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FOREWORD

This report represents one phase of an effort aimed at extending the
techniques of airframe—human pilot systems analysis used for the deriva-
tion of fundamental vehicle handling qualities. Previous investigations
have studied lateral and longitudinal piloting situations applying single-
loop feedback analysis methods and employing a mathemstical model of the
human controller as a servo element. The multiloop systems analysis tech-
nique developed herein, although intended for manual control applications,
is equally suitable for automatic control system investigations.

The research reported was sponsored by the Flight Control Laboratory
of the Aeronautical Systems Division (now part of the AF Flight Dynamics
Iaboratory, Research and Technology Division) under Project No. 8219,

Task No. 821905. It was conducted at Systems Technology, Inc., under
Contract No. AF 33(616)-8024, with Mr. I. L. Ashkenas and Mr. D. T. McRuer
serving as principal investigators. The Air Force project engineer was
Mr. R. J. Wasicko.

The authors gratefully acknowledge technical and editorial contribu-
tions made by Messrs. R. L. Stapleford and R. J. Wasicko and the careful
work of the STI production staff.



ABSTRACT

T'he multiloop vehicular control system analysis technique developed
is designed to maximize the ransfer to the multiloop problem of knowl-
edge and insights obtained .rom elementary single-loop vehicular control
system analyses. The matrices representing the closed-loop multiloop
system are expanded in a special fashion to forms in which the elementary
single-loop systems explicitly appear. In the course of the development,
the concept of the vehicle coupling numerator is introduced as an addi-
tional property of vehicle response behavior. The over-all closed-loop
system analysis consists of successive closures of single, elementary
system loops and loops involving vehicle transfer function numerators and
coupling numerators.

The method is developed initially using a general multiloop system.
Two simple, practical multiloop systems in aircraft control are then used
as examples of the analysis technique; one illustrates a multiloop situa-
tion wutilizing a single vehicle control input and the other involves
multiloop control using two vehicle control inputs.

This technical documentary report has been reviewed and is approved.

Nortew B Lot

Chief, Control Criteria Branch
Flight Control Division
AF Flight Dynamics Iaboratory
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SYMBOLS

Matrix of alj's (see Eq 9)

Typical coefficient element in Iaplace-transformed equations of
motion describing vehicle characteristics (see Eq 1)

Iateral acceleration; generally measured at a dirtance 1y from the
C.g., By = ayc.g. + 1yr cos @y + 1,p sin o,

Gain of transfer function particularized by subscript
Wing span

Polynomial coefficient

Mean aerodynamic chord

Polynomial coefficient

Total drag coefficient, Drag/(1/2)pU5s

Drag coefficient variation with angle of attack, dCp/da
Drag coefficient variation with control deflection, OCp/dd
Nondimensional variation of Cp with speed, Uy,0Cp/20u
Rolling moment coefficient, (Roll momenﬁ/(1/2)pU§Sb
Dihedral parameter, 3C1/0B

Roll control effectiveness, dCp/3%

Roll damping coefficient, dCy/d(pb/2U,)

Roll coefficient due to yawing velocity, 3C1/9(rb/2Up)
Lift coefficient, nW/(1/2)pU2s

Lift curve slope, dCp/da

Control surface lift effectiveness, OC/d8
Nondimensional variation of Cy, with speed, U,dCr/20u
Pitching moment coefficient, (Pitching moment)/(1/2)pUgSc

Pitching moment coefficient variation with angle of attack, BCM/Ba
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Chg, dopm/d(de/2Us)
CMg Control-surface pitch effectiveness, OCy/0d
CMq Pitch damping coefficient, dCM/d(ac/2Up)

Nondimensional variation of Cy with speed, UpdCp/20u

Cn Yawing moment coefficient, (Yawing moment)/(1/ 2)pUng
Cng Static directional stability, OCp/Op

Cng, Yaw control effectiveness, OCp/dd

Cnp dC,/3(pb/2Us)

Cy lateral force coefficient, (Iateral force)/(1/2)pUgS
Cyg Variation of Cy with sideslip angle, dCy/3p

Cyg Iateral force effectiveness, OCy/0d

db Decibel = 20 log,o | | = | Igy

D Denominator polynomial of G(s)

(] Matrix of coefficients Ejj (see Eq 7 and 13)

[F] Matrix of coefficients Fij (see Eq 7 and 11)

g Acceleration due to gravity

G(s) Open-loop transfer function; also, specific transfer function as

particularized by subscript(s)
h Altitude
Hy Vehicle transfer function = Npg/A (see Eq 66)

Ix,k,I; Moments of inertia about the X, Y, and 2 axis, respectively

Ixz Product of inertia in XZ plane

Jo The imaginary portion of the complex variable, & = 0 * Jjw

Kh8 The zero frequency value of the transfer function H{i(s)

Ket} The zero frequency value of the transfer function 85(s)

K Open-loop gain; the frequency-invariant portion of a transfer function
as s == 0, particularized by subscript(s)

1, Distance along the fuselage longitudinal reference axis from the c.g.,

positive forward

ix
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pSU_b clp/hlX
PSUGLECY /4Ty
Mass
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UoM

2
pSUGcC, /2Ty
psuoc2ch/u1y
pSUocCy, /Iy
pSULcCy, /21y
pScly, /Ty
Vertical load factor
Numerator polynomial of G(s)
pSUbenﬁ/2IZ
pSUSDCy, /21,

Coupling numerator particularized by superscripts and subscripts (see
Eq 27) :

Numerator of transfer function relating altitude to control deflection
particularized by subscript

vy + (1,,/1,)1:1/0 - (12,/5,1,)], i = p, *, B, ete.
pSUGECy /41,

Numerator of vehicle transfer function relating generalized output, gj,
to a generalized control deflection, Bj

pSUbEC, /ML,

Numerator of transfer function relating yaw rate to control deflection
particularized by subscript

Roll rate, angular velocity about the X axis, pos.*ive right wing going
down




Qi&j

Ry (s)

Generalized output of the system; or pitch rate, angular velocity
about the Y axis, positive nose going up

Vehicle generalized transfer function
Yaw rate, angular velocity about the Z axis, positive nose going right

Vehicle transfer function relating yaw rate to control surface deflec-
tion, r(s)/&(s)

Iaplace operator, o * jw

Wing area

Inverse time constant, particularized by subscript
Output motion quantity (linear perturbed velocity along the X axis)
Vehicle transfer function

Linear steady state velocity along the X axis
Linear perturbed velocity along the Y axis

Output motion guantity (linear perturbed velocity along the Z axis)
Weight

Vehicle transfer function

UpXys 0SUS(Cr, - Cpg)/2m

pSUS (~Cpg) /2m

pSUG(-Cp - Cp,)/m

DSUO(CL - CDa,)/zm

U Y5

pSU,Cyg/2m

QSUOCY5/ 2m

U

eSUS(~Crg) /2m

pSUs(-CL, - Cr,)/m

pSU (-Crg - Cp)/2m
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o)

A(s)

A1

W/Uo, perturbed angle of attack under no-wind condition
Angle between fuselage longitudinal reference axis and X axis
V/Uo, sideslip angle under no-wind condition

Control deflections, particularized by subscript

Denominator of airframe transfer functions; characteristic equation
when set equal to zero

Cofactor of characteristic determinant (see Eg 32 and 33)

4 Damping ratio of linear second-order transfer function gquantity,
particularized by subscript

1 External disturbances on the vehicle, particularized by subscript

e Pitch angle

88 Transfer function relating pitch angle to control surface deflection, 6(s)/8(s;

E The negative of the damping ratio for a special value of s; = -0

N

e} Mass density of air

o4 The real portion of the complex variable s = 0 * jw

® Roll angle

®5(s) Transfer function relating roll angle to control surface deflection, ®(s)/&(s)

w Frequency; jw is the imaginary portion of the complex variable s = 0 * jw

w Undamped natural frequency of a second-order mode, particularized by
subscript

Subscripts

a Aileron, aileron axis transfer functions

a Altimeter

c Command; crossover; controlled element

d Dutch roll

e Elevator; system error

eff Effective

B Lead equalization
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Iateral

long Longitudinal

@

Phugoid

Rudder; yaw axis transfer functions
Roll subsidence

Short period

Throttle

Servo characteristics, e.g., wy

Error

Pitch transfer functions

Washout

Roll transfer functions

Notational Rules for Closed-Loop Quantities

1.

2.

The number of primes present indicates the number of loops closed previously
which affect the quantity considered.

The notation for the closed-loop factor is the same as that for the open-
loop factor (plus a prime) when the closed-loop and open-loop transfer
function factors have the same form. In this case the origin of the
closed-loop factor is always at hand (e.g., ag = ay, wp ——-u%, ap ——-a$,
TR —— TR, To, ——-T&)], Ta, —= T4, ete.).

When the closed-loop factors differ in form from their open-loop origins
several possibilities exist:

a. For closed-loop factors which have the same form as, and
are approaching, open-loop zeros, the closed-loop factor
notation is that of the open-loop zeros (plus a prime).
For example, open-loop quantities (s + 1/Tg) and (s + 1/Td2),
which couple to form a quadratic approaching the open-loop
zeros of (82 + 2fywyps + af), would give rise to a closed-
loop factor ordinarily denoted as (52 + 2 wps + wpe).

b. For closed-loop factors which differ in form from both the
open-loop pole factors from which they depart and the open-
loop zerc factors which they ultimately approach, a special
notation is coined which ordinarily reflects the origin of
the factor. For example, closed-loop poles which start
from s = O and s = -1/TR, then couple to form a quadratic
factor, and subsequently decouple to end finally at two
real zeros, would be denoted as s2 + 2(Lgwgs + wr® in the
quadratic region.
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e Closed-loop factors which have no readily identified origin
or end point, such as one starting at s = O and approaching
s = » as gain increases, are given a specially coined nota-

tion, e.g., 1/T&.

4. When the application of these rules by rote would result in confusion in
the local context, a new form is substituted for the closed-loop factor
involved. Primes, however, are always retained.

xiv



SECTION I

INTRCDUCTION

The intelligent treatment of linear multiloop systems requires an analysis

technique which is comparable, in providing insight for synthesis activities,
to the graphic and physically meaningful techniques available for single-lo0p
analysis. Such provision of synthesis-oriented insights and physical appreci-
aticn is central to the intelligent, interpretative analysis necessary to
achieve near-optimum synthesis of complex systems. Perhaps the most important
class of such complex multiloop systems involves control of vehicles having
many degrees of freedom. In these systems the vehicle is usually the most
complex and troublesome dynamic element in the system; so much so as to ordi-
narily be the object of separate study and technology. Many of the loops
required in the control system are primarily intended to correct the vehicle's
Gynamic deficiencies. Consequently, the adequacy of any multiloop analysis
method evolved will strongly depend on how easily and creatively the awvailable
knowledge of vehicle dynamics can be utilized in the evolution of the multiloop
control. Most of the existing multiloop analysis techniques (see Ref 1 for a
partial summary)'essentially ignore this critical feature, and thereby fail to
take full advantage of vehicle stability and control technology and the insights

it can bring to vehicular control problems.

The most common technique for the pencil-and-paper analysis of multiloop
vehicular control systems is thé method of equivalent stability derivatives
(Refs 2—6). Equivalent stability derivatives are especially useful when com-
bined with literal expressions for the approximate factors of the vehicle
transfer functions (Refs 2 and %). However, the method is restricted practi-
cally to ideal (no lag) or nearly ideal controllers, and it is most easily
applied (although not limited) to control feedbacks which augment existing,
rather than create new, derivatives. Within these limits it is an extremely

useful analysis and synthesis tool.

Original manuscript submitted December 1962; revised manuscript released by
authors January 1964 for publication as an ASD Technical Documentary Report.



By far the most common means for multiloop system study and synthesis is
repetitive analysis using the analog computer. With the aid of this tool and
a background comprising knowledge of the vehicle equations of motion, an appre-
ciation of the gross single-loop effects of probable feedbacks, approximate
factors for the vehicle, past computer solutions, etc., the analyst can rela-
tively rapidly arrive at a set of loop closures which define a "good" system.
A "good" system in this respect will exhibit fast, well-damped, accurate
responses to all representative commands and will act similarly in suppressing
disturbances (i.e., responses to commands and disturbances will be akin to
those of a well-damped, low-order system). The "good" system will also be
relatively insensitive to changes from nominal values in the vehicle or con-
troller characteristics, will tend to be unaffected by the introduction of
small parasitic nonlinearities, etc. With the computer there is no essential

difficulty in treating controller lags or, for that matter, nonlinearities.

Exclusive reliance on the analog computer does have some deficiencies. For
instance, some insight into the over-all systém is irretrievably lost because
of the dominance of only particular modes in the time-histories. Also, modes
which may be of great importance when the conditions are changed slightly are
suppressed, sensitivities are difficult to evaluate, gross trends and grand
simplifications are harder to come by than with some analytical schemes, etc.
Finally, elements described only in frequency response terms, such as experi-
mentally measured subsystem describing functions and human pilot descriptions,
cannot be used directly in computer operations. Thus insight is constricted
and initiative stifled, as always happens when only a single approach to a

problem is utilized.

The properties desired of a multiloop analysis technique, in the light of

the above remarks, should include:

1. Analytical formulations which show, as separate entitles,
vehicle-alone and controller-alone characteristics
expressed in conventional and well-understood terms—
thereby providing a close tie to the individual elements
and the physical problem.

2, Analytical operations which can be performed using the
more efficient of the classical graphical techniques of
servoanalysis—thereby enhancing transfer of skill and
intuition.




3. Analysis segquences and procedures which are highly respon-
sive to physical insights and intuition; and which lead,
when used by a skilled practitioner, to "good" systems with
a minimum of iteration.

L. Problem solution presentations, and results, which are
supplementary as well as equivalent to the results obtained
using the analog computer.
This report develops and explains a multiloop analysis technique which is intended

to satisfy most of the wants discussed above.

Like almost all "new" methods the technique advanced here has some precedents
which were significant in its evolution. Various steps in the technique to be
explained were evolved over a falrly long period of time, starting about 1957 at
Systems Technology, Inc. An analysis technique used in Ref 7 played an important
role in suggesting some aspects ol the development. Also, an analysis procedure

having some features similar to that presented here was used by Mataga in Ref 8.

In many respects the unified servoanalysis procedure, as reported in Ref 9,
and the sensitivity and modal response analysis techniques reported in Ref 10,
are the analytical companions to the multiloop analysis techniques reported here.
This trio of reports ir intended to cover, with a unified eclectic point of view
regarding methods, most of the significant analysis problems of linear servo

theory.

The body of the report is presented in three sections. The major analytical
effort appears in Section IT for a sequence of generalized systems. Generalized
equations of motlon are used as a starting point, then formulated as matrix equa-
tions to simplify much of the analytical development. Certain key observations
on the desired types of matrix expansions are then made, after which the analyti-
cal development is largely straightforward algebra. At the end of this section
some practical problems of application deriving from physical considerations are
listed and discussed in general. The last two sections of the report are intended
to elucidate by example some of the aspects of the method which derive predomi-
nantly from these physical considerations. These sections start with the
generalized treatment, and specialize it for two concrete examples. The
discussion of Section IIT treats a longitudinal example for an altitude control
system. This particular system is the simplest possible multiloop system

insofar as its basic loop structure is concerned. The lateral example, covered



in Section IV, is considerably more complex and serves as a simplified prototype

for most multiloop vehicular control problems.



SECTION II

ANATYRIS OF GENERALIZED MULTITOOP SYSTEMS

In this section the essential features of a multiloop analysis tecknique
will be developed. A generalized notation for vehicle and controller variables
is introduced early and used throughou£ the developments. Matrix formulations
are appropriate for multiloop problems, and could be used from the outset; but,
to make the developments easier to follow for the reader unfamiliar with
matrices, exemplary equations of motion are intermixed with matrix generaliza-
ticns. In most of the developments an inductive approach is used wherein
systems of limited complexity are used to formulate equations which are then
expressed in matrix form. The matrix equations so obtained are both a short-
hand for the limited complexity system equations and, viewed more broadly, the
appropriate equations for far more complex systems. Thus an attempt is made to

satisfy the often conflicting desires for concreteness and generality.

Several types of systems appear in the course of the development. These
differ primarily in their level Qf complexity, which has been selected to be
Just sufficient to iliustrate the local points being made. The first system
considered (in articles A — C) is the most complex; it is used to illustrate
the generalized notation, matrix formulation, and closed-loop system character-
istic equation develcpment. When closed-loop transfer function numerator terms
become the subject of detailed examination, a somewhat simpler system is intro-
duced for purposes of clarity. Finally, in article D, a still simpler system
is used to explain the steps involved in the final phases of the analysis
process. The two simpler systems are special cases of the more complex one,

which is introduced below.
A, GENERALIZED SYSTEM

The generalized vehicular control system to be analyzed is shown in the
block diagram of Fig. 1. Despite its foreboding appearance, the system is
relatively simple, being just complex enough to represent most flight control

situations and to allow easy inductive generalizations. The system consists of



a vehicle plus control equipment comprising sensing, equalizing, and actuating
elements. The vehicle has three independent degrees of freedom, and is subject
to control forces and moﬁents applied by two control deflections and two exter-
nal disturbances. The control deflections are functions of command inputs,
feedbacks from the three degrees of freedom, and a possible fourth feedback
from ar auxiliary variable which is a function of the independent degrees of
freedom. Additional auxiliary feedbacks may also be present, but the single
one shown will illustrate the analytical process relating to such quantities.
Generalization by induction tc include added auxiliary feedbacks will later be

seen to be straightforward.

The Fig. 1 block diagram can be simplified to one having only unity feedback
loops by reinterpreting the command, Ej, and forward loop, Eij, transfer blccks.
This could be done in the gy loop, for example, by replacing 32(8) with
Jo(8) = Jo(s)/Ho(s), and replacing Gyo(s) and Gpp(s) by Gyp(s) = Gy o(s)Hy(s) aud
Goo(s) = Gon(s)Hp(s), respectively. The unity feedback loops block diagram of
Fig. 2 results when similar steps are taken throughout. This block diagram is
still somewhat overcomplicated in that command inputs are shown for all feedback

loops. Actual commands ordinarily exist for only one loop, or possibly two.

The analytical operations involved in the above reduction to unity feedbacks,
and many other operations to follow, are based on the assumption that system
elements can be described by linear, constant-coefficient, differential equations.
Accordingly, all motion and transfer quantities in Figs. 1 and 2 are shown as
functions of s, the lLaplace transform complex variable. The assumption of
linearity also facilitates the manipulation of system equations and allows the
principle of superposition to be used. Superposition provides a great conveni-
ence because the generalized closed-loop transfer functions need be developed
for only one command input. Closed-loop transfer functions for other commands
can then be found by proper juggling of subscripts and suitable interchange of

elements within particular matrices.

To go along with the economy of notation provided by the use of masiorix
methods, the functional dependence of most quantities on s is not indicated
hereafter. For example, the vehicle equations of motion for the three inde-

pendent degrees of freedom are written as
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3119 ta282 tajzas = Fqdp + Fiobp + Ejqny 4 Ejonp
8p19) *agpdp *apzdz = Fpdy + Foodp + Enpny + Epon, (1)
@519 *azpdp *azzds = Fyd + Fapbp + Exng + Expnp

where the aij's are functions of s and vehicle characteristics such as stability
derivatives (Ref 11). Then, the vehicle transfer functions for the responses of

the independent outputs to control deflecticns are

N
q Y,
,
44 & (o7}
2 = Yo T 7B
N
% L5,
= = @ - (2)
N
9
. S
J J
where A is the characteristic determinant of the vehicle equations,
211 #1213
A= |3y B 8ps (3)

831 8z2 833

and the numerator, Nqi&" is obtained by replacing the column of q; coefficients

in A by the column of 83 coefficients given on the right side of Eq 1.
Additional shorthand defining the system and the closed-loop transfer func-

tions is also needed. The information required to specify a particular multiloop

system is




The command or input to the system
The vehicle output to be controlled
The control deflections to be used

The error signals (or feedbacks) that
activate the controllers

This information, using a particular system as an example, will be designated
as follows:
: !
%G o U =0 5 G g5, (")
Here the feedback signals to 5p are q and qy, and to d; are 45 and - The
system input is a command, A1 which also implies the directly controlled
output. Note that the qq-—»-5, feedback is implied by the Qs 802 separate

call-out is redundant. The closed-loop transfer function for this system is

- (5)
4, 2
< ay, g—=38,

45 45

designated by

and the appropriate controller equations are

89 Gy2(-ap) + Gyy(-q)) 6)
52

Goq(=a7) + Gy (-q) + 3G qy

A disturbance, such as My, can also appear as a system input.

Other simplifying notation pertinent to specific steps involved in the
development of closed-loop system transfer functions will be presented later

as required.
B. FORMUIATION OF THE SYSTEM EQUATIONS

The complete equations of motion for the vehicle including the auxiliary
output motion quantity, q,, can be considered in two ways. The first uses the

three degrees of freedom set, Eq 1, as the vehicle equations and then obtains



auxiliary outputs as linear combinations of the three independent outputs. For
example, for a, the linear combination would be Q =849 +aypdy t a43q3.
After substituting this relationship into the control deflection equations, the
terms ~Gqpapq9q, -Gjuaypdp, and -G14a43q3 will appear in the equation for &

and the terms -Gpuay1qy, -Gppahpdo, and -Gpja)zgxz will appear in the equation
for ®,. When combined with the terms representing controller action on the
independent outputs, equivalent controller transfer functions are formed. For
example, Gihalyq + Gy1, Gypapp + Gyp, and Gyuapz + Gy replace Gyq, Gyp, and Gyy
as the forward loop transfer functions relating U, s q2€, and qg;, respectively,
to 8. The ay command function can be assigned similarly to the commands for

c

the independent vehicle outputs. Thus, when this approach is uvsed the auxiliary
output motion quantity, q;, effectively disappears into the controller portion

of the system.

The second method of including an auxiliary output motion quantity is to
treat it in the same way as the independent vehicle outputs. With this scheme
the auxiliary output is viewed in association with the wvehicle portion of the
system. Confining attention to the exemplary case, the three degrees of freedom
set, Eq 1, is combined with the equation for Q- The latter is, of course,

redundant as a system equation. Thus,

B9 F 300 * 83505 = Fpgdp o+ FipBy H Epgmy + Eionp
ap19y *oandy *oayydy = Fp® 4 Fppdy + Eyymy + Eppmy )
B821Q t Byt Bxxdy = F51 5 + F5282 + E31n1 + E32n2p
Y 7 Aty - oEyxdx T, = 0

or in matrix notation (Ref 12),

lld - [ + E (8)

where ~ a, a5 a13 0]
8o 8 8 0
(] - 2 . (9)
831 fm fs3
| 2 e TRys T
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[a]

(10)

11 12

[F] 21 22 (1)

31 32

(6] - 51 (12)

1 12

[ - 7 * (13)
31 32

[ - (14)

With four simultaneous commands to each controller, the transformed

equations of motion of the controllers for the system of Fig. 2 are

4 G11 (J1q1C -gq) + G12(J2q2c - ) + Gy 3(J3qBc - q3) + C-”L(annc -q,)

(15)

(¢4
no
I

Goq (319 - %) + Gpp(Tndp, - o) + Ga3(T5d5, - 95) + GanlTydy, - q,)

12



or in matrix notation,

[e] = [c]lad
(€] [9] [ac] - [d][d]

[6c] [ac] - [c][d] (16)

c G c c
where [G] = [11 12 15 1uj| G
Gy Gy Gpz Gy
[ =[5 32 33 & (18)

(19)

[Ge] =

G11J1 G12J2 G1 3J3 G1)+J)+
Gy Goodo Gpzds  Gopdy

[e] = i (20)

With the formulation of the matrix equations, the system block diagram of
Fig. 2 can be replaced by the matrix block diagram shown in Fig. 3. This is as
deceptive in its simplicity as Fig. 1 is for apparent complexity. The system
equations. of motion can be found from either Fig. 3 or Eq 8 and 16. Thus,

substituting Eq 16 into Eq 8, transposing and collecting like terms, leads to

(6 + B - Eedld + EE (1)

and after premultiplying by the inverse of [[a] + [F] [G]], the explicit expression
for [q] becomes

13
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(@ - [+ W] e e + [0} (22)

This is the formal solution for the closed-loop system. However, much remains
to be done before it has any concrete value in analysis or synthesis procedures

using servo methods.
C. REDUCTION OF THE MATRIX EQUATIONS

From Egq 9, 11, and 17, after performing the indicated matrix multiplication

and addition,

211 812 a13 F11Gyy
+ Fp9G9 + FiqGy2 + F1iGi3 + Fy 062y
+ Fy 2029 + Fyo0p2 + F1oG23
#21 222 823 ForGry
+ FoyGyy + FpiGp + Fp1G3 + Foolo)y
+ FrnG + FnsG + Fool
] + [Ald - 02021 20002 20Gp3 (23)
ax azp a3z FaqGyy
+ F52G21 + F52G22 + F52G25
B —a41 -ap0 _a45 1 |

When set equal to zero, the determinant of Eq 23 is the closed-loop system char-
acteristic equation; for reasonable controller dynamics (e.g., Gij a szcond- or
third-order system), and a normal vehicle (e.g., ajj first- or second-order in s),
it can be a fearsome thing indeed. The routine application of digital computing

methods can be used to factor the characteristic equation when all elements are
specified numerically. However, in a synthesis procedure, the G's are unknown

within a wide range of possible variation. Computing routines which cover such

15



ranges in increments have been used, but the mass of data to be digested can be
immense. Physical appreciation and the transfer to the multiloop problem of
understanding gained with simpler systems is almost nil. The net result, more
often than not, is to forget direct analysis except possibly as a check on the
final results obtained after using an analog computer to narrowly delimit the
ranges of suitable controller functions. 1In any event, pencil-and-paper methods
of conventional servoanalysis are not well suited to the problem presented by

Eq 21 through 23 as they stand.

Four considerations which relate to a change in the detailed form of the
problem to one better suited for servoanalysis procedures are:
1. The vehicle is ordinarily the most complex element in the
system and its dynamics tend to be dominant.

2. The study of vehicle-alone dynamics often has separate
status as an engineering field (e.g., aeronautical stability
and control). Consequently, the vehicle dynamics are fairly
well understood.

3. Many of the feedback loops involved in multiloop systems
exist primarily to correct vehicle dynamic deficiencies
(i.e., parallel equalization) or to suppress particular
types of disturbances. The type and general form of most
such feedbacks can be derived readily from a knowledge of
the vehicle-alone dynamics.

4., Conventional servoanalysis methods are ideally suited to
close single loops, e.g., to find G(s)/[1 +G(s)] given G(s).

A fruitful approach to the multiloop problem will use these factors to advantage.
The scheme developed here does so by (1) expanding the determinant of Eq 23
in such a way that the vehicle characteristic determinant, A, and the vehicle
transfer function numerators, NqiSJ’ appear explicitly in the closed-loop system
characteristig equation, and (2) treating the resulting expressions as a series
of "equivalent" single-loop servo systems. The first step provides vehicle-
alone dynamics as recognizable separate entities in the system equations instead
of as elements in a hodgepodge of vehicle and control terms. This allows direct
application of vehicle-alone knowledge and understanding to multiloop control
Problems. The second step permits many of the fruitful insights and techniques

of single-loop servoasnalysis to be applied to multiloop situations.

Expansion of the determinant of Eq 23 in such a way as to retain vehicle-alone

transfer function elements as separate entities is accomplished in Appendix A.

16




The result is:

A and Nog

the Qigj t%ansfer function, respectively.

aq1 &2 a3 FyqGyy
+ FyqGpg + Fi9G2 + TG 3 + Fqo62)
+ Fy 6o + FoGop + Fy2G23
a1 app apsz Fo1Giy
+ FpqGyq + Fp1G92 + TG 3 + Foploy
+ Foolog + Fpplop + FopGox
831 832 233 Fz1G
+ F51G1-] +F5-|G-]2 +F5-|G-|5 +F52G2)+
-8l -ayo -ay 3 1
4 éi b b 91 i
= A+ 2L 2 GyiNg;  + > G11GakNs, 85 (2k)
i=1 j=1 8  i=1 k=1
ifk

are the characteristic function of the vehicle and the numerator of

They are tabulated in terms of airframe

parameters for the usual degrees of freedomland control deflections involved in

aircraft control in Refs

report,

2, 3, and 11. 1In the notation presented so far in this

an a2 a13 O

a1 app apz O
A =

651 a52 8.55 0

-al -a) o -anz 1

17



a1 a12 213
A = Jag Ay apy (25)

231 832 833
and, as a particular example using the auxiliary output motion quantity,

a1 22 oz Ty
Aa2-] a22 a25 F2J (26)
231 8 %3 Ty

TAy TAhe tAL3 ©

N
dy,
3

Nqia.'s for the independent outputs (i = 1,2,3) will simplify to 3x 3 determinants.

. 9iq
Terms of the form N&TSE in Eq 2k are called coupling numerators. They are

found by replacing the ith and kth columns of Eq 9 by the first and second

columns, respectively, of Eq 11. As a particular example using incdependent

outputs,
a;,  Fp Iy o
84080 -
a51 F52 F51 0
-aj, 0 0 1

N an) - Fpp Foy , (27)

This determinant is recognized as the characteristic determinant with the q5
and do column terms replaced by 81 and d, control effectiveness terms, respec-

tively. The awkward but highly descriptive symbol Ng?gg is intended to suggest

18



a; q;
this replacement. It is apparent that NS:&E has no meaning when i = k. By
arbitrarily defining this to be equal to zero, the "i # k" note on Eq 2L can

be removed. The coupling numerators have other properties of interest such

as
9 G a3 e
NS]B] = N8262 = © (28)
93 G 91 % Uy
Nojop = -Nops, = Npop, (29)
9; e 1
N = —(Ng, N -Ng, N 30
5,55 A( U, kg, T Naip, qk51) (20)

Common coupling numerators for aircraft control are presented in Appendix B.

While the system characteristic equation, A%ys’ is the denominator for all
closed-loop transfer functions, regardless of command inputs, the numerstoers
depend on the particular command input. The outputs due to command inputs can

be obtained from Eq 22. With disturbances zero,

[ = [B] + F6]7 o] el (51)

where [@], Dﬂ, and [ﬁc] are given in Eq 10, 11, and 20, respectively. The
matrix [E{] + Eﬂ Bﬂ]'] is, after inversion, expressible as

o oy Dy Dy
Mo Lop Dap Dy
M3 o3 Dmm Ly

My Loy Ay oy
[+ e = = 7 (2)
ys-

where the numerator is the transpose of the matrix made up of the cofactors of
Eq 24. Thus,

19



822 ) F21Giy
+ FpiGq2 + FpiGy3 + Fpploy
+ Foplop + Fooloz
azo az3 F51G1)+ (33)
+ FzGp + Fz6Gy3 + Fzoloy
+ F52G22 + F52G25
B2 “843 !
is uhe cofactor of (ayq + Fy1Gyq + Fy2G2) in the determinant of Eq 24. Similarly,
Lo 1is the cofactor of (a12 + F11Gy2 + By 2Goo) in the same determinant. The other

matrix involved in Eq 31 is [F] [Gc] [qc] . For the typical case where [Gc] = [G] B
the matrix multiplication of [F] [G] [qc] results in

[(Fy1Gq4q (F11G12 (F11G13 (F1:Gy ]
+ FiaGor)a,  + FroGee)ap,  + FraGeszlaz,  + Fioten)ay,
(Fo1Gq g (F21Gq2 (F21Gy3 (F21Gq 4
+ Fpplop)ay + FopGpplap,  + Foplozla + FpoGol ) ay
[Flclad - © c P o (34
(F5Gy4 (P32 (Fz1Gy 5 (F5Gq
B 0 0 0 0 B

Using only q1, as an example (i.e., PR, = a3, = ql}c = 0), the closed-loop system

transfer function is

QA (PG Fyglpy) # Doy (Fp Gy + Fpplipg) + 850 (Fgy Gy + Fply) (35)

c Asys

Closed-loop transfer functions for (12/<11 , etc., or transfer functions for
c

disturbance inputs, such as g, /n1 , are obtained in a similar way.

20



Although the development can be continued along the above lines, the details
are so tedious that the main stream of the argument is obscured. Therefore, a
considerably simpler system, shown in Fig. 4, will be used. (The matrix block
diagram of Fig. 3 still applies.) Even this system is more complex than most

flight control systems, so still further simplifications will later be made.

e
- 4
—%
X G
12 sl q2
R——{ Gy, Vehicle | a4

Dynamics | 4y N
é; Gaq 32

a ,

M.

Figure 4. Block Diagram of Multiloop System
Q1,0 4~ 825 A, g =5

In Fig. 4, all of the command and disturbance inputs are zero except q-lc,
and there is only one feedback to the controlled variable. The remaining feed-
backs are intended only to modify the basic vehicle characteristics. The
closed-loop transfer function of the primary controlled variable, 4 is, from
Eq 35,

%4

Fiob, + F + Fyolh
_ oy, D20 T Feota ¥ Frefy ( 36)
Leys

Q

c] Up> U0
R

21



or, written as determinants,

F12021 ajp + FiiCp  agz FpGy + Fioloy
Foolpy app + FpiGip  8p3  F2iGqh + FooGoy
0 ~&) -al 1
42 3
qq1 P e (37)
1 a + F. ~G a + .. G a G +
¢ Qs WY, 11 124921 12 1172 13 11914 12624
45 YO, apy; + Fpplpy  app + FpyGip  aps  FoiGih + Fooloy
8.51 + F52G21 a52 + F51G12 a55 F5-|G-|)+ + F52G2)+
-a)_n -aho —a,)_l_5 1

The denominator can be most readily obtained by specializing Eq 2k; that is,

A%ys =

A+ GipNg, + GuN + GpNg  + GpuN
9,9
1

4o 4oy L
+ Gy Gp1Ng s, + G1262uNe 5, + G1u021N8, 82 (38)

In the numerator and denominator of Eq 37, the cofactors of terms containing
Gpq are identical. Thus, q1/q1c can be obtained directly from the system
characteristic as given in Eq 24 or 38.

The closed-loop transfer function
q1/q1 is then
c

4 _
Cl1c

4y =01

q %*82

B U
G2 (Nq15 + Giolg 5, + Gyulis, 52)
2

qEQL‘_)
+

&t G 2qu81 * Gyulg, Geu(N%ae *+ Gialg 5,

1

4o Ay
E}m (Nq1 5 G2l 5, * &1 4N6152>] (39)

Equation 39 contains vehicle transfer function numerators and denominators as

22



separate entities. By dividing the numerator and denominator of Eq 39 by 4,

a3 /ch can be expressed in terms including vehicle transfer functions themselves;
that is,

WP, DY
5.8, Hons,
(}21‘31521 +G o — tGih [

s Hg

q 2 o
1o CL Ao,
q2; q)_f“o-l N51 52
-3 -1

q1 ) Q)+ 2 1 + G1 2Q251 + G1 4Q,+51 + G2,+Q,452 1+ G12 qu# +
52
Nq2q1 9,9
582 590
Go1@15 V1 * Groig— * Gik g, (ko)

8, 8o

where Q251 5 QLL51 P 87 and QL*BQ are vehicle transfer functions.

The bracketed term in the denominator of either Eq 39 or 40 is seen to be

identical to the numerator terms. This makes it easy to recognize that the

open-loop transfer function g /q]€ is just

LY 9,
G (N + GyoN + G, N )
Q. 217, 52 12%, 8, Tl 8,8,
ol & (1)
9 5 sy, :
s> 0, A+ G 2Nq2 + Gy 4qu+ + Geh(qu,r + Gy olNg 52)
- B (e} 82 1
=52 1
or, dividing both numerator and denominator by A,
e ud
8102 8182
Gor @ \V + G2 g Oy
q dig dig
=1L = 2 2 (k2)
a1 c quqh
dps 9B 8,8,
1 +G + + G 1 +G
9,5, 1295, + G 4%51 24U, 12 Ny
2

23




Although not directly apparent because of thelr complexity, Eq 39 through
42 are of a form to permit knowledge of vehicle-alone characteristics to be
used with maximum benefit in system synthesis procedures based on conventional
servoanalysis methods. All of the terms contain vehicle-alone transfer functions
or ratios of coupling and conventional numerators; and only controller transfer
functions (the G's) multiply such terms. Also, the total transfer function
forms of Eg 39 through 42 can be generated readily by successive loop closures
(2 mere seven in the case of Eq 39 and 40!) using these elemental vehicle and
controller characteristics. Remarkably, it is possible, as will be illustrated
by subsequent examples, to rapidly and effectively perform these operations in
a fashion leading to a good closed-loop system while retaining physical apprecia-

tion and developing insights throughout the process.

Indirectly controlled output transfer functions, q_n/qic (n £ i), are also

required for some purposes. Such transfer functions as

N
—q—ri] = (43)

can be determined from an expansion of Eq 22. The characteristic function,
ASys: has already beer given in symbolic terms for the general system in Eq 24
and for the simplified system of Fig. 4 in Eq 38, so expressions for Np alone
are required. These are easily obtained from Nij by replacing qj subscripts
and superscripts by q,'s in the transfer function numerator. For example,

using q1/q1c as given by Eq 39, the closed-loop transfer function q5/qh1 becomes

G. (N + G, oN + GquN )
5 21 q58 12 8,8 14 8,8
2 _ 2
q1 3 A+ G + G, QQQ4
25 ™% 12Nq281 1k Uy, + Goy Nq482 + G12N5152 +

1,5 4%

92 %
G (N + GqoN + Gyl )
21 q182 12 8,85 1k 8,85




This indirectly controlled output transfer functiogegan also be obtained by
p—_ Y 1 U .
multiplying and dividing Eq 44 by Goy Nq15 + G12N5152 + G14N5152 and using

Eq 39. The result of these operations is

SRR

I

95, (l)_l_"81 ¢Jap, 4,5
9, (lq__’Bg 4> qu-“ag
where : oz 9,93
Ny + Gyollg s” + Gyyllg g
3 2
2 - (46)
Ny 49 9,9,
N + GqoN + Gq ), N
Ny, ~ 12018z T 105,

An alternate procedure for formulating the system closed-loop transfer

function numerator and denominator expansions is presented in Appendix C.

D. GENERAL ANALYSIS PROCEDURE

The developments above provide general formulations of the multiloop problem
in matrix form, and illustrate a special expansion for the matrix equations. The
results of the special expansion are various closed-loop transfer functions
expressed in terms of elemental vehicle and controller characteristics. The
final step is the application of conventional servoanalysis techniques to the
transfer functions as formulated above. This phase will be discussed here in
general terms, and the specifics will be illustrated in succeeding sections using

particular systems.

To make the discussion as simple and concrete as possible while retaining
the generalized notation, consider the system given by the block diagram of
Fig. 5. This is the simplest possible multiloop system using multiple control
deflections. It is just complex enough to exhibit, on a rudimentary scale,
the major features of far more complicated systems. Further simplification,
to a system with one active control deflection but retaining two output motion
feedbacks, results in a multiloop system which is too limited to illustrate

all the features of interest.
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Vehicle
Dynamics

< Y Gz| I i

Figure 5. Block Diagram of Multiloop System
91,825 G20

Specialization of Egq 39 and 40 to the system of Fig. 5 (G4 = Gpy = 0) results

in the closed-loop transfer function forms given below.

a9,
Gor (Nq1 . + Gy 21\181 82)

__:1] . : (v7)
L . o9
q2 1 N+ G-] 2Nq2 + G2-l Nq_l G-l 2N8 5
B tole} 1v2
940
a,4
N8281
102
G 1 4 G
21%, 12 W)
q 2 )
1 2
5 = (48)
20 Ny 5
1
q,—=d 1 4+ GqioQ + GoqQ 1 + G
17 %2 1295, 219, 12 Nq15
' 2

The open-loop transfer function for the command loop, with the other (gy) loop

closed, is a special case of Eq 41 and 42; that is,

26




Y
N + Gy oN )
g 21( N, 12%, 85
a ] - A+ G ol
il q2—'-81 1 Q.281
Nq2q1
8,8
1 + G12 =
152

= GsiQ S —
21 162 1+ G12Q’281

The vehicle characteristics for this system are given by:

a1 a2 a13
A = a21 ano 8.25
a3 az2 833
Flo 212 a3
Fop  app  apy
N,
q
155 Fzo a3 as3
Q162 AT A
aqy Fiq 213
apy Fo apz
N
an.
Q25 A = A
Fiz Fiq a13
4,
Fzo  Fz a3
27

(49)

(50)

(51)

(52)

(53)

(54)



An "eguivalent block diagram" for Eq 47 through 50 is given in Fig. 6. This
block diagram is "equivalent" in the sense that its reduction vis loop closures
and block diagram algebra results in Eq 49 or 50 for the open command (q_1 loop,
and in Eq 47 or 48 for the complete closed-loop system. In one limiting case,
when G12 =0 (the gp loop opened), the resulting single-loop system is just the
command loop closed around the vehicle-alone transfer function, Q16 . For the
other limiting case, Gpy = O, the ds loop is the only one closed, and the modi-
fied vehicle dynamics are those resulting from the closure of a single unity-

feedback loop about the transfer function G12Q261'

A very instructive way to consider the effect of the closed 9o loop is to
lump all of its consequences into "effective" vehicle changes. In this view,
closure of the 4% loop changes the command loop effective-vehicle transfer
function from Q16 to Q{a (see Fig. 6). Referring to Eq 49 and 50, the
effective-vehicle characteristics, Q{bg’ will be the open-loop transfer function

of the command loop with the controller transfer function G21 removed .

459,
Napg, *+ Grals 62

Q‘] 62 - A + G‘I 2NQ_26 (55)
1

dpd,
Ns1 80

'|+G2
1 q1

Q ®2

(56)

In general, s appears in higher orders in the denominators of G12Q26 and

G12N6$62/hq18 than in the numerators, s0




lg =—3b (2Q —=—2lp

wejefg ayy J0J WBABBIT YOOTH jusTBAINDY *g aamBtg
—
]
%5 2 m_az 2l
0°9 +| — 9 + |
_ g mz
b %
AL
~\ 7 —- ™
Nn__u
N N_m
2o | =
g mz
' %
{ Hw % | _u.,w
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?
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Therefore the so-called root locus, or high frequency, gain of Q{Bg is identiecal
to that for .
Q152

The primed notation on Q{Be is used to indicate merely that one loop has
been closed, and is not intended to specify the particular loop closure involved.
If, for example, a loop closure of qj-a—51 replaced the gpo—»937 closure in
Fig. 5, the transfer function Q{Bg would still indicate the resulting command
loop effective-vehicle transfer function. The precise meaning of the primed
notation consequently depends on the local context. (Iater, the primed notation
is used in a similar fashion on individual transfer function terms to indicate

the number of prior loop closures.)

Finding the complete form of Q{Bg involves operations converting

1

G. to TR
1295, T+ Gralgy
and q. 4,4
qu 1 N 1
5.0 toe)
172 N 1+ 4 172
1 8o 1 8o

Such operations are easily accomplished by closing the single loops shown in
Fig. 7 using any of a variety of conventional servoanalysis techniques. Letting
Gio = N12/D12, where both Nyp and Dyo are polynomials in s, with the leading
coefficient of Dyp equal to unity and the leading coefficient of Nyp being the

root locus gain of Gqyp, the results desired from the loop closures are:

1 Dion
VF Graey, Diot + Ny 2N<1251

D pA
= (57)
(Closed-loop pole factors of (:))




+ S
-__-@__—. GIZQZS|= G2 A '

il

a) Closure QD

_—

b) Closure (@, "Coupling Loop"

Figure 7. g, Loop Clesures Involved in the System
2
q1c_——- 62: q2—>61

31



s

Nge? D12Nq18 + Niols,a,
152 2
1 + G'12 Nq.l 82 - D1 2Nq-15

2

(Closed-loop pole Ffactors of @) (58)
= 5
Dq 2Ng, 5o

where (:) and (:) refer to the single-loop systems shown in Fig. 7. ZFor fixed
vehicle characteristics, Gyp is the only variable guantity in both relationships.
Thus, choosing Gyo appropriate to either (:) or (:) gutomatically determines the
other closure ((:) or (:)). The closures of (:) and (:) are, therefore,
"simultaneous." Loop (:) is a primary closure directly affecting the vehicle's
poles, whereas loop (:) (as will be seen below) affects the vehicle zeros perti-
nent to a particular input control deflection—in this case, 3p. Accordingly,
loop (:), or its reflection in Fig. 6, is often called a "coupling loop."

The two loops are further related in that the high frequency open- and closed-
loop asymptotes of systems (:) and (:) are usually nearly identical, i.e., the
"root-locus gains" are almost the same. This is easiest to see for typical air-
eraft characteristics in which the highest order s terms in A stem from the main
diagonal (a11a22a55), and the control effectiveness terms (Fij) all have the sams
form in s (usually constants). Then, at frequencies much greater than all the

poles and zeros in A, denoted as "|s| large", pertinent quantities become

Nq2q1- —= (F,oFp - F..Fnn)

88p 12721 11722/833
= |s| large |s| large

N ] Fioas8

a4 8o 12722733
= |s| large |s| large

so

et

5,5 Foy  Fy Fpp

N a - ar rﬁ' (59)

U o2 appfz
4 |s| large |s| large
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and, similarly,

8448 == F
11935 21] 21

an] 8118227 T ez 2
! Isl large 35 |s| large |sl large

When Foq >> F11F22/F12, a relatively common occurrence in aircraft, Eq 59 and 60
are very nearly the same. This correspondence should be kept in mind when

actually performing the simultaneous closures of (:) and (:).

When the results of the simultaneous closures are combined and multiplied

by the vehicle transfer function Q162, then Q{Sg’ the effective q1/62 transfer
function of the vehicle with the g, loop closed, is

%9y
Ng¢®
102
Q4 = Q __________lég
180 185 1 + Gr2Qeg,
N - R
~ q152 (Closed-~loop pole factors of (:)) DypA
o D12Nq152 (Closed-loop pole factors of (:))

(Closed-loop pole factors of (:))

_ . (61)
(Closed-loop pole factors of (:))

As already noted in connection with Eg 55 and 56, the net "root-locus gain" for
1 .

Q162’ after the closures of (:) and (:), will be the same as that for Q162'

This high-frequency gain is implicitly contained in the Q{Sg numerator term

resulting from closure of loop (:) (it arises from the D12Nq162 nunmerator term

in Eq 58).

After Q{Sg is found, the final q1/q4c closed-loop system characteristics

are determined by another loop closure using the system of Fig. 8.
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Figure 8. Command Loop Closure for the System
A, = 825 =5

In summary, the steps involved in the analysis of the system in Fig. 5 are:

1. The coutrol channels are divided into two categories, "inner"
and “"outer" loops, reflecting the closure sequence. The qo
(or 81) loop was closed first, and thus was the "inner" locp;
whereas the 4 (or 82) loop, being closed second, was the
"outer" loop.

2. The "inner loop," G12Q2% ((:), Fig. 7) is closed with
tentatively selected equalization and gains, and the
closed inner-loop roots are found. These roots become
the vehicle's poles for the outer-loop closure.

3. Using the same gain and equalization selected above,
i.e., the same Gy2, the coupling loop ((:), Fig. 7) is
closed. The closed-loop roots resulting from this
closure become the vehicle's zeros for the outer-loop
closure.

. The outer loop is closed in a conventional manner around
the modified outer-loop vehicle transfer function.

5. Possible repet. tions of steps 2 through 4 with different
equalizations and gains if the result of step 4 is not
satisfactory.

The generalization of these steps to handle more complex systems, such as that

of Fig. 4, is a straightforward extension.
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E. APPLICATION TO SYSTEM SYNTHESIS

Fundamentally, the five analysis steps summarized above can represent one
cut in a cut-and-try synthesis procedure. In such procedures a trial system is
analyzed to determine its dynamic characteristics, which are then compared with
dynamic performance objectives. Deficiencies revealed by the comparison are,
hopefully, eliminated or reduced by modifications resulting in a new system for
trial. This system, in turn, is analyzed and assessed, etc. The iterations
continue until the trial system characteristics are consonant with the dynamic

performance obJjectives.

The number of iterations required to achieve the penultimate system depends
on the designer's intuition, on his ability to transfer insights into analytical
procedure, and on his capacity to draw new knowledge and understanding from the
analysis results. An analysis procedure cannot substitute for background and
experience—but the procedure can be matched with & presumed background so as
to achieve a balanced analyst—analysis procedure "system.'" The background
presumed as & match for the multiloop analysis method advanced here is: an
intimate knowledge of single-loop servoanalysis techniques; a detailed under-
standing of vehicle dynamics; and a thorough appreciation of the changes in
effective-vehicle dynamics caused by idealized (i.e., no sensor or servo lags)
single-loop controllers. Assuming this core technology, the multiloop analysis
procedure has been designed to maximize the insightful generating aspects and

clarity of each analysis step.

When full advantage is taken of the insights provided by the presumed
background level, the multiloop analysis procedure can form the basis for
almost direct synthesis (i.e., the number of analysis iteration cycles required
to achieve the final system approaches one). The trick, of course, is to start
off with a good trial system, which amounts to almost knowing the answer. To
illustrate thc possible impact of background information on the evolution of
the initial trial system a few items are listed below, using the two-loop
system of Fig. 5 as a particular example.

1. Hints about desirable inner-loop (g loop) characteristics
can be revealed by studies of the outer-loop system using

several possible alternatives for the vehicle-alone trans-
fer function, Q152, as representative of Q{Se. In such

35



studies, the approximate effects of possible inner-loop
feedbacks on @iz, can be determined readily using the
literal approximate factors of Q152 (see Refs 2 and 3)
and the equivalent stability derivatives corresponding
to idealized controllers (Refs 2-5).

2. An appreciation for the approximate forms obtainable for
the closed inner loops and, consequently, for the outer-
loop effective-vehicle transfer function Q{sg, can be
advanced from studies of the inner-loop closure involving
Q2g, * Again approximate factors and equivalent stability
derlvatives as well as single-loop servoanalysis are used.

3., Preliminary indications of tradeoffs between parallel
(the gy loop closure) and series (Goq) equalization are
implicit in the above single-loop-closure studies. Thus,
single-loop closures about the various Q152 forms con-
asidered indicate the corresponding types of equalization
needed in Gpq; and the approximate forms possible (with
particular inner-loop feedback quantitiesj_gﬁa_agsirable
(with particular forms of G21) for Q{Bz can be inferred.

Studies of the above types either involve vehicle characteristics as
variable or emphasize controller equalization as variable. Both types of
studies use well-known analytical operations and, for aircraft, a large body of
quite general results exist (see, for example, Refs 2, 3, 13, and 14). Using
the approximate, but highly indicative, information gathered from such past
results as a guide, and adding the additional analytical complication required
to account for the dynamics of such elements as sensors and servos, an excellent
first-cut trial system is easily obtained. The exact analysis routine summa-
rized previously can then be used in the final steps of a practical synthesis
procedure. For systems as simple as that shown in Fig. 5, repetitious opera-
tions can often be avoided completely by this bringing of previous single-loop

gystem knowledge to bear upon the multiloop problem.

In spite of the above remarks cn synthesis, it is well to remember that the
process outlined does not involve unlque operations in compliance with a
straightforward routine. One of the more tricky aspects has been casually
bypassed until now. This is the selection of a particular block diagram, or
sequence of closures, from the several possible. The block diagram itself has
little significance—it is the loop closure sequence represented graphically by

the block diagram which is important in eliminating or reducing iterations when
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the analysis technique is used as a synthesis tool. From the point of view of
pure analysis the closure sequence is immaterial. But in synthesis the closure
sequence can be all-important. For instance, certain loops are necessarily
closed before others for which they provide parallel equalization; and the
necessary use of incomplete loop closure criteria causes some loop closure
sequences to result in extreme variations in loop adjustments as a Function of
iteration, whereas for other sequences there is practically no change from one
iteration to the next, etc. Because of considerations like these there are at
least some preferred loop closure sequences and Sometimes even a uniquely desired
one. Desirable sequences are not always simple to determine. Fortunately, for
vehicular control systems a set of factors can be promulgated which, when
properly considered, will ordinarily provide the insight needed to construct a
unique block diagram (or closure seqguence) which, in the practical sense of
minimizing interloop interactions, will also minimize iterations. These are

summarized in Table I.

As should be apparent from Table I, many of the detailed insights involved
can stem from analysis of single-loop systems and from simplified multiloop
analyses . Thus, the equivalent stability derivative approach, vehicle approx-
imate transfer functions, and single-sensor-loop studies already mentioned

rlay yet another dominant role in multiloop vehicular systems synthesis.,

After thorough consideration of the factors in Table I, a quasi-unique
block diagram, or sequence of closures, can usually be established. The next
problem is that of closure criteria for .the several loops. Again only
engineering judgment factors, which must ultimately be translated into concrete
performance measures, can be delineated. The factors to be considered in
establishing the actual closure criteria for each loop include:

1. The use of an inner loop as equalization for a subsequent
outer loop.

2. Stability and response of loops which may be outer loops
in one mode of operation and inner loops in ancther
operational mode.

3. The "sensitivity factors" (pole, zero, and gain sensi-

tivities, Ref 10) of the various loops and their
influence on the outer loops. Ordinarily, inner-loop
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closures selected should be such that the effects of
inner-loop parameter variations on the outer loops are

as small as possible.
These considerations, taken in context with over-all system performance specifi-
cations, can ordinarily serve as guidelines for the selection of specific closure

criteria.
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SECTION III

LONGITUDINAL EXAMPLE - ALTITUDE CONTROL SYSTEM

To illustrate the previous general treatment two concrete examples will be
presented, one for aircraft longitudinal control (in this section) and the
other for lateral control (in Section IV). 1ILoop closure sequence and criteria
constitute a large part of the practical synthesis problem, so their selection
will receive detailed attention in the ensuing treatment. In particular,
the general factors involved in the selection of loop closure sequence (Table I)
will be specialized for each of the examples; and some of the background con-
siderations pertinent to closure criteria will be discussed prior to the selec-
tion of representative quantities and values. Once the sequence and criteria
are fixed the analysis itself is routine, and the detailed examples are then

presented as straightforward numerical exercises.

The longitudinal system is an altitude control system wherein the airframe
is controlled by the elevator which, in turn, is activated by feedbacks involv-
ing the pitch angle, 6, and the altitude, h. This system is illustrated in the
block diagram of Fig. 9. Here the usual "e" gybscript on the elevator deflec-

tion symbol, ®e, is eliminated to simplify the notation.

Altitude
Channel
Equalization

he

Gh Actuator

A e B

»{ Airframe

Gg

Pitch
Channel
Equalization

Figure 9. Longitudinal Control System
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This system has a very simple multiloop form because only one control
deflection, &, is used. The surface actuator is, therefore, common to both
feedback channels—a feature emphasized in the block diagram by indicating an
actuator transfer function block, Gy, separate from the altitude and pitch

channel equalizations.
A. LOOP CLOSURE SEQUENCE AND GENERAL CLOSURE CONSIDERATIONS

For this system a unique sequence of closures is easy to justify using
Table II, as a special case of Table I, to illustrate the reasoning. Some of
the less obvious remarks in Table II may become more apparent after the discus-
sion below. All of the factors considered in Table II indicate, or are compat-
ible with, a closure sequence with h as the outer loop. The block diagram of
Fig. 9 can now be shown with an h, command, as in Fig. 10, and the system can
be designated as

he, 6—=3 (62)

Altitude
Channel
Equalization

Actuator

Gs Airframe

Pitch
Channel
Equalization

Figure 10. Altitude Control System

he, 6 =8
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B. SPECIALIZATION OF SYSTEM EQUATIONS
The controller equation for the system is
5 = Ggp(h, - h) - Gy (63)

where Ggp = GpGs and Ggg = GgGs. As a special case of the general equations

in the last section the quantities involved here are as given below.

Control Deflections: 61 =
B = B
Output - Motion Quantities: 4 =u R q5 =8
1
b =W 5 qu=h=—S"(U09-W)
Vehicle Traunsfer Functions: Q15 =Us , Q552 = 8y
2

= W. Q. = H.
Q252 & 2 452 B
Controller Transfer Functions: Gpg = Gop =0
Goz = Ggg, Gy = Gap

The closed-loop transfer function h/hc can be determined directly from Eq 39
and 40 if Fig. 10 is considered a special case of Fig. 4 and the terms and

symbols adjusted accordingly.

1 Gonlpg

hc]h,e’ 5 A+ G59N65 + GShNhS

(64)

For the purposes of this report all literal airframe transfer functions are
written as in Refs 2, 3, or 11, all of which are compatible. Numerical trans-
fer functions, when required for plotting or other burposes, are based on the
typical case given in Ref 11. However, although derived using these numerical
values, many plots are presented in generic form with the poles and zeros

identified by their literal values to enhance the clarity of presentation. In

43



terms of such literal values the generic airframe-alone transfer fumctions,

expressed in the root-locus form, are:

6 o 298 - Ag(s + 1/T0;)(s + 1/Toy) (65)

° N (s% + e ™ a%)(sz + 2 gpsps * wb%)

Nh8 Ah(s + 1/Th1)(s + 1/Th2)(s + 1/Th5)
— = (66)

s(s® + 2f s + cu%)(s2 + 24 ggps+ W)

Hy =

As already noted, approximate factors relating the poles snd zeros in Egs 65
and 66 with the aerodynamic and inertial parameters of the airframe are given
in Refs 2 and 3.

The appropriate equivalent block diagram for Fig. 10 is shown in Fig. 11.
Hé, the equivalent vehicle transfer function with the € loop closed, is also

shown in this figure.

G36®s

Figure 11. Equivalent Block Diagram for Altitude Control System
h,, 6 =5
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C. INNER LOOP CONSIDERATIONS

1. Inner Loop Alone

Establishing the closure criteria for the two loops is somewhat more
involved than the closure sequence selection. Considering the fundamental
vehicle dynamics and possible disturbances, and recognizing that the attitude
loop will probably be the outer loop (i.e. attitude commands) in some oper-

ational mode of the flight control system, the 6 loop alone should be capable of:

(1) Providing good attitude regulation of the vehicle in
the presence of external disturbances (e.g. gusts),
and both short and long term vehicle asymmetries such
as sudden changes in: c.g. with stores release, thrust
moment with power changes, external configurétion with
actuation of auxiliary surfaces such as flaps or brakes,
etc.; and slov changes in: c¢.g. with fuel consumption,
flight operating conditions, etc.

(2) Accomplishing commanded changes in attitude with good
response.

For nominal airframe characteristics these aims can be accomplished using a
controller with lead equalirzation, and a crossover frequency, ®,
greater than the short period undamped natural frequency. Typical characteris-

, somewhat

tics for such a system are illustrated in the sketches of Fig. 12. The con-
ventions established in Fig. 12, for identifying the meaning of the various
line-values used on the Bode plots, are followed in all remaining plots.
Neglecting the controller lag dynamics, the open loop transfer function in
Bode form will be

KGKGS(TQTS + 1)(Tgys + 1)(Tgs + 1)
2 S \2 sp®
Dp Psp

where TE is the lead equalization time constant. (This equalization can be

G(s) =

developed directly from a 9 sensor using passive elements, or from a rate
sensor plus a 6 sensor.) The actual values for the closed-loop transfer
function factors are readily found by the decomposition technique using the

G¢(jo) and G(-0) Bode plots of Fig. 12, or from a root locus. These techniques,

45



SWBIFITY TBUTWON pUB JISTTOIUC) TBIPI UITH
waysAg TOJIUO) 8PNYTIIY JO $0T1STIa90mITy) dooT-pasoT) pur -usdp *gl am3td
snd07 jooy (9)

woiboig yo0|8 (D)

L6

¢ 1es30)03:0%]
9 8 sepjoau0) 109p1 | %8
gl
(s)o
(“n 0y
swoibpig apog dooT paso|) pup usdp (q)
903s Boy |s| ‘o ‘'m
3 mmu_.l —— 3R UBRY d00| —uBd) —e _._mp
m [ .._| ] > L™ T
|
- a | N_mF : —— Sajuong Gooj — PEEOLY) —e .m_._. ‘w_E
o T ] r F
S i = #
|§I|| - ———1 Ilm_v.lllllll..nl..f..ih .!l— .+.
%o+
- i 3 |kn 0] _ oydakry ap. ‘_.n! By o3
WX Joy suyqpQ ) S [#-}9 jo sanqos aagobau Joj  |[2-19)
...1...1..' —
nv._n-.rm__. njordwisy -

"Me W 40) eu QPO

Flmnyo)|




and others involved in unified servoanalysis procedures, are covered elsewhere
(Bef 9).

When closed with values of open-loop dc gain, K, as shown in Fig. 12,

the resulting closed-loop transfer function is

( X (Te1s + 1)(T925 +1)(Tgs + 1)

) ; (68)
1T +K (Tgs + 1)(Toys + 1) (Tgs + 1) (Tgps + 1)

Eq 68 uses several aspects of the notational scheme adopted in
this report for multiloop analysis results, so a short aside is
pertinent to discuss notation using this concrete example. All
of the closed-loop poles have one prime, indicating that they
result from one loop eclosure. Also the actual notation selected
for the closed-loop poles reflects their approximate values. Thus
1/T6{’ 1ATaé and 1/T', are all near the open-loop numerator terms
1/T91, 1,T92, and 1/Tg, respectively. If a much lower value of K
had Dbeen uSed, such that the closed-loop factors remained quadratics
(i.e. K< K1), then the closed-loop denominator would have had the
form

28} s ' 8
( S)2 + P + 1 ( S )2 + Sp + 1
w! w! w! w}
P P sp 5P

In this case the notation used for the closed-loop quantities
refleets their origin in open-loop quantities. If intermediate
values of gain had been used, such that the closed-loop phugoid
were more than critically damped but the closed-loop short period
were still quadratic (i.e. K; < K < Kp), then the closed-loop
denominator would have the form

2t s
2 sp

(T,0s + 1)(Tyts + 15[ (2= + + 1
01 62 ®dp Wl

So, as gain is increased, the notation for the closed-loop
phugoid and short period modes has the following transitions:
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Phugoid : . ECPS
Open-loop (K = 0) l:(_“..) B + 1]

“p ®p

2¢4s
Closed-loop, quadratic (K < K;) I:(--g;)2 + .._?_ + 1:|

®p “p

Closed-loop, overdamped (K; < K) (Té1s + 1)(Té25 + 1)

Short Period:

2858

Open-loop (K = 0) [(—S—)E + L 1]
Wsp Bgp
2038

Closed-loop, quadratic (K < X,) [(i, 2 4 ,P + 1]
(l)sp CUSP

Closed-loop, overdamped (K2 <K) (Tgs + 1)(T‘Sps + 1)

The rules for this notational sequence can be summarized as:

1. The number of primes present indicates the number
of loop closures.

2. When the closed-loop form is the same as the open-
loop form, the notation for the closed-loop factor
is the same as the open-loop factor, plus a prime.
In this case the origin of the closed-loop factor
is always at hand.

The notation for closed-loop factors which differ
in form from their open-loop origins reflects the
open-loop zeros which the factors approach as
K—=— , When no open-locp zero exists in this
situation, a special form is coined which reflects
the origin of the fact (e.g. 1/Tgp).

N

These rules are special cases of those summarized in the nomen-

clature section at the front of this report.

For the attitude system closed with high gain, as in Fig. 12, the
closed-loop de gain, K/(1 + K), is approximately one, and the dipole pairs
(T91s + 1)/(T9'1s +1), (TQES + 1)/(T9'2s + 1), and (Tgs + 1)/(Tps + 1) in 6/6;

all nearly cancel. Thus Eq 68 becomes approximately

1

,-I,S.—PS—+1— (69)

L -
Oc
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As an attitude command system, this is very good indeed; also attitude regulation
préperties are adequate. So from the standpoint of attitude control, the system
shown is satisfactory. However, two caveats are worth mentioning. First, for
some flight conditions the low-frequency region centered about Wy, may not
exhibit such large amplitude ratio relative to that near short period, thereby
making it difficult to attain values of K much greater than one. Such condi-
tions can be corrected by low frequency lag-lead equalization (e.g. adding an
integral of 6. to the controller). Second, the controller assumed is ideal,
with servo and/or sensor lags ignored, and the loop gain can, theoretically, be
inereased indefinitely without any stability difficulties. Controller lags will
be taken into account later in the detailed analysis. Thelr presence limits the
allowable gain for stability, and is one reason lead equalization (i.e. the

TEs + 1 factor) is needed in the attitude loop.

©. The Inner Loop as Equalization for the Outer Loop

When considered in company with the h outer loop the attitude loop
cloaure should be of such form as to relieve outer loop equalization require-
ments. With the ideal controller considered above, the effective alrframe
altitude transfer function Hé becomes
b - - 1
5 lgmp D BT ¥ Gpaby

o 2§ps o 2Lgps
Kha(Th1s+1)(Thgs+1)( Th§s+1) [(f);) +—a;;+1 (82;) + Top + 1

s [(_3_)2 + ‘Q‘ETES- N 'l] [(;Ss_.)g .\ Eisps n 'IJ (1+K9K98) (TG’1 s+1) (Tégs+1 ) (TEI§S+1 ) (Téps+1 )
sP sp

“p

th (Th1s + 1)(Th23 + 1)( Th5s + 1)

- (70)
(1 + KgKgg) (s(Tg,s + 1)(Tgs + 1)(Tps + 1)(Tips + 1)

The forms of H8 and Hé are illustrated in the sketches of Fig. 13. To
emphasize the basic differences in the dynamic rather than static forms, a common
gain factor is used. hActually H§ would appear (1 + KGKQB)db = (KGKQS)db below
the plot for (1 + KeKeg)Hé- Comparison of these forms (which are minimum phase
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except for the breakpoint at 1/Th5) readily indicates the superiority of Hé over
Hy. For a pure gain altitude controller operating on Hg, the crossover frequency
must be well below 1/Th1, (tc avoid the lightly damped phugoid) and the resulting
closed-loop system response will exhibit a very lightly d=mped or even slightly
unstable oscillation of the phugoid variety. When the vehicle-alone phugoid is
unstable, as it may be for flight conditions involving pitching moment changes
with speed, a stable pure gain closure is impossible. On the other hand, a

pure gain h controller is completely suitable for the H% system, and stable
crossovers in the neighborhood of 1/T52 are readily obtained. The dominant
closed-loop mode is then a quadratic having an undamped natural frequency near @e s
and the gain can be selected to yield well-damped responses. For these statements
to be true, the iuner loop gains must be high enough to overdamp the phugoid,

and preferably high enough to force the 1/Té2 pole to the neighborhood of

T/Tag, thereby effectively maximizing available bandwidth. High gain 6 inner

loops are, therefore, a fundamental requirement for pure gain altitude controllers.

An obvious alternate to the above system is to use lead equalization
in the h loop. This is sometimes necessary anyway (e.g. in terrain following),
but it always introduces additional difficulties. For example, the system
(with no inner attitude loop) will produce drastic pitch angle changes when
the airframe hits a vertical gust. Considerations of this nature are important

when comparing competing systems for the altitude control task.

A final point worth mentioning is the possibility of T/Th1 becoming
negative. As discussed in Ref 2 this depends primarily upon the drag and
thrust characteristics of the vehicle. In practice negative values of 1/Th1
cannot be avoided near the absolute ceiling or in landing-approach when flying
at speeds below that for minimum drag. When this occurs an altitude system
using only elevator control will‘exhibit a divergence (with a time constant

which approaches Th1) and will therefore be unacceptable.
D. NUMERICAL EXAMPLE

The preceding discussion covers most of the general aspects of an altitude
control system with an inner attitude loop. The present article provides a

numerical example.

51




To make the example more realistic, a high frequency second-order lag is
used to approximate the servo characteristics, and a first-order lag to simu-~

late altitude sensor dynamics. Thus, the servo transfer fumction is

1
Gg = (71)
) = )2 2f.s
®g

The inner-loop controller transfer function is,

3]
+——t
P

Ko(Tos + 1)
O\"E
Gsp = o ogs (72)
%=1
s 5
and the outer-loop controller transfer function becomes
X
h
Gsn = o Blgs (73)
(75 + D[ 1]
& % )
where T, is the time constant of the altimeter installation.
Numerical values for the altitude sensor and servo will be taken as
CS = 0.7, (1)*5 = 50,
(74)
1/T, =15
The vehicle characteristics are similar to the nominal case previously
used as an example throughout Ref 11. These are:
4.8 + 1 S — + 1
(%.85)( 0098 ) (757 ) (75)
( 2( O71h)s ( 2 2(.&95)5 + 1
of (.063) L. 27 (k.27)
s
(2275) (g + V(g + (- w85 + 1) 5

2(.071k)s 2( 495)s
I:( %5) + (-063) ][(u 27t TOery t
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The attitude channel equalization time constant would ordinarily be found
by an attitude subsystem optimization procedure which considered the vehicle
dypandcs over the entire flight regime. This is beyond the present scope, SO
.a value of 1/TE = 2.4, which is reasonably representative, will be arbitrarily

selected for the example.

With all required numerical values fixed the analyses can proceed in a
straightforward fashion to determine the two gains Ke and Kh. The first
objective is to find the poles and zeros of 1/(1 + Ggg®). Siggy and jo Bode
plots of the open-loop transfer function G69®6 are presented in Fig. 14, and
a root locus sketch (not to scale) is shown in Fig. 15. The actual closure
used depends in practice on several factors (e.g. whether an adaptive device
is to be used, effects of parasitic nonlinearities, etc.) over. and above those
general considerations discussed in the second article of this section (i.e.
bandwidth, response of 8 loop to commnands, etc.). To make matters simple, a
closure criterion based on a phase margin of 40 degrees is used in Fig. 14.
The resulting system is compatible with all the general considerations, i.e.
it will exhibit good transient response to attitude commands, good attitude
regulation, reasonable insensitivity to likely parasitic nonlinearities, etec.
However, the criterion may not be appropriate for certain types of adaptive
gain-changing schemes, especially those involving low amplitude limit cycles

as an essential characteristic.

For a phase margin of 40 degrees the gain Ky will be 8.3 db or 2.6 in
linear units. Using the decomposition and other techniques of the unified
servoanalysis method (Ref 9), the closed-loop transfer function G59®5/(14—G69®6)
becomes (See Fig. 14 - dotted line)

Goe® KgKog,

_ o ( ) (T91s + 1)(T925 + 1)(TES + 1)
1+G6d35 Gc 'I+K9KQ6

1
st (T 1) (Tt ) (Tr_ant) | ()2 285 4
(T91s 0,5 S LpSH Iy y

(17

S S S
oogg * T * Vi + 1)

B0 G SR [ 2]
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Figure 15. Root Locus Sketch for Example Attitude Control Subsystem, Gog®s

Eq 77 reveals that closing the loop has overdamped the phugoid and short period

modes and reduced both damping ratio and undamped natural frequency for the

quadratic mode associated with the servo. The closed-loop phugoid factors are

gaite close to the zeros, 1/T91 and 1/T@2; and one of the closed-loop short
period factors (1/Té) is near the 1/TE zero. Thus, the low frequency poles and

zeros are largely self-canceling and the approximate closed-loop transfer func-
tion for the attitude loop is
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c s.1 + 1)[% 2(3;2)5 + i]

Eq 78 is the equivalent of Eq 69, with the presence of the servo dynamics
giving rise to the additional second order factor.

(78)

The closed-loop attitude system transfer function of direct interest for
the subsequent altitude loop closure is

S | Crines | s | i ]f

1+G59®5 = (1+K9K9-8—)—

2
(T91'S+1)(T9és+1)(T]%:S'H)(T‘ szEil) (5_5) . C
(79)
2 2(.0714) 2, 200
L g aomio, Jls 2 2onts, ][22, 20D, ]

0360 (Fre ) o5t GE D T[S )+E 52)8”]

This transfer function, when combined with the airframe transfer function Hg,

gives Hé, the effective airframe altitude transfer function with the attitude
loop closed, that is,

(T s+1) (T s+1)( T +-|)[(s )2 2Cps . 1]
5 )" +
i o b =y (T m 5 g N (80)
5 1+Gg@5 1+KoKoy e
S(Ig1s+1)(1523+1)(Tﬁs+1)(Téps+1) (i%)Q 5

+ 1

Except for the guadratic pair due to the servo, Eq 80 is identical in form to
Eq 70, which was derived for an ideal no-lag controller. When the altitude
controller transfer function Ggp is combined with Hé, the numerator servo
quadratic will exactly cancel the servo characteristics in the denominator

of Ggp. The effective servo dynamics for the h loop closure therefore result

from the attitude closed-loop system.
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Adding controller dynamics to Eq 80 results in the open-loop altitude system
transfer function,

Knk (Ty, s+1)( Ty, s+1)( Ty _s+1)
1ot ot s
5(T6;5+1) (Tgps+1) (Ts+1) (Tgps+1) (Tos+1) [ (20) %+ wz + 1
S
(81)
( 0864 1)(19 5+ (- 55 +1)
= K, (167) . 9 5
’ .os11 1)(1 So5+1)(5—?5+1)(47'1+1)(1—S5—+1)B5 542, 2 52)3_”]

The jw and siggy Bode plots for this transfer function are given in Fig. 16 and
a root locus sketch is shown in Fig. 17. As in the attitudé loop, the open-
loop characteristics in the frequency region of possible crossovers are such

as to result in good closed-loop dynamic response 1f a phase margin of L0 to 60
degrees or so is used for the closure criterion. For a phase margin of 40
degrees, Ky will be -49.4 db or 0.0034 rad/foot.

The complete closed-loop system poles can be determined readily using
unified servoanalysis tecbniques. However, the entire procedure is simplified
considersbly, with little loss in accuracy, if advantage is taken of a simplified
form of Ggplly. In Fig. 16 it will be noted that |GgpHi| is much less than one
in the frequency region gbove the breakpoint at T/ﬁé. Thus, the coantributions
of GShH% to the system frequency response will be very small at frequencies
above w = 1/T' = 3.5 and these contributions will be changed only very slightly
if the amplitude asymptote through the break point at w = 1/T6 = 1.05 is
taken as the high-frequency asymptote of GShHS Thus, a simplified open- loop
transfer functioa

(57) (o7 + 1)
GopHl = —— 0064 (&)
stom + Nies o5t 1)

is capable of exhibiting the major changes introduced by the h closure. The
high frequency porticn of this simplified plot is shown by the dashed line on
Fig. 16. The higher frequency terms not contained in Bq 82 will be modified
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Figure 17. Rool Locus Sketch for Example Altitude Control Outer Loop, Gsh!ié
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only slightly from those given in Eq 81 by the altitude closure. Using the
decomposition technique on this simplified open-locop transfer function, a

simple approximation to the closed-loop transfer function is

_1_1_] 5 (006++ 1)
Beln,e =5 , 2(.52)s
& (006 +1)[(1 o5 F5ge)+1]

]
s 12 . 2(.52)s i
E1 )t (1?02) * 1:'

Eq 8% gives only the dominant mode for the altitude control system. Including an

lie

(83)

approximation to the higher frequency terms from Eq 81, the total system closed-~

loop transfer function would be approximately

1 1)( 1—9——2—+1)

g g
e [(1 Eolt e Rl (S 1)(u71 ) 1)[(—)2 - 'gg)s”]

(84)

E. CONCLUDING REMARKS

With the control gains set as given above the altitude control system will
exhibit characteristics generally accepted as good. The transient response to
an altitude command will be rapid and well damped, and the shape of the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>