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I. A SUMMARY OF AN ALGORITHM PROPOSED BY A. J. FEDEROWICZ FOR THE FIXED
COST LINEAR PROGRAMMING PROBLEM /
ixe

In his paper, Federowicz proposes an algorithm ror solving the
cost linear programming problem” where the problem is the same as in the
linear programming problem except that in the objective funct;ion' there is
a fixed cost associated with turning a varisble on. It \d.u:fethe purpose
of this paper to summarize tlis method and another one solvir;g a closely
related problem and to compalre the two. Ft—turmrout—thet Federowlcz's
problem is a special case of the other problem Mt,
later—om; a generalization o.’ this problemwea’ //U’—(—& A o

A. The problem

The first problem considered by Federowicz was:

r n
Minimize > ch + 3 cla
¥ 99 53
n
SubJject to EJ-], ainJ > bi i=1,...m
6J-O if xdno J=1,...n
6 =1 iij>0 J=1,...n
xjao J=1,...n

This problem has applications with the problem of scheduling which of
a certain number of faculties should be turned on and how much, if a fixed
charge is to be paid for turning them on, and other applications (see [1]
p. 10).
B. The Method - A General Description

First consider the domain where the varlables are defined, i.e.,

x, 20 J=1,2,...n. We shall call a subset of the domain a subset that has

J
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the property that xJ-O or xJ>O J=1,2,...n. Thus {xlxl = 0,x, = 0, x3,...xn>0}
is a subset. Now considar the function C(x) = ZCJX'J + Zc‘;xd defined on
each of the subsets. It is linear and convex there and hence we can use the
simplex method on each of the 2" subsets and take the minimum of all of these.
This, however, ie too lengthy and we must find a method that will solve the
problem withcut necensarily looking at all of the e‘xbaet;. To this end, con-
sider the union of a certain nusnber of the subsets such that the union 1is
convex. We will c¢all this a gzroup. Now consider just the variables xJ

eguch that x > 0, 1.e., the ones that are de’initely turned on

3 J
end the ones that may or mey not be turned on. Now consider C(x) and the

20 or x

corstraints where all the other x, = O, and consider this problem solved by

J
the siuplex method, disregarding tne effect of the fixed costs. MNow if we add

just the fixed costs of those xj

on the final minimun, or this group, because the only way we can get a lower

definitely turned on we obtain a lower bound

cost is to turn off one of the varlables xJ 2 0 and not incur its fixed
cost, Lut we never add 1%, thus it is a lower bound. Or, we can thirk of

the function, C(x) = e,x, + £(x) where f(x) is just the sum of the

J
fixed charges definitely on, as a lower bounding function on C(x) 4n the
group. Thus the algorithm is as follows: First we consider the whole spece
xj > O as a group, then obtaln a lower bound and use th3 actual value ob-~
tained a8 an upper bound on the final minimum. We then remove the subset

found by the simplex algerithm where the minimum occurs of the bounding fumection
and partition the rest of the group. We find a lower bound and a feasible
solution on each of thess and take the one that has the lowest lower bound.

We then remove the subset as before and continue on,each time parti‘ioning

the group that has the lowest lower bound until we finally have a lower bound

e




)

-3-

on the remaining groups (the whole set minus the removed subsets) that
exceeds the value of one of the removed subsets. Then this removed subset
with the lowest minimum i1s the sclution since all the removed subsets have
a greater minimum and ws have a lower bound that exceeds this minimum for
the sroups that are left.

C. The Algorithm Used
n

n
c.Xx - and X is some convex of the

=
J=1 J3 =1 373
2" subspaces, and let C(X) = :)21 e, x, + f(x) where f(x) 4is the sum of

Let C[X] =

33

the fixed costs of the variables definitely turned on. Let S be a rule
for determining how to subtract one of the 2" subsets from some group of
them end dividing the remainder into groups.

Let X, be the set of all the 2" subsets and X a particular group
of the 2" subsets.

The algerithm is as follows:

1. GIinimize E()En_) by the simplex method, let the subset on which

this occurs be X'l. .

2. Set p=1, X =X s r =0,

%

3. Apply S to qu— X;.

” ” "
L. Let X 'Xp*'Xr_'l*tz...Xr_"np

5. Set I=1,2,...n

6. Minimize .C.[X;*I] by the Simplex Method, let the subset on which

. '
this occurs be xr*I

7. Set r-r*np,p-p*l
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Sl

§. Fipd min  {min C [x];]} = C, min.

k=) ...n

Y. Find min {min C[x']} = Cp, min where k excludes previous Cp min.
k

10. If C mnin > CT’ min then we are done and CT, min is the answer.

P

1l. Otherwise, lst the k from which Cp, min occurred be denoted by

" ]
k. Let X = , X, =X
P e xkp lkp 5

12. Go to step 3.

It can easily be geen that the algorithm will terminate because there
are only a finite nunber of subsets to subtract, and eventually they will all
be looked at if & solution is not found tefore. This is a specialization of
a more general algorithm given by Federowicz, pp. 65-67 in [1}. The follow-
ing exmmple is the one worked out by Federowicz in [1].

D.  Example
f3. example will serve to illustrate and clarlify whet has been said. The

problen js to minimize C(x) = lOOOx1 + 1000x2 + lOOOx3 - 30061 - 700‘:2 * l;OO!)3

where 63*0 ir xj = 0

«1 ir x,>0

J
subject to x, 2 0 g~ 1, 2, 3
o
x ¥ 2/3 x, kg2 1
1/2x1<-x24 .2/3x321
Ve may now divice the space into 8 subsets where the cost function and

the constrainte are linear. Thus one can solve each of ihese problems in

each of the 23 ¢r more generally 2" sutsets. They are:

e
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15 xl-xz-xB-O

o xl70, x, = x3 = Q

20 %0, Xy % g % 0

L. X x270, x3 = 0
5. x370, X =X (¢]
6. X1 x370, 1/2 =0

7 X5 x370, xq = 0
8. x, X, x370

Enumeration of all of these subsets is as follows:

Subzet
1

m 1 o0 P WwWN

Minimum Point
No solution
(2,0,0)
(0,3/2,0)
(1/2,3/4,0)
(0,0,3/2)
(0,0,3/2)
(0,3/5,3/5)
(0,3/5,3/5)

Minimum of C(x)
2300
2250
2250
1900
2200
2300
2600

It will be noticed that on subsets 6 &nd 8 x - O whereas this is

outside ths region of defirdtion. This is remedied by letting x be arbi-

trarily smsall but positive.

srecified cost es we wish.

Thurs we see that we may come as close to the

In other words, this cost represents the greatest.

lower bound of 2ll the costs in that region.

It will also be noticed thet

any such subsete camnot have the solution because by turning off the variable
that becomes srbitrarily smsll we do not incure its fixed cost, and the cost
is thus smaller in some other region

From the tsbles one can see that the minimum is 1900 and it occurs at
(0,0,3/2). To find this, however, ws had to look at all of the PP
subsetsn, which is much too laborious. What we would like is a method which
looks at far fewer subeets and can tell it ie done without necessarily look-

ing at them all.
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Let us first denote a group of/ & subsets by Bn and Bo will represent

{i‘x » 20, x, 20, Xy > 0}. Cy (x) in general will be = #i © Xy + £(x)
i n =

where x B~ and £f(x) is the sum of only those fixed costs definitely turned

on. Thus, CBO(x) - lOCO(.xl +x, ¢ xB). Also it is noted that C(x)_>_CB°(x)

for x Bo which is the union of all of the 8 subsets. Therefore the mini-

mum of CB may serve as a lower bound on the minimum of C(x). The mini-
©

mum of CB may be found by the simplex method, and we find it is at
o

(0, 3/5, 3/5) and Cg4 (xpq, ) = 1200 and c(xmmB‘ ) = 2300. Ve now remove

o]
o]

set 7 from consideration and divide the remaining subset into three groups,

defined as follows:

Set
Nos . Set Lower Bounding Function
1,2,5,6 By={% %,20,%,20,x,20} Cp. (x)-1000(x; + x,)
l -
3.4 Bz-@c’ x1_>0,x2>0,x3>0} Cq (x)-lOOO(x1 + x2) + 7C0

2
8 BB-& %,>0,%,%0,%,>0) CBB(x)-lOOO(xl + x, + x;) + 1400

The rule S for choosing the B, will be discussed later. It can be
seen that it has u great deal to do with the success of the slgorithm.

wow uskng the simplex algorithm on these three functions we find:

Bounding Minimum ¥in CB {x) C(x) where CB (x) is minimized
Funetion Point n '
Cy {0,0,3/2) 1500 1900
1
082 (1/2,3/4,0) 1950 2250
.CB (0,3/5,3/5) 2600 2600




8o iy 1B 6 is 1500 we have now
Bl B2 83

a new lower bound on the minimwua, C(x) on the subsets 1,2,...6,8. Also

Now we sse since the minimum of

we have a new value for C(x) of 1900, which was better than before. Now

| sirnce this minimum occurred on subset 5 we remove it from Bl and look at

< the rest, i.e., 1,2, and 6. 'ie divide them as follows:
Set
Nos .- Set Lower Bounding Function
1,2 B, = {X]x20,x, ~ 0,x; = 0} CBL(X) = 1000x,
6 B {x|x,>0,x, - 0,%,>0) ch(X) = 1000(xy * x4} + 700

And solving each of these we firxd

Bounding Min. Hin. of CB Corresronding
Funetion Pt. i _Min C(x)
Cp (x) (2,0,0) 2000 2300
L
Cp (x) (0,0,3/2) 2200 2200
5
Now we find that the minimum of CB ; C CB 3 CB is 1950, and therefore

B-’
2 3

2 4 5
this may serve as a lower bound on the minimwm of C(x) on 1,2,3,4,6,8.
The best C(x) found, howevszr, was 1900 on subset 5. Therefore, we may
conclude that (0,0,3/2), the minimum point found on 5, is the minimum of
C(x) sinecs C(x)>1950 on 1,2,3,4,6,8 and C(x)>2200 on subset 7.

It should be cbserved that on each of the 2" subsete C(x) 1is linear
and convex and thus the problem may be solved completely on any one of them.

However, on a2 group of subsats such as the Bn one can only bound the C(x)

with a linear convex function, which allows us to uss the simplex algorithm.

fe! =




8.

Also we note that the seguence 1200,1500,1Y5C may be identified with

C, min and the sequerce 2300,1900,1%00 as C min in section C. Also,

P

the cBi(x) with c[x;;] and 1 = B,

T

E. Reduction of Computations

In the preceding example it will be noted that six times a function
had to be minimized by the simplex method. This does not seem like much
of an improvement over the original eight times. However, we need not
start from scratch each tims. When a minimum is found, to go to a different
region we need only eliminate the appropriate basic element by pivoting on
its row and then removing its column. An example will illustrate and

clarify. The originel tableau for the problem is:

Faculty 1l 2 3 4 5
Fixed Costs 300 700 400 (o} o
Unit Costs 1000 1000 10Cv o (o]
Requirements Matrix
1 1 2/3 1 -1 0
1 1/2 1 2/3 o -1
colving this we find:
Faculty 1 4 5
Fixed Costs 300 (o] 00
Unit Ccsts 1000 0] 0]
Faculty Fixed-Cost Unit Costs Amount Matrix
3 400 1000 3/5 6/5 -9/5  6/5
2 700 1000 3/5 -3/10 6/5 -9/5

Marginal Costs -100 -600 -600
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If we wish now to find min [CB (x)] we must eliminate faculty 2
1
frou the basis and minimize the result. Only 4 can be used to eliminate

2, thus we must pivot on 6/5 and forget about that column. The result is:

Faculty 1 5
Fixed Costs 300 0
Unit Costs 1000 0
Faculty Fixed Costs Unit Costs Amount Matrix
3 400 1000 3/2 3/u -3/2
4 0 ) 1/2 -1/4 ~3/2
Marginal Costs -250 -1500

F. The Set Subtractions Problem

Previously it was stated that there was a rule (S) for determining
how to break up the groups of subsets into smaller groups amd Just one of
the subasets. The rule described by Federowicz will now be presented
(s2e pp. 68-71 in [1]). First, however, we will need some new ~otation.

We wlill denote a group of subsets by a series of Bi's and Ei's "multiplied”
together. The presence of Bi will indicate xg is definitely on. The
presenze of Ei will indicate xg = 0. If neither is printed it will mean

x,20. Thus, B, B, 33 1e the subset 4, x,,x>0,x; = 0. B) §3 is the
union of subsets L and 2, i.e,, x1>0, 1220, x3 = 0, ete. Thus we can see
that any two differert representations by this notetion represents two

different convex groupe of subsets, and conversely.

Mow it can oe observed with this notation that there are¢ a number of

ways of dividing any group. For instance:

{e
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Fs! -EleBB - Bl‘ﬁzﬁl . §332§1
- Bl+§3§l ’523351
- §2+131132 + §3-182
- 1'52*753132 * B) B, B,
- §3+§253 * By B, B,
-'73'3’131133 + §2§lB3 5

and it will be ssen that each division corresponds to a particular ordering
of the veriables. For conaider
-8B B ...8 =B +BEB +BB B ..+*BB ..B
P2 " " 172 M P2 1 "2 m
where Bni-Bj or B‘1 for some J and Bni‘B.‘)gB.‘] iani"BJ,
and similarly for the other set subtractions.
The rule for determining the ordering of B 3 is as follows:
the set —
Lot Z- A 133 bLe subtraction under consideration, and € and C be
J-1
the same as before and £: the fixed costs. Then we divide the n variables
into three classes.,

Class 1: Set of varisbles for which B’S - "ﬁj and C(X ) + £y2 c(xe)

Clase 2: Set of variables for which B’s - Bj

Class 3: Set of variables for whith 3’3 - ‘EJ and C(X )+ f 4 < c(xg)
Class 1 consiste of those variables which were off in the linear program-
ming solution and whose fixed cost plus the lower bound exceeds the actusl

cost obtained. Since by turning the varisble x 3 on we incur at least f 3

we know that it must not be turned on. Therefors, Cless 1 consists of

those variables that were turned off and should remain off.

foid
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Clsses 2 consiste of those variables which were turned or, and they
are placed in the inverse order of our estimete of the minimm cost
incurred in turning each one off.

Class 3 variables are last, and it is difficult to see why any order-
ing is better than ary other since by turning the variable on we have &

lower bound lower than actually cbtained.

G. Incomplete Solutions
It can easily be secen that if the slgorithm is stopped before it is

finished, the current ninimum on the removed subsets and the minimum of

the lower bounds on the other subsete serve as upper and lower bounds

respactively on the solution.

In the computation of most of the problems worked out by the computer,

Federowlcz found that the solution was found relatively quickly and what
took most of the time was obtaining a lower bourd greater than the current
minimum found, i.e., verifying that the minimum has been found. For ex-
anple (p. 74 in [1]) one problem took 31 revisions to find the minimum
and 85 further rovision= to verify it. Another problem tock 4 revisions
to find the minimum and 41 to verify it. Thus cne is tempted, for larger
problems, to quit after the same minimum has been found a certain pre-

determined number of times, and use that minimum as a solution.

1




1I. GENERALIZATION OF FEDEROWICZ®S METHOD TO SCWARC'S PROBLEM

Federowicz considers a generalisation of his algorithm (see p. 65
in (1)) and to solve Szwarc's problem we must apply the generalization
rather than the actual algorithm previously considered. Sgwarc‘s

problem is as follows:

n
Maxinmize £ I ¢, x
j 373
n
subject to L a _<_biandx=~00r1fnrj-1,2.r>p
5ol 3 3
iﬁl,2“.‘.m,05xj_<_d3rorjep*1,, seo N

Now one can see that the algoritim will be somewhat different frem
before and ie as follows: First we consider the 2P subsets as before and
the problem defined on each of them. It is easy to ses that each one
could Yte solved by the simplex method and we could then take the best
solution. However this is too lengthy. As before we instead consider
a group of these subsets wheraz some are definitely O, some definitely 1,
and others either O or 1, and we shall obtain an upper estimate on the
final maximum. Now suppose we have such a group of subsets ir xj(j < p)
is definitely O or dafinitely 1 it will remain so in the objective
function and the constraints. If x, > 0(j < p) Xy will be ccnsidered

J

to be 1 in x(x), the objective function, if ¢, > 0 and x, will be

J J

considered to be O if cj < é The lower estimate, aimilar to before,
shall be the value of the basis that is feasible and satisfies the
Boolean constraints. For the uppsr eztimate we now need only worry
about. the constraints. For each constraint inequality we will derive

a new one which will amount only to changing the bi if we only work with

-12.
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‘p/l s e 0 Xy in the simplex solution. That is B, -~ b, = £ a!, where

‘13 ir xJ is 1 definately, or if aij

al
3= 0O 1ir x'j is O definitely, or if a“ 2 0 and x‘1 is in doubt

Thus with B:l instead of bi and considering only xp PRI

< 0 and x, is in doubht

we can now solve the linear programming problem usirg the simplex method,

and this serves as an upper bouid since any value of the xj's in doubt
that satisfy the original ccnstraints, satisfy the new constraints.

A. Reduction of Camputation

As before we need not make a new tebleau and sclve each one from
scratch in the simplex algorithm. If we record each aU(J < p) and
evaluate it after the first minimization, i.e. of the lower bound., We

may then pivot to get rid of those values of x, ir the basis which beccme

J
negative when the appropriate a,, cbange, and maximize the resulting
1)

tableau., Also in changing from group to group we need cnly pivot to

get rid of the negative B 1 and then maximize the resulting tableau

B. Set Subtraction Problem

Now we must determine which subset to extrsct from the group that
is to be divided and how to break it up. Before, the simplex soclution
gave the subset to be extracted but in cur case this need not be the
case, and in fact would not be desirable zince we know beforehsard on

which subset our feasible maximum comes from (where all the x, in doubt

J
=~ 1). Thus the only thing that would distinguish our algoritim from
enumeration (if we were to always to extract that subset) would be the
ordering used to deternine Low to break up the group and which group

has the greatest upper bound. Thus to gain greater freedom esome bettar




way of determining which set to extract would be in order. One method
might be to turn of those variahbles in the matrix that cause the total

increase in the B, of the matrix minus its fixed charge in gz if it is

i
negative and plus if it is positive to be the greatest. Those with a
positive increase would be turmed off and those with a negative increase
kept on.

As for subtracting the set we have now just to investigate which
ordering should be used to determine how to break up the group of sub-

' sets in question. In contrest to the example we should uss more information
than just the fixed cost in the objective function. We may put those
variables first which are on and which their f ixed cost in the objective
function subtracted from the upper bound minus some estimate of the de-
crease in the objective function due to the other variables is smallest.
Thus using this total estimate we may order all the variables in this

problem and determine the resulting groups of subsets as before.

C. Conclusion

One will notice that this generalization is somewhat different from
the original problem, because of the added Boolean constraints and because
in the sclution in finding the estimates, just the domain of definition
varies, not the objective function. And when extracting a subeset from
a group we still must find the maxirnm on the subset extracted. It is
not automatically provided.

D. Original Problem As A Special Case
It should be noted that the first problem may be stated as a specisal

case of Sgwarc's problem (with min replaced by max) as follows:

fo il




n n
Yaximize I e, 3, + I ¢} x
g0 33 g0 T3 %
subject to ""3"4"”‘350 J % 2% % % n
n
L a x, £Db
j=1 1 73 i
whare bg’ xjgo zmd'bJ = O or 1l aprd the dg are big enough.

:
¥ 53




III.

1HE GENERALIZATION CF FEDEROWICZ'S METHOD APPLIED TO AL EXAMPLE
SOLVED BY FEDEROWICZ'S ORIGINAL METHOD.

The problem is to minimize = ~ 300x, + 700x, * l.OOJo:3 . looo(xa0x5¢x6)

subject to
xh’2/3x5*16_>_1 =, -x, 20
l/2xh*x5*2/3x621 3/2x2—x520

3/2 X - X >0
The dual tableau will look like:

vy ¥, Y3 ¥
x, 30 ©0 0 2 0 0

-— e e mm e e - e m Ae A G e mm e e e e

x, 1600 1 12 - 0 0
xg 1000 2/3 1 0 -1 0
xg 1000 1 2/3 o0© o -1

x¢ 1000 -1 -1 2 3/2 3/2

16~
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And after pivoting

% X Y3 ¥, I
X, 300 0 ) Z 0 0
x, 200 0 0 0 3/2 0
Xy 400 0 0 o} 0 3/2
%, 100 6/5 310 -1 310 65

1200 3/5 3/5 2 /10 -9/10

Thus we now see that ws have a lower bound of 1200 on .l(:'. Just as in
the original problem. low, betause of the neture of the matrix we may

subtract El 82 83 from ). Ve do this because we see that y3 would

be O, if were O, and thkis is not so with any of the others. Thus, on
*1

Bl B2 B3 2300 is the minimum and this would be the first elemesnt of the
decreasing sequence. Now suppose we wisn tw find the minimum on §2. To
do this, we first charge the last row only in yk colunm. By subtracting
3/2 we ses that the 9,10 changas to ~3/5, thus we pivot on this column to
obtein a new lower bound of 1500 as before, and then ws continue on to the
other groups. Thus one can sse that with ths correct set subtracticn we
can dbtain the same algorithms as before, only the matrix is different and

the rules or plvoting frowm group to group are different. However, the re-

sulting two sequences are jdentical, if the set subtractions are the sames.

17=




IV. SZWARC'S METH(D

In his paper [2] Szwarc presents a completely different method from
Federowics's in salving the mixed integer linear progremming problem.
Federowicz’s method, roughly speaking, is to start with a feasible
maximum and continually get betiter ones until the estimates indicate
that the right one is found. Thus he works his way up through feasible
maximi. Szwarc’s method is just the opposite. He works his way down
through infeasible maximumi until a feasible solution (cne satisfying

the Boolean constraints) is found and thus the computation is ended.

A. The Problem

A slightly more general formulation of the problem than previously

stated is:
n
Maximize L Cc, X, =3
J"l J J
n
subdecttodflaidxjubi x=1, 2. . .m (1)
o_<_:|:‘151,.1~-1:,:’.,u,,pgn,osxdsd‘1 (dd_>_0),
J‘p#l’t-:no (2)
(o]
xj'-{or J.l,oopp- (3)
1

We shall call this problem I. This is the problem we eventually wish to
solve.

The first part of condition (2) may seem unneeded considering condition
(3), but we shall form another problem, called problem II, where we only
have conditions (1) and (2). That is for problem II we maximize the same
function as problem I but with just the conditions (1) and (2).

18-
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Now suppose problem II i1s solved and it has a maxdmum of 3,- We
shall now formmlate another problem, problem III, which is to:

n

maximize L o¢,x, %%
jo1 473
n

subject to jfl aij xj-bi i=1l, , . .m
n Ca )
321 <:.J J-so-b-t

OSxJSI,jﬁl, r.op5u,0‘<_x‘1_§dj Je*epel, .. .y n

where t is a nommegative parameter and 5 is sufficlently small. It will
be noticed that the maximization is not needed since the last condition
in ( 1 ) insures that it will be at a maximum. Now one can see that
this protlam is a parametric linear programming problem (see pp 220-231
in [4]) 2nd thoerefore we can find a sequence

s by - o ’t”k » Ostlstzgoo astk
and the corrssponding sequence

x (), x,(8) o o oy (L)
where xa(t) is a solution to problem III for

t,y St <k, (t = 0)and the bases of twc consecutive sclutions
differ by just one variable. The way the sequence 13 developed 1z as
follows:
First we salve the problem with t = o (or arbitrarily close to it armd
poeitive). Then we can see that each variable in the basis is a linear
function of t. Then we increase t until one of the varisbles becomes
negative. Then we pivot on the row of that variable (see pp 220-231 in
[l..]) such that the basis remuins optimum. Thus we obtain a new basie for
a new largee value of t, We then contirue in continually increasing the
value of t and obtaining new bases such that each successive one differs

by one elemsent, and thus obtain the sequence previously described
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If there are several feasible salutions for x.(t.) we must consider
then all.
We also know that x_(t) is a linsar function of t in the interval
["..1' t..]-
Now it can be proved {see Scwarcz Appendix in [2]).
1. The minimum value of t auch that x'(t. ) satisfies the Boolean
constraints is the solution to problem 1. This is easily seen
oy looking at comsition (1)'.
2. 'The solution to problem I occurrs at a cormer point of problem
III. That is either xs’. ta—l) or 'z.(t..) satisfies the Boolean

constraintes if soms t in [t t’] allows x.(t) to satisfy the

s-1’
Beolean constraints, and if xo(ts) satisfies the Boolean constraints
t, 1s the unique value of t or x.(t...l) also satisfies the Boolean
constraints.
B, The Algorithm
We can now see moi’a or less how to solve the problem with the help
of these lest two statements, The following, however, is an algorithm
proposed by F. M. Tonge in his paper [3].
1. Find the solution to preblem II, (in general there will be only
1 and it will not satisfy the Boolean constraints. If it does,
hewever, we are finished) and consider problem III,
2, Estasblish a l1ist L which is to be a list of extiems points, in a
zet of basis vectors x,(t), and always keep it increasing order
of t max.
3, Find each optimal basic soluticn to problem, and find ali first
intervals, in the xi(t) sequences, and find the t max for that

interval and enter it in the appropriate spot in the list L,
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Also check to see if this entry in the list satisfies the Boolean
constraints and 1f it does delete all entries in the list that
have a greater t max,

That is, if 1' is the row of the constraint becoming negative,
enter in the 1list L the basis formed by replacing 1! by ' with

¢ max given by

t max = min by ~a, bg
a a
fwd, - 1 d, <0 °(d1" A3 din)
i o mroe— > 1 a o
Ryoge 19

vhers di is the coefficient of t in equation 1, and a < 0.

iv30

4. Consider the first entry in the list L. If it has satisfied
the Boolean constraints (it will have been checked before) we
are done. If not move to step £.

5. Remove the first entry from the list, then for that entry find
all the possible next intervalis and enter their bacis in the list
as in step 3, checking for Booleaness. Then return to step §.

If no further intervals can be fc;und, no solution to problem I exists,

It should be noted that due to the nature of constraint { 1! ) there

will in general be a number of firat, second, etc. intervals. In fact,
this is the main disadvantage of the elgoritim .
Jt wus pointed out by Tcnge that in the list L only changes in the

bases need be considered in each entry. (see page 3 in [3]).
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V. SZWARC'S METHOD AFFLIED TO AN EXAMPLE SOLVED BY FEDEROWICZ'S METHOD

Szwarc's algorithm is primarily concerned with a msximization problem.
However, it is easily seen how to apply it to the minimization problem,
in Micular the example considered by Federowicz. The rest of this paper,
however, will be concerned with the maximization problem.

The problem again is to:

Minimize C('x) = 1000 (xl C X, ¢+ 13) + 300 4 + 700 b, + 1400 53

where bJ-O if xJ-O

=1 if >0

%3

subject to x, > 0

J
x1*2/3x2*x321
/2 x +x, + 2/3x321

Or in Ss=xv¢'s form:

Minimize C ) = 300x; + 700x, + 400xs + 1000 {x, * ys * x)

subject to xj >0
-x 2-1 29 -x, 20 xh+2/3x5*x621
4 ~,
-x2_>_—1 3/23(2-x5_>_0 1/2xl‘*x5+2/3x6_._-_1
) >-1 3/2 y3 = %Xg >0
) (2) (3)

where X 1:2, x3 are O or 1l. This is problem I. Prohlem II is the
same, only without the last constraint. Problem III is the same as problem
II, except we have the paremetric constraint 300;(1 * 700x2 + 140013 + 1000

(xh ME x6) 232, ¢+t where z is the minimm found by problem II.
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The constraints (1) are those that insure that the Poolean variables
do not exceed 1. It is hoped that they will turn cut tobel or O in

problem III.

The constraints (2) are those that insure that the Boolean variables
will be turned on with their correct counterparts. Xy %o x3 correspond
to 81 Bys 33 and x3, xl‘, xg to Yy» Yoo x3 in the previous rroblem.
The coefficients of X9 Xy x3 in (2) are obtaine? from the constraints
in the previous problem.

The constraints (3) are identical to before. The initial tableau for
problem II will look like:

Facility 1 2 3 4 5 6

fatrix
Restireinte
-1 = 0 o} 0 0 0
< -1 0 -1 o} o} o} 0
= 0 o -1 0 o} o
0 2 0 0 -1 0 o
(:2) 0 (o] 3/2 0] 0 -1 0
0 0 o] 3/2 o] 0 1
f 1 0 0 0 1 2/3 2
(3)
L1 0 0 0 1< 1 2/3
coste +300 +700 +400 +1000 +10CO +1000

Rewriting this in the dusl form and maximizing, we have:
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x, 520 -6/5 9/5 6/5 ~4/3 0 ~6/5 L/5 Y

x, 33320 9/5 -6/5 -~4/5 22/15 O L/5 -22/15 O

y, 2120  3/8 ~6/5 ~L/5 7/15 -1 /5 <7/55 0
3

x5 800 o 0 2/3 0 0 -2/3 0 0
3

x, 1400 o] o} o] 2/3 0 o] -2/3 0
3

v, 300 o] 0 o] 0 2 0 o -1

1640 3/5 3/5 2/5 2/5 0 3/5 3/5 1

Thue the solution to problem II is (0, 2/5, 2/5, 0, 3/5, 3/5) and the
minimm ie 1640 which is less then 1900, the minimum with the added con-
straint of x,, x,, y3 = { g (a8 known from Federowiceg's probiem). Now
we must add the new constraint C/X) = z, *+ t. With this added colum, we
see that we repeat the sams final column as before, only -t will be in the
last row (first element). We must now pivot on this column with each of
the entries. After doing this we see that all the entrles in the last
row are positive for t 1is sufficiently small in all cases, except one

where we pivot on the v, row. Since the new entries in the ¢, colum

J

?
are equal to oyt 8. where a 13 is the pivot element of the
[ ]
1)
—c,a, '’
newly added column. Thus the ¢ for this pivot will be t =min 7371 §
t
a;'y
where a; 3<o0.

g
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Thus we have:

basic change from ys, Vg y3, Yo Yg» Xgs x7, Yg» R

No.

i, x2 ->R - 260 — x, and s and y,
2 x ->R —— .;,52% =y x,

3 o Y >R - 600 —— xg

Ny X, - >R e 420 —— Xy

5 y; - >R —_— 300 —-—- N

Now by pdvoting on the xs column we do not change the objective
(i.e., it is another min point) function, and then pivoting in the R

column end x5 vie now may add tc the table,

& ¥y = > Xgs “/li - >R 528-5‘- — yg and vy

Thus L will be, in order of the num:er of basis, 1, 5, 4, 2, 3. Thus

tha first one locked at ie 1. Pivoting we have with the new column:

(ses tollowing page).

low we can see that at t = t = 260 we have 0 or 1 as the first
three elements, and thus (0, 0, 1, O, G, 3/2) is the minimizing point.
Since there were no elements in the list with a ¢ less than 260,

this is the solution to the problem, and the minimum is 1900, the same

as obtained by Federowicz.
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VI. A CQHPARISON OF FEDEROWICZ‘S METHOD AND SZWARC'S METHOD FOR SOLVING

THE MIXED INTEGER LINEAR PROGRAMMING PROBLEM WHERE THE INTEGERS ARE

'JERO OR ONE

Now, having seen both methods and howi they have been applied to one
specific example, we can say something about the relative merits of the
two methods. First, we shall talk about the problem proposed and solved
by Sewarc, and compare it to the same problem solved by Fedsrowlcz's
generalized algorithm . As has been said before, the attack on the prob-
Jem by both algorithms are roughly the same in that they both use the
simplex method aes a sub-algorithm and pivot from corner point to corner
point in searching for the final maximum. The difference, however, is
that Sgwarc definss a different and larger problem (problem II) which
':containa" the original problem if further restrictions are made (namely
that the first p of the variable be O or 1), and then searches down
through this new convex set of feasible solutions until a solution to the
original problem (problem I) is found. This is the effect of the parametric
t and the added constraint in problem III. Federowicz's algorithm , how-
ever, does quite the opposite. He does not change the original problem and
always pivots and remains in basic fessible solutions to the original prob-
l;m (problem I in Szwarc’s algorithm). He starts at the origin, let
us say, and then continuelly increases the best maximum yet found. He con-
tinues this way until the estimates on the rest of the set (not necessarily
convex) indicate that the rest of the set is less than the current maximum.
Thus we can see that Federowicz's slgorithm works with a smaller set which
is not convex and finds his wsy up to the maximum, whereas Szwarc works
with a larger set, & convex set, and he works his way down to find the
glution.

From this we might suspect that Federowicz's method would almost always

be quicker (in computational time) to find a solution than Szwarc's method.




H?wever, there are two reasons why this is rot necessarily so. First,
although t};e total number of extreme points is increased, this does

not guarantee that there will be a larger number between the sclution

to probleme I and the sclution to Problem II than extreme points con-
sidered by Federowicz's method. Second, not only must ihe extreme points
o‘f the current maximi in Federowicz's method be considered in computational
time, but also we must consider computetion time expended in applying the
»‘«}mplex algorithm on the groups of subsets used to estimate the maxiraum on
the subsets no' actually substracted. Nevertheleés, we can say aomet.hiné
about the relative computational merits of the two algorithms.

First we should look ¢ the relative computational time of Federowicz's
generalized ¢lgorithm and his first more special one. On the same problem
t.'he 8ennralized algorithm will be slower because the matrix is n + m by 2n
if there ara n. varisbles and m constraints in the original problem.
'I}.\ua ;va see that the tablecau we are to work with is increased by 2 n2 + mn,
\miéh could slow the algorithm down considerably and cause evan more probh-
lans wi:t.h storage space. This also showe some of the difficulties involved
as the number of variables increases. MNct only do the number of pivots in-~
c.roane, but also the time it takes to ma.ké each pivot.

Now we “an use Federowicz's i‘imtx;ztéhidstarmard to increase in some
sense the other algorithms. e have scen that the generalized algorithm
for the same number of on-off variables and the original problem takes the
same number of pivots as the standard, but takes a longer time to make them.
In the application of Szwarc's algorithm to the standard we see that the
matrix is the same size as the generalized algorithm and the question is
how operations on pivots are to be made to find the solution. If the ex-

ample previously exhibited is any indication, we see that this algorithm
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is much shorter than either of the other two. However, it is easy to see
that there exists many examples where it takes much longer to find the
solutions and we must go much deeper into the 1ist L.

Now let us see what happens when we vary the nmbe:;?\Boolean variables
relative to the other variables in Szwerc's problem. Let us say that the
number of Boolean variables is p ard the number ‘of non-Boolean variables
56 n snd there are m constraints. Now let us count the mumber of ex-
treme ol«t: that will be in the totsl convex set considered by Szwar:'s
problem II, and see how many fewer there will be in Federowicz'’s set which
is smaller but not convex.

First, let us count the total number of extreme points considered in
Federowicz's treatment of the problem. It is eagx to see tha.t there are

ext.reme pon

2p subsets to consider, and for each of theee subeeta{ (m C_n_q_)_!

the mmber of combinations of piecking m + n things m at a time] since
there are m slack variables, N regular variavles i:d only m

variablzss in the basis. Thus in all there are zp(m 5 n) extreme points
in the est. Next let us consider the number of extreme peints in frzware's
A-vblem II. Due to the nature of the firat p constraints both the
variable and its slack variable cannot both be out of the basis; if the
varisble (or its slack variable) is one of the 'firet p- Thue we have
threz possibilities for each of these first p wvariables. Either both
it and its slack variabie are in the basis,; or just the regular wvariable
or just the slack varisble. (If Xy 1s one of the first Yy varisbles,

1;‘ - X" xi' is its slack variabtle.) If there are [ variables that have
both the regular variable and its slack variable in the basis, ther« are

~k
( f: ) combinations cf the variablees such that this can happen, 2 v different
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arrangements of the other p-k Boolean variables, and (: : lr: ) arrangements

of the other non-Boolean variables. Thus, if p < m, we have

é (P )(m+n) 2Pk extreme points and if p > m, we have
k m - k

"
% ( p) (m E n) 2p°k extreme points or more generally
ke=( k m - k

min(p,m)
(P ) (m * “) 2Pk extrene points. And thus we see that
k=0 k m - k

min(p,m)
( p) ( . n) 2Pk is the number of additional extreme points
k= k/ "m - k

created by Szwarc's problem (i. Let us now obtain a lower bound for this

number. First let us suppose that p is small relative to # and n

(p<mat leest). Then 2 YT P2 atn [CA"), BBE, () 277 -
m

- X
minl (8P), BB)] (3P - 2P), {(™%P) < B'B) if andonly if m>n+ p } or

L)

m*n' P _ P ao
(m, n+p]) (3 -2 ) o Thus if m is not too much larger than n + p

we see that for large p (but still small relative to m) the new extreme
points of Szwarc's problem far exceeds the total number of extreme points in
Federowicz's prcblem, due to the weight of the 3P, 1In fact, if

m>n+ p, (m;n) (3P - 2P) > 2P (%) for all p>1 and the inequality
becomes stronger as p increases. MNow the problem is to estimate the

nunber of these new extreme points which lie above the set considered by

Federowicz. This number will certainly be far less than the total number
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of pivots that Szwarc's algorithm finally makes since each of thess points
mst be visited at least once, and probably more often since the algorithm
will have to retrace its steps to get to the next lowemt vertex. Now, if
this number is Jjust as great as the original set considered by Federowic:z,
i.e., 2P (.‘ﬁn), by proportion to the total number of points in the set,
i.e., ¢ 3° - 2P) (m;ln) {for some constant c¢] we see that for sufficiently
large p Federowicz's method will be much supericr, aint:e at the very
most it considers 2P ("iP) extreme points and usually not even that many.
Now,let us suppose that p is large relstive to mor n. It is diffi-
cult to see Jjust what will happen always. However, with Szwarc's method we
can see that the additional extreme points do not grow as 3p as before
since in f:he sum there are only i terms. In fact, the number of additional

m
extreme points is il ( p) ( m+n) 2P, vhereas in Federowicz's they are
k=1 k m~k

stizl 2P (“‘Sn), which is now getting quite large. In fact, let us say that
there is just one original consti'aint, je., m = 1, and that p«&2n + 2, but
still lsrgze. Then:

é (::) (2::) 2P K . p 2P 1/2 < (n+1) 2P ~ 2P ™ -

Now we see that since ("n®) = n+ 1 is a relatively small number that the
"help" Federowicz's method gets from the simplex algorithm will be relatively
small and that the rules for determining how the sets are broken up will tell
how fast the algorithm works. If the example i8 any indication we see that
“at J\.eaat somewhere on the order of 2b pivots will haﬁ to be made. 1In
STwarc's case we see that no more than p £ 1/2 different extreme points will
be visited, and there will probably be much less. Thus if too many are not

revisited we see that Szwarc's method should be superior.
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This brings up an important point. Much depends on Just how "good"™
S:\.varc'a method is. We have made an estimate of the nwiber of different
extreme points to be visited, but olsriously much depends on how good this
eatimgte is and how often we revisit an old vertex. If it tLurm out that
many vertises are often revisited, we may be able to remedy the situation
by chéngir‘.g the algorithm. It would be to remember instecad the tableau
at any vertex it might have occasion to return to, and then jump directly
from vertex to vertex without having to pivot over and over. Esach time a
pivot -is made it would be to a new vertex. Or the algorithm could be
changed ’ifferently. It ’would be a mixture of both ways. That is, only a
few "key" verticea would have their tableaus remembered. If we are in one
end of the set and we wish to go to the other, we first jump to the tableau
of the nearest "key" vertex (nearest in the sense of the number of pivots)
and then pivot to the desired vertex. ‘e now see that the revised algorithm
@.‘11 more nearly resemble Federowicz's algorithm due to the storage of the
tabledus, and in my opinion present a fairer comparieon of the two algorithms.

Now one more interesting special case is when n = 0O, that is, all the
variables are Boolean. In Federowlez's algorithm the number of extreme
p"oint.a is just 2P, However, there is no application of the simplex
algorithm and the problem is just to find a feasible solution. Once again
the algorithm's speed depends only on the cholce of the rules for set
subtraction. In Szwarc's algorithm, howsver, the simplex algorithm is
applied and we may hope for a shorter solution. The one drawback is that
the set of extra points is much larger than 2P. To see this suppose m < p,

m m
k m k ~m P
then: = (P)/® V2P >p 3 2P %2 2P (p2™ - 1) > 2P if mie
\ k-lck)(-k) : k-l(‘)

small enough, i.e., m S%%;Lg - ). However, we would suspect that if Szwarc's

method works at all, it should wprk in this case, and should compare favorably

(9

with Federowicz's method.
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Now, if it turns out thet both algorithms do fairly well with the same
problem, and they both take about the same amcunt of time, we might be able
to obtain a faster algorithm by mixing the two, and use each one to help
f.he other. The way it would work is as follows. At each step or pivot we
would make one pivot in the Szware algorithm, and then one pivot in the
Fg'derowicz algorithm. If in Szwarc's method we come across a possible
solution to problem I ( but hat not pivoted to it yet ), that is it has a
maximun better than any of the maximi already extracted, and in the group
that is to be next broken up we may extract this set instead of those de-
termined by the normal rules. Also, if in Szwarc's method there are members
of the list L that have a maximum less than the' current vaiue of the best
mfa:dm\m in Federowic,'s method, we can @liminate 1% fmn; the list L, since
it will never te pivoted to anyway. Also, 1f we decide to stop before the
f.ina.l solution is found, the current value of Z -‘tmax in Szwarc's method
:or the greatest upper bound in Federowicz's method will serve as an upper
bound, and the best point fourd by Szwarc's method that is feasible in prob-
l:em 'I or the current value of Federcwicz's method will serve as a lower
bound on the final solution. These can be used to estimate the solution if
1% 13 computetionally infeasible to go on, and it can be seen that the
ap.propriate bounds also apply to each separate algorithm as well as the
composite one just described. Also, instead of applying them both at once
.one might be inclined to try first one then the other if the first proves
infeasible computationally.

, Lastly, it is easy to see that both methods can be used to find secondary
maximi. That is the second, third, etc. , best value that the function can

take on and still satisfy the constraints. In Federowiz's algorith, we

e




Just ignore the fact that the two sequences have met and throw out the
p:Sint where they have croesed and continue on. In Sgwarc's method all

we need to do is forget that the Boolean constraints were satisfied and
continue on listing those that do. It can be seen that nct only will all
the feas:ible pointe of Federowicz's problem (problem I) be listed, but
elso all the feasible points of problem 1II as well.

=34

10




(11

3]

(%]

References

Fedsrowicz, Alexander J., "A Generalized Algorithm Solution of
a Class of Non-Convex Programming Problems,™ Ph.D. Thesis in
Mathematics, Carnegie Institute of Technology, May, 1963.

Szwarc, Vlodzimierz, "The Mixed Integer Linear Programuing Prob-
lem When the Integer Variables Are Zero or One,” Msthematical
Institute of the Polish Acadewy of Sciencss, “'rochaw, Poland
and Carnegle Institute of Technology, Graduate School of
Industrial Administration, Pittsburgh, Pennsylvania, part of
research project on plenning and control in Industrial Adminis-
tration, May 7, 1963.

Tonge, Fred M., "A Revlised Algorithm For the Mixed Integer Pro-
gramming Problem With Boolean Veriables,™ Carnegie Institute of
Technology, Graduate Scheol of Industrial Administration, Pitts-
burgh, Pennsylvania. A research memorandum for private circu-
lation, June 1, 1963.

Garvin, W. W., Introduction to Linear Programming, McGraw-H1ll
Taolk Company, Inc., New York, 1935, PP- 220-231.




