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FOREWORD 

This  report represents one phase of an effort aimed at extending the 
techniques of airframe—human pilot systems analysis used for the deriva- 
tion of fundamental vehicle handling qualities.     Previous investigations 
have studied lateral and longitudinal piloting  situations applying  single- 
loop feedback analysis methods and employing a mathematical model of the 
human controller as a  servo element.     The multiloop systems analysis tech- 
nique developed herein, although intended for manual control applications. 
Is equally suitable for automatic control system investigations. 

The research reported was sponsored by the Flight Control Laboratory 
of the Aeronautical Systems Division  (now part  of the AF Flight Dynamics 
Laboratory, Research and Technology Division)  under Project No.   8219, 
Task No.   821905.     It was  conducted at  Systems  Technology,   Inc.,   under 
Contract No. AF 35(616)-802lj-, with Mr.   I.  L. Ashkenas and Mr. D.  T.  McRuer 
serving as principal investigators.    The Air Force project engineer was 
Mr. R.  J. Wasicko. 

The authors gratefully acknowledge technical and editorial contribu- 
tions made by Messrs. R. L. Stapleford and R. J. Wasicko and the careful 
work of the STI production staff. 



ABSTRACT 

The multlloop vehicular control system analysis technique developed 
is designed to maximize the ransfer to the multlloop problem of knowl- 
edge and insights obtained xrom elementary single-loop vehicular control 
system analyses.  The matrices representing the closed-loop multlloop 
system are expanded in a special fashion to forms in which the elementary 
single-loop systems explicitly appear.  In the course of the development, 
the concept of the vehicle coupling numerator is introduced as an addi- 
tional property of vehicle response behavior. The over-all closed-loop 
system analysis consists of successive closures of single, elementary- 
system loops and loops involving vehicle transfer function numerators and 
coupling numerators. 

The method is developed initially using a general multlloop system. 
Two simple, practical multlloop systems in aircraft control are then used 
as examples of the analysis technique; one illustrates a multlloop situa- 
tion utilizing a single vehicle control input and the other involves 
multlloop control using two vehicle control Inputs. 

This technical documentary report has been reviewed and is approved. 

CHARLES B. WESTBROOK   ^^ 
Chief, Control Criteria Branch 
Flight Control Division 
AF Flight Dynamics Laboratory 
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SYMBOLS 

[a] Matrix of a    .'s   (see Eq 9) 

ai-! Typical coefficient  element  in  Laplace-transformed  equations of 
motion describing vehicle characteristics   (see Eq 1) 

a-y lateral acceleration;   generally measured at a dirtance  lx from the 
e.g.,   ay = ay + lxr cos a0  + lxp  sin a0 

A Gain  of transfer function particularized by  subscript 

b Wing  span 

B Polynomial coefficient 

c Mean aerodynamic chord 

C Polynomial coefficient 

CD Total drag coefficient, Drag/(l/2)pU§S 

CD Drag coefficient variation with angle of attack, äCD/äa 

CDS Drag coefficient variation with control deflection, äCD/ä5 

Cj\ Nondimenslonal variation of Cp with speed, U0äCD/2äu 

Ci Rolling moment coefficient, (Roll moment)/(l/2) pU0Sb 

C2_ Dihedral parameter, äC^/äß 

Cj-, Roll control effectiveness, 00^/05 

Ci Roll damping coefficient, äC1/5(pb/2U0) 

Ci Roll coefficient due to yawing velocity, öCi/ä(rb/2U0) 

CL Lift coefficient, nW/(l/2)pUoS 

CT Lift curve slope, dCjJba 

CL„ Control siirface lift effectiveness, öCL/ÖS 

C]. Hondimensional variation of CL with speed, U0öCL/2äu 

CJI Pitching moment coefficient, (Pitching moment)/(l/2)pU^Sc 

CM Pitching moment coefficient variation with angle of attack, äCf^/öo, 
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CM4 äC%i/ö(dc/2üo) 

CMe 
Control-surface pitch effectiveness,  ÖCM/ÖS 

Cf« Pitch damping coefficient,  äCM/ö(qc/2U0) 

CR Kondimensional variation of  Cyi with  speed,  U0äCM/2öu 

Cn Yawing moment  coefficient,   (Yawing moment)/(l/2)pU^Sb 

Cno Static directional stability,  öCn/äß 

Cn?, Yaw control effectiveness,  öCn/äB 

Cnp ÖCn/ä(pb/2U0) 

Cv Lateral force coefficient,   (lateral force)/(l/2)pU0S 

Cvc Variation of Cv with  sideslip angle,  dCy/dß 

Cv.. lateral force effectiveness,   dCv/oö 

db Decibel = 20 log10   1    |   =   |    |db 

D Denominator polynomial of G(s) 

[E] Ifetrix of coefficients E^i   (see Eq 7 and 13) 

[F] Matrix of coefficients Fj^.   (see Eq. 7 and  n) 

g Acceleration due to gravity 

G(s) Open-loop  transfer function;  also,   specific  transfer function as 
particularized by  subscript(s) 

h Altitude 

H5 Vehicle transfer function = H^g/A (see Eq 66) 

Ix,fy,Iz Moments of inertia about the X, Y, and Z axis, respectively 

I Product of inertia in XZ plane 
xz 

^5 

jcu     The imaginary portion of the complex variable, s = a ± jcu 

The zero frequency value of the transfer function H^s) 

Ke_    The zero frequency value of the transfer function 85(6) 

K      Open-loop gainj the frequency-invariant portion of a transfer function 
as s -•- 0, particularized by subscript(s) 

1^     Distance along the fuselage longitudinal reference axis from the e.g., 
positive forward 
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Lß pSU^bClß/2Ix 

h. CLi  +  (lxz/Ix)NJ/Ü   -   (^z/Vz)^   i  = P'   r'   ß'  etc- 

Lp psu0b2clpAix 

Lr pSU0b2Clr/^Ix 

m Mass 

tfe U0M^ 

MB pSu2cCMq/2Iy 

Mq PSUQC
2
^/^^ 

Mu pSUoC^/ly 

% pSUoCC^/aiy 

M^j pSc2CM(L/^Iy 

n Vertical  load factor 

K Nijmerator polynomial of G(s) 

Nß pS^Grit3/2Iz 

% f£U2bCns/2Iz 

^i^k Coupling numerator particularized "by superscripts and subscripts (see 
N8152 Eq. 27) 

Nv,- numerator of transfer function relating altitude to control deflection 
particularized by subscript 

Ni [%  +   (1^/ljLj/D    -   (l2z/lxIz)],   i   = p,   r,   ß,   etc. 

Np ^U0b2Cnp/l+Iz 

Nq. Mumerator of vehicle  transfer function relating generalized output,   q^, 
J to a generalized control deflection,   5j 

Nr pSU0b2CnrAlz 

Nr Numerator of transfer function relating yaw  rate to  control deflection 
particularized by  subscript 

p Roll rate,  angular velocity about  the X axis,   pos^ive  right wing going 
down 



Ls J 

Generalized output of the system; or pitch rate^ angular velocity 
about the Y axis, positive nose going up 

Vehicle generalized transfer function 

Yaw rate, angular velocity about the Z axis, positive nose going right 

Rg^s) Vehicle transfer function relating yaw rate to control surface deflec- 
tion, r(s)/5(s) 

s Laplace operator, a ± jüü 

S Wing area 

1 /T Inverse time constant, particularized by subscript 

u Output motion quantity (linear perturbed velocity along the X axis) 

Uo Vehicle transfer function 

U0 Linear steady state velocity along the X axis 

v Linear perturbed velocity along the Y axis 

w Output motion quantity (linear perturbed velocity along the Z axis) 

W Weight 

Wo Vehicle transfer function 

X^ UQX^   ^(CL -   CDa)/2m 

X5 pSu2(-CD5)/2m 

Xu pSU0(-CD -  QDj/m 

Xw pSU0(CL -  CpJ/am 

Y8 U0Y| 

Y& ^U0Cy5/2m 

Yv ^U0Cyß/2m 

Zs pSU§(-CL5)/2m 

Zu pSU0(-CL -  C^/m 

Zw pSUoC-CLa " (Wan 
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a W/UQ, perturbed angle of attack under no-wind condition 

a,0 Angle between fuselage longitudinal reference axis and X axis 

ß V/U0, sideslip angle under no-wind condition 

5 Control deflections, particularized by subscript 

A(s)   Denominator of airframe transfer functions; characteristic equation 

when set equal to zero 

A.- ■    Cofactor of characteristic determinant (see Eq 52 and 35) 
•^ J 

£      Damping ratio of linear second-order transfer function quantity, 
particularized by subscript 

TJ      External disturbances on the vehicle, particularized by subscript 

0      Pitch angle 

8      Transfer function relating pitch angle to control surface deflection, e(s)/8(s',, 
5 

g      The negative of the damping ratio for a special value of s; | =  -     : 
Va2 + o£ 

p      Mass density of air 

rr      The real portion of the complex variable s = a ± JCD 

cp      Roll angle 

$fi(s)  Transfer function relating roll angle to control surface deflection, cp(s)/6(s) 

Frequency; jcu is the imaginary portion of the complex variable s = a ± JCD 

"6 

a) Undamped natural frequency of a  second-order mode,   particularized by 
subscript 

Subscripts 

a Aileron,  aileron axis  transfer functions 

a Altimeter 

c Command; crossover; controlled element 

d Dutch roll 

e Elevator; system error 

eff Effective 

E Lead equalization 
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lat Lateral 

long Longitudinal 

P Phugoid 

r Rudder;  yaw axis  transfer functions 

R Roll subsidence 

sp Short period 

T Throttle 

5 Servo  characteristics,   e.g.,   ojg 

€ Error 

e Pitch transfer functions 

P Washout 

? Roll transfer functions 

Note" ̂ ional Rules  for Closed-Loop  Quantities 

The number of primes present indicates the number of loops closed previously 
which affect the quantity considered. 

The notation for the closed-loop factor is the same as that for the open- 
loop factor (plus a prime) when the closed-loop and open-loop transfer 
function factors have the same form.  In this case the origin of the 
closed-loop factor is always at hand (e.g., cqj -*- o^, av -*- aU, au -—aü, 
TR ^ TR3 TCPT -^ T^T . Tdl ^ T(i1 , etc . ) • 

3. When the closed-loop factors differ in form from their open-loop origins 
several possibilities exist: 

a. For closed-loop factors which have the same form as, and 
are approaching, open-loop zeros, the closed-loop factor 
notation is that of the open-loop zeros (plus a prime). 
For example, open-loop quantities (s + 1/TS) and (s + 1/T^o)^ 
which couple to form a quadratic approaching the open-loop 
zeros of (s^ + 2^rmrs + tuf), would give rise to a closed- 
loop factor ordinarily denoted as (s^ + 2^^ü>^S + c%.2) . 

b. For closed-loop factors which differ in form from both the 
open-loop pole factors from which they depart and the open- 
loop zero factors which they ultimately approach, a special 
notation is coined which ordinarily reflects the origin of 
the factor.  For example, closed-loop poles which start 
from s = 0 and s = -l/Tp>, then couple to form a quadratic 
factor, and subsequently decouple to end finally at two 
real zeros, would be denoted as s2-  +  S^RCURS + CDR^ in the 
quadratic region. 
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c. Closed-loop factors which have no readily identified origin 
or end point, such as one starting at s = 0 and approaching 
s = ■» as gain increases, are given a specially coined nota- 
tion, e.g., I/T^. 

When the application of these rules hy rote would result in confusion in 
the local context, a new form is substituted for the closed-loop factor 
involved.  Primes, however, are always retained. 
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SECTION I 

lOTRCDUCTION 

The intelligent treatment of linear multiloop systems requires an analysis 

technique which is comparable, in providing insight for synthesis activities, 

to the graphic and physically meaningful techniques available for single-loop 

analysis.  Such provision of synthesis-oriented insights and physical appreci- 

ation is central to the intelligent, interpretative analysis necessary to 

achieve near-optimum synthesis of complex systems.  Perhaps the most important 

class of such complex multiloop systems involves control of vehicles having 

many degrees of freedom.  In these systems the vehicle is usually the most 

complex and troublesome dynamic element in the system; so much so as to ordi- 

narily be the object of separate study and technology.  Many of the loops 

required in the control system are primarily intended to correct the vehicle's 

dynamic deficiencies.  Consequently, the adequacy of any multiloop analysis 

method evolved will strongly depend on how easily and creatively the available 

knowledge of vehicle dynamics can be utilized in the evolution of the multiloop 

control.  Most of the existing multiloop analysis techniques (see Ref 1 for a 

partial summary) essentially ignore this critical feature, and thereby fail to 

take full advantage of vehicle stability and control technology and the insights 

it can bring to vehicular control problems. 

The most common technique for the pencll-and-paper analysis of multiloop 

vehicular control systems is the method of equivalent stability derivatives 

(Refs 2-6).  Equivalent stability derivatives are especially useful when com- 

bined with literal expressions for the approximate factors of the vehicle 

transfer functions (Refs 2 and 5).  However, the method is restricted practi- 

cally to ideal (no lag) or nearly ideal controllers, and it is most easily 

applied (although not limited) to control feedbacks which augment existing, 

rather than create new, derivatives.  Within these limits it is an extremely 

useful analysis and synthesis tool. 

Original manuscript submitted December 1962; revised manuscript released by 
authors January 196^ for publication as an ASD Technical Documentary Report. 



By  far the most common means for nniltiloop system study and synthesis is 

repetitive analysis using the analog computer. With the aid of this tool and 

a background comprising knowledge of the vehicle equations of motion, an appre- 

ciation of the gross single-loop effects of probable feedbacks, approximate 

factors for the vehicle, past computer solutions, etc., the analyst can rela- 

tively rapidly arrive at a set of loop closures which define a "good" system. 

A "good" system in this respect will exhibit fast, well-damped, accurate 

responses to all representativs commands and will act similarly in suppressing 

disturbances (i.e., responses to commands and disturbances will be akin to 

those of a well-damped, low-order system). The "good" system will also be 

relatively insensitive to changes from nominal values in the vehicle or con- 

troller characteristics, will tend to be unaffected by the introduction of 

small parasitic nonlinearities, etc.  With the computer there is no essential 

difficulty in treating controller lags or, for that matter, nonlinearities. 

Exclusive reliance on the analog computer does have some deficiencies.  For 

instance, some insight into the over-all system is irretrievably lost because 

of the dominance of only particular modes in the time-histories.  Also, modes 

which may be of great importance when the conditions are changed slightly are 

suppressed, sensitivities are difficult to evaluate, gross trends and grand 

simplifications are harder to come by than with some analytical schemes, etc. 

Finally, elements described only in frequency response terms, such as experi- 

mentally measured subsystem describing functions and human pilot descriptions, 

cannot be used directly in computer operations. Thus insight is constricted 

and initiative stifled, as always happens when only a single approach to a 

problem is utilized. 

The properties desired of a multiloop analysis technique, in the light of 

the above remarks, should include: 

1. Analytical formulations which show, as separate entities, 
vehicle-alone and controller-alone characteristics 
expressed in conventional and well-understood terms— 
thereby providing a close tie to the individual elements 
and the physical problem. 

2. Analytical operations which can be performed using the 
more efficient of the classical graphical techniques of 
servoanalysis—thereby enhancing transfer of skill and 
intuition. 



3« Analysis sequences and procedures which are highly respon- 
sive to physical insights and intuition; and which lead, 
when used by a skilled practitioner, to "good" systems with 
a minimum of iteration. 

h.     Problem solution presentations, and results, which are 
supplementary as well as equivalent to the results obtained 
using the analog coniputer. 

This report develops and explains a multiloop analysis technique which is intended 

to satisfy most of the wants discussed above. 

Like almost all "new" methods the technique advanced here has some precedents 

which were significant in its evolution. Various steps in the technique to be 

explained were evolved over a fairly long period of time, starting about 1957 at 

Systems Technology, Inc. An analysis technique used in Ref 7 played an important 

role In suggesting some aspects of the development. Also, an analysis procedure 

having some features similar to that presented here was used by Mataga in Ref 8. 

In many respects the unified servoanalysis procedure, as reported in Ref 9, 

and the sensitivity and modal response analysis techniques reported in Ref 10, 

are the analytical companions to the multiloop analysis techniques reported here. 

This trio of reports lr Intended to cover, with a unified eclectic point of view 

regarding methods, most of the significant analysis problems of linear servo 

theory. 

The body of the report Is presented In three sections.  The major analytical 

effort appears In Section II for a sequence of generalized systems.  Generalized 

equations of motion are used as a starting point, then formulated as matrix equa- 

tions to simplify much of the analytical development.  Certain key observations 

on the desired types of matrix expansions are then made, after which the analyti- 

cal development is largely stral 

some practical problems of appl 

listed and discussed in general 

to elucidate by example some of 

ghtforward algebra. At the end of this section 

cation deriving from physical considerations are 

The last two sections of the report are Intended 

the aspects of the method which derive predomi- 

nantly from these physical considerations.  These sections start with the 

generalized treatment, and specialize it for two concrete exanrples.  The 

discussion of Section III treats a longitudinal example for an altitude control 

system.  This particular system is the simplest possible multiloop system 

insofar as its basic loop structure is concerned.  The lateral example, covered 



in Section IV, is considerably more  complex and serves as a simplified prototype 

for most multiloop vehicular control problems. 



SECTION II 

ANATYPIS OF GENERALIZED MULTILOOP SYSTEMS 

In this section the essential features of a multiloop analysis technique 

will be developed. A generalized notation for vehicle and controller variables 

is introduced early and used throughout the developments. Matrix formulations 

are appropriate for multiloop problems, and could be used from the outset; but, 

to maite the developments easier to follow for the reader unfamiliar with 

matrices, exemplary equations of motion are intermixed with matrix generaliza- 

tions.  In most of the developments an inductive approach is used wherein 

systems of limited complexity are used to formulate equations which are then 

expressed in matrix form.  The matrix equations so obtained are both a short- 

hand for the limited complexity system equations and, viewed more broadly, the 

appropriate equations for far more complex systems.  Thus an attempt is made to 

satisfy the often conflicting desires for concreteness and generality. 

Several types of systems appear in the course of the development.  These 

differ primarily in their level of complexity, which has been selected to be 

just sufficient to illustrate the local points being made.  The first system 

considered (in articles A — C) is the most complex; it is used to illustrate 

the generalized notation, matrix formulation, and closed-loop system character- 

istic equation development.  When closed-loop transfer function numerator terms 

become the subject of detailed examination, a somewhat simpler system is intro- 

duced for purposes of clarity.  Finally, in article D, a still simpler system 

is used to explain the steps involved in the final phases of the analysis 

process.  The two simpler systems are special cases of the more complex one, 

which is introduced below. 

A.  GENERALIZED SYSTEM 

The generalized vehicular control system to be analyzed is shown in the 

block diagram of Fig. 1 .  Despite Its foreboding appearance, the system is 

relatively simple, being just complex enough to represent most flight control 

situations and to allow easy inductive generalizations.  The system consists of 



a vehicle plus control equipment comprising sensing, equalizing, and actuating 

elements. The vehicle has three independent degrees of freedom, and is subject 

to control forces and moments applied by two control deflections and two exter- 

nal disturbances.  The control deflections are functions of command inputs, 

feedbacks from the three degrees of freedom, and a possible fourth feedback 

from an auxiliary variable which is a function of the independent degrees of 

freedom. Additional auxiliary feedbacks may also be present, but the single 

one shown will illustrate the analytical process relating to such quantities. 

Generalization by induction to include added auxiliary feedbacks will later be 

seen to be straightforward. 

The Fig. 1 block diagram can be simplified to one having only unity feedback 

loops by reinterpreting the command, Jj, and forward loop, Gj_j,  transfer blocks. 

This could be done in the qg loop, for example, by replacing ^(s) with 

J2(s) = J2(s)/H2(s), and replacing G12(s) and GggCs) by G12(s) = G12(s)H2(s) and 

G22(s) = G22(s)H2(s), respectively.  The unity feedback loops block diagram of 

Fig. 2 results when similar steps are taken throughout.  This block diagram is 

still somewhat overcomplicated in that command inputs are shown for all feedback 

loops. Actual commands ordinarily exist for only one loop, or possibly two. 

The analytical operations involved in the above reduction to unity feedbacks, 

and many other operations to follow, are based on the assumption that system 

elements can be described by linear, constant-coefficient, differential equations. 

Accordingly, all motion and transfer quantities in Figs. 1 and 2 are shown as 

functions of s, the Laplace transform complex variable.  The assumption of 

linearity also facilitates the manipulation of system equations and allows the 

principle of superposition to be used.  Superposition provides a great conveni- 

ence because the generalized closed-loop transfer functions need be developed 

for only one command input.  Closed-loop transfer functions for other commands 

can then be found by proper Juggling of subscripts and suitable interchange of 

elements within particular matrices. 

To go along with the economy of notation provided by the use of matrix 

methods, the functional dependence of most quantities on s is not indicated 

hereafter.  For example, the vehicle equations of motion for the three inde- 

pendent degrees of freedom are written as 
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al 11l + a1 2*32 + al 3I3 

a21 ^l + a22(32 + a23c='-3 

a31 ^1   + a32cl2    + a33^3 

F11B1   + F12S2 + E^^   + E12TI2 

FPTBT   + F2282  + E r21ul 21^1 + E, 22Tl2 

F,,5,   + F,p5p + E 31 u1 3202 t By] Hi   + ^32ri2 

0) 

where the a^'s are functions of s and vehicle characteristics such as stability 

derivatives (Ref 11). Then, the vehicle transfer functions for the responses of 

the Independent outputs to control deflections are 

02 

5-, 

O-l 

0,1 
52 

= ^ 

^ 

■^1 62 

^ 82 
(2) 

8ö 

in 

A 

where A is the characteristic determinant of the vehicle equations. 

A = l2l 

l31 

x12 

l22 

i32 

l15 

^23 

'33 

(3) 

and the numerator, Nq.  , is obtained by replacing the column of q.j coefficients 

in A by the colunm of 8j coefficients given on the right side of Eq 1. 

Additional shorthand defining the system and the closed-loop transfer func- 

tions is also needed.  The information required to specify a particular multiloop 

system is 



The command or input  to the system 

The vehicle  output to be controlled 

The control deflections  to be  used 

The error signals  (or feedbacks)  thai 
activate the  controllers 

This  information,   using a particular system as an example,  will be designated 

as follows: 

%~*'&z ' V V i CO 

Here the  feedback  signals to  62 are  q.   and  q. J  and to  61   are   qp and  q^.     The 

system input is a command,   q-j   ,  which also  implies  the directly controlled 

output.     Note  that  the  q-j—»-Bg feedback  is   implied by the  q-i    ,   so a  separate 

call-out is redundant. 

designated by 

The  closed-loop transfer function for  this  system is 

%' V 
%-^ 

and the appropriate controller equations are 

(5) 

51      =    G12(-q2)   + G^C-q^) 

82    =    G2^i-^)   + G2^(-q^)   + J1G2lq1 

(6) 

A disturbance,   such as  T\. ,   can also appear as a system input. 

Other  simplifying notation pertinent  to  specific   steps  involved  in  the 

development of closed-loop  system transfer  functions will be  presented  later 

as  required. 

B.     FORMULATION OF THE SYSTEM EQUATIONS 

The  complete  equations  of motion for the  vehicle   including  the auxiliary 

output motion quantity,   q. ,   can be  considered  in two ways.     The  first uses  the 

three degrees  of  freedom set,   Eq 1 ,   as the  vehicle  equations  and then  obtains 

10 



auxiliary outputs as linear combinations of the three independent outputs.  For 

example, for CK the linear combination would be q^ = aki li + alt.2^2 + ak-*fl-^' 

After substituting this relationship into the control deflection equations, the 

terms -G-j j^a^^ q^ , -G^a^^}  and -G-] l^a^^qz will appear in the equation for S-) 

and the terms -Ggij-^l'll ^ ~G'2h&k2<i&>  an^ ~<^2kak3<i-3 will appear in the equation 

for S2. When combined with the terms representing controller action on the 

independent outputs, equivalent controller transfer functions are formed. For 

example, G-^j^a^   + Gi 1 , G-j^a^g + G-[2>  an(i G^i^a^  + G'j 5 replace G-j 1 , G■^2^ and  G-) x 

as the forward loop transfer functions relating q. ,   q.^  ,  and qjr  , respectively, 

to 5i . The qu  connuand function can be assigned similarly to the commands for 

the independent vehicle outputs.  Thus, when this approach is used the auxiliary 

output motion quantity, q^, effectively disappears into the controller portion 

of the system. 

The second method of including an auxiliary output motion quantity is to 

treat it in the same way as the independent vehicle outputs. With this scheme 

the auxiliary output is viewed in association with the vehicle portion of the 

system.  Confining attention to the exemplary case, the three degrees of freedom 

set, Eq 1, is combined with the equation for q^. The latter is, of course, 

redundant as a system equation.  Thus, 

a11q1 + a12q2 + a15q5 

a21q-l + &22<h. + ^2^3 

a31cll + a32q2 + a33(13 

-a4l ^ - a^q2 - a^  +  q^ 

F115l     +   Fl262+El1Tll   +E12T12 

F2151    +   Fggög+Eg,^   +E22T)2 

0 

(7) 

or in matrix notation  (Ref 12), 

HM     =     WM   +  [E]W (8) 

where 

[a]     = 

' an ai2 al5 
0 

a21 a22 a23 
0 

a51 a32 a53 
0 

_-ain -a^2 

11 

"^5 
1 

(9) 



W (10) 

L^ 

[F]     = 

11 

21 

F 
51 

0 

12 

22 

"32 

0 

(11) 

[5] (12) 

[E]     = 

J11 

J51 

0 

J12 

22 

0 

(15) 

M    - (1^) 

With four simultaneous  coimnands to each controller,  the transformed 

equations  of motion of the controllers for the  system of Fig.  2 are 

ST     --    GU (J., <11C -1,)  + G, 2( J2(l2c - 12)   + Gl 5^ J5(15c " 43)   + G1 ^( ^^c " ^ 

82    =    021 (Jlli    - ^ )  + G22(J2<12C - la)   + G25(J3<l3c - «Ij)   + G2^(J^q4c - q^) 
05) 

12 



or in matrix notation. 

[5]     =     [G]M 

=     [0] [J] [ic]   -   [0] M 

=     Oc] [1c]   -   [G] H (16) 

where [G] 
LG21 

= [ji 

12 

22 

J2 

13 

J23 24 J 

JV] 

(17) 

(18) 

Oc] 
G11J1 

G21J1 

G12J2 

GppJo 

G13J3 

G23J3 

G1^ 

Ggi^Jjj. 
(19) 

M    = 

"1c 

(20) 

With the formulation of the matrix equations, the system block diagram of 

Fig. 2 can he replaced by the matrix block diagram shown in Fig. 3.  This is as 

deceptive in its simplicity as Fig. 1 is for apparent complexity.  The system 

equations- of motion can be found from either Fig. 3 or Eq 8 and 16.  Thus, 

substituting Eq 16 into Eq 8, transposing and collecting like terms, leads to 

[[a] + [F][G]][q]  =  [FJLGjCqJ + [E] &] (21 ) 

and after premultiplying by the inverse of  [a] + [F] [G] , the explicit 

for [qj becomes 

expression 

13 
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H     =    [[a]   +  M [G]]-f F] [GC] [qj +  [E] [n]} (22) 

This Is the formal solution for the closed-loop system. However, much remains 

to be done before it has any concrete value in analysis or synthesis procedures 

using servo methods. 

C.  REDUCTION OF THE MATRIX EQUATIONS 

From Eq. 9, 11, and IT, after performing the indicated matrix multiplication 

and addition. 

[a]   +  [F] [G] 

+ F-i 1G-) i 

+ FT2G21 

l51 
+ FjiG-i! 

32^21 

^1 

al 3 Fi i Gi 1+ 
+ Fn GT 5 + FT 2G24 

+ F-] 2O22 + F12G23 

il2 

+ F1 1 Gl 2 

21 a22 a23 
F21 G11+ 

+ F21 G11 + F21G12 + Fg! G1 j + F22G2^ 

+ F22G21 + F22G22 + F22G23 

i32 
+ F^G^ 

+ F52G22 

^2 

l35 
+ F51 Gi 5 

+ F52G25 

^3 

F31 Gl k 
+ F52G2i+ 

(23) 

When  set  equal  to  zero,   the  determinant  of Eq 23  is  the  closed-loop   system char- 

acteristic  equation;   for reasonable  iontroller dynamics   (e.g.,   Gy  a   second-  or 

third-order  system),   and a  normal vehicle   (e.g.,   a-^ first-   or  second-order  in s), 

it  can be a  fearsome  thing  indeed.     The   routine  application of digital  computing 

methods  can be  used to  factor  the  characteristic   equation when all elements are 
specified numerically.     However,   in a   synthesis procedure,   the  G's are unknown 

within a wide   range  of possible  variation.     Computing  routines which cover  such 

15 



ranges in Increments have been used, but the mass of data to be digested can be 

immense. Physical appreciation and the transfer to the multiloop problem of 

understanding gained with simpler systems is almost nil.  The net result, more 

often than not,   is to forget direct analysis except possibly as a check on the 

final results obtained after using an analog computer to narrowly delimit the 

ranges of suitable controller functions.  In any event, pencil-and-paper methods 

of conventional servoanalysis are not well suited to the problem presented by 

Eq 21 through 25 as they stand. 

Four considerations which relate to a change In the detailed form of the 

problem to one better suited for servoanalysis procedures are: 

1 . The vehicle is ordinarily the most complex element in the 
system and its dynamics tend to be dominant. 

2. The study of vehicle-alone dynamics often has separate 
status as an engineering field (e.g., aeronautical stability 
and control). Consequently, the vehicle dynamics are fairly 
well understood. 

3-    Many of the feedback loops involved in multiloop systems 
exist primarily to correct vehicle dynamic deficiencies 
(i.e., parallel equalization) or to suppress particular 
types of disturbances.  The type and general form of most 
such feedbacks can be derived readily from a knowledge of 
the vehicle-alone dynamics. 

h.     Conventional servoanalysis methods are ideally suited to 
close single loops, e.g., to find G(s)/[l +G(s)] given G(s). 

A fruitful approach to the multiloop problem will use these factors to advantage. 

The scheme developed here does so by (l) expanding the determinant of Eq 23 

in such a way that the vehicle characteristic determinant. A, and the vehicle 

transfer function numerators. Neu, appear explicitly in the closed-loop system 

characteristic equation, and (2) treating the resulting expressions as a series 

of "equivalent" single-loop servo systems. The first step provides vehicle- 

alone dynamics as recognizable separate entitles in the system equations Instead 

of as elements in a hodgepodge of vehicle and control terms.  This allows direct 

application of vehicle-alone knowledge and understanding to multiloop control 

problems. The second step permits many of the fruitful insights and techniques 

of single-loop servoanalysis to be applied to multiloop situations. 

Expansion of the determinant of Eq 23 in such a way as to retain vehicle-alone 

transfer function elements as separate entities is accomplished in Appendix A. 

16 



The result is: 

\ ys 

Ml 

^1 

l12 

+ F-i 1 G^ 2 

+ F12G22 

+ F-, •, G-i 3 

+ F12G23 

ii|.2 ^3 

+ FT 2G2^ 

21 a22 a23 P21G14 

+ F21 GT ! + FQ1G12 + P21 GT 3 + F22G2^ 

+ F22G2T + F22G22 + F22G25 

31 a52 a33 F31G14 

+ FJTGH + F51 GT 2 + F31G13 + F32 

+ FJ2G2! + F52G22 + F32G23 

=  A + 
If  2 

1=1 j=i 
^Ä 15^ 

^   1+ 

E E 
1=1 k=1 

Gl iG2kW6^&f (24) 

A and Mr di6 
are the characteristic function of the vehicle and the numerator of 

the Qi5i transfer function^ respectively.  They are tabulated in terms of airframe 

parameters for the usual degrees of freedom and control deflections involved in 

aircraft control in Refs  2, 3,  and 11.  In the notation presented so far in this 

report, 

A = 

all al2 a13 0 

a21 a22 a23 0 

a31 a32 a33 0 

a4l -ak2 -ai+3 1 
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A = 

an a12 a13 

a21 a22 a23 

a31 
a52 a33 

(25) 

and, as a particular example using the auxiliary output motion quantity. 

X. 

a11 
a12 a15 F1J 

a21 a22 a23 F2j 

a31 a52 a55 F?J 

&lU -aj^a -ak3 0 

(26) 

Nn-  's for "tl16 independent outputs (i = 1,2,3) will simplify to 3 x 3 determinants. 
3 ^i^-k Terms of the form N5.gp in Eq 24 are called coupling numerators.  They are 

found by replacing the ith and kth columns of Eq 9 by the first and second 

columns, respectively, of Eq 11 .  As a particular example using independent 

outputs. 

a11 F12 Fn 0 

^2 
a21 F22 F21 0 

8182 
a3i F32 F51 

0 

-a41 0 0 1 

a11 

a2l 

a3l 

12 

-22 

'52 

11 

?21 

■'51 

(27) 

This determinant is recognized as the characteristic determinant with the q, 

and qo column terms replaced by 5, and 62 control effectiveness terms, respec- 

tively.  The awkward but highly descriptive symbol Ng^,2 is intended to suggest 



this replacement.     It is apparent that % g. has no meaning when i  = k.     By 

arbitrarily defining this  to be equal to zero,  the   "i / k"  note on Eq 2k- can 

be removed.    The  coupling numerators have  other properties of interest such 

as 

B ST =  n 11%: 
5202 (28) 

%182 

1±%: 
51 52 

=        -N; ̂
i^k 

5251 
^k^l 

1»    R S251 

7 I Wq-      % "   Nn.      Na,      \ A ^   (i15i   qks2 q162   qkBi j 

(29) 

(30) 

Common coupling numerators for aircraft control are presented in Appendix B. 

While the system characteristic equation, Ag s, is the denominator for all 

closed-loop transfer functions, regardless of command inputs, the numerators 

depend on the particular command input. The outputs due to command inputs can 

be obtained from Eq 22. With disturbances zero. 

H     =     [H   H-  [E] [G]] -1 [F] [Gc] [qj 

where   [q] ,    [F] ,  and   [qj   are  given  in Eq 10,   11,   and  20,   respectively, 

matrix     [[a]   +  [F][G]J-
1
   is,   after  inversion,   expressible as 

(31) 

The 

[[a]   +   [F] [Gj] 

^1 ^21 A31 ^1 

^2 ^22 A52 A^2 

^3 ^5 A33 \3 

_^h ^4 A54 \k_ 

As ys 
(32) 

where the  numerator  is  the  transpose  of  the  matrix made  up  of  the  cofactors  of 

Eq 2k.     Thus, 
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^11 

a22 a23 F21 G1 h 

+ F21G12 + F21 Q1 5 + F22G2)4. 

+ F22G22 + F22G25 

a52 a33 F51 Gl 4 
+ F31 G1 2 + F31 G1 3 + F32G24 

+ F32G22 + F32G23 

^2 %3 

(33) 

is   .he  cofactor of   (a-| i   + F) •) Gn   + ^i 2G21 )   in the  determinant of Eq 2k-.     Similarly, 

A,2  is  the  cofactor of   (a-] 2  + Fl 1G-) 2  + F12G22)   in  the  same  determinant.     The  other 

matrix involved in Eq 31   is   [F] [GJ [qj .     For the  typical case where   [GC]   =   [G] , 

the matrjoc multiplication of   [?] [G] fqc]   results  in 

[F][G][qc]       = 

(FnGii (FiiGi2 (FnGi3 (FiiGiit 
+ F12G2i)qic + Fl2G22)q2c +Fl2G23)q3c + Fl 2G2lf) ^ 

(F2lG11 (F21G12 (F21GT3 (F2-]G-\k- 

+ F22G21)q-ic + F22G22)(l2c 
+F22G23)ll3 

+F22G2k)(ikc 

(F3iGn (F^G 51^12 (F31G1 31^13 (r3lGi4 

+ F32
G

21 ) 41c        + F
32G22) <l2c       + F32G23) ^c       + ^^2^ ^ 

0 0 0 0 _ 

(3^) 

Using only ^     as an example  (i.e.,   q2    = q3    = q^    = 0),   the closed-loop  systen 

transfer function is 

^            A)1(F11G11   +F12
G

21)   l^li^TJ   +F22G21)   +A3/F31G11   + F32G21 ) 

11.    "   A 
(35) 

sys 

Closed-loop transfer functions for q^q-i ,   etc., or transfer functions for 

disturbance inputs, such as <\*Jr\-\,  are obtained in a similar way. 
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Although the development can he continued along the above lines, the details 

are so tedious that the main stream of the argument is obscured.  Therefore, a 

considerably simpler system, shown in Fig. k,  will be used.  (The matrix block 

diagram of Fig. 3 still applies.)  Even this system is more complex than most 

flight control systems, so still further simplifications will later be made. 

-£)- 

-&- 

®—HGIZ I 1 

'14 

E3 
8, 

124 

-»•■ '21 

EJ 

Vehicle 

Dynamics 

^4 

Figure k.  Block Diagram of Multiloop System 

In Fig. k-,  all of the command and disturbance inputs are zero except qi , 

and there is only one feedback to the controlled variable.  The remaining feed- 

backs are intended only to modify the basic vehicle characteristics.  The 

closed-loop transfer function of the primary controlled variable, q,, is, from 

=    G. 21 
F12A11   + FggAg, + F32A31 

% 
156) 

ys 
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or, written as determinants. 

il._ 12' caf~b-\ 

F1 2G21 

F22G21 

F32G21 

a12  + F11G12 a15 ^,0^ +  ^ 2G2l+ 

a22  + F21G12 a23 F2lGll! +  ^22^2^ 

a32  + F31G12 a33 F31G1^ +  F32G2lj- 

~al+2 ~akj> ' 

a11 + F12G21 al2  + F11G12 a13 F^G^  + F-,^^ 

a21 +     F22G"2'1 a22  + F21G12 a23 F21G11+  +  F22G21+ 

a3i + F32G21 a32 + F51G12 a33 
F31G1^  +  F32C-2l+ 

-a4l -a^2 -ai+3 
1 

(37) 

The denominator  can be most  readily obtained by  specializing Eq 2^;   that   is. 

^sys     =    A + Gl2wq2R    + G1^N^    + G21Nqu     + G2kHk 

Jh <l2% %^ 
+ G12G21N8^  + G12G2l+N5^ + Gil+G2iKB182 (38) 

In the numerator and denominator of Eq 37, the cofactors of terms containing 

G2i are identical.  Thus, q-i/q-j  can be obtained directly from the system 

characteristic as given in Eq 2k-  or 38.  The closed-loop transfer function 

q1 / q-j  is then 

21^   + Gl2N&i52 + Gl^N5i52) 

^J^,   qj—Si A+G12Nq2       +G^%5     +G2k{^k&     + G
12% 

<l2% 

1], qi|—02 

152) 

r  / 12^      ^ixi 
LG2l(%5    +G12K5152  +G1^B152)1 (59) 

Equation 39 contains vehicle transfer function numerators and denominators as 
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separate entities. By dividing the numerator and denominator of Eq. 39 ^y A, 

Q.1/lie can be expressed in terms including vehicle transfer functions themselves; 

that  Is, 

92*1 A4!' 
8, 5o 5. Sp 

G2lW   +Gl2%- + Gl4% 

IT   ^-Ö2 1   + Gl2Q2si   + G^Q^   + G2^5  (l   + G^ w-—j   + 

N. 

G21Q1      (1   + G 
&182 

N 
l^l 

12 N~" + G1^ Na 

8152 

Bg'J 

(40) 

where  Qo     .   QJL     J   QI „   ^  and- Qko    are  vehicle  transfer functions, 
^oi        ^oi 02 02 

The bracketed term in the denominator of either Eq 59 or kO  is  seen to be 

identical to  the  numerator terms.     This makes  it easy to  recognize  that the 

open-loop  transfer function  q-i /q-i     is   just 

4. „ 
J21 K52 

+ GI2V2 
+ ^V2) 

12'   ^k^0! ^ + Gl^qo      + Gl4Nqll        + 
G; ^2. '^ 

or, dividing both numerator and denominator by A, 

MX2 
+ Gi2V2) 

(4!) 

G21QU.11    +Gl2N 

5182 

+ G 
11 

ik 
s2 

Jq.2J ik" 

8182 

^82 

1   + GT 2Q25l   + G-, kQk5i   
+ G2k%S2l

1   + G1 
^r 

2  N 
^ 82 

(42) 
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Although not directly apparent because of their complexity, Eq 39 through 

lt-2 are of a form to permit knowledge of vehicle-alone characteristics to be 

used with maximum benefit in system synthesis procedures based on conventional 

servoanalysis methods.  All of the terms contain vehicle-alone transfer functions 

or ratios of coupling and conventional numerators; and only controller transfer 

functions (the G's) multiply such terms.  Also, the total transfer function 

forms of Eq 39 through k2  can be generated readily by successive loop closures 

(a mere seven in the case of Eq 39 and ^O!) using these elemental vehicle and 

controller characteristics.  Remarkably, it is possible, as will be illustrated 

by subsequent examples, to rapidly and effectively perform these operations in 

a fashion leading to a good closed-loop system while retaining physical apprecia- 

tion and developing insights throughout the process. 

Indirectly controlled output transfer functions, qn/'qic (n ^ i), are also 

required for some purposes.  Such transfer functions as 

(^3) 
Asys 

^2' qir~5i 
q.i, ciif"52 

can be determined from an expansion of Eq 22. The characteristic function, 

Agyg, has already been given in symbolic terms for the general system in Eq 2k 

and for the simplified system of Fig. 1+ in Eq 38, so expressions for Nn alone 

are required.  These are easily obtained from N±  by replacing q^ subscripts 

and superscripts by qn's in the transfer finaction numerator. For example, 

using q-i/qi  as given by Eq 39, the closed-loop transfer function Q^/o,  becomes 

«m ■ 352 
3lcJ 

G2l(Nq +^^4+    'k\4} 

G21(Nql8    +Gl2N5i52  -G^^gJ (kk) 

^'   \-~b2 

2h 



This indirectly controlled output transfer function can also be obtained by 
,,     /       q.211    %4i \ 

multiplying and dividing Eq 44 by G21 (Nq   + G-, 2N5 52 + G-i 1,.% 82 I and using 
l52 Eq 39.     The  result of these  operations  is 

where (12q5 ^3 
V       +G12N5  S^ +G1^615. 

N3 
i5               -  ulu2          '      "1"2 

52  {k6) 

An alternate procedure for formulating the system closed-loop transfer 

function numerator and denominator expansions is presented in Appendix C. 

D.  GENERAL ANALYSIS PROCEDUKE 

The developments above provide general formulations of the multiloop problem 

in matrix form, and illustrate a special expansion for the matrix equations.  The 

results of the special expansion are various closed-loop transfer functions 

expressed in terms of elemental vehicle and controller characteristics.  The 

final step is the application of conventional servoanalysis techniques to the 

transfer functions as formulated above.  This phase will be discussed here in 

general terms, and the specifics will be illustrated in succeeding sections using 

particular systems. 

To make the discussion as simple and concrete as possible while retaining 

the generalized notation, consider the system given by the block diagram of 

Fig. 5. This is the simplest possible multiloop system using multiple control 

deflections. It is just complex enough to exhibit, on a rudimentary scale, 

the major features of far more complicated systems .  Further simplification, 

to a system with one active control deflection but retaining two output motion 

feedbacks, results in a multiloop system which is too limited to ilUistrate 

all the features of interest. 
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Figure 5.  Block Diagram of Multiloop System 

Specialization of Eq 59 and 1|0 to the system of Fig. 5 i^k " G2k  = 0) results 

in the closed-loop transfer function forms given below. 

J21 (Nn + Gi 2^  R   1 
\qlBo 1      5182/ 

^—82 

/ q2ql \ 

^ +^N52 
+ Gi2%s2) 

(^T) 

G21 Ql 1 .1    + G 
'S-jSg 

12 N 

-1 '52 

q2^51 

1    +G12Q25i   +G21Ql52y   +G12^ 
51&2 

52/ 

(^6) 

The open-loop transfer function for the command loop, with the other (q2) loop 

closed, is a special case of Eq M and k2;   that is. 

26 



a. q2—81 

G^(\b2  +  Gl^b 

A + G 12%. 
:5l 

(^9) 

G21 Q1 

1   + G It? 
B1S2 

1l 52 

1   -,- G12Q2F 

The vehicle characteristics  for this   system are  given by: 

(50) 

A    = 

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

(51) 

Q-, 
52 

02 A 

12 

■22 

■132 

l12 

"22 

l32 

A 

13 

i23 

l33 
(52) 

Q2C 

^2, 

A 

a11 

a21 

a31 

■n 

^21 

'31 

a13 

a25 

a35 
A (53) 

SI 
8-1 52 

•12 

f22 

'32 

:11 

p21 

31 

a13 

a23 

a33 

(5^) 
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An "equivalent block diagram" for Eq ^7 through 50 is given in Fig. 6. This 

block diagram is "equivalent" in the sense that its reduction via loop closures 

and block diagram algebra results in Eq 49 or 50 for the open command (q ) loop, 

and in Eq kj   or k8  for the complete closed-loop system.  In one limiting case, 

when G12 = 0 (the qg loop opened), the resulting single-loop system is just the 

command loop closed around the vehicle-alone transfer function, Qi« .  For the 
• ^ 02 

other limiting case, G2i = 0, the q2 loop is the only one closed, and the modi- 

fied vehicle dynamics are those resulting from the closure of a single unity- 

feedback loop about the transfer function G^g1^  • 

A very instructive way to consider the effect of the closed qg loop is to 

lump all of its consequences into "effective" vehicle changes.  In this view, 

closure of the q^ loop changes the command loop effective-vehicle transfer 

function from Q15 to Qj   (see Fig. 6). Referring to Eq ^9 and 50, the 

effective-vehicle characteristics, Q-fg , will be the open-loop transfer function 

of the command loop with the controller transfer function Goi removed. 

Qi 52 A + G12NC1251 
(55) 

= Qi 52 

qgii 
nSi52 

1 +Gl2l^ 
'll 52 

1 + G12Q25i 
(56) 

In Snn^^a,1, S aPPears ln higher orders in the denominators of G-) 2Q2R and 
12^1 / Gl 2%. 8Ö/N(ll s than  in tixe  numerators. 

G-i 20,2 
8ll 

-I B—^-c 

G12 

a 
,ql6c 

2ft 
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Therefore the so-called root locus, or high frequency, gain of Qjfi is identical 

to that for Q-) o . 

The primed notation on Q-fc,-. is used to Indicate merely that one loop has 

been closed, and is not intended to specify the particular loop closure involved. 

If, for example, a loop closure of q,—»-Bi replaced the qg—^-5-| closure in 

Fig. 5, the transfer function Q,'  would still indicate the resulting cotmnand 102 
loop effective-vehicle transfer function.  The precise meaning of the primed 

notation consequently depends on the local context.  (Later, the primed notation 

is used in a similar fashion on individual transfer function terms to Indicate 

the number of prior loop closures.) 

Finding the complete form of Q-] =  involves operations converting 

G12Q251 to 1   +0^0^ 

md                                                       OpO, CUCL, 
N N Sl62 V2 0,2x;to ,+^^ 

Such operations are easily accomplished by closing the single loops shown in 

Fig. 7 using any of a variety of conventional servoanalysis techniques.  Letting 

G-] 2 = ^12/^12* where both N-j 2 and D-j 2 are polynomials in s, with the leading 

coefficient of Di 2 equal to unity and the leading coefficient of Ki 2 being the 

root locus gain of Gi2> tt16 results desired from the loop closures are: 

Dl2A 

1   + G12Q251 
D12A +  N12Nq28 

D12A 

(Closed-loop pole factors of (T)) 

50 

(57) 



—^ 

*& 

N 
^2 

GioQz^ = Gi 
s, 

•|2V-28-^2-^- 

a) Closure (T) 

b) Closure (2), "Coupling  Loop 

Figure 7.  q2 Loop Closures Involved in the System 
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1   + Gl2 
^1 52 

«2^1 
qo^ D12N +N12N55 

^82 152 
1   ^ 

D1 2% 
82 

(Closed-loop pole factors of (2)) 

Di gN^ 
(58) 

52 

where (T) and (Q  refer to the single-loop systems shown in Fig. 7-  For fixed 

vehicle characteristics^ G-j 2 is t116 only variable quantity in both relationships. 

Thus, choosing G-i g appropriate to either n_) or (2) automatically determines the 

other closure (^) or (T)) .  The closures of n) and ^) are, therefore, 

"simultaneous."  Loop MJ is a primary closure directly affecting the vehicle's 

poles, whereas loop (^   (as will be seen below) affects the vehicle zeros perti- 

nent to a particular input control deflection—in this case, Sg. Accordingly, 

loop (^,  or its reflection in Fig. 6, is often called a "coupling loop." 

The two loops are further related in that the high frequency open- and closed- 

loop asymptotes of systems (T) and (2) are usually nearly identical, i.e., the 

"root-locus gains" are almost the same.  This is easiest to see for typical air- 

craft characteristics in which the highest order s terms in A stem from the main 

diagonal (a-j-, agga^j) > and the control effectiveness terms (Fij) all have the same 

form in s (usually constants). Then, at frequencies much greater than all the 

poles and zeros in A, denoted as '|s| large", pertinent quantities become 

C] 
|s| large 

-*«•   (F^F^   -  F11
F22)a33j 

sI   large 

52 
sI   large 

F12a22a53 'J s     large 

a2V 

V2 
% 

82 ^IsI   large 

F21 

a22 

j s|   large 

(59) 
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and, similarly. 

^i] s  large 

ana33Fgi 
al la22a53J 

s| large 

J21 
a22J (60) 

large 

When Fpi » ^ll^pg/F^^ a relatively coimnon occurrence in aircraft, Eq 59 an(i 60 

are very nearly the same.  This correspondence should be kept in mind when 

actually performing the simultaneous closures of MJ and (2). 

When the results of the simultaneous closures are combined and multiplied 

by the vehicle transfer function Qi g_^ then Q-fg^, the effective q-j/52 transfer 

function of the vehicle with the qp loop closed, is 

*1 52 
Ql 

52 

NSiSp 

'11 

1 + G-I2Q2 51 

^162 (Closed-loop pole factors of (g) 

A D1 2^^ 52 

(Closed-loop pole factors of (2)) 

(Closed-loop pole factors of (T)) 

D)2A 

(Closed-loop pole factors of (T)) 

(61) 

As already noted in connection with Eq 55 and 56, the net "root-locus gain" for 

Q-J» , after the closures of (?) and (2), will be the same as that for Ql 5 • 

This high-frequency gain is implicitly contained in the Q-Jg numerator term 

resulting from closure of loop (2) (it arises from the D-] 2Nq1 „ numerator term 

in Eq 58). 

After Q-j'   is found, the final q-]/q-]  closed-loop system characteristics 

are determined by another loop closure using the system of Fig. 8. 
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^ 

Figure 8.  Command Loop Closure for the System 

<llc -— Sg^ 
cl2—^51 

In summary, the steps involved in the analysis of the system in Fig. 5 are: 

1 . The control channels are divided into two categories, "inner" 
and "outer" loops, reflecting the closure sequence. The q2 
(or 81) loop was closed first, and thus was the "inner" loop; 
whereas the q, (or 82) loop, being closed second, was the 

"outer" loop. 

2.  The "inner loop," GT2Q2&1 ((£),   F±g.   7) is closed with 
tentatively selected equalization and gains, and the 
closed inner-loop roots are found.  These roots become 
the vehicle's poles for the outer-loop closure. 

5.  Using the same gain and equalization selected above, 
i.e., the same G-\2,   the coupling loop ((2), Fig. 7) is 

closed.  The closed-loop roots resulting from this 
closure become the vehicle's zeros for the outer-loop 
closure. 

k.     The outer loop is closed in a conventional manner around 
the modified outer-loop vehicle transfer function. 

5.  Possible repetitions of steps 2 through k  with different 
equalizations and gains if the result of step 1+ is not 
satisfactory. 

The generalization of these steps to handle more complex systems, 

of Fig. k,   is a straightforward extension. 

such as that 
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APPLICATION TO SYSTEM SYWTHESIS 

Fundamentally, the five analysis steps summarized above can represent one 

cut in a cut-and-try synthesis procedure.  In such procedures a trial system is 

analyzed to determine its dynamic characteristics, which are then compared with 

dynamic performance objectives.  Deficiencies revealed by the comparison are, 

hopefully, eliminated or reduced by modifications resulting in a new system for 

trial.  This system, in turn, is analyzed and assessed, etc. The Iterations 

continue until the trial system characteristics are consonant with the dynamic 

performance objectives. 

The number of iterations required to achieve the penultimate system depends 

on the designer's intuition, on his ability to transfer insights into analytical 

procedure, and on his capacity to draw new knowledge and understanding from the 

analysis results. An analysis procedure cannot substitute for background and 

experience—but the procedure can be matched with a presumed background so as 

to achieve a balanced analyst—analysis procedure "system." The background 

presumed as a match for the multlloop analysis method advanced here is: an 

intimate knowledge of single-loop servoanalysis techniques; a detailed under- 

standing of vehicle dynamics; and a thorough appreciation of the changes in 

effective-vehicle dynamics caused by Idealized (i.e., no sensor or servo lags) 

single-loop controllers.  Assuming this core technology, the multlloop analysis 

procedure has been designed to maximize the insightful generating aspects and 

clarity of each analysis step. 

When full advantage is taken of the insights provided by the presumed 

background level, the multlloop analysis procedure can form the basis for 

almost direct synthesis (i.e., the number of analysis Iteration cycles required 

to achieve the final system approaches one).  The trick, of course, is to start 

off with a good trial system, which amounts to almost knowing the answer.  To 

Illustrate the possible impact of background information on the evolution of 

the initial trial system a few items are listed below, using the two-loop 

system of Fig. 5 as a particular example. 

1. Hints about desirable Inner-loop (qo loop) characteristics 
can be revealed by studies of the outer-loop system using 
several possible alternatives for the vehicle-alone trans- 
fer function, Qi c , as representative of Qi'c..  In such l52^ 152* 
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studies, the approximate effects of possible inner-loop 
feedbacks on Qi52 can be determined readily using the 
literal approximate factors of Qi 52 (see Refs 2 and 5) 
and the equivalent stability derivatives corresponding 
to idealized controllers (Refs 2-5). 

2. An appreciation for the approximate forms obtainable for 
the closed inner loops and, consequently, for the outer- 
loop effective-vehicle transfer function Q-fsg, can be 
advanced from studies of the inner-loop closure involving 
Q2B • Again approximate factors and equivalent stability 
derivatives as well as single-loop servoanalysis are used. 

3. Preliminary indications of tradeoffs between parallel 
(the q2 loop closure) and series (G2i) equalization are 
implicit in the above single-loop-closure studies.  Thus, 
single-loop closures about the various Qi g,2 forms con- 
sidered indicate the corresponding types of equalization 
needed in G21; and the approximate forms possible (with 
particular inner-loop feedback auantitiesl and desirable 
(with particular forms of Gg-j) for Q^&Q  can be inferred. 

Studies of the above types either involve vehicle characteristics as 

variable or emphasize controller equalization as variable.  Both types of 

studies use well-known analytical operations and, for aircraft, a large body of 

quite general results exist (see, for example, Refs 2, 3, 1 3, and 1^).  Using 

the approximate, but highly indicative, information gathered from such past 

results as a guide, and adding the additional analytical complication required 

to account for the dynamics of such elements as sensors and servos, an excellent 

first-cut trial system is easily obtained. The exact analysis routine summa- 

rized previously can then be used in the final steps of a practical synthesis 

procedure.  For systems as simple as that shown in Fig. 5, repetitious opera- 

tions can often be avoided completely by this bringing of previous single-loop 

system knowledge to bear upon the multiloop problem. 

In spite of the above remarks en synthesis, it is well to remember that the 

process outlined does not involve un:.'.que operations in compliance with a 

straightforward routine. One of the more tricky aspects has been casually 

bypassed until now.  This is the selection of a particular block diagram, or 

sequence of closures, from the several possible. The block diagram itself has 

little significance—it is the loop closure sequence represented graphically by 

the block diagram which is important in eliminating or reducing iterations when 
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the analysis technique is used as a synthesis tool, rrom the point of view of 

pure analysis the closure sequence is immaterial. But in synthesis the closure 

sequence can be all-important. For instance, certain loops are necessarily 

closed before others for which they provide parallel equalization; and the 

necessary use of incomplete loop closure criteria causes some loop closure 

sequences to result in extreme variations in loop adjustments as a function of 

iteration, whereas for other sequences there is practically no change from one 

iteration to the next, etc. Because of considerations like these there are at 

least some preferred loop closure sequences and sometimes even a uniquely desired 

one. Desirable sequences are not always simple to determine. Fortunately, for 

vehicular control systems a set of factors can be promulgated which, when 

properly considered, will ordinarily provide the insight needed to construct a 

unique block diagram (or closure sequence) which, in the practical sense of 

minimizing interloop interactions, will also minimize iterations.  These are 

summarized in Table I. 

As should be apparent from Table I, many of the detailed insights involved 

can stem from analysis of single-loop systems and from simplified multiloop 

analyses.  Thus, the equivalent stability derivative approach, vehicle approx- 

imate transfer functions, and single-sensor-loop studies already mentioned 

play yet another dominant role in multiloop vehicular systems synthesis. 

After thorough consideration of the factors in Table I, a quasi-unique 

block diagram, or sequence of closures, can usually be established.  The next 

problem is that of closure criteria for .the several loops . Again only 

engineering judgment factors, which must ultimately be translated into concrete 

performance measures, can be delineated.  The factors to be considered in 

establishing the actual closure criteria for each loop Include: 

1 .  The use of an inner loop as equalization for a subsequent 
outer loop. 

2.  Stability and response of loops which may be outer loops 
in one mode of operation and inner loops in another 
operational mode. 

5-  The "sensitivity factors" (pole, zero, and gain sensi- 
tivities, Ref  10) of the various loops and their 
Influence on the outer loops .  Ordinarily, inner-loop 
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closures selected should be such that the effects of 
inner-loop parameter variations on the outer loops are 
as small as possible. 

These consldemtions, taken in context with over-all system performance specifi- 

cations, can ordinarily serve as guidelines for the selection of specific closure 

criteria. 
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SECTION III 

LONGITUDINAL EXAMPLE - ALTITUDE CONTROL SYSTEM 

To illustrate the previous general treatment two concrete examples will he 

presented, one for aircraft longitudinal control (in this section) and the 

other for lateral control (in Section IV).  Loop closure sequence and criteria 

constitute a large part of the practical synthesis problem, so their selection 

will receive detailed attention in the ensuing treatment.  In particular, 

the general factors involved in the selection of loop closure sequence (Tahle I) 

will he specialized for each of the examples; and some of the background con- 

siderations pertinent to closure criteria will be discussed prior to the selec- 

tion of representative quantities and values. Once the sequence anä.  criteria 

are fixed the analysis itself is routine, ajid the detailed examples are then 

presented as straightforward numerical exercises. 

The longitudinal system is an altitude control system wherein the airfrajne 

is controlled by the elevator which, in turn, is activated by feedbacks involv- 

ing the pitch angle, 6, and the altitude, h. This system is Illustrated in the 

block diagram of Fig. 9- Here the usual "e" subscript on the elevator deflec- 

tion symbol, 5e, is eliminated to simplify the notation. 

& 

(8> 

Altitude 
Channel 

Equalizatio n 

Actuator 

8 

'   h€ 
Gh 

Airframe 

r. I - 

E Gs 
e e< Ge >—- 1 

>n 

i 

E 

Pitch 
Channel 

.qualizatic 

Figure 9.  Longitudinal Control System 
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This system has a very simple multlloop form because only one control 

deflection, 5, is used. The surface actuator is, therefore, common to both 

feedback channels—a feature emphasized in the block diagram by indicating an 

actuator transfer function block, GQ,   separate from the altitude and pitch 

channel equalizationso 

A.  LOOP CLOSURE SEQUENCE AMD GENERAL CLOSURE CONSIDERATIONS 

For this system a unique sequence of closures is easy to justify using 

Table II, as a special case of Table I, to illustrate the reasoning. Some of 

the less obvious remarks in Table II may become more apparent after the discus- 

sion below. All of the factors considered in Table II indicate, or are compat- 

ible with, a closure sequence with h as the outer loop. The block diagram of 

Fig. 9 can now be shown with an hc command, as in Fig. 10, and the system can 

be designated as 

hc, e^-5 (62) 
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B.     SPECIALIZATION OF SYSTEM EQUATIONS 

The controller equation for the  system is 

G5h(hc   - h) •rBeb (65) 

where G5h = 0^05 and G50 = GgGg.  As a special case of the general equations 

in the last section the quantities involved here are as given below. 

Control Deflections: 5, = 0 

Output - Motion Quantities: 

Vehicle Transfer Functions: 

Controller Transfer Functions; 

62 = S 

11 = u -J q3 

42   = w 9 % 

^1R l52 
= U6 9 % 

i252 = W5 , Qi^ 

G21 " G22 

J23 
G50' G2U J5h 

The closed-loop transfer function h/hc can be determined directly from Eq 59 

and ^0 if Fig. 10 is considered a special case of Fig. h  and the terms and 

symbols adjusted accordingly. 

^1 heJh^ 

GShNhs 

A + GBeNgg  + G&hNh5 

GSh
HS  

1   + G6^5  + G5hHe 

(64) 

For the purposes of this report all literal alrframe transfer functions are 

written as in Refs  2, 5, or 11 , all of which are compatible.  Numerical trans- 

fer functions, when required for plotting or other purposes, are based on the 

typical case given in Ref  11.  However, although derived using these numerical 

values, many plots are presented in generic form with the poles and zeros 

identified by their literal values to enhance the clarity of presentation.  In 
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terms of such literal values the generic airframe-alone transfer functions, 

expressed in the root-locus form, are: 

0S 

Ngg Agjs  +   l/Tg^s  +   1/Tgg)  

A (s2 + 25jPpS + a|)(s2 + 2CSIpSpS + cDgf) 

NhB V3  +  I/THTKS   
+  1/Thg)(s  + 1/^) 

s(s2 + a^ptüpS + cc|)(s2 + 2^sp^sps+ cßs2) 

(65) 

(66) 

As already noted, approximate factors relating the poles end zeros in Eqs 65 

and 66 with the aerodyaamlc and inertial parameters of the airframe are given 

in Refs 2 and 3. 

The appropriate equivalent block diagram for Fig. 10 is shown in Pig. 11. 

HR, the equivalent vehicle transfer function with the 6  loop closed, is also 

shown in this figure. 

Hg Al     -H'--—-°— 
se^s 

^SHM '8h 

~\ 

H8 -^S>— 

G8Ö®S 

Figurell.  Equivalent Block Diagram for Altitude Control System 
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C.  IMMER LOOP CONSIDEEATIOWS 

1 . Inner Loop Alone 

Establishing the closure criteria for the two loops is somewhat more 

involved than the closure sequence selection.  Considering the fundamental 

vehicle dynamics and possible disturbances, and recognizing that the attitude 

loop will prohahly he the outer loop (i.e. attitude commands) in some oper- 

ational mode of the flight control system, the 9 loop alone should be capable of: 

(1) Providing good attitude regulation of the vehicle in 
the presence of external disturbances (e.g. gusts), 
and both short and long term vehicle asymmetries such 
as sudden changes in:  e.g. with stores release, thrust 
moment with power changes, external configuration with 
actuation of auxiliary surfaces such as flaps or brakes, 
etc.; and slov changes in: e.g. with fuel consumption, 
flight operating conditions, etc. 

(2) Accomplishing commanded changes in attitude with good 
response. 

For nominal airframe characteristics these aims can be accomplished using a 

controller with lead equalization, and a crossover frequency, (üC,   somewhat 

greater than the short period undamped natural frequency.  Typical characteris- 

tics for such a system are illustrated in the sketches of Fig. 12.  The con- 

ventions established in Fig. 12, for identifying the meaning of the various 

line-values used on the Bode plots, are followed in all remaining plots. 

Neglecting the controller lag dynamics, the open loop transfer function in 

Bode form will be 

,s        e KgKggtT^s  +  l)(Ta2s   +  l)(TEs   +   1.) 

[>     ^    JL<%p     ^sp    j 

where Tp is the lead equalization time constant.  (This equalization can be 

developed directly from a 9 sensor using passive elements, or from a rate 

sensor plus a 9 sensor.)  The actual values for the closed-loop transfer 

function factors are readily found by the decomposition technique using the 

G( Jüü) and G(-ff) Bode plots of Fig. 12, or from a root locus.  These techniques, 

^5 



E 
a 

o 
m 

o 
o 
-o 
c 
a 

c 
<u 

o 

a> 

/ 
® 

■ 

•      + 

1 k 
1 "s 

^ 

V 

o 
o ■p 

>> r o fa 
o 

O 
„■ K 
u 4^ 

a 
o 
o 

+J S 
•H   as 
-p   K 

0    ^1 

s § 
+>   9 
co   o 

ß U 
d   a) 
O    rH 

O 
P< ?H 
O     -P 

a s 
I    O 

0) ^1 
M a) 
O    0) 
H -d 
O   M 

■c( Jd 
a -P 
cd -H 

Is 
i 
a 

r OJ 
o .— 
o> Q) 

o 
■rH 

u 04 
o 

GO 

KG 



and others involved in unified servoanalysis procedures,  are covered elsewhere 

(Bef 9)- 

When closed with values  of open-loop dc gain, K,   as  shown in Fig.   12, 

the  resulting  closed-loop transfer function is 

G(s) 
1   + G(s) 1   + K' 

(T9ls +  l)(Tgg3  + OCTES  + 1) 

(T^ß  + 1)(T02S  + 1)(TES  + l)(T;ps  + 1) 
(68) 

Eq 68 uses several aspects of the notational scheme adopted in 
this report for multiloop analysis results, so a short aside is 
pertinent to discuss notation using this concrete example. All 
of the closed-loop poles have one prime, indicating that they 
result from one loop closure. Also the actual notation selected 
for the closed-loop poles reflects their approximate values. Thus 
l/T9', l/TgA and l/Ti, are all near the open-loop numerator terms 
l/Tg , 1/Tg , and l/Sj», respectively. If a much lower value of K 
had 1heen used, such that the closed-loop factors remained quadratics 
(i.e. K < K, ), then the closed-loop denominator would have had the 
form 

(—r 
Xp; 

^sps . 
+ ....   +1 

sp ] 
In this case the notation used for the closed-loop quantities 
reflects their origin in open-loop quantities.  If intermediate 
values of gain had been used, such that the closed-loop phugoid 
were more than critically damped hut the closed-loop short period 
were still quadratic (i.e. K-] < K < K2), then the closed-loop 
denominator would have the form 

(Tei's + l)(T0^s + 1) 

So, as gain is increased, the notation for the closed-loop 
phugoid and short period modes has the following transitions: 

^7 



Phugoid: 

Open-loop  (K = 0) [(—f + -^ +  ll 

Closed-loop,   quadratic  (K < K-,) R-^r)2  + —— +  U 
L^p     ^   J 

Closed-loop, overdamped (K-, < K)   (Tg s + l)(Tg s + l) 

Short Period: 
2SST.S Open-loop (K = 0) [{—f  +  —^ + l] 

L ^P     ^sp   J 

Closed-loop, quadratic (K < K^)     |(-f-)2 + —7^- + 1 | 

Closed-loop, overdamped (K < K)   (T^s + l)(T" S + l) 

The rules for this notational sequence can be summarized as : 

1 .  The number of primes present indicates the number 
of loop closures. 

2.  When the closed-loop form is the same as the open- 
loop form, the notation for the closed-loop factor 
is the same as the open-loop factor, plus a prime. 
In this case the origin of the closed-loop factor 
is always at hand. 

5.  The notation for closed-loop factors which differ 
in form from their open-loop origins reflects the 
open-loop zeros which the factors approach as 
K—"-0°. When no open-loop zero exists in this 
situation, a special form is coined which reflects 
the origin of the fact (e.g. l/Tgp). 

These rules are special cases of those summarized in the nomen- 
clature section at the front of this report. 

For the attitude system closed with high gain, as in Fig. 12, the 

closed-loop dc gain, K/(l + K), is approximately one, and the dipole pairs 

(T01S + l)/(T^s +1), (T02s + l)/(T02s + 1), and (TEs + l)/(T^s + 1 ) in e/ec 

all nearly cancel. Thus Eq 68 becomes approximately 

9_ ± _  _J  f.   s 
9     " T' s + 1 ^°9' 
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As an attitude command system, this is very good indeed; also attitude regulation 

properties are adequate. So from the standpoint of attitude control, the system 

shown is satisfactory. However, two caveats are worth mentioning. First, for 

some flight conditions the low-frequency region centered about Cup may not 

exhibit such large amplitude ratio relative to that near short period, thereby 

making it difficult to attain values of K much greater than one. Such condi- 

tions can be corrected "by low frequency lag-lead equalization (e.g. adding an 

integral of 0e to the controller).  Second, the controller assumed is ideal, 

with servo and/or sensor lags ignored, and the loop gain can, theoretically, be 

increased indefinitely without any stability difficulties.  Controller lags will 

be taken into account later in the detailed analysis. Their presence limits the 

allowable gain for stability, and is one reason lead equalization (i.e. the 

T^s + 1 factor) is needed in the attitude loop. 

2. The Inner Loop as Equalization for the Outer Loop 

When considered in company with the h outer loop the attitude loop 

closure should be of such form as to relieve outer loop equalization require- 

ments . With the ideal controller considered above, the effective airframe 

altitude transfer function H^ becomes 

8Je^ s^ =^ 
i 
G5e08 

K^T^s  + iKT^s  +  1)(   Th^s + 1) [' 1 -)2  + 

2C sp" 
Jsp usp •] 

{< 
^ 

3i(r-)2'"n 

^ 
Clip -]fe ^sps 

^sp -] 
(l+KeKe5)(T^1s+l)(T^s+l)(T^+l)(T^ps+l 

His 

(1   + KeKeJ 

(Thl s   +  1 ) (Th2s  +  1)(   T^s  +   1) 

s(T^s  +  l)(T^2s  +  l)(T^s   +  l)(T'ps   +  b 
(70) 

The forms of Hg and H^ are illustrated in the sketches of Fig. 15. To 

emphasize the basic differences in the dynamic rather than static forms, a common 

gain factor is used. -Actually H5 would appear (l + KgjKe^)   = (KeKgg)^ belcw 

the plot for (l + KQKQ^EQ.     Comparison of these forms (which are minimum phase 

1^9 
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except for the breakpoint at 1/T^,) readily indicates the superiority of Hg over 

Hg. For a pure gain altitude controller operating on H5, the crossover frequency 

must be well below 1/Th >   ("to avoid the light3y damped phugoid) and the resulting 

closed-loop system response will exhibit a very lightly damped or even slightly 

unstable oscillation of the phugoid variety. When the vehicle-alone phugoid is 

unstable, as it may be for flight conditions involving pitching moment changes 

with speed, a stable pure gain closure is inrposslble. On the other hand, a 

pure gain h controller is completely suitable for the Hi system, and stable 

crossovers in the neighborhood of 1/TA are readily obtained.  The dominant 

closed-loop mode is then a quadratic having an undamped natural frequency near CDC, 

and the gain can be selected to yield well-damped responses.  For these statements 

to be true, the inner loop gains must he high enough to overdarap the phugoid, 

and preferably high enough to force the 1 Ag pole to the neighborhood of 

l/Tg , thereby effectively maximizing available bandwidth. High gain 0 inner 

loops are, therefore, a fundamental requirement for pure gain altitude controllers. 

An obvious alternate to the above system is to use lead equalization 

in the h loop. This is sometimes necessary anyway (e.g. In terrain following), 

but it always introduces additional difficulties.  For example, the system 

Cwith no inner attitude loop) will produce drastic'pitch angle changes when 

the alrframe hits a vertical gust.  Considerations of this nature are important 

when comparing competing systems for the altitude control task. 

A final point worth mentioning is the possibility of 1 /Tjj becoming 

negative. As discussed in Ref 2 this depends primarily upon the drag and 

thrust characteristics of the vehicle. In practice negative values of l/lT^ 

cannot be avoided near the absolute ceiling or In landing-approach when flying 

at speeds below that for minimum drag. When this occurs an altitude system 

using only elevator control will exhibit a divergence (with a time constant 

which approaches Thi ) and will therefore be unacceptable. 

D.  NUMERICAL EXAMPLE 

The preceding discussion covers most of the general aspects of an altitude 

control system with an Inner attitude loop.  The present article provides a 

numerical example. 
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To make the example more realistic, a high frequency second-order lag is 

used to approximate the servo characteristics, and a first-order lag to simu- 

late altitude sensor dynamics. Thus, the servo transfer function is 

(.2-)- + _!£. 
^5     "% 
s .2 

+  1 

The inner-loop controller transfer function is, 

K0(TEs + 1) 

^59 

LH       %     J 
and the outer-loop controller transfer function becomes 

K 
G 

■h 

5h 
(Tas + 1)[(^-)

2 +— : i 'J 

(71 

(72) 

(73) 

where Ta is the time constant of the altimeter installation. 

Numerical values for the altitude sensor and servo will be taken as 

^ = 0.7, c^ = 50, 

1/Ta = 15 

The vehicle characteristics are similar to the nominal case previously 

used as an example throughout Ref 11. These are: 

(7^0 

(^85)(- l)( um +1. 

[(    s    x2       2(.071^)s   ,   ."I r 
L( .o63) + (M)   + j L( (r^) oUmh 

4.27;     +     (^.27)     +  1 •] 
(75) 

(2^)(Töo-6ir+ ^ih+')(- 19.2 +  1) 

[< «rkf * (.063)        +  1||( '][< s    ^2   .   2( A93)s   .   , 
^.27; (I1.27) ] 

(76) 

52 



The attitude channel eguallzation time constant would ordinarily be found 

by an attitude subsystem optimization procedure which considered the vehicle 

dynamics over the entire flight regime.  This is beyond the present scope, so 

a value of 1/TE = 2.4, which is reasonably representative, will be arbitrarily 

selected for the example. 

With all required numerical values fixed the analyses can proceed in a 

straightforward fashion to determine the two gains K0 and K. . The first 

objective is to find the poles and zeros of l/(l + GsgQg). Siggy and jcu Bode 

plots of the open-loop transfer function G50®5 are presented in Fig. 1 Ij-, and 

a root locus sketch (not to scale) is shown in Fig. 15. The actual closure 

used depends in practice on several factors (e.g. whether an adaptive device 

is to be used, effects of parasitic nonlinearities, etc.) over, and above those 

general considerations discussed in the second article of this section (i.e. 

bandwidth, response of 9 loop to commands, etc.).  To make matters simple, a 

closure criterion based on a phase margin of kO  degrees is used in Fig. 1^. 

The resulting system is compatible with all the general considerations, i.e. 

it will exhibit good transient response to attitude commands, good attitude 

regulation, reasonable insensltivity to likely parasitic nonlinearities, etc. 

However, the criterion may not be appropriate for certain types of adaptive 

gain-changing schemes, especially those involving low amplitude limit cycles 

as an essential characteristic. 

For a phase margin of kO  degrees the gain Kg will be 8.3 db or 2.6 in 

linear units. Using the decomposition and other techniques of the unified 

servoanalysis method (Ref 9), the closed-loop transfer function OgaÄg/O + GggQg) 

becomes (See Fig. '{ k  - dotted line) 

G50®5    g     KgKgg (Teis + l)(Te2s + l)(TEs + 1) 

1+GBe06 " 9c ~ Vl+KeKe5' 

(0.93) 

(TelS+l)(^2S+l)(T's+1)(T'ps+1)|(^)2 + !|! +  1| 

(77) 

(:ö598 + ^T^7f + 1^+1) 

^iT+l)(Tfe + 1)^+l)(üf _ + l)^)2 + ^k+1] 
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Figure 15.  Root Locus Sketch for Example Attitude Control Subsystem, G6e05 

Bq 77 reveals that closing the loop has overdamped the phugold and short period 

modes and reduced both damping ratio and undamped natural frequency for the 

quadratic mode associated with the servo.  The closed-loop phugoid factors are 

quite close to the zeros, l/T01 and l/T^; and one of the closed-loop short 

period factors (l/T^) is near the l/lg zero.  Thus, the low frequency poles and 

zeros are largely self-canceling and the approximate closed-loop transfer func- 

tion for the attitude loop is 

55 



^7.1 + 1)L(35) +T35r~+ J 
(78) 

Eg 78 is the equivalent of Eq_ 69,  with the presence of the servo dynaiaics 

giving rise to the additional second order factor. 

The closed-loop attitude system transfer function of direct Interest for 

the subsequent altitude loop closure is 

1        1 
1+G8005  (l+KeK0 ) 

r(jL.)2+:v+1ir(_3. 
> 

2+!^+1][(^+!^+; 
03, sp üüo 03^ ] 

(T9l' B+1) (Te^s+1 ) (T^s+1 ) (T^ps+1) ] 
(79) 

f,    s    ^2     2(.07l'4)s      IT    s    .2     2{.h93)s .^f, s.2l 2(.7)s| .1 
1       ^.063)   + (.06^)    +1-'L(^7)  +-7i^7)- + iJü^ö) +-^ö~+1-I 

UIPZ)   c_g_'h 1)c s   11 u s  1 1 u s    11 rrs ^2 ! 2( •?iisT7i (.on + 1Mi.05+1K3.5      j^7.i       JL55) (55)       1J 

This transfer function, when combined with the airframe transfer function H5, 

gives H5, the effective airframe altitude transfer function with the attitude 

loop closed, that is. 

I- = § =( ^-) 
5     1+G5e05     M+KeKe5

; 

(ThlB+1)(Th2s+l)( Th3s+1)[(^)
2 + ^ + J 

s(Ti s+l)(T^s+l)(TAs+l)(T' s+1) (^r)^ + -^-+ 1 sp- [' s \2 
2^s 

<*%■ ] 
<80) 

Except for the quadratic pair due to the servo, Eq 80 is identical in form to 

Eq 70j which was derived for an ideal no-lag controller. When the altitude 

controller transfer function Gg-^ is combined with El,  the numerator servo 

quadratic will exactly cancel the servo characteristics in the denominator 

of G5h. The effective servo dynamics for the h loop closure therefore result 

from the attitude closed-loop system. 
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Adding controller dynamics to Eq 80 results In the open-loop altitude system 

transfer function. 

0 H-  f KhKh5 ) 
1+K0K0S- 

Kh(i67) 

(^S+QCT^S+QC Th?s+1) 

s(^lS+l)(T^2s+l)(^S+l)(^ps+l)(Tas+l) (^7)
2
+^+ ^ 

[_ 5    ^b 

+ l)(-f-+l)(. 
(81) 

The Jcu and siggy Bode plots for this transfer function are given in Fig. 16 and 

a root locus sketch is shown in Fig. 17. As in the attitude loop, the open- 

loop characteristics in the frequency region of possible crossovers are such 

as to result in good closed-loop dynamic response if a phase margin of kO   to  60 

degrees or so is used for the closure criterion. For a phase margin of 1+0 

degrees, Kh will be -^9.^ db or 0.003^ rad/foot. 

The complete closed-loop system poles can be determined readily using 

unified servoanalysis techniques.  However, the entire procedure is simplified 

considerably, with little loss in accuracy, if advantage is taken of a simplified 

form of G5hH^. In Fig. 16 it will be noted that \GQbH£\   is much less than one 

in the frequency region above the breakpoint at T/T^,. Thus, the contributions 
of ^h1^ to the system frequency response will be very small at frequencies 

above 05 = 1/3^ = 3.5 and these contributions will be changed only very slightly 

if the amplitude asymptote through the break point at üD = 1/TA = 1 .05 is 

taken as the high-frequency asymptote of G&hH^.  Thus, a simplified open-loop 

transfer function 

s 

"Sh H (82) 

is capable of exhibiting the major changes introduced by the h closure. The 

high frequency portion of this simplified plot is shown by the dashed line on 

Fig. 16. The higher frequency terms not contained in Eq 82 will be modified 
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Figure  17.     Root,  Locus Sketch for Example Altitude  Control Outer Loop,   Ggjj'lg 
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only slightly from those given in Eq 81 by the altitude closure.  Using the 

decomposition technique on this simplified open-loop transfer function, a 

simple approxUnation to the closed-loop transfer function is 

£1 hcjh,0 —I 

^Ö56ü+1) 

, s   +1 v r s .2  2(_£zu + n 

i 

[^1.02;    (1.02)   J 

(83) 

Eq. 85 gives only the dominant mode for the altitude control system. Including an 

approximation to the higher frequency terms from Eq 8l, the total system closed- 

loop transfer function would be approximately 

i-, (^r1)(-T9ViJ  
H-9-8   [(Tfe)^lT5if-](*+'>(ifT+,)(^,)[<*,2+sitiSt,J 

E.  CONCLUDIIIG REMARKS 

With the control gains set as given above the altitude control system will 

exhibit characteristics generally accepted as good.  The transient response to 

an altitude command will be rapid and well damped, and the shape of the response 

to a step or cut-off ramp will be essentially that of a unit-numerator second- 

order system having a damping ratio of about 0.5 and an undamped natural 

frequency of 1 .0 rad/sec. The steady-state altitude error will be zero; 

however, the airspeed will, in general, change to make this possible.  (To 

also keep the airspeed constant would require a more sophisticated system 

incorporating some other control, such as a throttle loop.)  The effects of 

vertical gusts will be largely suppressed by the attitude inner loop, which 

will also tend to minimize the effects of both sudden and slowly varying air- 

frame changes (e.g. flap deflections, e.g. shifts, etc.). Further, the attitude 
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loop as a separate entity will also exhibit rapid, well-damped responses (to 

commands) which look like those of a low-order system.  Only a slight dynamic 

droop, (due to incomplete cancellation of l/TE and l/lg, and l/Tgg and l/T^g), 

and a small static droop or error (i.e. 9/9 = O.93 instead of 1 .0 as s 0) 

detract from almost ideal ■behavior for the attitude-alone system. Thus, the 

analysis procedure, as illustrated in this section, has resulted in a rapid 

and relatively straightforward nominal system synthesis without any repetitious 

analysis. 

There remains some question as to the detailed selection of criteria and 

equalization made in the course of the analysis.  Such questions can easily be 

answered by making a sensitivity analysis on the final closure results. For 

example, the sensitivities of the closed-loop poles to changes in attitude and 

altitude gains, attitude equalization time constant, etc. (computed using the 

methods of Eef 10) can be plotted as vectors on a closed-loop root diagram to 

illustrate the first order effects of such changes. These vectors indicate the 

direction and magnitude of shifts in the closed-loop poles due to specified 

per-unit shifts in the various open-loop quantities. Thus, the effects of 

small changes from the nominal values used in the present analysis would be 

Immediately available from the sensitivity results. 

A similar system synthesis could be, and normally is, accomplished using 

the analog computer as a tool. Somewhat more trial and error is involved, and 

some sensitivities are a bit more difficult to obtain.  (The calculation of 

sensitivities is a simple additional step when the system analysis data used 

in this section is available.)  The analysis procedure presented here was not 

developed to be competitive with analog results (although it is superior in 

many ways).  Instead one of the major reasons for its development was to 

achieve an alternate pencil-and-paper analysis technique. The statement 

that similar results would be obtained in an intelligent synthesis program 

using the analog computer simply indicates that the desired alternate analysis 

method has been achieved. 

As emphasized throughout the report, the loop closure sequence is extremely 

important if results such as those obtained above are to be readily achieved. 

The altitude control system provides an excellent example in this regard. 
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Consider, for the moment, that the h loop had been closed first, with the 0 

loop as the outer loop.  Then the gains derived above would have been a highly 

unlikely result because of the involved reasoning required to establish closure 

criteria. For example, the h loop would have to be closed to give an unstable, 

or nearly unstable inner loop, which would then be stabilized by the outer 

attitude loop.  With the closure sequence actually selected the criteria were 

based upon relatively simple, essentially "standard", considerations derived 

from an intimate knowledge of the characteristics of low order systems. Now 

that the system has been explored the sequence is not nearly so important, 

since special criteria could now be evolved to allow the synthesis of a reason- 

able system even with the altitude loop closed first. 
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SECTION IV 

LATERAL EXAMPLE - BAMK ANGLE CONTROL SYSTEM 

As noted in the introduction to Section III, the longitudinal and 

lateral numerical examples are intended both to illustrate the general analy- 

tical treatment developed in Section II, and to describe further some of the 

considerations leading to the selection of loop closure sequence and criteria. 

The insight necessary for such selection can be developed by preliminary 

analyses -which study single-loop closures for each of the several loops involved, 

and loop closures based on ideal controllers and approximate literal vehicle 

transfer function factors.  In the longitudinal example single-loop closures 

(of Hp. and ©p. loops) were discussed and the results were used to guide certain 

aspects of the multlloop analyses. The lateral controller treated below will 

provide an example using the other technique mentioned, i.e. approximate 

factors and ideal controllers converted to equivalent stability derivatives. 

Otherwise, the discussion will proceed in much the same way as that adopted 

for the longitudinal case. 

A.  SPECIALIZATION OF SYSTEM EQUATIONS 

The lateral system chosen as an example is basically an attitude control 

system intended to maintain zero yawing velocity and zero bank angle.  It can also 

be used to turn the aircraft by introducing bank angle commands.  In this 

system the rudder is activated by feedbacks involving yawing velocity, r, 

and the aileron is activated by the bank angle error, cp . The block diagram 

is given in Fig. 18 and the system designation is 

r — 5, 

Pc-*5a 
(85) 

The controller equations  are 
sr =  -G6,.rr = -Grr 

(86) 
5a = C^cp^c  " CP)  - "V^o  " CP) 
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Figure   18.     Barik Angle Control System 

where  the  conventional  dual  subscript  notation  for  the  controllers   (which 

specifies  both output  and  input   controller  quantities)   can here be  simplified 

to a single subscript without confusion.    The  system is  basically a special 

case  of the generalized system shown in Fig. 5.     In terms  of equations  in 

Section II the   quantities   involved here  are: 

Control Deflections: J1 

Output Motion Quantities: 

Vehicle Transfer Functions; 

82  =  5a 

IT = «P 

qp   =  r 

15 =  ß 

% = V Ql52
; = *&a 

Q2&1   = 
R6r. Q2S2 = ̂ Ba 

6k 



Controller Transfer Functions: G-, .■   = G., ,   = Gpp  =  Gp^ = 0 

G12  = GSrT ~ Gr 

G21   = G5aq3 s Gcp 

As  special cases  of the closed-loop transfer function forms  given in Eqs  ^7 

and hQ, 

-1        ^~ 
G9(%a 

+ GrH8a6r
r) 

NrR    + GcpCNcp.     + GrNf 61" ) 
(87) 

r"r5 

■5a 

a   * -a r 

r 
N; 

S^Jl ^r-iF1) 

+ GrR8r 
+ S*Sa(1 + Gr 

%!6
r 

a"r* 

\t 

The open-loop transfer function for an outer cp loop, (presuming the r -"- B-, 

channel is used as an inner loop and is already closed) is a special case of 

Eqs hS  and 50, 

(8c 3^ 5.      A + GrIIrST 

(1 ^r-^) 

Gm* «P 0a   1 + GrRB> 
(90) 

The airframe transfer functions in literal terms will he taken, for this 

example, to have the forms. 

Nr5 
i 

>r =     A 

A^s  +   l/Tr  )(s2  + 2£rüDrs  + (ü|) 

*5 a A 

(s  +  l/Ts)(s  + 1/TR)(S
2 + 2^ds  + CD

2
) 

A^s2 + 2^u^s + oi^p) 

(s  +  l/Ts)(s  +  l/TR)(s2  +  2^dMds  +  of) 
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The coefficients of these transfer functions, and literal approximate factors, 

in terms of aerodynamic and inertial parameters are presented in Refs 2 and J. 

These stem from the three degrees of freedom equationo 

;(s - 1^) 

N^s (s - Np 

^r 0 

M 
hK L5a k. 
*5r 

N5a 

(93) 

which describe the lateral motions of the aircraft when only slightly perturbed 

from straight, wings level, and horizontal flight. By analogy with Eq 5k  the 

"coupling numerator1', ]%*§ , is then 

Li 

(s - Yv) 

- L' 

Ni  N8r  - ®e 

(L8aN8r - HM 
'   J Y5r (KßL5a " LB^J 

A %    - NTLTT 
Oa ur    Oa 0r 

A (s + 1/T^) = Kqfc.CT-w.s + l) cpr"1 -^cpr^ (9^) 

Other coupling numerators for common multiloop systems are tabulated in 

Appendix B.  The final line of Eq, 9h-  also introduces the last type of special 

notation for multiloop analysis. Unfortunately even the double subscripts on 

Kqjp and Tmj, can be ambiguous, although not for most practical systems.  If 

essential ambiguities ever occur, a sub and superscript combination, as in 
cp r 

"b&QT>   could conceivably be used (although a special, albeit Inconsistent, 

notation would probably be clearer). 
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B. cp 8a AND  r -» 5r AS SINGLE LOOPS 

Because two control deflections, 5r and 5a, are used, analysis of the 

system will, as noted above, involve a "coupling numerator" clos tire. The 

system is, therefore, somewhat more complex than the altitude controller 

example of Section III.  Another general difference is that both the r -*- 6r 

and 9 -•- 6a feedbacks must play an attitude stabilization and regulation role, 

whereas only the 9 loop had such requirements in the longitudinal system. 

Consequently the bandwidths of the r -»■ Br and cp -^5a loops, considered 

individually, should be about the same in magnitude  Also commands into 

either or both loops will provide a turning capability so the use of only bank 

angle commands, cpc, indicated in Fig. 18 is somewhat premature.  With only such 

rudimentary considerations, it is not obvious a priori which should be the inner 

loop. More Insight can be gained by considering both as possible inner loops. 

Therefore individual loop closures of r -•*■ B and cp 

below before delineating the loop closure sequence. 

5  will be investigated 

1 .  r —"- 5r as a Single Loop 

The Rg  transfer function form given by Eq 91 has a numerator which is 

full of surprises if all manner of vehicles are considered. The cubic can 

factor into either a first order plus a quadratic (as indicated by Eq 91 ) or 

into three first orders.  Further, the roots of the cubic can take on almost 

all possible variations in sign. Therefore a complete summary of the pos- 

sibilities for Nr  requires a large number of different conditions to be taken 

into account.  Some, but not all, of these are codified in terms of approximate 

factors in Eefs 2 and 15.  For most manned aircraft, however, the number of pos- 

sibilities is cut down substantially, with the factors usually being of the 

following nature: 

1      .    1 
IT! 

en,, « a^ 

krl   « 1 

T > 0 
R 

Clip,   cud > 0 

> 
or 0 

07 



The sketches of Fig. 19 illustrate typical dynamic characteristics 

achievable with a pure gain r —5r loop closure for a typical manned air- 

craft. The Eg transfer function has the features listed above, and both ^r 

and l/Ts are taken to be negative. Fig. 19 indicates that the spiral can be 

stabilized readily O/Tg is positive) and that considerable dajnping can be 

added to the Dutch roll mode (g! > (;d) without running into difficulties due 

to the high gain stability limitation inherent in the negative value assumed 

for ^r. 

The same conclusions about Dutch roll damping augmentation and stabili- 

zation of the divergent spiral mode can be obtained using literal approximate 

factors and the method of equivalent stability derivatives. As given by 

Refs 2 and 5, the literal approximate factors for the spiral and Dutch roll 

damping are 

J-^R^(|N.-I4) (95) 
S p 

Vd '-(\ +  Nr) " ^NP " ^ (96) 

For an ideal (no lag) controller the rudder deflection will be 

5  = -Krr (97) 
r    1 

which will create a yawing acceleration equal to -N^K^r.  The effective value 

of the stability derivative IT will then become 

N'      .   = N'  ,_. n  - KJ^: (93) reffective   rvehxcle   r 0r 
alone 

The effective N' can be made more negative (much larger in magnitude) than the 

nominally negative Hy of the vehicle-alone.  Using ®Teff  to replace Hr in Eq 96, 

the Dutch roll damping Uda)d) with control is seen to be increased by the 

increment KrMir/2.  Similarly, the substitution of Nreff 
ror Hr in E<3. 95 will 

increase l/Ts.  For values of Kr such that the zero db line in Fig. 19 lies 

below the flat amplitude ratio portion running from zero to the breakpoint at 

|l/Ts|, this increment is sufficient to make 
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-E N'     > N' reff 
14 

thereby reversing the original assumed inequality ([L^.] > ILÖ^/^RI^ responsible 

for the diverging spiral mode. 

Another feature of a pure gain yaw rate to rudder controller is its 

tendency to uncoordinate turns. This can be seen by considering the side 

acceleration equation for steady state, constant altitude conditions, 

ay = -g sin cp + U0r = Yvv + U0Y5*5r (99) 

For the turn to be coordinated ay should be zero, so that, in the turn, 

Yyv + UoYg^Br must also be zero. When ay = 0, yawing velocity and barik angle 

are then connected by the relationship 

r = #■ sin cp (1 00) 
u0 

When 8r = 0 and Eq 100 holds, Eq 99 implies that the sideslip, v, is also zero. 

However, when 5r = -Krr, the quantity Uo^B^r will have a value other than 

zero, thereby requiring some sideslip if gy is to be zero, or some lateral 

acceleration if v Is to be zero. This deficiency of a pure gain r -•- 5r 

system, can be eliminated either by Introducing an rc command, or by using pure 

lead—lag equalization ("washout") in the r -*- 5r controller. As indicated by 

the Bode and root locus sketches of Fig. 20 the introduction of lead—lag 

equalization need not strongly affect the augmented Dutch roll damping, 

although the spiral mode is no longer stabilized. 

2. cp —•"• 8  as a Single Loop 

Single sensor control loops of the cp -»-5 variety have been thoroughly 

documented elsewhere (e.g. Refs 2, 5, and 1 3)• Although such systems can exhibit 

a wide variety of behavior depending upon the relative locations of the poles and 

zeros of Og and the equalization used in the controller, the most usual situa- 

tions encountered are typified by the family of root loci shown in Fig. 21 . 

Here the Dutch roll is lightly damped and, depending upon its root's location 

relative to the £_, cu numerator, can be unstable when the loop is closed. With 

the exception of these "(%), CJO^ effects", the single axis system will exhibit 
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excellent closed-loop characteristics when simple lead equalization (TgS + l) 

is added to the basic airframe characteristics. This equalization can he 

obtained either by operating on the cp sensor signal, or by adding a roll rate 

gyro.  In the latter case T is the ratio of roll rate to roll position gains. 

Several means (see Ref 5) can be employed to offset deleterious oi , co^ 

effects such as those exhibited when the $ga numerator quadratic is represented 

by the location marked with the "a" subscript. The method most pertinent to 

the present discussion is to use the yaw rate loop as a subsidiary loop to the 

cp —»-5a loop. One helpful consequence of the yaw rate closure has already been 

noted in connection with Eq 96, i.e. the increase in Dutch roll damping. This 

will result in the Dutch roll poles being moved further into the left half 

plane. Another beneficial consequence of the yaw rate closure can be seen by 

examining the approximate factor for the N™  damping term. 

(Refs 2 or 3), 

2^ 4  -  (Yv + Np   + 
N5. 

This  is  given by 

(101) 

-_L-_L 

x O 

^'Vc 

-I 

Figure 21.  Root Loci for Single Axis Bank Angle Control System with 
Ideal Controller and Variable Ncpg , Sa = Kcp(TEs + 1 ) 
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Using Nreff 
for Nr in Ecl101 indicates that the yaw rate closure also moves the 

f^cpj «^p quadratic further into the left half plane.  In the roll loop closure 

the locus will still go from a>d to m    as  gain is increased, but this can no 

longer result in an instability if the roots corresponding to ocw, and tüd are 

sufficiently danrped. Since this is accomplished by the yaw rate loop, it is 

seen to be an admirable inner loop for the cp -",^8a system. 

C. LOOP CLOSURE SEQUENCE 

With the benefit of the discussions above a unique closure sequence can 

now be established for the cpc — 5a, r •—Br system.  Table III specializes 

the general factors listed in Table I to this system.  The net results of the 

factors summarized in Table III include the equivalent block diagram of Fig. 22, 

to Indicate the closure sequence; the implicit requirement (which goes 

along with the absence of an rc in Fig. 22) for washout (i.e. pure lead-lag) 

equalization in Gr; the explicit requirement for the r —5r loop to appreciably 

augment the Dutch roll damping; and possible lead equalization in G-,. 

D. HTJMERICAL EXAMPLE 

The discussion above has covered the general aspects of the bank attitude 

control system with a washed-out yaw rate inner loop. For the numerical example 

of the present article a second-order lag will be used to approximate the servo 

characteristics, i.e. 

G* 
1 

(—)  +   + 1 

(102) 

where <^, = 20 and ^g = 0.7 are assumed as nominal values.  The same servo 

characteristic will be used for the controller transfer function in both roll 

and yaw axes. 

The airframe transfer functions are slightly modified from those of Ref 11 

to provide a $Qa  transfer function in which fiü is greater than CDa, Also, for 

this example, a coupling numerator is needed. The airframe characteristics to 

be used are. 
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Figure  22.     Equivalent Block Diagram for Bank Angle Control System 
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Besides the vehicle and servo characteristics, values are needed for the 

yaw loop washout time constant, T and the roll loop lead-equalization 

time constant, Tg. Both these time constants would ordinarily be found as 

part of a detailed optimization procedure in which the vehicle dynamics over 

the entire flight regime, and the effects of subsequent loop closures (e.g. 

a heading loop), are considered.  Since studies of this kind are beyond the 

present scope, reasonable representative values are selected for the numerical 

example . With these values the controller transfer functions become 

Gr 
Krs 

f-L. + off—I2 + 2(-7?s + ^.20   UIW    (20)  + 

G„ 

(104) 

17-SN
2
 . 2(-T)s   "I 

The principal objects of the analysis are to find values for Kr and IQp 

which provide "good1' closed-loop characteristics.("good" implies negligible 

static errors in cp, rapid and well damped responses to cpc, adequate margins for 

vehicle and controller pole and zero variations, relative insensitivity to 

parasitic nonlinearities, etc.), and to find the poles and zeros of the closed- 

loop transfer function. 

The first step in the analysis procedure is the simultaneous closure of 

the yaw rate and coupling loops to obtain $5a-  Bode diagrams for Gr Ng g /Wmo 

and GrRg  are shown in Fig. 23a and Fig. 25b respectively.  The closed-loop 

poles resulting from closure of the first (coupling numerator) will be the 

zeros of $0 , while the closed-loop poles from the second become the poles oa 
of Ogg,.  Only KT  is available for adjustment in either closure. 

Suitable closure criteria can be expressed in several different ways, e.g. 

as phase margins and gain margins, closed-loop root values, integral performance 

measures such as ITAE or IE based on dominant modes (Ref l6) etc.  The actual 

criteria selected are somewhat a matter of taste and convenience, but, whatever 
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they are, the resulting system should possess good closed-loop characteristics. 

For the present case the closure selected will be based on design to a specified 

damping ratio of 0.8 for the closed-loop Dutch roll mode.  The selection of a 

specified damping ratio as the closure criterion provides an alternative example 

to the use of a phase margin criterion, as in the altitude control case.  The 

value of d = 0.8 might, at first glance, appear rather high.  However, the 

corresponding value of $1,  obtained from the simultaneous closure of the coupling 

loop, will be somewhat lower than 0.8, and the final cp -"-5a closure will tend 

to force the modified Dutch roll roots to values near £'. An alternative, of 

course, is to specify a damping ratio, (" ', for the Og numerator. As it will 

turn out, a specification of £' = 0.8 is equivalent to 0.5 < £' < 0.6. 

The value of gain, KL, consistent with a (^ of 0.8 can be found in one of 

several ways, e.g. from a detailed root locus plot.  In the present example 

it is expedient to use a short segment of a so-called | Bode plot (see Ref 9), 

for ^ = -0.8, as shown in Fig. 25b.  The value of |s| where 4 G(|, |s|) is 

-ISO degrees is then the undamped natural frequency, CD^, of the Dutch roll 

as modified by the yaw rate closure, and the zero db line location is found 

by running it through |G(^, IsI)|^  at this value of |s|.  Kr is thus found 

to be -8.88 in linear units.  (Kr is negative because the sign convention for 

5r results in N6r being negative.)  The other closed-loop ä>5a numerator and 

denominator roots are found on the plots of Fig. 23 using the decomposition 

method.  The resulting 05a transfer function is 

*L-t 
(105) 

The last quadratic in the numerator and denominator of Eq, 105 derive from 

the servo characteristics. These are nearly identical, and can be presumed to 

cancel with only negligible error.  This type of near cancellation invariably 

occurs when coupling numerators are present.  It will be recalled that a similar 

numerator quadratic was not present in the altitude controller case because of 

the absence of a coupling numerator closure.  Cancelling these quadratics gives 

the result, 
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/
A(B,I,STpiTÄa3Cp    K , , (    „   ,g   -)^ + 1)|(^)2 + 4?- + 1 

(106) 

^ÖF-X^.X^.,,^ .^|3 . ] 

The 0^ transfer function given by Eq 106 is now combined with G^ (Eq 10k), 

to fonn the outer, open-loop transfer function. Bode diagram and a root locul 

sketch for closure about this open-loop transfer function are shown in Figs. 2h 

and 25.  To make the closed-loop transfer function CP/CD 1 T/VcJcpc -~&s 

approximately invariant with flight condition a high gain closure shall be 

used and the equalization, (TEs + 1)3 will actually be placed in the feedback 

path, i.e. as shown in Fig. 26.  The closed-loop transfer function will then 
have the form 

^c 

>]        __J  (     Vs»      ) 
ycpc-*.6a " (TES-TTTIT +0^ J (107) 

x      ur r -^ 5, 

To the extent that the high gain closure makes the quotient in braces apprDach 

unity, cpApcJ^^ ^ will approach (TEs + l)"
1 .  TE is a function only of 

5r 

controller parameters, so its value can be controlled readily. 

To accomplish the high gain closure, but still preserve some stability (in 

the closed-loop servo mode), a phase margin of 1+0 degrees is selected.  The 

gain, Ky,  will then be -6.6 db or 0Mj  in linear units.  Using unified servo- 

analysis techniques, the closed-loop transfer function is 
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G<p^a (1 ) (Tp2s + 1 ^■-»kr^il 

(108) 

(-, 

Note that the prime notation is here extended to two loop closures by the double- 

prime quantities. The entire numerator is approximately cancelled by correspond- 
ing denominator terms^ leaving 

G $i 9 5a   .         •, 
1 t0Ä-(»  +1)r : :• r— Co« 

'21 .7 L^ + -JTS^J + 1J 

This is nearly unity at frequencies below 12 rad/sec, or so, and hence 

^APc]^ -^5a is very close to just (TEs + 1 T1 for these same low frequencies 

r —"- 5 
r 

The width of this frequency region, and the near cancellation indicated by 

Eq 1 08, cannot be materially improved without serious degradation of the damping 

ratio of the closed-loop servo mode. 

While the cp response to cpc signals will approximate that of a first order 

system having a time constant of TE - l/0.8, the aircraft response to external 

disturbances will not be of such simple form.  For example, the transfer func- 

tion relating yawing velocity to a side gust will not contain the numerator (to') 

quadratic which essentially cancels the closed-loop Dutch roll (aG) mode, as 

shown in Eq 108.  Instead, the dominant yawing velocity mode will in fact be the 

modified Dutch roll; but it will be adequately damped (£" = .56).  Similar 

remarks can be made about the other augmented-airframe characteristics which, 

in general, have values compatible with good suppression of external disturbances 

of almost any type likely to be encountered. 

80 



.^   b 

o» o 

o y- 
T) /' 

3    -A -i^— *> / // 
i2. f 1. / 

ßdp ' a|6uv  asDCid 

(-q 

qp 'oijoy  »pniiidtüv 

81 



J 

ICÜ 

<> 

-I 
TR 

-I 
Ts 

25.  Root Locus Sketch of Bank Angle Control Systen 
Outer Ooeri-Looo Transfer Fujictio.-., G^Og 

Figure 26-  Block Dlac odt.  Diagram Indicating Lo cation of Outer-Loop Equalizatic 

82 



REFERENCES 

k. 

5. 

9. 

10. 

n . 

12. 

13. 

i4. 

_____ ^amd AppHeation to bm^le Sensor Cnritroi^ti^71mDrTOlgr32, 

NoTTTMi^h r960.       -'  dOUrnal of the Aero/Space Sciences,  Vol{Si^7, 

McRuer,    D.    T.       anr)    R       T       C34.       T    ^ äi^-^ ^X^^^^^JT-"^ .^^.i ,zr. f., 

S^lfeSi-fÜ^' BUAer BePOrt **-*■"-*.  "orttoop «„„„, 

»^YoA^-^^.f';;!""8   -   ""t'^"^^'    I"t"»1""   PUbll.h.„.    Ino., 

83 



15. Ashkenas, I. L., and D. T. McRuer, Competing Flight Control Systems 
for Entry Glider Lateral Control. ASD-ODR-fe-699; October 1962.  

16. Wolkovitch, JR. Jfagdaleno, D. McRuer, D. Graham, and J. McDonnell, 
Performance Criterla_for Linear Constant-Coefficient Systems with 
Deterministic Inputs. ASD TR 6l -501 ]  February 19^ ^~"  

m 



APPENDIX A 

DEVELOPMENT OF EQUATION 2h,  A^yg 

The characteristic function of the generalized multiloop system^ Ag^g., is 

given in both determinant and expanded form by Eq 2k.    The expansion of the 

determinant is considerably expedited by writing it as shown in Eq A-l, in which 

each of the element columns is denoted by a Roman numeral and each subcolumn by 

a capital letter. The complete expansion of Eq A-1 produces 3 = 81 fourth- 

order determinants in which all elements are single (non-summed) quantities. 

However, as will shortly be seen, 60 of the determinants are zero, one is equal 

to Eq 25, and the remaining 20 are in the form of Eq 26 or 27. 

all   +Fnall   + F12G21        a12  + F11G12 + F12G22      al 3 + Fl 1 al } + F12G23       0  + Fl 1 Gl It  +  Fl 2G2'l 

a21   + F21G11   +  F22G21       a22  + F21 Gl 2 + F22G22      a25 + F21G13 + F22G23       G  + ^^l^  +  F22G2U 

a51   + F31G11   + F32G2i      a32 + F31G12 + F32G22     a33 + F3iG13 + F32G23      0 "•  F^Giii + F^G 

-a^,   +       0+0 -a^j  +0        +       0 -a^,  +        0        +       0 

31ul't  +  ''32u21* 

0        +        0 

(A-1) 

Before proceeding with the systematic expansion of Eq A-1, and by way of 

review, six fundamental properties of determinants are stated (Ref. 12): 

1 .  If all elements in a row or column are zero, the determinant 
is zero. 

2.  If all elements but one in a row or column are zero, the 
determinant is the product of that element and its cofactor. 

5-  If two columns or two rows of a determinant are identical, 
the determinant is zero. 

1+.  If all elements in any column are multiplied by a factor, 
.  the determinant is multiplied by that factor. 

5.  If each element in any column or row is expressed as the sum 
of two quantities, the determinant can be expressed as the 
sum of two determinants of the same order. 
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6.  If two columns or two rows of a determinant are interchanged, 
the determinant is not changed in absolute value but is 
changed in sign. 

The systematic expansion of Eq A-1 is easily accomplished by covering two of 

the three subcolumns in each column with paper strips and evaluating the visible 

fourth-order determinant.  By systematically shifting strips, but always keeping 

two subcolumns in each column covered, which is equivalent to applying property 5, 

Eq A-1 is completely expanded as a sura of determinants.  As examples of the evalua- 

tion of each determinant: 

With subcolumns IA, IIA, I1IA, and IVA exposed, the visible detenninant 
is equal to A (Eq 25). 

Shifting one strip in the fourth column exposes subcolumns IA, IIA, IIIA, 
and IVB, and the visible determinant, using property k  and the definition 
of N 11 Iß' 

is G I^Nq^, 
Bl 

a 11 a 12 a13 ^ll0^ 
a21        a22 a23 F21G1^ 
a31      a32 a33 F31Glij- 

-ai^      -ai4.2 -a43            0 

- Gl4 

n 
a21 
a5i 

-a4i 

a.12 

a22 
a32 

-Ate 

a15 
a23 
a33 

-a^3 

'11 
F21 

F31 
0 

= Gl^q, 
^8i 

Shifting one  strip  in the first column exposes  subcolumns  IB,  IIA,   IIIA, 
and  IVB,   and the visible determinant,  using property k and then property  3> 
is  zero;   i.e.. 

F11G11 a12 a15 F1lGl4 
F21 G11 a22 a23 F21G1 k 
F31G11 

a32 a33 
F31G1 k 

1^2    -ai+j 

F11 al2 a13 
Fii 

= G11G1^ 
F21 
F31 

a22 
a32 

a23 
a33 

F21 

F31 
0 -ah2 'Hi 0 

= 0 

In general, whenever two or more exposed subcolumns have similar alphabetical 

designations other than "A", the determinant is identically zero by properties 

3 and k. 
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The complete set of possible combinations of subcolumns is evaluated in 

Table A-I. The dots in a particular row indicate the subcolumns of Columns II, 

III, and IV which are combined with each of the three subcolumns of I. The 

evaluation (nonzoro or zero) of the resultant determinants is indicated in the 

appropriate subcolumn of I»  The nonzero determinants are given in Table A-II 

using vehicle transfer function numerator, Nqj  , and coupling numerator, 
q.q. 8j 

Ngij-gJ, notation (Eq 26 and 27, respectively). 

The characteristic function, Agyg, is the sum of all determinants shown in 

Table A-II, and is given below. 

l81 
+ 012^ + G

15N% 
+ G1 J^q^ 

+       G21Nq 
62 

+ 02^^ + 
^^ 

+ G^X2 

+ Gn( + 
(1^2 

G22V2 
+ c    Nqiq5 

G23N8152 
+ G^N

8
q;8q

2) 

+ /        q2<11 + 
^3% 82 

+ 

+ /        <13q1 + G22N
R R dd 5152 

+ ^^ el) 
/  ^^l       %^^ llt-ll \ 

+  ^^\^       +  ^2% S2  
+  ^3% 82 )  (A-2) 

Noting from property 6 of determinants that NgigJ = -N^1, and recognizing that 

controller functions other than those chosen can be factored out, it is clear 

that various simplifications and modifications to Eq A-2 are possible.  But the 

simplest of all is the shorthand form given in the text (Eq 24): 

^3  = A+ £  E GJiNq.   + £ Ys   0,^^^ (A-3) 

ijtk 
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TABLE A-I 

EVALUATION OF ALL POSSIBLE SUBCOLUMN COMBINATIONS IN EQUATION A-1 

T II 1 IV                 __ 
A B c A B c A B c A B C 

*■" f t-* • . 
w^ 0 \y . . 
1^ V 0 . • 
t*-* 0 t-' . . 
0 0 0 • • 
U' 0 0 • . 
v U' 0 , ■. 

t^ 0 0 . . 
0 0 0 • . 
\^ 0 l^- . . 
0 0 0 . , 
yy 0 0 • . 
0 0 0 . , 
0 0 0 • • 
0 0 0 • • 
t-^ 0 0 • • 
0 0 0 • • 
0 0 0 • • 
xs >y 0 . . 
^ 0 0 . . 
0 0 0 . . 

IS- 0 0 • . 
0 0 0 . • 
0 0 0 • . 
0 0 0 . . 
0 0 0 . . . 

0 0 0 • • 

^ Denotes that determinant of indicated combination of subcolumns is nonzero 
0 Denotes that determinant of indicated combination of subcolumns is zero 



TABLE A-II 

NONZERO DETERMINANTS IN EXPANSION OF EQUATION A-l 

EXPOSED SUBCOLUMNS VISIBLE DETERMINANT 

IA,   IIA,   IIIA;   IVA A 

IVB GlW^ 

IVC G^X2 
IIIB,   IVA G^51 

"         "           "         IVC 
G13G2^5152 

IIIC,   IVA G^52 

IVB 

IA,   IIB,   IIIA,   IVA G12%25 

IVC 
q2% 

G1 2
G2J4-N51 52 

IIIC,   IVA 
(12q5 

IA,   IIC,   IIIA,   IVA 
G
22^           n 

^_                                             S2 

IVB ^^22^11 

IIIB,   IVA 
cuq.2 

IB,   IIA,   IIIA,   IVA GnNq 
51 

IVC 
qlq4 
bl52 

IIIC,   IVA 
qiq5 

IB,   IIC,   IIIA,   IVA 
q.q2 

01ö2 

IC,   IIA,   IIIA,   IVA 
182 

IVB ^1 
Gl^\b2 

IIIB,   IVA Gi5G2i«5;62 

IC,   IIB,   IIIA,   IVA G1 2G2T NBi B2 
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APPENDIX B 

TYPICAL COUPLING NUMERATORS 

Examples of longitudinal and lateral coupling numerators are given in 

Tables B-I and B-II, respectively, for the approximate equations of motion 

shown below: 

Long itudinal 

's - Xu -Xw g 0~ u 

-*u 

-Mu 

(s - Zw) 

-M^s - Mw 

-U0s 

s2 - MqS 

0 

0 

w 

0 

0 1/s -Uo/s 1 h 

Late] -al 

" Yv -g/Uo 

^ s(s - 1^) 

Nß -Nps 

uoS g - lxs
2 sin a

( 

1 

s - N' 
lxs cos a0 

9 

r 

X&B 

ZS8 

0 

Y55 

(B-1) 

(B-2) 

The characteristic determinants of both the longitudinal and lateral 

equations of motion are the usual quartics, &xone.  an^" /-vlat' wi^*1 unity coeffi- 
k 

cients of the s  terms.  The coupling numerators are thus compatible with the 

conventional airframe transfer functions in Ref 2. 

In the tables the A, B, C coefficients are those for terms of descending 

order in s (e.g., A is the coefficient of either s2 or s; B, the coefficient of 

s or s0; C, the coefficient of s0, or nonexistent).  The complete literal 

expressions for each coefficient are shown, as are the forms of the coupling 

numerators, and approximate literal values of the gains, time constants, fre- 

quencies, etc., appropriate to these forms.  In most cases the approximations 

involved are obvious by reference to the complete expressions and stem largely 

from the usually negligible nature of certain control effectiveness derivatives 

(e.g., Xg  longitudinally and Y§  laterally) and products of cross-control *- ^a 
effectiveness derivatives (e.g., N5 L5 , « Lg N5 ). 
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One property of coupling nmnerators, i.e,, N*$ . .^    ls used extensively 

in the tables to simplify the presentation. An additional property applicable 

for the deteminatlon of coupling numerators containing an auxiliary output 

motion quantity is also used. With q. (i = ,,2,3) the independent degrees of 

freedom and q^ an auxiliary variable. 

then 

%    =    a4l^   + a42q2  + a43q3 

^1^ *iS 1^2 l-.-l 1^3 
152    =    ^l^^^a^— .a^^ (B-3) 

where one of the coupling numerators on the right side will be zero because 
N6k6i 

ls zero if 1*J or k=l. 

For example, the independent degrees of freedom for the longitudinal 

equations of motion are u, w, and 0, and two auxiliary motion quantities are 

h = -Ü Oo   1 

Using Eq B-3 and B-^, 

(B-10 

(B-5) 

5e5T U0 %e5T (B-6) 

Similarly, using Eq B-3 and B-5, 

N; 0 h 5e6T 
i Ne w 
s Se8T 

Thus  from Eq B-6 and B-7, 

(B-7) 

BN 
e h 
8e5T ■U^JT (B-8) 
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The property of Eq B-3 that coupling numerators can be summed to yield new 

numerators applies even when an auxiliary output motion quantity is expressed 

in terms of other auxiliary variables.  If Eq B-5 is written 

(B-9) 

(B-10) 

(B-11) 

then 

h = **-£» 
wa h 

%e5T = ^<A - uo N0 a 
"   s   N8e6r 

<* 8e5T 
= -vtX 

Comparison of Eq B-8 and B-11 shows that 

„a h     „0 h 

VT 
= SN8e8T (B-12) 
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c^ 

-Nay'p 

6a
&r 

l4aN6r - Hj4T 

'^ir - Y$aLAr 

TABLE B-II 

LATERAL COUPLLNG NUMERATORS 

-Yv(i4aN4r - N4any 

v(s + 4) 
1 Y5r /   . •   NBa\ 

+ LrCSa^Br  " Y8aN6r) 

+  {NBaLBr  "   li,«4r) 

(S+4) 
N; 

Acpe i ^a
YBr i,.,. 

U0(LBa^&r " iSaL6r) 

+   lx  cos 0^,(4 Ng     -   NBaL8r) + UoLr(N5aYgr -  ^0^1,.) 

lx  COS  OQ 

+ Ifl(Y5aNBr  -  N5aYsr) 

- Np(Yjal4r - LBa
Y6r 

^v(LBa
NBr "  Hba^r) 

+ l4(YSa«5r "  Vs.) 

A(payLs2   +   2(^)cpay
E   +   Haj-) J 

"o^r 
For cos a.  i 1   ;   lx    ■ i—   ~   Center of percussion 

H5r 

lx s lx0 + ^-x 

(<4pay) 

2(?a>; 

i l4a("o^r + lxN6r)  * -L8aUo
YSr 1^ 
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APPEMDIX C 

AN ALTERNATE FORMULATION 
OF NUMERATOR AND DENOMINATOR EXPANSIONS* 

Although the mathematical equations for the effective (closed-loop) system 

transfer function nuiaerators and denominator may appear quite complex, they 

are simple straightforward expansions. These expansions can be defined by a 

few rules similar to the ones used in signal flow diagrams.  The sensing, 

actuation, and equalization components of the system are treated as feedbacks, 

all acting to modify the vehicle open-loop transfer functions.  The resultant 

closed-loop system is analogous to an effective vehicle which nay have command 

control deflection or disturbance inputs. 

The rules are: 

1 . The effective numerator is equal to: 

a. The open-loop numerator 

b. Plus the sum of all the feedback transfer 
functions, each one multiplied by the 
appropriate coupling numerator 

2.  The effective denominator is equal to: 

a. The open-loop denominator 

b. Plus the sim of all the feedback transfer 
functions, each one multiplied by the 
appropriate numerator 

c. Plus the sum of all the feedback transfer 
functions taken two at a time, each pair 
multiplied by the appropriate coupling 
numerator 

Rule 1 simply states that each feedback modifies a numerator by adding to 

that numerator the product of the feedback transfer function and the appro- 

priate coupling numerator. The appropriate coupling numerator is the one for 

the output/input pair of the original numerator plus the feedback output/input 

pair. For example, the feedback qp—^6., modifies the q,-/8! numerator by adding 
q. qo ■»• J 

to it the term G-, 21^05 and modifies the ^/T].  numerator by adding to it ^he 

termG12N^ 

^Developed by Robert L. Stapleford. 
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The effective denominator has been shown in Appendix A to be given by 

lilk 

1=1 1-1      ^Sj   i=i k=i        1 
(C-1) 

The equivalence of Eq C-1   and Rule 2  should be obvious.    The appropriate 

numerator. Rule 2-b,   is  the one with the   same output/input pair as the feed- 

back and the appropriate coupling numerator.  Rule 2-c,   is the  one with the 

same two output/input pairs as  the  feedbacks. 

For example,  consider the  system shown in Fig.   C-1 , which is the  same as 

in Fig.  k,   redrawn to  form the  command control deflection input,  6p     (the 

product  of the   command  input,   q-j    ,   and  the  command  controller  feedback 

transfer function,  Gp-] ) . 

~C 

■'      ■'         1 

<)   G|4 1- 

^2 
E 

-. Si^ 

Vehicle 

Dynamics 

■J 
^4 
 m ^- 

^3 

s* 5    [T-i^'I^J , r h*2 "l 

< a   -^   .rrn L J 
S.                 3'< 1 

Figure  C-1 .    Block Diagram of Multiloop  System 

«11-^  %^^2' <h' %-^5i 
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