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ABSTRACT

The orthorhombic B31 structure, typified by MnP, is interpreted as a distartian of the hexagonal
NiAs (B8)) structure due ta metol-metol bonding within the hexaganal bosol plones. The num-
ber of d-like electrons per cation is known fram the chemicol farmulo pravided the Fermi level
lies in on energy gap between filled and empty bands af braad-band states, as is generally the
case where there is a large electranegativity difference between catian and anian. It is argued
thot in stoichiometric materials, with on integral electron/cation ratio, it is possible ta define
operationally a critical cation-cation separation R_ such that the d-like states must be treated
as collective states if R <R_, may be trected as localized states if R >R_. An empirical volue
far R is presented far tronsitian-metal oxides. Since the cubic component af the ligand fields
ond the intra~otomic exchange give splittings that are larger than the widths of d-like bands, it
is possible to construct schematic one-electron energy diagrams far variaus electran/cation ro-
tias. Fram o knawledge af R, it is possible ta distinguish lacolized fram callective d-like
states that are simultoneausly present. These diagrams are used ta abtoin the spin-anly cantri-
bution to the atamic moment. For the cose R >R_, it is possible fo derive interotomic spin cor-
relatians fram the Heisenberg exchange Hamiltanion and superexchange theary. With the as-
sumptian thot the sign af the cotian-catian exchange cauplings stay the same as R varies thraugh
R, it is possible to make shorp predictions of Pauli paramagnetism vs antiferromognetism vs
metamagnetism vs ferramagnetism as a function aof electran/catian ratia. The law-temperature
spin configuration af metamagnetic MnP is predicted tabe a strongly distorted spiral prapagating
along the arthorhambic c-axis with spins lying mostly in the b-c plane. It is also nated that
the B20 structure of FeSi con be interpreted os o distartian of the zinc-blende structure due ta

metol-metal bonding.

This technical documentary report is appraved far distributian.

%M&MC lf(u.

ranklln C Hudson, Depufy Chief
Air Farce Lincoln Laboratary Office
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INTERPRETATION OF THE MAGNETIC AND CRYSTALLOGRAPHIC PROPERTIES
OF COMPOUNDS WITH THE B31 STRUCTURE

I. INTRODUCTION

A fundamental problem for solid state physics is an adequatc description of narrow-band
electrons, where by narrow is meant a bandwidth Ae < 1ev. The problem is of intellectual
importance, since there is need of a conceptual transition — aside from the purely formal in-
clusion of higher-order configurations in the expansion of a set of basis wave functions — from
the plane-wave models of broad-band theory to the localized-electron models of ligand-field
theory. 1t is also of practical importance since many transition-element compounds contain
narrow-band electronic states. In order to study experimentally the propcrties of narrow-band
electrons, it is preferable to have a compound or system in which the occupied narrow-band
states lie in an energy gap between a filled valence band and an ecmpty conduction band of broad-
band states. The present study of MnP, which has the B31 structure, is an extension of this
type of study from oxides” to compounds containing other anions. However, before the experi-
mental results can be adequately interpreted, it is necessary to introduce the conccpt of a crit-
ical interatomic separation RC for which the localized-electron assumption of ligand-field theory
is adequate if R > Rc' Such a concept implies a fairly sharp transition with R in certain well-
defined, operational parameters, so that it is subject to experimental verification. Howevcr,
there appears to be an inherent lack of stability associated with R = RC, which makes chemical
preparation of a suitable system for the observation of R, quite challenging! In Sec.l1ll, some
experimental data and physical arguments are advanced in support of a semi-empirical expres-
sion for the parameter Rc' In Sec.1ll, a general Hamiltonian is presented and applied to the
construction of an energy-level diagram for MnP. The theory contains several parameters
whose relative magnitudes can be estimated. One of these parameters, which is responsible
for the relative energies of narrow-band states with differing interatomic spin correlations, is
estimated from a simple extrapolation of superexchange theory, which defines the interatomic
spin correlations for the localized-electron case. This extrapolation leads to predictions for
the signs of the magnetic interactions in MnP that permit interpretation of the complex metamag-
netic behavior of this compound. (The significance of this extrapolation procedure and the con-
cept of an RC is heightened by the fact that the postulates that have been previously pr'esented2
for correlating the magnetic, structural, and electronic-specific-heat data of the transition elc-
ments and their binary alloys follow immediately from them.) Finally, energy-level diagrams

for other B31 compounds with different electron-atom ratios are presented, and definite

t References are listed on p. 35.



prcdictions about their magnetic properties are made. These predictions will be tested in future

expcrimental work.

II. ESTIMATE OF Ré”
A. The Problem

From experiment it is clear that for large cation-cation separations the outer electrons on
transition-metal cations can be adequately characterized as localized electrons that have the
same symmetry properties as atomic d wave functions. This fact is the basis of ligand-field
theory, which provides the energy-level splittings of these electronic states in terms of defined
parameters whosc magnitudes arc best estimated from experimcent. It is also cvident from ex-
periment that, at small cation-cation separations, electrons in states that arc directed along
the cation-cation bonds cannot be adequately described as localized electrons. The supercon-
ductors with A15 structure, such as Nb3Sn, forcefully illustratc this fact. Therefore, there
must be a transition in the character of the outer d electrons as the cation-cation separation R
is changed. This poses the following questions: What operational parameters changc signifi-

cantly as R varies through the transition region? How sharp is the transition region?

B. Operational Parameters

There are four operational parameters that are chosen for discussion: paramagnetic sus-
ceptibility x__, the exchange parameter J &%, the electrical conductivity o, and the local crys-
m 1)

tallographic symmetry about the cations.

1. Magnetic Susceptibility

In the localized-electron limit (R > RC), X... is given by the Curie-Weiss law. In the limit

m
R << Rc’ X... is temperature independent (Pauli paramagnetism). As R — R;, the bandwidth Ae

decreases,mso that higher-order terms of thc Pauli paramagnetism exprcssion bccome impor-
tant, cspecially at higher temperatures. Thcrefore, the high-temperature x should decrease
relatively slowly with R for R < Rc' For R > Rc and low temperatures, there is a spontaneous
atomic moment and long-range magnetic coupling may occur to introducc either ferromagnetism
or an anisotropic . characteristic of antiferromagnetism. ¥For R > RC and low temperatures,
there is no spontaneous atomic moment and the weak paramagnetic susceptibility is nearly tem-
pcraturc independent. Thercfore, low-temperature measurements of Xy, can provide an opera-
tional definition for Rc' However, if there are two types of partially filled electronic states,
those with R < RC and those with R > Rc’ that are simultaneously occupied, electrons in states

with R > RC introduce a spontancous atomic moment that dominates Rl

2. Magnetic Coupling

For R > Rc’ the interatomic spin correlations are given by the ground-state spin configura-
tion. Iihas been found that if the Heisenberg exchange Hamiltonian Hex = — EijJi?x §i g §j 5
where S is the total cation spin, is used, solutions of this many-body problem can usually be
obtained that correspond to the observed spin configur‘ations,.3 Further, the strength of the ex-
change parameter Jf}.x between neighboring atoms or ions with overlapping, localized (ligand-

field) wave functions w(;i), <p(;j) may be expr‘es,s,ed4 as



2
T 1= —b.“./(ZSZL') if the overlapping orbitals each
1 1 contain one electron,
23l 2l . : .
Ji' = +bi. Jmtra/(ZS U if the overlapping orbitals each
J J contain an average of either one-
half or three-halves clectrons. (1)
where Jmtra is the intra-atomic exchange energy, U is the electrostatic energy to be associated

with an elcctron transfer, and bij is the one-electron transfer integral that appcars in the tight-
binding expression for the bandwidth Ae of an orbitally nondcgcnerate band:

—

eplk)=a + ) b _(T)exp[-iK - 7] . (2)

=
The 7 are the fundamental (nonzero) translations of thc lattice, so that
A€ = Cb(T) (3)

and C ~ 10 is a constant that depends upon the crystal structurc. The perturbation theory lead-
ing to Eq. (1) breaks down as R —~ R; since U ~ 0 as R —~ Rg (see discussion on electrical con-
ductivity in Sec.II-B-3), whereas the transfer integral increases continuously with decreasing R
through Rc. Therefore, JSX(R) should increase with decreasing R throughout the range R > Rc.
The dependence of Jiejx on R for R< Rc has not been formulated. It apparently goes through a
maximum with decreasing R, since the magnetic coupling of the 4f electrons via broad-band
electrons is relatively weak in the rare-earth metals. Therefore, the R-dependence of JSX can
be assumed to be particularly strong in the neighborhood of R ® R . Since thermal expansion
i‘;x(T) is particularly sensi-
tive to temperature if two conditions are met: (a) the thermal expansion coefficient is large,

makes R a function of temperature, the exchange parametcr JSX =

and (b) R = RC. This conclusion is important because the internal fields of molecular-field
theory, which are proportional to JSX, are assumed temperature -independent in conventional
derivations of the Curie-Weiss law. If JSX = % JnTn and the leading two terms are dominant,
then Kisa has the form of the Curie-Weiss law but thc Curie constant and paramagnetic Curie
temperature have differcnt interpretations. More spectacular, perhaps, are the magnetic
order < order transitions that are induced by temperature-dependent exchange parameters.
Magnetic order < order transitions may occur if one of two competitive exchange interactions is
more temperature sensitive. Such a transition is illustrated by the metamagnetic < ferromag-
netic transition recently found5 in MnP. From a knowledge of the typcs of magnetic order above
and below the transition and a general theory for the magnetic order as a function of the exchange
parameters, it is possible to determine which exchange interaction is thc more temperature
sensitive. This provides a direct test for the above assumption that the most temperature-
sensitive interaction is a cation-cation interaction having R = Rc.

Since there is no theory for long-range interatomic spin correlations in the range R = RC -
6R, any empirical information that is relevant to this problem is important. The most direct
experimental evidence is the magnetic order at low tcmperatures in thosc cases where localized
(R > Rc) and collective (R < RC) electrons are simultaneously present. For the rare-earth
metals, for example, the 4f clectrons are localized and the dominant interatomic coupling ap-
pears to be via the correlations between spin-density regions that they inducc among the broad-

band electrons. In thc transition metals, there is ample evidence2 that both localized and



collective d states may be partially filled simultaneously. (Theoretical justification for such a
concept may be found in Nesbet's6 studies of diatomic molecules.) In such a case, it is possible
to associate a dcfinite spin with the anisotropic ligand-field function w(;i) that is directed toward
cation near ncighbors at R > RC. If the collective-electron d states that are directed along crys-
tallographic directions having R = RC — 6R are partially filled, the spin density from all collec-
tive clectrons that is induced by the localized spins will be dominated by states having the highest
density of states at the Fermi surface, or by the narrow-band states. (If thc Fermi level lies in
an cnergy gap between broad bands, only the narrow-band contribution is present.) [t is reason-
able to assumc that for small R, the s1_gn of the Jiejx between cations having R - Rc —6R is, in
this case, the same as that predicted from Eq. (1), which applies to the case R = RC + 6R. (Thc
Ruderman-Kittel-Kasuya-Yosida7’8 formalism applies only in the broad-band limit.) One of the
objectives of the present experimental program is to determine whether this assumption does
provide a rcliable guide for predicting the signs of the magnetic couplings in transition-mectal

alloys.

3. Electrical Conductivity

The electrical conductivity is
s ) 8gs . (4)

wherc n. is the density of carriers having charge q; and mobility By For localized (R > RC) d
electrons, two cases must be distinguished: the intrinisic case, which corresponds to an inte-
gral number of d electrons per cation (e.g., Fe203), and the extrinsic casc, which corrcsponds
to a nonintegral number of d electrons per equivalent cation (e.g., Fe304), where by equivalent
cation is meant cations of the same element on similar lattice sites. For the intrinisic case,
the argumecnts of 1\/[ott9 for a sharp RC apply. In this case, there are two types of d-electron
carriers, electrons of density n and holes of density p. (The model used here is that given by

Jonker.w) In this case, n = p and

n =n  exp [-—eg/ZkT] B (5)
where eg is the encrgy required to create a separated hole-electron pair. Since

g (ez/xr) exp[—o'r] ) (6)

where o' is the Mott screening parameter, which becomes much larger than R_‘l for R — RC+, a
good operational definition for RC is that value of interatomic separation R at whiche — 0 as

Ry Rc+' Ifi Re> RC, the motion of the separated charge carriers is given by diffusion theory and
T eD/kT & T 1 exp [—ea/kT] ; (7)

where €5 represents the activation encrgy for an electron to hop from one lattice site to the

1 ; : =
ncxt.1 Since the exponential temperature dependence overwhclms the T 4 dependence in the
usual temperaturc interval of measurcment, the electrical conductivity can be reprcsented by

the temperature dependcnce [from Egs. (4), (5), (7)]

o~oyexp[=a/kT] ,  q=(e/2) +e, (8)



provided the diffcrence in activation energics for holc and electron hops is much less than kT.

If sg is as sensitive a function of R in the region R = RC + 6R as Eq. (6) suggests, then measure-
ments of ¢ in intrinsic materials can provide a sharp operational definition for RC even though
the value of R at which €, vanishes may not be sharply defined. I[f the tcmperature dependence
of the conductivity due to d-electron charge carriers is metallic, then R < RC as defined by both
eg and €,

[n order to apply this conductivity criterion with confidence, it is necessary to know whether
the charge carriers in question are d-like carriers or are broad-band carriers. This question
can generallybe settled by a mecasure of the magnitude of thc charge-carrier mobility (e.g., by a
supplemental measurement of the Hall effect). Broad-band carriers have mobilities p ~ 102 —
103 cmz/v-sec, localized electrons have mobilities at room tecmperature p <1 cmz/v-sec, and
narrow-band elcctrons have room-temperature mobilities in the range 0.5 < p < 50 cmz/v-sec.
(See bottom of Table II.)

4. Local Cation Symmetry

The melting point Tmp of transition-metal compounds is determined primarily by the outer
s and p elcctrons and the Madelung energy, d-electron bonding playing a secondary role. There-
fore, ordering of the d electrons into a configuration that optimizes d-elcctron bonding may
occur at a Tt < Tmp‘ Examples of this type of electron ordering are: (a) order < disorder of
Fe2+ ions in the inverse spinel magnetite, Fe3+[FeZ+Fe3+]O4; (b) order = disorder of atomic
spins in magnetic compounds; (c) superconducting < normal conducting in Nb3Sn; (d) Jahn-
Teller ordering in Mn3O4; (e) spin-orbit ordering below TN in CoQ; (f) cation-cation bonding in
VO2 or FeS; (g) cation-anion bonding that leads to ferroelectricity in BaTiO3. Of all the types
of ordering that can be considered, only those involving cation-cation bonding give rise to a
local cation symmetry in which the cation is moved away from the center of symmetry of its
anion interstice toward a nearest-neighbor cation. Figure 1 is a schematic diagram of the elec-
tron potential encrgies VSp and Vd vs interatomic spacing R for outer s and p and outer d
electrons in a crystal with close-packed anion sublattice. For the case shown, the minimum in

the compositc curve occurs at an equilibrium separation Req = chd — S8R, where the curvature

L Vd (cation sublattice)

Fig. 1. Schemotic electron potentials vs lottice
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of Vd(R) is negative. Although such a system is stable for simple dilation and contraction of

the lattice, it is unstable to small distortions from close-packed anion symmetry that are in-

duced by a shortening of some cation-cation distances, a lengthening of others. The change in
d-elcctron binding energy due to such a distortion is
(dVd d\/d

L )R +AR dR 7 m AR
eq eq

BBy AR = —A AR (9)

if the number of bonds that are lengthened equals the number that are shortencd. The parameter
a > 1is a measure of any correlation stabilization of V,(R) due to a change in the number of
metal-metal nearest neighbors. A distortion from close-packed anion symmetry requires work

against the elastic forces:

B 2
AE = AM(AR) (10)

ct

so that a distortion from close-packed anion symmetry that has

AR = AB/ZAez (11)

will lower the internal energy. The total change of internal energy per mole is

! _ a2
= — B AR = AB/4Aez : (12)

+AEe£) >

(AS + Nk) Tt ~ (AEbind

where AS is the change in entropy due to thc distortion. If R >> RC, AB is too small to support

a AR that is larger than the thermal vibrational amplitudes, and there is no static distortion
unless it accompanies a magnetic ordering, in which case it appears as exchange striction. As
Ri= R:c(;, the curvature of Vd(R) changes from negative to positive, and AR vanishes. Thcrcfore
only in the range R = RC + 6R are static distortions due to cation-cation bonding likely to occur,
and the presence of local cation symmetry indicative of cation-cation bonding will suggest a

AR > 6R, or a distortion that reflects R < RC along the cation-cation bonds and R > RC where the
cation-cation separation has been increased.

, so that no cation-cation

mp
bonding transition is observed below the melting point. Also, if close-packed anion symmetry

It should be noted that for large AR, it is possible to have Tt =T

results in a cation ground state that has orbital degcneracy, a distortion involving cation-cation
bonding removes this degeneracy and the parameter AB may be particularly large.

C. An Empirical Expression for Rc3d in Oxides

It is clear that any critical separation R:z for equivalent electrons must depend upon at
lcast three factors: the amount of s and p character admixed into the d-like wave functions,
the contraction of the wave functions with increasing nuclear charge at the cation, and the intra-
atomic exchangc, which would induce localization of a net atomic moment at each cation. The
first of these will make any RC dependent upon the anion component. But for a given anion sub-

lattice, the critical separation should be of the form

3d
R, z{Ri—RZ(Z—ZTi)—R3A[J(J+‘1)]} , (13)

where R‘l is approximately constant for cations of similar formal valence, and ZTi and Z arc

the atomic numbers of Ti and of the first-row transition element in qucstion. The distance 1{2



can be estimated from a knowledge of ionic radii. From empirical ionic radii as discussed by

Van Santen and Van Wieringen,12 it is estimated that

R, ~0.03 B (14)
Given operational definitions for Rc‘ it is possible to turn to the sesquioxides TiZO3, VZO3‘
Cr203 and aFeZO3, all of which have the corundum structure, to obtain empirical expressions

for R1 and R3 in a close-packed oxygen sublattice.

In corundum the cations are in nearly octahedral interstices. Isolated pairs of cations along
the c-axis share common octahedral-site faces and are separated by a distance Rt(i. Within the
basal planes each cation has three near-neighbor cations at a distance Rtlz that share common
octahedral-site edges. Only those d-like electrons occupying states with tZg symmetry (d o
dzx’ dXy if cation-anion bonds of ideal octaheciral s{)te degi:e Cartesian axes) overlap directly
the orbitals of neighboring cations. Now if Rtt S Rtt < Rc , then any t2 electrons occupy
collective-electron, cation-sublattice states. Further, if this band of states is only partially
occupied, then metallic conductivity should be observed, but with an intermediate charge-carrier
mobility (. ~ 1-10 cmz/v—sec) characteristic of a narrow band. (Since there is a large electro-
negativity difference between oxygen and the transition-metal atoms, it seems safe to assume
that the broad-band electrons do not contribute appreciably to the conductivity, the Fermi level

falling in an energy gap between valence and conduction bands.) If, on the other hand, Rtlz > Rgd,

then metallic conductivity is not possible even if Rt(,z < de because the c-axis pairs are isolated.
The critical experimental findings for the sesquioxides mentioned above have been discussed
in an earlier publication.1 The first important fact is that at high temperatures, stoichiometric
VZO3 is metallic and TiZO3 exhibits only a small activation energy, whereas CrZO3 and oz-FeZO3
are insulators. It might be argued that the tZg bands are split in two by crystal symmetry, so
that CrZO3 and oz-FeZO3 with three t

electrons have just filled the lower t, band, whereas

this band is only partially filled in TiZZgO3 and VZO3' However, the activatiorzlgenergies of CrZO3
and a-FeZO3 are too large for such an interpretation to be adequate. The second fact is that in
CrZO3 and oz-FeZO3 the atomic moments are large, which implies localized electrons and split-
ting of the tZg states by intra-atomic exchange. The susceptibilities of TiZO3 and VZO3 do not
obey a Curie-Weiss law and they exhibit a small, nearly isotropic, temperature-independent e
below an "apparent” Néel temperature. Therefore, it is concluded that Rtlz > Rc in CrZO3 and
a-FeZO3, but Rtl?c < Rc in TiZO3 and VZO3' The room-temperature cation-cation separations

are given in Table I. These distances are compatible with a critical distance at room temperature

R (oxides) ~ {3.02 - 0.03(Z - z) —0.04A ST + N} A, (15)

provided there is evidence that R,:,E(Cr) =2.65A < de(Cr). Anomalous antiferromagnetic-

resonance data,13 a rounded Xm vs T curve at TN,14 and a reduced low-temperature atomic
3+ 3+
-Cr

pairs in chromium-substituted AlZO3 (Ref. 16) and color changes in the system AIZO3 = Cr203

moment15 in CrZO3 together with a fast relaxation of excited states in isolated Cr

(Ref. 17) all demonstrate an anomalously large ratio for the exchange coupling between c-axis
3d
c -

. 18 T,
to basal-plane neighbors, = which is indicative of Rt(;(Cr) <R
A recent neutron-diffraction study19 indicates that low-temperature TiZO3 is antiferro-

o
magnetic with a titanium atomic moment Fri ~ 0.2 Eg- Were Rt(i(Ti) =2.59A < Rc and the nar-

row T band split by crystalline fields from the T, states (trigonal symmetry stabilizes

T4 TS



TABLE |

CATION-CATION DISTANCES IN ANGSTROM UNITS FOR FOUR OXIDES
WITH CORUNDUM STRUCTURE, AS GIVEN BY REF. 22

Ti,0, V.0, Cr,0, a-Fe,O,
Rff 2.59 2.70 2.65 2.89
b
g 2.99 2.88 2.89 2.97

a c-axis directed Ty relative to basal -plane diirected I‘.11,3, I‘,IZ,3 states among the three orbitals
of tZg symmetry), as was suggested previously,” the single I‘Ti electrons would form ho;rz)o-
polar bonds and there should be no long-range magnetic order. In an alternate proposal,” the
titanium electrons were assumed to be localized, and the semiconducting & nearly metallic
transition in TiZO3 was claimed to reflect a splitting of the bands below TN as a result of the
magnetic order. Although the observed antiferromagnetic order of TiZO3 is compatible with
this proposal and the low moment can be attributed qualitatively to a large orbital-momentum
contribution to the total angular-momentum quantum number J = L — S, the anomalous behavior
of . (Ref. 21) and the very low sctivation energy in the high-temperature conductivity of ts)toi-
chiometric TiZO3 argues for Ri SR Examination of the temperature dependenee of Rtt is
instructivc:22 At 350°C > TN’ RE =2.96 10\ and there is an increase in RS with deercasing
temperature as the temperature is lowered through the broad temperature interval over which
magnetic ordering takes place. Thus the high-temperature conductivity, which indicates
RO(Ti) < R 1" is compatible with RY(Ti) = 2.99 & > R" at room temperature.

It should be noted that the two proposals for Ti203 are not so different as they at first ap-
pear. For R = RC —6R and antiferromagnetic eoupling, strongly eoupled antiparallel moments
tend to be reduced below the ordering temperature, thus giving rise to a diseontinuous deerease

in X, @S the temperature is lowered through T The anomalous deerease in X (G T is

N’
N’ and this in spite of an increasing Rtti’ suggests that the spins of the T
component tend to cancel [tht(Ti) < Rc;rl] and the observed moment is primarily due to the

lowered through T T1

I‘.;,’32 component of the wave functions. In this case, the orbital-momentum contribution to the

net moment can be eonsiderably less than 0.8 bR which is more reasonable since the ligand
fields tend to queneh it.
Finally, it should be noted that in metallie, hexagonal titanium, which is Pauli paramag-

netic, Rttz = 2.951% < RCTl(metal), which is further evidence that RtCt(Ti) =2.59 A< Rgl(oxide)

even though RCTl(metal) > RCTl(oxide) can be anticipated. If RtCt(Ti) < RCTl in TiZO3 and ligand

fields have removed any ground-state orbital degeneracy, then the observed long-range order,

which has antiparallcl c-axis pairs, indicates that if each overlapping orbital contains one clec-
(c
i

*em as is predicted by an extrapolation of predictions from Eq. (1) to the region R < R(\.
Further evidenee that de(oxidcs) is well defined and well approximated by Eq. (15) eomes

tron, J

from a study ? of the eleetrieal conductivity of a series of stoichiometric, normal vanadium

. +
spinels M2 [V23+]O4, where M = Mn, Fe, Mg, Zn, Co. In this scries, the aetivation energy qof



Eq. (8) was found to decrease regularly with R from ¢ = 0.37ev at RtY = 3.013 A in Mn[VZ]O4 to
q=0.07ev at Rt\tf =2.972 10\ in Co[VZ]O. T?ese studies indicate an R(Y(oxides) ~ 2.95 10\
(Metallic VO has a V-V separation of 2.894 A, which also indicates that RC is quite sharply de-
fined, the complete transition from semiconductor to metallic properties occurring within 0.1 A.)

Additional arguments in support of Eq. (15) are outlined in Appendix A.

III. APPLICATION TO B31 COMPOUNDS

A. Construction of a Hamiltonian

It will be assumed that in the B31 compounds the electronegativity difference betwcen cations
and anions is sufficientlylarge that the Fermilevel lies in anenergy gap between broad-band states.
Therefore, only states belonging to a d-like manifold are considered, and the number of d-like
electrons per metal atom are immediately given. Although there may be some overlap of broad-
band and narrow-band states, especially in compounds with the heavier, less-electronegative
anions, the number of broad-band electrons per cation will deviate from an integral number by,
at most, only a small fraction in stoichiometric, two-component compounds. Measurements of
charge-carrier mobilitics would indicate whether the Fermi level falls in a partially filled, nar-
row band.

In the right and left columns of Table Il are summarized the major assumptions of the two
limiting theories: molecular-orbital theory for the broad-band case R << RC, and ligand-field
theory for the case R > RC. The problem is to find a Hamiltonian that is satisfactory for the
case where some d-like statcs are localized (R > RC) and some are collective (R < Rc)' If the
smallest cation-cation separations correspond to R = RC — 6R, so that the corresponding band-
widths Ae are small relative to the cubic component of the ligand-field splittings, then the ap-

propriate Hamiltonian is that given by the middle column, or

H=H +V ,+V . +V +H +H +H, +H " (16)
0 e e ep 2

1 f LS € 1 corr

where H0 + Ve + ch + are the single-cation energies that enter standard ligand-field

1 VLs
theory, Hep & HL represent the electron-phonon interactions and lattice energies, respectivcly,

H1 introduces a perturbing periodic potential that gives rise to a finite bandwidth, and H(‘orr is
a collective-electron correlation energy.

The ligand-field effect consists of at least three components:

ch=V0 +VC +Vnc ) (17)

where V0 is just a constant, VC is the cubic component, and Vnc is the noncubic component,
which usually reflects trigonal, tetragonal, or orthorhombic symmetry. Term splittings duc to
VC are anticipated to be AC ~ 2ev. Intra-atomic exchange splittings due to Ve!’ the correction
to the one-electron spherical approximation of Ho' are also Aex ~ 2 ev. Splittings due to Vnc
are usually smaller than ~0.5ev; they will therefore be smaller than the bandwidths to be asso-
ciated with collective electrons. This is also true of the spin-orbit splittings induced by VLS'
In the special case of a single charge carrier in a narrow band, the correlation terms Vc!
and Hcorr are not present. In this case, there is no band narrowing as a result of clecctron
correlations, and it is tempting to apply the usual MO theory. However, even in this case the
theory must be modified to account for strong electron-phonon interactions. In this spccial

case, the one-carrier model of polaron theory is applicable. In polaron theory, Hep + HL are
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taken to be as large or larger than the perturbing periodic potential H1 = —e [Up(;) - U(;)].
This leads to a temperature-dependent bandwidth.

In most cases, however, there are one or more d electrons per cation present, and electron
correlations tend to induce electron localization as well as the spin correlations responsible for
magnetic properties. Since polaron-polaron interactions are large, it is not clear how the pre-
dictions from a one-polaron model are to be extrapolated to the many-electron case. Therefore,
it is reasonable to assume that the critical separation Rc is determined primarily by the correla-
tion energies. The electrostatic energy U ~ €g is an electron-correlation energy. However,

corr

introduce splittings that are a large fraction of the bandwidth. In the limit R > Rc’ Hcorr +

i e . : .
H1 Hex’ where H1 H1 enters the transfer integrals bij of Eq. (1). Since Hcorr influences

even in the collective-electron limit eg — 0, electron correlations H are important and may

the relative stabilities within Ae of the collective-electron states having different spin correla-
tions, it determines, as a function of the position of the Fermi level EF relative to the band,

the sign of any magnetic coupling via cation-cation interactions having R = RC —6R. As has al-
ready been indicated, it will be assumed that the sign of the magnetic couplings can be obtained
from a simple extrapolation of the predictions fro;—Eq. (1) for the case R > Rc' It is this as-
sumption that leads to definite predictions about the magnetic properties of materials; therefore,
a concern of this paper is to make predictions that can be checked experimentally in a meaning-
ful way.

The many-electron correlation effects are not easily incorporated into simple one-electron
energy diagrams. Both the exchange splittings for electrons of different spin and the relative
stabilities of the one-electron states of a given spin depend upon the number of electrons that
are present. In this report, different schematic one-electron energy diagrams are given for

the cases of Pauli paramagnetism, antiferromagnetism and ferromagnetism.

B. The MnP (B31) Structure

The B31 structure of MnP may be pictured as a distortion of the hexagonal NiAs (B81) struc-
ture in which the metal atoms are displaced from the center of symmetry of the anion interstice

toward one another. The orthorhombic B31 structure is illustrated in Fig.2, where the

b=5.260 A

Fig. 2. The B3] structure of orthorhombic MnP.

c=3I73A
o
e
e usemR—— 5
a J Mn @
a=187c vs b =1.73a FOR IDEAL cph
b=1.66c vs c = 1.63a' FOR IDEAL cph 1@
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ROOM TEMPERATURE CATION-CATION SEPARATIONS, IN ANGSTROMS, OCCURRING IN B31 STRUCTURES.! SEPARATION Ry IS ALONG [o10],

TABLE 11l

R2 AND R3 ARE IN (010). KNOWN ALTERNATE AB STRUCTURES ARE ALSO INDICATED, WITH SHORT METAL-METAL DISTANCES

(Dato fram W.P. Pearsan, "A Handbaok of Lattice Spacings and Structures of Metals ond Allays," Pergoman Press (1958)
and R.D. Heyding and L.D. Colvert, Con. J. Phys. 35, 449 (1957); 39, 955 (1961), The Natation B; Stands far NbAs
Structure as Described by H. Baller and E. Parthe, Acto Cryst. 16, 1095 (1963).)

W 4 sd | RN P As sb si Ge $n
T i ;’;(—2';” 8,(3.07) 88,(3.15, 4.06)
Z* 412 | 83.13) ,(3.42) |
Hf | 4.60 8,(3.32) B,(3.40) |
v 3.2 | 88,(3.12,3.19) | 3.04,2.93,3.3¢ | 88,(2.72, 4.27) l
Nb | 4.09 3,830,330 8,(3.39, 3.45)
To | 4.57 | 8(3.30,3.33) 8,(3.39, 3.44)
< 38| 2.76,2.90,3.02 | 2.97,2.94,3.49 | 88,(2.73, 4.13) 820 820
Mo 4.06 | 8,3.19,3.22)
w | 454 | 3.03,2.73,3.25 }
M 305 2.70,2.85,3.17 | 2.85, 3.1, 3.635 | 88 (2.88, 4.14) 820
Fe 302 | 2.66,2.78,3.10 | 2.82,2.85, 3.3 | 88,(2.57, 4.11) 820 835
Ru 4.00 | 2.78,2.96,3.17 | 3.15, 3.2, 3.25 82
Co 3.03 | 2.60,2.76,3.28 | 2.68, 2.86, 3.52" | 88,(2.60, 3.87) 820 ’ 835
Rh 3.91 3.03, 3.3, 3.58 | 3.06, 3.12, 3.87 820 2.93, 3.07, 3.26 820
| 439 | ' 2.91,2.9,3.49 | 88,(2.78, 3.99)
Ni | .06 | | 88,(2.53,3.9) | 8,(2.57,3.9) | 2.69,2.69, 3.35 | 275,289, 3.40 |
Pd | 3.9 8,(2.80, 4.08) | 2.88,2.88,3.38 | 2.98,2.94,3.48 | 2.9, 3.02, 3.87
b 442 8,(2.74, 4.14) | 2.87,2.97,3.60 | 2.95, 3.03,3.70 | 88,(2.72, 4.11)

t The structure of AuGa, although B31, is significantly different from the ather B31 structures, which are tabulated above.
t Corresponds ta metallic limit with A[J(J + 1)] =0.

§B31 symmetry in temperoture interval 45°C < T< 130°C. Elsewhere B8(2.85, 3.72).

¢ BB) symmetry above 960°C.

f Structure nat reparted.
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displacements of the ions from their positions in an ideal BB1 structure are indicated. The
phosphor anions are displaced along the hexagonal c-axis (orthorhombic b-axis) as a result of
shortening two out of six metal-metal distances in the basal planes. This suggests that the pecu-
liar symmetry of the B31 structure is due to metal-metal bonding via d electrons. It would then

illustrate but one of a large class of distortions, the low-temperature forms of VO2 and FeS
1,24

»

being two other examples. The relatively large cation displacements, corresponding to AR

of Eq. (11), suggest that the shortest Mn-Mn separation in the a-c plane has R < RcMn, the larg-
est has R > Rg\/ln, and the intermediate has R = Rg\/ln.

From Eq. (15) it is estimated that
Mn 9
R, (MnP) ~ (3.05 £ 0.15) A (18)

the uncertainty being due to ignorance of the amount of increase in Rc to be anticipated on going
from oxides to phosphides as a result of the greater covalence to be associated with the phosphor
anion. This estimate is seen to be compatible with the inference from crystallographic symmetry
that R, — AR = 2.85R < R (MnP) and R,o + AR’ - 3.90 & > RM™(MnP). It also indicates that
along the orthorhombic c-axis Rt(i =3.173 A > RcMn(MnP), but that Rt(':c is sufficiently close to Rc
that a temperature-dependent JSX can be anticipated for c-axis magnetic coupling.

It is concluded, therefore, that the structure of MnP is illustrative of a distortion to lower
symmetry as a result of metal-metal bonding. What appears to distinguish the distortions in
MnP from other members of this class that have been identified, like VO2 and FeS, is that
Tt = Tmp rather than Tt < Tmp'

In order to check this hypothesis further, it is necessary to consider other compounds that
have the B31 structure. These are listed in Table III, where the three shortest metal-metal
distances are given for each case. The first thing to note is that with the exception of AuGa,
whose parameters mark it as a special case, all compounds having the B31 structure have
outer d shells that contain between two and six electrons. This is compatible with d-electron
bonding within the two shortest distances. However, it requires that where there are six d
electrons, orbitals of eg symmetry must be partially occupied. Otherwise, the d orbitals re-
sponsible for bonding would be completely filled (see the discussion of Sec. III-C). Whether this
requirement is met can be determined by measurements of X and such experiments are in
progress.

The second point to note is that, with the exception of MnAs, the B31 structure is found only
if the anions are sufficiently small that the two smallest cation-cation separations are smaller
than R:d. [For a generalization of Eq. (15), refer to Appendix A.] In MnAs, where the displace-

ments are much smaller than in the other examples, Tt < Tm In fact, the phase only appears

in the temperature interval 45°C < T < 130°C, MnAs represe?lts a special case. It will be dis-
cussed elsewhere.

If the B31 structure is caused by metal-metal bonding in the basal planes of the }381
structure, it cannot occur with only one outer d electron at the cation, since this electron
is stabilized by the ligand fields into orbitals directed along the c-axis. Therefore, it is
significant that the B31 structure is not found in titanium, zirconium, and hafnium phosphides,
arsenides, or antimonides. From Fig, 1, homopolar bonding between cation pairs permits
greater metal-metal bonding energy than bonding-band formation along a linear chain. There-
fore, it is also significant that where there is one outer d electron, the Bi structure, which

contains metal-metal pairs along the c-axis at an R < Rc’ is commonly found. The low ratio

13



c/a = 1.29 found in TiSb with B81 structure indicates bonding-band formation along the c-axis
chains having R < RC.
The Bt and Bh

octahedral sites. This geometry permits an equalization of the metal-metal bonds. Therefore,

structures are characterized by metal atoms in trigonal prisms rather than

these structures are competitive with B31 if there is more than one outer d electron and R < RC
for all near-neighbor metal-metal bonds. The fact that VP has been reported to be B81 rather
than B31 or Bt is the only irregularity in Table III.

Finally, it is noted that compounds with Si, Ge, or Sn may have the B20 structure. This
structure is illustrated in Fig. 3, where it is pictured as a distortion from the cubic zinc-blende

structure as a result of metal-metal bonding that reduces the number of near neighbors in the

[
1
i

» 3-53-2351(1

o
3

1
(0.850,0.850, 0850)

Fig. 3. The B20 structure of FeSi. Cation
Feq has six iron near neighbors at 2.76 A:
34 Fey through Feg.

Q Fe OSi

transition-metal sublattice from twelve to six. Thus, the B20 structure appears to illustrate
the same class of distortion as found in the B31 structure, but to represent a distortion from
the cubic ZnS structure rather than from the hexagonal NiAs structure. The lighter Group IV
elements favor the cubic ZnS structure if four transition-element electrons are stabilized rela-
tive to the d states in a bonding valence band. Therefore, it is not surprising to find the B20
structure competing successfully where it appears in Table III. A recent neutron-diffraction

study25 of FeSi is discussed from this point of view in Appendix B.

C. Construction of Energy Diagrams
1. MnP, Which Represents d4

In order to obtain an energy level scheme from the Hamiltonian of Eq. (11), the customary
procedure is to turn on successive perturbations. The nominal formula Mn3+P3_ gives correctly
the number of d-like electrons per cation provided the Fermi level falls in the energy gap between
valence and conduction s-p bands.

The first question to be settled is the relative magnitudes of the perturbations Ve! and Vc’

for this determines whethcr thc ground state is a quintet or a triplet. In an octahedral ligand
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field, the 5F3 state of Mn3+(3d4) has an energy —O.6A + 6B + 5C, where B and C are the
Racah parameters and A = 10Dq is the cubic-field sphttlng between states of e (or 'y3) sym-
metry and those of tZg (or 75) symmetry26 It follows that the Mn *ionisina low -spin (triplet)

state if

AL > 6B + 5C (19)

but is in a high-spin (quintet) state if the inequality is reversed. Since calculations of these
parameters are not reliable, estimates of the two energies are best obtained from experiment.
With the assumption C = 4B, it is possible to obtain values for Ac and B from optical spectra
of the complexes. Direct experimental evidence from a MnP6 complex is not available, b-L;t

»

reasonable extrapolation from tabulated da.ta.27 suggests B ~ 700 cm-1 and Ac ~ 19,000 cm
which means that A, and 6B + 5C =~ 26B have comparable energies of ~2.4ev, and it is not pos-
sible to predict unambiguously whether the manganese is in a high-spin or a low-spin state in
MnP. It is possible to assert, however, that AL decreases in progressing along the series MnP,
MnAs, MnSb, MnBi. Therefore, the fact that MnAs, MnSb, and MnBi, which have the hexagonal
B8
low-spin-state manganese in MnP. Because MnP exhibits a low (<2 HB) atomic moment, it is
assumed that & > 6B + 5C in MnP.

1 structure, all exhibit high-spin-state atomic moments of 3.4 — 4.0 kg is not inconsistent with

The intra-atomic exchange energy is given by

_3J1ntra Do 51,3 )
intra _ intra: == = _
Hex o Z ! m’ %" 3 cintra 3 (2]
m,n —EJ for I‘4 P

where s = 1/2 and m,n run over the electrons at one cation. The difference in exchange stabili-
zation between the two states would be the energy 6B + 5C were all the d electrons localized.
With some nonlocalized electrons this may be reduced slightly, so that

Intra y2ev . (21)

3
e~
These splittings are indicated in Fig. 4(a).

The next perturbation to be considered is the noncubic component to the ligand field. In the
hexagonal BS structure there is a tr1gonal component to the ligand fields that stabilizes from
the three tZg orbltals a Ty~ (22' —x? y' )/r , where z' is along the c-axis, relative to

1 2
two degenerate FT3 and FT3
splits these two degenerate orbitals as well as the twofold-degenerate e _ orbitals. Splittings by

orbitals. The distortion to the orthorhombic symmetry of B31

the orthogonal fields are shown in Fig. 4(b). So long as the relative positions of the Eg,(t) and

(&) levels are maintained, the absolute magnitudes of the splittings T and 6 are not impor -
tant for the magnetic properties of MnP.

It has already been pointed out that, according to Eq. (18) and Fig. 2, R < R (MnP) for the
orbitals I‘O1 and 1‘03, that R > R (MnP) for the I‘gj orbital. Therefore, the I‘O1 and I‘O3
levels must be broadened into narrow (~ 1.0 ev) bands. These bands undoubtedly overlap to give
one band of width Ae < Aex' The 1‘623
states. The e _ states, which are directed toward the anions, are even more sharply localized.

states, on the other hand, form narrow bands of localized

A schematic density-of-states curve is shown in Fig. 4(c). In MnP, the bandwidth A€ is not
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Fig. 4. Schematic ane-electran diagram far d-like states of MnP. (a) Cubic~field splittings;

(b) tatal ligand-field splittings; (c) energy-band diagram far callective-electran (FOI + I‘(])3)

states having a bandwidth Ae, where 85 <A <A, .

arthaganal-field and intra-atamic-exchange splittings, respectively.
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Fig. 5. Schematic one-electran energy diagram far d-like states af VAs, Aex =0 and filled
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important for predictions about the magnitude of the atomic moment and the signs of the various
magnetic couplings; neither is the shape of the density-of-states curve within a band. Intra-
atomic correlations from Vel shift the states corresponding to one spin relative to those cor-
responding to the opposite spin by Aex' Interatomic correlations from Hcorr stabilize bonding
states, destabilize antibonding states. This effect is represented by the bimodal character of

the bands of a given spin.

2. VAs, Which Represents d2

In the case of VAs, there are only two d-like electrons per molecule, and these occupy the
1‘01 and 1‘013 orbitals, which are broadened into narrow bands of collective-electron states.
Since there are no localized electrons present, there is no localized atomic moment to induce a
local molecular field, and hence to trigger an exchange splitting Aex' This modifies the density-

of-states curves from those of Fig. 4 to those of Fig. 5.

3. CrAs, Which Represents d3

CrAs contains three d-like electrons per molecule, and the magnetic properties depend
upon whether Ae is large enough that the Fermi level overlaps the localized 1‘2 states. If it
intra (The

caused by the presence of some collective elec-

does, there is a molecular field present to. induce an exchange splitting Aéx < J;
inequality sign indicates the reduction in Jmtra
trons. This reduction will be greater for antiferromagnetic than for ferromagnetic compounds.)
This leads to the energy diagram of Fig.6. Since there are two collective electrons and two
collective orbitals per cation, it is predicted from extrapolation of Eq. (1) that CrAs is anti-
ferromagnetic. Therefore, it is helpful to show the density-of-states curves for two magnetic
sublattices. Note that if Aéx > Mg, as shown in Fig. 6, there is an energy gap between a

filled and an empty band., This means that stoichiometric, antiferromagnetic CrAs could be

a semiconductor.

3-82-2965

) Thh

FERMI LEVEL EF

ENERGY —=

[

SUBARRAY I SUBARRAY 1T

1
Fig. 6. Schematic one-electron energy diagrom for T'y; and 1‘0:’;2 states

of the chromium sublottice in antiferramognetic CrAs. Occupied states
are banding states.
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— 0
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Fig. 7. Two-subarray model for cation sublattice of orthorhombic B31 structure.
Definitions of exchange parameters and coordinates.

4 3-82-2901(1)
20
a =0
5]
1o SPIRAL (1) (a)
/SPIRAL (10)
0.5
7\‘SPIRAL (8) FERROMAGNETIC
1

0 | 2 3
B
1 3-82-2966
20
a =05
1.5+
Y
(b) 10
SPIRAL(2) SPIRAL (11)
o5+
spmm.u% SPIRAL(8) | FERROMAGNETIC
| | |
o} | 2 3 o
B

Fig. 8. Regions of stability in exchange-parameter space for various spin configurations
in orthorhombic MnP.

a=(yp=Jap/Iap B=Ipp/Hapr v =(140) 0,/ 20,,.
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4, FePpndCoP, Whiclh Hepresent d° andld’

These compounds contain, respectively, five and six outer electrons. This raises the
Fermi level from its position in Fig. 4, and it is immediately apparent that the magnitudc of
any localized atomic moment depends critically upon the rclative positions of EOi(” and 1‘53(;)
and on the degree they arc overlapped by the band of collective states. However, it can be stated
unequivocally that if the B31 structure is stabilized by metal-metal bonding, then the band of col-
lective states must overlap both the EOi(” and the r‘023(¢) states. Otherwise, the narrow-band

states would be full, and they could not give rise to bonding.

D. Magnetic Order and Atomic Moment
1. MnP

It follows unambiguously from Fig. 4 that MnP can have a maximum spin-only contribution
to the atomic moment of 2 kg The orbital contribution is from the antibonding electrons, which
have spins parallel to the net moment and tend to be localized. This reduces the moment by a

fractional Bohr magneton f' Therefore, it is predicted that

Fg-
= e
Fvn = @ =feg (22)

The magnetic order may be quite complicated. This problem is most easily treated by
representing the cation sublattice as two interpenetrating, body-centered-orthorhombic arrays
A and B, as shown in Fig.7. Four magnetic interactions are important. These are repre-
sented by the four Ji(gx for these interactions: J'AB for nearest-neighbor interactions along the

orthorhombic b axis, J for nearest-neighbor interactions within the a-c plane, —J! for

AB AA
A-A or B-B interactions along the c-axis, and —JAA for interactions between corner and body-

1
01 and r*03 electrons.

orbitals contain three electrons per orbital, extrapolation of Eq. (1) calls

center cations of subarray A or B. The first two interactions are via '

. 1
Since the Toyq and r*03 i
for ferromagnetic exchange, or positive JAB and J.}%B' The Ty3 orbitals, on the other hand,

contain only one electron, and the c-axis interactions are antiferromagnetic. [Since R > Rc’

Eq. (1) applies.] Therefore, J'AA = J'AA(T) is positive and is expected to increase measurably
with decreasing temperature because R = R, = O0R and 4R is small. The interactions between

corner and body-center positions of a body-centered array are cation-anion-cation interactions.

These interactions are most probably antiferromagnetic and are therefore represented by _JAA’
where JAA is positive. This interaction is relatively weak, because the eg orbitals are empty.
e , . T . : . .

Also, it is assumed that JAA < JAB < JAB because the cation-cation separations increase in this
order, the AA interactions corresponding to R > RC and the AB interactions to R < RC. (See
Sec.II-B-2.)

It is convenient to define these exchange parameters via three parametric ratios:

' 1 1 '
JAB _TaB Tapaa™

Si=——1= B = b =
AB 4T 0 2T g

(23)
AA

In Appendix C, the ground-state spin configurations are derived from the Heisenberg exchange
Hamiltonian Hex’ and the results in the B-y plane for ¢ = 0 and @ = 1/2 are shown graphically
in Fig. 8. Although 8 > 2 is probable, it is immediately obvious that MnP may have a complex

spin configuration. However, if a complex spin configuration is stable in zero field, a
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ferromagnetic phase may be induced by an external field, since a field would enlarge the ferro-

magnetic domain. Therefore, either ferromagnetism or metamagnetism is compatible with the

qualitative predictions for the signs and relative magnitudes of the exchange parameters. It

was also predicted that y increases measurably with decreasing temperature. Therefore, if
an antiferromagnetic < ferromagnetic transition is observed as the temperature is varied in
zero applied field, the low-temperature phase is predicted unambiguously to be represented by
spiral (11). Such an antiferromagnetic < ferromagnetic transition has been observed at 50° K.5
Note that spiral (11) of Fig. 8 propagates along the orthorhombic c-axis. It is pointed out
in Appendix C that dipole-dipole interactions tend to stabilize the plane of the spiral perpendicu-
lar to the propagation direction. This energy of stabilization is Kd = 106 ergs/cm3. However,
MnP has an exceptionally hard a-axis (K1 ~ 1.4 X 107 ergs/cm3),5 so that the spins of spiral (11)
are forced into the b-c plane. The form of this spiral, without anisotropy within the b-c plane,
is that shown in Fig. 9. This antiferromagnetic configuration requires that the initial suscepti-
bility xm(—ﬁ [l ;) D Yo remain nearly constant on passing through the antiferromagnetic < ferro-
magnetic transition. However, Xp and s must decrease abruptly on lowering the temperature

through the transition temperature.

[¢] 3-82-2964
/‘ ,p' ol o

¢
g X o Oe

|
4ot

A= w/2k
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Fig. 9. Projection (with displocements of A ond B sublottices exoggeroted)
of spiral (11) on the orthorhombic c-axis of MnP. Each arrow represents o
ferromognetic o-b plone. This spiral is modified by crystolline onisotropy
and applied magnetic fields.

Although these general features have been observed, a measured W (W 2.5 X 10-3 emu/

cm3 -oe shows that the simple spiral must be strongly perturbed. There aré) two factors that
can perturb the spiral: the large anisotropy forces in the b-c plane, and exchange striction.
For a uniform spiral, the turn angle between next-near-neighbor (001) planes is constant, and
exchange striction will not distort the spiral even though it strongly influences the wavelength
of the spiral. However, if anisotropy within the b-c plane perturbs the spiral, exchange stric-
tion can amplify the perturbation by inducing a shorter separation between next-near-neighbor
(001) planes of spins that support a larger turn angle, thus locally stabilizing the JAA inter-
action. Since the observed antiferromagnetic < ferromagnetic transition indicates that J}\A is
sensitive to interatomic separation (an observation that is compatible with 27 =~ RCMn), it is clear
that exchange striction must be introduced into the problem. This is done in Eq. (C-33) of
Appendix C by multiplying the exchange interaction J:‘XA by the factor (1 — ozen), where €, is a
local strain at the r1th site that is defined by Eq. (C-34) as

2
=i — — 1
€, = €, €OS (‘pn+2 wn) P and € asJAAMs /2Y
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Here ?, is the angle the moment of the nth (001) plane makes withthe direction of an applied field
_ﬁ, and Y is Young's modulus. Whereas the unperturbed spiral with turn angle © is described

by <p: = nO, the perturbed spiral is described by Eq. (C~-41):

¢, = no —ehA sin (2n®) — h sin (n6) )

where € = +1 if H || Cande=-1if A I b. This leads to the perturbed spiral shown in Fig. 10
and to the observed (xc - xb) if ¢ = 15 and €, = 0.015 for a © = 20°. This predicts an observable
modulation below 50°K of the c-axis spacing, a modulation that has a wavelength half as large

as that of an antiferromagnetic spiral propagating along the c-~axis.

2037, pE=TEl
2.00267

i¢¢f —g 0 ;W r

21r/k *l

c-AXIS —»

Fig. 10. Proposed spin configuration [distorted spiral (11)] for the antiferromagnetic
phase of MnP given 8 =n/8, ¢,=0.015. The tum angle is ¢, =nB — hp sin (2n6),
where ha ==2(x¢ = xp)/(xc * xp) = =0.5. This gives ¢, =0, +42,5° £73.6°,
+106.4°, £137.5°, £180° Both 6 and €., are temperature dependent.

The critical field strength Hy for an antiferromagnetic < ferromagnetic transition below
50°K is given by Eq. (C-~-42). Smce JAA

expansion coefficient, Hk must increase with decreasing temperature as found experimentally.

Comparison of Hk(T) with the temperature dependence of the c~axis parameter would give an

increases with decreasing temperature via the thermal

independent check on the parameter o
Finally, note that the temperature dependence of JI'XA will change the experimental para-

magnetic Curie constant from C to C =C/(1 —CW ) if the total ferromagnetic internal

expt
field can be represented by H + (Wo + WiT) M. Since JAA is an antiferromagnetic contribution
that decreases with increasing temperature, W1 > 0 and the spontaneous moment Paff obtained

from Ce may be too large.

xpt
2. VAs

It is clear from Fig.5 that VAs has no localized d electrons. Therefore, it is predicted
to have no atomic moment at 0°K. Further, if the Fermi level is at a minimum in the density-
of-~states curve, as indicated, dxm/dT > 0 initially. However, Mo must go through a maximum
and approach a Curie-Weiss law at high temperatures. The asymptotic paramagnetic Curie
temperature will be negative, reflecting occupied bonding states; and the molecular Curie con-

stant should be C =~ 3/8, the decrease from one reflecting spin-pairing in the bonding states.
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3. CrAs

For a bandwidth Aep greater than the splitting of the t, levels by the noncubic components

2g

of the ligand fields, localized I‘2 states are occupied, and there is an internal magnetic field

03
to induce a spontaneous atomic moment. Whereas the band states contain three electrons per
Toy and 1‘33 orbital in MnP, they contain only two electrons in CrAs. Therefore, extrapolation

of Eq. (1) calls for antiferromagnetic AB interactions in CrAs, ferromagnetic AB interactions in
MnP., With strong antiferromagnetic coupling, the band electrons tend to be spin-paired, and

the internal fields can only induce a localized spin density corresponding to a fraction f = 0.5 per
band electron. Therefore, from Fig. 6 it is predicted that CrAs is antiferromagnetic and has an

atomic moment

bop = (1 + 2f) kg ~ 2 g - (24)

It should also be noted that the AA interactions are antiferromagnetic and competitive, just as
in the case of MnP, so that the antiferromagnetic spin configuration may not be collinear. How-
ever, there is no ferromagnetic domain in exchange-parameter space in this case. Therefore,

it is predicted that CrAs is not metamagnetic.

4, FeP

The band structure of FeP should be similar to that of MnP shown in Fig. 4. Its magnetic
properties depend critically upon the relative stabilities of the EOi(” and 1"023(1) levels. If the

Eoi(” is the more stable, then the atomic moment is
bpe ¥ 420 ) pg ~ 20, (25)

where n,_ is the number of holes per iron atom in the band states. This moment is considerably

larger t}};an the experimental moment FRe = 0.36 HB‘ZS Although there was an apparent lack of

saturation, even at 25,000 gauss, for the powder specimens investigated, the observed moment
indicates that the 1‘023(1) level is the more stable. Because the l"023(;) states are not completely
filled, there is a sufficient density of states at the Fermi surface for spontaneous magnetization

to occur. The spin-only contribution to the atomic moment is then 1 kg and
PPe = (1 =Y ¢ : (26)
B

Not only the AB but also the c-axis AA interactions (JAA) are ferromagnetic. This increases
considerably the ferromagretic domain in interaction-parameter space, and ferromagnetism

can be predicted with confidence.

IV. CONCLUSIONS

Compounds with the B31 and B20 structure appear to be representative of a large class of
compounds in which distortions from a close-packed anion sublattice to lower symmetry are
induced by metal-metal bonding via outer d electrons.

It is meaningful to introduce a critical metal-metal separation Rc such that for R < Rc the
overlapping d orbitals of neighboring cations must be described by collective, crystalline states,
whereas for R > Rc they may be described by localized states,

Distortions due to metal-metal bonding are most probable if R = Rc in the undistorted con-

figuration.
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If localized and collective d electrons are simultaneously present, it is possible to obtain
a qualitative energy diagram by first constructing the ligand-field diagram for localized states
and then superimposing a collective-electron character on those states whose symmetry in-
dicates overlap with near neighbors at an R < Rc‘ Because the parameters of ligand-field
theory cannot now be adequately calculated from first principles, details of the energy-band
scheme depend upon empirical information.

Sharp predictions of Pauli paramagnetism, antiferromagnetism, metamagnetism, and fer-
romagnetism as a function of d-electron/cation ratio have been made for the B31 compounds,
and these predictions are in agreement with experiment where data are available. Therefore,
magnetic coupling via narrow-band (R < Rc) states appears to have the same sign as would be
predicted from superexchange theory were the states localized (R > Rc).

The proposed energy scheme permits interpretation of the spin-only contribution to the

atomic moment and the sign of the orbital contribution.
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APPENDIX A

In order to simultaneously obtain an independent estimate of the critical separation RC of
Eq. (15) and to extend it to the 4d and 5d compounds, it is assumed that the ratio of the equi-
librium separation for bonding via overlapping cationic states equals the ratio of the mean radii
of the overlapping wave functions. To make use of this assumption, it is necessary to have a
suitable description of the overlapping cationic states. In a solid, these are modified by cova-
lence effects, which admix anion states and therefore increase the mean radial extension. Since
the cationic states of interest are directed toward other cations and away from anions, these
covalency effects are probably small, except for a special case: Cations with abnormally large
charge in crystals where 7 bonding and ¢ bonding do not compete for the same anion orbitals
may have larger cation-directed orbitals because of abnormally strong = bonding. This situ-
ation is found, for example, in rutile and ReO3 structure. For other cases, it should be possi-
ble to use screened, hydrogenic wave functions. However, this introduces a factor that favors
larger R, in Eq. (13) for crystals with greater covalency.

The assumption, then, leads to the relation
n'g',ond
RO /RO ~<rn'l'>/<rnl> » (A"i)

where the mean atomic radius of an electron with quantum numbers n,{ is given by

!

na I
_ 2 _ o 1,n+e

I S‘rml\pl dr = <27 “‘>_1‘ ) (A-2)
“eff/ "0,n+t

! " 24+ke2 2041 2

I n+,=§ P exp[—p] (L., (P]7dp . (A-3)

B (o]

The integrals in Eq. (A-3) are solved by standard procedures with the aid of the generating func-

tion for the Laguerre polynomials, and

(rpp = r(Bohn)[(3n - )(3n— ¢ + 1)/4n%) (A-4)
where
r_(Bohr) = n’(a_/2.) a_=f/ne?=0.534 (A-5)
n o’ Teff : o ' ’
Further, the atomic eigenvalues are
_ 4, 2 nt 2
Enf == (ZHre /h )(Zeff/n) (A-6)

so that substitution of Egs. (A-4), (A-5), and (A-6) into (A-1) gives

E 1
o pnt ng\é n 3n'(3n' + 1) _
Sl 5 (Er'lo) G B3n—nB3n—12+1) (A-7)

where R is the crystalline interatomic separation, which is taken to be the equilibrium sepa-
ration for the broad-band electrons with quantum numbers n',¢' = 0. Since partially filled d or
f shells occur only where Enf x En'O‘ it follows that, for the rare-earth and actinide elements
or the transition elements,
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1
(EmZ/En,O)2 I R (A-8)

A correction must be estimated for the tendency of the d and f shells to become more tightly
bound (higher Z:f'fl) as the atomic number increases across any row of the Periodic Table.

Since it has the form

AR = —a(Z - Z a>0 ; (A-9)

U

it is included in the estimate for R2 in Eq. (13).
To obtain numerical estimates for R:l, it is noted that 4f electrons are localized, whereas
the 4d electrons of metallic palladium give rise to Pauli paramagnetism, characteristic of col-

lective electrons. This means that from Eqs. (A-7) and (A-8) and the definition of Rc'

R_ _(rare-earth) ~ 2.53 R4f > R4f s
nn o c

R (Bl aVZ R P 8247 dep g
nnn nn o] C

This leads to the conclusion that for metals, R1 of Eq. (13) is

B s En s | (A-10)
1 o
where, from Eaq. (A-7),
nd (3n — 2)(3n — 1)

R0 ~ R (A-11)

nn 3n(3n + 4)

From a knowledge of the lattice parameters of Ni, Pd and Pt, it follows that for metals at room

temperature,

3d R 3d 3d
Rc f=3.06A—R2 (Z—ZTi—())—R3 AlJ(T+ 1)),

4d o 4d 4d
RC x=3.94A—R2 (Z—er—6)—R3 AlJJ + 1)),
5d 2 5d 5d
RC x=4.42A—R2 (Z—ZHf—é)—R3 AlJ(T + 1)) . (A-12)
From a knowledge of ionic radii,“z) it is estimated that
3d 4d 5d 2
RZ zRZ zRZ ~0,03A . (A-13)
This implies that
R:dszd +0.884 (A-14)
B9 sh-d s 1,968
c c

Also note that comparison of Eq. (15) with (A-12) shows

Rc(metals) ] Rc(oxides) + 0.2 1?& )

which is a reassuring check on the adequacy of Eq. (A-14).
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APPENDIX B

The compound FeSi hasthe B20 structure of Fig. 3, and each iron atom has six near-neighbor
irons at 2.75 A < RC(Fe). The symmetry about a given iron atom is trigonal, and the d-like or-
bital directed along the trigonal axis is rendered relatively unstable by a silicon nearest neighbor
at 2.29 A Given a Fermi level located between two broad bands, each iron has four d-like elec-
trons. Since the trigonal-axis orbital is relatively unstable, these occupy collective-electron
states. The cation sublattice consists of two arrays such that an atom of one array has only
near neighbors belonging to the other array. Four overlapping orbitals per iron atom make the
band of collective-electron states, so that at absolute zero bonding states are occupied, anti-
bonding states empty, and the Fermi level is at a minimum in the density-of-states curve.
Kriessman and Callen(zg) have shown that dxm/dT > 0 for collective electrons in such a case.
However, X cannot increase indefinitely with T; in fzact, > should approach a Curie-Weiss
law at hightemperatures. The Curie constant obtained fromthe asymptoteto the high-temperature
Curie-Weiss curve will correspond to an atomic spin density of ~4 per collective electron, the
effective spin magnitude being reduced by spin-pairing within the bonding states. Also, the
paramagnetic Curie temperature would be negative, reflecting the antiparallel correlations
within the bonding states. Finally, there would be no localized atomic moment at 0°K, since all
the occupied states are collective. The situation should be analogous to that predicted for VAs.

(39) (25 have measured the magnetic susceptibility of FeSi as a function

Benoit and others
of temperature. Although the results are sensitive to sample preparation, so that the details
of the two investigations are different, each found a broad maximum in Ny V8 T near 200°C, a
negative paramagnetic Curie temperature, and a molar Curie constant between 0.64 and 0.83.
Although this might be interpreted to indicate antiferromagnetism, Watanabe, Yamamoto and
Ito(zs) found no coherent antiferromagnetic intensity in neutron diffraction either at room tem-
perature or at liquid-nitrogen temperature. Therefore, localized atomic moments are apparently
not present, at least at low temperature.

If cation-cation bonding is responsible for the B20 structure, no additional bond formation
can occur below 200°C, so that the situation is to be contrasted with the susceptibility changes
occurring at the first-order phase transitions of VO2 or VZO3.(1) The neutron data did not indi-

cate any pronounced cation shifting in FeSi on passing through 200°C.
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APPENDIX C

To obtain the ground-state spin configuration for MnP as a function of the relative strengths
of the various competitive exchange interactions, use is made of the Lyons-Kaplan3 formalism

for this type of problem. If only exchange energy is important, the Hamiltonian is

— —

H =- ) J 5 8 , (C-1)

nyv,mp ny mp
ny,mp

which is subject to the strong constraint

—

-§ =88 (C-2)
ny ny 14

By the Luttinger-Tisza31 theorem, if the solution to the weak constraint problem also satisfies
the strong constraints, then the weak-constraint solution is the solution for the strong-constraint

problem. The weak constraint is

Z §HV ' nv

n,v

w0y
i
2
wn

where N is the number of manganese atoms. With the two-subarray model of Fig. 7 for the cat-
ion sublattice, the subscript v refers to the two subarrays A and B, and a lattice vector is

defined as

nv Rn te, - (C-3)

Since the exchange interactions are reciprocal,

Jnu,mp = Jup(Rm = Rn) = Jpv(Rn = Rm) : (C-4)
The Fourier transforms for the spin vectors are
S, - Y exp [iK - R QIEV R Y exp[iK - R Q__H , (C-5)
K K
and Eq. (C-1) yields an energy density
€=E/N=20 0 L Q% Q. ,
i kv kp
E P
where
= - = = A e e )
va(k) Z exp [ik (er1 an)] JVp(Rm Rn) Luv(k) : (C-6)
R_-R
m n
The weak constraint becomes
- — 2
D DR B =28 (C-7)
N kv kv
K 14

and by the method of Lagrange multipliers,
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2 YL (K Q* =-AQ, (C-8)
L s Kp Ky
)
so that
— — 2
e=-2 0@ - Q, =-aast . (C-9)
= B ky kv

k

Therefore, the ground-state configuration is that which maximizes A, where A is defined by

Eq.(C-8). Given the two subarrays A and B, Eq.(C-8) gives

L

AaA  taB\ [¢1 ; ¥4
" == : (C-10)
Lap  DsB @2 ?2
A . TN _ . * .
_vzhere uie k_l.as been made of the relation: Lyp(k) = LBA = Lpu(k) = LAB' Further, since
R +17=R , it follows immediately from (C-6) that
mA mB
Lam = Lgp= =4
Also, LAB = —B exp[iy], where B is real and positive, so that Eq. (C~10) has the eigenfunctions
@, 15 ¢, = exp [ig ] with the eigenvalues
A (a+pg) ifo=-v ,
2l i
(a—-B) ifo=m—-vy
From Eq.(C-8), this means that @, = @Q_ exp[ig]. Choose
kB
ral Fal
Q, =3x+t 5y HE=0)
kA
and Eq. (C-5) gives
4 = 0
S, =xcosk* R ~+ysink - R 5
knA A A
(C-12)
= 25 = o o o
S = x cos(k~Rn +(p)+ysin(k~Rn + @) s
kn B B
B
and
S. .S, =8 .8, =1 . (C-13)
kn , kn knB knp

This shows that the solution to the weak-constraint problem satisfies the strong-constraint prob-
lem; and the many-body problem reduces to maximizing A with respect to K, the wave vector
for a flat spiral, where

A
=L, ¥ |LAB| ) (C-14)
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From Fig. 7, it follows that
-Lyg* JAB{exp lik - p,] +explik - p,]} + J'AB{exp lik - py] + explik - p,]}

= 2J g explik - (—& + Af)] cosK - 1 + 27 o exp[iK - AF] cosk -

AB g
and
—LAA=—ZJAA{cosE- (E+;+E} + cosk - (E—ﬁ—-f) + cosk - (—E+;f—§)
+cosK - (—E—;f+ ?)}—ZJ:AA cos(ZE- ;)’)
Let
xzcosk- ¢ yscosf(.-;p. , mzk-t .,
qEJ"AB/JAB=1+a>1 : q'sJAA/JAB N Ga= "AA/JAB . (C-15)

Then from (C-14) the problem is to maximize f(f{), where
BB = A/ = (v +q%28 + 2axyn) 2 —agixyz - g2yt - 1) (C-16)

This problem has several solutions:

Case 1: sinE- _{= sinf{- ;)’= sinE- _f= 0, and xyz > 0. Here x =21, y= %1, z = +1 and
f(1, 1, 1) = f(1, T, 1) = f( 1, 1, 1) = f(T, I, 1). This does not represent a real degeneracy, however.

Consider (1, 1, 1). Here

)

I(.-;)’=0 B E-E=I€-E=1r , and -lﬂmn=f(’-(lz+m;+n_§’)=2w

since £ = n = 1 on going to a near neighbor. Thus near-neighbor interactions are ferromagnetic.
For Case 1,

f(1,1,1) =1+q—4q9'—q" . (C-17)
Case 2: x=%1, y=+1, z = +1, and xyz < 0. In this case,
f(T, 1,1) = a +4q' — q"

’

where the following parametric definitions hold:
as=q—-1 , B=q/4q = J:AB/4JAA , v =qq"/2q' = J:ABJ:AA/ZJABJAA . (C-18)
Case 3: x=#1, y=#%1, 2 = :H/q, and xyz > 0.

f(1,1,1/q)=2-p"1—q" . (C-19)

Case 4: x==*1, y = %1, z = #1/q, and xyz < 0.

f1,1,1/q =g 1 —y) +q" . (C-20)
Case 5: x=#1, y =48, z = £(8/q) (1 + 2y), and xyz < 0.

f1,8,(—B8/q) (1 + 2¥)] =B(1 + 3y) +q" . (C-21)
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Case 6: x=0, y = %1, and z = 0.

f(0,1,0) =1 —-q" (C-22)

Case 7: x = #(1 + q2 —32)/2q, y =1, z = +1, and xyz > 0.
2 2 2 2. 2 2 2

flit1+q° —87)/2q,1,1]=(2 + 29" —8") / —d(d dng~ B “N2s —g0 . (C-23)

Case 8: x = %(1 + q2 —BZ)/Zq, y =%1, z = 1, and xyz < 0.
2 2 = 2 2

flit+q°—87)/2q,1,1]1= (1 +q" +8°)/28 — " (C-24)
Case 9: —1<x<£1, y=0, z =1,

f(x,0,1) =q+q" (C-25)

2 2 2
Case 10: x = xy(1+ 2y)/2q, y~ =(q“ —=B87)/2y <1, z = #1, and xyz < 0.
1 = " 2 2500

fly(1 + 2y)/2q,y,1] =B +q" +(q" —g") /48y (C-26)

Case 11: x= %1, y = |8 —q|/2y, z = #1, and xz > 0.
2

f(1, |8 ~al/2v,1) = q + q" + (8 — q)°/4BY (C-27)
Case 12: x =1, y = (8 + q)/2y, z = #1, and xz < 0.

f(1,(8 +q)/2y,1]=q+q" + (8 +q) (8 — 3Q)/48Y (C-28)
Case 13: x=x, y=12z = 0.

f(x, 0,0) = q" (C-29)
Case 14: x=x, y=8, z =0.

f(x,8,0) =p(1 —v) +q" (C-30)
Case 15: x = i%(i + Zy)i/z, y=33, z = (1 + 2y)1/2/q, and xyz < 0.

i+ 2,0, a1+ 2¥2/q1= 25 4 g0 (C-31)

In the case of MnP, it is estimated that 0 £ @ < 1/2. Therefore, Fig.8 shows the magnetic

phase diagram, obtained by maximizing f(E) from Egs.(C-17) through (C-31), for ¢ = 0 and

a = 1/2.

If J}\A = J:‘\A(T) increases with decreasing temperature and the other exchange parameters

are relatively insensitive to temperature, the y increases with decreasing temperature. There-

fore, any antiferromagnetic < ferromagnetic transition as a function of temperature indicates

that the antiferromagnetic phase corresponds to Case 11. Case 11 corresponds to a flat spiral

propagating along the orthorhombic c-axis. Orthorhombic (001) planes are ferromagnetic, and

the turn angle between successive (001) planes is eo, where

cos®_ = (8 - q)/2y = Jag — 4JAA)/4JAA

The plane in which the spins lie is determined by the crystalline anisotropy.

pendicular to the K vector. For a hard a-axis, the spins lie in the b-c plane.

(C-32)

It need not lie per-

Since spins within (001) planes remain parallel in the presence of external and anisotropy

fields, Eq.(C-32) shows that calculation of low-field susceptibilities and of the critical field Hy
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for a spiral < ferromagnetic ‘ransformation can be done via a simpler problem, viz., one where
(001) planes couple ferromagnetically to near-neighbor (001) planes by an effective exchange
parameter J = (JAB - 4JAA) and antiferromagnetically to next-near-neighbor (001) planes by

Jy=—Jpat—age ) wheree =[(R_,—R)-(R Ro,n)]/?_n is the strain induced by ex-

o,nt2
change striction, and ag is a nondimensional parameter. The factor (1 — assn) must be intro-
duced if the magnitude of J}%A is sufficiently sensitive to the cation-cation separation 27 that its
variation with temperature can induce an antiferromagnetic = ferromagnetic transition. If ¢,

is the angle the moment of the nth (001) plane makes with the direction of an H applied,

_ 2
B~ Mg Z [Jeos{o g —on) ~Tpplt —age ) coslo o —e)]

n

B 2
EK— ZKsm (<pn—¢7H) g

n
Ey= —) HM_coseo_
n
E, = ) Ye? (C-33)
el n ’
n

where ¢, is the angle between the applied field H and the c-axis and Y is Young's modulus.

Minimization of the total energy with respect to € gives

€€, cos(</7n+2 - <pn) P (C-34)

where €, = asJAAMSZ/ZY. If H = K =0, the magnetic spiral remains simple and the exchange

striction is uniform. In this case,
- - i o _

¢ H=K=0)=z¢ =no , (C-35)

and minimization of Eex with respect to © yields
—_ = ' = — ' -

cos © (1 - 2a e  cos26) J/435 A Jag — 4aaV/4Ths - (C-36)

For age, << 1, this reduces to
2
cos 8 = cos eo [1+ Zasso(Z cos eo -1 , (C-37)

where 80 is defined by Eq.(C-32). Thus, if eo > r/4, exchange striction increases the turn
angle (6 > 80), and if 80 < r/4, it decreases the turn angle (6 < eo).
If H << MSJ and k << MSZJ, it is possible to use perturbation theory, and

o=@ +wn=n8+wn : (C-38)
Since (wn+j — zpn) << 1, there are the relations:

sin(wnﬂ. ~¢,) —sin(g - <pn_j) ~ cos (jO) (zpmj -2y + zpn_j) :

1 ; . .
3 [sin 2(<pn+j e q)n) — sin 2(<pn - @ j)] =~ cos (2j8) (¢n+j — Zzpn + zpn_j)

n-
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Substitution of these relations into the condition 9E/8 P 1= 0 gives

(H/MS) sin (n©) + (eK/MSZ) sin (2n®8) = J cos G(z,bm_1 — Zzprl + zpn_i)

—JAA(cos 20r— o € cos 40) (zpm_2 — Zzpn + zpn_z) )
where
e=+1 if H|lc ., e=-1 it H|lp . (C-39)
Now let
ivn iv'n

zpn = Ee + E'e” $ Crek ;

(C-40)

and solutions are obtained if

E=-ef2i=e*/2i , E'=e'/2i=€e'"/2i , wv=0 , v =20
If Eq.(C-36) is also used, Egq.(C-38) becomes
G S ne —ehA sin (2n©) — hsin (n®) 5 (C-41)

where

2 . 4 1 2 4
h, _(ZK/MS)/{64JAAG 4= 5 e /0 )—Taseo]} ,

h = (H/MS)/{SJAAGLI (1- %(aseo/ez) = % age )

For K = @ = 0, this solution reduces to that derived by Enz32 via a continuum model.

The critical field Hk is obtained by setting the total energy of spiral (14) with H = 0 equal
to the total energy for the ferromagnetic phase H = Hk' This gives

I R 2. 32 WO N JU [
Hk/MS = S Iha0 1+ 2(aseo/e ) @ 61+ (K/MS) (B0 @y~ + e

3 > (C-42)

it

Ifﬁ”g @y = 0and e = +14; ifﬁ”g, 2 i r/2 and € = —1. Therefore, the difference in Hk for
ﬁ”gand H||g is

Hl e il = (K/MS) —h,M_ . (C-43)

The magnetic moment is given by

. ~tpe-1
M/MS-<cos<pn> ~ 3 h(1 - 3 ¢€h,)
so that the magnetic susceptibility is
= = s oot 4 2, _ 26
x=M/H=(1-5 ehA)/{ioJAAe M- zlae /67 -3 aseo]} E (C-44)

and

) 4 2, 26

e == Ay oy - A (2K Xe * Xy 1_g(aseo/e)_-i_éaseo

Xe TXp T T2 MaXe TX) T T gy — 2
S

(C-45)
1 2 4
1_E(a'seo/e V-3 oage,

There are two contributions to the total anisotropy constant K, a purely crystalline term

Kc and a dipole-dipole term Kd. Huber and Ridgley5 report a ZK/MS2 = 40 for the ferromagnetic
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phase just above the transition. The dipole-dipole term arises from the fact that large crystal-
line anisotropy (K1 =1.4X 107 ergs/cm3 is the anisotropy constant for the a-c plane in the ferro-
magnetic phases) forces the plane of the spiral to be parallel to the propagation direction for the
spiral. In this configuration, the component of the magnetization along the propagation direction
(c-axis) changes sign every half wavelength, so that within each half wavelength there are de-
magnetizing fields equivalent to 8tM', where the magnetization is roughly M!' = Ms<sin 6):; =
2Ms/1r. Therefore, —ZKd/MS2 ~ 16, If the crystalline anisotropy of the ferromagnetic phase is

extrapolated into the antiferromagnetic phase, it follows that in the antiferromagnetic phase
2
ZK/MS =~ 20 . (C-46)

It should be noted that the large Kd tends to stabilize simple spirals into a configuration in
which the plane of the spiral is perpendicular to the propagation vector k. It is only in the pres-
ence of large crystalline anisotropies that the plane of the spiral can contain the propagation
vector to give a "cycloidal" spiral.

Experimentally,5 (1/2) (x, +xp) &5 % 1073 emu/cm3—oe. Therefore, if 2¢ =0, Egs.(C-45)
and (C-46) give

-4 3
B — Xy > =10 emu/cm” -oe

which is at least an order of magnitude smaller and of opposite sign than the measured5

x¢— xb)expt

important role. In order to obtain both the correct sign and magnitude for p P Xy, it is neces-

~ 2.5 X 10_3 emu/cm3-oe. Therefore, it appears that exchange striction plays an

sary to have

4 1 2 26 4 2
(1_?as€o)>f(as€o/e boa flsgs eie )S g(aseo/e )

and

4 1 2
1= 5 By, = T(OISGO/e )
Given a © = /9 = 20°, the last requirement leads to an @ ~ 15 and & ™ 0.015 if @€ ™ aszio-z.
These numbers are reasonable. They lead to the prediction of a measurable modulation of the
c-axis spacing that has half the wavelength of the spiral. This prediction can be checked by a

combination of neutron-diffraction and x-ray diffraction experiments.
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