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I.     A SUMMARY OF  AN ALGORITHM PROIOSED BY A.  J.   FEDF.ROW1CZ FCH THE FIXED 
•v   COST LINEAR PROCHUMMING PROBLEM y 

In hie  paper,  Federowicz projoaes an algorithm i'or solving the ''fixed 

cost linear progranming problem" where the problem is   the same as in the 

linear programming problem except that in the objective function there is 

a fixed cost associated vd.th turning a variable on.     It wi 3.1 ho tne purpose 

of this  paper to summarize  this method and another one solving a closely 

related problem end to compai«  the two,     W. tat ita jufa   thet Federowicz'a 
So 

problem is  a spacial case of the other problem and thuo we ahell present j 

later onr a generalization o/ this problem«*-^1   bs<^e^<JJiILJ^ Ö 

A.    The problem 

The first problem conaicltared by Federowicz was: 
r n 

Minimize ^       c.x.      ♦27"    ci* 
J-l      J  J J-l 

n 
Subject to ^___ a. .x. > b. i •• l,...a 

J-l    ^J J "    x 

6.-0      if    x. - 0    J - l,...n 

6-1      if x. > 0      J - l,...n 

x. > 0 J - 1,...n 

This  problem has applications with the problem of scheduling which of 

a certain number of faculties should be turned on and how much,  if a fixed 

charge is to be paid for turning them on,  and other applications   (see  [1] 

p» 10). 

B .    The Method - A General Description 

First  consider the domain where the variables  are defined,  i.e., 

x. > 0  J-l,2,o..n.    We shall call a subset of the domain a subset that has 
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the property that x.-O or x>0    J-1,2,...n.     Thus  (xjx^^ - O.Xj ■ 0, x_,...x X)} 

io a subset.    T\ow consider the  function    C(x)  - Z/3 <x ** JECAX*    defined on 

each of the subsets.     It is linear and convex there and hence we can use the 

elmplex method on eaoh of the 2    subsets and  take tin? minimum of all of these. 

This,   however,  is too lengthy and we must find a method that vill solve the 

problem wlthcut necensarlly looking at all of  the subsets.     To  this end,  con- 

eider the union of a certain number of the subsets such that the union is 

convex-    We will call this a group.    Now consider just th« variables    x. 

such that    x, > 0    or    x, > 0,   i.e.,   the one» that ax« definitely turned on 

end the ones  that may or may not be turned on.    Now consider    C(x)    and  the 

coristraints where all the other    x, " 0,  and consider this problem solved by 

the uliuplex method,  disregarding tne effect of the fixed costs.     Now if we add 

Just the fixed costs of ohose  x. definitely turned on we obtain a lower bound 

on the final  minimum,  or. this  group, because the only way we can get a lower 

coot is to turn off one of the variables    x. > 0    and not incur its fixed 

co6tM   tut we never add it,  thus  it is a lower bound.    Or, we can think of 

the function,    C{x) «    a,x    *  f(x)    where    f(x)    is  just the sum of the 

fixed charge» definitely on,   aa a lower bounding function on    C(x)    in the 

groupr     Thus the algorithm is aa follows:    First we consider the whole space 

x. > 0    as a group,  then obtain a lower bound and use  th? actual value ob- 

tained as an upp^r bound on the  final minimum«    We then remove the subset 

found by the »implex algorithm where the minimum occurs of the bounding function 

and partition the rest of the group..    We find a lower bound and a feasible 

solution on each of theeis and take the one that has the lowest lower bound. 

We then remove the subset ao before and continue on,each time  partitioning 

the group that has the 1 west, lower bound until we  finally have a lower bound 
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on the reoalnlng groups   (the whole set minus  the  removed subsets) that 

exceeäs tlie value of one of the  removed subsets.     Then this removed subset 

with the lowest minimum is  tne solution since all the removed subsets have 

a greater minimum and we  have a lower bound that exceeds this mlnlimm for 

the groups that are left. 

C.    The Algorithm Used 
n n 

Let    C[X] ■ ^s       c.x. ♦ ^i     T* . 6.    and   X    is some convex of the 
i'l        J J  j-l   i    i 

2n subspaces, and let C(X) • Z.   c.x. ♦ f(x) where f(x) is the sum of 
J"»l J J 

the fixed costs of the variables definitely turned on. Let S be a rule 

for determining how to subtract one of the 2 subsets Tix>m some group of 

them and dividing the remainder into groups. 

Let X..-, be the set of all the 2n subsets and X a particular group 

of the 2  subssts* 

The algorithm is as follows: 

1. Kinimize C(Xy^) by the simplex method, let the subset on which 

r this occurs be    X 

2o    Set    p » 1, X    - X      ,   r - O. 
TP 

3.     Apply    S     to    X    - x". 
T      P 

^.    Let    X      - X    1- x"      ♦ x" ^..a" a p        r*l        r*2        r*n 

5      Set    I = l,2,...n 

6. Hinimize    C[X    T] by the Simplex Method,  let the subset en which 

this occurs be    X    _ 

7. Set    r-r+n     ,p"p+l 
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8.     Find min 
TML,< ..n 

imln C   [x^])    -    C.j.    min 

V.    Find min (min C[x^]}  - C  , min where    k    exoludt«   previous    C    min. 

10. If C        min >   CT, min then we are done and    C...  min ie  the answer. 

11. Otherwiee,   let the    k    from which    C  , min occurred be denoted by 

k .    Let    X 
P *, \    ' \ 

P P P 

12.    Go to step 3- 

It can easily be seen that  the algorithm will terminate because there 

are only a finite number of subsets to subtract,   and eventually they wilL all 

be looked at if & solution is not found before.    This is a specialization of 

a more general algorithm given by Federowics,  pp.   65-67 in tlJ.     The follow- 

ing example is the ons worked out by Federowics in [1], 

D^    Kxaxajle 

la. example will serve to illustrate and clarify whet has been said.     The 

problem, is to minimize    C(x)  - 1000^ ♦ 1000x2 ♦ lOCCQc, - 300«^ ♦ 700i2 *  4Ü06_ 

where    6.-0    if    x. - 0 

- 1    if    x, > 0 
j 

subject to x. > 0      J - 1,  2,  3 

3L    +    2/3   X2   '     «^   >   1 

1/2 Xj * Xg ♦  2/3 x3 > 1 

We may now diviatt the space into 8 subsets where the cost function and 

the constraints are  linear..     Thus one can solve each of these  problems in 

each of the 2    or more generally 2    subsets.    They are: 
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1. x-   - x™ - JC^ - 0 U.    Xj^, x^O, x_  - 0 

2. x^O,  x2 - X2 - 0 5-    Xj70, x^ - ^ ' 0 

3. XgX),  x1 - Xj - 0        6.    x1, x370,  1/2 - 0 

XJJ,  x370, Xj^ - 0 

8. ■a« x370 

Snumeratlor. of all of these subsets ia as  follows: 

Subset 

1 

2 

3 

L 

5 

6 

7 

6 

KiniiHuni Point 

No solution 

(2,0,0) 

(0.3/2,0) 

(1/2,3A,0) 

(0,0,3/2) 

(0,0,3/2) 

(0,3/5,3/5) 

(0,3/5,3/5) 

Minimum of C(x) 

2300 

2250 

2250 

1900 

2200 

2300 

2600 

It will be noticed   that on subsets    6    and    8    x.  • 0 whereas  this is 

outside ths region of definition.     This is remedied by letting    x.     be arbi- 

trarily small but positive.    Thus we see  that we may come as close  to the 

specified cost  as we wish.    In other words, this cost represents the greatest, 

lower bound of all the costs in that region,    It will also be noticed that 

any such subsets cannot have the solution because by turning off the variable 

that becomes arbitrarily small we do not incur« its fixed cost,  and the cost 

Is thus  smaller in some other region. 

from the  table one can E.«e   >hat the minltmmi ia 1900 and it occurs at 

(0,0,3/2).    To find this,  however, ws had to look at all of the 2n - 2^ - 8 

subsets,  which Is much too laborious.    What we would like is a method which 

looks at far fever subeete and can tell it is done without necessarily look- 

ing at them all. 
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the 
Let us  first  denote a group o^/c subsets by  B       and    B      vdH represent 

(xjx^ > 0,  Xg > 0, 3^ > 0}.    CB    (x) in general will be -   «gr   ex    ♦  f(x) 

where    x   B      and  f(x1  is  the sum of only those fixed costs definitely turned 

on.     Thus,     CB  (x) - 10C0(x1 ♦ x2 ♦ x,).     Also it is noted that C(x)>CB  (x) 

foi    x    B      which  is  the union of all of the 8 subsets.    Therefore the minl- o 

mum of    CQ      may serve  as a lover bound on the minimum of    C(x).     The mini- 
o 

mum of    C_      may be found by the simplex method,   and we  find it is  at 
Bo 

(0,  3/5,  3/5) and    Cg  (»„^ >  • 1200 and C(xmin^    )  - 2300.    We now remove 

set 7 from consideration and divide the remaining subset into  throe  groups, 

defined as  follows: 

Set 
{los • Set Lower Bounding Function 

1,2,5,6      B^ix x1>p,x2>p,x3>p} CB  (x)-1000(x1  ♦ x^) 

3.4 B2-{x Xj^äO.x^.x^} CB  (x)-1000(x1 * x^) * 700 

8 Bj-ix Xj^.x^^X)} CB  (x)-1000(x1 * i^ * x^) * UOO 

The rule S for choosing the B will be discussed later. It can be 

seen that It has a great deal to do with the success of the algorithm. 

now using the simplex algorithm on these  three  functions we find: 

Bounding      Minumsn 
Function Point 

Kin C,, (X)               C(X) where GQ  (x) is minimized 
a                                                            u n n   

<% 

UB. 

(0,0,3/2) 1500 

(1/2,3/4,0) 1950 

(0,3/5,3/5) 2600 

1900 

2250 

2600 
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Now we eae since the auLrumum of    ?„ »  co  >  C-      is 15Ü0 we have now 
Bl       B2       B3 

a new lower bound on the minirm^c,     C(x)    on the  subsets 1,2,*..6,6.     Also 

.ve have a new value  for    C(x)     of 1900,  which was betxer than before.     Now 

since Uiis minimum occurred on subset 5 we  remove it  from    B      and look at 

the rest,  i.e.,  1,2,  and 6.    ' e divide them as follows: 

Set 
Noa. bet 

1,2        B4 -  {x|x1>p,x2 - 0,x3 - 0} 

6 B5 - CStjxj^O,^ - 0,x3>O} 

And solving each of these we finds 

Lower Bounding Function 

CB (x)  - 1000x1 

Cn (x)  - I000(x1   ♦ x,) + 700 B5 1      "3 

Bounding 
Function 

Kin. 
Pt. 

Min. of C„ 
Bi 

Corresponding 
Min C(x) 

CB (x) (2,0,0) 2000 2300 

Cn (x) 
B5 

(0,0,3/2) ??00 2200 

Now we find that the relnimuM of C0  ,  GD ,  Cn .,  C^      is 1950,   and therefore 
B2  B3 h      B5 

this may serve as a lower bound on the minimum of C(x) on 1,2,3,4,6,8. 

Ihe best C(x) found, however, was 1900 on subset 5.  Therefore, we may 

conclude that (0,0,3/2), the Mini— point found on 5, is the minimum of 

C(x) since C(x)>1950 on 1,2,3*4,6,8 and C(x)>2300 on subset 7. 

It should be observed that on each of the 2 subsets C(x) is linear 

and convex and thus the problem may be solved completely on any one of them. 

However, on a group of subsets such as the 6  one can only bound the C(x) 

with a linear convex function, which allows us to use the simplex algorithm. 



Aleo we note that   the adquence 3.200,1500,1V5C may be  identified with 

Cp    min and the sequence 2300,1900,1900    as C_    min In section C.    Also, 

the CB (xj    with    CtX^]    and/i-Bo. 

E•     Reduction of Computationa 

In the precedlrg example it will be noted that six times  a function 

had to be minimized by the  simplex method.    This does not seeia like much 

of an Improvement over the  original eight times.    However, we  need not 

start from scratch each time,     '/.hen a minimum Is found,   to go  to a different 

region we  need only ellminats the appropriate basic element by pivoting on 

its row and then removing its column.-     An example will illustrate and 

clarify.     The original tableau for the problem is: 

Faculty 1 2 3        4 5 

Fixed Costs 300 TOO 400        0 0 

Unit Coats 1000 1000 10CÜ        0 0 

Requirements Matrix 

1 1 2/3 1        -1 0 

1 1/2 i 2/3         0 -1 

solving  this we  find- 

Faculty 1 4 5 

Fixed Costs 300 0 00 

Unit Costs 1000 0 0 

Faculty    Fixed-Cost Unit Costts    Amount Matrix 

3 400 1000 3/5 6/5 -9/5 6/5 

2 700 1000 3/5 -3/10 6/5 -9/5 

Karg inal Costs -100 -600 -600 
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If we wish uow to  find mln  [C,,   (x)j we must ellndnate faculty 2 
Bl 

from the  baa is and minimize the result-    Only A can be used to eliminate 

2,  thus we must pivot on 6/5 and forget about that column.     The result is; 

Faculty 1 5 

Fixed Costs 300 C 

Unit Coets 

ount 

1000 

Matrix 

0 

3/2 3A -3/2 

1/2 -lA -3/2 

tal Costs -250 -1500 

Faculty    Fixed Costs    Unit Costs 

3 W0 1000 

A 0 0 

F-     The Set Subtractions  Problem 

Previously it was stated that there was a rule   (S) for determining 

how to  break up the groups of subsets into smaller groups and Just one of 

the subsets.     The  rule described by Federowica will new be presented 

(eae pp.  68-71 in [1])^    First,  however,  we will need some new   ■otation. 

«fe will aenots a group of subsets by a series of B^'s and E^'s  "multiplied' 

tcgetiier.    The presence of B.  will indicate x.  is definitely on.    The 

presence of B.   will indicate x.   ■ 0.    If neither is  printed it will mean 

XjX).     Thus,   B1 B2 B      is  the subset 4,  3(^,X^>0,X. - 0.    B1 B^    is  the 

union of subsets 4 and 2,  i.e., xl>0,  x^O,  x. - 0,  etc.    Thus we can see 

that any two different representations by this notation represents two 

diff«rent convex groups of subsets,  and conversely. 

Kow it can oe observed with this notation that there are a number of 

ways of dividing any group.    For instance: 
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B^ B^ B, 

"    B1+B3B1    +B2B3B1 

"    B2+B1B2    +    B3B1B2 

- B2*B3B2    +    B1B2B3 

"    B3 + B2 B3    +    Bl B2 B3 

- B3*B1B3    +    §2^83 

and it will be «sen that each division correspond« to s particular ordering 

of the variables.    For consider 

/I - B      B    .., B 
"l    n2 

-    B BB       ♦BBB...*BB...B 
in 

n. n,  n_        n,  n_ n_ 

whars B B. or B,      foreooÄ        1    and   B      * B. 
J J ^ n^ 

and ejjuülarl^r for the other set subtractions. 

nl ^        -m 

B, if B      - B i * 

The nile  for determining the ordering of B. is as follows« 
the set J 

Let *> -   «O B*    be'^ subtraction    under eonsideratloni  and    C    and    C    be 
*-     J-l    J 

the same aa before and f^ the fixed costs.    Then ve divide the    n    variables 

into three classeso 

Class Is    Set of variable« for which B* - B      and C(X   ) ♦ f 1 > C(V) 

Claos 2t    Set of variables for which B* - B. 

Class 3:    Set of variables for which B* - B      and    C(X  ) ♦ f    < C(^) 

Class 1 consists of those variables which were  off in the linear program- 

ming solution and whoae fixed cost plus the lower bound exceeds  the actual 

cost obtained.    Since by turning the variable    x.    on we incur at least f, 

we know that It must not be turned on.    Therefore, Class 1 consists of 

those variables that were turned off and should remain off. 
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Class 2 conslats of t.haBe  variables which were turned or,  and  they 

are placed in the inverse order of our estijaate      of the minimum cost 

incurred in turning each one off 

Class  3 variables are lest,  and it is  difficult  to see why any order- 

ing is  better than any other since by turning the variable on we have a 

lower bound lower then actually obtained» 

G.    Incomplete Solutions 

It can easily be r.een that if the algorithm is  stopped before  it le 

finished,  the current ntlnimum on the  removed subsets and the minimum of 

the lower bounds on the other subset« serve as upper and loiwer bounds 

respectively on the solution. 

In the computation of most of the problems worked out by the computer, 

Federowicz found that the solution was found relatively quickly and what 

took most of the time was obtaining a lower bound greater than the current 

minimum found,  iue.,  verifying that the minimum has been found.     For ex- 

ample   (pi 74 in [1]) one  problem took 31 revisions  to find the minimum 

and 85 further revisions  to verify  it.    Another problem took U revisions 

to find the minimum and 41 to verify it.    Thus one is tempted,  for larger 

problems,  to quit after the same minimum haa been found a certain pre~ 

determined number of times,   and use thet minimum as a solution. 



II.   GENERALIZATION OF reDEHOWICZ'S »MLTHGD TO SCWAflC'S PROBLEM 

Pederoirlcs considers a generalisation of his algorithm (see p.  65 

in  ill) and to solve Snrarc "s problem ve must apply the generalisa'tion 

rather than the actual algorithm previously considered«     Sswarcu8 

problem is as  folimwo. 
n 

Maximize % "    Z    c. x 
J-l    J     J 

n 
subject to        Z      a..    <   V    and   x. ^ 0 or 1  for J * 1, 2 

j-l      ^    "     1 J 

m , 0 < x. < d. for J " p ♦ 1,   »*<. n i - 1,   2 . 

Nov one can see that the algorlttnt will be somewhat different, from 

before and is as follows: First we consider the 2^ subsets as before .nd 

'■he  problem defined on each of the»  It is easy to see that each one 

could be solved by the simplex method and we could then take the best 

solution  However this is too lengthy  As before we instead consider 

a group of these subsets whera some are definitely 0V some definitely 1, 

and others either 0 or 1, and we shall obtain an upper estimate on the 

final maximum. Now suppose we have such a group of subsets  If x.(j < p) 

is definitely 0 or definitely 1 it will remain so in the objective 

function and the constraints^ If x. > 0(j < p) x. will be considered 

to be 1 in «(x), the objective function, if c. > 0 and x. will be 

considered to be 0 if c. < (|.. The lower estimate, similar to before, 

shall be the value of the basis that, la feasible and satisfies the 

Boolean constraints. For the upper estimate we now need only worry 

about the constraints» For each constraint inequality we will derive 

a new one which will amount only to changing the b. if we only work with 
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X / , . o c x  In the slnplex solution.^ That 1« B. • b. •> £ aj . triiere 
p »t 3      n 11 j.^ IJ 

/'a.. 1-f x. is 1 deflnately, or if a. . < 0 and x la la doubt 

*^T0  if x, 1B 0 definitely, or if a^ > 0 and x, is in doubt 

Thu« with B, instead of b. and considering only x ..«•••• X 
i i p * x n 

wa can now solv» the 3.inear prograsning problem using the simplex mettiod, 

and this serves as an upper bouud since any ralue of the x ''a in doubt 

that satisfy- the original ecnstraints, satisfy the new conatraLnts. 

A  Reduction of Computation 

As before we need not make a new tableau and solve each one froa 

scratch in the simplex algorithm- If we record each a. ^(j < p) and 

evaluate it after the first xinlmlzatior, i««e of the lower bound, We 

may then pivot to get rid of those values of x. ic the basis which beucow 

negative when the appropriate a. change* and maxlmiBa the resulting 

tableau  Also in changing from group to group we need only pivot to 

get rid of the negative B., and then maodLmice the resulting tableau 

B, Set Subtraction Problem 

Now we must determine which subset to extract from the group thai 

1B to be divided and how to break it up  Before, the simplex solution 

gave the subset to be extracted but in our case this need not be the 

ease, and in fact would not be desirable since «re kxxfu  beforehand on 

which subset our feasible maximum cones from (where all the x, in doubt 

•I)» Thus the only thing that would distinguish our algorithm frcn 

enumeration (if we were to always to extract that subset) would be the 

ordering used to detenaine how to break up the group and which group 

has the greatest upper bound. Thus to gain greater freedom Eone better 

-13* 
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way of determining which set to extract would be In order.  One method 

might be to turn of thoao variable« In the matrix that cause the total 

increase In the D. of the matrix mlnua its fixed charge in s If it 1« 

negative and plus if It Is positive to be the greatest. Those with a 

positive increase would be turned off and those with a negative increase 

kept on 

As for subtracting the set we have now Just to investigate which 

ordering should be used to determine how to break up the group of sub- 

sets in question! In contrast to the example we should use more information 

than Just the fixed cost In the objective function, We may put those 

variables first which are on and which their fixed cost in the objective 

function subtracted from the upper bound minus some estimate of the de- 

crease Ir. the objective function due to the other variables Is smallest 

Thus using this total estimate we may order all the variables In this 

problem and determine the resulting groups of subsets as before. 

C . Conclusion 

One will notice that this generalisation is somewhat different frcm 

the original problem, because of the added Boolean constraints and because 

in the solution in finding the estimates. Just the domain of definition 

varies, not the objective function'. And when extracting a subset frcm 

a group we still must find the —ad— on the subset extracted.  It is 

not automatically provided 

Do Original Problem As A Special Case 

It should be noted that the first problen may be stated as a special 

case of Stwarc's problem (with min replaced by max) as follows 

U 



  

i1fi.Kiiai.zt t   o. b,   *   z     e! 
i   J 

subject to    - d^ 

J-0 

j  "j   ' ^ <   0      J - 1, 2 

£    a 
J-l' ij    XJ^bl 

where 6 , x» > 0    and • l>. " O or 1    and the d. aro big «nough. 

IS 



 . 

III.     IKE GENERALIZATia, CF FEDEROtVICZ'S METHOD  APPLIED TO AI.  EXAMPI£ 
SOLVED BY FEDERCÄVICZ »S ORIGINAL METHOD. 

The problem is to minimUe     z - 300^ ♦ TOCb^ • UOOiu • 1000(x »x ♦x^) 

subject to 

xi, * 2/3 x5 * X6 ^ 1 

1/2 x^ ♦ x5 ♦ 2/3 x6 > 1 

2x1-x4>0 

3/2 Xg - x5 > 0 

3/2 «3 ~ x6 > 0 

The dual tableau will look like: 

yl      *2      y3      y4     y5 

*! 
300 0 0 2 0 0 

«2 
700 0 0 0 3/2 Ü 

^ 
400 0 0 0 0 3/2 

XA 
1000 1 ~i/f -1 0 0 

x5 
1000 2/3 i 0 -1 0 

x6 
1000 1 2/3 0 0 -1 

x6 
1000 ~1 -1 2 3/2 3/2 
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And after pivoting 

*! 300 0 0 2 0 0 

x2 200 ü 0 0 3/2 0 

x3 
400 ü 0 C c 3/2 

\ 
100 -6/5 3/J-O -1 -3A0 6/5 

*2 
600 -6/5 9/ 0 -9/5 6/5 

'l 600 9/5 -6/5 11 6/5 -9/5 

12 00 3/5 3/5 9/10       -9A0 

/". Thus we now see   chat we have a lower bound of 1200 on j ^ Juet as in 

th« orlgia«! problem-     Now,   because of the neture of the matrix we may 

subtract    B,       B«      B_    from  J .'. .    Ve do this because we see  that y_    %roul(t 

be 0,  if    x.     were 0,   and this is not so with any of the others.     Thus,   on 

B1 B    B-    2300 is the mininuan and this would bo the first elemsnt of the 

decreasing sequence.,     how suppose we wish tu find the minjimim on    B^.    To 

do this, we first oharige the last row only in y,   column.    B.»- subtracting 

3/2 we se^ that the  9/10 change» to -3/5»   thus we  pivot on this column to 

obtain a new lower bound of 1500 as before,   and then we continue on to  the 

other groups.    Thus one can sea  that with the correct set subtraction we 

can obtain the aame algorithms as before,  only the mtrix is different and 

th« rules .Tor pivoting from group to  group are different.     However,  the re- 

sulting two sequences are identical,  if the set subtractions are the same. 
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17.     SZWARC'S METHOD 

In his paper [2] Sswaz-c presents a completely different method from 

FederoHles's In solving the mixed Integer linear programming problem- 

Federovrlcz-s method,  roughly speaking, is to start wl'-n a feasible 

BMl— and continually get better ones \intll the estimates indicate 

that the right one is found»    Thus he works his way up through feasible 

naximi      Szwarc^s method is Just the opposite..    He works his way down 

through infeaslble ma-xiiiBml until a feasible solution (one satisfying 

the Boolean constralnta) is found and thus the computation is ended- 

\ 

A..    The Problem 

A slightly more general formulation of the problem than previously 

stated is: 
n 

Maximize      £    c. x, •• s 

subject to E    a.. x. * b,    x « 1,  2 
J-l    ^    J 1 

m 

0 < x, < 1, J ~ !„ 2,  .  .   > P < n, 0 < x. < d.   (d. > 0) 
J -    i   v  J 

J • p ♦ 1, . .  . a. 

x. i    ?or /0 
? ^ 3-1, . 

(l) 

(2) 

(3) 

We shall call this problem I.    This is the problem we eventually vrleh to 

solveo 

The first part of condition  (2) may sewn unneeded considering condition 

(3),  but we shall form another problem,  called problem II, where we only 

have conditions (1) and  (2)      That is for problem II we maximise the same 

function as problem I but with jusi the conditions  (l) and  (2)=, 
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Now suppose probltan 11 is solved and It has a nwidmini of We 

shall ncv formulate arother probleai, problem 'II, which Is to: 

marimi m 

subject to 

n 
Z 
J-l 
n 
Z 
J-l 
n 
v 

3-1 

CJ XJ ~ ' 

alJxJ 

CJXJ «o- * 

i- 1, 

t 

JE 

( V  ) 

0 < Xj < 1, J - 1, p < n, 0 < x. < d. J - p ♦ le 

where t is a noimegative parameter and h  Is sufficiently »mall?  It 'tflll 

be notlcad that the maximisation Is not needed since the last condition 

in ( 1'' ) insures that it will be at a maxLnum«  "cv one can see that 

this problam is a parametric linear prograaming problem (see pp 220-231 

In [4]) and therefore we oan find a sequence 

tj j       t2 !<        • >       »      t, , 0     <    t,       <    t^>     C       3       »      <     «J^ 

and the eorraspondijig sequencse 

where x (t) is a solution to prohleja III for 
8 

t ,<t<t  (t "0) and the baseo of tvro consecutive eclutlons 
a «i ■—  ■* s  o 

differ by just one variable.  The way the sequence is developed is as 

follows: 

First we solve the problem with t ~ o (or arbitrarily close to It and 

positive)o Then we csu see that each variable In the basis is a linear 

function of to  Then we increase t until one of the variables becomes 

negative.  Then we pivot on the row of that variable (see pp 220-231 in 

LUI)  such -iiav. the basis remains optimum. Thus we obtain a new basis for 

a new largee value of t. We then continue in continually increasing the 

value of t and obtaining new bases such that each successive one differs 

by one element, and thus obtain the sequence previously described 

(2) 

i 
> 
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If tn-ire &re several feaalble Solutions for x (t) w« oust consldsr 

th«m all. 

We alao know tbat x (t) is a linear function of t in the Interval 

cVi'v 
Mow It can be pro»ed (see Sewarcz Appendix in [2]). 

lo     Die minlnum value of t aucb that x (t) satisfies the Boolean 

cunetralnta la the solution to problem J  This is easily seen 

ay looking at consition \i )   ■ 

2      The solution to problem I occurrs at a comer point of problem 

III,  That is either x (t , ) or ^_(t ) satisfies the Boolean 

constraints if some t in [t ■•» t J aJJLows x (t) to satisfy the 
•"•A fl 8 

Ik «lean constraints, and if x (t ) satisfies the Boolean constraints 
0     s 

t. is the unique value of t or x (t . } also satisfies the Boolean 

Rc-nstraints. 

B  The Algorithm 

We car now see more or less how to solve the problem with the help 

of these last two statenents. The following, however, is an algorithm 

proposed by F, M. Tonge in his paper [3]" 

1  Find the solution to problem II, (in general there will be only 

V and it will not satisfy the Boolean constraints  If it doe«, 

hovever, we are finished) and consider problem III, 

2> Establish a list L which is to be a list of extreme points, in a 

set of basis vectors x1(t), and always keep it increasing order 

of ^ max 

3* Find each optimal basic solution to problem,, and find all first 

intervals, in the x. (t) sequences, and find the t max for that 

interval and e nter it in the appropriate spot in the list L, 
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Also check to see 11' thia entry In the list satisfies the Boolean 

constraints and If it does delete all entries in the list that 

har? a greater t max.. 

That is, if I1 is the row of the constraint becoming negative, 

enter in the list L the basis formed by replacing 1» by j' with 

t max given by 

t max ■ min 

1 - d. 

Iw hv 
11J d1 < 0 (d1 - Um dij 

where d. is the coefficient of t in equation i, and *Jt«i ^ ^ 

/*  Consider the first entry In the list L.. If it has satisfied 

the Boolean constraints (it will have been checked before) we 

are done. If not luove to step 5° 

5  Remove the first entry from the list, then for that entry find 

all the possible next intervals and enter their basis in the list 

as in step 3, checking for BooleanesSr Then return to step V 

If no further intervals can be found, no solution to problem I exists o 

It should be noted that due to the nature of constraint ( 1" ) there 

will in general be a number of first, second, etc» intervals  In fact, 

this is the main disadvantage of the algorithm . 

It was pointed out by Tonge that in the list L only changes In the 

bases need be considered in each entryj (see page 3 in C3])~ 

21- 



V.     SPARC'S HSTKOD Al I LIED TO Af. EXAfffLE SOLVED BY FEDEROWICZ'S kETHOD 

Szwarc's algoritho is   primarily  concerned with a m ociaiization problem. 

However,  it is  e&sily seen how to apply it to the minimization problem, 

in particular the example considered by wederowicz.     The rest of this paper, 

however, will be concerned with the maximization problem. 

The  problem again is  to: 

Hinimize C •   v  - 1000  (^ "   x2 ♦ xj  ♦  300  -^ + 700 62 + U^OO  6 

where    <>. - 0        if      x    - 0 

- 1        if      x. > 0 

subject to    x. > 0 

Xj^ ♦ 2/3 X2 ♦ x3 > 1 

1/2 .^ + Xj * 2/3 X2 > 1 

Or in S^-src's form: 

Miniraiae    C/   j - 3000^ ♦ VOOx- ♦  AOOx- + 1000  (x    * y*  * x6) 

subject to    x. > 0 

- X-L > - 1 

- Xg > - 1 

- x3 > - 1 

(1) 

2X-  - x.   > 0 
■i- 4 ~ 

3/2 XJJ - x5 > 0 

3/2 y3 - x6 > 0 

(2) 

xu > 2/3 x5 * x6 > 1 

ls'2 x4 ♦ x5 ♦ 2/3 x6 > 1 

(3) 

where x,,  x^,  x_    are 0    or    1.     This   is problem I.    Problem II is the 

same,   only without the last conatraLnt.    Problem III is the same as problem 

II,  except we have the paremetric conetraint 30OX.  ♦ VOQXj + 400x_ + 1000 

(x.   * x. + x,) > z    •   t      where     z      Is the nrinlimim found by problem II. 45 6    —    0 o ' "^ 
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The constraints (1) are those that Insure that the Foolean variables 

do not exceed 1. It is hoped that they will turn out to be 1 or 0 In 

problem III. 

The constraints (2) are those that insure that the Boolean variables 

will be turned on with their correct counterparts, x,, x2, x^ correspond 

to g^ g2, g- and Xy  x^, x^ to y^ y2, x^ in the previous problem. 

The coefficients of x,, x^ x, in (2) are obtains I from the constraints 

in the previous problem. 

The constraints (3) are identical to before. The initial tableau for 

problem II will look like; 

Facility 

Re« ursints 

3    4 

Matrix 

r.i -1 0 0 0 0 0 

(IK -i 0 -1 0 0 0 0 

l-x 0 0 -1 0 0 0 

1° 2 0 0 -1 0 0 

(:0  <   o 0 3/2 0 0 „1 0 

Vo 0 0 3/2 0 0 -1 

[1 
(3)     < u 

0 

0 

0 

0 

0 

0 

X 

lA 

2/3 

1 

1 

2/3 

costs [+300 ♦700 ♦400 ♦1000 ♦10C0 +1000 

Rewriting this in the dual form and maximizing, we have: 
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     . 

*j 520 -6/5 

71 3 
9/5 

y 2720 
3 

3/8 

x, 800 
3 3 

0 

x. 1400- 
3 

0 

71 300 0 

9/5   6/5   -4/5   0 

-6/5  -4/5   22/15  0 

»6/5  -4/5   7/15 ~1 

2/3 

0 

2/3 

-6/5 4/5   0 

4/5 -22A5  0 

hh -7A5  0 

-2/3 0    0 

0 -2/3  0 

0 0-1 

1640 3/5   3/5   2/5    2/5 3/5   3/5  1 

Thus the solution to problem IT. is (0, 2/5, 2/5, 0, 3/5, 3/5) and the 

minimum is 1640 which is less than 1900, the minimum with the added con- 

straint of x., J^, JTq " I i  (•■ taiown from FederowicB's problem). Now 

we must add the new constraint COO ■ « + t. With this added column, we 

see that we repeat the same final column as before, only -t will be in the 

last row (first element). V-'e must now pivot on this column with each of 

the entries.  After doing this we see that all the entries in the last 

row are positive for t is sufficiently small in all cases, except one 

where we pivot on the y,  row. Since the new entries in the c. column 

a' are equal to c, ♦ :lj     where a . . is the pivot element of the 

*ij 
-c .a. newly added column. Thus the t    for this pivot will be t  -min  J i J ^ max max     " 

i J 

where a i i < 0. 
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Thus we have: 

basic change fron y^* ?(>> 7y ^2* y5* "S1 ^l* y8* R 

Ho« 

i 

2 

3 

44 

5 

Jt2.>R 

xu,  - > R 

x.  - > R 
h 

y,   ->R 

260 

■11 

600 

420 

300 

x, and y_ and y, 

x6 

8 

Now by pivoting on the    x-    column we do not change the objective 

(i.e., it is another    min point)  function,  and then    pivoting in the    R 

column and xc we now may add to the table« 
3 

y1 - > x5,   74 - > R        Sae-j   y6    and   y^ 

Thus L will be, in order of the num.er of basis, 1, 5, 4, 2, 3. Thus 

th» first one locked at is 1. Pivoting we have with the new column: 

(see following page). 

Mow we can see that at    t » t        ■ 260 we have 0   or 1    as the first max 

three elements,  and thus  (0, 0,  1.   0, 0,  3/2) is the mini mi zing point. 

Since there were no elements in the list with    a    t less than 260, 
max 

this is the solution to the problem, and the minimum is 1900, the same 

as obtained by Pederowicz- 
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H. A caiPAEiSON OF FEDEROWICZ S METMOD AND SZWARC'S METHOD FOR SOLVING 
THE MIXED INTEGER LINEAR PROGRAMMING PROBLEM '.THERE THE IKTEOERS ARE 
•2ERO OR ONE 

Now, having seen both methods and hovr they have been applied to one 

specific example, we can say something about the relative merits of the 

two methods. First, we shall talk about the problem proposed and solved 

by Szwarc, and compare It to the same problem solved by Fedsrowlcz's 

generalized algorithm . As has been said before, the attack on the prob- 

lem by both algorlthaas are roughly the same in that they both use the 

simplex method as a sub-algorithm and pivot from comer point to corner 

point in searching for the final maximum.  The difference, however, is 

that Szwarc defines a different and larger problem (problem II) which 

"contains" the original problem if further restrictions are made (namely 

that the first p of the variable be 0 or 1), and then searches down 

through this new convex set of feasible solutions until a solution to the 

original problem (problem I) is found.  This is the effect of the parametric 

t and the added constraint in problem HI. Federowicz's algorithm , how- 

ever, does quite the opposite. He does not change the original problem and 

always pivots and remains in basic feasible solutions to the original prob- 

lern  (problem I in Szwarc"s algorithm).  He      starts at the origin, let 

us say, and then continually increases the best maximum yet found. He con- 

tinues this way until the estimates on the rest of the set (not necessarily 

convex) Indicate that the rest of the set is less than the current maximum. 

Thus we can see that Federowicz*? algorithm works with a smaller set which 

is not convex and finds his way up to the maximum, whereas Szwarc works 

with a larger set,    a convex set, and he works his way down to find the 

solution. 

From this we might suspect that Federowicz's method would almost always 

be cruloker (in computational time) to find a solution than Szwarc's method. 
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However,- there are tvo reasons vhy  this ia not necessarily eo.    First, 

^.though the total manber of extie:ae   points is increased, this does 

not guarantee that there will be a larger number between the solution 

to problems I and the solution to Problem 11 than extreme points con- 

sidered by Federowicz's method. Second, not only must the extreme points 

of the current maximi in Federowicz's method be considered in computational 

tirae, but also we must consider computation time expended in applying the 

»implex algorithm on the groups of subsets used to estimate the maximum on 

the subsets not actually substracted. Nevertheless, we can say something 

about the relative computational merits of the two algorithms. 

First we should look A* the relative compctational time of Federowicz's 

fieneralized clgorithm and his first more special one. On the same problem 

the generalized algorithm will be slower because the matrix is n + m by 2n 

if thei-e ara n. variables and ID conotraints in the original problem. 

2 
XJms we see that the tableau we are to work with is increased by 2 n ♦ mn. 

Which could slow the algorithm down considerably and cause evsn more prob- 

lecas with storage space. This also shows some of the difficulties involved 

as the number of variables increases. Mot only do the number of pivots in- 

craaee, but also the time it takes to make each pivot. 
method 

Now we an use Federowicz's first/as a standard to increase in some 

sense the other algorithms. We have s^en that the generalized algorithm 

for the same number of on-off variables and the original problem takes the 

sane number of pivots as the standard, but takes a longer time to make them. 

In the application of Szwarc-s algorithm to the standard we see that the 

matrix is the same size as the generalized algorithm and the question is 

how operations on pivots are to be made to find the solution. If the ex- 

ample previously exhibited is any indication, we see that this algorithm 
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is much shortsr than either of the other two.     However,   it la eaey  to see 

that thsre exists many example s where it takes much  longer to find the 

solutions and we must go much deeper into the list    L. 
of 

Now let us see what happens when we vary the number^Boolean variable» 

relative to the other variables in Srwarc's problem.    Let us say that the 

number of Boolean variables is    p    ai d the number of non-Boolean variables 

is    n    and there are    m    constraints.     Now let us count the  number of ex- 

treme pA2nt>3 that will be in the tottl. convex set considered by SzwarVs 

problem II,  end see how many fewer thera will be in Federowlcz's  eet whiah 

ip smaller but not convex. 

First,  let us count the total number of extreme points considered in 

Federowicz-s treatment of the problem.    It is ea§y to see  that thera are 
(Sri  extreme point(» ^ 

2 Bubseto to consider, and for each of these sübsetstC    ) ■ ^ r ,/ ■ m     n. m» 
. ■» 

the nim\ber of ccaabinations of picking m + n thirds m at a time] since 

there are m slack variables, n regiiLar variables »: d only m 

variablsB in the basis. Thus in all there are 2p(m m ) extreme points 

in the set. Next let us consider the number of extreme points in ^ware's 

jtvblem II. Due to the nature of the first p constraints both the 

variabl'.e and its slack variable cannot both be out of the basis, if the 

variable (or its slack variable) is one of the first p. Thus we have 

threa possibilities for each of these first p variables. Either both 

it and its slack variable are in the basis, or just the regular variable 

or Just the slack variable.  (If x. is one of the first ^3 variables, 

1 — x. ■ x. ' is its slack variable.) If there are ■■-    variable« that have 

both the regular variable and its slack variable in the basis, ther«' are 

( ? ) combinations of the variables nuch that this can happen, 2    different 
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/in ♦ n arrangements of the other p-k Boolean variables, and (   . ) arrangements 

of the other non-Boolean variables. Thus, if F < in> w« have 

( P )(m + n) 2 
k   m - k 

P-k extreme points and if p > m, we have 

m 

\ 

k^   l ky lm - k' 

,p-k extreme points or more generally 

niln(p,m) 

k-0  x ky  '''m - k 

n^p,mj        .       , 
^  f    ") (m      n^  Z13-     extreoe points.  And thus we see that 

min(p,m) 
f   \ (m      n ) 2*5~    is the number of additional extreme points 

k=l   v k' m - k7 

created by Szwarc s problem i'X.     Let us now obtain a lower bound for this 

number. First let us suppose that p is small relative to    and n 

( p < m at least). Then JL (P )/,n + 'S ??-*   > min [{mmn). (g^)]^^) 2P-k 

k  m - k 

min[(%n), (UP)] (3P - 2P), iCÜ1) <  (Slg) if and only if m > n * p } or 

fm*n ^  ^P - 2P") Vmax Cm, n*pr V    - 2  /    * Thus if m is not too much larger than n ♦ p 

we see that for large p (but still small relative to m) the new extreme 

points of Szvarc 's problem far exceeds the total number of extreme points in 

Federowicz's problem, due to the weight of the 3 • In fact, if 

m > n + p, ("m11) (3P - 2P) > 2P ("m11) for all p > 1 and the inequality 

becomes stronger as p Increases. Kow the problem is to estimate the 
A 

number of these new extreme points which lie  above the set considered by 

Federowicz.    This number will certainly be far less than the total number 
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of pivots  that Szwarc's algorithm finally makes since each of these points 

must be visited at least once,  and probably more often since the  algorithm 

will have to retrace its steps to get to the next lowest vertex.     Now,  if 

this number is Just as great as the original set considered by Federowicz, 

i.e.,    2p(m),  by proportion      to the total number of points in the set, 

i.e., c   (3*   - 2^)   ( m )  [for some constant    c] we see that for sufficiently 

large    p    Federowicz'o method will be much superior,  since at the very 

Bwet it «ionsiders    2P ( m ) extreme points and usually not even that many. 

Now, let us suppose that    p    is large relative to    m or    n.     It is  diffi- 

cult to see Just what will happen always.     However,  with Szwarc's method we 

can see that the additional extreme points do not grow as    3      as before 

since in the sum there are only    m    terms.    In fact,  the number of additional 
m 

extreme points is   *5  C    ) (        )   ^       '    ''•'toreas in Federowicz 's they  are 
K"l     K m-*K 

still    2P ( n ), which is now getting quite large.    In fact, let us say that 

there is  Just one original constraint, ie., m ■ 1,  and that    p.<2n ♦ 2, but 

still, large.    Then: 

5* cpum+n; 2P"k - p2P i/2 < (n+i) 2P - 2P cT^ • k"l    k    Su-k 

Now we see  that since ("'n ) - n ♦ 1 is a relatively small number that the 

"help" Federcwicz's method gets from the simplex algorithm will be relatively 

small and that the rules for determining how the sets are broken up will tell 

how fast the algorithm works.     If the example is   any  indication we see that 

at least somewhere on the order of    2      pivots will have to be made.     In 

STwarc's case we see that no more than p sP 1/2 different extreme points will 

be visited,  and there will probably be much less.     Thus if too many  are not 

revisited we see that Szwarc's method should be superior. 
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This bringe up an important point.  Much depends on Just how "good" 

Sswarc's method is. We have made an estimate of the mq&ber of different 

extreme points to be visited, but o^^iously much depends on how good this 

estimate is and how often we revisit an old vertex.  If It turns out that 

many vertlses are often revisited, we may be able to remedy the situation 

by changing the algorithm. It would be to remomber instead the tableau 

at any vertex it might have occasion to return to, and then Jump directly 

from vertex to vertex without having to pivot over and over. Each time a 

pivot -is made it would be to a new vertex. Or the algorithm could be 

changed, differently.  It would be a mixture of both ways. That Is, only a 

few "key" vertices would have their tableaus remembered. If we are in one 

eVid of the set and we wish to go to the other, we first Jump to the tableau 

of the nearest "key" vertex (nearest in the sense of the number of pivots) 

and then pivot to the desired vertex.. Vfe now see that the revised algorithm 

w5.11 more nearly resemble Federowlcz'a algorithm due to the storage of the 

tableäus, and in my opinion present a fairer comparison of the two algorithms. 

Now one moire interesting special case is when n " 0, that is, all the 

variables are Boolean.  In Federowlcz'a algorithm the number of extreme 

points is Just 2 .  However, there is no application of the simplex 

algorithm and the problem is Just to find a feasible solution  Once again 

the algorithm's speed depends only on the choice of the rules for set 

subtraction.  In Szwarc's algorithm, however, the simplex algorithm is 

applied and we may hope for a shorter solution. The one drawback is that 

the set of extra points is much larger than 2P.  To see this suppose m < p. 

then: ! C^C " ^ ^ > * 5 O x    k-l^k'V-k'        k-1 v 
»P-k_ 2F (p 2-" - 1) > Zv    if m is 

small enough, i.e., m < T^M? ~ -'-• However, we would suspect that if Szwarc's 

method works at all, it should work In this case, and should compare favorably 

with Federowlcz'a method. 
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Now, if It turns out th&t both algorithms do fairly well with the san» 

problem, and they both take about the same amount of time, we might be able 

to obtain a faster algorithm by mixing the two, and use each one to help 

the other. The way it would work is as follows.  At each step or pivot we 

would make one pivot in the Szwarc algorithm, and then one pivot in the 

Faderowicz algorithm.  If in Szwarc's method we come across a possible 

solution to problem I ( but hat not pivoted to it yet ), that is it has a 

maximum better than any of the maxi mi already extracted, and in the group 

that is to be next broken up we may extract this set instead of those de- 

termined by the normal rules. Also, if in Szwarc's method there are members 

of the list L that have a maximum less than the current value of the best 

maximum in Federowic^s method, we can eliminate 1* from the list L, since 

it. will never be pivoted to anyway. Also, if we decide to stop before the 

final solution is found, the current value of z - t    in Szwarc's method ' o     - max 

or the greatest upper bound  in Federowiczs method will serve as  an upper 

bound, and the best point found by Szwarc's method that is feasible in prob- 

lem I pr the current value of Fsderowicz's method will serve as a lower 

bound on the final solution.    These can be used to  estimate the  solution if 

it is computationally infeasible to go on,  and it can be seen  that the 

appropriate bounds also apply to each separate algorithm as well as  the 

composite one  Just described.    Also, instead of applying them both at once 

one might be inclined to try  first one  then the other if the  first proves 

infeasible computationally. 

Lastly, it is easy to see that both methods can be used to find secondary 

maximi.    That is  the second,   third, etc.,   ,  best value that  the function can 

take on and still satisfy the constraints.     In Fsderowl  z e  algorith, we 



- 

just ignore the fact that the  two sequences have met and throw out     the 

point where they have crossed and continue on.    In Szvarc 's method ^n 

we need to do is  forget that the Boolean constraints were satisfied and 

continue    on listing those that  do.    It can be seen that not only will all 

the feasible points of Federowicz's problem  (problem 1) be listed,  but 

tlso all the feasible points of problem II as well. 
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