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ABSTRACT 

The orthorhombic B31 structure, typified by MnP, is interpreted as a distortion of the hexagonal 

NiAs (B8j) structure due to metal-metal bonding within the hexagonal basal planes. The num- 

ber of d-like electrons per cation is known from the chemical formula provided the Fermi level 

lies in an energy gap between filled and empty bands of broad-band states, as is generally the 

case where there is a large electronegativity difference between cation and anion. It is argued 

that in stoichiometric materials, with an integral electron/cation ratio, it is possible to define 

operationally a critical cation-cation separation R such that the d-like states must be treated 

as collective states if R < R , may be treated as localized states if R > R . An empirical value 

for R is presented for transition-metal oxides. Since the cubic component of the ligand fields 

and the intra-atomic exchange give splittings that are larger than the widths of d-like bands, it 

is possible to construct schematic one-electron energy diagrams for various electron/cation ra- 

tios. From a knowledge of R , it is possible to distinguish localized from collective d-like 

states that are simultaneously present. These diagrams are used to obtain the spin-only contri- 

bution to the atomic moment. For the case R > R , it is possible to derive interatomic spin cor- 

relations from the Heisenberg exchange Hamiltonian and superexchange theory. With the as- 

sumption that the sign of the cation-cation exchange couplings stay the same as R varies through 

R , it is possible to make sharp predictions of Pauli paramagnetism vs antiferromagnetism vs 

metamagnetism vs ferromagnetism as a function of electron/cation ratio. The low-temperature 

spin configuration of metamagnetic MnP is predicted to be a strongly distorted spiral propagating 

along the orthorhombic c-axis with spins lying mostly in the b-c plane. It is also noted that 

the B20 structure of FeSi can be interpreted as a distortion of the zinc-blende structure due to 

metal-metal bonding. 
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INTERPRETATION OF THE  MAGNETIC AND CRYSTALLOGRAPHIC PROPERTIES 

OF COMPOUNDS WITH THE  B31 STRUCTURE 

I.      INTRODUCTION 

A fundamental problem for solid state physics is an adequate description of narrow-band 

electrons,   where by narrow is meant a bandwidth Ae <   1 ev.    The problem is of intellectual 
importance,   since there is need of a conceptual transition — aside from the purely formal in- 

clusion of higher-order configurations in the expansion of a set of basis wave functions — from 

the plane-wave models of broad-band theory to the localized-electron models of ligand-field 
theory.    It is also of practical importance since many transition-element compounds contain 

narrow-band electronic states.    In order to study experimentally the properties of narrow-band 

electrons,  it is preferable to have a compound or system in which the occupied narrow-band 

states lie in an energy gap between a filled valence band and an empty conduction band of broad- 
band states.    The present study of MnP,   which has the B31 structure,   is an extension of this 

It type of study from oxides      to compounds containing other anions.    However,   before the experi- 

mental results can be adequately interpreted,  it is necessary to introduce the concept of a crit- 
ical interatomic separation R    for which the localized-electron assumption of ligand-field theory 
is adequate if R > R  .    Such a concept implies a fairly sharp transition with  R in certain well- 

defined,  operational parameters,   so that it is subject to experimental verification.    However, 

there appears to be an inherent lack of stability associated with R * R      which makes chemical 
preparation of a suitable system for the observation of R    quite challenging!    In Sec. II,   some 
experimental data and physical arguments are advanced in support of a semi-empirical expres- 
sion for the parameter R  .    In Sec. Ill,  a general Hamiltonian is presented and applied to the 

construction of an energy-level diagram for MnP.    The theory contains several parameters 

whose relative magnitudes can be estimated.    One of these parameters,   which is responsible 

for the relative energies of narrow-band states with differing interatomic spin correlations,   is 

estimated from a simple extrapolation of superexchange theory,  which defines the interatomic 

spin correlations for the localized-electron case.    This extrapolation leads to predictions for 

the signs of the magnetic interactions in MnP that permit interpretation of the complex metamag- 

netic behavior of this compound.    (The significance of this extrapolation procedure and the con- 
2 

cept of an R    is heightened by the fact that the postulates that have been previously presented 

for correlating the magnetic,   structural,   and electronic-specific-heat data of the transition ele- 
ments and their binary alloys follow immediately from them.)   Finally,  energy-level diagrams 
for other B31 compounds with different electron-atom ratios are presented,   and definite 

t References are listed on p. 35. 



predictions about their magnetic properties are made.    These predictions will be tested in future 

experimental work. 

II.     ESTIMATE OF R*1 

A. The Problem 

From experiment it is clear that for large cation-cation separations the outer electrons on 

transition-metal cations can be adequately characterized as localized electrons that have the 

same symmetry properties as atomic d wave functions.    This fact is the basis of ligand-field 

theory,  which provides the energy-level splittings of these electronic states in terms of defined 

parameters whose magnitudes are best estimated from experiment.    It is also evident from ex- 

periment that,  at small cation-cation separations,  electrons in states that are directed along 

the cation-cation bonds cannot be adequately described as localized electrons.    The supercon- 

ductors with A15 structure,  such as Nb^Sn,  forcefully illustrate this fact.    Therefore,  there 

must be a transition in the character of the outer d electrons as the cation-cation separation R 

is changed.    This poses the following questions:   What operational parameters change signifi- 

cantly as   R varies through the transition region?    How sharp is the transition region? 

B. Operational Parameters 

There are four operational parameters that are chosen for discussion:   paramagnetic sus- 
ex ceptibility x    ,   the exchange parameter J..   ,   the electrical conductivity  CT,   and the local crys- 

tallographic symmetry about the cations. 

1. Magnetic Susceptibility 

In the localized-electron limit (R > R  ),   x     is given by the Curie-Weiss law.    In the limit 

R « R  ,   X      is temperature independent (Pauli paramagnetism).    As R — R   ,  the bandwidth Ae 
decreases,   so that higher-order terms of the Pauli paramagnetism expression become impor- 
tant,  especially at higher temperatures.    Therefore,  the high-temperature x     should decrease 
relatively slowly with  R for R ^ R   .    For R > R    and low temperatures,   there is a spontaneous 

atomic moment and long-range magnetic coupling may occur to introduce either ferromagnetism 
or an anisotropic x      characteristic of antiferromagnetism.    For R > R    and low temperatures, 
there is no spontaneous atomic moment and the weak paramagnetic susceptibility is nearly tem- 

perature independent.    Therefore,   low-temperature measurements of x      can provide an opera- 

tional definition for R  .    However,  if there are two types of partially filled electronic states, 
those with R < R    and those with R > R  ,   that are simultaneously occupied,   electrons in states 

with R > R    introduce a spontaneous atomic moment that dominates x    • c ^ Am 

2. Magnetic Coupling 

For R > R  ,  the interatomic spin correlations are given by the ground-state spin configura- 
tion.    It has been found that if the Heisenberg exchange Hamiltonian H      = — Z..J..XS.  •   S. , 6 ex ij  IJ      1       j 
where   S   is the total cation spin,   is used,   solutions of this many-body problem can usually be 
obtained that correspond to the observed spin configurations.     Further,   the strength of the ex- 

ex change parameter J..    between neighboring atoms or ions with overlapping,  localized (ligand- 
1J     -» -» 4 

field) wave functions <p(r.),  cp(r.) may be expressed    as 



J.. = —b../(2S  U) if the overlapping orbitals each 
ij iJ contain one electron, 

J.. = +b.. J /(2S  U   )        if the overlapping orbitals each 
iJ '.I contain an average of either one- 

half or three-halves electrons. (1) 

where J is the intra-atomic exchange energy,   U  is the electrostatic energy to be associated 

with an electron transfer,  and b.. is the one-electron transfer integral that appears in the tight- 

binding expression for the bandwidth Ae of an orbitally nondegenerate band: 

€    (k) = a      +   V   b    (7) exp[-ik   •   T1       . (2) 

T 

The   T   are the fundamental (nonzero) translations of the lattice,  so that 

Ae = Cb(7)      , (3) 

and C ~ 10 is a constant that depends upon the crystal structure.    The perturbation theory lead- 

ing to Eq. (1) breaks down as R — R    since U -*  0 as R — R    (see discussion on electrical con- 

ductivity in Sec.II-B-3),   whereas the transfer integral increases continuously with decreasing R 
ex through R   .    Therefore,  J..   (R) should increase with decreasing   R throughout the range R > R   . 

c ex       ^ c 

The dependence of J..     on  R for R < R    has not been formulated.    It apparently goes through a 
U c 

maximum with decreasing  R,   since the magnetic coupling of the 4f electrons via broad-band 
ex electrons is relatively weak in the rare-earth metals.    Therefore,  the R-dependence of J..    can 

be assumed to be particularly strong in the neighborhood of R * R   .    Since thermal expansion 

makes  R a function of temperature,  the exchange parameter J..    = J..   (T) is particularly sensi- 

tive to temperature if two conditions are met:   (a) the thermal expansion coefficient is large, 

and (b) R « R   .    This conclusion is important because the internal fields of molecular-field 
ex theory,   which are proportional to J..   ,   are assumed temperature-independent in conventional 

ex n 
derivations of the Curie-Weiss law.    If J..    = 2  J  T   and the leading two terms are dominant, 

then x     has the form of the Curie-Weiss law but the Curie constant and paramagnetic Curie 

temperature have different interpretations.    More spectacular,  perhaps,  are the magnetic 

order t- order transitions that are induced by temperature-dependent exchange parameters. 

Magnetic order *• order transitions may occur if one of two competitive exchange interactions is 

more temperature sensitive.    Such a transition is illustrated by the metamagnetic^. ferromag- 
5 

netic transition recently found    in MnP.    From a knowledge of the types of magnetic order above 

and below the transition and a general theory for the magnetic order as a function of the exchange 

parameters,   it is possible to determine which exchange interaction is the more temperature 

sensitive.    This provides a direct test for the above assumption that the most temperature- 

sensitive interaction is a cation-cation interaction having R w R  . a c 
Since there is no theory for long-range interatomic spin correlations in the range R = R    — 

6R,   any empirical information that is relevant to this problem is important.    The most direct 

experimental evidence is the magnetic order at low temperatures in those cases where localized 

(R > R  ) and collective (R < R  ) electrons are simultaneously present.    For the rare-earth 

metals,  for example,  the 4f electrons are localized and the dominant interatomic coupling ap- 

pears to be via the correlations between spin-density regions that they induce among the broad- 
2 

band electrons.    In the transition metals,   there is ample evidence    that both localized and 



collective  d  states may be partially filled simultaneously.    (Theoretical justification for such a 

concept may be found in Nesbet's    studies of diatomic molecules.)    In such a case,   it is possible 

to associate a definite spin with the anisotropic ligand-field function (p(r.) that is directed toward 

cation near neighbors at R > R   .    If the collective-electron  d  states that are directed along crys- 

tallographic directions having R = R    — 6R are partially filled,   the spin density from all collec- 

tive electrons that is induced by the localized spins will be dominated by states having the highest 

density of states at the Fermi surface,  or by the narrow-band states.    (If the Fermi level lies in 

an energy gap between broad bands,   only the narrow-band contribution is present.)    It is reason- 
ex able to assume that for small 5R,   the sign of the J..    between cations having R = R    — 6R is,   in 

—2— lj & c 
this case,  the same as that predicted from Eq. (1),  which applies to the case R = R    + 6R.   (The 

7   8 ^ 
Ruderman-Kittel-Kasuya-Yosida  '    formalism applies only in the broad-band limit.)   One of the 

objectives of the present experimental program is to determine whether this assumption does 

provide a reliable guide for predicting the signs of the magnetic couplings in transition-metal 

alloys. 

3.    Electrical Conductivity 

The electrical conductivity is 

a =   X.   niVi      ' (4) 

where n. is the density of carriers having charge q. and mobility \i...    For localized (R > R  ) d 

electrons,   two cases must be distinguished:   the intrinisic case,   which corresponds to an inte- 

gral number of  d  electrons per cation (e.g.,   Fe.,0,),   and the extrinsic case,   which corresponds 

to a nonintegral number of  d  electrons per equivalent cation (e.g.,   Fe,0.),   where by equivalent 

cation is meant cations of the same element on similar lattice sites.    For the intrinisic case, 
9 

the arguments of Mott    for a sharp R    apply.    In this case,   there are two types of d-electron 
carriers,   electrons of density  n  and holes of density  p.     (The model used here is that given by 

10 Jonker.    )   In this case,   n = p and 

n = nQ exp[-eg/2kT]        , (5) 

where e    is the energy required to create a separated hole-electron pair.    Since 

e    ~ (e   /«r) exp [— cr'r]        , (6) 

-1 + where cr' is the Mott screening parameter,   which becomes much larger than R      for R — R   ,   a 

good operational definition for R   is that value of interatomic separation  R at which e    -» 0 as 

R -* R   .    If R > R   ,  the motion of the separated charge carriers is given by diffusion theory and 

Kn = eD/kT <x  T"1 exp[-ea/kT]        , (7) 

where e    represents the activation energy for an electron to hop from one lattice site to the 
11   a -1 next.       Since the exponential temperature dependence overwhelms the T      dependence in the 

usual temperature interval of measurement,   the electrical conductivity can be represented by 
the temperature dependence [from Eqs. (4),   (5),   (7)] 

<J ~ffo exp[-q/kT]        ,       q = (e 72) + €a      , (8) 



provided the difference in activation energies for hole and electron hops is much less than kT. 

If €    is as sensitive a function of  R  in the region R = R    + 6R as Eq. (6) suggests,   then measure- 

ments of a  in intrinsic materials can provide a sharp operational definition for R    even though 

the value of R at which  e    vanishes may not be sharply defined.    If the temperature dependence 

of the conductivity due to d-electron charge carriers is metallic,  then R < R   as defined by both 

e    and e   . 
g a 

In order to apply this conductivity criterion with confidence,   it is necessary to know whether 

the charge carriers in question are d-like carriers or are broad-band carriers.    This question 

can generally be settled by a measure of the magnitude of the charge-carrier mobility (e.g.,  by a 
2 

supplemental measurement of the Hall effect).    Broad-band carriers have mobilities |JL ~ 10    — 
3        2 ? 

10   cm  /v-sec,   localized electrons have mobilities at room temperature p. < 1 cm  /v-sec,   and 

narrow-band electrons have room-temperature mobilities in the range 0.5 < u. < 50 cm /v-sec. 

(See bottom of Table II.) 

4.     Local Cation Symmetry 

The melting point T       of transition-metal compounds is determined primarily by the outer 

s  and  p  electrons and the Madelung energy,   d-electron bonding playing a secondary role.    There- 

fore,   ordering of the   d  electrons into a configuration that optimizes d-electron bonding may 

occur at a T   < T      .    Examples of this type of electron ordering are:    (a) order S disorder of 
2 + '"P 3+       2+      3 + 

Fe      ions in the inverse spinel magnetite,   Fe     [Fe     Fe     ]0.;   (b) order i disorder of atomic 

spins in magnetic compounds;   (c) superconducting ^ normal conducting in Nb^Sn;   (d) Jahn- 

Teller ordering in Mn,0 ;   (e) spin-orbit ordering below T., in CoO;   (f) cation-cation bonding in 

VO? or FeS;   (g) cation-anion bonding that leads to ferroelectricity in BaTiO...    Of all the types 

of ordering that can be considered,   only those involving cation-cation bonding give rise to a 

local cation symmetry in which the cation is moved away from the center of symmetry of its 

anion interstice toward a nearest-neighbor cation.    Figure 1 is a schematic diagram of the elec- 

tron potential energies V      and V ,   vs interatomic spacing  R for outer s  and p and outer d 

electrons in a crystal with close-packed anion sublattice.    For the case shown,  the minimum in 

the composite curve occurs at an equilibrium separation R      = R       — 6R,   where the curvature 

3-82-2961 

Fig. 1. Schematic electron potentials vs lattice 
parameter, expressed as a cation-cation separa- 
tion R, for transition metals with a close-packed 
anion sublattice. Instabilities with respect to 
distortion from close-packed anion symmetry are 
not indicated. 

e, «AR(dVd/dR)R    _AR 

eq 

e2.AR(dVd/dR)R    +AR 

eq 

>• 
o 

V.  (cation sublattice) a 

V    (cation-anion lattice) 



of V ,(R)  is negative.    Although such a system is stable for simple dilation and contraction of 

the lattice,   it is unstable to small distortions from close-packed anion symmetry that are in- 

duced by a shortening of some cation-cation distances,   a lengthening of others.    The change in 

d-electron binding energy due to such a distortion is 

rdV,x /dVH\ 

bind       IVdR/R     +AR \dR/R     _AR B 
eq eq 

if the number of bonds that are lengthened equals the number that are shortened.    The parameter 

a >  1 is a measure of any correlation stabilization of V ,(R) due to a change in the number of 

metal-metal nearest neighbors.    A distortion from close-packed anion symmetry requires work 

against the elastic forces: 

AE        = A   .(AR)2       , (10) 
ei el 

so that a distortion from close-packed anion symmetry that has 

AR = AB/2Aei (11) 

will lower the internal energy.    The total change of internal energy per mole is 

(AS + Nk) Tt M (AEb.nd + AEei) = -± ARAR = -A2/4Aef        , (12) 

where AS is the change in entropy due to the distortion.    If R » R   ,   A     is too small to support 

a AR that is larger than the thermal vibrational amplitudes,  and there is no static distortion 

unless it accompanies a magnetic ordering,  in which case it appears as exchange striction.    As 

R — R      ,  the curvature of V ,(R) changes from negative to positive,   and AR vanishes.    Therefore 

only in the range R = R   ± 6R are static distortions due to cation-cation bonding likely to occur, 

and the presence of local cation symmetry indicative of cation-cation bonding will suggest a 

AR > 6R,   or a distortion that reflects R < R    along the cation-cation bonds and R > R    where the ' c b c 
cation-cation separation has been increased. 

It should be noted that for large AR,   it is possible to have T, = T      ,   so that no cation-cation b • r t rnp 
bonding transition is observed below the melting point.    Also,   if close-packed anion symmetry 

results in a cation ground state that has orbital degeneracy,   a distortion involving cation-cation 

bonding removes this degeneracy and the parameter A_ may be particularly large. 

C.    An Empirical Expression for R      in Oxides 

nt It is clear that any critical separation R      for equivalent electrons must depend upon at 

least three factors:   the amount of s  and  p  character admixed into the d-like wave functions, 

the contraction of the wave functions with increasing nuclear charge at the cation,   and the intra- 

atomic exchange,   which would induce localization of a net atomic moment at each cation.    The 

first of these will make any R    dependent upon the anion component.    But for a given anion sub- 

lattice,  the critical separation should be of the form 

Rc
3d *{Rd -R2(Z -ZT.) -R3A [J(J + 1)]}       , (13) 

where R. is approximately constant for cations of similar formal valence,  and ZT. and  Z are 

the atomic numbers of Ti and of the first-row transition element in question.      The distance R_ 



can be estimated from a knowledge of ionic radii.    From empirical ionic radii as discussed by 
12 Van Santen and Van Wieringen,     it is estimated that 

R2 « 0.03 A      . (14) 

Given operational definitions for R ,  it is possible to turn to the sesquioxides Ti?0^,  V?0,, 

Cr?0.. and aFe?0      all of which have the corundum structure,  to obtain empirical expressions 

for R, and R   in a close-packed oxygen sublattice. 

In corundum the cations are in nearly octahedral interstices.    Isolated pairs of cations along 

the c-axis share common octahedral-site faces and are separated by a distance R...    Within the 

basal planes each cation has three near-neighbor cations at a distance R,   that share common 

octahedral-site edges.    Only those d-like electrons occupying states with t2    symmetry (d 
*-S yz 

d     ,  d      if cation-anion bonds of ideal octahedral site define Cartesian axes) overlap directly 
zx      xy c b 3d the orbitals of neighboring cations.    Now if R    < R    < R      ,  then any t-    electrons occupy 

collective-electron,  cation-sublattice states.    Further,  if this band of states is only partially 
occupied,  then metallic conductivity should be observed,  but with an intermediate charge-carrier 

mobility (n ~ 1-10 cm /v-sec) characteristic of a narrow band.    (Since there is a large electro- 

negativity difference between oxygen and the transition-metal atoms,  it seems safe to assume 

that the broad-band electrons do not contribute appreciably to the conductivity,  the Fermi level 
falling in an energy gap between valence and conduction bands.)   If,  on the other hand,  R.. > R 

c 3d then metallic conductivity is not possible even if R    < R       because the c-axis pairs are isolated. 

The critical experimental findings for the sesquioxides mentioned above have been discussed 
1 

in an earlier publication.     The first important fact is that at high temperatures,  stoichiometric 
V?0, is metallic and Ti20, exhibits only a small activation energy,  whereas Cr?0, and a-Fe.O 

are insulators.    It might be argued that the t7    bands are split in two by crystal symmetry,   so 

that Cr?0, and a-Fe?0, with three t_    electrons have just filled the lower t?     band,   whereas 

this band is only partially filled in Ti20, and V2<D,.    However,  the activation energies of Cr,0, 
and a-Fe70. are too large for such an interpretation to be adequate.    The second fact is that in 

Cr?0, and a-Fe  O   the atomic moments are large,  which implies localized electrons and split- 

ting of the t?    states by intra-atomic exchange.    The susceptibilities of TUO. and V_0, do not 
obey a Curie-Weiss law and they exhibit a small,  nearly isotropic,  temperature-independent \ 

i m 

below an "apparent" N6el temperature. Therefore, it is concluded that R,, > R in Cr20, and 
a-FepO,, but R.. < R in TizO, and V20,. The room-temperature cation-cation separations 

are given in Table I.    These distances are compatible with a critical distance at room temperature 

R^d(oxides) «{3.02 -0.03(Z-ZTi) -0.04A [J(J + 1)]} A       , (15) 

c ° 3 d provided there  is  evidence that R.,(Cr) = 2.65A<R     (Cr).    Anomalous  antiferromagnetic- 
13 14 resonance data.      a rounded Y     VS T curve at T-T,      and a reduced low-temperature atomic 

15 m N 3+ 3 + 
moment      in Cr?0, together with a fast relaxation of excited states in isolated Cr      — Cr 
pairs in chromium-substituted A120, (Ref. 16) and color changes in the system Al-O   — CrzO. 

(Ref. 17) all demonstrate an anomalously large ratio for the exchange coupling between c-axis 

to basal-plane neighbors,     which is indicative of R..(Cr) < R     . 
\q ^ c 

A recent neutron-diffraction  study       indicates  that  low-temperature Ti20    is  antiferro- 
c ° magnetic with a titanium atomic moment u„. *0.2 u   .   Were R   (Ti) = 2.59 A « R    and the nar- 

row rT,   band  split by  crystalline  fields  from the    T'     states (trigonal symmetry stabilizes 



TABLE 1 

CATION-CATION DISTANCES  IN ANGSTROM  UNITS FOR FOUR OXIDES 
WITH CORUNDUM STRUCTURE, AS GIVEN BY REF. 22 

Rc 

Ti2°3 V2°3 Cr2°3 
o-Fe203 

2.59 2.70 2.65 2.89 

Rb 

tt 
2.99 2.88 2.89 2.97 

1 2 
a c-axis directed r~,  relative to basal-plane directed r„,,, r~, states among the three orbitals TI 13       13 \ 
of t7    symmetry),   as was suggested previously,   the single  r,_    electrons would form  homo- 

^ 20 polar bonds and there should be no long-range magnetic order.     In an alternate proposal,      the 

titanium electrons were assumed to be localized,   and the semiconducting it nearly  metallic 

transition in Ti?0, was claimed to reflect a splitting of the bands below T-. as a result  of the 

magnetic order.     Although the observed antiferromagnetic order of Ti-O, is compatible  with 

this proposal and the low moment can be attributed qualitatively to a large orbital-momentum 

contribution to the total angular-momentum quantum number J = L — S,  the anomalous behavior 

of  x     (Ref. 21) and the very low activation energy in the high-temperature conductivity of stoi- 
m i , 

chiometric  Ti.,0,   argues  for  R.. < R  .    Examination of the temperature dependence of R    is 
22 bC ° b 

instructive: At  350°C  >  T,.,,    R,, = 2.96 A and there is an increase in R . with decreasing 

temperature as the temperature is lowered through the broad temperature interval over which 

magnetic ordering takes place.    Thus the high-temperature conductivity,  which indicates 
b Ti b ° Ti 

Rtt(Ti) < R       is compatible with R   (Ti) = 2.99 A > R      at room temperature. 

It should be noted that the two proposals for Ti?0 are not so different as they at first ap- 

pear. For R = R — <5R and antiferromagnetic coupling, strongly coupled antiparallel moments 

tend to be reduced below the ordering temperature,   thus giving rise to a discontinuous decrease 

in Y      as the temperature is lowered through T...    The anomalous decrease in v      as   T  is 
m &       N . m 

lowered through TN,   and this in spite of an increasing R   ,   suggests that the spins of the  T•, 
c Ti component tend to cancel [R   (Ti) < R      ]  and the observed moment is primarily due  to  the 

12 
r   '    component of the wave functions.    In this case,   the orbital-momentum contribution to the 

net moment can be considerably less than 0.8 ^„,   which is more reasonable since the ligand 

fields tend to quench it. 

Finally,   it should be noted that in metallic,   hexagonal titanium,   which is Pauli paramag- 

netic,   R     = 2.95 A < RTl(metal),   which is further evidence that R^Ti)  = 2.59 A < RTl(oxide) 

even though R     (metal) > R      (oxide) can be anticipated.    If R .(Ti) < R       in Ti?0, and ligand 

fields have removed any ground-state orbital degeneracy,  then the observed long-range order, 

which has antiparallel c-axis pairs,  indicates that if each overlapping orbital contains one elec- 
ex 

tron,  J..    < 0 as is predicted by an extrapolation of predictions from Eq. (1) to the region R < R  . 

Further evidence that R      (oxides) is well defined and well approximated by Eq. (15) comes 
23 

from a study      of the electrical conductivity of a series of stoichiometric,   normal vanadium 

spinels M     [V.,    ]0.,   where M =  Mn,   Fe,   Mg,   Zn,   Co.   In this series,   the activation energy qof 



V ° Eq. (8) was found to decrease regularly with  R from q = 0.37 ev at R,     = 3.013 A in Mn[V?]0. to 

q = 0.07 ev at R^ = 2.972 A in Co[V2]0.      These studies  indicate   an   RV(oxides)  m 2.95 A. 
(Metallic VO has a V-V separation of 2.894 A,  which also indicates that R   is quite sharply de- 

fined,  the complete transition from semiconductor to metallic properties occurring within 0.1 A.) 
Additional arguments in support of Eq. (15) are outlined in Appendix A. 

III.   APPLICATION TO B31  COMPOUNDS 

A.    Construction of a Hamiltonian 

It will be assumed that in the B31 compounds the electronegativity difference between cations 

and anions is sufficiently large that the Fermi level lies in an energy gap between broad-band states. 

Therefore,   only states belonging to a d-like manifold are considered,  and the number of d-like 

electrons per metal atom are immediately given.    Although there may be some overlap of broad- 

band and narrow-band states,   especially in compounds with the heavier,   less-electronegative 

anions,  the number of broad-band electrons per cation will deviate from an integral number by, 
at most,   only a small fraction in stoichiometric,  two-component compounds.    Measurements of 

charge-carrier mobilities would indicate whether the Fermi level falls in a partially filled,  nar- 

row band. 

In the right and left columns of Table II are summarized the major assumptions of the two 

limiting theories:   molecular-orbital theory for the broad-band case R « R  ,  and ligand-field 
theory for the case R > R   .    The problem is to find a Hamiltonian that is satisfactory for the 

case where some d-like states are localized (R > R ) and some are collective (R < R ).    If the c c 
smallest cation-cation separations correspond to R = R    — 6R,   so that the corresponding band- 

widths Ae are small relative to the cubic component of the ligand-field splittings,   then the ap- 
propriate Hamiltonian is that given by the middle column,  or 

H = H+V.+Vf + VTC + H      +H.+H,  +H , (16) o        el cf        LS        ep        L        1 corr v     ' 

where H    + V.+Vf + VIC are the single-cation energies that enter standard ligand-field 
o        e£ ci L/O 

theory,   H      + H.   represent the electron-phonon interactions and lattice energies,   respectively, 
ep        \—i 

H.  introduces a perturbing periodic potential that gives rise to a finite bandwidth,   and H is 1 r b r r b COrr 

a collective-electron correlation energy. 
The ligand-field effect consists of at least three components: 

V, = V+V+V , (17) cf        o c nc 

where V    is just a constant,  V    is the cubic component,  and  V      is the noncubic component, 

which usually reflects trigonal,  tetragonal,   or orthorhombic symmetry.    Term splittings due to 

V   are anticipated to be A    ~ 2ev.    Intra-atomic exchange splittings due to V   .,  the correction 

to the one-electron spherical approximation of H  ,  are also A      ~ 2ev.    Splittings due to V r ^r o ex r nc 
are usually smaller than ~ 0.5 ev;  they will therefore be smaller than the bandwidths to be asso- 

ciated with collective electrons.    This is also true of the spin-orbit splittings induced by V. <,. 

In the special case of a single charge carrier in a narrow band,  the correlation terms V   , 
and H are not present.    In this case,  there is no band narrowing as a result of electron corr r 

correlations,  and it is tempting to apply the usual MO theory.    However,   even in this case the 
theory must be modified to account for strong electron-phonon interactions.    In this special 

case,  the one-carrier model of polaron theory is applicable.    In polaron theory,   II      + H.   are 
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taken to be as large or larger than the perturbing periodic potential H    = -e [U  (r) - U(r)]. 

This leads to a temperature-dependent bandwidth. 

In most cases, however, there are one or more  d electrons per cation present, and electron 

correlations tend to induce electron localization as well as the spin correlations responsible for 

magnetic properties.    Since polaron-polaron interactions are large,   it is not clear how the pre- 

dictions from a one-polaron model are to be extrapolated to the many-electron case.    Therefore, 

it is reasonable to assume that the critical separation R   is determined primarily by the correla- 

tion energies.    The electrostatic energy U ~ e    is an electron-correlation energy.    However, 

even in the collective-electron limit e   - 0,   electron correlations H are important and may 

introduce splittings that are a large fraction of the bandwidth.    In the limit R > R      H + 
c'     corr 

H, - H        where H, - H'  enters the transfer integrals b.. of Eq. (1).    Since H influences i CA i i !J corr 
the relative stabilities within Ae of the collective-electron states having different spin correla- 

tions,  it determines,  as a function of the position of the Fermi level E„ relative to the band 
r ' 

the sign of any magnetic coupling via cation-cation interactions having R = R   - 6R.    As has al- 

ready been indicated,  it will be assumed that the sign of the magnetic couplings can be obtained 

from a simple extrapolation of the predictions from Eq. (1) for the case R > R  .    It is this as- 

sumption that leads to definite predictions about the magnetic properties of materials;  therefore, 

a concern of this paper is to make predictions that can be checked experimentally in a meaning- 

ful way. 

The many-electron correlation effects are not easily incorporated into simple one-electron 

energy diagrams.    Both the exchange splittings for electrons of different spin and the relative 

stabilities of the one-electron states of a given spin depend upon the number of electrons that 

are present.    In this report,  different schematic one-electron energy diagrams are given for 

the cases of Pauli paramagnetism,  antiferromagnetism and ferromagnetism. 

B.    The MnP (B31) Structure 

The B31 structure of MnP may be pictured as a distortion of the hexagonal NiAs (B8   ) struc- 

ture in which the metal atoms are displaced from the center of symmetry of the anion interstice 

toward one another.    The orthorhombic B31 structure is illustrated in Fig. 2,  where the 

Fig. 2.    The B31 structure of orthorhombic MnP. 

0.005 b 

0.05a- 

a - 5.917 A 

a • 137c vs   b * 1.73a FOR IDEAL cph 

b « 1.66c  vs  c' - 1.63a' FOR IDEAL cph 

b- 5.260 A 

Mn © 
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TABLE  III 

ROOM TEMPERATURE CATION-CATION  SEPARATIONS,   IN ANGSTROMS,   OCCURRING   IN  B31   STRUCTURES.t   SEPARATION R,   IS ALONG   [010], 
R2 AND R3 ARE   IN (010).   KNOWN ALTERNATE AB STRUCTURES ARE ALSO  INDICATED,   WITH SHORT METAL-METAL  DISTANCES 

(Data from W.P. Pearson, "A Handbook of Lattice Spacings and Structures of Metals and Alloys," Pergamon Press (1958) 
and R.D. Heyding and  L.D. Calvert, Can. J. Phys. 35, 449 (1957);  39, 955 (1961).   The Notation B, Stands for NbAs 
Structure as Described by H. Boiler and E. Parthe, Acta Cryst.   16,  1095 (1963).) 

3d          4d         5d Rndt 
c 

P As Sb Si Ge Sn 

Ti 3.24 B.(2.91) B.(3.07) 68,(3.15, 4.06) 

Zr 4.12 B.(3.13) 
1 

B.(3.42) 

Hf 4.60 B.(3.32) B.(3.40) 

V 3.21 B8,<3.12, 3.19) 3.04, 2.93, 3.34 B8J2.72, 4.27) 

Nb 4.09 B (3.30, 3.34) B (3.39, 3.45) 

Ta 4.57 Bf(3.30, 3.33) Bf(3.39, 3.44) 

Cr 3.18 2.76, 2.91, 3.12 2.97, 2.94, 3.49 68,(2.73, 4.13) B20 620 

Mo 4.06 Bh(3.19, 3.22) 

W 4.54 3.03, 2.73, 3.25 

Mn 3.15 2.70, 2.85, 3.17 2.85, 3.1, 3.63s B8 (2.88, 4.14) B20 

Fe 3.12 2.66, 2.78, 3.10 2.82, 2.85, 3.38 68,(2.57, 4.11) B20 B35 

Ru 4.00 2.78, 2.96, 3.17 3.15, 3.2, 3.25 62 

Co 3.03 2.60, 2.76, 3.28 2.68, 2.86, 3.52* B8 (2.60, 3.87) B20 1 B35 

Rh 3.91 3.03, 3.3, 3.58 3.06, 3.12, 3.87 B20 2.93, 3.07, 3.26 B20 

Ir 4.39 # 2.91, 2.96, 3.49 B8,(2.78, 3.99) 

Ni 3.06 68.(2.53, 3.96) 68 (2.57, 3.92) 2.69, 2.69, 3.35 2.75, 2.89, 3.43 

Pd 3.94 68,(2.80, 4.08) 2.88, 2.88, 3.38 2.98, 2.94, 3.48 2.96, 3.02, 3.87 

Pt 4.42 68,(2.74, 4.14) 2.87, 2.97, 3.60 2.95, 3.03, 3.70 B81(2.72, 4.11) 

t The structure of AuGa, although B31,  is significantly different from the other B31 structures, which are tabulated above. 

t Corresponds to metallic limit with A[ J(J + 1)] =0. 

§B31 symmetry in temperature interval 45°C < T< 130°C.    Elsewhere 68,(2.85, 3.72). 

^881 symmetry above 960°C. 

'Structure not reported. 
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displacements of the ions from their positions in an ideal B8    structure are indicated.    The 

phosphor anions are displaced along the hexagonal c-axis (o.rthorhombic b-axis) as a result of 

shortening two out of six metal-metal distances in the basal planes.    This suggests that the pecu- 

liar symmetry of the B31 structure is due to metal-metal bonding via  d  electrons.    It would then 

illustrate but one of a large class of distortions,  the low-temperature forms of VO? and FeS 
1 24 

being two other examples. '        The relatively large cation displacements,   corresponding to AR 

of Eq. (11),  suggest that the shortest Mn-Mn separation in the a-c plane has R < R       ,  the larg- 

est has R > R       ,   and the intermediate has R w R c c 
From Eq. (15) it is estimated that 

Mn ° 
Rlvm(MnP) « (3.05 ± 0.15) A      , (18) 

the uncertainty being due to ignorance of the amount of increase in R   to be anticipated on going 

from oxides to phosphides as a result of the greater covalence to be associated with the phosphor 

anion.    This estimate is seen to be compatible with the inference from crystallographic symmetry 
° Mn ° Mn 

that  R      -AR  =   2.85A  <  R       (MnP)   and  R      + AR' = 3.90 A > R       (MnP).    It also indicates that eq c „   eq  „, c C ° Mn c 
along the orthorhombic c-axis R,, = 3.173 A > R "    (MnP),   but that R,, is sufficiently close to R 

that a temperature-dependent J..    can be anticipated for c-axis magnetic coupling. 

It is concluded,  therefore,  that the structure of MnP is illustrative of a distortion to lower 

symmetry as a result of metal-metal bonding.    What appears to distinguish the distortions in 

MnP from other members of this class that have been identified,  like VO? and FeS,  is that 

T   = T       rather than T^ < T 
t        mp t        mp 

In order to check this hypothesis further,   it is necessary to consider other compounds that 

have the B31 structure.    These are listed in Table III,   where the three shortest metal-metal 

distances are given for each case.    The first thing to note is that with the exception of AuGa, 

whose parameters mark it as a special case,  all compounds having the B31 structure have 

outer d shells that contain between two and six electrons.    This is compatible with d-electron 

bonding within the two shortest distances.    However,   it requires that where there are six d 

electrons,  orbitals of e    symmetry must be partially occupied.    Otherwise, the  d orbitals re- 

sponsible for bonding would be completely filled (see the discussion of Sec. III-C).    Whether this 

requirement is met can be determined by measurements of x    ,   and such experiments are in 

progress. 

The second point to note is that,  with the exception of MnAs,  the B31 structure is found only 

if the anions are sufficiently small that the two smallest cation-cation separations are smaller 

than R     .    [For a generalization of Eq. (15),  refer to Appendix A.]    In MnAs,  where the displace- 

ments are much smaller than in the other examples,  T. < T      .In fact,  the phase only appears 

in the temperature interval 45°C < T < 130°C.    MnAs represents a special case.    It will be dis- 

cussed elsewhere. 

If the   B31   structure  is  caused by  metal-metal  bonding in the  basal planes  of the   B8 

structure,   it cannot occur with only one outer d electron at the cation,   since this  electron 

is stabilized by the ligand fields into orbitals  directed along the c-axis.      Therefore,   it is 

significant that the B31 structure is not found in titanium,   zirconium,  and hafnium phosphides, 

arsenides,   or antimonides.      From Fig. 1,   homopolar bonding between cation pairs  permits 

greater metal-metal bonding energy than bonding-band formation along a linear chain.    There- 

fore,   it is also significant that where there is one outer d electron,   the  B. structure,  which 

contains metal-metal pairs along the c-axis at an  R < R ,   is commonly found.      The low ratio 

13 



c/a = 1.29 found in TiSb with B8,  structure indicates bonding-band formation along the c-axis 

chains having R < R   . 
The B   and B,   structures are characterized by metal atoms in trigonal prisms rather than 

octahedral sites.    This geometry permits an equalization of the metal-metal bonds.    Therefore, 
these structures are competitive with B31 if there is more than one outer  d  electron and R < R 

for all near-neighbor metal-metal bonds.    The fact that VP has been reported to be B8    rather 

than B31 or B,  is the only irregularity in Table III. 

Finally,  it is noted that compounds with Si,   Ge,  or Sn may have the B20 structure.    This 

structure is illustrated in Fig. 3,  where it is pictured as a distortion from the cubic zinc-blende 

structure as a result of metal-metal bonding that reduces the number of near neighbors in the 

3-53-2357(1) 

6 
3 

(0.85a,0.85a, 0.85a) 

Z 

Fe O Si 

Fig. 3. The B20 structure of FeSi. Cation 
Feg has six iron near neighbors at 2.76A: 
Fe] through Fe0. 

transition-metal sublattice from twelve to six.    Thus,   the B20 structure appears to illustrate 
the same class of distortion as found in the B31 structure,  but to represent a distortion from 
the cubic ZnS structure rather than from the hexagonal NiAs structure.    The lighter Group IV 
elements favor the cubic ZnS structure if four transition-element electrons are stabilized rela- 

tive to the  d  states in a bonding valence band.    Therefore,   it is not surprising to find the B20 
structure competing successfully where it appears in Table III.    A recent neutron-diffraction 

25 study      of FeSi is discussed from this point of view in Appendix B. 

C.    Construction of Energy Diagrams 
4 

1.     MnP,   Which Represents d 

In order to obtain an energy level scheme from the Hamiltonian of Eq. (11),   the customary 
3+   3- procedure is to turn on successive perturbations.    The nominal formula Mn     P      gives correctly 

the number of d-like electrons per cation provided the Fermi level falls in the energy gap between 
valence and conduction s-p bands. 

The first question to be settled is the relative magnitudes of the perturbations V  , and V  , 

for this determines whether the ground state is a quintet or a triplet.    In an octahedral ligand 
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field,  the 5T3 state of Mn3+(3d ) has an energy -0.6 &c + 6B + 5C,  where  B and C are the 

Racah parameters and A    = 10 Dq is the cubic-field splitting between states of e    (or y.) sym- 
c 26 3 + S i 

metry and those of t,    (or -y-) symmetry.       It follows that the Mn      ion is in a low-spin (triplet) 

state if 

A   > 6B + 5C c (19) 

but is in a high-spin (quintet) state if the inequality is reversed.    Since calculations of these 

parameters are not reliable,  estimates of the two energies are best obtained from experiment. 

With the assumption C = 4B,  it is possible to obtain values for A   and B from optical spectra 

of the complexes.    Direct experimental evidence from a MnP, complex is not available,  but 
27 -1 -1 

reasonable extrapolation from tabulated data      suggests B » 700 cm      and A   * 19,000 cm 

which means that A   and 6B + 5C « 26B have comparable energies of ~2.4ev,  and it is not pos- 

sible to predict unambiguously whether the manganese is in a high-spin or a low-spin state in 

MnP.    It is possible to assert, however,  that A   decreases in progressing along the series MnP, 

MnAs,   MnSb,   MnBi.    Therefore,   the fact that MnAs,   MnSb,   and MnBi,   which have the hexagonal 

B8. structure,  all exhibit high-spin-state atomic moments of 3.4 —4.0^    is not inconsistent with 

low-spin-state manganese in MnP.    Because MnP exhibits a low (< 2 yi   ) atomic moment,  it is 

assumed that Ac > 6B + 5C in MnP. 

The intra-atomic exchange energy is given by 

H intra 
"ex = - E J 

m,n 

intra —        -» s     •   s m       n 

, Tintra        r      5^ — 3J for    r, 

3 .intra      ,      3_ 
— •= J for   r. 

(20) 

where s = l/2 and m,n run over the electrons at one cation.    The difference in exchange stabili- 

zation between the two states would be the energy 6B + 5C were all the d electrons localized. 

With some nonlocalized electrons this may be reduced slightly,   so that 

A      ~ 3 .intra _ 0 A      « -=• J « 2 ev ex      2 (21) 

These splittings are indicated in Fig. 4(a). 

The next perturbation to be considered is the noncubic component to the ligand field.    In the 

hexagonal B8. structure there is a trigonal component to the ligand fields that stabilizes from 

the three t?    orbitals a TT. ~ (2z'    — x'    — y'  )/r  ,  where z' is along the c-axis,  relative to 

two degenerate rJL   and    r£, orbitals.    The distortion to the orthorhombic symmetry of B31 
T3 T3 

splits these two degenerate orbitals as well as the twofold-degenerate e    orbitals.    Splittings by 

the orthogonal fields are shown in Fig. 4(b).    So long as the relative positions of the E. .(t) and 

rn,U) levels are maintained,  the absolute magnitudes of the splittings A„ and 6. are not impor- 

tant for the magnetic properties of MnP. 

It has already been pointed out that,  according to Eq. (18) and Fig. 2,   R < R       (MnP) for the 

orbitals rQ1 and r*.  that R > RMn(MnP) for the rf, orbital.    Therefore,  the TQ. and r* 

levels must be broadened into narrow (~ 1.0 ev) bands.    These bands undoubtedly overlap to give 

one band of width Ae < A The rn, states,  on the other hand,  form narrow bands of localized 

states.    The e    states,  which are directed toward the anions,  are even more sharply localized. 

A schematic density-of-states curve is shown in Fig. 4(c).    In MnP,  the bandwidth Ae is not 
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Fig. 4.    Schematic one-electron diagram for d-like states of MnP.    (a) Cubic-field splittings; 

(b) total ligand-field splittings; (c) energy-band diagram for collective-electron (TQ^ + r. 03' 
states having a bandwidth Ae,   where  6Q < A < Aex.     The energies 6Q and Aex represent 

orthogonal-field and intra-atomic-exchange splittings, respectively. 

Fig. 5.   Schematic one-electron energy diagram for d-like states of VAs.    A     =0 and filled 
1 1 ex 

r      + r      states are bonding;  empty  T     + r      states are antibonding. 
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important for predictions about the magnitude of the atomic moment and the signs of the various 
magnetic couplings;  neither is the shape of the density-of-states curve within a band.    Intra- 

atomic correlations from V   . shift the states corresponding to one spin relative to those cor- 

responding to the opposite spin by A     .    Interatomic correlations from H stabilize bonding 

states,  destabilize antibonding states.    This effect is represented by the bimodal character of 
the bands of a given spin. 

2 
2. VAs,   Which Represents d 

In the case of VAs,  there are only two d-like electrons per molecule,  and these occupy the 
1 

r„. and r„, orbitals,  which are broadened into narrow bands of collective-electron states. 01 03 
Since there are no localized electrons present,  there is no localized atomic moment to induce a 

local molecular field,  and hence to trigger an exchange splitting A     .    This modifies the density- 

of-states curves from those of Fig. 4 to those of Fig. 5. 

3 
3. CrAs,   Which Represents d 

CrAs contains three d-like electrons per molecule,   and the magnetic properties depend 
2 

upon whether Ae is large enough that the Fermi level overlaps the localized rn, states.    If it 

does,  there is a molecular field present to induce an exchange splitting   A'     < Jln ra.    (The 

inequality sign indicates the reduction in J caused by the presence of some collective elec- 

trons.    This reduction will be greater for antiferromagnetic than for ferromagnetic compounds.) 
This leads to the energy diagram of Fig. 6.    Since there are two collective electrons and two 
collective orbitals per cation,  it is predicted from extrapolation of Eq. (1) that CrAs  is  anti- 
ferromagnetic.    Therefore,   it is helpful to show the density-of-states curves for two magnetic 
sublattices.    Note that if A'     > Ae,  as shown in  Fig. 6,   there  is an energy gap between a 

filled and an empty band.    This means that stoichiometric,  antiferromagnetic  CrAs  could be 

a semiconductor. 

SUBARRAY I SOBARRAY E 

1  2 
Fig. 6.    Schematic one-electron energy diagram for TQ, and TQA   states 

of the chromium sublattice in antiferromagnetic CrAs.    Occupied states 
are bonding states. 
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-a  =   2£ JAA *  JBB •    JAA  *   JBB 

Fig. 7.   Two-subarray model for cation sublattice of orthorhombic B31 structure. 
Definitions of exchange parameters and coordinates. 
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4.    FeP and CoP,   Which Represent d    and d 

These compounds contain,  respectively,  five and six outer electrons.    This raises  the 

Fermi  level from its  position in  Fig. 4,   and it is immediately  apparent that  the magnitude of 
2 

any localized atomic moment depends critically upon the relative positions of E_   (t) and r»   (i) 

and on the degree they are overlapped by the band of collective states.    However,  it can be stated 

unequivocally that if the B31 structure is stabilized by metal-metal bonding,   then the band of col- 
2 

lective states must overlap both the E„,(t) and the r„_(4) states.    Otherwise,   the narrow-band 

states would be full,  and they could not give rise to bonding. 

D.    Magnetic Order and Atomic Moment 

1.    MnP 

It follows unambiguously from Fig. 4 that MnP can have a maximum spin-only contribution 

to the atomic moment of 2 (J.„.    The orbital contribution is from the antibonding electrons,  which 

have spins parallel to the net moment and tend to be localized.     This reduces the moment by a 

fractional Bohr magneton fVR-    Therefore,   it is predicted that 

^Mn = <2-f'^B       • <22> 

The magnetic order may be quite complicated.     This problem is  most easily treated by 

representing the cation sublattice as two interpenetrating,  body-centered-orthorhombic arrays 

A and  B,  as shown in Fig. 7.    Four magnetic interactions are important.    These are  repre- 
ex sented by the four J..    for these interactions:   JV-o for nearest-neighbor interactions along the 

orthorhombic b axis,  JATD for nearest-neighbor interactions within the a-c plane,  -J'       for 

A-A or B-B interactions along the c-axis,  and — JAA for interactions between corner and body- 

center cations of subarray A or  B.     The first two interactions are via r0, and Ta~ electrons. 

Since the r0, and rn, orbitals contain three electrons per orbital,  extrapolation of Eq. (1) calls 

for ferromagnetic exchange,  or positive J,„ and J\B-    The rQ, orbitals,  on the other hand, 

contain only one electron,  and the c-axis interactions are antiferromagnetic.    [Since R > R , 

Eq. (1) applies.]     Therefore,   J..   = JAA(T) is positive and is expected to increase measurably 

with decreasing temperature because R = R    = 6R and 6R is small.    The interactions between 

corner and body-center positions of a body-centered array are cation-anion-cation interactions. 

These interactions are most probably antiferromagnetic and are therefore represented by — JAA, 

where JAA is positive.   This interaction is relatively weak,  because the e    orbitals are empty. 

Also,  it is assumed that JAA < JAp> < Jk"R because the cation-cation separations increase in this 

order,  the AA interactions corresponding to R > R   and the AB interactions to R < R  .     (See 

Sec.II-B-2.) 

It is convenient to define these exchange parameters via three parametric ratios: 

JAB      , „      J'AB JABJAA(T) ,„. 
JAB AA ^JABJAA 

In Appendix C, the ground-state spin configurations are derived from the Heisenberg exchange 

Hamiltonian H , and the results in the /3-y plane for «• = 0 and a = l/2 are shown graphically 

in Fig. 8. Although /3 > 2 is probable, it is immediately obvious that MnP may have a complex 

spin configuration.     However,   if a complex  spin  configuration is  stable  in  zero field,   a 
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ferromagnetic phase may be induced by an external field,  since a field would enlarge the ferro- 

magnetic domain.    Therefore,  either ferromagnetism or metamagnetism is compatible with the 

qualitative predictions for the signs and relative magnitudes of the exchange parameters.    It 

was also predicted that y increases measurably with decreasing temperature.    Therefore,  if 

an antiferromagnetic ~Z- ferromagnetic transition is observed as the temperature is varied in 

zero applied field,  the low-temperature phase is predicted unambiguously to be represented by 
5 

spiral (11).    Such an antiferromagnetic •- ferromagnetic transition has been observed at 50°K. 

Note that spiral (11) of Fig. 8 propagates along the orthorhombic c-axis.    It is pointed out 

in Appendix C that dipole-dipole interactions tend to stabilize the plane of the spiral perpendicu- 

lar to the propagation direction.    This energy of stabilization is K , ~ 10   ergs/cm  .    However, 
7 3   S 

MnP has an exceptionally hard a-axis (K. * 1.4 x 10   ergs/cm ),     so that the spins of spiral (11) 

are forced into the b-c plane.    The form of this spiral,  without anisotropy within the b-c plane, 

is that shown in Fig. 9.    This antiferromagnetic configuration requires that the initial suscepti- 

bility x    (H || a) = x    remain nearly constant on passing through the antiferromagnetic ~ ferro- 
m a 

magnetic transition.    However,   \,   and x    must decrease abruptly on lowering the temperature 

through the transition temperature. 

-Ok 

Fig. 9. Projection (with displacements of A and B sublattices exaggerated) 

of spiral (11) on the orthorhombic c-axis of MnP. Each arrow represents a 

ferromagnetic a-b plane. This spiral is modified by crystalline anisotropy 
and applied magnetic fields. 

Although these general features have been observed,  a measured x    — Xu * 2.5 x 10     emu/ 
3 CD 

cm  -oe shows that the simple spiral must be strongly perturbed.    There are two factors that 

can perturb the spiral:   the large anisotropy forces in the b-c plane,  and exchange striction. 

For a uniform spiral,  the turn angle between next-near-neighbor (001) planes is constant,  and 

exchange striction will not distort the spiral even though it strongly influences the wavelength 

of the spiral.    However,  if anisotropy within the b-c plane perturbs the spiral,  exchange stric- 

tion can amplify the perturbation by inducing a shorter separation between next-near-neighbor 

(001) planes of spins that support a larger turn angle,   thus locally stabilizing the JJ, ,  inter- 

action.    Since the observed antiferromagnetic ^ ferromagnetic transition indicates that JJ. ,  is 

sensitive to interatomic separation (an observation that is compatible with 2TJ  * R       ), it is clear 

that exchange striction must be introduced into the problem.    This is done in Eq. (C-33) of 

Appendix C by multiplying the exchange interaction J'. . by the factor (1 — ae  ),  where e    is a 
<i PLI\ n n 

local strain at the n     site that is defined by Eq. (C-34) as 

e    = e    cos (cp    l0 - ip   ) n        o n+2 n' and eo = asJAAMs/2Y 
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Here ip is the angle the moment of the n (001) plane makes with the direction of an applied field 
H, and Y is Young's modulus. Whereas the unperturbed spiral with turn angle © is described 

by <p     = n6,  the perturbed spiral is described by Eq. (C-41): 

P. nO — eh.   sin (2n0) — h sin (n9) 

where e = +1 if H ||  c and e = — 1 if H || b .     This leads to the perturbed spiral shown in Fig. 10 

and to the observed (x    — xh) if a ~ 15 and e    * 0.015 for a 6 = 20°.    This predicts an observable 

modulation below 50° K of the c-axis spacing,  a modulation that has a wavelength half as large 
as that of an antiferromagnetic spiral propagating along the c-axis. 

2.03 
2.0026^ 

^0 

9     9    •<>*    ^     §     $ 
L  

V 
•o- 

13-82-2911-11 

-2.00267; 

X    •    2 TT/ k 

C-AXIS-*- 

Fig. 10. Proposed spin configuration [distorted spiral (11)] for the antiferromagnetic 
phase of MnP given 9 = n/8, eQ = 0.015. The turn angle is <|>n = n8 — hA sin (2n8), 
where hA =-2(Xc - xD)/(xc + Xj,) = -0.5. This gives *n = 0, ±42.5°, ±73.6°, 
±106.4°, ±137.5°, ±180°.   Both   8 and eQ are temperature dependent. 

The critical field strength H.   for an antiferromagnetic ^ ferromagnetic transition below 
50°K is given by Eq. (C-42).    Since J'. .  increases with decreasing temperature via the thermal 
expansion coefficient,   H,   must increase with decreasing temperature as found experimentally. 

Comparison of H, (T) with the temperature dependence of the c-axis parameter would give an 
independent check on the parameter a   . 

Finally,   note that the temperature dependence of JV .   will change the experimental para- 

magnetic Curie constant from C to C       , = C/(l — CW.)   if the total ferromagnetic internal 

field can be represented by H + (W   + W. T) M.    Since J. .  is an antiferromagnetic contribution 

that decreases with increasing temperature,   W. > 0 and the spontaneous moment u.  .. obtained 

from C       . may be too large. 

2.    VAs 

It is clear from Fig. 5 that VAs has no localized d electrons.    Therefore,  it is predicted 

to have no atomic moment at 0°K.    Further,  if the Fermi level is at a minimum in the density- 
of-states curve,  as indicated,  dx    /dT > 0 initially.    However,   x     must go through a maximum 

and approach a Curie-Weiss law at high temperatures.    The asymptotic paramagnetic Curie 

temperature will be negative,  reflecting occupied bonding states;  and the molecular Curie con- 

stant should be C * 3/8,  the decrease from one reflecting spin-pairing in the bonding states. 
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3. CrAs 

For a bandwidth Ac„ greater than the splitting of the t      levels by the noncubic components 
2 ^ of the ligand fields,   localized r„, states are occupied,   and there is an internal magnetic field 

to induce a spontaneous atomic moment.    Whereas the band states contain three electrons per 
1 

rn. and r,,., orbital in MnP,  they contain only two electrons in CrAs.    Therefore,  extrapolation 

of Eq. (1) calls for antiferromagnetic AB interactions in CrAs,  ferromagnetic AB interactions in 

MnP.    With strong antiferromagnetic coupling,  the band electrons tend to be spin-paired,  and 

the internal fields can only induce a localized spin density corresponding to a fraction f » 0.5 per 

band electron.    Therefore,  from Fig. 6 it is predicted that CrAs is antiferromagnetic and has an 

atomic moment 

HCr = (1 + 2f)nB *2H.B      . (24) 

It should also be noted that the AA interactions are antiferromagnetic and competitive, just as 

in the case of MnP,  so that the antiferromagnetic spin configuration may not be collinear.    How- 

ever,  there is no ferromagnetic domain in exchange-parameter space in this case.    Therefore, 

it is predicted that CrAs is not metamagnetic. 

4. FeP 

The band structure of FeP should be similar to that of MnP shown in Fig. 4.    Its magnetic 
2 

properties depend critically upon the relative stabilities of the E0,(t) and rn,(l) levels.    If the 

En,(t) is the more stable,  then the atomic moment is 

^Fe*(1 + 2nh} ^B ~ 2 ^B       ' (25) 

where n,   is the number of holes per iron atom in the band states.    This moment is considerably 
28 larger than the experimental moment (J.       = 0.36 j±„.       Although there was an apparent lack of 

saturation,   even at 25,000 gauss,  for the powder specimens investigated,   the observed moment 
2 2 indicates that the r„,U) level is the more stable.    Because the rn-(|) states are not completely 

filled,  there is a sufficient density of states at the Fermi surface for spontaneous magnetization 

to occur.    The spin-only contribution to the atomic moment is then 1 ji_,  and 

|1Fe = (l-f')|i]B     . (26) 

Not only the AB but also the c-axis AA interactions (J'     ) are ferromagnetic.    This increases 

considerably the ferromagnetic domain in interaction-parameter space,  and ferromagnetism 
can be predicted with confidence. 

IV.   CONCLUSIONS 

Compounds with the B31 and B20 structure appear to be representative of a large class of 
compounds in which distortions from a close-packed anion sublattice to lower symmetry are 

induced by metal-metal bonding via outer d electrons. 

It is meaningful to introduce a critical metal-metal separation R   such that for R < R   the 
overlapping  d  orbitals of neighboring cations must be described by collective,   crystalline states, 
whereas for R > R   they may be described by localized states. 

Distortions due to metal-metal bonding are most probable if R « R   in the undistorted con- 
figuration. 
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If localized and collective  d electrons are simultaneously present,  it is possible to obtain 

a qualitative energy diagram by first constructing the ligand-field diagram for localized states 

and then superimposing a collective-electron character on those states whose symmetry in- 

dicates overlap with near neighbors at an R < R  .     Because the parameters  of ligand-field 

theory cannot now be adequately calculated from first principles,  details of the energy-band 
scheme depend upon empirical information. 

Sharp predictions of Pauli paramagnetism,  antiferromagnetism,   metamagnetism,   and fer- 

romagnetism as a function of d-electron/cation ratio have been made for the B31 compounds, 

and these predictions are in agreement with experiment where data are available.    Therefore, 

magnetic coupling via narrow-band (R < R ) states appears to have the same sign as would be 

predicted from superexchange theory were the states localized (R > R ). 

The proposed energy scheme permits interpretation of the spin-only contribution to the 
atomic moment and the sign of the orbital contribution. 
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APPENDIX A 

In order to simultaneously obtain an  independent  estimate of the critical separation R    of 

Eq. (15) and to extend it to the 4d and 5d compounds,   it is  assumed that the ratio of the  equi- 

librium separation for bonding via overlapping cationic states equals the ratio of the mean radii 

of the overlapping wave functions.    To make use of this assumption,   it  is necessary to have a 

suitable description of the overlapping cationic states.    In a solid,  these are modified by cova- 

lence effects,  which admix anion states and therefore increase the mean radial extension.    Since 

the cationic states of interest are directed toward other cations and away from anions,  these 

covalency effects are probably small,  except for a special case:   Cations with abnormally large 

charge in crystals where TT bonding and a bonding do not compete for the same anion orbitals 

may have larger cation-directed orbitals because of abnormally strong t  bonding.    This situ- 

ation is found,  for example,   in rutile and ReCX structure.    For other cases,   it should be possi- 

ble to use screened,  hydrogenic wave functions.    However,  this introduces a factor that favors 

larger R. in Eq. (13) for crystals with greater covalency. 

The assumption,  then,   leads to the relation 

Rn'''/Rn'«<r       >/<r    >      , (A-l) 
o     '    o n'l"       nr 

where the mean atomic radius of an electron with quantum numbers  n,l is given by 

• f 

<rni>=K|l*|2dT = fe)7T 
V     eff'    0 

n+f 
(A-2) 

eff'    0,n+f 

rl f°°    Z(+klZ ..  21+1 ,.2   , !k n+l      1    p exp[-p] [L (p)]    dp      . (A-3) 
^o 

The integrals in Eq. (A-3) are solved by standard procedures with the aid of the generating func- 

tion for the Laguerre polynomials,   and 

<rnJI> = rn(Bohr)[(3n- i)(3n - I + l)/4n2]       , (A-4) 

where 

r  (Bohr) = n2(a   /Zn/,)       ,       a    = -fi/ne 2 = 0.53 A.       . (A-5) n o'     eff o        ' 

Further,  the atomic eigenvalues are 

Enf= -(2nre4/«2)(Ze
n/f/n)2 (A-6) 

so that substitution of Eqs. (A-4),   (A-5),  and (A-6) into (A-l) gives 

R M R 
n' (KM\* ,2., 3n'(3n' + 1) 

R~Ro    \E'n0)    {n<>   (3n-i)(3n-i+ 1)      ' (A"7) 

where  R is the crystalline interatomic separation, which is taken to be the equilibrium sepa- 

ration for the broad-band electrons with quantum numbers n',1' = 0.    Since partially filled d or 

f  shells occur only where E   , w E   ,„,   it follows that,   for the rare-earth and actinide elements J nf n'O 
or the transition elements, 
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(En/En'0)5 " 1       • <A"8> 

A correction must be estimated for the tendency of the  d  and  f shells to become more tightly 
n I bound (higher Z Jf ) as the atomic number increases across any row of the Periodic Table. 

Since it has the form 

AR = -a(Z - ZT.)      ,       a > 0      , (A-9) 

it is included in the estimate for R-, in Eq. (13). 
nf To obtain numerical estimates for R    ,   it is noted that 4f electrons are localized,  whereas 
c 

the 4d electrons of metallic palladium give rise to Pauli paramagnetism,  characteristic of col- 

lective electrons.    This means that from Eqs.(A-7) and (A-8) and the definition of R , 

R    (rare-earth) « 2.53 R4f> R4f      , nn o c 

R       (Pd)»\f2R     (Pd) PS 2.47 R4d < R4d      . 
nnn nn o c 

This leads to the conclusion that for metals,   R, of Eq. (13) is 

R^2.5Ro
nd       , (A-10) 

where,  from Eq. (A-7), 

Rnd«R       (3n- 2)(3n- 1) 
Ro    KRnn        3n(3n + 4) ' (A_11) 

From a knowledge of the lattice parameters of Ni,   Pd and Pt,   it follows that for metals at room 

temperature, 

Rc
3d « 3.06 A - R2

3d(Z - ZT. - 6) - R3
3d A[J(J +1)]      , 

4H ° 4ri 4H 
R*a » 3.94 A - R*  (Z - ZZr - 6) - R*a A[J(J + 1)]       , 

Rc
5d «4.42 A-R2

5d(Z-ZHf-6) - R3
5d A[J(J + 1)]      . (A-12) 

(12) From a knowledge of ionic radii,        it is estimated that 

3d 4d 5d ° 
R2 R2 R2 '03A      ' (A-13) 

This implies that 

4d 3d ° 
R^    «R       +0.88A      , (A-14) 

5d 3d ° 
R00 «RJa + 1.36 A       . c c 

Also note that comparison of Eq. (15) with (A-12) shows 

R  (metals) « R  (oxides) + 0.2 A 
c c 

which is a reassuring check on the adequacy of Eq. (A-14). 
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APPENDIX B 

The compound FeSi has the B20 structure of Fig. 3, and each iron atom has six near-neighbor 
o 

irons at 2.75 A < R (Fe).    The symmetry about a given iron atom is trigonal,  and the d-like or- 
bital directed along the trigonal axis is rendered relatively unstable by a silicon nearest neighbor 

o 

at 2.29 A.    Given a Fermi level located between two broad bands,   each iron has four d-like elec- 

trons.    Since the trigonal-axis orbital is relatively unstable,  these occupy collective-electron 

states.    The cation sublattice consists of two arrays such that an atom of one array has only 

near neighbors belonging to the other array.    Four overlapping orbitals per iron atom make the 

band of collective-electron states,  so that at absolute zero bonding states are occupied,  anti- 

bonding states empty,  and the Fermi level is at a minimum in the density-of-states curve. 

Kriessman and Callen have shown that dv    /dT > 0 for collective electrons in such a case. ^m 
However,  v     cannot increase indefinitely with T;  in fact,  v      should approach a Curie-Weiss Arn J > A.m ff 

law at high temperatures.  The Curie constant obtained from the asymptote to the high-temperature 
Curie-Weiss curve will correspond to an atomic spin density of ~^ per collective electron,  the 

effective spin magnitude being reduced by spin-pairing within the bonding states.    Also,  the 
paramagnetic Curie temperature would be negative,  reflecting the antiparallel correlations 

within the bonding states.    Finally,  there would be no localized atomic moment at 0°K,  since all 

the occupied states are collective.    The situation should be analogous to that predicted for VAs. 

Benoit and others have measured the magnetic susceptibility of FeSi as a function 

of temperature.    Although the results are sensitive to sample preparation,  so that the details 

of the two investigations are different,   each found a broad maximum in x      vs   T  near 200°C,   a 

negative paramagnetic Curie temperature,  and a molar Curie constant between 0.64 and 0.83. 
Although this might be interpreted to indicate antiferromagnetism,  Watanabe,  Yamamoto and 

Ito found no coherent antiferromagnetic intensity in neutron diffraction either at room tem- 
perature or at liquid-nitrogen temperature.    Therefore,  localized atomic moments are apparently 

not present,  at least at low temperature. 
If cation-cation bonding is responsible for the B20 structure,  no additional bond formation 

can occur below 200°C,   so that the situation is to be contrasted with the susceptibility changes 
(1) occurring at the first-order phase transitions of V02 or V20,.        The neutron data did not indi- 

cate any pronounced cation shifting in FeSi on passing through 200° C. 
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APPENDIX C 

To obtain the ground-state spin configuration for MnP as a function of the relative strengths 

of the various competitive exchange interactions,  use is made of the Lyons-Kaplan    formalism 

for this type of problem.    If only exchange energy is important,  the Hamiltonian is 

H      = -     T,      J S      •  S (C-l) ex LJ ni>,m^ nv       m\x ' 

which is subject to the strong constraint 

S      •  S      = S2      . (C-2) nv        nv        v 

31 By the Luttinger-Tisza      theorem,  if the solution to the weak constraint problem also satisfies 

the strong constraints,  then the weak-constraint solution is the solution for the strong-constraint 

problem.    The weak constraint is 

V    S      •   S      = NS2 
LJ

      nv        nv nv       nv 
n,v 

where N  is the number of manganese atoms.    With the two-subarray model of Fig. 7 for the cat- 

ion sublattice,   the subscript  v  refers to the two subarrays A and B,   and a lattice vector is 

defined as 

R      = R    + p        . (C-3) ny        n     ri> 

Since the exchange interactions are reciprocal, 

J = J(R-R)=J(R-R)      . (C-4) nv.rrux       vp    m        n nv    n        m '       ' 

The Fourier transforms for the spin vectors are 

S      =   Y.  exp[ik •  R     ]   3 ,       S       =   Y  exp [ik •  R      ]Q , (C-5) nv      <-*      ^L nv'      TT\ mtx      u mjj.J    7* 

k 

and Eq. (C-l) yields an energy density 

k„ ^       " **'     kn 

e = E/N = 2   £   YJ   L     (k) Q*    •  3_,        , 
kv        ku 

k   ^ 

where 

L    (kj = -      Y.       exp[ik-  (R       -R    )]J    (R     - R ) = L* (kj      . (C-6) V\i. LJ «- i .    m^ nV' •    v^<   m 

R    -R 
m     n 

The weak constraint becomes 

,2 
Z TJ 0*    •  O-   = 2S2      , (C-7) 

kv        kv 
k   v 

and by the method of Lagrange multipliers. 
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2   £ L     (k) Q*    = -XQ_        , (C-8) 
^ ku kv 

so that 

c  = -X   ^ £ Q*    •  Q^   = -2XS2       . (C-9) 
kv        kv 

k  " 

Therefore,  the ground-state configuration is that which maximizes  X,  where  X  is defined by 

Eq. (C-8).    Given the two subarrays  A  and  B,    Eq. (C-8) gives 

'LAA 

LAB 

(C-10) 

where use has been made of the relation:    L     (k) = L„ .   = L     (k) = L?T->-    Further,   since _„ _„    _, v\i. BA \iv AB 
R     .  + T = R    „,  it follows immediately from (C-6) that mA mB J 

LAA = LBB = ~a      ' 

Also,   LAO - — P exp[iy],  where 0   is real and positive,   so that Eq. (C-10) has the eigenfunctions 

<p .  - 1,   <p ? = exp [i<p ] with the eigenvalues 

(a + p)      if <p = -y 

(a —/3)      if (p = IT — y 

From Eq. (C-8),  this means that Q^    = Q_^    exp[i<p].    Choose 
kB        kA 

A A 

i   =K+iy     , (C-ii) 
kA       ^ X 

and Eq. (C-5) gives 

(C-12) 

S_      = x cos k •  R       + y sink •  R , 
knA 

nA nA 

A A 

S = x cos (k •  R       + <p) + y sin (k •   R       + <p) 
tag nB nB 

and 

S_^      •  S_^      = S_^      •  S_^      =1      . (C-13) 
knA       knA       knB       knB 

This shows that the solution to the weak-constraint problem satisfies the strong-constraint prob- 

lem;   and the many-body problem reduces to maximizing X  with respect to  k,   the wave vector 

for a flat spiral,  where 

T=-
L

AA
+
I
L

ABI     • <c"14> 
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and 

From Fig. 7,   it follows that 

_LAB = JAB^exp tik '   Pi' + exP t1^ '   P21) + JAB^exp [i^ '   P3] + exP [^ •   P4O 

= 2JAB exp [ik •  (-f + Af) ] cos k • if + 2JAB exp [ik •  A£*l cos k •  £ 

-LAA = -2JAA{cosk •   (f+»f + tj + cosk  • (?-?-£) + cos k •   (-f + rj* - f) 

+ cosk-   (-?- rf+ B} - 2JAA cos (2k •   rf) 

Let 

x £ cos k •   £,      ,       y 5 cos k •  T)      ,       z E k •   f 

^JAB/JAB = 1 + a>1      •       <1'-=
J

AA/
J
AB      •       *" = J

AA/
J
AB      • <C"15> 

Then from (C-14) the problem is to maximize f(k),  where 

f(k) = */4JAB = (y2 + q2z2 + 2qxyz)l/2 - 4q'xyz - q"(2y2 - 1)       . (C-16) 

This problem has several solutions: 

Case 1:   sink •   £ = sink •  T) = sink •   J = 0,  and xyz > 0.    Here x = ±1,  y = ±1,   z = ±1 and 

f(l, 1, 1) = f(l, 1, 1) = f(l, 1, 1) = f(l, 1, 1).    This does not represent a real degeneracy,  however. 

Consider (1, 1, 1).    Here 

k •  if = 0      ,       k .  1 = k •  f = ir      ,       and      k • R^mn = k • (if + mrf + nF) = 2?r 

since f = n =  1 on going to a near neighbor.    Thus near-neighbor interactions are ferromagnetic. 

For Case 1, 

f(l, 1, 1) = 1 + q - 4q' -q"       . (C-17) 

Case 2:   x = ±1,  y = ±1,   z = ±1,  and xyz < 0.    In this case, 

f(l, 1, 1) = a + 4q' - q" 

where the following parametric definitions hold: 

crsq-1      ,      M q/4q' = JAB/4JAA      <       ^ ^"/^' = JABJAA/EJABJAA      • <C"18> 

Case 3:   x = ±1,   y = ±1,   z = ±l/q,   and xyz > 0. 

f(l, 1, 1/q) = 2 -0"1 -q"       . (C-19) 

Case 4:   x = ±1,  y = ±1,   z = ±l/q,  and xyz < 0. 

f(l, 1, 1/q) = /3_1(1 -y) + q"       . (C-20) 

Case 5:   x = ±1,   y = ±0,   z = ±(/3/q) (1 + 2y),   and xyz < 0. 

f[l,/S,(-0/q) (1 + 2y)] =0(1 + 3y) + q"       . (C-21) 
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Case 6:   x = 0,  y = ±1,  and z = 0. 

f(0, 1,0)=  1 - q"       . (C-22) 

2 2 
Case 7:   x = ±(1 + q    -/3   )/2q,   y = ±1,   z = ±1,   and xyz > 0. 

f[(l + q2- /32)/2q, 1,1] = (2 + 2q2-/32)l/2-(l +q2-/32)/2/3 -q"       . (C-23) 

2 2 
Case 8:   x = ±(1 + q    -0   )/2q,   y = ±1,   z = ±1,   and xyz < 0. 

f[(l + q2 -/32)/2q, 1,1] = (1 +q2 +(32)/20 -q"       . (C-24) 

Case 9:   -l^x^ 1,  y = 0,   z = ±1. 

f(x, 0, 1) = q + q" (C-25) 

Case 10:   x = ±y( 1 + 2y)/2q,   y2 = (q2 -;32)/2y < 1,   z = ±1,   and xyz < 0. 

f[y(l + 2y)/2q, y,T]   = 0 + q" +(q2 -02)/4/3y       . (C-26) 

Case 11:   x = ±1,  y = |/3 — q|/2y,   z = ±1,  and xz > 0. 

f(l, |/3 -q|/2y, 1) = q + q" + (/? - q)2/4/3y (C-27) 

Case 12:   x = ±1,   y  = (/3 + q)/2y,   z = ±1,   and xz < 0. 

f[l, (/3  + q)/2y, 1] = q + q" + (/? + q) (/3 - 3q)/4/3y (C-28) 

Case 13:   x = x,   y = z = 0. 

f(x, 0,0) = q"       . (C-29) 

Case 14:   x=x,   y = (3,   z = 0. 

f(x,/3,0) = 0(1 -y) + q"       . (C-30) 

Case 15:   x = ± |-(1 + 2y)1'2,   y=±)3,   z = ±/3(l + 2y)1/2/q,   and xyz  < 0. 

f[|(l + 2y)l/2,0,-/3(1 + 2y)l/2/q] = |-/3  + q"       . (C-31) 

In the case of MnP,  it is estimated that 0 ^ a ^ l/2.    Therefore,   Fig. 8 shows the magnetic 

phase diagram,   obtained by maximizing f(k) from Eqs. (C-17) through (C-31),   for a = 0 and 

a = 1/2. 

If J'AA  = JAA(T) increases with decreasing temperature and the other exchange parameters 

are relatively insensitive to temperature,  the y  increases with decreasing temperature.   There- 

fore,   any antiferromagnetic * ferromagnetic transition as a function of temperature indicates 

that the antiferromagnetic phase corresponds to Case 11.    Case 11 corresponds to a flat spiral 

propagating along the orthorhombic c-axis.    Orthorhombic (001) planes are ferromagnetic,   and 

the turn angle between successive (001) planes is ©  ,  where 

cos 6o = 0 - q)/2y = (JAR - 4^/4.1^       . (C-32) 

The plane in which the spins lie is determined by the crystalline anisotropy.    It need not lie per- 

pendicular to the k vector.    For a hard a-axis, the spins lie in the b-c plane. 

Since spins within (001) planes remain parallel in the presence of external and anisotropy 

fields,   Eq. (C-32) shows that calculation of low-field susceptibilities and of the critical field Hj, 
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for a spiral S ferromagnetic transformation can be done via a simpler problem,  viz.,  one where 

(001) planes couple ferromagnetically to near-neighbor (001) planes by an effective exchange 

parameter J = (JAR ~~ 4J..) and antiferromagnetically to next-near-neighbor (001) planes by 

J2 = _JAA(1 ~ Qsen)' where e
n 

= '(Rn+2 ~ Rn' ~ (Ro,n+2 _ Ro n^/2^   iS the strain induced by ex- 
change striction,  and a    is a nondimensional parameter.    The factor (1 — a  e  ) must be intro- K s s  n 
duced if the magnitude of J!. .  is sufficiently sensitive to the cation-cation separation 2TJ that its 

variation with temperature can induce an antiferromagnetic * ferromagnetic transition.    If <p 

is the angle the moment of the n     (001) plane makes with the direction of an  H  applied, 
ii 

E      = — M      /,  [J cos (<p   . . — <p  ) — J'A A(l — a e   ) cos (<p   .-> — <p  )] ex s   t-i  L ,vn+l     ^n AAV s n v^n+2     ^n ' 
n 

EK=   TJ 
Ksin   ^n^^H*       ' 

n 

ETT =  -Y HM    cos <p H >-> s n 
n 

E   - =   T, Ye 2      , (C-33) el      t-i       n 
n 

where <p„ is the angle between the applied field  H  and the c-axis and  Y  is Young's modulus. 

Minimization of the total energy with respect to e    gives 

e    =e    cos(<p   , -. - <p  )      , (C-34) n        o n+2      ^n 

where e     = a   J'. AM   /2Y.    If H = K = 0,  the magnetic spiral remains simple and the exchange 

striction is uniform.    In this case, 

<Pn(H = K = 0) = <p ° = ne       , (C-35) 

and minimization of E      with respect to  0   yields 
ex r j 

cose (1-Za  e    cos26) = J/4J'..  = <J.„-4JAA)/4J' A       . (C-36) AA      WAB      •AA''•AA 

For a  e    « 1,   this reduces to s  o 

cose ~ cose    [1 + 2a   e   (2 cos   e    - 1)1      , (C-37) o L s  o o 

where 9Q is defined by Eq. (C-32).    Thus,   if e    > ir/4,  exchange striction increases the turn 

angle (9 > 9   ),   and if 9    < ir/4,   it decreases the turn angle (9 < 9   ). 
o °      ? o 

If H « M  J and k « M   J,   it is possible to use perturbation theory,   and 

ip    = <p° + il>    = nO + i/i . (C-38) n n      rn rn ( ' 

Since (ip        — ip  ) « 1,   there are the relations: 

sin (ip   ,. - <p   ) - sin (cp    - ip     .)« cos (i9) [ip   , . — Zip    + ip     .) Tn+j      ^n' lvn n-j' VJ   '   *n4j        *n        n-j' 

1 
-= [sin 2(<p   , . - a   ) - sin 2(tp    - ip     .)] « cos (2i9) (tp   , . - Zip    + ip     .) 2 l n+j      ^n vvn n-j  ' l  J    '   rn+j        ^n        n-j 
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Substitution of these relations into the condition dE/d<p    = 0 gives 

(H/Ms) sin(nG) + (eK/M2) sin(2nG) = J cos9(^+1 - 2^ + Qn_±) 

-J'  A (cos 29 - a  e    cos 49) (ip   ,, - Zip    + ib     ,) AA s  o rn+2        rn     rn-2 

where 

Now let 

e = +1      if      He 1       if      H    b (C-39) 

, „  iyn  ,   „.   -lu'n  , ib    = Ee        + E'e + c.c. n (C-40) 

and solutions are obtained if 

E = e/2i = e*/2i '/2i = e'*/2i 

If Eq. (C-36) is also used,   Eq. (C-38) becomes 

cp    = n9 — eh.   sin (2n9) — hsin (n9) 

where 

20 

(C-41) 

hA E (2K/Ms
2)/{64JkA94[l - i(aseo/eZ) - ± afj)       , 

h s (H/Ms)/{5JAA94 [1 - i(aseQ/eZ) - § afj)      . 

32 For K = a = 0,   this solution reduces to that derived by Enz      via a continuum model. 

The critical field H.   is obtained by setting the total energy of spiral (11) with H = 0 equal 

to the total energy for the ferromagnetic phase H = H, .    This gives 

VMs=  JJAAe4^ + Z^s'o/e2) ^  a  e    ] + (K/M2) (sin2 «p„ 3       so'      x   '     s    v ^H 
1        1 
T+ TehA> 

(C-42) 

If H| | c,   <p„ = 0 and e = +1;  if H 11 b,   (p„ -* rr/2 and e = — 1.    Therefore,  the difference in H,   for 

Hi lb and H 11 c  is 

^-Hfcc'^^-^M- 

The magnetic moment is given by 

M/M= = <cos<»    >  «| h(l- f eh.)       , s      "        T n'        2 

so that the magnetic susceptibility is 

A' 

and 

*c-*b 2  hA(*c + Xb) 
J_ /_2K\   /*c+Xb\' 1 - 1 a  e   /92) - s  o' 

26 
15     so 

1 - 1 
2 (a  e   /e2) so' 

4 
3      so 

(C-43) 

X = M/H = (l-fehA)/{lOJAA94.[l- f(aseo/92)- f| aseo]}       , (C-44) 

(C-45) 

There are two contributions to the total anisotropy constant  K,   a purely crystalline term 

K    and a dipole-dipole term K ,.    Huber and Ridgley    report a 2K/M     = 40 for the ferromagnetic 
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phase just above the transition.    The dipole-dipole term arises from the fact that large crystal- 
7 3 

line anisotropy (K. = 1.4 x 10   ergs/cm    is the anisotropy constant for the a-c plane in the ferro- 
5   a 

magnetic phase  ) forces the plane of the spiral to be parallel to the propagation direction for the 

spiral.    In this configuration,  the component of the magnetization along the propagation direction 

(c-axis) changes sign every half wavelength,   so that within each half wavelength there are de- 
magnetizing fields equivalent to 87rM',  where the magnetization is roughly M' = M   ^sinO^    = 

2M /v.    Therefore, —2K ,/M    « 16.    If the crystalline anisotropy of the ferromagnetic phase is 

extrapolated into the antiferromagnetic phase,  it follows that in the antiferromagnetic phase 

2K/M2 « 20      . (C-46) 

It should be noted that the large K , tends to stabilize simple spirals into a configuration in 

which the plane of the spiral is perpendicular to the propagation vector k.    It is only in the pres- 

ence of large crystalline anisotropies that the plane of the spiral can contain the propagation 

vector to give a "cycloidal" spiral 

lc     Ab' ' o Experimentally,5 (1/2) (x    + xJ * 5 x 10-3 emu/cm3-oe.    Therefore,   if 2e     =0,   Eqs. (C-45) 
and (C-46) give 

.in"4 /       3 
X    — Y,   « —10     emu/cm  -oe c       b 

5 
which is at least an order of magnitude smaller and of opposite sign than the measured 

(X    -xJ w 2.5 x 10"   emu/cm  -oe.    Therefore,   it appears that exchange striction plays an 

important role.    In order to obtain both the correct sign and magnitude for x    — Xh.   it is neces- 

sary to have 

(l- 4- o « ) > |-(a e /e2)     ,     (l-^df )<  r(t»« /e2) 3     s  o       2 v   s  o' '       ( 15     s  o 5      s  o' 

and 

^ Wo*r«Vo/e2>    • 
2     -2 Given a 9 = ir/9 = 20°,  the last requirement leads to an a ~ 15 and e     ~ 0.015 if a  t    ~ a    10 l ' < 1 o sos 

These numbers are reasonable.    They lead to the prediction of a measurable modulation of the 
c-axis spacing that has half the wavelength of the spiral.    This prediction can be checked by a 
combination of neutron-diffraction and x-ray diffraction experiments. 
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