
show how nonlinear extrapolation techniques can be used to convert
a first-order successive approximation scheme into a second-order
scheme for the solution of such problems. Results of a numerical

experiment are presented.




SUMMARY

It is suggested that the convergence propertles of the usual
Picard successive approximation scheme may be improved through use of

nonlinear extrapolation techniques. A numerical example is provided.
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I. INTRODUCTION

An interesting. class of nonlinear two-point boundary value

problems is described by the following equations

u’ = f£(u), u(0) = u(1) = 0. (1)

In the scalar case, the equation can be solved by quadrature; in
the vector case, we must use numerical techniques. ILet uc restrain
our attention to the scalar case in order to present a new approach
unhindered by analytic details. One way to attack these problems
is to use Newton's method and quasilinearization.(l) Such an ap-
proach requires knowledge of the partial derivative of/du for the
determination of the (n+l)St approximation to the solution, given
an nth approximation, un(x). The recurrence relations are the linear
equations

" Bf(un)

Wl T f(un) * (un+l h un) 3u 2
n

(2)
un+l(0) = un+l(l) = 0.

They can be solved by producing a particular solution and two in-
dependent solutions of the homogeneous~equations numerically and
determining the constant multipliers of the homogeneous sclutions
so as to satisfy the boundary conditions. The sequence of functions
uo(x), ul(x), u2(x), 500 éonverges quadratically to the solution

<

u{x), 0 £x g 1, under appropriate conditions on the function f(u);

cf. Ref. 1.




Picard's method for finding the (n+l)$t approximation requires

the solution of the linear system

(3)
u l(O) = un+l(l) = 0.

Tt is s first order method, so that if the (n+1)°% approximation is

Wiy = U+, (&)

where Sn is the discrepancy, then
I8y N~k 18, I (5)

If K < 1, the sequence of approximating functions converges linearly

or "geometrically."

II. SKETCH OF METHOD

Let us assume that we have a current approximation Uo(x),

Sx <1, we would like to find & new epproximation using a varia-

0
tion of Picard's method. The method which we prowose has the ad-
vantage of quadratic convergence without requiring any partial
differentiation which could require a major calculation in & larger
problem. Iet us compute the functions ul(x) and uz(x) by means of

the equations

‘= £(u),  w(0)

u/ = =u1(l)=0,
(6)
uy = £(yy),  uy(0) =u,(1) = o.




The application of Egs. (4) and (5) to u, and w, leads to the

following relations:
Ny -ull~kluy-ull,
Nuy -ulf~kflwy -ul.
Next we write the constant K in the approximate forms

2%
Uo - Ui

>
¢

and also,

W - Uy
@ - U’
yw-U

'}

X

where the function U, is the prediction of u(x). Equating these

two expressions for K leads. to the extrapolation formulas

Wty o
(u1 _ ué)z g

U = T ———— . 8

1 Yy UO - 2ul + u, (8)

Equation (7) has the same form as the first order transform of

Shanks.(e?’
ITI. EXAMPLE
This extrapolation technique was applied to the case

f(u) = e,




An initial spproximation was computed with u(0) = 0, u’/(0) = - 1,
and the differential Eq. (1). The integration step length was .Ql.
The results of this experiment are given in the table, together

with the correct solution u(x).

x Uo(x) Ul(x) U, (x) u(x)
0.0 0. 000000 0.000000 0.000000 0. 000000
0.1 -0.095159 -0.041328 -0.041487 -0.041436
0.2 -0.181212 -0.073067 -0.073337 -0.073269
0.3 -0.258912 -0.095566 -0.095861 ~-0.095800
0.4 -0.328885 -0.109061 -0.109274 -0.109238
0.5 -0.391654 -0.113677 -0.113708 -0.11370%
0.6 -0.147657 -0.109433 -0.109209 -0.109238
0.7 -0.497265 -0.096231 -0.0957h6 -0.095800
0.8 -0.540786 -0.073855 -0.073205 -0.073269
0.9 -0.578481 -0.0%1950 -0.041387 -0.041436
1.0 -0.610565 0. 000000 0. 000000 0. 000000

Note that a single iteration gave a very great improvement over the
initial approximation. The time required to do these four itera-
tions on the IRM 7090 computer was about 20 seconds.

The FORTRAN II progrems are listed below.
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LIST

CPICARD PICARD*S METHOD + 2-PT. B.V.PROBLEMS

C

[aXala]

COMMON T oNMAX sKMAX s N1 s NPRNT sUZERQ sU+IFLAGIDELTA »UPREV
DIMENSION T(1U0)»UZERO12)sU(201)

DIMENSION P1(201)sP2(201)})

DIMENSICN Ul(201)

READ1UOO s NMAX s KMAX s N1 s NPRNT
PRINT91C
PRINTO00 s NMAX »KMAX s N1 s NPRNT
RFADIvVO1DELTAL(UZERO(TI)»I=192)
PRINTY01»DELTA» (UZEROLI)»I=1s2)

K=0
PRINTS02,K
CALL START

K ITERATIONSs EACH A DOUBLE APPLICATION OF PICARD'S METHOD

DO 100 K=1sKMAX
PRINTG02,4K
IFLAG=1

APPLICATION 1

T(2)=0,

T(3)=DELTA

T(4)=0.

T(5)=0.

UPREV=U(1)

CALL INT(T929N1309093909050)
P1(1)=T(4)

DO 2 N=2,NMAX
UPREV=U(N-1)
CALL INTM
P1L(N)=T(4)

Bl==P1l (NMAX)

APPLICATION 2

T(2)-C.

f(4)=0,

T(51=0,

Ul(l)=P1(1)

UPREV=U1( 1

CALL INT(Ts29N1s09s0s0s0s090)
P2(1)=T(4)

DO 3 N=2,NMAX
UPreEVEUL(N=1)

CAl L INTM

ULINI=P1(N) + B1#T(2)
P2(N)=T(4)




[aNa¥al ()

51

52
53

100

1000
1001
9090
901
902
903
904
91¢C

R2=-P2 (NMAX}

NEW APPROXIMATION

PRINT903

Ull)=ve.

T2)1=ve.
PRINTSC4L4sT(2)sU(1)
N=1

DO 53 M=1sNPRNT
N=N+1
T(2)=T(2)+DELTA
U2=P2(N) + B2*T(2)
1F(N=NMAX)51952+52

UtNI=U2 = (ULIN)=U2)#%#2 / (UIN)=2*%U1(N)+U2)

GO TO 53
UINMAX)=20.
CONTINUE

PRINTSC4sT(2)H»U{(N)
IF{N=NMAX)591vCs1C0

CONTINUE
GO TO 1

FORMAT (6112)

FORMAT(6E12e8)

FORMAT(6120)

FCRMAT (6E20e8)
FORMATUI10HYIITERATIONs 1I3)

FORMAT (1HO18X1HT$26X4HU(T) /)
FORMAT(10XF10e4s E30e8)
FORMAT(37TH1PICARD'S METHOD + 2-PT.
END

BeVePROBLEMS

)
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904

LIST
SUBROUTINE START
COMMON TsNMAX sKMAX N1 sNPRNT sUZERO»Us IFLAGsDELTASUPREV
DIMENSION T(1u0)»UZERO(2)»Ut201)

ACTUAL EQSe.
IFLAG=2
T(2)=C.
T(3)=DELTA
T(4)Y=JZFRO( 1
T(5)sUZERD(2)
CALL INT(Ts29N1+0+0s0909050)
N=1
Utl)r=T(4)
PRINTSU3
PRINTS04T(2)sU(1)

D0 6 M=1,NPRNT
CALL INTM
N=N+]1

UIN)=T (4)

PRINTO9J4sT(2)»UIN)
IF (N~NMAX)597+7
RETURN

FORMAT (1HO18X1HT 9 26X4HU(T) /)
FORMAT{10XF1Ce4s E3048)
END




LIST
SUBROUTINE DAUX

COMMON T osNMAX sKMAX9N1 s NPRNT sUZEROSU» IFLAGSDELTAWUPREV
DIMENSION T(1L0),UZERO(2)sU(201)

GO TO (192)sIFLAG

PTCARD'S EQS.
T(6)=T(5)
T(7)=EXPF (UPREV)
RETURN

ACTUAL EQSe.
T(6)=T(5)
T(TY=EXPF(T(4))
RETURN
END

DATA
201 4 2 10
«00% Oe =1le




